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Modeling gas flow in granular systems

1) How model the particles?

Three questions:

2)   How model the gas phase?

3)   How model the gas-particle 
interaction?

Molecular dynamics 
using soft-sphere model

First part of this lecture

Second part of this lecture



Outline 

A. Fully resolved (DNS)
B. Unresolved (DEM)

A. Lagrangian Models
B. Eulerian models

1. Models for single phase gas flow

2. Modeling gas-particle interaction 

3. Applications to Granular Matter research 
A. Vibrated beds of bronze and glass spheres
B. Vibrated shallow beds



1. Models for single phase gas flow

B. Eulerian models

A. Lagrangian models

- Computational Fluid Dynamics

- Lattice Boltzmann Model

- Molecular Dynamics

- Stochastic Rotation Dynamics

- Lattice-Gas Cellular Automata

- Dissipative Particle Dynamics



Newton’s equation of motion:

A. Lagrangian Models: Molecular Dynamics

is integrated numerically:

Lennard-Jones potential

total force:

For gas-flow simulations 
too expensive

hard-sphere potential

inter



Hard-sphere model:

• Collision time between spheres can be calculated analytically:
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• Collision: change of momentum
does not follow from forces, but 
is calculated via:

• Evolution in time: free-flight to nearest 
collision event  followed by instantaneous 
binary collision (event driven scheme)

A. Lagrangian Models: Molecular Dynamics



A. Lagrangian Models: Simplified MD models

- Dissipative Particle Dynamics (DPD)

- Stochastic Rotation Dynamics (SRD)

- Lattice-Gas Cellular Automata (LGCA)



A. Lagrangian Models: Lattice Gas Cellular Automata (LGCA)

“be wise, discretise!”

• Positions are restricted to lattice sites discrete velocities

• No two particles with the same velocity allowed at one site

• Update: propagation and collision



A. Lagrangian Models: Lattice Gas Cellular Automata (LGCA)

Breakthrough: from square (1973) to hexagonal (1986)

Frisch, Hasslacher & Pomeau, PRL 1986





Flow past a plate

Flow past a disc

(Frisch, Hasslacher, 
Pomeau, PRL 1986)

(Van der Hoef, Frenkel, 
& Ladd, PRL 1991)

A. Lagrangian Models: Lattice Gas Cellular Automata (LGCA)



A. Lagrangian Models: Lattice Gas Cellular Automata (LGCA)

Advantages: - Extremely simple to program

- Fast  

- Exact, no round-off errors

- Inherently stable

Disadvantages:

Key aspect of LGCA: 
All bit manipulation           
no floating point operations 

- Noisy

- Viscosity set by collision table (cannot be tuned)
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A. Lagrangian Models: Lattice Gas Cellular Automata (LGCA)

From lattice-gas to Navier-Stokes
Define velocity set

Microstate of the system given by

the occupation number if i-th link occupied
if i-th link empty

Collision rules defined by if 
otherwise

Equation of motion:

Local densities:



A. Lagrangian Models: Lattice Gas Cellular Automata (LGCA)

Microscopic                                             Macroscopic



A. Lagrangian Models: Lattice Gas Cellular Automata (LGCA)

Equation of motion for f:

Taylor expansion (1st order) 



A. Lagrangian Models: Lattice Gas Cellular Automata (LGCA)

only for hexagonal lattice !!



Basic idea: solve the set of differential equations:

by finite difference methods (CFD).

Closures for      and

B. Eulerian Models: Computational Fluid Dynamics (LGCA)



scalar variables 
x-velocity component
y-velocity component
z-velocity component

x
y

z

Discretisation of space:  define cells of volume 
Define scalar variables at the cell centers, vector variables at the cell faces

Notation: define variables at 
time     and cell 
by

with :

B. Eulerian Models: Computational Fluid Dynamics (LGCA)



Finite difference of the mass continuity equation:

B. Eulerian Models: Computational Fluid Dynamics (LGCA)



Finite difference of momentum continuity equation:

B. Eulerian Models: Computational Fluid Dynamics (LGCA)



Solution procedure to calculate variables at time 

1. First guess

2. Test if               and                       satisfy conservation of  mass eq.   

?

yesno
go totry new 

(Newton-Raphson procedure)



B. Eulerian Models: Lattice Boltzmann Method (LBM)

Originate from the lattice-gas cellular automata

3D: every update requires a double sum over             states!

Solution: linearize the collision operator about

0

only needs to be calculated once



B. Eulerian Models: Lattice Boltzmann Method (LBM)

Lattice Boltzmann equation (1988)

Lattice Boltzmann BGK equation (1992)

Note: continuous BGK equation (1954 !!)





B. Eulerian Models: Lattice Boltzmann Method (LBM)

Example of single phase flow with LBM: Poiseuille flow



CFD or LB

A. Resolved Discrete Particle Models

Interaction between solid and gas: 
stick boundary condition at surface

2. Modeling Gas-Particle Interaction



Resolved flow with CFD:  Immersed Boundary Method

Define Lagrangian force points on the surface of the particle:

Each force point      applies a force          on 
the fluid, such that the local velocity of the 
fluid is equal to the local surface velocity

The sum of all force points results in a local 
force density      via a Lagrangian-Eulerian
mapping

The momentum equation then becomes:

A. Resolved Discrete Particle Models (CFD)



particles:

guess

gas:

Lagrangian force 
points m 

coll

coll drag

calculate explicit term including

mass con-
servation?

A. Resolved Discrete Particle Models (CFD)

drag

no yes



Resolved flow with LBM:  Bounce Back at boundary nodes

Define boundary node as 
point halfway an exterior and 
interior lattice site

In the propagation step: 
distribution “bounces back” 
at boundary nodes, and 
returns to its original site 
average flow velocity is zero 
at boundary site

A. Resolved Discrete Particle Models (LBM)



particles:

collision

propagation

gas:

boundary nodes 
position+velocity

+ boundary rules

OUTPUT

coll

coll

drag

drag

A. Resolved Discrete Particle Models (LBM)



Results from resolved flow simulations

1. Fluidized bed simulation with 3600 particles using 
the CFD-IB method (J.A.M. Kuipers, 2008)

2. Sedimentation of 6144 particles using the LBM-BB 
method (A.J.C. Ladd, see http://ladd.che.ufl.edu)

3. Measuring the gas-solid drag force using the LBM-
BB method (Van der Hoef, Beetstra, Kuipers)

A. Resolved Discrete Particle Models

See next 
section

Conclusion

Fully resolved methods provide the most detailed level 
of modeling gas-particle flow, yet number of particles 
are limited to O(1000)



CFD 

B. Unresolved Discrete Particle Models



Unresolved flow with CFD:  implementation similar to resolved flow
Resolved flow

B. Unresolved Discrete Particle Models



Gas phase:

Solid phase: pressure force

B. Unresolved Discrete Particle Models

Required: correlations for β



Ergun:

B. Unresolved Discrete Particle Models

Monodisperse systems



Re = 0Re = 100

VDH, Beetstra & Kuipers,          
J. Fluid Mech. 528 (2005) 

Bidisperse systems
Currently assumed: Theory:

B. Unresolved Discrete Particle Models



B. Unresolved Discrete Particle Models

Applications of unresolved discrete particle models
I.  Study of gas-fluidized beds

II.  Study the effect of air in granular systems



3. Application to Granular Matter research

A. Vibrated beds of bronze and glass spheres

B. Vibrated shallow beds

Christiaan Zeilstra, Hans Kuipers

Henk-Jan van Gerner, Devaraj v.d. Meer, Ko v.d Weele



Experiments by Burtally, King and Swift (Science 2002)

Vibrated bed of equal-sized bronze and glass spheres  (100 µm) 

Simulations:

• Particles: “molecular dynamics” with soft-sphere model

• Gas phase:  computational fluid dynamics model

• Gas-Particle interactions: unresolved,  empirical drag force

• System size: Np = 25 000,  W x H x D = 8 x 6 x 0.6 mm3

• Parameters: f = 55 Hz, A = 1 mm        

No air Air

A. Density segregation of fine powders



Burtally, King, Swift 
& Leaper, 
Gran.Mat. 2003

f = 55 Hz

A = 1.0 mm

f = 130 Hz 

A = 0.07  mm

A. Density segregation of fine powders



Experimental 
phase diagram 
(Burtally et al)

A. Density segregation of fine powders



Why do the light 
particles sink to 
the bottom?

A. Density segregation of fine powders



Sandwich formation:

- Convection plays an important role

- Sensitive of the particle-particle and partice wall friction:

A. Density segregation of fine powders



Simulations:

• Particles: soft-sphere model, 0.5 mm diameter

• Gas phase:  computational fluid dynamics model

• Gas-Particle interactions: unresolved,  empirical drag drag 

• System size: Np = 14 000,  W x H x D = 100 x 50 x 2.1 mm3

• Parameters: f = 6.25 Hz, A = 10 mm        

No air Air

H-J van Gerner
K. van der Weele
D. van der Meer

with:

First documented by  Da Vinci (1500) and  Faraday (1831)

B. Faraday Heaping

Exp



Three rivaling mechanisms for steady state heap

1. Internal avalanche flow (Laroche et al., J. Phys., 1989)
2. Inward pressure gradient (Thomas and Squires,  PRL, 1998)
3. Stability of inclined surfaces (Duran, PRL, 2000])

B. Faraday Heaping

j



Conclusion for the steady state heap: 
Our simulations confirm the pressure gradient mechanism 
proposed by Thomas & Squires.

2. Slow second stage where heaps merge:

How does the heap come into existence?
Two stages:    

1. Fast initial stage where heaps are formed from a flat surface

Static Static 
angle of angle of 
reposerepose

B. Faraday Heaping



Summary: overview of gas-solid models


