Introduction to Particle Systems and Modeling Methods

Stefan Luding MSM, TS, CTW, UTwente, NL

Stefan Luding, <u>s.luding@utwente.nl</u> MSM, TS, CTW, UTwente, NL

Granular Materials

Real:

- sand, soil, rock,
- grain, rice, lentils,
- powder, pills, granulate,
- micro- and nano-particles

Model Granular Materials

- steel/aluminum spheres
- spheres with dissipation/friction/adhesion

Why Granular Materials

Numberless applications:

- constructions, industry (silos), agriculture, ...
- everyday life (e.g. coffee powder, sugar, salt, ...)

Challenges for Physics, Mechanics, Materialsand Computational Science and Engineering

- many particle systems, non-linear, non-equilibrium
 - segregation (mixing), pattern formation

force chains (wide distributions)localization (shearbands, fracture)

What is the problem ?

- Excluded volume effects ... crystallization
- · Granular medium with ALL densities realized
- Dissipation & Friction & Adhesion
- Out of equilibrium, chaotic
- Non-equipartition of energies
- Temperature and pressure dependence
- sintering, fracture, damage, ...
- etc.

How to approach ?

Experiments ...

Continuum theory (materials, micropolar, ...) **Statistical Physics**

+ Kinetic theory + dissipation + friction

Numerical Modeling

- Monte Carlo (stochastic methods)
- Molecular dynamics-like simulations (MD++)
- Finite Element Method (FEM)

Deterministic or Stochastic Models ?

Abbrev.	Theory
MD	
ED	(Kinetic Theory)
MC	Stat. Phys.
DSMC	Kinetic Theory
LB	Navier Stokes
	Abbrev. MD ED MC DSMC LB

Method	Determ./	Discrete	Discrete	Discrete	Flexible	Fast
	Stochast.	Time	Space	Events		
MD (soft p.)	D	Х			****	*
ED (hard p.)	D			Х	*	***
МС	S	?			*	**
DSMC	S	x			***	****
LB	S	X	x		*	****

Deterministic	Models	
	FIGUCIS	

Method	Abbrev.	Theory
Molecular dynamics (soft particles)	MD	
Event Driven (hard particles)	ED	(Kinetic Theory)
Monte Carlo (random motion)	MC	Stat. Phys.
Direct Simulation Monte Carlo	DSMC	Kinetic Theory
Lattice (Boltzmann) Models	LB	Navier Stokes

EM-course Literature (http://www2.msm.ctw.utwente.nl/sluding/publications.html) [1] S. Luding, Introduction to Discrete Element Methods: Basics of Contact Force Models and how to perform the Micro-Macro Transition to Continuum Theory, European Journal of Environmental and Civil Engineering - EJECE 12 - No. 7-8 (Special Issue: Alert Course, Aussois), 785-826 (2008), [http://www2.msm.ctw.utwente.nl/sluding/PAPERS/luding_alert2008.pdf] [2] S. Luding, Cohesive frictional powders: Contact models for tension Granular Matter 10(4), 235-246, 2008 [http://www2.msm.ctw.utwente.nl/sludina/PAPERS/LudinaC5.pdf] [3] S. Luding Collisions & Contacts between two particles, in: Physics of dry granular Media, eds. H. J. Herrmann, J.-P. Hovi, and S. Luding, Kluwer Academic Publishers, Dordrecht, 1998 [http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf] [4] M. Lätzel, S. Luding, and H. J. Herrmann, Macroscopic material properties from quasi-static, microscopic simulations of a twodimensional shear-cell, Granular Matter 2(3), 123-135, 2000 [http://www2.msm.ctw.utwente.nl/sluding/PAPERS/micmac.pdf] [5] S. Luding, Anisotropy in cohesive, frictional granular media J. Phys.: Condens. Matter 17, S2623-S2640, 2005 [http://www2.msm.ctw.utwente.nl/sluding/PAPERS/jpcm1.pdf]

Granular Materials

Real:

- sand, soil, rock,
- grain, rice, lentils,
- powder, pills, granulate,
- micro- and nano-particles

Model Granular Materials

- steel/aluminum spheres
- spheres with dissipation/friction/adhesion

Deterministic Models ...

Abbrev.	Theory
MD	
ED	(Kinetic Theory)
MC	Stat. Phys.
DSMC	Kinetic Theory
LB	Navier Stokes
-	Abbrev. MD ED MC DSMC LB

Open questions

- Agglomeration
 - population balance cluster evolution
 - phase transitions, cooperative behavior
- Main challenges (for modeling)
 - aero-/hydro-dynamics coupling
 - cluster stability, statistics, sintering, ...

