Particle size segregation in granular
free-surface flows, by Nico Gray
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- ayalanches very effective at sorting particles by sizes « = 6
e plays.a crucijal role in large scale pattern formation




Reverse distribution grading

- .

:\,_/ Medium

Surface avalanche

Slowly: rotating r_nix';ture,

- :
a, & ’

W -
L LI
& - ;

“Gray & Ancey (2011),J»Fluid Mech: 678, 535-588 .
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Particle-size segregation and diffusive-remixing

e Kinetic sieving is the key segregation mechanism

— small particles more likely to fall down into gaps
— and then force large particles up
— to create inversely graded layers

o diffusive-remixing competes against this




Mixture framework
e the volume fraction ¢¥ of constituent v, per unit
volume of mixture, lies in the range
0<¢”" < 1.

and their sum

> ¢ =1.
\47

e In standard mixture theory the partial and intrinsic
density, stress, pressure and velocity fields satisfy

pl/ — ¢)Upl/*’ o_l/ — él/o_]/*’ pl/ — ¢)I/p]/*’ ul/ — ul/*

e [ he bulk density and pressure are defined as

p= Zp”, p= Zp”-
Vv Yv




Mass and momentum balances for each constituent

e Each constituent satisfies individual mass
dp”
ot

and momentum balances

_I_ \ (pl/ul/) — Ov

0
P U+ V- (U ®u’) =V 0"+ g+ 5,

where ® is the dyadic product and g is the gravi-
tational acceleration vector.

e The interaction force 3" is the force exerted on
phase v by all the other constituents. Their sum

> B'=0.
Yv




Bulk lithostatic pressure

Particles have the same intrinsic density p"* = pg
Acceleration terms are negligible in the z direction.

The normal momentum balances sum to

op

— = —pg CoS(,
9 pg ¢

where g is the gravitational acceleration.

Since p is constant and the free-surface z = s(x,t)
IS traction free, this can be integrated to show that
the pressure is lithostatic

p = pg(s — z) COSC.

Compatible with existing avalanche models




Non-standard partial/intrinsic pressure relation

e As small particles percolate downwards, they sup-
port less of the overburden pressure = large grains
support more of the load.

e suggests a partial/intrinsic pressure relation that
differs from standard mixture theory

'ny — 'Fy’n,
I J ?

where fY #= ¢¥ determines the proportion of the
pressure carried by each constituent. Their sum

> fr=1.
Vv




Interaction drag

e Interaction drag consists of three terms

B =pV [’ —pc(u” —u) — pdVe¢”,

c 1S the coefficient of inter-particle drag,
d is the coefficient of diffusive remixing

e barycentric (bulk) velocity defined by
U = Zp“u”.
Vv

e [ he constituent velocities are assumed equal to the
bulk velocity in the down- and cross-slope directions




Momentum balance of each constituent in the normal direction

Assuming normal accelerations are negligible
olo
Oz

¢'w” = ¢"w+ (f" — ¢”)(g/c) cos¢ — (d/c)

fv — ¢¥ > 0 particles rise
f¥ — ¢¥ = 0 no relative motion
¥ — ¢¥ < 0 particles percolate downwards

When any class of particles are in a pure phase they
must carry all of the load

ff=1, when ¢" =1,

When there are no particles of that phase, they
cannot carry any of the load

f¥ =0, when ¢"=0.




Additive decomposition of the perturbations

If any two constituents are found in isolation, the
form of f¥ must reduce to bidisperse case, e.g.

fl — qbl + Bl8¢l¢sa

This suggests an additive decomposition

["=¢"+) Bud'd,
Vi

B,y = 0, Vv, no perturbations exerted by any
constituent on itself

By, = —Bu, Yv# u, v equal and opposite to pu

then ) f¥ =1 is automatically satisfied.




The multi-component segregation remixing equation

e Non-dimensionalizing on typical thickness H, length
L and velocity U implies that

5,
w=w+ ) St — DT&(ln B,
Vi

~ o2U

e [ he non-dimensional segregation remixing equation
for phase v is therefore

a‘by+v (8" u)+ v = %f),

12




Bi-disperse mixtures

e [ he multi-component theory vields two equations
for the large and small particles

al
‘b +v. (¢u)+—(ss¢¢8)

‘W LV (¢°u) — —(stqs ")

e The summation condition >  ¢” = 1 implies

¢+ ¢° =1,
e Large particle concentration can be eliminated

(%3

PV (60) — (56" (1 - 6) = (Dr‘%s) .

0z 0z

Gray & Thornton (2005) Proc. Roy. Soc. A. 461, 1447-1473.
Gray & Chugunov (2006) J. Fluid Mech. 569, 365-398.




.
Consistent with experiments of Savage & Lun (1988) and Vallance & Savage (2000)\‘ /




Steady-state concentration snocks in absence of diffusive-remixing

p

shock height s(z) satisfies the jump condition

$uT + S16(1 — qb)]] —0 = WEoguet+e—1)
T dx

Using depth-integrated velocity coordinates

1,[)2/ u(z) d7’
0

this can be integrated to show there are three intersecting
shocks for a homogeneous inflow with ¢ = ¢g

Y1 = Sispoz, Yo =1 — S;5(1 — ¢o)z, Y3 = ¢o




e Within the flowing avalanche the particles “inverse-grade”

e when they stop the upper layers expand more
e Dbecause there is a higher mass flux at the top

’UQ:O

uy = 2u1z/h1




A ternary mixture of large medium and small particles

e [ heory gives three equations

aqbl [ tm 1 S

8 m
OV () + (St + St

3 S
¢ + V - (¢°u) + —( Sy’ Cb SmsP’¢™)

Sum ¢! + ¢™ + ¢* = 1 allows ¢™ to be eliminated

3(15

l
+ V- (¢lu) + —(Szmqsl(l — ¢h — ¢°) + Si'd*)

O s
Qb + V - (Qb U) + —( Slgqb (b Smsgbs(]- _ (pl o qbg))

e \We will see diffusion is important to maintain well-posedness




Use bi-disperse experiments to determine segregation rates

e e.g. large, medium and small particles

>

P T
e Golick & Daniels (2009) suggest segregation rate
may have maximum at a grain size ratio of two

1 2 4

e — segregation rates Sis, Sim, Sms are not ordered




Use bi-disperse experiments to determine segregation rates

Svu 4

e e.g. large, medium and small particles

Wl /o

>
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e Golick & Daniels (2009) suggest segregation rate
may have maximum at a grain size ratio of two

1 2 4

e — segregation rates Sis, Sim, Sms are not ordered




Characteristic wave-speeds

Defining ¢ = (¢, o™, ¢°)T system can be written as

%:

__I_A Oa

Dt 0z
Sim@™ + Sis¢° Sim¢' Sis¢'
A= —Sim@™ —Sim¢* + Smsd® SmsP™
—S}sP° —Spms®® —S15¢" — Sms@d™

The characteristic wave speeds are given by
det(A — \I) = 0O,

The eigenvalue A\ = 0O is easily spotted, which leaves
M4+ mA+ 72 =0,

The two characteristic wave speeds are therefore

A1 = (—71 % \/Z)/Q




0.6 0.8

qﬁ S

e [ he discriminant

JANE— [(Sls — 2Slm - Sms)gbl + (Sls - Slm - QSmS)CbS_I_
Slm _I_ Sms]2 — 4(Sls - Sms)(Sls - Slm)qbl(bs'

e When this is positive there are two real distinct
roots and system is strictly hyperbolic

€11 Sms = Sis 2 Sy, hyperbolic
Qo S > Sis > Sms, hyperbolic
Q3: Sis>S,, and S > Sns, hyperbolic
Q4: Sis< Sy, and S < Sy, looses hyperbolicity




50 k1000 50 100
e Linear stability about a constant base state ¢” = ¢

¢’ = ¢p + C,exp(ikz + wt)

e [ he largest real root

_D'I”kQ? A0 2 07

k
—D.E? + 5\/—Ao, ANg < 0.
o If D, =0 = Hadamard unstable and ill-posed in {24

Re(w) =




Time dependent diffuse solutions

Homogeneous initial state with a small perturbation

#(2,0) = ¢4+ 0.01sin(27nz),
¢*(2,0) = ¢ —0.01sin(2mnz),
Solve using a standard Galerkin finite element method

8l
—¢+—(Szm¢(1—¢ ) + Sidle®)

8@55
(9t
subject to no-flux conditions
olox
0z

( S1s9°¢' — Smsd®(1 — ¢' — ¢°))

="’

= - Swd"¢" + D
Vi

using Matlab inbuilt function pdepe




Diffusive remixing regularizes the theory

Q4: Sfls == 1/8, Shn — 1, S’f'n,s — 3/8, Dtr — 10_3

Large

Medium

e Instabilities still develop when Ag <0
e BUT are annihilated after a finite distance




Two-dimensional steady-state solutions

Homogeneous inflow at =0

¢"(0,z) = ¢p

with prescribed exponential downstream velocity field

B exp(Bz)
exp(B) — 1’

u(z) = B8 >0

Solve the two-dimensional steady problem

AP o
y 8‘?3 + = (Simd (1= ' = ¢) + 51:6'6")

8@59
8:1:

_( Sls¢ ¢5 Sn19¢3(1 o qb ¢9))

subject to no-flux conditions at z = 0,1
using Matlab inbuilt function pdepe (Galerkin Method)




Reverse distribution grading
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e comparable to experiments ...

Gray & Ancey (2011) J. Fluid Mech. 678, 535-558
Wiederseiner et al. (2011) Phys. Fluids 23, 013301

e and DEM simulations (Jim McElwaine ...)




We can look inside granular materials using index matching




PHYSICAL

REVIEW

LLETTERS.
- Anicles pbiibed eck anting 12 JUNE 2015

van der Vaart,Gajjar, Epely-Chauvin, Andreini,Gray & Ancey (2015) Phys. Rev Lett. 114, 238001
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e a Single large particle surrounded by fine rises slower than a
single fine grain percolates through a matrix of large

Gajjar & Gray (2014) J. Fluid Mech. 757 , 297-329.
van der Vaart et al. (2015) Phys. Rev Lett. 114, 238001




This can be modelled using asymmetric segregation flux models

i
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e which skew the maximum of the flux curves towards
lower concentrations of fines




Hojw can segregation be-vincorporated into debris-flows
and to model self}channelization and levee formation?
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... as well as capture segregation-induced fingering instabilities ....

Woodhouse et al. (2012), J. Fluid Mech. 709, 543-580.
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"o segregatlon occurs |n many hazardous natural flovvs

— debris-flows, pyroclastic flows & snow avalanches
Mt St Helens July 22,

e and Ieads to Spontaneous_ flow organ|zat|on and Ionger run- out
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B i, = Aol
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Transport and accumulation of large particles

large particles segregate to the surface

where the velocity is greatest and

are transported to the flow front where they are
over run and recirculated by particle size segregation




A depth averaged theory for particle size segregation

e Integrating the segregation-remixing equation w.r.t z
e subject to the no flux and kinematic boundary conditions gives

o, —~, 0, —
5 (1) + 5—(héu) =0

e Wwhere the integrals evaluated assuming

, 4 ) Small

7 4

ho = O dz =n =

i.e. linear velocity with basal slip
and sharp segregation

— 5 . = _ _ _Q
hgbu—/bgbudz—nu (1 a)un(l h)

e [ his yields the large particle transport equation

i) - - (@ -y (1- 1)) =o.

b

e for the evolution of the inversely graded shock interface n.
Gray & Kokelaar (2010) J. Fluid Mech. 652, 105—137




e Using n = h¢ this can also be rewritten as

9, - 0, - 0 _— Y
= (hd) + —=(ht) — ——((1 — )hiig (1 - ¢)) =0,

e Remarkably similar to the segregation equation ...

_¢+—(¢>+—(¢w>—5’zs S(¢(1-9)) = éi( )

e Large grains transported forwards to form bouldery flow front

e more RESISTIVE larger particles = feedback on bulk flow




A two-dimensional fully coupled model

e For avalanche thickness A, small particle thickness n and
depth-averaged velocity uw the 2D coupled model is
oh

e + div(hw) 0,

= +div (nﬂ—(l—a)n (1-%)@) 0,

%(hﬂ) + div(hu ® w) + grad (%gh2 CcoS C) hgS,

e source terms composed of gravity and basal friction

_( sin¢ — u(@/|ul) cosc,
S = ( — u(7/|ul) cos(, )

e coupling through ¢ = n/h dependent friction coefficient

p=(1-¢)u"+dp°




e Depth averaged coupled simulations ...
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e captures the instability mechanism, BUT model is too simple

Woodhouse et al. (2012), J. Fluid Mech. 709, 543-530. ™




Numerical solutions are grid dependent ...!

e Such ill-posed behaviour is an indication that some impor-

tant physics is missing — in this case viscosity. -




A two-dimensional fully coupled model including rheology

e \When the depth-averaged u(I)-rheology is generalized
to 2D it suggests a system of conservation laws

Oh P
= + div(huw)

%—l—div (nﬁ—(l—a)n (1-%)@)

%(hﬁ) + div(hu ® w) + grad (%ghz cos g) hgS + div (vh2D),

e Wwhere the two-dimensional strain-rate tensor is
1 T
D = 5 (L + L )

e and L = grad(u) is the depth-averaged velocity gradient
e Numerics converges ... (Baker, Johnson & Gray in prep)




e characteristics coincide when
1

(1—a)2n — 1

Fr=Fr. =

e produces unbounded growth in inviscid case v = 0.

e The depth-averaged u(I)-rheology regularizes the equations

43
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