Vibro-fluidized granular matter clustering and related phenomena

Vibrofluidization = shaking

Decompactification through shaking

Shaking: $a \sin(\omega t)$; dim.less acceleration: I

"Decompacted" means: acceleration overcomes friction

Force balance: acceleration - gravity = (wall) friction:

$$\Gamma g dm - g dm = dF_{\text{friction}}$$

Sand moves freely if lhs > rhs !

Decompactification through shaking (threshold calculation)

Total height of stack: h₀

Threshold condition lhs>rhs fullfilled from h_{+} (< h_{0}) on.

$$\Gamma = 2 - \exp\left(-\frac{K\mu_{s}U}{A}(h_{0} - h_{t})\right)$$

 μ_s = static friction coefficient

K = redirection parameter

 $\Gamma = 1$ means: $h_{t} = h_{0}$; nothing can be fluidized

 Γ = 2 or larger: all can be fluidized

Vertically shaken granular matter: relevant dimensionless parameters

 $a^2\omega^2$

 $a^2\omega^2$

 $a^2\omega^2$

aR

gravitational energy gH Mildly fluidized: particles move with bottom, H = a

bottom energy

1.

Vigorously fluidized: take intrinsic l.s. H = R H typical (vertical) lengthscale

 $a\omega^2$ dimensionless acceleration ga g dimensionless

shaking strength

2. Dissipation per particle:

$$\frac{\mathcal{E}_{k,\text{bef.}} - \mathcal{E}_{k,\text{aft.}}}{\mathcal{E}_{k,\text{bef.}}} = \frac{\mathcal{E}_{k,\text{bef.}} - e^2 \mathcal{E}_{k,\text{bef.}}}{\mathcal{E}_{k,\text{bef.}}} = 1 - e^2 \equiv \varepsilon \quad \frac{\text{inelasticity}}{\text{city}}$$

3. Filling factor: (layers of particles)

$$\frac{\pi R^2 N}{\Omega} = F \qquad \begin{array}{c} \text{filling} \\ \text{factor} \end{array}$$

Quasi 2-D container

$L \ge D \ge H = 101 \ge 5 \ge 150 \text{ mm}$

• Glass beads: $d = 1.0 \text{ mm}, e \approx 0.95$ • Frequency *f* linearly increased, amplitude *a* fixed 4. Aspect ratio: $\frac{L}{h_0}$ remains large (h₀ = bed height at rest)

1. Bouncing bed

F = 8.1 layers, a = 4.0 mm, f = 12 Hz

The granular bed bounces as a single body

Mild fluidization $\rightarrow \Gamma$

Mehta and Luck, *Phys. Rev. Lett.* **65**, 393 (1990)

2. Undulations

F = 8.1 layers, amplitude a = 3.0 mm

Standing wave pattern oscillating at 2T

Mild fluidization $\rightarrow \Gamma$

Sano, Phys. Rev. E 72, 051302 (2005)

3. Granular Leidenfrost effect

F = 8.1 layers, a = 3.0 mm

Dense cluster elevated by dilute layer of fast particles

Intermediat Antheir diadation : fhot this Tation Schndidates...

Meerson *et al.*, *Phys. Rev. Lett.* **91**, 024301 (2003) Eshuis *et al.*, *Phys. Rev. Lett.* **95**, 258001 (2005)

4. Convection

F = 8.1 layers, a = 3.0 mm

Counter-rotating rolls like Rayleigh-Bénard convection

Strong fluidization \rightarrow S

Paolotti et al., Phys. Rev. E 69, 061304 (2004)

5. Gas

F = 2.7 layers, amplitude a = 3.0 mm, frequency f = 50 Hz

Shaking parameter \rightarrow either Γ (from bouncing bed) or S (from convection)

Grossman et al., Phys. Rev. E 55, 4200 (1997)

Phase Diagram

of Vertically Shaken Granular Matter", Phys. Fluids 19, 123301 (2007)

Johann Gottlob Leidenfrost (1756)

Drop of water on a hot plate ($\geq 220^{\circ}$ C)

Granular version

Granular temperature at bottom ~ Shaking strength

2D container: $10 \times 0.45 \times 14$ cm, Glass beads: d = 4mm, $\rho = 2.5$ g/cm³, e ≈ 0.9

Leidenfrost state beyond critical acceleration Γ_c

F=16 layers, f=80Hz

Leidenfrost state beyond critical acceleration Γ_c

F=16 layers, f=80Hz

 $\Gamma = 51.5$

Leidenfrost state

Leidenfrost state beyond critical acceleration Γc

F=16 layers, f=80Hz

What's a suitable *order parameter* to distinguish between the different phases in the Leidenfrost state?

→ Employ the concept of *pair correlations*:

$$g_{y}(x) = \frac{1}{N} \sum_{i,j \text{ in } (y, y+dy)} \sum_{i \neq j} \delta(x - (x_{i} - x_{j}))$$

Identifying the order parameter

Order parameter *O* determines inversion height:

Phase diagram in S-F plane

Hydrodynamic model

(1) Force balance:

$$\frac{dp}{dy} = -mgn$$

(2) Balance between heat flux and dissipation: $\frac{d}{dy} \left\{ \kappa \frac{dT}{dy} \right\} = \frac{\mu}{\gamma l} \varepsilon n T^{3/2}$

(3) Equation of state: $p = nT \frac{n_{cp} + n}{n_{cp} - n}$

cf. Meerson *et al.*, PRL **91** (2003)

3 Boundary conditions

- Prescribed granular temperature at bottom: $T_0 \propto (af)^2$
- Zero heat flux at top: $\lim_{y \to \infty} \left(\kappa(y) \frac{dT}{dy} \right) = 0$
- Conservation of total number of particles: $\int_{0}^{\infty} n(y)dy = F n_{cp}d$

Dimensionless control parameters

Energy input: $S = \frac{4\pi^2 (af)^2}{gd}$ Inelasticity: $\mathcal{E} = (1 - e^2)$

Number of layers: F

Just as in experiment, the relevant shaking parameter is $S \equiv \Gamma A \pmod{\Gamma}$

Experimental phase diagram and theoretical!

P. Eshuis, K. van der Weele, D. van der Meer, D. Lohse, *Granular Leidenfrost effect: Experiment and theory of floating particle clusters*, Phys. Rev. Lett. **95, 258001 (2005)**

Granular convection

How did we obtain the theoretical result ?

Starting point: Leidenfrost solution $n_L(y)$, $T_L(y)$

Perform linear stability analysis of the full granular hydrodynamic equations

Determine the most unstable wavelength \rightarrow length of convection roll

Granular convection

Again, the phase diagram

Granular gases

Vertically vibrated granular gas

* Granular temperature:

$$\mathcal{T}\equiv\left\langle \boldsymbol{\nu}^{2}\right\rangle$$

* For dilute system:
 T roughly independent of z

* Barometric height distribution: $\rho(z) \equiv \frac{gN}{T} \exp\left(-\frac{gz}{T}\right)$

Density and temperature in MD simulations

T follows from energy balance

Energy input at bottom:

$$E_{in} \sim \rho(0) \sqrt{T} \Delta E_k \sim \frac{gN}{T} \sqrt{T} v_b \sqrt{T}$$

For sawtooth driving:

$$V_{out} = -V_{in} + 2V_{b}$$

take:
$$v_{in} = \sqrt{T}$$

$$\Delta E_k = \frac{1}{2} m v_{out}^2 - \frac{1}{2} m v_{in}^2$$

$$= \frac{1}{2} m (\sqrt{T} + 2v_b)^2 - \frac{1}{2} m T$$

$$\approx 2m v_b \sqrt{T}$$

T follows from energy balance

Energy input at bottom:

$$E_{in} \sim \rho(0) \sqrt{T} \Delta E_k \sim \frac{gN}{T} \sqrt{T} v_b \sqrt{T}$$

Energy dissipation in the system

$$E_{diss} \sim \int_{z=0}^{\infty} \rho(z)^2 \sqrt{T} \varepsilon T dz \sim \varepsilon T^{3/2} \frac{gN^2}{T}$$

Integral gives:

$$\int_{z=0}^{\infty} \rho(z)^2 dz = \left(\frac{gN}{T}\right)^2 \int_{z=0}^{\infty} \exp\left(-\frac{2gz}{T}\right) dz = \frac{gN^2}{2T}$$

T follows from energy balance

Energy input at bottom:

$$E_{in} \sim \rho(0) \sqrt{T} \Delta E_k \sim \frac{gN}{T} \sqrt{T} v_b \sqrt{T}$$

Energy dissipation in the system

$$E_{diss} \sim \int_{z=0}^{\infty} \rho(z)^2 \sqrt{T} \varepsilon T dz \sim \varepsilon T^{3/2} \frac{gN^2}{T}$$

Equating energy input and dissipation gives:

$$g N v_b \sim g \varepsilon N^2 \sqrt{T} \implies$$

$$T \sim \frac{v_b^2}{\varepsilon^2 N^2}$$
Compartmentalized granular gases

Reason clustering:

Inelastic collisions !

Shaking strength: high

Flux function

Flux through the hole is:

F = density * velocity * area hole

$$F \sim \rho_{1}(h) \sqrt{T_{1}} S$$

$$= \frac{gN_{1}S}{\sqrt{T_{1}}} \exp\left(-\frac{gh}{T_{1}}\right)$$
Use: $T \sim \frac{V_{b}^{2}}{\varepsilon^{2} N^{2}}$

$$F(N_1) \sim N_1^2 \exp(-BN_1^2)$$

$$B \propto (1-e^2)^2 \frac{gh}{a^2 \omega^2}$$

with:

Flux explains the clustering:

$$F_{1\rightarrow 2} = F_{2\rightarrow 1}$$

Stability analysis 2 box system

$$n_{1} = \frac{N_{1}}{N_{1} + N_{2}}; n_{2} = 1 - n_{1}$$

$$\frac{d}{dt}n_{1} = F(n_{2}) - F(n_{1})$$

$$= F(1 - n_{1}) - F(n_{1})$$
Around $n_{1}=1/2;$

$$n_{1} = \frac{1}{2} + \delta n_{1}$$

$$\frac{d}{dt}\delta n_{1} = -2F'(n_{1})\delta n_{1}$$

$$\propto -2e^{-B}(B_{c} - B)\delta n_{1}$$

$$B < B_{c}; \frac{d}{dt}\delta n_{1} < 0 \text{ stable}$$

$$B > B_{c}; \frac{d}{dt}\delta n_{1} > 0 \text{ unstable}$$

Bifurcation diagram

Dynamics for N-box system

 $\dot{n}_{k} = F(n_{k+1}) + F(n_{k-1}) - 2F(n_{k}) + \xi_{k}$ $\sum_{k=1}^{N} n_k = 1$ noise term

Bifurcation diagram for N=3

5 boxes in experiment

Bifurcation diagram for N=5

Declustering:

Lifetime of a cluster

Exact solution for N=3

In 80 compartments

Time evolution of the cluster

Shape of the decaying cluster

Smoluchowski-Feynman ratchet

But in a granular gas the ratchet works !

Freshmen's physics project, University of Twente

Experimental setup

Granular mill: typical time series

(N = 2000 particles, h = 51 mm, a = 1.5 mm, f = 110 Hz, S = 2.15)

Look at probability distribution function of ω and θ

Mill: mild shaking

Mill: strong shaking

Mill: strong shaking

Breaking the symmetry *Possibility 1:* Introduce ratchet and pawl on axis *Disadvantage:* granular gas properties may vary within the container

Possibility 2: Break symmetry at the vanes:

geometrically

by changing the collisional properties

Ratchet: moderate shaking

Ratchet: moderate shaking

Ratchet: strong shaking

Ratchet: *wvs. S*

There is more !

oscillons

Umbanhowar, Melo, and Swinney, Nature **382** (1996)

Bidisperse systems

The role of air $\bigcirc \Gamma = 1.6$

van Gerner, van der Hoef, van der Meer, van der Weele, *Phys. Rev. E* 76, 051305 (2007)

Faraday heaping

0.16000 s

Particle diameter: 0.5 mm Width of box: 10 cm Number of particles: 13500 Vibration frequency: 6.25 Hz Vibration amplitude: 1.0 cm Maximum acceleration: 1.6 g Number of CFD elements: 80 x 60 x 1

Numerical simulation of heaping with a hybrid GD-CFD code

Numerical simulation of heaping with a hybrid GD-CFD code

Without air...

... there is no heap !

But why does the bulk only move inwards?

4 snapshots

inward drag, loose packing

no drag, loose packing

outward drag, dense packing

no drag, dense packing

Thanks for your attention !

