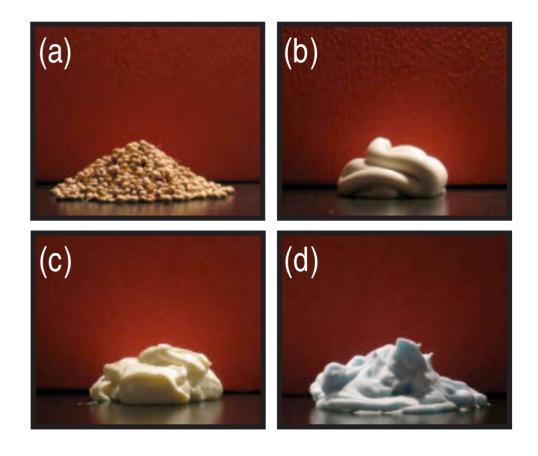
Jamming

JMBC course on Granular Matter 11 Feb 2010

Brian Tighe (Instituut-Lorentz, Leiden)

Or, what do sand, foam, emulsions, colloids, glasses etc. have in common?

Or, transitions to rigidity in disordered media



What we're talking about

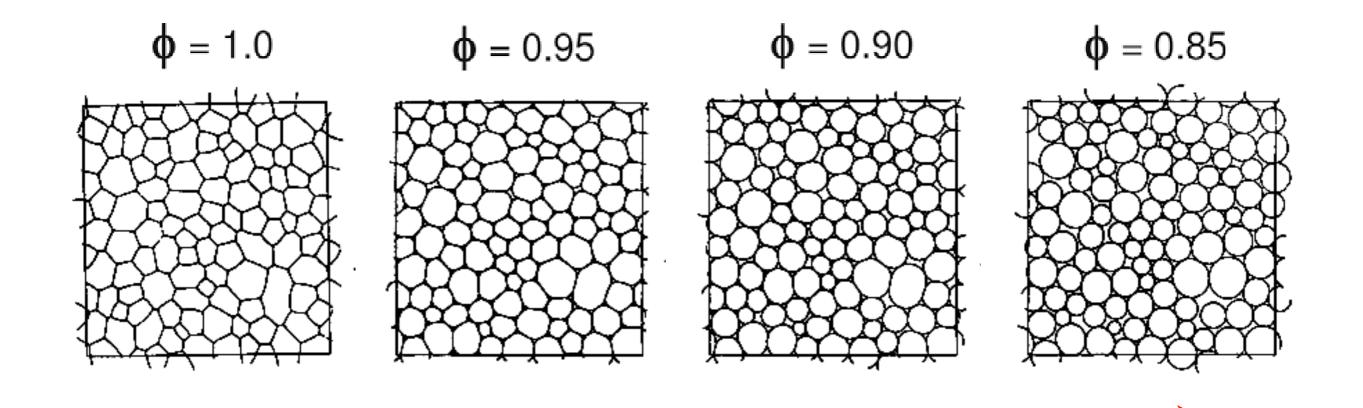
disordered materials (un)jam when they lose rigidity

distance to jamming governs geometric, mechanical, vibrational and rheological properties

soft spheres - the Ising model of jamming

plus a break after 45 min.

1. Making foam "wet"



$$\phi = \frac{\text{area of bubbles}}{\text{area of cell}}$$

Bolton & Weaire, PRL 1990

1. Making foam "wet"

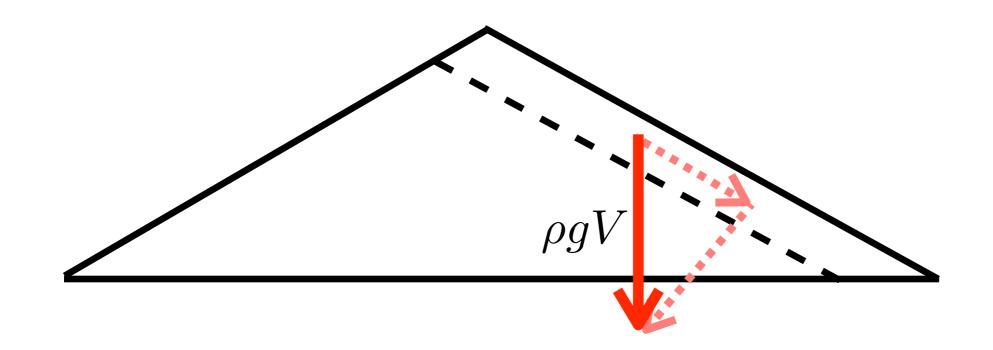


drywetlarge φsmall(er) φhigh pressurelow pressure

2. Tilting a sandpile

surface is being sheared

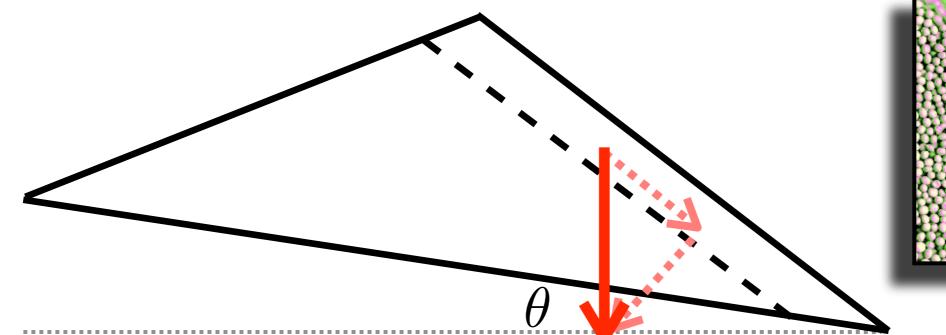
= force parallel to surface

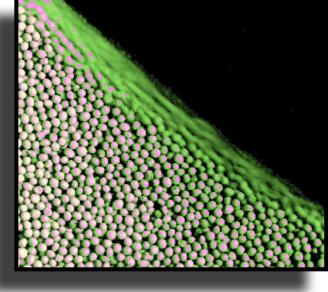


2. Tilting a sandpile

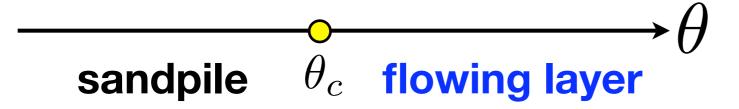
surface is being sheared

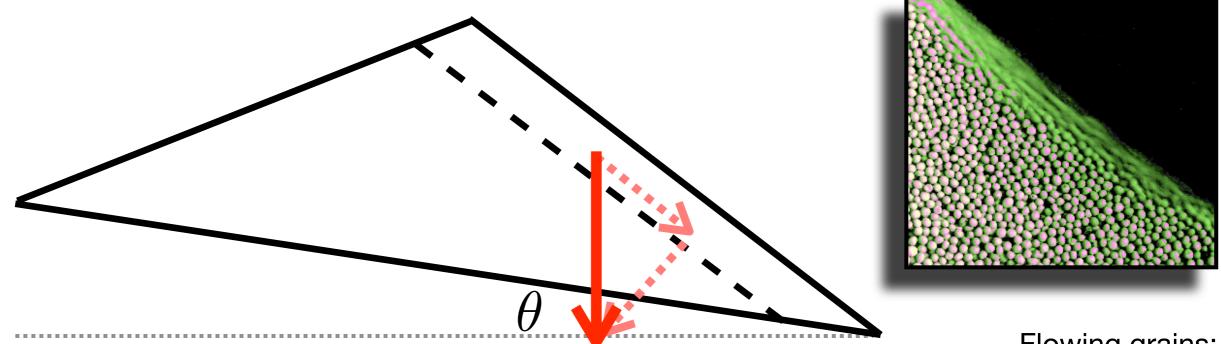
= force parallel to surface





2. Tilting a sandpile





Flowing grains: Jaeger and Nagel, U. Chicago

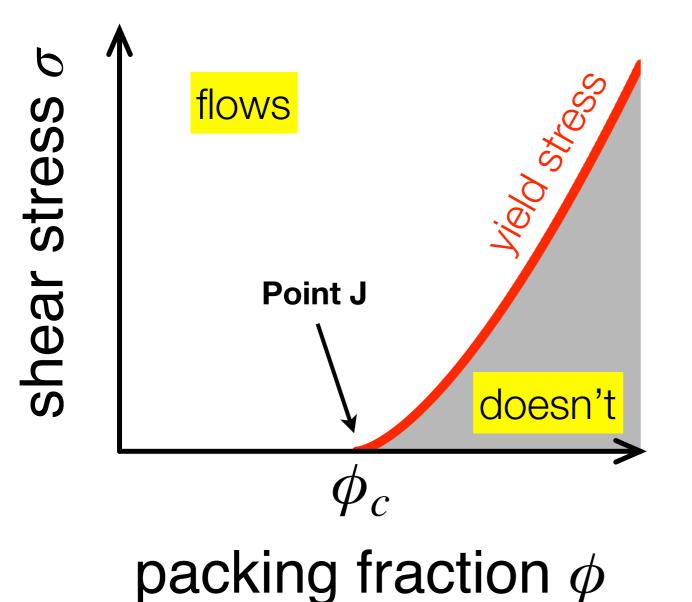
2. Tilting a sandpile

more generally:

$$\sigma_{\text{yield}} = \sigma(\theta_c) \qquad \sigma = \sigma(\theta)$$
sandpile

shear stress =
$$\frac{\text{shearing force}}{\text{surface area}}$$

Jamming and rigidity

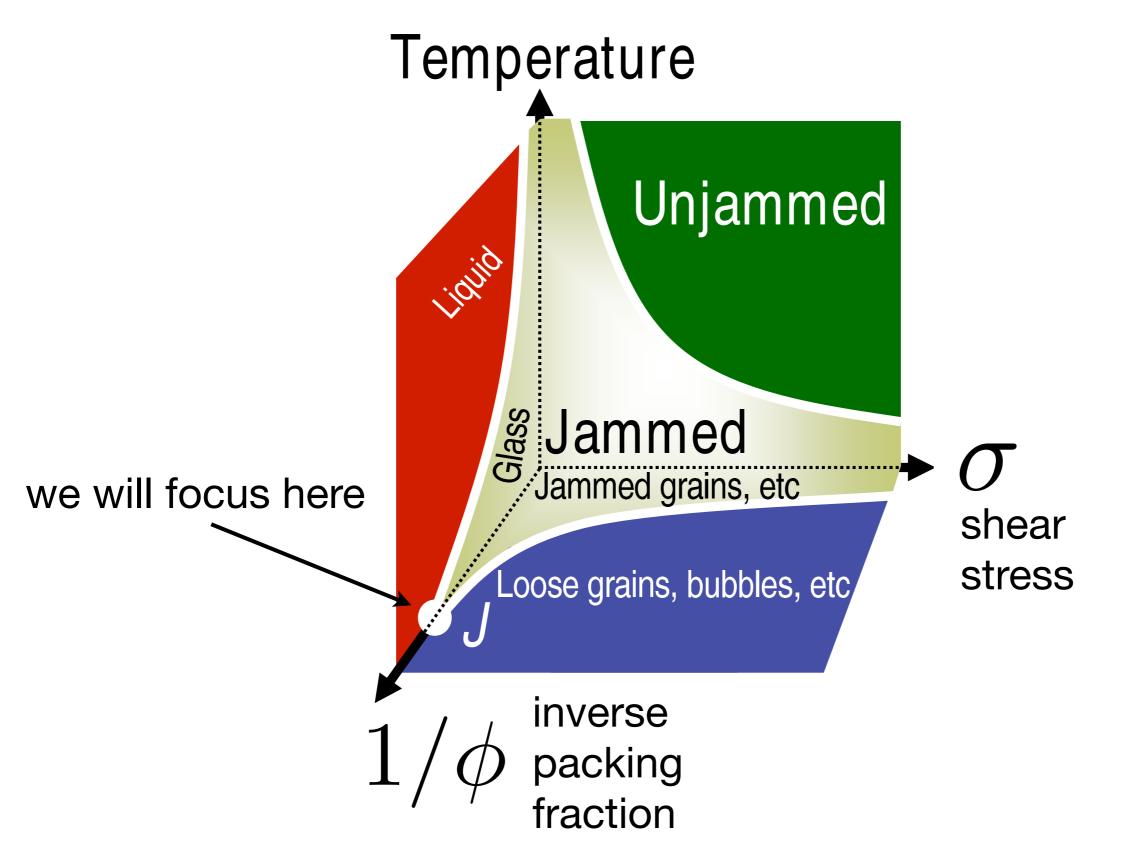


transition between states

rigid \Rightarrow not rigid disordered \Rightarrow disordered *without* changing temperature!

Jamming and rigidity

Liu & Nagel, Nature 1995 "new and improved" version van Hecke 2010



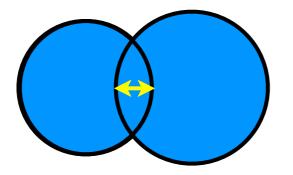
Nonequilibrium phase transition

⇒ (hope for) **universality**

many properties governed by one attribute: distance to transition

some materials (or models) more **convenient** than others

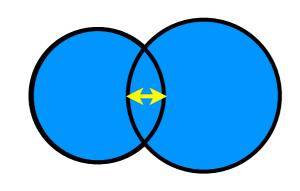
Soft spheres: Model system

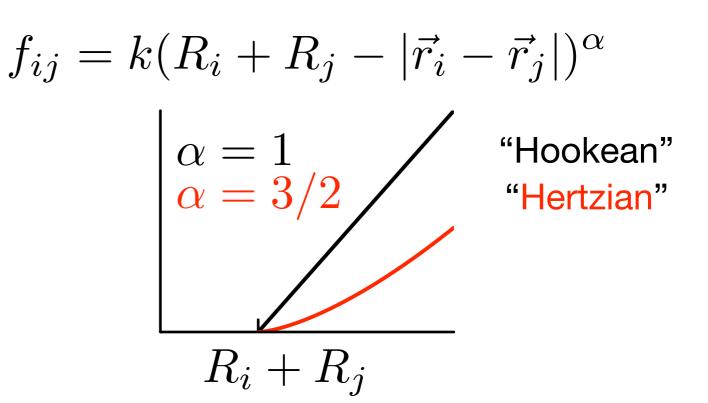


assumptions

all particles are spheres particles can deform -- **not** perfectly rigid contact forces only repulsive forces only no friction!

Soft spheres: Model system





force a function of overlap of spheres not touching: no force

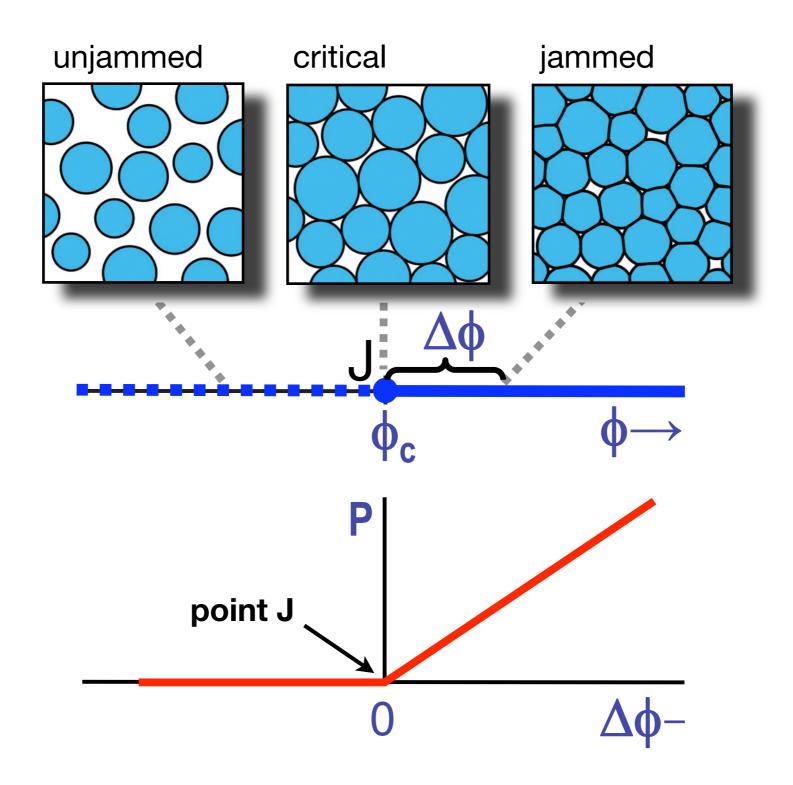
Soft spheres: Local vs. Global Local force fdimensionless overlap $\delta = 1 - \frac{|\vec{r_j} - \vec{r_i}|}{R_i + R_i}$ $f \sim \delta^{\alpha}$ Global pressure pstrain $\widehat{(1-\epsilon)}L \qquad \epsilon = \frac{\Delta V}{V} = \frac{\Delta \phi}{\phi}$ $\rightarrow L$ (exaggerated)

'Trivial' or 'Naive' Scaling

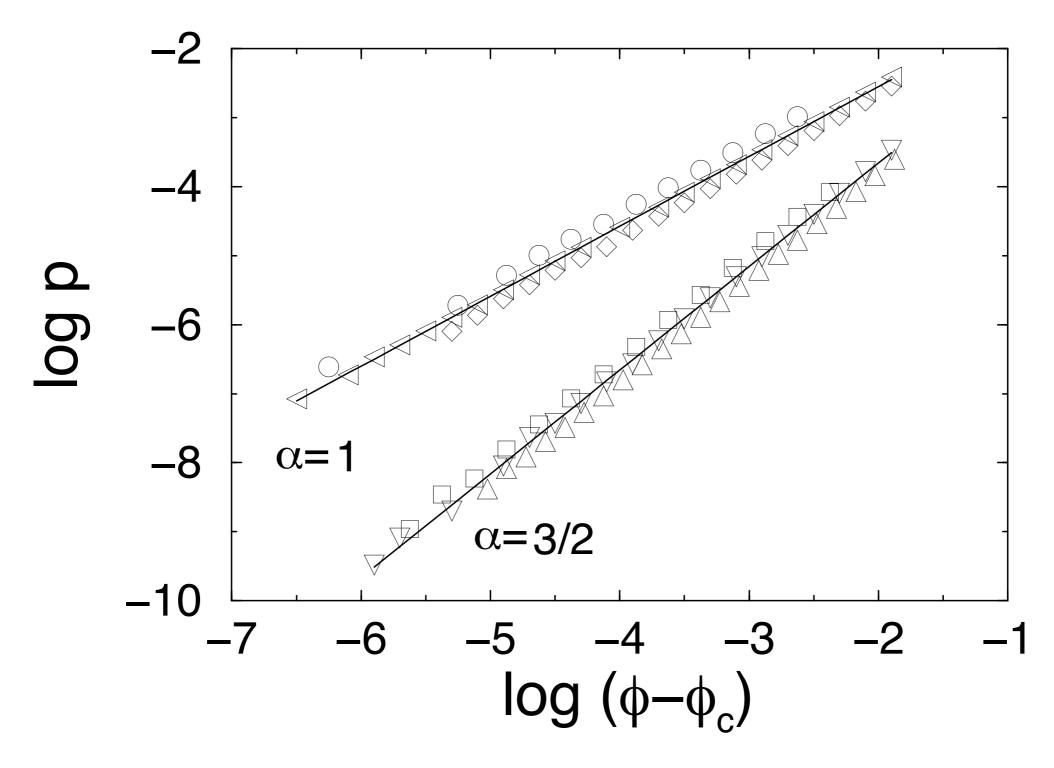
 $f\sim\delta^{lpha}$

 $f \sim p$ $\delta \sim \Delta \phi$

Pressure Scaling

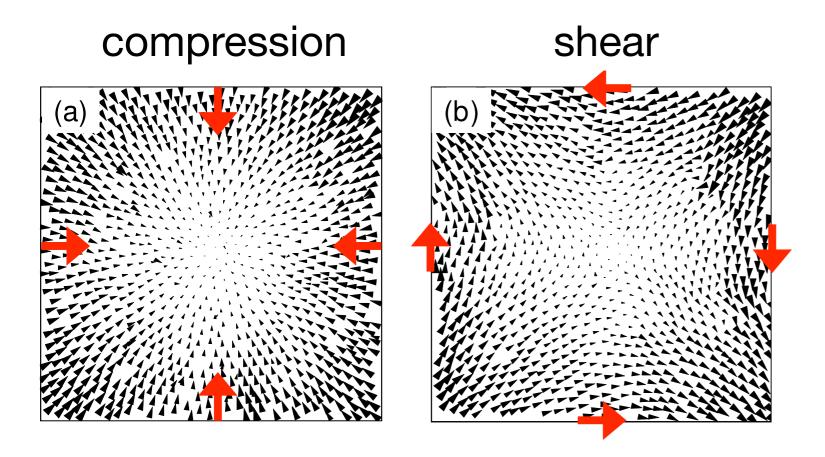


Pressure Scaling



O'Hern et al, PRE 2002

Mechanical Deformations



affine

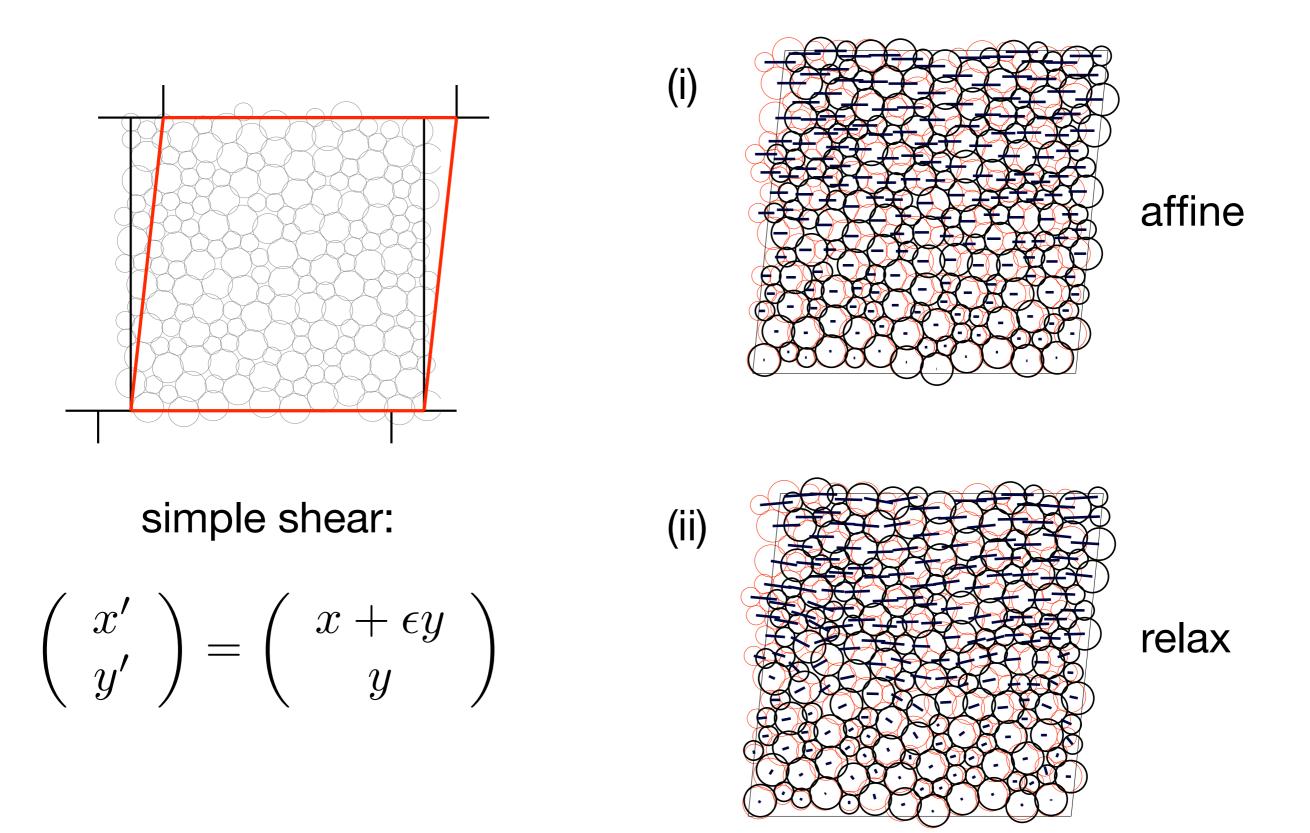
smooth continuum-like far from point J

non-affine disordered

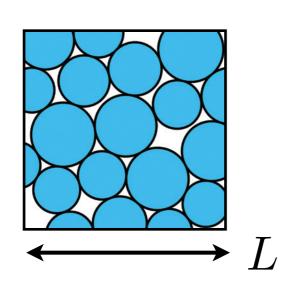
obviously discrete near point J

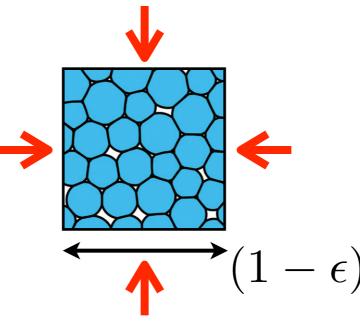
Affine: Going Halfway

illustration: C. Maloney, CMU

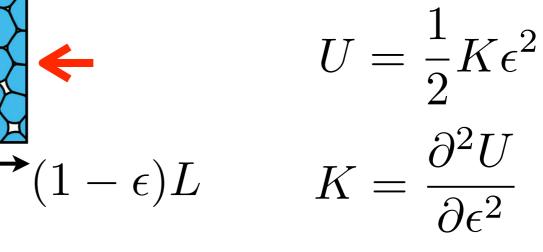


Mechanics: Bulk modulus K



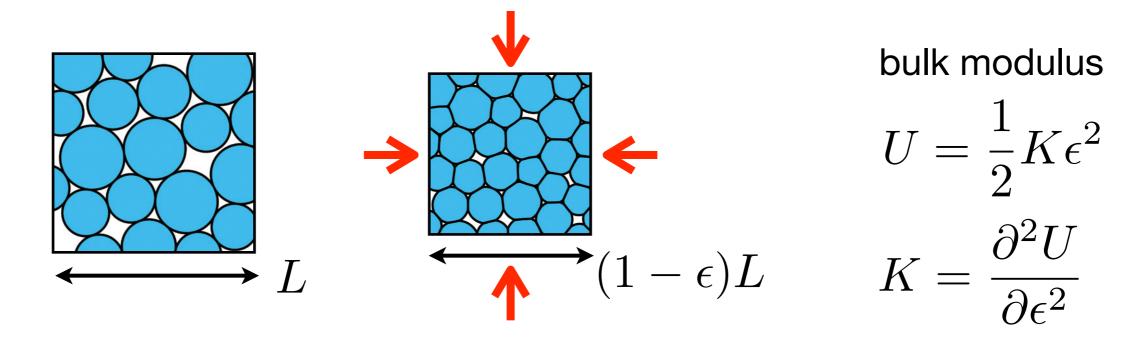


bulk modulus



(exaggerated)

Mechanics: Bulk modulus K

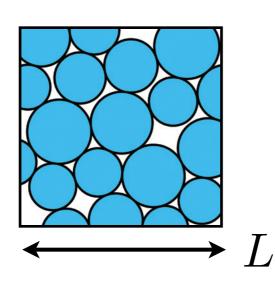


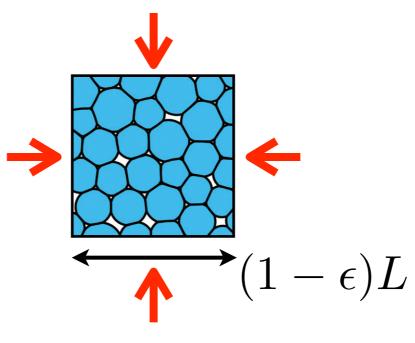
(exaggerated)

$$U \sim f\delta \sim \delta^{\alpha+1}$$

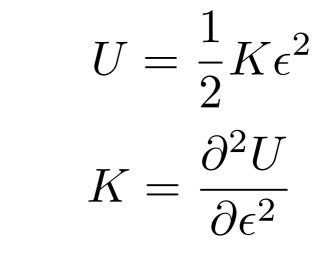
affine approx $\Rightarrow \epsilon \sim \delta \sim \Delta \phi$

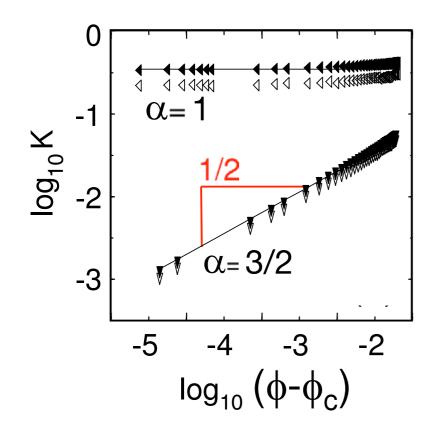
Mechanics: Bulk modulus K





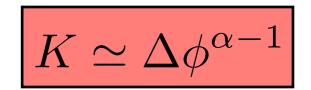
bulk modulus





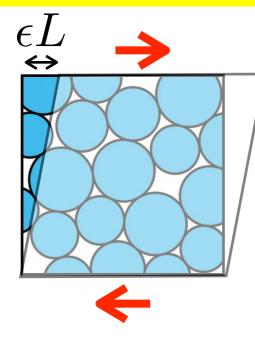
it worked!

...but we will see this was lucky



O'Hern et al, PRE 2002

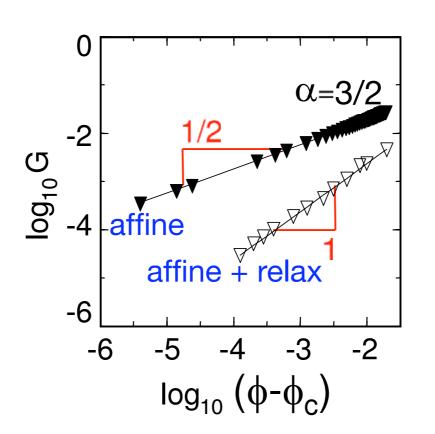
Mechanics: Shear modulus G



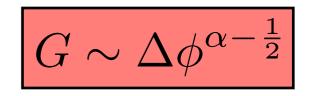
shear modulus

 $U = 2G\epsilon^2$

 simple guess (yet again): deformation is affine, local motion can be inferred from global
 ⇒ shear should be just like compression



NO! completely wrong!

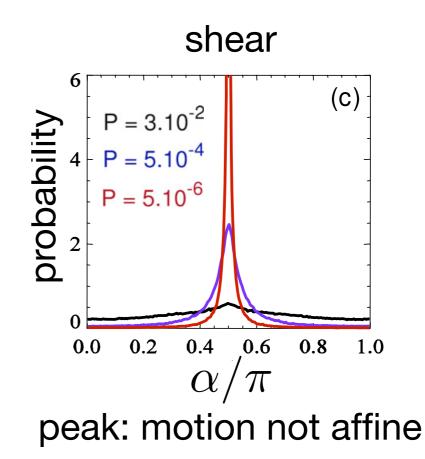


O'Hern et al, PRE 2002

Mechanics: Shear modulus G

What did we get wrong?

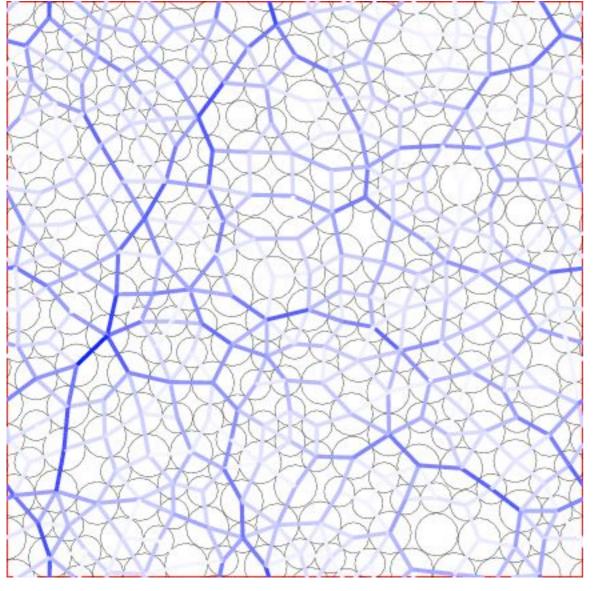
(a) Uij Uij



we were just lucky!

Ellenbroek PRL 2006

Geometry: Counting contacts



O'Hern group, Yale

Frictionless spheres at Point J

- z avg # contacts per grain
- N grains
 - contacts (and contact forces)

"kissing constraint"

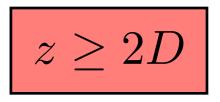
$$|\vec{r_i} - \vec{r_j}| = R_i + R_j$$

 $z \leq 2D$

force balance

 $\frac{1}{2}zN$

$$\sum_{j} \vec{f}_{ij} = 0$$



Geometry: Counting contacts

how should z depend on distance to Point J?

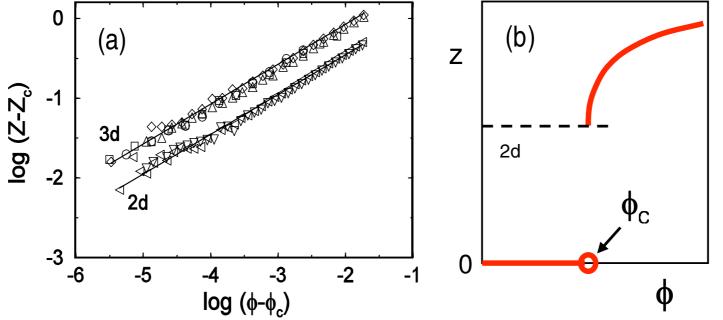
simple guess: compression is like inflating grain radii

(affine approximation)

 \Rightarrow close gaps \Rightarrow make new contacts

would give...

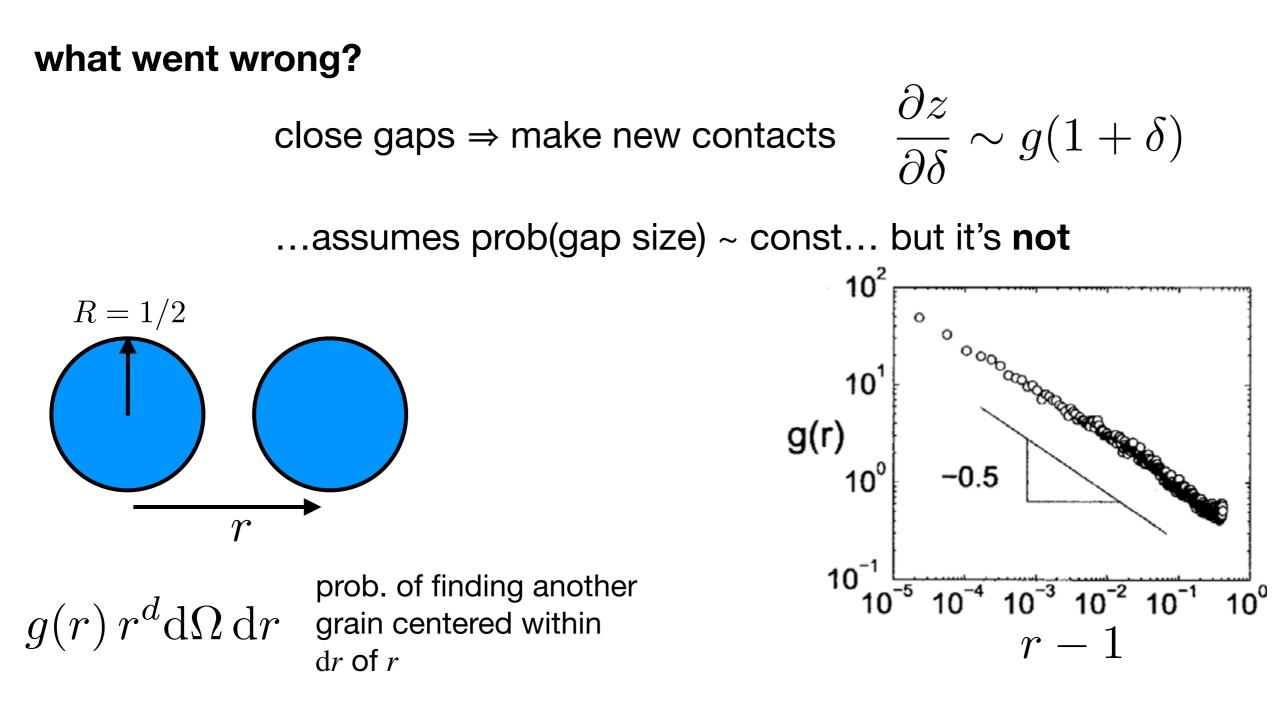
 $\Delta z \sim \Delta \phi$ but NO! $\Delta z \sim \sqrt{2}$



O'Hern et al, PRE 2002

Geometry: Counting contacts

chicken, meet egg



O'Hern et al, PRE 2002

Summary: Nontrivial Scalings

geometry

excess contacts:

$$\Delta z \sim \sqrt{\Delta \phi}$$

$$g(r) \sim \frac{1}{\sqrt{r-1}}$$

bulk modulus:

shear modulus:

$$K\sim \Delta \phi^{\alpha-1} \qquad \qquad G\sim \Delta \phi^{\alpha-1/2}$$
 ratio: $\frac{G}{K}\sim \Delta z$

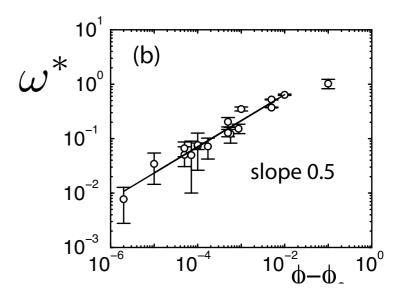
Vibrations: Density of States

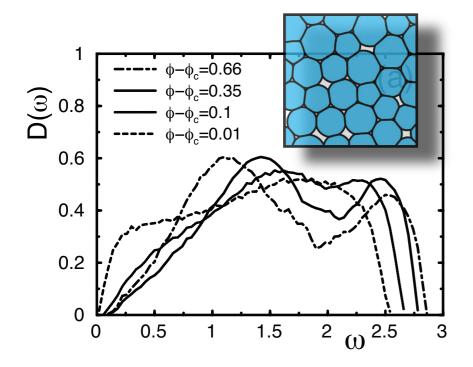
write down eom for each grain \Rightarrow matrix equation

no ext. force \Rightarrow eigenvalue eqn

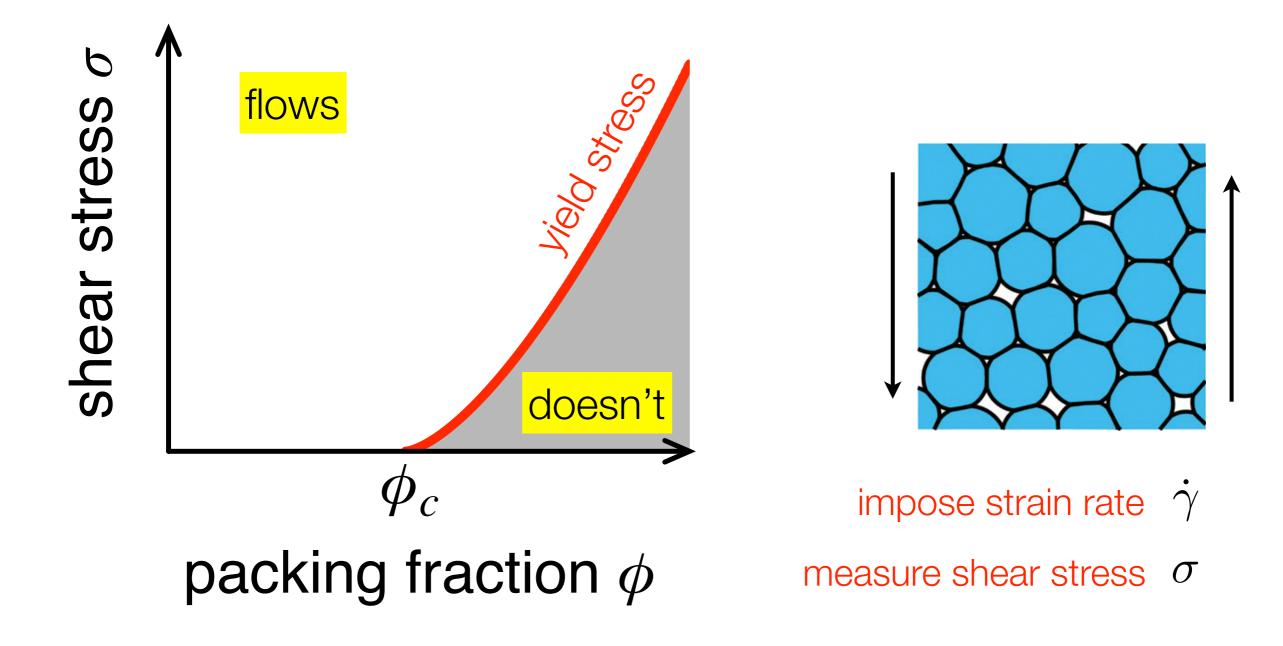
density of states: histogram of eigenfrequencies

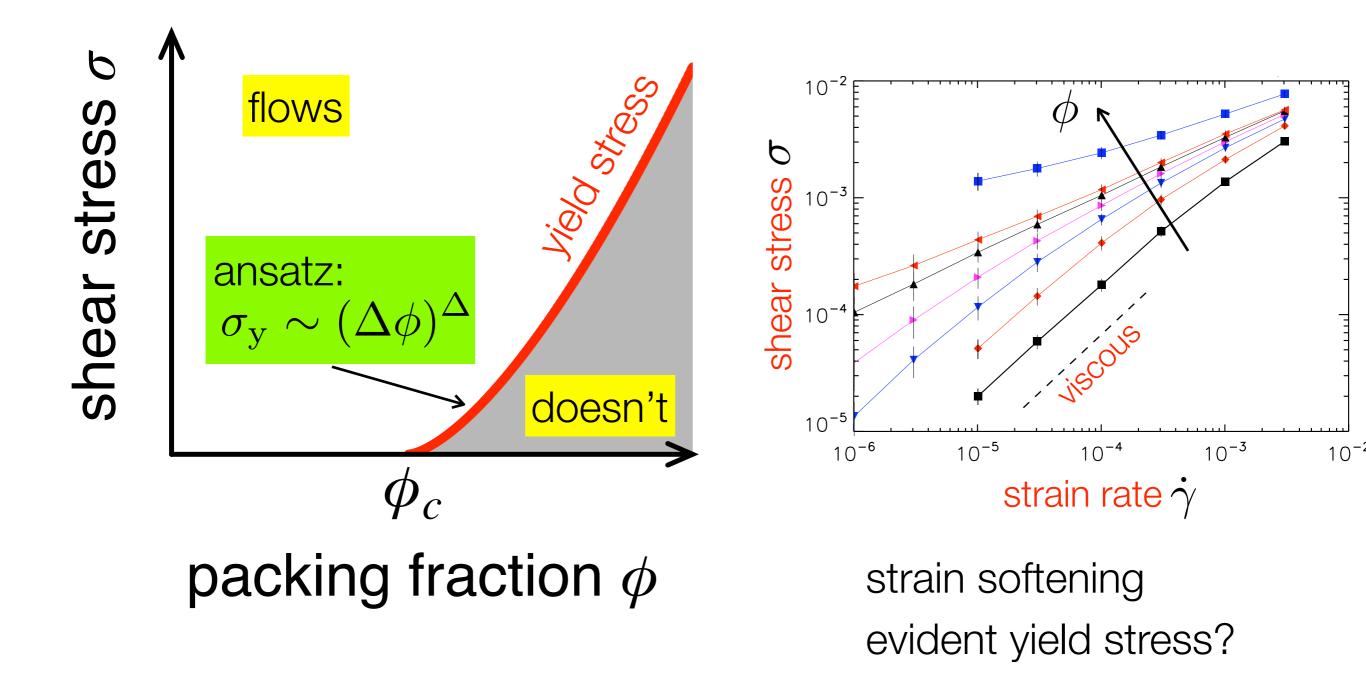
$$\begin{array}{rcl} -\hat{\mathcal{K}}\mathbf{u} + \mathbf{F}_{\mathrm{ext}} &=& m\ddot{\mathbf{u}} \\ \uparrow &=& m\omega^2\mathbf{u} \\ \text{displacement} \end{array}$$





figures from review article by Liu, Wyart, van Saarloos and Nagel, 2010





data: Tighe, Woldhuis, Remmers, van Saarloos and van Hecke

empirical fact:

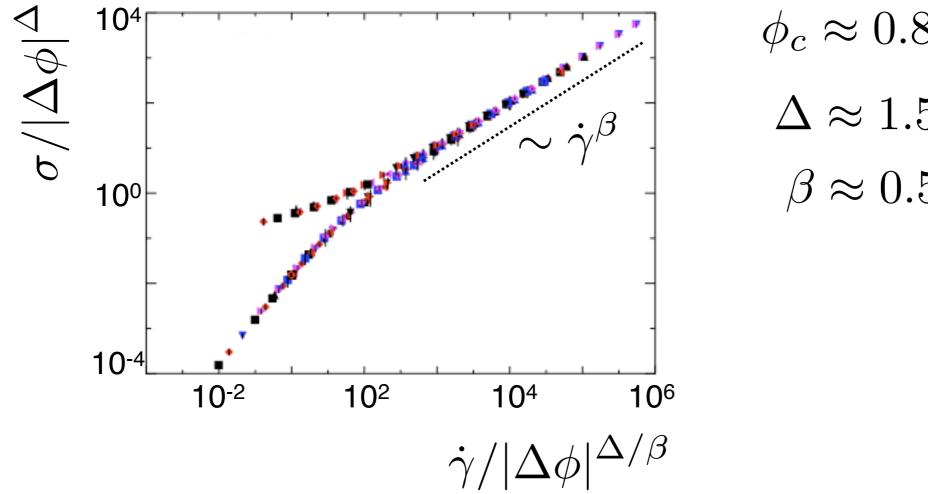
many soft matter systems obey Herschel-Bulkley rheology

$$\sigma = \sigma_{\rm y} + A \dot{\gamma}^\beta$$

combine with $\sigma_{\rm y} \sim (\Delta \phi)^{\Delta}$

$$\frac{\sigma}{(\Delta\phi)^{\Delta}} = 1 + A\left(\frac{\dot{\gamma}}{(\Delta\phi)^{\Delta/\beta}}\right)^{\beta}$$

suggests **rescaled** coordinates



 $\phi_c \approx 0.841$ $\Delta \approx 1.5$ $\beta \approx 0.5$

see also:

Olsson & Teitel PRL 2007 Hatano JPSJ 2008, PRE 2009 Tighe et al., in prep.

10³ bubbles 5 decades in $\dot{\gamma}$

data: Tighe, Woldhuis, Remmers, van Saarloos and van Hecke

⇒ (hope for) **universality**

many properties governed by one attribute: **distance to transition**

some materials (or models) more convenient than others

not so much: force law, friction, particle shape all matter

⇒ (hope for) **universality**

many properties governed by one attribute: **distance to transition**

some materials (or models) more convenient than others

not so much: force law, friction, particle shape all matter

kind of...

geometry and elasticity ~ distance to isostaticity

⇒ (hope for) **universality**

many properties governed by one attribute: distance to transition

some materials (or models) more convenient than others

not so much: force law, friction, particle shape all matter

kind of...

geometry and elasticity ~ distance to isostaticity

definitely!

first experiments on "frictionless spheres" are turning up now... foams, emulsions, etc.

Useful References

van Hecke J. Phys. Cond Mat. 2010

O'Hern et al. "Epitome of disorder" paper PRE 2002

Wyart et al. EPL 2005