Granular Flows

Granular Flows

Komatsu *et. al.* PRL (2001)

Granular Flows

Plastic vs Inertial Flow: $I = \dot{\gamma} d/(P/\rho)^{1/2}$

Slow Granular Flows

Shear Bands

Classical Picture based on Friction Experiments on Wide Shear Zones What's inside?

Viscous vs Frictional Melting Sand by Stirring

Shear Bands

Nature **406**, 385 (2000)

Granular Media: Stationary vs Flowing

Granular Media: Analogy with Friction

Granular Media: Analogy with Friction

Granular Media: Yield Criterion

Granular Media: Yield Criterion

 $\begin{array}{l} \text{Stresses} \rightarrow \text{Normal, shear components} \\ \text{Solid: } \tau/P < \mu_{\text{solid}} \\ \text{Flow: } \tau/P = \mu_{\text{sliding}} < \mu_{\text{solid}} \end{array}$

Narrow shearbands follow naturally

Granular Flows – Classical Picture

Narrow shear bands Grain details matter Solid-like regions Constant sliding friction.

Well ...

Smooth Granular Flows

Surface Velocity Profiles

Rate independent

Short transients

Azimuthal

 $\omega(\mathbf{r}):=\omega_{dim}(\mathbf{r})/\Omega$

D. Fenistein, JW. van de Meent and MvH, *PRL.* 92, 094301 (2004); 96, 118001 (2006).
D. Fenistein and MvH, *Nature* 425, 256 (2003).

Shallow Layers

Shallow Layers

3D Profile: What happens inside?

3D Profile: What happens inside?

Direct 3D Imaging!

Direct 3D Imaging!

Location in Bulk

$$(R_s - R_c)/R_s = (H/R_s)^{5/2}$$

R_c in bulk: Scaling argument virtual bottom **OK**

$$R_{c}(R_{s}, H) = R_{c}(r, H - h). \qquad \alpha = 5/2 \qquad 0.95 \qquad \alpha = 5/2 \qquad 0.95 \qquad \alpha = 5/2 \qquad 0.95 \qquad \alpha = 5/2 \qquad 0.85 \qquad \alpha = 5/2 \qquad \alpha$$

Model: Friction in Continua

Constant Friction Torque minimalization

$$\int dz r^2(z) \sqrt{r'^2 + 1} \left(H - z \right)$$

Theory: first order transition

Model: Friction in Continua

$$\int dz r^2(z) \sqrt{r'^2 + 1} (H - z)$$

Theory: first order transition

Model: Friction in Continua

Wide Shear Zones Limits of Frictional Picture 3D Imaging

Viscous vs Frictional Why Wide?

What is the influence of fluid on suspensions flows?

Compare Dry and Wet (Slow)

suspension

dry grains

Compare Dry and Wet (Slow)

J. Dijksman et al in preparation

Rheology: Two Limits

Rheology: Two Limits

Slow Suspensions = Slow Dry Grains

Faster Suspensions = Stokes

What About Inertial Nr Framework?

Setup

Yield Criterion in presence of flow?

Yield stress is lowered!!!

K. Nichol et al, accepted for PRL

What happened to yield stress?

Yield stress vanishes - Archimedes Law

Mechanism? Agitations - Nonlocal

No yielding threshold in presence of flow

Viscous!!!

A Stationary Granular Fluid: Agitations

Contact Forces + Flow

Fragile (heating 1 grain by 1C....)

Hard Grains (mm/nm)

Rotation rate Ω sets probe speed?

A Stationary Granular Fluid: Mechanism

A Stationary Granular Fluid: Mechanism

Local flow sets sinking speed???

A Stationary Granular Fluid: Mechanism

Slow Granular Flows

Not Always Shear Bands Classical Picture based on Friction Fails

Suspensions & Dry Grains Experiments: Melting Sand by Stirring

Bonus: Shallow Layers: R_c

Bonus: Shallow Layers: R_c

Bonus: Shallow Layers: R_c

Bonus: Shallow Layers: W

Bonus: Wide & Universal Shear Zones

$$\begin{split} &\omega(r)=1/2+1/2 \; erf[(r-R_c)/W] \\ &(R_s-R_c)/R_s=(H/R_s)^{5/2} \; : \text{Independent of particles} \\ &W/d \sim (H/d)^{2/3} \; : \text{Independent of } R_s \end{split}$$

D. Fenistein, JW. van de Meent and MvH, *Phys. Rev. Lett.* 92, 094301 (2004); 96, 118001 (2006).
D. Fenistein and MvH, *Nature* 425, 256 (2003).

Bonus: Deep Layers

Precession

 10^{2}

10⁴

