Impact: Void collapse and jet formation

Detlef Lohse Devaraj van der Meer Raymond Bergmann Gabriel Caballero

- Phys. Rev. Lett. 93, 198003 (2004)
- Nature 432, 689 (2004)
- Phys. Rev. Lett. 96, 154505 (2006)
- Phys. Rev. Lett. 99, 018001 (2007)

Astroid impact on earth

Speculation on crater formation

Source: Jan Smit, Amsterdam, Dept. Geology

Downscaled experiments: Impact of steel ball on fine sand

Problem: reproducibility

Jet height vs release height

Impact: planetary vs. lab

How to look into the sand?

1. Analogy to (opaque) liquid

- 2. "2D" experiments (falling cylinder)
- 3. Discrete particle simulations

1. Ball or drop impact on water

Air entrainment through impact

Detlef Lohse Phys. Today 56, No. 2, p. 36 (2003)

Mechanism

- 1. Void formation
- 2. Void collapse due to hydrostatic pressure
- 3. Jet formations at singularity point
- 4. Bubble formation

Quantitative analysis of void collapse in liquid

Phys. Rev. Lett. 96, 154505 (2006)

Pulled disk through a liquid $v_{impact} = 1.0 \text{ m/s}$ $R_{disk} = 0.03 \text{ m}$ $Fr = v_{impact}^2 / R_{disk} g = 3.4$

Void profiles as function of time

Dimensional analysis

Relevant parameters:

- disk radius R_{disk}
- mean velocity V
- gravity g

Irrelevant parameters:

- surface tension (We)
- viscosity (Re)

 $Fr = \frac{V^2}{gR_{disk}}$

Dimensional analysis

Closure time $t_s \sim R_{disk}^{1/2} / g^{1/2}$ Depth at closure time $h_s \sim V t_s$

 $d_s \sim h_s$

Experimental & numerical scaling law

Comparison BI simulation with experiment

Comparison BI simulation with experiment

Simplified potential flow analysis: 2D Rayleigh-Plesset equtation

At the end, ln to -inf neglect the rest, simplifies, great agreement

Very close to pinch-off

Zoom in, to increase 12.8 fps, capillary waves, instrability

Instability clearer, 48 fps, air rushing out, Kelvin Helmholtz, frequency bubble cloud +/- 10 kHz, 1 mm bubble radius, pure lyinertial collapse of the neck

Collapse of Non-axisymmetric Cavities

Oscar R. Enríquez Ivo R. Peters Stephan Gekle Laura Schmidt Michel Versluis Devaraj van der Meer Detlef Lohse

> Physics of Fluids Group University of Twente, Then Netherlands

Back to granular matter:

Rayleigh-Plesset type model for collapse of sand void

Rayleigh-type dynamics of cavity collapse

Rayleigh model at high impact velocity		
	bubble formation !	

Experiments vs. hydrodynamic theory

Experiments vs. hydrodynamic theory

T = 100ms

T = 191ms

How to look into the sand?

Analogy to water
 "2D" experiments (falling cylinder)
 Discrete particle simulations

2D experiment: high impact velocity

Just as in water: 1. void formation 2. void collapse 3. two jets (sheets

two jets (sheets in 2D)
 bubble formation

3. Discrete particle simulations

- soft sphere code
- N = 1000000
- $d_s = 0.5 \text{ mm}$
- $d_b = 15 \text{ mm}$
- quasi 2D (8 grains thick)
- pre-fluidized

Sandbed does not support weight

Myth from Lawrence of Arabia...

Jet height vs mass: threshold behavior

Model: Coulomb friction

Surface seal, just as in water

Conclusions

Series of events in both liquid and sand:

- 1. void formation
- 2. void collapse
- 3. two jets
- 4. bubble formation

Hydrodynamic description seems to work at least semiquantitatively (for soft sand)

D. Lohse et al., Phys. Rev. Lett. 93, 198003 (2004)

Granular void collapse analyzed by...

- •Experiment
- •Analogy to liquid
- •Boundary Integral simulations
- •Dimensional analysis
- •Discrete particle simulations
- •Simple continuum Rayleigh type model

Breakdown of hydrodynamic description

.. at large enough compactification of sand when strong enough force chains will have built up.

But how?

- sudden breakdown?
- continuous breakdown?

Is this the full story?

Effect of ambient pressure on...

- ... splash
- ... jet
- ...penetration depth

Ejectie 9 mbar calibratie

Jet much less pronounced under reduced pressure!

see also Royer et al., Nature Phys. 1, 164 (2005)

Jet height vs ambient pressure: saturation effects: two regimes

Ball trajectory in sand

Final depth described by force balance model

Coulomb friction coefficient depends on ambient pressure

Closure time: nearly constant

Final question:

What causes the sphere to penetrate less at lower pressures (i.e., the friction reduction)?

The sand bed is fluidized by the air flow around the impacting ball ($\text{Re}_{\text{sand grains}} \approx 5$)!

Impact of ball on decompactified sand

Height of sand bed vs time at impact

Conclusions II

- Ambient air pressure strongly influences the penetration depth of the ball and thus the jet height
- Ambient air pressure hardly affects the collapse of the cavity
- **Two regimes:** high p: trajectories unchanged up to closure low p: trajectories deviate: jet height <-> depth
- Autofluidization effect

Gabriel Caballero et al., Phys. Rev. Lett. 99, 018001 (2007)

Collaborators:

- Raymond Bergmann
- Gabriel Caballero
- Martin van der Hoef
- Hans Kuipers
- Devaraj van der Meer
- Rene Mikkelsen
- Andrea Prosperetti
- Remco Rauhe
- Marijn Sandtke
- Mark Stijnman
- Michel Versluis
- Ko van der Weele
- Christiaan Zeilstra

Financial support from FOM

Scaling for position of singularity

 $t_{touch}(z) = t_{get}(z) + t_{collapse}(z)$

Minimize:

→
$$h_s(Fr) \sim Fr^{1/3}$$

Different from scaling law in water!

 $h_{s}/R = 0.69 \text{ Fr}^{1/3}$

Oblique impact on water

Rayleigh model: low impact velocity		
	Collapse without air entrainment	

I'M NOT AT ALL SURE ABOUT THE EQUALITY. CHECK MCMAHON & GLASHEEN FOR THEIR DEFINITION OF <v>!!!!!!!

Again refer to the big feet of the lizard.

Dimensional analysis

Closure time $t_s \sim R_{disk}^{1/2} / g^{1/2}$ Depth at closure time $h_s \sim V t_s$

I'M NOT AT ALL SURE ABOUT THE EQUALITY. CHECK MCMAHON & GLASHEEN FOR THEIR DEFINITION OF <v>!!!!!!!

Experimental & numerical scaling law

Air entrainment by shaking fluid: The Faraday experiment

How much air is entrained?

Void profile just before singularity

Strong tools to look at such questions as air entrainment

Profile of void just before singularity

Differences liquid vs soft sand

nb gamma = adiabatic exponent

Preparation of sand in our experiments

- Grain size = $40\mu m$
- Let air bubble through it
- Slowly turn off air stream
- Resulting packing density: only 41%!
- → Model system for sedimented fine sand in the desert after a sand storm

Include correction, but nevertheless at low froude there's a significant deviation. The observed anomalous powerlaw of the neck radius must reflect itself in the in time evolution of the void. Define R, R exp increasing with froude

Dimensional numbers at singularity

scaling: $h(t)/R_{disk} \sim t^{1/2}$ $Re = \frac{h\dot{h}}{\nu} \sim const$ $Fr = \frac{\dot{h}^2}{gh} \sim t^{-3/2}$ $We = \frac{\rho h\dot{h}^2}{\sigma} \sim t^{-1/2}$ $Ca = \frac{\rho \nu \dot{h}}{\sigma} \sim t^{-1/2}$

Intrinsic scales at singularity (for water)

$$v_{viscous} = \frac{\sigma}{\eta} = 72m/s$$

$$l_{viscous} = \frac{\rho \nu^2}{\sigma} = 13nm$$

$$\tau_{viscous} = \frac{l_{viscous}}{v_{viscous}} = \frac{\rho^2 \nu^3}{\sigma^2} = 20ns$$
Below this, $h(t) \sim t$

$$r = \frac{\rho_l}{\rho_g} = 10^3$$

Intrinsic scales at singularity (for glycerol)

$$\nu_{glycerol} = 1000 \nu_{water}$$

$$v_{viscous} = \frac{\sigma}{\eta} = 0.07 m/s$$

$$l_{viscous} = \frac{\rho \nu^2}{\sigma} = 13mm$$

$$\tau_{viscous} = \frac{l_{viscous}}{v_{viscous}} = \frac{\rho^2 \nu^3}{\sigma^2} = 20s$$

Below this, $h(t) \sim t$

