Random Packing Density of Colloids and Granular Matter

Albert Philipse

Van 't Hoff Laboratory for Physical and Colloid Chemistry Debye Research Institute, Utrecht University

Outline

- Motivation.
- Spheres: the Bernal packing.
- Thin rods: the ideal gas in random packings.
- Near-spheres: a packing surprise.
- Conclusions and outlook.

Extra: something on random bio-packings.

Motivation

Packings in

- Nature:
 - sand, gravel, etc.
- Colloid science:
 - colloidal ellipsoids

- food technology
- catalyst carriers ()

Ordered sphere packing

Kepler's conjecture : you can't pack spheres denser than to a solid volume fraction of $\pi / \sqrt{18} = 0.7405$.

Disordered, 'random' sphere packing

Disorded spheres pack at a lower density of about 0.64 (the Bernal sphere packing).

The Bernal random sphere packing

Classical reference system for amorphous matter, colloidal glasses etc.

The Bernal random sphere packing

volume fraction = 0.62

 $0.60 < \phi < 0.64$

S.R. Wiliams and A.P. Philipse, *Phys. Rev. E*, 2003 A. Wouterse et al., *J. Chem. Phys.*, 2006

radial distribution function

Spheres are exceptional.....

Failure to analyse these packing in terms of 'effective spheres'.

(Thesis Alan Wouterse, 2008)

Generalize 'Bernal' to particles of any shape.

Conjecture: any particle shape has a unique, size-invariant maximum random packing density.

Where and how to start?

Is any of these (or other) random packings truly random, in the sense that all spatial and orientational correlations are absent?

The Ideal Packing

- Thermal gas:
 Reference is an ideal gas of uncorrelated thermal particles.
- Granular matter:
 Reference: an ideal packing of uncorrelated mechanical contacts.

A.Philipse, Langmuir 12, 1127 (1996)

A. Wouterse, Thesis (2008)

Counting uncorrelated contacts:

$$f(\vec{r}) = 1$$
 inside Vex

$$f(\vec{r}) = 0$$
 outside Vex

Orientationally averaged exclude volume:

$$V_{ex} = \int_{V} f(r) dr$$

Contact number
$$c_T = \int\limits_V f(\vec{r}) \rho(\vec{r}) d\vec{r}; \rho(\vec{r}) = \text{local nr.density}$$

$$\sim \rho \int\limits_V f(\vec{r}) d\vec{r}; \rho = \textit{average} \text{ nr. density}$$

$$= \rho V_{ex}$$

Ideal packing law for uncorrelated contacts:

$$\rho = \frac{\langle c \rangle}{V_{ex}}$$

Ideal packing law for uncorrelated contacts:

$$\rho = \frac{\langle c \rangle}{V_{ex}} \qquad \langle c \rangle = \text{average contact}$$
number on a particle

Particle volume fraction :
$$\Phi =
ho V_p$$
 V_p = particle volume

$$\Phi = < c > \frac{V_p}{V_{ex}} \qquad \qquad \frac{V_p}{V_{ex}} \quad = \text{fixed by particle } \textit{shape.}$$

But do uncorrelated contacts exists in dense granular packings?

Random rod packing in the thin-rod limit.

Contact surface fraction
$$\sim \frac{D^2}{DL} \sim \frac{D}{L}$$
 ; vanishes for $\frac{L}{D} \rightarrow \infty$

For thin rods:
$$\frac{V_{ex}}{V_p} \sim 2\frac{L}{D}; \frac{L}{D} \gg 1$$
 (Onsager 1949)

So for thin rods the ideal packing law $\Phi = < c > \frac{V_p}{V_{ex}}$ becomes:

$$\Phi \frac{L}{D} \sim \frac{1}{2} < c >; \frac{L}{D} \gg 1$$
 (A. Philipse, Langmuir 1996)

Clearly, as a rule, packings are *non-*ideal:

In the Bernal sphere packing, contacts are highly correlated.

In the random disc packing, correlations do not vanish in the thin-disc limit.

Experimental check of the thin-rod limit.

(A.Philipse, Langmuir 1996)

Granular Cocktail Matter

⊢ 1 cm

$$\frac{L}{D} = 10$$

⊢ 1 cm

$$\frac{L}{D} = 34$$

1 cm

$$\frac{L}{D} = 77$$

Copper wire

Comparison colloidal and granular rods

Colloidal AlOOH needles (L = 100 nm)

Granular rods

Experimental packing densities of colloids and granular matter

ullet Volume fractions ϕ_3 of 3-d packings

Experimental check of the thin-rod limit.

⊢ 1 cm

 $\frac{L}{D} = 10$

⊢ 1 cm

$$\frac{L}{D} = 34$$

Can't go to much higher L/D without introducing flexibility

$$\frac{L}{D} = 77$$

Mechanical contraction method

Procedure (Stephen Williams, 2003)

Dilute system is mechanically contracted until overlaps cannot be removed anymore. Result is a reproducible random packing density.

S.R. Williams and A.P. Philipse, Phys. Rev. E, 2003; A. Wouterse et al., J. Chem. Phys., 2006

Randomly packed sphero-cylinders

ullet Volume fractions ϕ_3 of 3-d packings

Overview experiments and simulations

 $- \bullet -$ Volume fraction φ_m vs aspect ratio -

Overview experiments and simulations

- Volume fraction φ_m vs aspect ratio

Simulation results at small aspect ratio.

S.R. Williams and A.P. Philipse Phys. Rev. E, 2003

Bernal packing is local minimum.....

— • — Prolate & Oblate Packings

Donev *et al,* Science <u>303 (</u>2004) 990 On this density maximum for near-spheres see also:

S.Sacanna, L.Rossi, A.Wouterse, and A.P, *Observation of a shape-dependent maximum in random packings and glasses of colloidal silica ellipsoids*, J.Phys.:Condes. Matter 19 (2007) 406215.

Volume fraction versus aspect ratio

Aspect ratio

Drawn line: $\phi \frac{L}{D} \approx 5$

S.R. Williams and A.P. Philipse, Phys. Rev. E, 2003

The ideal packing law:
$$\Phi = < c > \frac{V_p}{V_{ex}}$$

For thin rods:
$$\Phi \frac{L}{D} \sim \frac{1}{2} < c > ; \frac{L}{D} \gg 1$$

Experiments and simulations:
$$\Phi \frac{L}{D} \approx 5$$

Is indeed $< c > \approx 10$, and what does it mean?

Contact numbers in packings of sphero-cylinders

Near-spheres

Rods with aspect ratio 11

 $\phi = 0.40$

 $\phi = 0.43$

16 18

(Thesis Alan Wouterse, 2008)

Contact number versus aspect ratio

Contact numbers for sphero-cylinders indeed asymptote to $< c > \approx 10$

And why is that?

Rod packing is dominated by *local* caging effects.

Rod packing is dominated by *local* caging effects.

The caging number: a geometrical minimization problem

 Cage = the minimal configuration of static contacts that block all translational and rotational motion.

- c contacts cage a particle; c-1 still allow translation or rotation.
- Caging number = $< c>_{age}$ No analytical solution yet......

Caging number for uncorrelated contacts

For thin rods:
$$\langle c \rangle_{cage} \approx 9$$

Probability distribution for caging number of a thin rod.

(A.Wouterse, 2008)

Caging number for uncorrelated contacts

For thin rods: $\langle c \rangle_{cage} \approx 9$

Corresponding density: $\Phi \frac{L}{D} \approx 4.5$

Probability distribution for caging number of a thin rod.

(A.Wouterse, 2008)

Some conclusions

• The ideal packing law explains the aspect ratio dependence of granular rod-packings.

• The rod caging number accounts fairly well for the absolute random rod packing density.

 Random packing has a density maximum for nearspheres; the Bernal sphere packing is a singularity in packing space.

Outlook

• Effect of planar faces such as in random packing of coins. (see thesis Alan Wouterse).

• Mixtures of sphero-cylinders: is there universality in the density maximum? (work in progress by Andriy Kyrylyuk)

Results (mixture)

composition: x = 0.5

Results (mixture)

Outline

- Motivation.
- Spheres: the Bernal packing.
- Thin rods: the ideal gas in random packings.
- Near-spheres: a packing surprise.
- Conclusions and outlook.

Extra: something on random bio-packings.

Are these random packings 'geometrical states'?

If so, *growth* of random rods out of a 'point gas' should eventually produce the same density.

In a random distribution of particle centers, rods start to grow in random directions.

Thesis Alan Wouterse (2008)

Volume expansion to accommodate the growing rods.

The density follows the ideal packing law, and is inversely proportional to the aspect ratio.

Do such growing rod packings occur in Nature?

Prehnite crystals.

Pale green tubular epimorphs after laumontite (Maharashtra, India)

Murray Stewart (MRC Lab for Molecular Biology, Cambridge UK)

"Growing random rod packings might be a mechanism for motility of biological cells"

Growing random packing causes self-motion.

Vesicle from cell membrane produces randomly growing rods. Volume expansion occurs on reaching the random packing density which pushes the cell.

(Long Miao et al, PNAS, 2008)

Acknowledgements

Andriy Kyrylyuk (UU/Shell).

Alan Wouterse (UU/FOM).

Steven Williams & Stefan Luding.

• Photography: Jan den Boesterd, Ingrid van Rooijen.

Thanks also to Karel Planken and Alexander Nechifor.

For further information see also:

Alan Wouterse, Random Packing of Colloids and Granular Matter, Thesis, Utrecht University, 2008.

The 'nesting effect'.

At sufficiently low aspect ratio (left) granular rods are able to flow. At sufficiently high aspect ratio's the rods form a stiff, entangled solid.

Such a 'nested' structure can also be observed in the packing of pins on the first slide of this presentation; see also the copper wire rods on the next slide

(A.Philipse, Langmuir 1996)

Some more examples of random packings of non-spherical particles.

Hand-made paper

(P. Bodatz)

Paper: randomly packed cellulose fibers deposited from water onto a filter.