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DENSE GAS-SOLID FLOWS
“shifting sands” (Tanzania)



DENSE GAS-SOLID FLOWS
clusters in co-current vertical gas-solid flows



INTRODUCTION
dense gas-particle flows in fluid bed family of contactors

1:   bubbling bed
2:   turbulent bed
3:   circulating bed
4:   riser
5:   downer
6:   lateral staged bed
7:   vertical staged bed
8:   spouted bed
9:   floating bed
10: twin bed 



INTRODUCTION

• APPLICATIONS OF FLUIDIZED SYSTEMS

+ heat exchange and drying
+ coating and granulation
+ gas purification via adsorption
+ chemical synthesis (acrylonitrile, maleic and phtalic anhydride)
+ polymerization of lower olefines (propylene)
+ Fischer-Tropsch synthesis
+ Fluid Coking and Flexi-Coking
+ combustion and incineration 
+ Fluid Catalytic Cracking (FCC)



INTRODUCTION
Fluid Catalytic Cracking (FCC) unit



ELEMENTARY PROPERTIES OF GAS-FLUIDIZED BEDS
dense beds



FLOW REGIMES + KEY PHENOMENA
map of flow regimes in particle-laden flows



MULTI LEVEL MODELLING

• MULTI LEVEL MODELLING OF DENSE GAS-SOLID FLOWS

Van der Hoef et al., CES (2004)



DBM SIMULATION
industrial size column

• SIMULATION CONDITIONS

Industrial scale column:
• Dimensions: 4 m x 4 m x 8 m
• Gas velocity: 2.5Umf=0.25 m/s

Emulsion phase properties:
• Density: 400 kg/m3

• Viscosity: 0.1 Pa.s

Bubble properties:
• Initial bubble size: 8 cm
• Maximum bubble size: 80 cm
• Typically ~ 5000 bubbles 



DPM + KTGF SIMULATION
bubble formation: 15 cm bed

W=0.15 m
dp=1.5 mm

ρs=2526 kg/m3

Ub=0.85 m/s
Uj=15.0 m/s
Np=120000



DPM SIMULATION
spouted bed



DPM SIMULATION
spouted bed
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particle configuration particle velocity map



DPM SIMULATION
spouted bed

experimental simulated

/ 16.0 / 1.2sf mf bf mfu u u u= ↔ =



DNS (IBM)
flow through cubic array of 64 particles at Rep=2.0

1003 Eulerian grid
N=(dp/h)=20

Dimensionless drag

F=10.9 (computed)
F=10.2 (analytical)



DNS (IBM)
flow through random array of 1326 particles at Rep=120



DNS (IBM)
flow through random array of 1326 particles at Rep=120



DNS (IBM)
fluidization of 3600 discs



KINETIC THEORY BASED MODELS

• BASIC FEATURES

+ statistical mechanical description of particle-particle encounters

• ADVANTAGES

+ based on more fundamental description of particle-particle interaction
compared to classical two-fluid model

• DISADVANTAGES

+ incorporation of different particle properties (polydispersity) is quite
difficult and leads to (many) additional equations (CPU limitations) 



KINETIC THEORY BASED MODELS

• LIMITATIONS AND PRESENT DIFFICULTIES

+ nearly spherical particles

+ not suited for dense gas-particle flows where (quasi-)static particle
zones prevail (hoppers, fixed beds and moving beds)

+ incorporation of detailed particle-particle interaction models difficult

+ systems with broad distribution in physical properties (size, density)

+ systems with (rapid) changes in particle size (polymerization)



CONTINUUM MODEL BASED ON KINETIC THEORY

• DEFINITION OF PARTICLE VELOCITIES

+ instantaneous particle velocity:

+ ensemble averaged particle velocity:

+ fluctuating particle velocity:

• DISTRIBUTION OF FLUCTUATING VELOCITIES (KTG)
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CONTINUUM MODEL BASED ON KINETIC THEORY

• TRANSPORT MECHANISMS FOR PARTICLE PROPERTY φ



CONTINUUM MODEL BASED ON KINETIC THEORY

• BOLTZMANN EQUATION IN TERMS OF

• BOLTZMANN EQUATION IN TERMS OF

• SUBSTANTIAL DERIVATIVE:
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CONTINUUM MODEL BASED ON KINETIC THEORY

• MAXWELL TRANSPORT EQUATION FOR PROPERTY φ

• ENSEMBLE AVERAGE OF PROPERTY φ
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MICRO BALANCE EQUATIONS

• CONTINUITY EQUATIONS

• MOMENTUM EQUATIONS
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MICRO BALANCE EQUATIONS

• GRANULAR TEMPERATURE EQUATION

• ADDITIONAL EQUATIONS AND CLOSURES

+ phase densities
+ phase stress tensors and phase viscosities
+ pseudo Fourier energy flux and solids pseudo conductivity 
+ solids pressure
+ interphase momentum exchange coefficient
+ covariance between fluid and solid fluctuating velocities
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CLOSURE OF MICRO BALANCE EQUATIONS
interphase momentum transfer coefficient

• Ergun equation (εf<0.8):

• Wen and Yu equation (εf>0.8):

• Drag coefficient:
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DRAG CLOSURE
Ergun equation



CONTINUUM MODEL BASED ON KINETIC THEORY 

• SUMMARIZING THE KEY FEATURES OF KTGF

+ particles interact through binary nonideal collisions (no friction)

+ non-ideal particle-wall collisions are accounted for

+ departure from Maxwellian (velocity) distribution function is small

+ one additional equation (“granular temperature equation”)

+ closures for solids viscosity, pressure and pseudo conductivity

+ random granular motion and no collective granular motion



NUMERICAL SOLUTION METHOD

• KEY FEATURES

+ explicit treatment of convection and diffusion terms

+ implicit treatment of porosity pressure in momentum equations
+ staggered computational mesh
+ high order schemes for convection for mass and momentum

stability
conditions
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NUMERICAL SOLUTION METHOD

• DEFINITION OF EULERIAN VARIABLES

scalar variables
x-velocity component
y-velocity component
z-velocity component

x
y

z



NUMERICAL SOLUTION METHOD

• OVERALL COMPUTATIONAL STRATEGY PER CYCLE  

compute convection and diffusion terms for g+s momentum equations

estimate g+s velocity distributions using old porosity + pressure fields

solve porosity and pressure Poisson equations using ICCG

solve granular temperature equation

compute g+s velocity distributions with new porosity + pressure fields



RESULTS OF KTGF MODEL
bubble formation at a jet using 3D model



RESULTS OF KTGF MODEL: MONODISPERSE SYSTEMS
bubble formation: 30 cm bed

W=0.30 m
dp=2.5 mm

ρs=2526 kg/m3

Ub=1.20 m/s
Uj=20.0 m/s
Np=60000



RESULTS OF KTGF MODEL
effect of restitution coefficient on bed dynamics



RESULTS OF KTGF MODEL
effect of restitution coefficient on bed dynamics



RESULTS OF KTGF MODEL: BIDISPERSE SYSTEMS
segregation rate in bidisperse systems



RESULTS OF KTGF MODEL: BIDISPERSE SYSTEMS
segregation rate in bidisperse systems



RESULTS OF KTGF MODEL
effect of lateral segregation on riser reactor performance

• RISER FLOW

+ particle diameter (FCC) 40 μm
+ riser diameter 0.3 m
+ superficial gas velocity 6.3 m/s
+ solids mass flux 390 kg/(m2.s)

• FEATURES

+ two-fluid model incorporating kinetic theory of granular flow
+ turbulence model: Prandtl mixing length model
+ axi-symmetrical flow



RESULTS OF KTGF MODEL
effect of lateral segregation on riser reactor performance

• RISER FLOW

RADIAL PROFILE OF SOLIDS VOLUME FRACTION εs
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RESULTS OF KTGF MODEL
effect of lateral segregation on riser reactor performance

• RISER FLOW

RADIAL PROFILE OF AXIAL SOLIDS VELOCITY Vz
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RESULTS OF KTGF MODEL
effect of lateral segregation on riser reactor performance

• REACTION SCHEME:

• KINETICS:
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RESULTS OF KTGF MODEL
effect of lateral segregation on riser reactor performance

• AXIAL PROFILE OF FLOW-AVERAGED FRACTIONS IN RISER
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CONCLUSIONS

• BUBBLING BED

+ significant effect of e on bubble dynamics

+ dissipation level to low (friction is not included in KTGF)

• CFB RISER

+ radial segregation in dense riser flow can be predicted

+ significant effect of radial segregation on riser reactor performance
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