Granular Flows

Slow Granular Flows

Shear Bands

Classical Picture based on Friction Experiments on Wide Shear Zones Comparison Experiments – Classical Picture

New Framework: Shear Free Sheets Experiments: Melting Sand by Stirring Outlook

Shear Bands & Grain Details

Granular Media: Analogy with Friction

Granular Media: Analogy with Friction

Intermezzo: Tensors

Granular Media: Yield Criterion

 $\begin{array}{l} Stresses \rightarrow Normal, \, shear \, components\\ Solid: \, \tau/P < \mu_{solid}\\ Flow: \, \tau/P = \mu_{sliding} < \mu_{solid} \end{array}$

Narrow shearbands follow naturally

Granular Flows – Accepted Wisdom

Narrow shear bands Grain details matter Solid-like regions Constant sliding friction.

Kiri Nichol

And now ...

Smooth Granular Flows

Surface Velocity Profiles Rate independent Short transients Azimuthal

 $\omega(\mathbf{r}):=\omega_{dim}(\mathbf{r})/\Omega$

D. Fenistein, JW. van de Meent and MvH, *PRL.* 92, 094301 (2004); 96, 118001 (2006).
D. Fenistein and MvH, *Nature* 425, 256 (2003).

Shallow Layers

Shallow Layers

Shallow Layers: R_c

Shallow Layers: W

Wide & Universal Shear Zones

$$\begin{split} &\omega(r)=1/2+1/2 \; erf[(r-R_c)/W] \\ &(R_s-R_c)/R_s=(H/R_s)^{5/2} \; : \text{Independent of particles} \\ &W/d \sim (H/d)^{2/3} \; : \text{Independent of } R_s \end{split}$$

D. Fenistein, JW. van de Meent and MvH, *Phys. Rev. Lett.* 92, 094301 (2004); 96, 118001 (2006).
D. Fenistein and MvH, *Nature* 425, 256 (2003).

3D Profile: What happens inside?

More 3D Data

X Cheng, JB Lechman, AF Barbero, GS Grest, HM Jaeger, GS Karczmar, ME Möbius, SR Nagel, Phys. Rev. Lett., 96 (2006) 038001. P B Umbanhowar, MvH et al, in prep PREPRINT

Location in Bulk

R_c in bulk: Scaling argument virtual bottom **OK**

$$R_{c}(R_{s}, H) = R_{c}(r, H - h). \qquad \alpha = 5/2 \qquad \qquad 1 \qquad 0.95 \qquad \qquad \alpha = 5/2 \qquad \qquad \beta = 1 \qquad \beta$$

Model: Friction in Continua

Constant Friction Torque minimalization

$$\int dz r^2(z) \sqrt{r'^2 + 1} (H - z)$$

Theory: first order transition

Model: Friction in Continua

Not Always Narrow Shearbands No Theory for Wide Shear Zones

What do these flows imply for Stress & Rigidity

Stresses in Smooth, Slow, Dense Granular Flows

Rate Indepence:Stresses independent of driving rate.Velocity profiles independent of driving rate

Wide Shear Zones

Stress fluctuations relax fast :

stresses are dynamically generated

(no elastic stresses)

M. Depken, W. van Saarloos and MvH., Phys. Rev. E 73, 031302 (2006).M. Depken, J. B. Lechman, MvH, W. van Saarloos and G. S. Grest, EPL 78, 58001 (2007).

Linear Geometry: Shear Free Sheets

Rate Independence:Stresses independent of driving rate.Wide Shear Zones

Stress fluctuations relax fast : No shearflow, no shear stress

M. Depken, W. van Saarloos and MvH., Phys. Rev. E 73, 031302 (2006).M. Depken, J. B. Lechman, MvH, W. van Saarloos and G. S. Grest, EPL 78, 58001 (2007).

Linear Geometry: Shear Free Sheets

$$(\underline{\sigma})_{\rm SFS} = \begin{pmatrix} P' & 0 & 0 \\ 0 & P & \tau \\ 0 & \tau & P \end{pmatrix}$$

Test Stress Tensor

$$\begin{array}{ccc} \sigma_{11}/\sigma_{33} = ? & \sigma_{12}/\sigma_{33} = 0 & \sigma_{13}/\sigma_{33} = 0 \\ & & & \\$$

Effective friction cannot be constant!

Effective friction cannot be constant!

Effective friction cannot be constant!

Subtle, but necessary

Consistent with width shear zones

Unger et al see similar variation in μ in zero gravity simulations (PRE 2007)

Classical constant friction picture fails

... what about this stress relaxation?

Setup

Yield Criterion in presence of flow?

Yield stress is lowered!!!

What happened to yield stress?

Yield stress vanishes - Archimedes Law

Mechanism? Agitations - Nonlocal

Floating in Sand

Floating in Sand

No yielding threshold in presence of flow

A Stationary Granular Fluid: Agitations

Contact Forces + Flow

Fragile (heating 1 grain by 1C....)

Hard Grains (mm/nm)

Rotation rate Ω sets probe speed?

A Stationary Granular Fluid: Mechanism

A Stationary Granular Fluid: Mechanism

1 frame / 5 rotations

A Stationary Granular Fluid: Mechanism

NONLOCAL: Flowrate in A, determines flowrate in B

Slow Granular Flows

Not Always Shear Bands Classical Picture based on Friction Fails

New Framework: Shear Free Sheets Experiments: Melting Sand by Stirring

Outlook: Agitation Field Relations with fast and wet flows

> Openings for grad students and postdocs www.physics.leidenuniv.nl/sections/cm/grm