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Granular Materials

Real:

• sand, soil, rock, 

• grain, rice, lentils, 

• powder, pills, granulate, 

• micro- and nano-particles

Model Granular Materials

• steel/aluminum spheres

• spheres with dissipation/friction/adhesion

• Introduction

• Single Particles 

• Particle Contacts/Interactions

• Many particle cooperative behavior

• Applications/Examples

• Conclusion

Single 
particle

Contacts

Many 

particle 
simulation

Continuum Theory

Approach philosophy
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Deterministic Models …

Navier Stokes

Kinetic Theory

Stat. Phys.

(Kinetic Theory)

…

Theory

LB

DSMC

MC

ED

MD

Abbrev.

Lattice (Boltzmann) Models

Direct Simulation Monte Carlo

Monte Carlo (random motion)

Event Driven (hard particles)

Molecular dynamics (soft particles)

Method

DCCSE – steps in simulation

1. Setting up a model

2. Analytical treatment

3. Numerical treatment

4. Implementation

5. Embedding

6. Visualisation

7. Validation

1. Particle model

2. Kinetic theory 

3. Algorithms for MD

4. FORTRAN or C++/MPI

5. Linux – research codes

6. xballs X11 C-tool 

7. theory/experiment
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What is Molecular Dynamics ?

1. Specify interactions 

between bodies (for example:

two spherical atoms)

2. Compute all forces

3. Integrate the equations 

of motion for all particles (Verlet,

Runge-Kutta, Predictor-Corrector, …)

with fixed time-step dt
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Forces and torques:

Normal

Contacts

Many 
particle 

simulation

Discrete particle model

Contact if Overlap > 0
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i ij
f m kδ δ γδ= − = +&& &

- really simple ☺☺☺☺

- linear, analytical

- very easy to implement

Linear Contact model
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http://www.ica1.http://www.ica1.uniuni--stuttgartstuttgart.de/~.de/~luilui/PAPERS/coll2p./PAPERS/coll2p.pdfpdf
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i ijf m kδ δ γδ= − = +&& &

- really simple ☺☺☺☺

- linear, analytical

- very easy to implement

Linear Contact model

elastic freq.
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Linear Contact model (mw=∞)

elastic freq.
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Time-scales

contact duration c
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ω
= wall

wallc c
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ω
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time-step
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time between contacts

n c
t t<

n c
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sound propagation  ... with number of layers 
L c L

N t N

experiment T

http://www.ica1.http://www.ica1.uniuni--stuttgartstuttgart.de/~.de/~luilui/PAPERS/coll2p./PAPERS/coll2p.pdfpdf
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Time-scales

contact duration c
t π

ω
= argl e small

c c
t t>

time-step
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t∆ <=

different sized particles
n c
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n c
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sound propagation  ... with number of layers 
L c L

N t N

experiment T

http://www.ica1.http://www.ica1.uniuni--stuttgartstuttgart.de/~.de/~luilui/PAPERS/coll2p./PAPERS/coll2p.pdfpdf
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Forces and torques:

Normal

Contacts

Many 
particle 

simulation

Discrete particle model

Contact if Overlap > 0
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Convection

Segregation
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Applications of Molecular Dynamics

• Gas-/Liquid-simulations

• Granular Materials

• Electro-spray 

• Polymers, Membranes, …

• Process/Battlefield-simulations

• … and many others …

Molecular Dynamics example
from astrophysics
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Algorithmic trick(s) for speed-up

• Linked cells neighborhood search O(1) (short range 
forces)

• Linked cells update after 10-100 time-steps O(N )

What is Molecular Dynamics ?

1. Specify interactions 

between bodies (for example:

two spherical atoms)

2. Compute all forces

3. Integrate the equations 

of motion for all particles (Verlet,

Runge-Kutta, Predictor-Corrector, …)

with fixed time-step dt
i j i

j i

m →
≠

=∑x f&&

j i→f
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Rigid interaction (hard spheres)

Stiff (rigid) interactions require dt=0

Events (=collisions) occur in zero-time
(instantaneously)

that means: Integration is impossible !

1. Propagate particles between collisions

2. Identify next event (collision)

3. Apply collision matrix

Why use hard spheres ?

+ advantages 

• Event driven (ED) is faster than MD

• Analytical kinetic theory is available

(with 99.9% agreement)

– drawback 

• Implementation of arbitrary forces is expensive

• Parallelization is less successful
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Why use hard spheres ?

+ advantages 

• Event driven (ED) is faster than MD

• Analytical kinetic theory is available

(with 99.9% agreement)

– drawback

• Implementation of arbitrary forces is expensive

• Parallelization is less successful 

Algorithm (serial)

0. Initialize

• Compute all forces O(1 )

• Integrate equations of motion t+dt

• O(N ) – goto 1.

Total effort: 
O(N )
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Rigid interaction (hard spheres)

0. Stiff (rigid) interactions require dt=0

Events (=collisions) occur in zero-time (instantaneously)

Integration is impossible !

1. Propagate particles between collisions

2. Identify next event (collision)

3. Apply collision matrix

Rigid interaction (hard spheres)

1. Stiff (rigid) interactions require dt=0

Events (=collisions) occur in zero-time
(instantaneously)



15

Rigid interaction (hard spheres)

2. Solve equation of motion between collisions

- trajectory

- contact

- event-time
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Rigid interaction (hard spheres)

( )1,2 1,2 1,21 2P mr= ± ∆+′v v

Collision rule (translational)

Momentum conservation + dissipation

with restitution coefficient (normal): r

Rigid interaction (hard spheres)

Collision rule (translational and rotational)

Restitution coefficient (normal): r        (tangential) rt

( )1,2 1,2 1,21 2P mr= ± ∆+′v v ( )1,2 1,2 1,21 2t Lr Iω ω′ ± ∆= +
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Time evolution

position

time

tn tn+1 tn+2

Algorithm (ED serial)

0. Initialize

• Propagate particle(s) to next event O(1) 

• Compute event (collision or cell-change)

• Calculate new events and times O(1) 

• Update priority queue (heap tree) O(logN )

• O(N ) – goto 1.

Total effort: O(N logN )
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Algorithmic trick(s) for speed-up

• Linked cells neighborhood search O(1) (short range 
forces)

• Linked cells update not needed !

Performance

• Short range contacts 

• Linked cells neighbourhood search

Cells per particle

low density high density
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Algorithm (parallel)

0.  Initialize

• Communication between processors

• Process next events tn to tn+m (see serial)

• Send and receive border-particle info

• If causality error then rollback goto 2.

• Synchronisation (for load-balancing and 
I/O)

• goto 1.

Parallelization – communication 

processor 1 processor 2

border zone
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Parallelization – load balancing

processor 1

processor 4

processor 3

processor 2

Parallelization – load balancing

processor 1

processor 4

processor 3

processor 2
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Parallelization – load balancing

processor 1

processor 4

processor 3

processor 2

Performance (fixed N)

• Required memory per processor [MByte]
1 2

33

c c
N c

P P

 
∝ + + 

 
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Performance (3D fixed N)

• Fixed density and number of particles 

1/ 2P∝

62.10N C= =

Performance (2D fixed N)

• Fixed density and number of particles

1/ 2P∝

62 10N C= =



23

Performance (3D fixed N/P)

• Fixed number of particles per processor 

1/ 2P∝

4/ 4.10N P =

Two-phase
Flows
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Two phase
Flows

Two phase
Flows with
Aggregation
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From Boltzmann (low density) …

• binary collisions 

• successive collisions are uncorrelated

• neglect boundary effects

• collision rate & pressure increase with density

• add coll.-transport of energy and momentum

… to Chapman-Enskog (high density)

Elastic Hard Sphere Model

… plot streaklines

simulate 2000 particles
in a peridoc box
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Hard Sphere Model
ν=0.01ν=0.25ν=0.70ν=0.80

r=0.95

ν=0.70
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r =0.90

r =0.80
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Collision parameter

Contact probability – correlation 
function
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Collision rate – time scale

Pressure (Equation of State – 2D)

fluid, disordered

solid, ordered

phase transition

at critical density

PV/E-
1=2ννννg(νννν)
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Pressure (Equation of State – 3D)

fluid, disordered

solid, ordered

phase transition

at critical density

Pressure (Equation of State – 3D)

solid, 
ordered

phase transition
at critical density

grow … shrink …
P P

d

d

a

t
=
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Pressure (Equation of State – 3D)

fluid, disordered

solid, 
ordered

phase transition
at critical density

slow … slower …

P P
d

d

a

t
=

Elastic hard spheres in gravity

• N particles

• Kinetic Energy

• What is the density profile  ?

gravity
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Elastic hard spheres in gravity

• N particles

• Kinetic Energy

• What is the density profile  ?

gravity

Elastic hard spheres in gravity

• N particles

• Kinetic Energy

• What is the density profile  ?

gravity
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Elastic hard spheres in gravity

• Pressure P  global equation of state

• Shear Stress

• Energy Dissipation Rate I=0

0
t

∂
=

∂

0 i

i

P g
x

ρ
∂

= − +
∂

elastic steady state:

mass & energy conservation – OK

momentum balance:

dev 0ijσ =

0iu I= =

Hard sphere gas in gravity

fluid, disordered
exponential tail

solid, ordered

phase transition
at critical density
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Shear (energy and rate)

Shear (pressure and viscosity)

p µ
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Shear (viscosity at high density)

homogeneous

inhomogeneous

⇒ dilatancy

critical density

Structure formation

Low density -> linear velocity profile

High density -> shear localization
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Structure formation

Shear (first normal stress difference)
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Equations of motion
2
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Forces and torques:

Normal

Contacts

Many 
particle 

simulation

Discrete particle model – gravity ?!

Contact if Overlap > 0

Astrophysics
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Experiment & Model for Sprays

• EHDA = ElectroHydroDynamic Atomisation

• DCT/PART – Marijnissen, Geerse, Winkels, …

liquid

high voltage

Experiment

•• Deposition analysisDeposition analysis: : TinopalTinopal visible with UVvisible with UV--lightlight

•• Applications: Applications: 

GreenGreen--house sprays, medical inhalation,house sprays, medical inhalation,

Spray painting, Spray painting, nanonano--particle production particle production 
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Model

•• Solve NewtonSolve Newton’’s second law for every droplet s second law for every droplet ii

•• Forces acting on a dropletForces acting on a droplet

–– electric field forceelectric field force

–– gravitation forcegravitation force

r
iq E

im g
r

i
i i

d( v )
F m

dt
=∑

rr

–– drag forcedrag force

–– Coulomb interactionsCoulomb interactions

2
( )

8
D air i air i air iC d v v v v

π
ρ − −

r r r r

3

04

N
j ij

i

j i ij

q r
q

rπε≠

∑
r

Model
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•• Real number of droplets is impossibleReal number of droplets is impossible

•• ScaleScale--up method to simulate the spray up method to simulate the spray 

–– use few droplets with increased Coulomb interactionsuse few droplets with increased Coulomb interactions

,i Coulomb q iq f q=
3

04

N
q j ij

q i

j i ij

f q r
f q

rπε≠

∑
r

Model

•• ScaleScale--up correlation between up correlation between ffqq and and ttprodprod

•• validity scalevalidity scale--upup 0 57

1 06(1) (1)

(2) (2)

.

.
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f q
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)

<rdep> = 0.0041 

stdev = 5 . 10-5

Results
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Electro-spray Model

•• DepositionDeposition

–– experimentexperiment –– simulationsimulation

y

x

Results
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•• Density, shape and velocityDensity, shape and velocity

0.5 m/s

Results

•• SummarySummary

–– ScaleScale--up method worksup method works

–– EHDA spray can be qualitatively simulatedEHDA spray can be qualitatively simulated

–– Some simplificationsSome simplifications in the in the modelmodel

Results
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•• Model including scaleModel including scale--up method worksup method works

–– validity has to be checked with other experimentsvalidity has to be checked with other experiments

•• MainMain challenges (for challenges (for modelingmodeling))

–– aeroaero--//hydrohydro--dynamics coupling dynamics coupling 

–– more (more (chargedcharged) ) particlesparticles (2000 (2000 toto 101044--101055) ) 

Open questions

• Introduction

• Single Particles 

• Particle Contacts/Interactions

• Many particle cooperative behavior

• Applications/Examples

• Conclusion

Single 
particle

Contacts

Many 

particle 
simulation

Continuum Theory

Approach philosophy

E 
x 
p 
e  
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m 
e 
n 
t  
s
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Normalized load (mN/m)

Contact force measurement (PIA)

Contact Force Measurement
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Adhesion and Friction
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Hysteresis (plastic deformation)

Collaborations:Collaborations:

MPIMPI--Polymer Science (Butt et al.)Polymer Science (Butt et al.)

Contact properties via AFMContact properties via AFM
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Equations of motion
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Forces and torques:

Normal

Contacts

Many 
particle 

simulation

Discrete particle model

Contact if Overlap > 0

( )
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2 0

for loading

for un-/reloading

- for unloading
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Maximum overlap              

stress-free overlap           

strong attraction
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est  at:     

the max. :  ce

- (too) simple ☺☺☺☺

- piecewise linear

- easy to implement

Contact model
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1 for un-/re-loading
hys

i

k

f

δ


= 



- (really too) simple ☺☺☺☺

- linear

- very easy to implement

Linear Contact model

3/ 2

1 for un-/re-loading
hys

i

k

f

δ


= 



- simple ☺☺☺☺

- non-linear

- easy to implement

Hertz Contact model
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3D

Anisotropy 3D

Sound
3-dimensional modeling of sound propagation 

Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft

Stefan Luding, s.luding@tnw.tudelft.nl

P-wave shape and speed 
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•• AgglomerationAgglomeration

–– population balance population balance –– cluster evolutioncluster evolution

–– phase transitions, cooperative phase transitions, cooperative behaviorbehavior

•• MainMain challenges (for challenges (for modelingmodeling))

–– aeroaero--//hydrohydro--dynamics coupling dynamics coupling 

–– cluster cluster stabilitystability, , statisticsstatistics, , sinteringsintering, ..., ...

Open questions


