Impact on soft sand: The effect of the ambient air

Detlef Lohse Department of Physics University of Twente

- Phys. Rev. Lett. 93, 198003 (2004)
- Nature 432, 689 (2004)
- Phys. Rev. Lett. 99, 018001 (9th July 2007)

Astroid impact on earth

Craters

...on the moon

Moltke

Tycho

central peak

Craters

...on Mars

Mars explorer, January 2004

...on earth

Arizona

Speculation on crater formation

Source: Jan Smit, Amsterdam, Dept. Geology

What's really going on?

Downscaled experiments: Impact of steel ball on fine sand

Problem: reproducibility

Controlled experiments

Ball dropped on **decompactified**, very fine sand

Ball at release point

Maximum jet height

Jet height > Release height !

Jet height vs release height

Phys. Fluids **13**, 4 (2001):

Impact of ball on decompactified sand

3 events:

- Impact creates splash
- A jet is formed

•

• Granular eruption

Impact: planetary vs. lab

How to look into the sand?

2D experimental setup

2D experiment: high impact velocity

Just as in water:
1. void formation
2. void collapse
3. two jets (sheets in 2D)
4. bubble formation

Discrete particle simulations

- soft sphere code
- N = 1000000
- $d_s = 0.5 \text{ mm}$
- $d_b = 15 \text{ mm}$
- quasi 2D (8 grains thick)
- pre-fluidized

Discrete particle simulation

t = 0.0005 [s]

3D discrete particle simulation

Does sandbed support weight?

D. Lohse, R.Rauhe, D. van der Meer, R. Bergmann, Nature 432, 689 (2004)

"Dry quick sand"

Myth from Lawrence of Arabia...

Sandbed does not support weight

final depth ~ mass

Jet height vs mass: threshold behavior

Model: Coulomb friction

Coulomb friction

$$F_{coulomb} = -\kappa Z$$

Force balance

$$(m+m_A)\ddot{z}=mg-\kappa z$$

Solution

 $\omega =$

$$z(t) = \frac{1}{2} z_{final} (1 - \cos \omega t)$$

Final depth

$$\frac{\kappa}{m+m_{4}}$$

$$z_{final} = \frac{2mg}{\kappa}$$

$$0 \le t \le \frac{\pi}{\omega}$$

Depth vs time

Continuum model for void collapse

Force chains do not seem to play a role

Cavity formation

Coulomb drag:

$$F_{coulomb} = -\kappa z$$

Solution:

$$z(t) = \frac{1}{2} z_{final} (1 - \cos \omega t)$$

Invert:

$$t_{pass}(z) = \omega^{-1} arcos\left(1 - \frac{2z}{z_{final}}\right)$$

Cavity collapse

Initial conditions

$$R(z,t_{pass}) = R_0$$
$$\dot{R}(z,t_{pass}) = 0$$

Sand pressure

$$p(z) = \rho g z$$

Rayleigh-type dynamics of cavity collapse

2D slice at depth z

$$\partial_{\tau} \mathbf{v} + \mathbf{v} \partial_{r} \mathbf{v} = -\frac{1}{\rho} \partial_{r} \mathbf{p}$$

Euler equation in cylindrical coordinates

Continuity equation and boundary conditions

Equation for 2D collapsing void

$$r v(r) = R(t) \dot{R}(t)$$

$$(R\dot{R} + \dot{R}^2)\ln(\frac{R}{R_{\infty}}) + \frac{1}{2}\dot{R}^2 = gz$$

Rayleigh model at high impact velocity

bubble formation !

Experiments vs. hydrodynamic theory

T = -21 ms

T = 37ms

T = 78ms

Experiments vs. hydrodynamic theory

T = 100ms

T = 116ms

T = 191ms

Conclusions I

Series of events:
1. void formation
2. void collapse
3. two jets
4. hubble formation

4. bubble formation

Granular jet is formed by hydrostatic collapse of the impact cavity

Force balance model & hydrodynamic description work

D. Lohse *et al.*, Phys. Rev. Lett. 93, 198003 (2004), Nature 432, 689 (2004)

Is this the full story?

Large-Fr impact on sand

Fr=100

Analyse effect of ambient air

Effect of ambient pressure on...

- ... splash
- ... jet
- ... penetration depth

Splash depends on ambient pressure

25 mbar 1000 mbar

Jet much less pronounced under reduced pressure!

see also Royer et al., Nature Phys. 1, 164 (2005)

Effect of ambient air pressure

Pressure (mbar)

D = 2.5cm ; Fr = 32 ; t = 159ms

Jet height vs ambient pressure: saturation effects: two regimes

Ball trajectory in sand

Final depth of intruder vs p

Final depth described by force balance model

Coulomb friction coefficient depends on ambient pressure

Final depth correlated with jet height

Two regimes:

Closure time

Closure time: nearly constant

Final question:

What causes the sphere to penetrate less at lower pressures (i.e., the friction reduction)?

The sand bed is fluidized by the air flow around the impacting ball ($\text{Re}_{\text{sand grains}} \approx 5$)!

Impact of ball on decompactified sand

Height of sand bed vs time at impact

Ambient air leads to expansion of granular bed at impact: extra fluidization

Conclusions II

- Ambient air pressure strongly influences the penetration depth of the ball and thus the jet height
- Ambient air pressure hardly affects the collapse of the cavity
- Two regimes:

high p: trajectories unchanged up to closure low p: trajectories deviate: jet height <-> depth

- Autofluidization effect

Gabriel Caballero et al., Phys. Rev. Lett. 99, 018001 (2007)

Collaborators:

- Raymond Bergmann
- Gabriel Caballero
- Martin van der Hoef
- Kevin Kelly
- Hans Kuipers
- Devaraj van der Meer
- Andrea Prosperetti
- Remco Rauhe
- Christiaan Zeilstra

Financial support from FOM