

Main message:

formation of many bars/ridges is due to <u>self-organization</u> (i.e., inherent instabilities of the coupled water-bottom system)

Stability	/ analysis	$= U_w(x) + \breve{u}_w(x, y, t)$ $= (0, V(x)) + (u(x, y, t), v(x, y, t))$ $= \zeta(x) + \eta(x, y, t)$ $= -H(x) + h(x, y, t)$ $= F_i + f_i(x, y, t)$		
	$u_w = U_w(x)$ $\vec{u} = (0, V(x))$) +	$\breve{u}_w(x, y, t)$	
	$z_{s} = \zeta(x)$)) + (l +	$\eta(x, y, t), v(x, y, t))$ $\eta(x, y, t)$	
	$z_b = -H(x)$ $F_i = F_i$) + +	$h(x, y, t)$ $f_i(x, y, t)$	
	basic	→ state	perturbation	IS
where				
	U_w : from	wave mo	del	
	$U_{w} : \text{ from } fV = g \frac{d\zeta}{dx}$	wave mo	del $\tau_{sy} = r U_w V$	

Linear stability analysis:							
Perturbations a	are small →						
$u_w =$	$U_w(x) + e$	${}^{\Omega t} e^{iky} $					
$\vec{v} = (0)$	$(V(x)) + e^{-i\theta}$	${}^{\Omega t} e^{iky}(\breve{u}(x),\breve{v}(x))$					
$z_s =$	$\zeta(x) + e$	$e^{\Omega t} e^{iky} \breve{\eta}(x)$					
$z_{b} = -$	-H(x) + e	${}^{\Omega t} e^{iky} \breve{h}(x)$					
$F_i =$	$F_i + e$	$\Omega^{\Omega t} e^{iky} \breve{f}_i(x)$					
=> eigenvalue	problem						
Eigenvalues: growth rate $\Omega_r = \operatorname{Re}(\Omega)$							
migration speed $c = -\text{Im}(\Omega)/k$							
Eigenmodes:	$\breve{u}, \breve{v}, \breve{h}, \text{ etc.}$	patterns of	perturbations				

→ during transient stage <u>patch behavior</u> occurs

- 1. The equilibrium beach profile can be unstable to alongshore non uniform perturbations.
- 2. The instabilities take place for intermediate beach conditions
- 3. A number of different surf zone rhythmic bar systems can emerge from these instabilities :
 - Crescentic bars \geq
 - ≻ Shore oblique / transverse bars

The physical process leading to the formation of the bars is **4**. a positive feedback between topography and hydrodynamics:

- >
- 'bed-surf' coupling 'bed-flow' coupling in case of oblique wave incidence

• G. Vittori, H.E. de Swart, P. Blondeaux, 1999. Crescentic bedforms in the nearshore region. J. Fluid Mechanics., 381, 271-303.

• R. Deigaard, N. Drønen, J. Fredsoe, J. Hjelmager Jensen, M. P. Jørgensen, 1999. A morphological stability analysis for a long straight barred coast. Coastal Eng., 36, 171-195.

• A. Falqués, G. Coco and D. Huntley, 2000. A mechanism for the generation of wave driven rhythmic patterns in the surf zone. J. Geophys. Res. , 105(C10), 24071-24087.

M. Caballeria, G. Coco, A. Falqués, D. A. Huntley, 2002. Self-organization mechanisms for the formation of nearshore crescentic and transverse sand bars. J. Fluid Mechanics, vol. 465, 379-410.

•J. Damgaard,, N. Dodd, L. Hall, T. Chesher, 2002. Morphodynamic modelling of rip channel growth. Coastal Eng., 45, 199-221.

• F. Ribas, A. Falqués, A. Montoto, 2003. Nearshore oblique sand bars. J. Geophys. Res., 108 (C4), 3119, doi:10.1029.

• D. Calvete, N. Dodd, A. Falqués, S.M. van Leeuwen, 2005. Morphological development of rip channel systems: Normal and near-normal wave incidence. J. Geophys. Res. 110, C100006, doi: 10.1029/2004JC002803.

• R. Garnier, D. Calvete, A. Falqués, M. Caballeria, 2006. Generation and nonlinear evolution of shoreoblique/transverse sand bars. J. Fluid Mech. 567-327-360.

• R. Garnier, D. Calvete, A. Falqués, N. Dodd, 2008. Modelling the formation and the long-term behavior of rip channel systems from the deformation of a longshore bar. J. Geophys. Res. 113, C07053, doi:10.1029/2007JC004632.