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Derivation of the depth-averaged equations

Mass and momentum balances
V-u=20
0
a(w)+v-(pU®u)=V-0+pg,

assume density p constant
bulk velocity v = (u,w)?! and ® is the dyadic product
stress o split into a pressure p and a deviatoric part 7

c=—-pl4+T71
subject to kinematic conditions at surface and base

at z=s(z,t) and z=10b(xz,1t),

and surface and basal traction conditions

z = s(x,t) : on = 0,
z=b(x,t) : on = —(u/|lu)u(n-on)+n(n- -on),

where n is the normal and u is the friction coefficient.

4




integrate V-« = 0 through depth using Leibniz’ Rule

s(A) s(A) s(\)
9 fdz=/ F 42 + [faz} ,
b

A Jyon oy OX O] 0y

to exchange the order of integration and differentiation

s(x,t)
/ (Bu_l_@w)dzzﬂ(
b(e.t) ox 0z ox

s(x,t)
/ U dz) — [
b(x,t) 0

Defining the depth-averaged velocity and thickness

1 S
u = E/ udz, h(xz,t) = s(x,t) — b(z,t)
b

and using the kinematic boundary conditions the depth-
averaged mass balance becomes

5h B
o L9 (b =o.
5 T 5




Making the shallowness approximation the normal
momentum balance implies pressure p is lithostatic

p = pg(s — 2) COS(
depth-averaging the downslope momentum balance

p (%Uﬂ) + %(hy)) - [ U (% +u% — w)r

b

s,
— h Si —(h xxr) — TrT— —
pg SInC+8$( Ouz) [0 5

Using the kinematic and traction conditions

2 Gyt 2 iy 2 (it cosc) = ngs+ 22 e
p (hu)—!—ax(xhu )+3w (2gh cosC | = th_I_p@:z: (i)

where the shape factor and the source terms are
e
U o ob
x== S=cos¢(tan¢ - u(u/al)) - 5-cos¢
U ox
Usually the in-plane deviatoric stress 7., IS neglected
and the shape factor is assumed to be unity y =1




Equations reduce to a hyperbolic system

oh O
L9 b)) =0
5 T 5

0 13, o /1
—(hw) + — (hw? ——h2cos):h5
= (1) + <2 (h®) + - (59 cos¢) = hg
These can be expanded and written in matrix form as
ow ow

—+ A—=¢gS
8t+ ox J

A:(gcgsgg)’ S:(g)

The eigenvalues of A are given by det(A — A1) =0

= (T—AN)?—ghcos¢(=0 = A=77x \/ghcosg

The Froude number Fr = wu/c is defined as the flow
speed u divided by the gravity wave speed ¢ = \/gh COS(




Upslope propagating granular bores

e Observations suggfast a shock separating constants states

T <E€: h(x,t) = h1, u(x,t) = u1,
x > g : h(ﬂf,t) — h27 ﬂ(wat) — /&27




e At shocks the mass and momentum jump conditions are

[1 (i — va)]
[1h@(@ — vn)] + [59h2 cos(]

e where v, is the normal propagation speed and [ -] is the
jump across the discontinuity.

e Assuming the grains come to rest after a bore

Uy = _\/hl (hl T hz) g CoSs (.

ho 2

e In the lab experiments

hi =0.61cm, hpo=7.29cm = v, =-16.99cm/s
e lies within 10% of the measured value of v, = —15.4cm/s

Gray, Tai & Noelle (2003) J. Fluid Mech. 491, 161-181.




Proposed defence for the Schneefernerhaus, Zugspitze

e Use avalanche model to compute the flow past obstacles




Two-dimensional depth-averaged system

e For avalanche thickness h and mean velocity u = (u, v)
in the downslope x and cross-slope y directions.

oh o . _ o, _
N + %(hu) + (9_y(hv) 0,

0 0 0 o [1
—(ha) + —(h@?) + — (huv —(— h? cos ) hgS.y,
8t( u)+8:1:( U )-l-ay( U’U)-I-am 59 ¢ 95 ()

%)+ Ly 4 Ly + 2 (Lcose)
() + (WD) + 5 (h7%) 4 - ( 59h® cos hgS)»

e source terms composed of gravity, basal friction u and
gradients of the basal topography b

b
Sy = sin¢— p(u/|ul)cos( — a—cos ¢,
I

o Ob
Sw) — p(v/|u|) cos¢ — a—ycosc,

Grigorian et al. 1967; Gray et al. P. Roy. Soc. 1999, JFM 2003




t= 0.00

Gray, Tai & Noelle (2003) J. Fluid Mech. 491, 161-181.



Weak, strong and detached oblique shocks
Fri—1o00—20° 8 =—V3c"

tan 3 (\/1 + 8Frssin? 3 — 3)
2tan?gB — 1+ \/1 + 8Fr7sin? 3 w = 30.7° (29° + 1°)

Gray & Cui (2007) J. Fluid Mech. 579, 113-136.
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Granular jets and hydraulic jumps on an inclined plane

CAMBRIDGE 25 May 2011
UNIVERSITY PRESS

Journal of
Fluid Mechanics

VOLUME 675

Oblique impingement of an
inviscid jet
(Hasson & Peck 1964)

Friction law for rough beds

tan{o, —tan (s
1+ Bh/(LFr)’

u=tan{; +

including treatment of static
material for 0 < Fr < g
(Pouliquen & Forterre 2002)

Johnson & Gray (2011) J. Fluid Mech. 675, 87-116
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Johnson & Gray (2011) J. Fluid Mech. 675, 87-116




Erosion-deposition waves

e 15 Qct 2000 an unintentional release of 150 000 m3 water led
to a“debris flow in Fully Switzerland that had regular surges




SIMIEIRVYEVES
spontaneously
develop on
erodible beds
in the lab

there are
static
regions
between
wave crests

Daerr & Douady (1999)
Borzsony et al. (2008)
Takagi et al (2011)




e Side-on “photo-finish” shows basal erosion and deposition




Granular solid-fluid phase transition in depth-averaged framework

s
.
a,
~a

e Or ignore it ...
crude, BUT ....

e resolve erosion
deposition interface

notoriously diffcult

Edwards & Gray (2015) J. Fluid Mech. 762, 35—67.




Use shallow water avalanche model ...

e Uses shallow water avalanche model (e.g. Grigorian et al.
1967, Gray et al. 1999, 2003) for the thickness h and the
depth-averaged velocity u

oh O
L% ha)=0
5 T 55

2 iy + 2oy + 2 (L2 _
at(h“) + 833(Xhu ) + oy <2h gcosc) = hgS

e where y = ?/ﬂ2 Is the shape factor, g is the constant of
gravitational acceleration and the source term

S = sing—ugcosg
ul

e consists of gravitational acceleration and basal fiction u

Grigorian, Eglit & Iakimov (1967), Tr. Vysokokogornogo Geofizich Inst. 12, 104-113.
Gray, Wieland & Hutter (1999) Proc. Roy. Soc. A 455, 1841-1874
Gray, Tai & Noelle (2003) J. Fluid Mech. 491, 161-181




Pouliquen & Forterre (2002)

e Measured basal friction by
determining the thickness
as which the grains

— came to rest

— when they started moving
again from a static state

e gave effective basal friction law

f + M2 — 1
T L ¥ ha/(LFr)’
Fr

(—>K (n1 — p3) + p3 +

p

H2 — H1
\ H3‘|‘1_|_h/L>

e where Fr is the Froude number, x = 1073 and p1 = tan{y, wo

1+ h/L

¥4 ‘ 2
O
i ~. : I
oy : e =
&)

0
h (mm)

Fr > 3, dynamic

Ha — M < Fr < B, intermediate

ER= static

tan (o and uz = tan (3 are the tangents of the angles, (1, (> and (3.

Pouliquen & Forterre (2002) J. Fluid Mech. 453, 133-151.




Travelling-wave solutions in the absence of viscosity

In a frame travelling at speed u,, with coordinates
E=1 — ut, {—
Assuming 9/0r = 0 and xy = 1 the system reduces to
d
a (h(% — uw)) =0,
du dh
— + hgcos(— = hgcos((tan( —
d£+g Cdg gcos¢(tan¢ — p)

Since v = 0 in a stationary layer of thickness h = hy

h(w — )

h
h(’l-l, - uw) — _h—}—uw = u = Uy ( — %) :

The flow thickness for which Fr = 8 is now defined as h = h,

— T —

h*_h_l_

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




h (mm) 4

hsmp

e Integration of the first order ODE indicates a problem
e solution asymptotes to a critical thickness h. > herit > hstop
e T0O get through this point, ones needs a little bit of viscosity

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




The p(l)-rheology for liquid-like granular flows

GDR MIDI (2004) and Jop
et al. (2006): proposed
constitutive law

D

T — M(I)pm

where 2nd invariant

/1
|D|| = {/=trD?
2

If o = const this reduces
to Mohr-Coulomb law

BUT, friction p is a function of the inertial number I
— 2||D||d
p(l) = +L2 0 2D

Io/T+1 v/t

where d is the particle diameter and p* is the intrinsic density.




7T1r?C ontinuum Sand—Glass

Solver: We apply the Open-source Gerris (Popinet 2003)
http://gfs.sourceforge.net
(incompressible Navier-Stokes equations using a VOF method) (Popinet 2003, 2009)

5 Vau = 0
P (8—? + fu,.Vu) = —Vp+ V.2nD) + pg
dc
a—t + V.(CU) =
p = ¢ pair + (1 _ C) pgrains
N = C TNair = (1 — C) Tgrains

= We chose p.ir << Pgrains
=> The free surface is solved in the course of time
= We implement the viscosity:

P
Tlgrains — min (u—; 77ma:1:> ?
[ 7 |

Lagree, Staron & Popinet 2011



he

ontinuum and—Glass

No slip

We chose the following value for the rheological parameters:

ps = 0.32, ug = 0.60, Iy =04

Staron, Lagree & Popinet 2011



The Bagnold solution

For steady-uniform flow u = (u(z),0,0) the normal
and downslope momentum balances imply that

p = pg(h — z) cos, Tzz = pg{h — z) Sin¢

Rheology then implies u(I) = tan¢ and hence I is
equal to a constant

Io=To (tang — tan C1>

tan{o —tan(

Solve I equation for the downslope velocity

<

21
U = 3—5\/Cbg cos ¢ (h3/2 — (h — 2)3/2) .

The depth-averaged Bagnold velocity satisfies
21,
5d

v/ Dgcos ¢ h3/2

Th—




The depth-averaged p(l)-rheology for granular flows

To first order the inviscid avalanche equations emerge
naturally with the dynamic basal friction law

_ H2 — (1
Mb(ha Fr)_ul_l_ﬁh/(LFr)—l—l’ FI’>/B,

This is just Pouliquen & Forterre’s (2002) law, where
__|al

vV gh cos(
Now add in the in-plane deviatoric stress

D.’E:E

| D]

Assume shallow and use Bagnold solution to evaluate
ou ou

1
ox 210z

Fr

Texx — M(I)p




e the in-plane deviatoric stress is

oh
Tox = 2pgSin ¢ (h”(h 2)Y2 — (h — z)) -
.CE

e formal depth-integration gives

1 oh
o 3pg ¢ o’

e Use Bagnold velocity to reformulate

ou

hT - h3/2
T pv ax

|

2L./q sin¢ (tan (> — tan C)

9p cos(¢ \tan¢{ —tan (s
e negative and ill-posed outside range of steady uniform flow

Gray & Edwards (2014) J. Fluid Mech. 755, 503-534.




u(I)-rheology ill-posed for high and low inertial numbers

Barker et al. (2015) J. Fluid Mech.

LR el '\_A‘a'ﬂ
wisll-sosed

Small perturbations will
grow infinitely quickly
in the high wave num-
ber limit for certain wave

vectors (&1,&2)

[ g((;”f)) } — exp (if - & + At) [

779, 794—818.

ill-posed

wiell-s0s5ed

YANT)
eyt el
_ 2||DJld

VPP

p(l) = p1 +

1




e PRACTICAL IMPLICATION: Two-dimensional transient com-
putations will blow-up in the ill-posed region of parameter space

e In this case for Bagnold flow in the high inertial number regime

t=0.0001s

0002 0004 0006 0008 0.01
x[m]

Barker et al. (2015) J. Fluid Mech. 779, 794—818.




Application of depth-averaged theory to granular roll-waves

t =0.0s

T L

oh O
Ny 9 vy =0
o T 5

0 0 o /1 B, o1
L (ha) + —(hi?) + — [ =gh%cos(¢ | = ghS, + — [ vh3/2=
g M)t g () + 5 (29 C) ghde + 5 (” B

e Adds a singular perturbation to the momentum equation

e T his is the only form that is not singular in A or u
Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




Measurements of the spatial growth rate of granular roll-waves

. depth-averaged u(I)

-0.03
0

1.0
w

Forterre & Pouliquen (2003) used loudspeaker to initiate
roll waves of a given frequency

Inviscid theory predicts critical Froude Fr. = 2/3, but
growth occurs at all frequencies w

Depth-averaged rheology predicts the cut-off frequency we
MATCHES WITHOUT ANY FITTING PARAMETERS




Exact travelling wave solutions for roll waves

200 » 300 400 500 -0.20 " -0.10 0.00
Y
1.15

(c)
1.10

1.05
h

1.00

0.95

0.90

0.85
100

computed by numerically integrating 2nd order ODE with
prescribed Fr and wu, until a limit cycle is formed

Gray & Edwards (2014) J. Fluid Mech. 755, 503-534.




Exact travelling wave solutions for erosion-deposition waves

tyy = 0.2802 ms™!

hy =3.56

ty =~ 0.2652ms™!

h(mm) 4
h

stop

e For each solution Ay and h, must be prescribed.
e Viscosity allows solution to cross the critical line!

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




Exact travelling wave solutions for erosion-deposition waves

h (mm)

e EXxact solution picks off the correct amplitude and wavelength
e ALTHOUGH its shape is a little different

e MAJOR STEP FORWARD in modelling erosion-deposition
problems with shallow erodible layers

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




h (1m)
w

w

e Numerical solutions with random noise rapidly coarsen into
large amplitude waves

e Close to stopping very destructive waves are formed!

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.




Complex coarsening dynamics is qualitatively reproduced

h (mm)

Experimental space-time plot shows:-

— regions of stationary material as horizontal straight lines
— the wave-fronts as white lines

very similar in computations (right)

Edwards & Gray (2015) J. Fluid Mech. 762, 35-67.
Razis, Edwards, Gray & van der Weele (2014) Phys. Fluids 26, 123305.




Theory has the potential to explain other situations ...

period releases Takagi,
o} McElwaine & Huppert
(2011)

0.8 1

Triangular waves Daerr & Doua

0 0.2 04 0.6
Figure 2 Evolution of a triangular avalanche (¢ = 30°, é¢ = 1.5%), showing the :E/L
opening angle y. Thetime lapse between two images is 3.04 s. The pointed object

is a pin used to trigger the avalanche, and indicates the origin of the avalanche.

FIG. 22. Dimensional thickness profile of representative
avalanches at0.5, 1.0, 1.5, and 2.0 m down a 32° slope. The horizontal
length is scaled by L &~ 700 mm, and the vertical length is scaled by

I o A K s Tha manan marafilac albhanct Avrarlan cnvamactina that




... and for segregation-induced fingering instabilities

Pouliquen, Delours & Savage (1997), Nature. 386, 816-817.
Woodhouse et al. (2012), J. Fluid Mech. 709, 543-580.
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Schematic diagram for the levee formation process

oarse-enriched surface ayer

Breaking size-segregation wavej

Deposition point

e larger particles are shouldered to the sides to create levees

e this is an example of a segregation-mobility feedback effect




saturated with water

runs down an 82m flume
on to a runout pad
we deploy tracers near mouth

. a.r‘]_d deflect watery tail

;;;:ﬁ“ l PR i : P o - ;
egregation

e there is strong size s

larger particles are less mobile

x L, o]
e are shouldered into levees ~ .*
'-~ o o § ‘.;. Y > lk};?';'" u ,"“""'\")-




.

Measure velocity and levee emplacement time with 2cm cubes

AN Y LXK













Surface velocity in stationary and front centred frames

—

SO
J I RSEEZRTTTTII
UL

IR,
IS,

e Oxyz are the downslope, cross-slope and normal directions




A simple kinematic model for 3D velocity field in the moving frame

e Bulk velocity u = (u,v w) is assumed to be incompressible

ou
ox 84

e Integrating through the avalanche depth A

oh
ot

where the depth-averaged velocity

I
-l-ax(hu)‘l‘a—y(hv)—o

e In frame & = x — upt the bulk flow is steady

o _ o . _.
8—§(h(u—up))—l-a—y(hv)—0




e define a streamfunction
oY oY

— = h(u—ur), — = —hv

oy o€

e empirical front shape

yo(€) = W [tanh (_%)

e self similar thickness h

H ygn . y2n
h(yoay) — W ( ygn—l )

e recirculating streamfunction

(& y) = ¥ (yo,y)

to approximate the flow




Reconstruction of the 3D velocity field

1: plug-flow

=

0: simple shear

o

0.5: shear and basal slip

o

e assuming linear velocity profles with depth z

(u,v) = (a +2(1— @%) @)




<{: ——
) e half cubes lie at the surface

‘.o mainly on top of the levee walls

e in reverse order, i.e.

.




Large particle tracer stone heights

e Strong evidence for size segregation and recirculation

e BUT, stones never rise to the free surface again




f \_

o Large vvhlte partlcles rlse up 1 2cm every metre

e twO seams of large white tracers on inside of levee wall§
\
e _overrun B at the outer base othe Ievee wall




s

e central white grains carried to flow front and reach 15cm height. _,

overrun -at the front
A F‘}";

L)




