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GRANULAR MATTER is everywhere:

•in nature: beach, soil, snow, desert,
mountains, sea floor, 
Saturn’s rings, asteroids ...

•in industry: mining, pharmaceutical,
food, construction, 
chemical ... 



Granular Matter can behave like...Granular Matter can behave like...

... a solid

... a liquid

... or a gas



When solid, 
Granular Matter is a special solid



Osborne Reynolds (1885):Osborne Reynolds (1885):Osborne Reynolds (1885):Osborne Reynolds (1885):

““““A strongly compacted granular medium A strongly compacted granular medium A strongly compacted granular medium A strongly compacted granular medium dilatesdilatesdilatesdilates under pressureunder pressureunder pressureunder pressure””””....

Reynolds dilatancyReynolds Reynolds dilatancydilatancy



What causes the What causes the dilatancydilatancy ??
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When it behaves like a liquid, 
Granular Matter is a special liquid



hourglass - sand 
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hourglass – water
“klepsydra”



Vibrated Vibrated bidispersebidisperse mixturemixture

Segregation !



““Brazil Nut EffectBrazil Nut Effect””



Three explanations BNEThree explanations BNE

1. percolation: small grains percolate the empty spots

between the large ones.

2. exclusion: while vibrating small grains fill space

below the large ones, not vice versa.

3. convection: interaction with

walls trigger

convection rolls.

large grains can follow the upward, 

but not the downward flow.



highDriving strength: low

Reason clustering:

Inelastic
collisions

And if Granular Matter behaves like a gas, 
it is a special gas



Flux modelFlux model
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In five compartments:In five compartments:



Planet with ringsPlanet with rings



PhenomenaPhenomena

Granular Solid:

Packing density, dilatancy, force chains, 

compactification, pressure saturation (RJ law)

Granular Fluid:

Arching, blocking, convection, segregation 

Granular Gas:

Clustering, non-equipartion



Why does Granular MatterWhy does Granular Matter
behave so differentlybehave so differently

from other solids and fluidsfrom other solids and fluids
we know ?we know ?



1. GM is 1. GM is athermalathermal

Definition:

Granular Matter = 

many body system in which the typical

particle size > 100 µµµµm
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Thermal energy is negligible for such particles !



2. GM interacts through 2. GM interacts through 
contact forcescontact forces

“Chaotic” network of contact points and forces !



3. GM interactions are dissipative3. GM interactions are dissipative
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Grains have many internal degrees of freedom

through which kinetic energy is dissipated.
(sound, heat, deformation)



ImplicationsImplications

1. athermal Thermodynamic T irrelevant

Define granular temperature 21
2g macroT mv=

2. contact

forces

Ordered molecular-scale  

structures do not occur

3. dissipation Far-from-equilibrium system

Constant energy supply is necessary to keep

systems “alive” (i.e. Tg>0)



Typical practical problemsTypical practical problems

Production and handling:

- cornflakes: filling

- pill production: mixing

- casting by sacrificial polystyrene

Nature (geophysics):

- dunes: movement

- avalanches: ranges, volume, prediction

- dikes: stability

- seismology





Casting by sacrificial polystyreneCasting by sacrificial polystyrene



Granular packing (for spheres)Granular packing (for spheres)

0.57, RLP = 
random loose packing

solid
fraction

0.64, RCP = 
random close packing

0.74, crystal = 
perfectly hexagonal

fl
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lid



CompactificationCompactification experimentexperiment
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regime 1: local reorganization

regime 2: global reorganization



Analogy: carAnalogy: car--parking in streetparking in street

Model (Ben-Naim):

•Initial state: randomly parked cars (no extra fit in)

•Start to move cars randomly. Whenever there is a 

large enough gap, a new car jumps in.

regime 1: movement of a single car creates gap

regime 2: more than one car has to move:

required time for gap to open grows exponentially:
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Force ChainsForce Chains

(Bob Behringer, Duke)



In stalling flow, force chains manifest
themselves as arches

Spain

Segovia, Spain

Pont du Gard, France



Importance of sidewalls:Importance of sidewalls:
RayleighRayleigh--Janssen modelJanssen model

Force parallelogram as unit cell
of a 2D granular medium

vertical forces ⇒⇒⇒⇒ horizontal forces

balanced by sidewalls

Lord Rayleigh:

vhp K p= K = coefficient of redirection



Importance of sidewalls:Importance of sidewalls:
RayleighRayleigh--Janssen model (2)Janssen model (2)
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Janssen’s
equation 

Integration gives:



Importance of sidewalls:Importance of sidewalls:
RayleighRayleigh--Janssen model (2)Janssen model (2)
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Janssen’s
equation 
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crossover:



Effective weight of granulate Effective weight of granulate 
in siloin silo
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Effective weight on bottom = Fv(h) = pv(h)A

(for large χχχχ, i.e., 
large h)

What happens to the remaining weight?



Collapsing silosCollapsing silos

Walls take this weight!



DecompactificationDecompactification through through 
shakingshaking

2a
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Γ =

frictiong dm gdm dFΓ − =

“Decompacted” means: acceleration overcomes friction

Shaking: a sin(ωωωωt); dim.less acceleration:

Force balance: acceleration – gravity = (wall) friction:

Sand moves freely if lhs > rhs !

vertical
shaking



DecompactificationDecompactification through through 
shaking (threshold calculation)shaking (threshold calculation)
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Total height of stack: h0

Threshold condition lhs>rhs fullfilled from ht (<h0) on. 

ΓΓΓΓ = 1 means: ht = h0; nothing can be fluidized 
ΓΓΓΓ = 2 or larger: all can be fluidized
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Lan & Rosato, Phys. Fluids 7, 1818 (1995)

DecompactionDecompaction: Experiment, : Experiment, 
Simulation and TheorySimulation and Theory



DecompactionDecompaction: Experiment, : Experiment, 
Simulation and TheorySimulation and Theory



Granular matter in a hopper...Granular matter in a hopper...



... and in a funnel... and in a funnel



Is a general hydrodynamic description
of granular matter possible ?



A) Hydrodynamic approach A) Hydrodynamic approach 

Coarse graining over small intervals ∆∆∆∆x, ∆∆∆∆t to define 
macroscopic quantities:

,
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density:

velocity:

temperature:

Assuming local “thermal” equilibrium, one can derive
mass, momentum, and energy conservation laws:



Conservation laws Conservation laws 

In the stationary limit (u=0, dt=0) this becomes:

These equations can be solved analytically:

(1 ) /2eε = −

( ) 0t x uρ ρ∂ + ∂ =

expresses inelasticity

2 3/2 2 3/2
1 2 3( )t x x xT u T c T u c T c Tρ ρ ρ ερ∂ + ∂ + ∂ − ∂ = −
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In the dilute limit, using the ideal gas law:
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Hydrodynamic solution: Hydrodynamic solution: 

Using the boundary conditions:

0(0) TT =

(1) 0xT∂ =

[constant T at left border]

[elastic wall (no heat flux) at right border]

NOTE: 
ideal case (εεεε=0, no dissipation)
has the solution:

T(x) = T0

ρρρρ(x) = ρρρρ0



Particle dynamics solution: Particle dynamics solution: 

(using MD simulations)



B) Discrete description B) Discrete description 
2-particle collision with

1 2 1 2v v v v′ ′+ = +
* momentum conservation:

* energy dissipation:

1 2 1 2( )v v e v v′ ′− = − −

This implies:
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ε ε
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with: (1 ) /2eε = −

Before...

...after collision.

2v ′

1v 2v

1v ′



Ideal case εεεε = 0:

1 2 2 1; ,v v v v′ ′= = exchange of velocities.

Finally all velocities will be given by the PDF of 
velocities on the left.
Uniform distribution of particles, consistent with 
continuum description.

Non-ideal case εεεε > 0:

0Nv T∼

Breakdown of continuum approach !

Numerical result very different from continuum result!
1 fast particle              and (N-1) slow particles,
clustering to the right and dissipating energy. Fast 
particle transports energy from left to right.

No longer local “thermal” equilibrium !



Velocity center of mass (1)Velocity center of mass (1)
assume: v0 = const = 1   (no random distribution)

0 1, 0  for  N iv v v i N= = = <
before first collision:

N N –1 N –2 2 1.........Nv

1, 1 , 0  for  1N N iv v v i Nε ε−= = − = < −
after first collision (between N and N –1):

2
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Velocity center of mass (2)Velocity center of mass (2)
Mean velocity of particles N,N-1,...,3,2:

1 2 3 2CM-cluster
2 2
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∑

for large N 

*  ε ε ε ε = 0, ideal case: 

CM-cluster 0v =

*  ε ε ε ε ≠ 0, real case: 

CM-cluster 0v > drift of cluster towards wall !



In an isolated 1D case
granular hydrodynamics 

does not work.

What about the general case?



L

l

λλλλ

λ = mean free path

l = typical length at which
macroscopic quantities vary

L = typical system size

Kn = λ/L
(global Knudsen 
number)

Knloc = λ/l
(local Knudsen 
number)

Knudsen numberKnudsen number

Hydrodynamics work if Kn<<1 !

Molecular system: local Kn <<1 

Granular system: local Kn large !

(not a Knudsen gas!)



No separation of length scales:

macroscopic quantities vary on the same scale
as the mean free path !

No separation of scalesNo separation of scales

Flowing systems:
mean velocity ~ “thermal” velocities

velocity 
fluctuations=

No separation of time scales:

macroscopic quantities can change as fast as
particle velocities



There are many reasons why 
granular hydrodynamics
should NOT work...

““ConclusionConclusion””

The surprise is that 
nevertheless in many cases 

it DOES work !!!!



Influence of air:Influence of air:
the Bagnold number the Bagnold number 

velocity gradientzvγ = ∂ =

typ. rel. velocity with
respect to underlying layer
Dγ =

characteristic length
over which energy is lost
due to friction, 5

e
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≈

Friction force Fc:

Viscous damping force Fv:
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Bagnold number:
c
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λ η
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B>450: granular regime
B<10: ambient fluid crucial

Ralph Bagnold



Bagnold number for a Bagnold number for a 
vertically vibrated granular gas vertically vibrated granular gas 

For a vertically vibrated granular gas the Bagnold 
number is defined as the ratio of gravity and viscous 
forces:

2

3 18
gz

c

D gmgF
B

F Dv v

ρ

πη η
= = =

7 27 .3 10B D≈ ⋅

For a sand/glass particle (ρρρρ = 2.5·103 kgm–3) in air
(ηηηη = 1.9·10–5 Pa s) with a typical velocity of 1 m/s
we have:

1B ≈
100 µmD ≈



Sand dunes: “barchans”

Marokko

PeruNamibië

Tunesië



Sand dunes travel ...

Egypt



Photos from the Mars Orbiter Camera

(Mars Global Surveyor project)

Barchans op Mars







Singing sand

� Frequency spectrum of
“booming sand” in the
Kelso dunes, California.

Sand can also
chirp or quack  �
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