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Amorphous materials as diverse as foams, emulsions, colloidal suspensions and granular media
can jam into a rigid, disordered state where they withstand finite shear stresses before yielding. Here
we give a simple introduction to the surprising physics displayed by a very simple model system
for the jamming transition: frictionless, soft spheres at zero temperature and zero shear, that act
through purely repulsive contact forces. This system starts to become rigid, i.e. goes through
the jamming transition, whenever the confining pressure becomes positive. We highlight some of
the remarkable geometrical features of the zero pressure jamming point, and discuss the peculiar
mechanical properties of these systems for small pressures.
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I. OVERVIEW

Many everyday materials, such as sand, toothpaste,
mayonnaise, and shaving foam, exhibit an intriguing mix
of liquid-like and solid-like behaviors, some familiar, some
surprising, but often poorly understood. What all these
materials have in common is that they consist of dis-
ordered collections of macroscopic constituent particles:
sand is a dense packings of solid grains (Fig. 1a), tooth-
paste is a dense packing of (colloidal) particles in fluid
(Fig. 1b), mayonnaise is an emulsion consisting of a dense
packing of (oil) droplets in an immiscible fluid (Fig. 1c),
and shaving foam is a dense packing of gas bubbles in
fluid (Fig. 1d).

Dense is the keyword here — these materials obtain fi-
nite rigidity once their constituent particles are brought
in contact. Nevertheless, all these materials can be made
to flow by the application of relatively small stresses —
in fact their utility often stems from precisely this combi-
nation of liquid-like and solid-like behavior. By varying
thermodynamic (temperature or density) and mechanical
(applied stress) variables, one can bring about a transi-
tion from a freely flowing to a jammed state in many other
disordered media. An increase in the density causes col-
loidal suspensions to turn glassy. Similarly, flowing foams
can be made static by decreasing the applied stress to
below the yield stress. In 1998, Liu and Nagel presented
a novel way of understanding jamming through a phase
diagram (Fig. 1e), and proposed to probe various transi-
tions to rigidity [1].

This Chapter aims at giving a basic introduction to
our current understanding to the following two questions:
What is the nature of the jammed state? What is the
nature of the jamming transition?

We will deal only with zero temperature packings of
frictionless soft spheres that interact through purely re-
pulsive contact forces. “Soft” in this case means that
the individual particles can be deformed under relevant
loads — deformations are key. We review the geometri-
cal and mechanical properties of these systems as a func-

FIG. 1: (a-d) Examples of everyday disordered media in a
jammed state. (a) Granular media. (b) Toothpaste. (c) May-
onnaise. (d) Shaving foam. (e) Jamming diagram as proposed
by Liu, Nagel and co-workers [1, 2]. The diagram illustrates
that many disordered materials are in a jammed state for low
temperature, low load and large density, but can yield and
become unjammed when these parameters are varied. In this
review we will focus on the zero temperature, zero load axis.
For frictionless soft spheres, there is a well defined jamming
transition indicated by point “J” on the inverse density axis,
which exhibits similarities to an (unusual) critical phase tran-
sition.

tion of the distance to jamming. We will illustrate the
main features of these systems by idealized pictures il-
lustrating our current understanding rather than “real”
experimental and numerical data. For a more elaborate
introduction, the reader is referred to a more detailed
review paper and references therein [3].

II. JAMMING IN A SIMPLE MODEL

Over the last decade, tremendous progress has been
made in our understanding of what might be considered
the “Ising model” for jamming: static packings of soft,
frictionless spheres that act through purely repulsive con-
tact forces. In this model, temperature, gravity and shear
are set to zero. The beauty of such systems is that they
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Figure 2. Simulated foam for increasing wetness, approaching unjamming for φ ↓ 0.84 (adapted from [15] with permission—copyright by
the American Physical Society).

decouple. Jamming of frictional soft spheres is discussed
in section 4 and jamming of frictionless soft ellipsoids in
section 5. Finally, in section 6 we sketch a number of open
problems.

2. Motivation: mechanics of disordered matter

The crucial question one faces when attempting to describe the
mechanics of materials such as foams, emulsions or granular
media, is how to deal with disorder. The simplest approach is to
ignore disorder altogether and attempt to gain insight based on
models for ordered, ‘crystalline’ packings. A related approach,
effective medium theory, does not strictly require ordered
packings, but assumes that local deformations and forces scale
similarly as global deformations and stresses. As we will see in
section 2.1, major discrepancies arise when these approaches
are confronted with (numerical) experiments on disordered
systems. This is because the response of disordered packings
becomes increasingly non-affine near jamming (section 2.2).

2.1. Failure of affine approaches

2.1.1. Foams and emulsions. Some of the earliest studies that
consider the question of the rigidity of packings of particles
concern the loss of rigidity in foams and emulsions with
increasing wetness. Foams are dispersions of gas bubbles
in liquid, stabilized by surfactant, and the gas fraction φ

plays a crucial role for the structure and rigidity of a foam.
The interactions between bubbles are repulsive and viscous,
and static foams are similar to the frictionless soft spheres
discussed in section 3. In real foams, gravity (which causes
drainage) and gas diffusion (which causes coarsening) play a
role, but we will ignore these.

The unjamming scenario for foams is as follows. When
the gas fraction approaches 1, the foam is called dry.
Application of deformations causes the liquid films to be
stretched, and the increase in surface area then provides a
restoring force: dry foams are jammed. When the gas fraction
is lowered and the foam becomes wetter, the gas bubbles
become increasingly spherical, and the foam loses rigidity for
some critical gas fraction φc where the bubbles lose contact
(figure 2). The unjamming transition is thus governed by the
gas fraction, which typically is seen as a material parameter.
For emulsions, consisting of droplets of one fluid dispersed in

a second fluid and stabilized by a surfactant, the same scenario
arises.

Analytical calculations are feasible for ordered packings,
because one only needs to consider a single particle and its
neighbors to capture the packing geometry and mechanical
response of the foam—due to the periodic nature of the
packing, the response of the material is affine. The affine
assumption basically states that, locally, particles follow the
globally applied deformation field—as if the particles are
pinned to an elastically deforming sheet. More precisely,
the strict definition of affine transformations states that three
collinear particles remain collinear and that the ratio of their
distances is preserved and affine transformations are, apart
from rotations and translations, composed of uniform shear and
compression or dilatation.

Packings of monodisperse bubbles in a two-dimensional
hexagonal lattice (‘liquid honeycomb’ [16]) deform affinely.
The bubbles lose contact at the critical density φc equal to

π

2
√

3
≈ 0.9069 and ordered foam packings are jammed for

larger densities [16, 17]. When for such a model foam φ is
lowered towards φc, the yield stress and shear modulus remain
finite and jump to zero precisely at φc [16, 17]. The contact
number (average number of contacting neighbors per bubble)
remains constant at 6 in the jammed regime. Similar results can
be obtained for three-dimensional ordered foams, where φc is
given by the packing density of the HCP lattice π

3
√

2
≈ 0.7405.

Early measurements for polydisperse emulsions by
Princen and Kiss in 1985 [18] found a shear modulus which
varied substantially with φ. Even though no data was presented
for φ less than 0.75 and the fit only included points for which
φ ! 0.8, the shear modulus was fitted as G ∼ φ1/3(φ − φc),
where φc ≈ 0.71, and thus appeared to vanish at a critical
density below the value predicted for ordered lattices [18].

The fact that the critical packing density for ordered
systems is higher than that for disordered systems may not be
a surprise, given that, at the jamming threshold, the particles
are undeformed spheres and it is well known that ordered
sphere packings are denser than irregular ones [19]. However,
the differences between the variation of the moduli and yield
strength with distance to the rigidity threshold predicted for
ordered packings and measured for disordered emulsions
strongly indicates that one has to go beyond models of ordered
packings.

3

φ =
area of bubbles

area of cell

1. Making foam “wet”

Bolton & Weaire, 
PRL 1990



Two Gedankenexperimente

J. Phys.: Condens. Matter 22 (2010) 033101 Topical Review

Figure 2. Simulated foam for increasing wetness, approaching unjamming for φ ↓ 0.84 (adapted from [15] with permission—copyright by
the American Physical Society).

decouple. Jamming of frictional soft spheres is discussed
in section 4 and jamming of frictionless soft ellipsoids in
section 5. Finally, in section 6 we sketch a number of open
problems.

2. Motivation: mechanics of disordered matter

The crucial question one faces when attempting to describe the
mechanics of materials such as foams, emulsions or granular
media, is how to deal with disorder. The simplest approach is to
ignore disorder altogether and attempt to gain insight based on
models for ordered, ‘crystalline’ packings. A related approach,
effective medium theory, does not strictly require ordered
packings, but assumes that local deformations and forces scale
similarly as global deformations and stresses. As we will see in
section 2.1, major discrepancies arise when these approaches
are confronted with (numerical) experiments on disordered
systems. This is because the response of disordered packings
becomes increasingly non-affine near jamming (section 2.2).

2.1. Failure of affine approaches

2.1.1. Foams and emulsions. Some of the earliest studies that
consider the question of the rigidity of packings of particles
concern the loss of rigidity in foams and emulsions with
increasing wetness. Foams are dispersions of gas bubbles
in liquid, stabilized by surfactant, and the gas fraction φ

plays a crucial role for the structure and rigidity of a foam.
The interactions between bubbles are repulsive and viscous,
and static foams are similar to the frictionless soft spheres
discussed in section 3. In real foams, gravity (which causes
drainage) and gas diffusion (which causes coarsening) play a
role, but we will ignore these.

The unjamming scenario for foams is as follows. When
the gas fraction approaches 1, the foam is called dry.
Application of deformations causes the liquid films to be
stretched, and the increase in surface area then provides a
restoring force: dry foams are jammed. When the gas fraction
is lowered and the foam becomes wetter, the gas bubbles
become increasingly spherical, and the foam loses rigidity for
some critical gas fraction φc where the bubbles lose contact
(figure 2). The unjamming transition is thus governed by the
gas fraction, which typically is seen as a material parameter.
For emulsions, consisting of droplets of one fluid dispersed in

a second fluid and stabilized by a surfactant, the same scenario
arises.

Analytical calculations are feasible for ordered packings,
because one only needs to consider a single particle and its
neighbors to capture the packing geometry and mechanical
response of the foam—due to the periodic nature of the
packing, the response of the material is affine. The affine
assumption basically states that, locally, particles follow the
globally applied deformation field—as if the particles are
pinned to an elastically deforming sheet. More precisely,
the strict definition of affine transformations states that three
collinear particles remain collinear and that the ratio of their
distances is preserved and affine transformations are, apart
from rotations and translations, composed of uniform shear and
compression or dilatation.

Packings of monodisperse bubbles in a two-dimensional
hexagonal lattice (‘liquid honeycomb’ [16]) deform affinely.
The bubbles lose contact at the critical density φc equal to

π

2
√

3
≈ 0.9069 and ordered foam packings are jammed for

larger densities [16, 17]. When for such a model foam φ is
lowered towards φc, the yield stress and shear modulus remain
finite and jump to zero precisely at φc [16, 17]. The contact
number (average number of contacting neighbors per bubble)
remains constant at 6 in the jammed regime. Similar results can
be obtained for three-dimensional ordered foams, where φc is
given by the packing density of the HCP lattice π

3
√

2
≈ 0.7405.

Early measurements for polydisperse emulsions by
Princen and Kiss in 1985 [18] found a shear modulus which
varied substantially with φ. Even though no data was presented
for φ less than 0.75 and the fit only included points for which
φ ! 0.8, the shear modulus was fitted as G ∼ φ1/3(φ − φc),
where φc ≈ 0.71, and thus appeared to vanish at a critical
density below the value predicted for ordered lattices [18].

The fact that the critical packing density for ordered
systems is higher than that for disordered systems may not be
a surprise, given that, at the jamming threshold, the particles
are undeformed spheres and it is well known that ordered
sphere packings are denser than irregular ones [19]. However,
the differences between the variation of the moduli and yield
strength with distance to the rigidity threshold predicted for
ordered packings and measured for disordered emulsions
strongly indicates that one has to go beyond models of ordered
packings.

3

1. Making foam “wet”

dry wet
large ϕ
high pressure

small(er) ϕ
low pressure

Eventually the pressure goes to zero -- 

the material has “unjammed”



ρgV

surface is being sheared
= force parallel to surface

Two Gedankenexperimente
2. Tilting a sandpile



surface is being sheared
= force parallel to surface

Two Gedankenexperimente
2. Tilting a sandpile

θ



θc
θ

sandpile flowing layer

θ

Two Gedankenexperimente
2. Tilting a sandpile

Flowing grains:
Jaeger and Nagel, 
U. Chicago



more generally:

sandpile flowing layer

σ = σ(θ)σyield = σ(θc)
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I. OVERVIEW

Many everyday materials, such as sand, toothpaste,
mayonnaise, and shaving foam, exhibit an intriguing mix
of liquid-like and solid-like behaviors, some familiar, some
surprising, but often poorly understood. What all these
materials have in common is that they consist of dis-
ordered collections of macroscopic constituent particles:
sand is a dense packings of solid grains (Fig. 1a), tooth-
paste is a dense packing of (colloidal) particles in fluid
(Fig. 1b), mayonnaise is an emulsion consisting of a dense
packing of (oil) droplets in an immiscible fluid (Fig. 1c),
and shaving foam is a dense packing of gas bubbles in
fluid (Fig. 1d).

Dense is the keyword here — these materials obtain fi-
nite rigidity once their constituent particles are brought
in contact. Nevertheless, all these materials can be made
to flow by the application of relatively small stresses —
in fact their utility often stems from precisely this combi-
nation of liquid-like and solid-like behavior. By varying
thermodynamic (temperature or density) and mechanical
(applied stress) variables, one can bring about a transi-
tion from a freely flowing to a jammed state in many other
disordered media. An increase in the density causes col-
loidal suspensions to turn glassy. Similarly, flowing foams
can be made static by decreasing the applied stress to
below the yield stress. In 1998, Liu and Nagel presented
a novel way of understanding jamming through a phase
diagram (Fig. 1e), and proposed to probe various transi-
tions to rigidity [1].

This Chapter aims at giving a basic introduction to
our current understanding to the following two questions:
What is the nature of the jammed state? What is the
nature of the jamming transition?

We will deal only with zero temperature packings of
frictionless soft spheres that interact through purely re-
pulsive contact forces. “Soft” in this case means that
the individual particles can be deformed under relevant
loads — deformations are key. We review the geometri-
cal and mechanical properties of these systems as a func-

FIG. 1: (a-d) Examples of everyday disordered media in a
jammed state. (a) Granular media. (b) Toothpaste. (c) May-
onnaise. (d) Shaving foam. (e) Jamming diagram as proposed
by Liu, Nagel and co-workers [1, 2]. The diagram illustrates
that many disordered materials are in a jammed state for low
temperature, low load and large density, but can yield and
become unjammed when these parameters are varied. In this
review we will focus on the zero temperature, zero load axis.
For frictionless soft spheres, there is a well defined jamming
transition indicated by point “J” on the inverse density axis,
which exhibits similarities to an (unusual) critical phase tran-
sition.

tion of the distance to jamming. We will illustrate the
main features of these systems by idealized pictures il-
lustrating our current understanding rather than “real”
experimental and numerical data. For a more elaborate
introduction, the reader is referred to a more detailed
review paper and references therein [3].

II. JAMMING IN A SIMPLE MODEL

Over the last decade, tremendous progress has been
made in our understanding of what might be considered
the “Ising model” for jamming: static packings of soft,
frictionless spheres that act through purely repulsive con-
tact forces. In this model, temperature, gravity and shear
are set to zero. The beauty of such systems is that they
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FIG. 2: The interaction potential V for pairs of interacting
soft frictionless spheres is a simple function of the particles
overlap, δ, only.

allow for a precise study of a jamming transition. In this
section we introduce this model, discuss some aspects of
its jamming transition and discuss its main parameters.

A. Model

The most studied and best understood model for jam-
ming consists of soft spherical particles that only interact
when in contact — with the interaction forces set by the
amount of virtual overlap between two particles in con-
tact. Moreover, the contact forces are purely repulsive
— no frictional forces, and no attraction is included.

Denoting the undeformed radii of particles in contact
as Ri and Rj and the center-to-center distance as rij , it
is convenient to define a dimensionless overlap parameter
δij as

δij := 1− rij

Ri + Rj
, (1)

so that particles are in contact only if δij ≥ 0. Power law
interaction potentials take on the form (see Fig. 2):

Vij = δα
ij δij ≥ 0 ,

Vij = 0 δij ≤ 0 . (2)

For harmonic interactions, α = 2, while Hertzian inter-
actions (the nonlinear contact laws for elastic spheres in
3D) correspond to α = 5/2. O’Hern et al have also stud-
ied the “Hernian” interaction (α = 3/2), which corre-
sponds to contacts that weaken progressively when com-
pressed [2]. By varying the exponent α the nature and
robustness of various scaling laws can be probed, as we
will see.

FIG. 3: Top: examples of repulsive soft particles below, at
and above the jamming transition. The jamming point for
frictionless soft spheres is referred to as point J. The packing
density φ controls the transition here, and the jamming tran-
sition occurs at the critical value φc. The distance to jamming
is given by the excess density ∆φ. Bottom: when the parti-
cles have simple harmonic interactions (when they overlap),
the pressure grows linearly with excess density.

B. The Jamming Point

What is the jamming transition for this simple system?
The main features are illustrated in Fig. 3. As the pack-
ing density of the particles, φ, is increased, the jamming
transition occurs when essentially all particles start to
touch but still are at zero pressure — this is called point
J. Here φc, the critical packing fraction, is the point at
which the particles start touching. The distance to the
jamming point is often measured as ∆φ = φ− φc — see
Fig. 3 [2].

An alternative measure of the distance to jamming is
the pressure in the system. If the particles are not in
contact, the contact forces between the particles are zero,
and so is the pressure. Once particles start to overlap,
contact forces arise, and the pressure becomes non-zero
(see Fig. 3). In fact, one can show that the pressure
and the contact forces scale similarly — P ∼ 〈f〉, where
brackets denote the average over the system. For the sim-
ple interactions used here, there cannot be a finite force
in part of the system, while other parts of the system
are at zero pressure — hence, for finite pressure, the vast
majority of particles experience finite contact forces (typ-

unjammed critical jammed

Pressure Scaling

point J
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FIG. 2: The infinite-time stress ∆Σ = Σ(γ) − Σ(0) follow-
ing an applied shear strain γ. The resulting stress-strain
curve is linear for sufficiently small strains and independent
of the sign of the strain. Open (filled) symbols indicate nega-
tive (positive) strains. These curves were generated using 3d
monodisperse systems (N = 512) with harmonic repulsions.
Circles and squares represent systems with packing fractions
φ − φc = 10−2 and 10−4, respectively. The solid lines have
slopes equal to 1. The shear modulus, yield stress, and yield
strain (where stress versus strain becomes nonlinear) tend to
zero as φ approaches φc, where φc is the onset of jamming for
a given configuration.

sively smaller increments of shear strain. The strain in-
crements were in the range [5× 10−8, 10−5] with smaller
increments used for smaller systems and systems closer
to φc.) The shear modulus is calculated by measuring
the linear relation between stress and strain, as shown in
Fig. 2.

Fig. 3 shows the results for the pressure p as a func-
tion of φ − φc for monodisperse systems in 3-dimensions
using both harmonic (α = 2) and Hertzian (α = 5/2)
potentials. We also include our earlier results for bidis-
perse systems in 2 and 3 dimensions using those same
two potentials[27]. We find that the data for p as a func-
tion of φ − φc collapse onto a single curve for different
initial states (each set of points corresponds to data from
5 different states). Thus, although each initial state has
a different value of φc, all states behave the same way as
a function of φ − φc when compressed above φc.

In Fig. 4, we show the static shear modulus, G∞, for
the same initial states as shown for the pressure. Again,
we find that data for different initial states collapse on
a single curve when G∞ is plotted against φ − φc. Note
that φc was determined by where the pressure approaches
zero, not by where the static shear modulus first ap-
proaches zero. Thus, Figs. 3 and 4 show that the static
shear modulus, G∞, and the pressure, p (and therefore,
the static bulk modulus, B∞, as well), approach zero at
the same packing fraction, φc, to a precision of better
than 2 parts in 105 for the monodisperse systems. Each
state develops a bulk modulus and shear modulus at the
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FIG. 3: Upper curves: Pressure p vs. φ − φc for 3d monodis-
perse (circles), 3d bidisperse (diamonds), and 2d bidisperse
(leftward triangles) systems with harmonic repulsions (α =
2). The solid line has slope of 2.0. Lower curves: p vs. φ−φc

for 3d monodisperse (squares), 3d bidisperse (upward trian-
gles), and 2d bidisperse (downward triangles) systems with
Hertzian repulsions (α = 5/2). The solid line has a slope of
2.5. These symbols for the different systems are used through-
out the text. N = 1024 (N = 512) particles were used for the
2d (3d) systems.

same packing fraction. This is true for all polydisper-
sities, dimensionalities and potentials studied. Thus, φc

truly marks the onset of jamming for a given initial state.
Note that in measuring the static shear modulus, we

apply a shear stress in a given direction. Although we
have shown that every state studied can withstand a
shear stress in that direction for φ > φc, it is not obvious
from these measurements that every state can withstand
a shear stress in any arbitrary direction. To address
this, we have studied the eigenvalues of the dynamical
matrix[34] for our T = 0 configurations with harmonic
repulsions. We find that at least for φ − φc ≥ 10−6, the
only zero-frequency modes correspond to isolated clusters
of “rattlers,” i.e. particles that do not overlap with any
other particles and to uniform translations of the entire
system. The lack of any nontrivial zero-frequency modes
shows unambiguously that the system can withstand a
shear stress in all directions. We discuss the statistics of
rattlers in greater detail in Section II E and the prop-
erties of the dynamical matrix in more detail in Section
II G.

C. Onset of jamming is sharp in the limit of
infinite system size

In the last subsection, we showed that different ini-
tial random (T = ∞) states have inherent structures
(T = 0 states) that jam at different threshold values,
φc. Here we measure the distribution of jamming thresh-
olds. For each system size N and packing fraction φ, we

Pressure Scaling

3/2

1

O’Hern et al, PRE 2002



J. Phys.: Condens. Matter 22 (2010) 033101 Topical Review

Figure 4. Deformation fields of packings of 1000 frictionless particles under compression ((a), (c)) and shear ((b), (d)) as indicated by the red
arrows. The packings in the top row ((a), (b)) are strongly jammed (contact number z = 5.87), while the packings in the bottom row ((c), (d))
are close to the jamming point—their contact number is 4.09, while the jamming transition occurs for z = 4 in this case. Clearly, the
deformation field becomes increasingly non-affine when the jamming point is approached (adapted from [30, 31] with permission—copyright
by the American Physical Society).

spheres that act through purely repulsive contact forces. In
this model, temperature, gravity and shear are set to zero. The
beauty of such systems is that they allow for a precise study
of a jamming transition. As we will see in sections 4 and 5,
caution should be applied when applying the results for soft
frictionless spheres to frictional and/or non-spherical particles.

From a theoretical point of view, packings of soft
frictionless spheres are ideal for three reasons. First, they
exhibit a well-defined jamming point: for positive P the
system is jammed, as it exhibits a finite shear modulus and
a finite yield stress [2], while at zero pressure the system
loses rigidity. Hence, the (un)jamming transition occurs when
the pressure P approaches zero, or, geometrically, when the
deformations of the particles vanish. The zero-pressure, zero-
shear, zero-temperature point in the jamming phase diagram is
referred to as ‘point J’ (figures 1(e) and 5). In this review, point
J will only refer to soft frictionless spheres and not to jamming
transitions of other types of particles. Second, at point J the
contact number approaches the so-called isostatic value and
the system is marginally stable. The system’s mechanical and
geometrical properties are rich and peculiar here. For large
systems the critical packing density, φc, approaches values
usually associated with random close packing. Third, the
mechanical and geometrical properties of jammed systems at

finite pressure, or equivalently φ − φc > 0, exhibit non-trivial
power law scalings as a function "φ := φ − φc or, similarly,
as a function of the pressure, P .

In this section we address the special nature of point J
and discuss the scaling of the mechanical and geometrical
properties for jammed systems near point J. We start in
section 3.1 with a brief discussion of a few common contact
laws and various numerical protocols used to generate jammed
packings. We then present evidence that the jamming transition
of frictionless spheres is sharp and discuss the relevant control
parameters in section 3.2. In section 3.3 we discuss the special
geometrical features of systems at point J, as probed by the
contact number and pair correlation function. Away from
point J the contact number exhibits non-trivial scaling, which
appears to be closely related to the pair correlation function at
point J, as discussed in section 3.4. Many features of systems
near point J can be probed in linear response, and these are
discussed at length in section 3.5—these include the density of
states (3.5.1), diverging length and timescales (3.5.2), elastic
moduli (3.5.3) and non-affine displacements (3.5.4). We close
this section by a comparison of effective medium theory,
rigidity percolation and jamming, highlighting the unique
nature of jamming near point J (3.5.5).
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Figure 12. Bulk (K ) and shear (G) modulus as a function of distance to jamming for two-dimensional bidisperse systems, with interaction
potential V ∼ δα (see equation (2)). The closed symbols denote moduli calculated by forcing the particles to move affinely and the open
symbols correspond to the moduli calculated after the system has relaxed. Slopes are as indicated (adapted from [2] with
permission—copyright by the American Physical Society).

It is worth noting that many soft matter systems (pastes,
emulsions) have shear moduli which are much smaller than
compressional moduli—from an application point of view, this
is a crucial property.

Putting all this together, we conclude that the affine
assumption gives the correct prediction for the bulk modulus
(since k ∼ δα−2 ∼ #φα−2), but fails for the shear modulus.
This failure is due to the strongly non-affine nature of shear
deformations: deviations from affine deformations set the
elastic constants [2, 20, 30, 43, 62]. As we will see below,
the correspondence between the bulk modulus and the affine
prediction is fortuitous, since the response becomes singularly
non-affine close to point J for both compressive and shear
deformations (section 3.5.5).

3.5.4. Non-affine character of deformations. Approaching
the jamming transition, the spatial structure of the mechanical
response becomes less and less similar to continuum
elasticity, but instead increasingly reflects the details of the
underlying disordered packing and becomes increasingly non-
affine [30]—see figure 4(a). Here we will discuss this in the
light of equation (8), which expresses the changes in energy
as a function of the local deformations u‖ and u⊥: #E =
1
2

∑
i, j ki j(u2

‖,i j − δi j

α−1 u2
⊥,i j).

To capture the degree of non-affinity of the response,
Ellenbroek and co-workers have introduced the displacement
angle αi j .4 Here αi j denotes the angle between ui j and ri j , or

tan αi j = u⊥,i j

u‖,i j
. (14)

The probability distribution P(α) can probe the degree of
non-affinity by comparison with the expected P(α) for affine
deformations. Affine compression corresponds to a uniform
shrinking of the bond vectors, i.e. u⊥,i j = 0 while u‖,i j =
−εri j < 0: the corresponding P(α) exhibits a delta peak at
α = π . The effect of an affine shear on a bond vector depends

4 Not to be confused by the power law index of the interaction potential.

on its orientation, and for isotropic random packings P(α) is
flat.

Numerical determination of P(α) shows that systems far
away from the jamming point exhibit a P(α) similar to the
affine prediction but that, as point J is approached, P(α)
becomes increasingly peaked around α = π/2 (figures 13(b)
and (c)). This is reminiscent of the P(α) of floppy
deformations, where the bond length does not change and P(α)
exhibits a δ peak at π/2. Hence deformations near jamming
become strongly non-affine, and, at least locally, resemble
those of floppy modes.
Non-affinity of floppy modes and elastic response. Wyart
and co-workers have given variational arguments for deriving
bounds on the energies and local deformations of soft (low
energy) modes starting from purely floppy (zero energy)
modes [54, 63]. They construct trial soft modes that are
basically floppy modes, obtained by cutting bonds around a
patch of size '∗ and then modulating these trial modes with
a sine function of wavelength '∗ to make the displacements
vanish at the locations of the cut bonds [30, 54]. In particular,
for the local deformations, they find [63]

u‖
u⊥

∼ 1
'∗ → u‖

u⊥
∼ #z, (15)

where symbols without indices i j refer to typical or average
values of the respective quantities.

The question is whether the linear response follows this
prediction for the soft modes. The width w of the peak in P(α)
is, close to the jamming transition, roughly u‖/u⊥ because
|αi j − π/2| ≈ u‖,i j/u⊥,i j if u‖,i j ( u⊥,i j . It turns out
that the scaling behavior (15) is consistent with the width
w of the peak of P(α) for shear deformations, but not for
compression. There the peak of P(α) does not grow as much
and a substantial shoulder for large α remains even close to
jamming: the tendency for particles to move towards each
other remains much more prominent under compression.
Scaling of u‖ and u⊥. The scaling of the distributions of u‖
and u⊥ has also been probed. The key observation is that in
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shear modulus

simple guess (yet again): deformation is affine, 
      local motion can be inferred from global
⇒ shear should be just like compression

J. Phys.: Condens. Matter 22 (2010) 033101 Topical Review

1010

10

10

Figure 12. Bulk (K ) and shear (G) modulus as a function of distance to jamming for two-dimensional bidisperse systems, with interaction
potential V ∼ δα (see equation (2)). The closed symbols denote moduli calculated by forcing the particles to move affinely and the open
symbols correspond to the moduli calculated after the system has relaxed. Slopes are as indicated (adapted from [2] with
permission—copyright by the American Physical Society).

It is worth noting that many soft matter systems (pastes,
emulsions) have shear moduli which are much smaller than
compressional moduli—from an application point of view, this
is a crucial property.

Putting all this together, we conclude that the affine
assumption gives the correct prediction for the bulk modulus
(since k ∼ δα−2 ∼ #φα−2), but fails for the shear modulus.
This failure is due to the strongly non-affine nature of shear
deformations: deviations from affine deformations set the
elastic constants [2, 20, 30, 43, 62]. As we will see below,
the correspondence between the bulk modulus and the affine
prediction is fortuitous, since the response becomes singularly
non-affine close to point J for both compressive and shear
deformations (section 3.5.5).

3.5.4. Non-affine character of deformations. Approaching
the jamming transition, the spatial structure of the mechanical
response becomes less and less similar to continuum
elasticity, but instead increasingly reflects the details of the
underlying disordered packing and becomes increasingly non-
affine [30]—see figure 4(a). Here we will discuss this in the
light of equation (8), which expresses the changes in energy
as a function of the local deformations u‖ and u⊥: #E =
1
2

∑
i, j ki j(u2

‖,i j − δi j

α−1 u2
⊥,i j).

To capture the degree of non-affinity of the response,
Ellenbroek and co-workers have introduced the displacement
angle αi j .4 Here αi j denotes the angle between ui j and ri j , or

tan αi j = u⊥,i j

u‖,i j
. (14)

The probability distribution P(α) can probe the degree of
non-affinity by comparison with the expected P(α) for affine
deformations. Affine compression corresponds to a uniform
shrinking of the bond vectors, i.e. u⊥,i j = 0 while u‖,i j =
−εri j < 0: the corresponding P(α) exhibits a delta peak at
α = π . The effect of an affine shear on a bond vector depends

4 Not to be confused by the power law index of the interaction potential.

on its orientation, and for isotropic random packings P(α) is
flat.

Numerical determination of P(α) shows that systems far
away from the jamming point exhibit a P(α) similar to the
affine prediction but that, as point J is approached, P(α)
becomes increasingly peaked around α = π/2 (figures 13(b)
and (c)). This is reminiscent of the P(α) of floppy
deformations, where the bond length does not change and P(α)
exhibits a δ peak at π/2. Hence deformations near jamming
become strongly non-affine, and, at least locally, resemble
those of floppy modes.
Non-affinity of floppy modes and elastic response. Wyart
and co-workers have given variational arguments for deriving
bounds on the energies and local deformations of soft (low
energy) modes starting from purely floppy (zero energy)
modes [54, 63]. They construct trial soft modes that are
basically floppy modes, obtained by cutting bonds around a
patch of size '∗ and then modulating these trial modes with
a sine function of wavelength '∗ to make the displacements
vanish at the locations of the cut bonds [30, 54]. In particular,
for the local deformations, they find [63]

u‖
u⊥

∼ 1
'∗ → u‖

u⊥
∼ #z, (15)

where symbols without indices i j refer to typical or average
values of the respective quantities.

The question is whether the linear response follows this
prediction for the soft modes. The width w of the peak in P(α)
is, close to the jamming transition, roughly u‖/u⊥ because
|αi j − π/2| ≈ u‖,i j/u⊥,i j if u‖,i j ( u⊥,i j . It turns out
that the scaling behavior (15) is consistent with the width
w of the peak of P(α) for shear deformations, but not for
compression. There the peak of P(α) does not grow as much
and a substantial shoulder for large α remains even close to
jamming: the tendency for particles to move towards each
other remains much more prominent under compression.
Scaling of u‖ and u⊥. The scaling of the distributions of u‖
and u⊥ has also been probed. The key observation is that in
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Mechanics: Shear modulus G
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Figure 13. (a) Illustration of definition of displacement angle α. ((b) and (c)) Probability distributions P(α) for compression (b) and shear (c)
for Hertzian particles in two dimensions. The three pressures indicated correspond to z ≈ 6.0, z ≈ 4.5 and z ≈ 4.1, respectively (adapted
from [30] with permission—copyright by the American Physical Society).

equation (8) the terms ∼ u‖ and u⊥ have opposite signs. What
is the relative contribution of these terms, and can we ignore the
latter? Surprisingly, even though δ % 1, equation (15) predicts
that the two terms are of equal magnitude in soft modes, and
so for a linear response one needs to be cautious.

It has become clear that the balance of the terms is never so
precise as to qualitatively change the magnitude of the energy
changes: #E and 1

2

∑
i, j ki j(u2

‖,i j) scale similarly [31, 62].
Hence, the typical values of u‖ under a deformation are
directly connected to the corresponding elastic modulus: for
compression u‖ is essentially independent of the distance to
jamming (u‖ ∼ ε), while for shear u‖ ∼ ε#φ1/4, where ε is
the magnitude of the strain [31, 62].

The scaling for u⊥, the amount by which particles in
contact slide past each other, is more subtle. Numerically,
one observes that, for shear deformations, u⊥ ∼ ε#φ−1/4.
The two terms ∼ u‖ and ∼ u⊥ become comparable here,
and the amount of sideways sliding under a shear deformation
diverges near jamming [30, 31, 62]. For compression there is
no simple scaling. Combining the observed scaling for u‖ with
equation (15), one might have expected that u⊥ ∼ ε#φ−1/2.
However, the data suggests a weaker divergence, close to
#φ−0.3. Hence, consistent with the absence of simple scaling
of the peak of P(α) for compression, the two terms ∝ u‖
and ∝ u⊥ do not balance for compression. Nevertheless, both
under shear and compression, the sliding, sideways motion of
contacting particles dominates and diverges near jamming.

3.5.5. Effective medium theory, rigidity percolation, random
networks and jammed systems. In 1984, Feng and Sen
showed that elastic percolation is not equivalent to scalar
percolation, but forms a new universality class [64]. In
the simplest realization of rigidity percolation, bonds of a
ordered spring network are randomly removed and the elastic
response is probed. For such systems, both bulk and shear
modulus go to zero at the elastic percolation threshold5 and
at this threshold the contact number reaches the isostatic value
2d [65]. Later it was shown that rigidity percolation is singular

5 To translate the data for c11 and c44 as a function of p shown in figure 1,
note that G = C44 and K = c11 − c44. All go to zero linearly in p − pc.

on ordered lattices [66], but similar results are expected to hold
on irregular lattices.

While it has been suggested that jamming of frictionless
spheres corresponds to the onset of rigidity percolation [59],
there are significant differences, for example that the con-
tact number varies smoothly through the rigidity percolation
threshold but jumps at the jamming transition [2]. Never-
theless, it is instructive to compare the response of random
spring networks of a given contact number to those of jammed
packings—note that the linear response of jammed packings of
particles with one-sided harmonic interactions is exactly equiv-
alent to that of networks of appropriately loaded harmonic
springs, with the nodes of the network given by the particle
centers and the geometry and forces of the spring network de-
termined by the force network of the packing.

In figure 14, a schematic comparison of the variation of
the elastic moduli with contact number in effective medium
theory, for jammed packings and for random networks, is
shown. This illustrates that EMT predicts that the elastic
moduli vary smoothly through the isostatic point and that the
moduli are of the order of the local spring constant k. This is
because effective medium theory is essentially ‘blind’ to local
packing considerations and isostaticity. Thus, besides failing
to capture the vanishing of G near jamming, its prediction
for the bulk modulus fails spectacularly as well: it predicts
finite rigidity below isostaticity. Clearly random networks also
fail to describe jammed systems, as for random networks both
shear and bulk modulus vanish when z approaches ziso—from
the perspective of random networks, it is the bulk modulus of
jammed systems that behaves anomalously.

By comparing the displacement angle distributions P(α)
of jammed systems and random networks under both shear
and compression, Ellenbroek et al conclude that two cases can
be distinguished [62]. In the ‘generic’ case, all geometrical
characterizations exhibit simple scaling and the elastic moduli
scale as #z—this describes shear and bulk deformations of
randomly cut networks, as well as shear deformations of
jammed packings. Jammed packings under compression form
the ‘exceptional’ case: the fact that the compression modulus
remains of the order of k near jamming is reflected in the fact
that various characteristics of the local displacements do not
exhibit pure scaling.
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Geometry: Counting contacts
how should z depend on distance to Point J?

simple guess: compression is like inflating grain radii
(affine approximation)

⇒ close gaps ⇒ make new contacts
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Figure 6. The pair correlation function g(r > 1) of a
three-dimensional system of monodisperse spheres of radius 1
illustrates the abundance of near contacts close to jamming
(!φ = 10−8 here). Reproduced from [42] with
permission—copyright by the American Physical Society.

3.4. Relating contact numbers and packing densities away
from J

Below jamming, there are no load bearing contacts and the
contact number is zero, while at point J the contact number
attains the value 2d . How does the contact number grow for
systems at finite pressure? Assuming that (i) compression of
packings near point J leads to essentially affine deformations
and that (ii) g(r) is regular for r > 1, z would be expected
to grow linearly with φ: compression by 1% would then bring
particles that are separated by less than 1% of their diameter
into contact, etc. But we have seen above that g(r) is not
regular, and we will show below that deformations are very
far from affine near jamming—so how does z grow with φ?

Many authors have found that the contact number grows
with the square root of the excess density !φ := φ −
φc [2, 15, 20, 25] (see figure 7). O’Hern et al have studied this
scaling in detail and find that the excess contact number !z :=
z − zc scales as !z ∼ (!φ)0.50±0.03, where zc, the critical
contact number, is within error bars equal to the isostatic value
2d [2]. Note that this result is independent of dimension,

interaction potential or polydispersity (see figure 7(a)). Hence,
the crucial scaling law is

!z = z0

√
!φ, (5)

where the precise value of the prefactor z0 depends
on dimension, and possibly weakly on the degree of
polydispersity, and is similar to 3.5 ± 0.3 in two dimensions
and 7.9 ± 0.5 in three dimensions [2].

The variation of the contact number near J can therefore
be perceived to be of mixed first-/second-order character:
below jamming z = 0, at J the contact number z jumps
discontinuously from zero to 2d , and for jammed systems the
contact number exhibits non-trivial power law scaling as a
function of increasing density (figures 3 and 7).

We will see below that many other scaling relations (for
elastic moduli, for the density of state and for characteristic
scales) are intimately related to the scaling of z and the contact
number scaling can be seen as the central non-trivial scaling in
this system. (In frictional and non-spherical packings, similar
scalings for z are found.)

A subtle point is that the clean scaling laws for !z
versus !φ are only obtained if one excludes the rattlers
when counting contacts, but includes them for the packing
fraction [2]. Moreover, for individual packings the scatter
in contact numbers at a given pressure is quite substantial—
see, for example, figure 9 from [52]—and smooth curves such
as shown in figure 7(a) can only be obtained by averaging
over many packings. Finally, the density φ is usually defined
by dividing the volume of the undeformed particles by the
box size, and packing fractions larger than 1 are perfectly
reasonable. Hence, in comparison to packing fractions defined
by dividing the volume of the deformed particles by the box
size, φ is larger because the overlap is essentially counted
double. Even though none of these subtleties should play a role
for the asymptotic scaling close to jamming in large enough
systems, they are crucial when compared to experiments and
also for numerical simulations.

3.4.1. Connections between contact number scaling, g(r) and
marginal stability. The scaling of !z can be related to the

2d

Figure 7. (a) Excess contact number z − zc as a function of excess density φ − φc. Upper curves represent monodisperse and bidisperse
packings of 512 soft spheres in three dimensions with various interaction potentials, while lower curves correspond to bidisperse packings of
1024 soft discs in two dimensions. The straight lines have slope 0.5. Reproduced from [2] with permission—copyright by the American
Physical Society. (b) Schematic contact number as a function of density, illustrating the mixed nature of the jamming transition for frictionless
soft spheres.
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Figure 6. The pair correlation function g(r > 1) of a
three-dimensional system of monodisperse spheres of radius 1
illustrates the abundance of near contacts close to jamming
(!φ = 10−8 here). Reproduced from [42] with
permission—copyright by the American Physical Society.

3.4. Relating contact numbers and packing densities away
from J

Below jamming, there are no load bearing contacts and the
contact number is zero, while at point J the contact number
attains the value 2d . How does the contact number grow for
systems at finite pressure? Assuming that (i) compression of
packings near point J leads to essentially affine deformations
and that (ii) g(r) is regular for r > 1, z would be expected
to grow linearly with φ: compression by 1% would then bring
particles that are separated by less than 1% of their diameter
into contact, etc. But we have seen above that g(r) is not
regular, and we will show below that deformations are very
far from affine near jamming—so how does z grow with φ?

Many authors have found that the contact number grows
with the square root of the excess density !φ := φ −
φc [2, 15, 20, 25] (see figure 7). O’Hern et al have studied this
scaling in detail and find that the excess contact number !z :=
z − zc scales as !z ∼ (!φ)0.50±0.03, where zc, the critical
contact number, is within error bars equal to the isostatic value
2d [2]. Note that this result is independent of dimension,

interaction potential or polydispersity (see figure 7(a)). Hence,
the crucial scaling law is

!z = z0

√
!φ, (5)

where the precise value of the prefactor z0 depends
on dimension, and possibly weakly on the degree of
polydispersity, and is similar to 3.5 ± 0.3 in two dimensions
and 7.9 ± 0.5 in three dimensions [2].

The variation of the contact number near J can therefore
be perceived to be of mixed first-/second-order character:
below jamming z = 0, at J the contact number z jumps
discontinuously from zero to 2d , and for jammed systems the
contact number exhibits non-trivial power law scaling as a
function of increasing density (figures 3 and 7).

We will see below that many other scaling relations (for
elastic moduli, for the density of state and for characteristic
scales) are intimately related to the scaling of z and the contact
number scaling can be seen as the central non-trivial scaling in
this system. (In frictional and non-spherical packings, similar
scalings for z are found.)

A subtle point is that the clean scaling laws for !z
versus !φ are only obtained if one excludes the rattlers
when counting contacts, but includes them for the packing
fraction [2]. Moreover, for individual packings the scatter
in contact numbers at a given pressure is quite substantial—
see, for example, figure 9 from [52]—and smooth curves such
as shown in figure 7(a) can only be obtained by averaging
over many packings. Finally, the density φ is usually defined
by dividing the volume of the undeformed particles by the
box size, and packing fractions larger than 1 are perfectly
reasonable. Hence, in comparison to packing fractions defined
by dividing the volume of the deformed particles by the box
size, φ is larger because the overlap is essentially counted
double. Even though none of these subtleties should play a role
for the asymptotic scaling close to jamming in large enough
systems, they are crucial when compared to experiments and
also for numerical simulations.

3.4.1. Connections between contact number scaling, g(r) and
marginal stability. The scaling of !z can be related to the

2d

Figure 7. (a) Excess contact number z − zc as a function of excess density φ − φc. Upper curves represent monodisperse and bidisperse
packings of 512 soft spheres in three dimensions with various interaction potentials, while lower curves correspond to bidisperse packings of
1024 soft discs in two dimensions. The straight lines have slope 0.5. Reproduced from [2] with permission—copyright by the American
Physical Society. (b) Schematic contact number as a function of density, illustrating the mixed nature of the jamming transition for frictionless
soft spheres.
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Summary: Nontrivial Scalings
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Vibrations: Density of States
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Fig. 1.2. The density of states of vibrational modes of three dimensional soft-
sphere packings with one-sided harmonic forces at varous densities: (a) significantly
compressed samples; (b) close to the jamming density φc [2]; (c) on logarithmic
scale [5].

initial preparation the packing is compressed (or dilated) while continuously
minimizing the energy [2]. Other methods slowly adjust the radii so as to steer
the pressure in the packing to a prescribed value [4]. We refer to the literature
for details.

1.2.1 The vibrational density of states of packings

An important concept in condensed matter systems is the density of states,
D(ω). D(ω)dω is proportional to the number of states with frequency between
ω and ω + dω. Here ω refers to the frequency of the vibrational normal modes
of the atoms or constituent particles. The density of states concept is also
often used for for electronic states, but here we focus on the vibrational states
of condensed matter systems. For a crystal, or in fact for any elastic medium,
D(ω) increases at low-frequencies as ωd−1, where d is the dimension of space.
This generic behavior arises from the fact that sound modes have a dispersion
relation ω(k) which is linear in the wavenumber k, together with phase space
arguments for the number of modes with wavenumber between k and k +
dk. The Debye scaling law D(ω) ∼ ω2 for d = 3 underlies the ubiquitous
T 3 low-temperature specific heat of three-dimensional solids. It serves as an
important reference for identifying anomalous behavior — e.g., the well-known
enhancement of the specific heat over the Debye law is an indication in glasses
for an excess density of states at low frequencies.

To analyze the vibrational modes of the model packings described above,
one obtains, starting from the static packing generated as describes above,
the so-called dynamical matrix familiar from solid state physics. This dynam-
ical matrix is essentially the second derivative of the inter-particle potential,
and hence has only non-zero elements for particles that are in contact in the
packing (for the one-sided harmonic forces these terms are especially simple as
the potential is quadratic in the separation). From the diagonalization of the

write down eom for each grain
⇒ matrix equation

density of states: histogram of 
eigenfrequencies
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Fig. 1.3. (a) Z scales as |∆φ|0.5, from [2]. These results extend those of an earlier
study [11]. (b) ω∗ scales as |∆φ|0.5. From [5]. Together these two sets of data are
consistent with ω∗ ∼ ∆Z.

the particles with contact is dNc, so if we think of putting the particles with
contacts in the right place to allow them to obey the just-touching conditions,
we need to have

just-touching conditions at jamming: Z ≤ 2d. (1.2)

Clearly, the value Ziso = 2d, the isostatic value, has a special significance. In-
deed, the above two conditions imply that as packings approach the jamming
point, point J of Fig. 1.1(a), from the jammed side, e.g., by decompressing
them, one will have

upon approaching point J: Z ↓ Ziso = 2d. (1.3)

Note that these results are independent of the presence of polydispersity and
the details of the repulsive force law, provided it is of finite range and contin-
uous.3

The above argument will be further justified in section 1.2.4 for frictionless
spheres. Fig. 1.3(a) shows numerical simulation results for ∆Z = Z − Ziso,
plotted on a log-log scale as a function of the distance from jamming, ∆φ =
φ−φc, in both 2 and 3 dimensions. In both cases ∆Z goes to zero at jamming:
∆Z ∼

√
∆φ [2, 11, 12]. A recent experiment aimed at testing this scaling,

albeit in a system with friction, can be found in [13]. The isostaticity concept
will be re-examinated in section 1.3.1 for ellipses.

Note that according to (1.1) the packings at isostaticity have just enough
contacts to maintain stability. In this sense, they are marginal packings, pack-
ings at the edge of stability. Moreover, if one imagines a packing with M fewer

3 In passing, we note that φc, the density of a packing of monodisperse spheres
(all the same radii), approaches [2] the Random Close Packing density of hard
spheres. There is an active line of research aimed at analyzing and relating the
concepts of jamming and Random Close Packing [9,10].

ω∗

ω∗

−K̂u + Fext = mü
= mω2uno ext. force ⇒ eigenvalue eqn displacement

figures from review article by Liu, Wyart, van Saarloos and Nagel, 2010
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σy ∼ (∆φ)∆
ansatz:

data: Tighe, Woldhuis, Remmers, van Saarloos and van Hecke



Beyond Linear Response: Flow

σ = σy + Aγ̇β

empirical fact: 
  many soft matter systems obey Herschel-Bulkley rheology

σy ∼ (∆φ)∆combine with 

σ

(∆φ)∆
= 1 + A

(
γ̇

(∆φ)∆/β

)β

suggests rescaled coordinates



φc ≈ 0.841

see also:see also:

∆ ≈ 1.5
β ≈ 0.5

Olsson & Teitel PRL 2007
Hatano JPSJ 2008, PRE 2009
Tighe et al., in prep.

γ̇
103 bubbles
5 decades in

3

γ̇

σ

FIG. 2: The viscous contribution to the stress as a function
of strain rate for a number of different densities. The stress
is largely independent of density.

α βvisc βelas φc ∆
0.5 0.5 0.25 0.8415 1.5
0.75 0.75 0.375 0.8415 1.5
1 1 0.5 0.8415 1.5

1.5 1.5 0.75 0.8415 1.5
2.0 2.0 1.0 0.8415 1.5

FIG. 3: Table showing the scaling parameters for differ-
ent microscopic viscous force exponents α. As can be seen,
βvisc = α, βelas = α/2 and ∆ and φc are independent of α

be seen in figure 2. Moreover, the behaviour appears to
be a clean power law. The power law exponents, βvisc, as
a function of microscopic viscous force exponents, α, are
given in figure 3. This shows that βvisc = α. Therefore,
while βvisc is not universal, it is simply proportional to a
microscopic force exponent, just as is the case with elastic
forces in static jamming.

In figure 4 we show scaling collapse for the elastic com-
ponent of the shear stress with scaling Ansatz

σel
xy = |∆φ|∆F±(γ̇/|∆φ|zcr). (2)

We have fitted the branch above jamming with a
Herschel-Bulkley curve, σel

xy = σyield + cγ̇βelas . Using
the goodness of fit to combine the 2 relations we find
zcr = ∆/βelas and σyield ∼ |∆φ|∆. We therefore use
φc, ∆ and βelas as our critical scaling parameters. Their
values as a function of the viscous force exponent α are
listed in table 3. As can be seen, both φc and ∆ are
largely independent of α. For βelas, however, we find

FIG. 4: Rescaling of the elastic component of the shear stress
when using a linear (α = 1) viscous drag force.

FIG. 5: Rescaling of the elastic component of the shear stress
when using the mean field model.

again a dependence on α, just as for βvisc. This time the
relation is βelas = α/2.

For the case of α = 1 we have compared our results
of the full Durian soft disc model with results using the
mean field model. As can be seen in figure 5 and 3, we
find the same values of the critical scaling parameters α,
∆ and φc and the same qualitative form of the scaling
function F±. Our results also seem to agree with Olsson
and Teitel in the range of strain rates that we can both
access[45].

We have also looked at the other 3 components of the
stress tensor, as well as the invariants pressure, p, and
deviatoric stress, σ∆. The scaling of σyx and σ∆ is the
same as the scaling of σxy DOES THIS ALSO HOLD
FOR VISCOUS STRESSES?. As can be seen in figure
6, there is also scaling collapse for p. It is qualitatively
similar to the scaling of σxy, but the values of the expo-
nents ∆ and β are somewhat different.

In addition we investigated the length scale that Olsson
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Beyond Linear Response: Flow

data: Tighe, Woldhuis, Remmers, van Saarloos and van Hecke



Why study jamming?
⇒ (hope for) universality

many properties governed by one 
attribute: distance to transition

some materials (or models) more 
convenient than others

not so much: 
force law, friction, particle 
shape all matter



Why study jamming?
⇒ (hope for) universality

many properties governed by one 
attribute: distance to transition

some materials (or models) more 
convenient than others

not so much: 
force law, friction, particle 
shape all matter

kind of… 
geometry and elasticity ~
distance to isostaticity



Why study jamming?
⇒ (hope for) universality

many properties governed by one 
attribute: distance to transition

some materials (or models) more 
convenient than others

kind of… 
geometry and elasticity ~
distance to isostaticity

not so much: 
force law, friction, particle 
shape all matter

definitely! 
first experiments on 
“frictionless spheres” are 
turning up now…
  foams, emulsions, etc.
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