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Rheology 
A short Introduction 

 

Dirk van den Ende 
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·   What is Rheology 
·   A bit of continuum mechanics  
·   Rheometry / µRheology 
·   Structure Rheology 
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What is Rheology ? 

Rheology is the study of the flow of matter  
in response to an applied force.  
 
It applies to substances which have a complex  
microstructure, such as muds, sludges,  
suspensions, polymers and other glass formers  
(e.g., silicates), as well as many foods and  
additives, bodily fluids (e.g., blood) or  
other materials which belong to the class of  
soft matter. 
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•   Quality control 
A simple practical test will do mostly. 

•   Design and control of processes 
•   Production of materials 
•   Transport (e.g. pumping) 
The process should be better understood, more detailed 
testing is imperative. 

•   Search for new materials and/or new applications 
To tune the properties of the material, one needs 
understanding of the underlying microscopic  
processes. 

Rheology comes into  
play during... 
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Interesting fluids (from a Rheological perspective)  
 

plastics    dairy products, (low-fat) 
polymer melts   margarine, yoghurt,  
paint     cream, salad dressings,  
bitumen    tomato ketchup, 
emulsions    dough, cosmetics, soap 
 

These materials contain rather tall units, like  
long polymers or particles of (sub-) micron  

size, which can interact with each other 
 

We call them:   COMPLEX FLUIDS 
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Solid:  shape preserved 
Liquid:  adapts it shape 

Solid, Liquid  
and in between… 

Time scale:  
•  short times: solid like 
•  on the long run: liquid like 

Silly putty: Bounces on the table 
but eventually it adapts its shape. 

t > t char 

t < t char 
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Characteristic time of  
the material tells you what  
is short and what is long: 
 
Water       10 -12 sec 
Dough products   1 sec – 100 sec 
Polymer liquids    1 – 5 min 
Glacier    10 year 
Glass    500 year 
Bronze    2000 year 

Spider web: 

1    2    3 
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Continuum mechanics tells us how  
to describe stress and strain. 

Stress state is described by 9 components,  
giving the stress tensor: 
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Some components of the stress tensor 
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Basic forms of 
deformation: 

Pure strain: Txx 

-Txx 

Pure shear: 
Tyx 

T-yx 

C.W. Macosko: Rheology; 1994 
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x 

y 

v = γ y ex 
. 

Vo 

h 

τyx = F/A  

γ = Vo /h = dvx/dy  
. 

Simple shear flow 
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x 

y 

v = γ y ex 
. 

. 
V[2] = ½ γ (y ex - x ey) 

V[1] = ½ γ (y ex + x ey) 
. 

2 

1 

v = v[1] + v[2] 

1 extension 
2 rotation 
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Stress tensor 
 
in simple shear flow: 

Newtonian liquids: 
η is constant  
Ψ1 and Ψ2 are zero 

Steady state: 
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Uniaxial elongation 

ez 

er 

vz = ε z 
vr = -½ ε r 

.
.

However, it is impossible to create  
a steady extensional flow. 
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stress:  τ, σ  [Pa] 
shear:   γ  [-]  
shear rate:    γ  [1/s] 
strain:  ε  [-] 
strain rate:  ε  [1/s] 
shear modulus:  G  [Pa] 
viscosity:   η  [Pa s] 

. 
 
. 

About names, symbols and units 
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Flow curves of  
non-Newtonian liquids 

shear thinning polymer melts 
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shear thinning viscosity curve 

polymer solutions 

shear rate [1/s] 

η 
[P

a 
s]
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γ/γ# 

η/
η o

 

plastic behavior 
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shear rate [1/s] 

η 
[P

a 
s]

 

plastic behavior 
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Normal stesses in a PMMA solution  

ω 

non-Newtonian phenomena 
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Normal stresses 

Due to the rotating lower disk, a shear flow exists between 
the disks. In case of visco-elastic fluids, this gives rise to 
normal stress differences. 
 

Ω 
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Dough for bread baking, shows  
rod climbing during its preparation.  

Rod climbing due to  
normal stresses 

Newtonian         visco-elastic 



12 

UNIVERSITEIT TWENTE. 
Physics of Complex Fluids 

23/57 

Another  
visco-elastic  
effect:  
the tubeless  
siphon 
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Geometries for nearly simple shear flow 

Rheometry 

 

·   Cone-plate 
Shear rate constant 
Little sample needed 

  

·   Plate-plate 
Shear rate not constant 
Little sample needed 

 

·   Couette geometry 
Shear rate nearly constant 
More sample needed  
Higher sensitivity 
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shear rate:    γ' (r) = Ω r/h 
torque:        M = 2  r2 τ(r) dr 
 
Can be used for normal force measurements 

plate-plate geometry 

h 

torque and normal force sensor 

Ω 
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cone-plate geometry 

torque and normal force sensor 

shear rate:    γ' (r) = Ω/θ 
torque:        M = 2/3 R3 τ 
 
Can be used for normal force measurements 

Ω 

θ 

R 
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Couette geometry 

torque sensor 

Ω 

L Ro 

Ri 
shear rate:     
γ' (r) ≈ ½Ω(Ro+Ri)/(Ro-Ri) 
 
torque:         
M = 2r2 Lτ(r) 
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"controled shear rate" :  
shear rate is applied  
resulting stress is measured. 

"controled stress" :  
torque (shear stress) is applied  
resulting shear rate 
is measured.  
 
Useful in case of 
yield measurements. 
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Linear Visco-elasticity 
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Ideal elastic Hookean behavior 
     F = G (A/h) u     τ = Gγ 

Elasticity and viscosity 

y 

x 
h 

u, v 

γ = u/h,     γ = v/h 
. 

τ =F/A   

Ideal viscous Newtonian behavior 
     F = η (A/h) v     τ = ηγ  . 
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Visco-elastic measurements: 
reveal important time scales. 

u,v 

γ = u/h,     γ = v/h 
. 

If you aply   γ = γo cos (ωt) 
you measure  τ = τo cos (ωt+φ)   

τ    

But how? 
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Emulsion droplet 

slow 

fast 
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Stress is a functional of the shear history. 
For small shear this functional is linear: 

Or equivalently for small stresses:  
shear is a linear functional of the stress history: 

Retardation function 

Relaxation function 



18 

UNIVERSITEIT TWENTE. 
Physics of Complex Fluids 

35/57 

G(t): relaxation function  

G
(t)

 [P
a]

 

t [s]  

Viscoelastic  
solid: G()>0 

Viscoelastic  
liquid: G() = 0 

relaxation times 

UNIVERSITEIT TWENTE. 
Physics of Complex Fluids 

36/57 

How to measure the  
relaxation function G(t)? 

1: step response: 

t [s] 

τ 
[P

a]
 γ 

(γ is a step) 
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2: harmonic driving: 

storage modulus 

loss modulus 
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harmonic shear experiment 
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G
(t)

 [P
a]

 

t [s]  

ω  [rad/s] 

G
’, 

G
’’ 

[P
a]

 

G’ 

G’’ 
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How to measure the  
retardation function J(t)? 

step response: (τ is a step) 

-1 0 1 2 3 4 5 6 7 8
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γ(t) 

creep measurement 

t [s] 
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Relation between G(t) and J(t) 

Laplace transform 

- 
= G’+jG’’ 
= J’-jJ’’ 
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Generalized Stokes  
Einstein Relation and 
particle tracking micro-rheology 

10|-‐2 10|-‐1 10|0 10|1

10|0

10|1

(t-‐tw)/tc

<Δr2>/<Δr2>0

10 |-‐1 10 |0 10 |1 10 |2

10 |-‐1

10 |0

ωtc  

G'/G'∞,	  G''/G'∞

? 
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Stokes Einstein relation 

links a transport coefficient (η)  
to an equilibrium property (D) 
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5 m 

rn(t) 

rn(t+s) 

particle tracking µ-rheology 

 < >:  ensemble averaging 
 and/or time  
 averaging   

: fluoresent tracer  
  observed by CSLM  

rn = (xn,yn) 

Bursac et al;  
Nature materials 2005 

Stokes Einstein Relation  
(Newtonian fluid): 

Generalized Stokes  
Einstein Relation: 
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Retardation function  
of a  
Newtonian fluid 

generalization 

prove via Laplace transforms; T.G. Mason, 2000 
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concentrated emulsion 
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10|-‐2 10|-‐1 10|0 10|1

10|0

10|1

(t-‐tw)/tc

<Δr2>/<Δr2>0

Dense suspension of  
polyNipam microgel particles 

3 <Δx2(t)> /a2 

(t-tw)/tc 
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ωtc  

G'/G'∞,	  G''/G'∞

the resulting G’and G’’ 
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Two critical assumptions: 
 
-   GSER                            is valid 
 
-   Complex fluid around probe can be  

 considered as a continuum 

If valid: 
   
-  You measure from equilibrium properties 
  a non-equilibrium transport property  
 
-  There exist several approaches 
  to calculate J*() from J(t) 
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Microscopic view  
on the  stress tensor 

We consider a polymer solution  

end to end vector 
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polymer as a  
freely jointed chain  

ui = ri-ri-1 

r0 

rN 

N segments with length b 
Q 

O 
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spring constant of  
the entropic spring:  

equipartition of energy:  

Gaussian probability distribution: 
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Consider the vectors Q near 
imaginairy interface: 

x,y 
z 

the number of vectors with value Q punching  
through the interface: n(Q)Qzd3Q. 
so, dTzβ= n(Q)QzFβ d3Q 
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Polymer contribution  
to the stress tensor: 

Hence, the rheologist  
should study  
the probability distribution p(Q,γ’) 
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Probability distribution p(Q,γ’) 

At rest this probability is fully symmetric, 
so T contains only diagonal components. 

rest             small γ’             large γ’ 
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Under small shear rate the distribution  
streches along the velocity direction,  
leading to a linear increase of the shear stress  

rest             small γ’             large γ’ 
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Under large shear rate the streched distribution  
rotates towards the velocity direction,  
leading to shear thinning and a normal stress 
difference.  

rest             small γ’             large γ’ 


