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Many materials, often grouped together using the term 
‘soft matter’, share common characteristics and behavior: 
For example, the materials consist of macroscopic 
particles, larger than the molecules that build up the world 
around us. They jam when flow is about to stop, and unjam 
just before flow starts. The static (‘solid’) situation is often 
characterized by a high degree of disorder, inhomogeneity 
and anisotropy, while the dynamic (‘fluid’) situation is 
frequently dominated by dissipative interaction forces 

leading to a dissipation time scale that interacts with other 
time scales in the system. Finally, there is the role of the 
interstitial fluid that resides between the particles and may 
mediate thermal (Brownian) motion, in the case of colloids, 
or hydrodynamic interactions (drag) in the case of macro-
scopic grains. This course, aimed at graduate students, 
will provide an introduction to this type of materials and 
discuss many of the phenomena mentioned above both as 
an overview and in the context of actual research.
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Soft Matter physics is:
the physics (statics/dynamics) of a system consisting 
of many particles at a scale on which quantum effects 
are not important.

Soft Matter includes:

granular 
materials
granular 
materials

liquidsliquidspolymerspolymers

colloidscolloidsfoamsfoams

gelsgels

and many biological materials. 
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The tools of Soft Matter physics
All the tools of physics that do not contain the words 
“quantum” or “high energy”:

Classical fields
(Nonlinear) Mechanics

(Far from equilibrium) Statistical physics
Fluid Mechanics
Elasticity

Kinetic Theory
Electromagnetism

V1
V2
V5 & V9
V6
V7

V10
V8

This is 8 out of 10 volumes of Landau & Lifshitz 
famous “Course of Theoretical Physics” !



... as a solid

... or as a gas

... as a liquid

Soft and granular matter may behave...



... as a solid

... or as a gas

... as a liquid

or, even worse, 
as all three simultaneously!

Soft and granular matter may behave...



Impact on a granular solid
Ball dropped onto loose, very fine sand 
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What sets these materials apart from 
their molecular counterparts ?

1.  are athermal

2.  interact through contact forces

3.  have dissipative interactions

4.  are inhomogeneous

To some or large extent, they:



1. Granular matter is athermal

Definition:
 Granular matter = 
 many body system in which the typical
 particle size > 10 µm

Thermal energy is negligible for such particles !

vthermal =

s
3kBT
4
3�r

3⇥
�
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10�11
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(at room temperature)1
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kBT

When does thermal motion matter?

Péclet number:

Pe =
⇥thermal

⇥shear
= �̇

a2

D0

D0 =
kBT

6⇥�a
(Stokes-Einstein FDR)

Pes =
4
3�

�⇥ g a4

kB T

Péclet number (sedimentation):

Pes ⇡ 1 ) a ⇡ 500 nm

�̇

⇥l , �

a Droplet (radius a) in liquid with 
viscosity η and density ρl. 
Flow with shear rate γ.
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2. Contact forces

“Chaotic” network of contact points and forces !

Dominant for granular materials at rest 



Static granular matter: Force Chains
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Static granular matter: Force Chains

(Bob Behringer, Duke)



In stalling flow, force chains manifest
themselves as arches

Spain

Segovia, Spain

Pont du Gard, France



Reynolds dilatancy

Osborne Reynolds (1885):
“A strongly compacted granular medium dilates under pressure”.



What causes the dilatancy ?
φ = 0.907 

φ = packing fraction 
= Vsolids/Vtotal



What causes the dilatancy ?
φ = 0.907 

φ = 0.785 

φ = packing fraction 
= Vsolids/Vtotal



Metamaterials



Positive Poisson ratio ν

When compressed vertically, 
ordinary materials expand 
horizontally.

ν > 0



Negative Poisson ratio ν

When compressed vertically, 
tailored metamaterials compress 
horizontally.

ν < 0



Stability of foams

J. Phys.: Condens. Matter 22 (2010) 033101 Topical Review

Figure 2. Simulated foam for increasing wetness, approaching unjamming for φ ↓ 0.84 (adapted from [15] with permission—copyright by
the American Physical Society).

decouple. Jamming of frictional soft spheres is discussed
in section 4 and jamming of frictionless soft ellipsoids in
section 5. Finally, in section 6 we sketch a number of open
problems.

2. Motivation: mechanics of disordered matter

The crucial question one faces when attempting to describe the
mechanics of materials such as foams, emulsions or granular
media, is how to deal with disorder. The simplest approach is to
ignore disorder altogether and attempt to gain insight based on
models for ordered, ‘crystalline’ packings. A related approach,
effective medium theory, does not strictly require ordered
packings, but assumes that local deformations and forces scale
similarly as global deformations and stresses. As we will see in
section 2.1, major discrepancies arise when these approaches
are confronted with (numerical) experiments on disordered
systems. This is because the response of disordered packings
becomes increasingly non-affine near jamming (section 2.2).

2.1. Failure of affine approaches

2.1.1. Foams and emulsions. Some of the earliest studies that
consider the question of the rigidity of packings of particles
concern the loss of rigidity in foams and emulsions with
increasing wetness. Foams are dispersions of gas bubbles
in liquid, stabilized by surfactant, and the gas fraction φ

plays a crucial role for the structure and rigidity of a foam.
The interactions between bubbles are repulsive and viscous,
and static foams are similar to the frictionless soft spheres
discussed in section 3. In real foams, gravity (which causes
drainage) and gas diffusion (which causes coarsening) play a
role, but we will ignore these.

The unjamming scenario for foams is as follows. When
the gas fraction approaches 1, the foam is called dry.
Application of deformations causes the liquid films to be
stretched, and the increase in surface area then provides a
restoring force: dry foams are jammed. When the gas fraction
is lowered and the foam becomes wetter, the gas bubbles
become increasingly spherical, and the foam loses rigidity for
some critical gas fraction φc where the bubbles lose contact
(figure 2). The unjamming transition is thus governed by the
gas fraction, which typically is seen as a material parameter.
For emulsions, consisting of droplets of one fluid dispersed in

a second fluid and stabilized by a surfactant, the same scenario
arises.

Analytical calculations are feasible for ordered packings,
because one only needs to consider a single particle and its
neighbors to capture the packing geometry and mechanical
response of the foam—due to the periodic nature of the
packing, the response of the material is affine. The affine
assumption basically states that, locally, particles follow the
globally applied deformation field—as if the particles are
pinned to an elastically deforming sheet. More precisely,
the strict definition of affine transformations states that three
collinear particles remain collinear and that the ratio of their
distances is preserved and affine transformations are, apart
from rotations and translations, composed of uniform shear and
compression or dilatation.

Packings of monodisperse bubbles in a two-dimensional
hexagonal lattice (‘liquid honeycomb’ [16]) deform affinely.
The bubbles lose contact at the critical density φc equal to

π

2
√

3
≈ 0.9069 and ordered foam packings are jammed for

larger densities [16, 17]. When for such a model foam φ is
lowered towards φc, the yield stress and shear modulus remain
finite and jump to zero precisely at φc [16, 17]. The contact
number (average number of contacting neighbors per bubble)
remains constant at 6 in the jammed regime. Similar results can
be obtained for three-dimensional ordered foams, where φc is
given by the packing density of the HCP lattice π

3
√

2
≈ 0.7405.

Early measurements for polydisperse emulsions by
Princen and Kiss in 1985 [18] found a shear modulus which
varied substantially with φ. Even though no data was presented
for φ less than 0.75 and the fit only included points for which
φ ! 0.8, the shear modulus was fitted as G ∼ φ1/3(φ − φc),
where φc ≈ 0.71, and thus appeared to vanish at a critical
density below the value predicted for ordered lattices [18].

The fact that the critical packing density for ordered
systems is higher than that for disordered systems may not be
a surprise, given that, at the jamming threshold, the particles
are undeformed spheres and it is well known that ordered
sphere packings are denser than irregular ones [19]. However,
the differences between the variation of the moduli and yield
strength with distance to the rigidity threshold predicted for
ordered packings and measured for disordered emulsions
strongly indicates that one has to go beyond models of ordered
packings.

3

Bolton, Weaire, PRL (1990) 

The foam looses stability at φ ≈ 0.84 



jammed

Jamming
A granular material with a packing fraction 
above a critical value φJ is stable.  

φJ

unjammed

φ

applied 
stress 

σ 

jammed

At φJ the packing is marginally stable:
any stress will destroy the packing  



Jamming diagrams

Martin van Hecke,  
J. Phys.: Cond. Matt. (2010)
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sandpile, the material is fragile in the sense
that a slight change in direction of the
applied stress will change the entire structure
of the force chains that give the pile its rigidi-
ty. Because there is no obvious relation con-
necting stress to strain throughout the pile,
Cates et al. bypass the strain altogether and
propose a relation between different compo-
nents of the stress tensor2,3. This continues to
be a hotly debated assumption4,6–8.

Cates et al. suggest that one way to re-
concile the two approaches is to allow the
particles to deform, so that the material
can respond elastically to sufficiently small
loads. One example of a system that is
jammed and yet not fragile is foam. Shaving
foam, for example, is jammed because the
bubbles are tightly packed together under an
isotropic stress, namely atmospheric pres-
sure. If it were fragile, it would respond plas-
tically to a shear stress, no matter how small.
However, because bubbles deform, foam
actually responds elastically as long as the
stress is below a threshold value. Sand grains
also deform slightly. Hence, for real systems,
a continuum elastic description will always
be useful. However, the new concept of
fragile matter brings a valuable perspective
from the opposite limit of completely non-
deformable particles.

We would like to point out that the class of
jammed materials may actually be broader
than the authors suggest. They consider
jamming only in systems with no attractive
interactions (where the particle dynamics
are constrained through an applied stress)
and where the individual particles are large

news and views
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Nonlinear dynamics

Jamming is not just cool any more
Andrea J. Liu and Sidney R. Nagel

so that there is no thermal motion. These two
constraints may not be essential. 

We know from studies of liquids and
glasses that a system with attractive interac-
tions often behaves in the same way as anoth-
er that has only repulsive forces but is con-
fined in a container (that constrains its den-
sity). In the case of jamming, the opposite
situation may be possible: that is, one might
be able to replace the constraints of an exter-
nal pressure or stress with an attractive inter-
action between the particles. Thus, a super-
cooled liquid can be jammed into a glass sim-
ply by lowering the temperature, not by
applying a stress. When a liquid is cooled
below its freezing point, its viscosity increas-
es rapidly. Eventually, it falls out of equilibri-
um into a disordered solid, or glass, where it
only explores a small part of phase space, just
as in the case of a jammed granular material
or foam.

So might the concept of jamming and
fragility include microscopic systems with
attractive interactions, which unjam as one
raises the temperature, as well as stressed
macroscopic systems with repulsive interac-
tions, which unjam as one applies an incom-
patible stress? We have sketched a speculative
phase diagram for jamming (Fig. 1) that ties
the different systems together. This phase
diagram depends on temperature, load and
density. 

According to this picture, jamming can
occur only when the density is high enough.
One can then unjam the system either by
raising temperature or by applying a stress.
The phase diagram raises some interesting
questions: for example, a glass may have a
lower glass transition temperature under
high shear stress. Likewise, a jammed granu-
lar material or foam may have a lower yield
stress when random motions (that is, ther-
mal fluctuations) are present. This would
explain the beneficial role of banging on
jammed conduits on the factory floor.

Whether jammed systems indeed share
features that can be described by a phase dia-
gram is an open question, but if our specula-
tion has any merit it would bring together
several different types of behaviour under
one rubric. Are the dynamics of different
systems approaching the jammed state also
similar? If temperature and applied stress
play similar roles in unjamming systems, is it
possible that driven, macroscopic, athermal
systems like granular materials and foams
might be described in terms of an effective
temperature? Is statistical mechanics useful
at all in describing these systems? These  and
related questions will take years to resolve,
but the picture of Cates et al. helps to point
out some of the interesting conceptual
problems that need to be addressed.
Andrea J. Liu is in the Department of Chemistry
and Biochemistry, University of California at Los
Angeles, Los Angeles, California 90095-1569, USA.
e-mail: liu@chem.ucla.edu

All around us, things seem to be getting
jammed. We travel on a highway and
we are caught in traffic jams. At the

wholefoods counter, grains and beans jam as
they refuse to flow out of the bottom of the
hopper into our bags. In factories,  powdered
raw materials clog the conduits that were
designed to carry them smoothly. Our
recourse in all these situations is to pound on
our conduits, hoppers and dashboards until
the jam miraculously disappears. We are
usually so irritated that we have not really
noticed that the jammed state, in all of these
situations, has common properties. For
example, the vibrations from the pounding
actually do some good in reinitiating flow —
except in the case of the traffic jam. Does the
jammed solid then have different properties
from the solids we normally encounter in the
laboratory?

Writing in Physical Review Letters, Cates,
Wittmer, Bouchaud and Claudin1 contend
that these jammed systems really belong to a
new class of materials: ‘fragile matter’. These
systems resemble solids because the particles
are driven into a jammed state by an exter-
nally applied stress. When jammed, the dis-
ordered system is caught in a small region of
phase space with no possibility of escape. 

Cates et al. propose that jammed systems
are fundamentally different from ordinary
solids in that, if the direction of the applied
stress changes even by a small amount, then
the jam will break up. A canonical example is
a pile of sand, which appears solid: the upper
surface slopes and sustains its shape despite
the force of gravity, which one would expect
to level the pile. But if one tilts or vibrates the
pile, the grains shift and the solid melts. The
authors argue that the unusual mechanical
properties of fragile matter require a new
theoretical description, which they first
applied to a heap created by pouring sand
onto the apex of a pile2,3. 

Traditionally, the forces within such a
pile have been described using continuum
elastoplastic theories. These are similar to
models that describe ordinary solids4: every
increment of stress in the material is related
to a corresponding deformation, or strain5.
The approach of Cates et al. is to start from a
pile of completely non-deformable parti-
cles, for which strain is not an obviously use-
ful variable. Their simple model of a chain of
hard particles insists that the jammed system
cannot be considered as an elastic body.
Although it can support a large applied load
in the same direction as the original jam-
ming forces, the chain will fall apart if even
an infinitesimal force is applied in a different
direction. For an extended material such as a

Figure 1 A possible phase diagram for jamming.
The jammed region, near the origin, is enclosed
by the depicted surface. The line in the
temperature–load plane is speculative, and
indicates how the yield stress might vary for
jammed systems in which there is thermal
motion.
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Figure 1. (a)–(d) Examples of everyday disordered media in a jammed state. (a) Granular media, consisting of solid grains in gas or vacuum.
(b) Toothpaste, a dense packing of (colloidal) particles in fluid. (c) Mayonnaise, an emulsion consisting of a dense packing of (oil) droplets in
an immiscible fluid. (d) Shaving foam, a dense packing of gas bubbles in fluid. (e) Jamming diagram proposed by Liu et al [1, 2]. The
diagram illustrates that many disordered materials are in a jammed state for low temperature, low load and large density, but can yield and
become unjammed when these parameters are varied. In this review we will focus on the zero-temperature, zero-load axis. For frictionless
soft spheres, there is a well-defined jamming transition indicated by point ‘J’ on the inverse density axis, which exhibits similarities to an
(unusual) critical phase transition.

media and glasses can jam in rigid, disordered states in which
they respond essentially elastically to small applied shear
stresses (figures 1(a)–(d)). However, they can also easily be
made to yield (unjam) and flow by tuning various control
parameters.

The transition from the freely flowing to the jammed
state, the jamming transition, can be induced by varying
thermodynamic variables, such as temperature or density, but
also mechanical variables such as the stress applied to the
sample: colloidal suspensions become colloidal glasses as the
density is increased near random close packing, flowing foams
become static as the shear stress is decreased below the yield
stress, and supercooled liquids form glasses as the temperature
is lowered below the glass transition temperature. In 1998 Liu
and Nagel presented their provocative jamming phase diagram
(figure 1(e)) and proposed to probe the connections between
various transitions to rigidity [1].

This review provides an overview of the current (partial)
answers to the following two questions: what is the
nature of the jammed state? What is the nature of the
jamming transition? We focus on jammed model systems at
zero temperature and zero shear—models for non-Brownian
emulsions, foams and granular media rather than colloidal
and molecular glasses—and review the geometrical and
mechanical properties of these systems as a function of the
distance to jamming.

In view of the very rapid developments in the field, this
paper focuses on the basic jamming scenarios, which arise
in (weakly) compressed systems of soft particles interacting
through repulsive contact forces at zero temperature and zero
shear. The picture that has emerged for the jamming transition
in these systems is sufficiently complete to warrant an overview
article and, in addition, provides a starting point for work on
a wider range of phenomena, such as occurring in attractive
systems [3], systems below jamming [4], the flow of disordered
media near jamming [5–9], jamming of systems at finite
temperature [10, 11] and experiments [12–14].

In this review the focus is on jamming of frictionless
spheres, frictional spheres and frictionless ellipsoids—soft
(deformable) particles which interact through repulsive contact
forces. The distance to jamming of all these systems is set
by the amount of deformation of the particles, which can be
controlled by the applied pressure or enforced packing fraction.
These systems lose rigidity when the deformations vanish or,
equivalently, when the confining pressure reaches zero. As
we will see, these seemingly simple systems exhibit rich and
beautiful behavior, where geometry and mechanical response
are intricately linked.

The contact number, z, defined as the average number of
contacts per particle, plays a crucial role for these systems.
There is a minimal value of z below which the system loses
rigidity: when the contact number is too small, there are
collective particle motions, so-called floppy modes, that (in
lowest order) do not cost elastic energy. By a constraint
counting argument one can establish a precise value for the
minimum value of z where the system does not generically
allow floppy deformations—this is the isostatic contact number
ziso. As we will see, a host of mechanical and geometrical
properties of jammed systems scale with distance to the
isostatic point.

The crucial, and at first glance very puzzling, point is
that, while frictionless spheres reach isostaticity at the jamming
point, frictional spheres are generally hyperstatic (z > ziso) at
jamming, while frictionless ellipsoids are hypostatic (z < ziso)
at jamming. As we will see, the relations between contact
numbers, floppy modes, rigidity and jamming are subtle.

Truly new and surprising physics emerges near jamming
in systems as seemingly simple as disordered packings of
frictionless, deformable particles [2]. We first discuss the
breakdown of affine assumptions that underlies the rich physics
of jamming in section 2. We give an overview of the main
characteristics of the jamming transition for soft frictionless
spheres in section 3. Both friction and asphericity lead to
new physics, as here the jamming transition and isostaticity

2

Andrea Liu, Sid Nagel  
Nature (1998)



Contact force measurements and stress-induced
anisotropy in granular materials
T. S. Majmudar1 & R. P. Behringer1

Interparticle forces in granular media form an inhomogeneous
distribution of filamentary force chains. Understanding such
forces and their spatial correlations, specifically in response to
forces at the system boundaries1,2, represents a fundamental goal
of granular mechanics. The problem is of relevance to civil
engineering, geophysics and physics3–5, being important for the
understanding of jamming, shear-induced yielding and mechan-
ical response. Here we report measurements of the normal and
tangential grain-scale forces inside a two-dimensional system of
photoelastic disks that are subject to pure shear and isotropic
compression. Various statistical measures show the underlying
differences between these two stress states. These differences
appear in the distributions of normal forces (which are more
rounded for compression than shear), although not in the distri-
butions of tangential forces (which are exponential in both cases).
Sheared systems show anisotropy in the distributions of both the
contact network and the contact forces. Anisotropy also occurs in
the spatial correlations of forces, which provide a quantitative
replacement for the idea of force chains. Sheared systems have
long-range correlations in the direction of force chains, whereas
isotropically compressed systems have short-range correlations
regardless of the direction.
Under the action of external stresses, grains in dry granular

materials form an inhomogeneous contact network, which carries
most of the external load by way of force chains. The resultant
network is different for shearing than for isotropic compression and
is history-dependent owing to friction. Previous experiments6–8 have
reported an exponential tail for the distribution of contact force
magnitudes. This tail can be successfully predicted by many
models9–11 with radically different mathematical structures and
microscopic assumptions. Testing the validity of these models
requires that the predicted force distributions be verified bymeasure-
ments of full vectorial contact forces in the bulk of the sample.
It is also important to find other distinguishing signatures character-
izing the nature of force chain networks under different boundary
conditions—an important goal of the present work.
In the following experiments, we visualize internal stresses in each

grain and by solving the full inverse photoelastic problem12,13 for
each disk, we obtain normal and tangential force components for
each contact between disks. We use this microscopic contact force
information to investigate differences in the distributions of contact
forces, and the force chain structure, arising from two different types
of loads: pure shear and isotropic compression. We find that forces
have distinctive angular distributions and spatial correlations
depending on the macroscopic preparation. In particular, forces
have long-range correlations in the direction of force chains for
sheared systems, but are correlated over a much shorter range,
regardless of direction, for isotropically compressed systems.
Our experimental system is a two-dimensional (2D) array of

approximately 2,500 bidisperse photoelastic (birefringent under

strain) disks subjected to pure shear and isotropic compression.
Figure 1 shows a diagram of the experimental set-up and some
typical images; details of the set-up and the experimental procedure
are described in Fig. 1 legend. Although previous approaches14–17

have obtained contact forces using photoelastic techniques, they were
neither automated nor suitable for a large enough number of

LETTERS

Figure 1 | Experimental set-up and representative data. a, Schematic
diagram of the biaxial test cell. The biaxial test apparatus rests horizontally
on a sheet of Plexiglas and is used to impart pure shear and isotropic
compression. Motorized linear slides move two walls of the biaxial cell
precisely and independently with a velocity of 0.024 cm s21. The system is
illuminated from below and a high-resolution camera captures digital
images from above. Each image captures roughly 250 particles located
around the centre of the cell, roughly 10% of the total number of particles.
The system is imaged through crossed circular polarizers. For each type of
load, incremental deformations are applied in a quasi-static manner,
beginning with a stress-free state. The sheared states are created by
compressing in one direction and expanding by an equal amount in the
other direction, with strains (1xx ¼ 1yy ¼ jDL/Lj) ranging from 0 to 0.042.
L (,40 cm) is the initial system length in the x or y direction. Isotropically
compressed states are created by compressing in both directions with strains
ranging from 0 to 0.016. The particles used in the experiment are either
0.8 cm or 0.9 cm in diameter and 0.6 cm in height, with a Young’s modulus of
4MPa and a friction coefficient of 0.8. The number ratio of small to large
disks is 4:1. b, Typical system size images for an isotropically compressed
state (top) and a sheared state (bottom). c, An example of the observed stress
pattern for a single disk at the resolution (,0.01 cm per pixel) used in these
studies.
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Jamming by shear
Dapeng Bi1, Jie Zhang2,3,4, Bulbul Chakraborty1 & R. P. Behringer4

A broad class of disordered materials including foams, glassy
molecular systems, colloids and granular materials can form
jammed states. A jammed system can resist small stresses without
deforming irreversibly, whereas unjammed systems flow under any
applied stresses. The broad applicability of the Liu–Nagel jamming
concept1,2 has attracted intensive theoretical and modelling interest
but has prompted less experimental effort1–6. In the Liu–Nagel
framework, jammed states of athermal systems exist only above a
certain critical density.Althoughnumerical simulations forparticles
that do not experience friction broadly support this idea7–13, the
nature of the jamming transition for frictional grains is less
clear14–17. Here we show that jamming of frictional, disk-shaped
grains can be induced by the application of shear stress at densities
lower than the critical value, atwhich isotropic (shear-free) jamming
occurs. These jammed states have a much richer phenomenology
than the isotropic jammed states: for small applied shear stresses,
the states are fragile, with a strong force network that percolates only
in one direction. Aminimum shear stress is needed to create robust,
shear-jammed states with a strong force network percolating in all
directions. The transitions from unjammed to fragile states and
from fragile to shear-jammed states are controlled by the fraction
of force-bearing grains. The fractions at which these transitions
occur are statistically independent of thedensity. Jammedstateswith
densities lower than the critical value have an anisotropic fabric
(contact network).Theminimumanisotropyof shear-jammed states
vanishes as the density approaches the critical value frombelow, in a
manner reminiscent of an order–disorder transition.
Cohesionless granular materials form jammed states only under

external stress, as explored extensively in the soilmechanics literature18.
In the zero-temperature (T5 0) plane of the Liu–Nagel jamming
diagram1–3 (Fig. 1a), increased packing fraction (w) induces jamming
and positive pressure, and shear stress (t) induces irreversible flow at
the yield stress line (Fig. 1a, black line). Simulations of frictionless

grains typically probe jamming near the critical point at T5 0,
t5 0 and w5 wJ, through isotropic compression or decompression7–9,
or along the yield stress line11–13,19,20. The numerical value of wJ
depends on the protocol for preparing the jammed states. However,
the characteristics of the transition are robust21. Only a few experi-
ments4–6,22 have investigated the Liu–Nagel jamming model1,2 for
physical systems consisting of particles with friction. For example,
by using isotropically confined frictional disks it was found4 that fric-
tion only weakly affects certain aspects of jamming, such as the pack-
ing fraction (w<0:842), but that other aspects, such as average number
of contacts at jamming, are more strongly dependent on friction, as
expected15.
We report stable static states that jam only under a minimum shear

stress. These states are outside the jammed region of Fig. 1a and alter
the jamming diagram as illustrated in Fig. 1b. Of special note is the line
separating two qualitatively different classes of states: the fragile states
and the shear-jammed states. As we show below, this line is the locus of
shear stresses marking a percolation transition. Shear-jammed states
have not been reported in typical (that is, frictionless) models of
jamming, which involve isotropically compressed particles and where
additional relaxation may be induced to find a lower-energy state7,15.
Our systems differ from these models in several key aspects: they
consist of frictional (photoelastic) disks (Supplementary Fig. 1) pre-
pared at densities below (and above) wJ; they are subjected to pure
(volume-preserving) shear applied in small strain steps, allowing the
system spontaneously to relax between steps; and they rest on a weakly
frictional substrate, with forces that are an order of magnitude smaller
than typical interparticle forces at jamming.Weobtained stress data, that
is, values of t, pressure (P) and the fabric tensor (R̂). The eigenvalues, R1
andR2, of R̂ yield themean contact number,Z5R11R2, and ameasure
of contact anisotropy, r5R22R1. In addition, we analysed the spatial
organization of contact forces. Experimental details can be found in
Methods.
Ascertaining that states are macroscopically jammed is non-trivial.

Necessary requirements are non-zero P and t and the ability to resist
any small incremental stress. For frictionless grains, these conditions
are met if Z exceeds Ziso (refs 7, 11), where the number of mechanical
equilibrium constraints equals the number of degrees of freedom. For
largeN, isotropic jammed states exist forw$wJ, wherewJ depends only
on the spatial dimension for a given protocol7.
For frictional grains, a minimal parameter set for jamming has not

been clearly determined. AlthoughZ is a key parameter formechanical
stability, the minimum number of contacts needed for jamming can
span a range of values, depending on friction and preparation14,15,23.
For the disks used here, a reasonable criterion for isotropic jamming
was found to be Z$ 3.0 to ,3.1 (ref. 4), for which wJ<0:842
(Supplementary Fig. 3).
A distinguishing property of granular jammed states is the existence

of force networks. To characterize the states obtained by shearing at
w,wJ, we consider the contact force and fabric networks, and their
correlation with the properties of the stress tensor24 and the fraction of
non-rattler grains, fNR (Supplementary Figs 2 and 4). It is known from
earlier studies that force networks in jammed packings of dry grains

1Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA. 2Institute of Natural Sciences and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240,
China. 3Department of Physics, Indiana University Purdue University Fort Wayne, Fort Wayne, Indiana 46805, USA. 4Department of Physics, Duke University, Durham, North Carolina 27708, USA.
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Figure 1 | Jamming phase diagrams in the T5 0 plane. a, Original Liu–
Nagel jamming phase diagram1. The boundary between unjammed and
jammed regions is the yield stress line. Unjamming can be induced by
decreasing the packing fraction or increasing the shear stress. b, Generalized
jamming diagram including the shear-jammed (SJ) and fragile (F) states. Along
the w axis, there are two special densities: wS, below which there is no shear
jamming, and wJ, above which isotropically jammed states exist. For
wS#w#wJ, jamming can occur with application of shear stress.
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framework, jammed states of athermal systems exist only above a
certain critical density.Althoughnumerical simulations forparticles
that do not experience friction broadly support this idea7–13, the
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the characteristics of the transition are robust21. Only a few experi-
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physical systems consisting of particles with friction. For example,
by using isotropically confined frictional disks it was found4 that fric-
tion only weakly affects certain aspects of jamming, such as the pack-
ing fraction (w<0:842), but that other aspects, such as average number
of contacts at jamming, are more strongly dependent on friction, as
expected15.
We report stable static states that jam only under a minimum shear
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have not been reported in typical (that is, frictionless) models of
jamming, which involve isotropically compressed particles and where
additional relaxation may be induced to find a lower-energy state7,15.
Our systems differ from these models in several key aspects: they
consist of frictional (photoelastic) disks (Supplementary Fig. 1) pre-
pared at densities below (and above) wJ; they are subjected to pure
(volume-preserving) shear applied in small strain steps, allowing the
system spontaneously to relax between steps; and they rest on a weakly
frictional substrate, with forces that are an order of magnitude smaller
than typical interparticle forces at jamming.Weobtained stress data, that
is, values of t, pressure (P) and the fabric tensor (R̂). The eigenvalues, R1
andR2, of R̂ yield themean contact number,Z5R11R2, and ameasure
of contact anisotropy, r5R22R1. In addition, we analysed the spatial
organization of contact forces. Experimental details can be found in
Methods.
Ascertaining that states are macroscopically jammed is non-trivial.

Necessary requirements are non-zero P and t and the ability to resist
any small incremental stress. For frictionless grains, these conditions
are met if Z exceeds Ziso (refs 7, 11), where the number of mechanical
equilibrium constraints equals the number of degrees of freedom. For
largeN, isotropic jammed states exist forw$wJ, wherewJ depends only
on the spatial dimension for a given protocol7.
For frictional grains, a minimal parameter set for jamming has not

been clearly determined. AlthoughZ is a key parameter formechanical
stability, the minimum number of contacts needed for jamming can
span a range of values, depending on friction and preparation14,15,23.
For the disks used here, a reasonable criterion for isotropic jamming
was found to be Z$ 3.0 to ,3.1 (ref. 4), for which wJ<0:842
(Supplementary Fig. 3).
A distinguishing property of granular jammed states is the existence

of force networks. To characterize the states obtained by shearing at
w,wJ, we consider the contact force and fabric networks, and their
correlation with the properties of the stress tensor24 and the fraction of
non-rattler grains, fNR (Supplementary Figs 2 and 4). It is known from
earlier studies that force networks in jammed packings of dry grains
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Finite temperature: glassy behavior

System quenched in a jammed or glass state



Close to point J: 
Very loose contact networks

close to φJ: displacement field has non-affine response

J. Phys.: Condens. Matter 22 (2010) 033101 Topical Review

Figure 4. Deformation fields of packings of 1000 frictionless particles under compression ((a), (c)) and shear ((b), (d)) as indicated by the red
arrows. The packings in the top row ((a), (b)) are strongly jammed (contact number z = 5.87), while the packings in the bottom row ((c), (d))
are close to the jamming point—their contact number is 4.09, while the jamming transition occurs for z = 4 in this case. Clearly, the
deformation field becomes increasingly non-affine when the jamming point is approached (adapted from [30, 31] with permission—copyright
by the American Physical Society).

spheres that act through purely repulsive contact forces. In
this model, temperature, gravity and shear are set to zero. The
beauty of such systems is that they allow for a precise study
of a jamming transition. As we will see in sections 4 and 5,
caution should be applied when applying the results for soft
frictionless spheres to frictional and/or non-spherical particles.

From a theoretical point of view, packings of soft
frictionless spheres are ideal for three reasons. First, they
exhibit a well-defined jamming point: for positive P the
system is jammed, as it exhibits a finite shear modulus and
a finite yield stress [2], while at zero pressure the system
loses rigidity. Hence, the (un)jamming transition occurs when
the pressure P approaches zero, or, geometrically, when the
deformations of the particles vanish. The zero-pressure, zero-
shear, zero-temperature point in the jamming phase diagram is
referred to as ‘point J’ (figures 1(e) and 5). In this review, point
J will only refer to soft frictionless spheres and not to jamming
transitions of other types of particles. Second, at point J the
contact number approaches the so-called isostatic value and
the system is marginally stable. The system’s mechanical and
geometrical properties are rich and peculiar here. For large
systems the critical packing density, φc, approaches values
usually associated with random close packing. Third, the
mechanical and geometrical properties of jammed systems at

finite pressure, or equivalently φ − φc > 0, exhibit non-trivial
power law scalings as a function "φ := φ − φc or, similarly,
as a function of the pressure, P .

In this section we address the special nature of point J
and discuss the scaling of the mechanical and geometrical
properties for jammed systems near point J. We start in
section 3.1 with a brief discussion of a few common contact
laws and various numerical protocols used to generate jammed
packings. We then present evidence that the jamming transition
of frictionless spheres is sharp and discuss the relevant control
parameters in section 3.2. In section 3.3 we discuss the special
geometrical features of systems at point J, as probed by the
contact number and pair correlation function. Away from
point J the contact number exhibits non-trivial scaling, which
appears to be closely related to the pair correlation function at
point J, as discussed in section 3.4. Many features of systems
near point J can be probed in linear response, and these are
discussed at length in section 3.5—these include the density of
states (3.5.1), diverging length and timescales (3.5.2), elastic
moduli (3.5.3) and non-affine displacements (3.5.4). We close
this section by a comparison of effective medium theory,
rigidity percolation and jamming, highlighting the unique
nature of jamming near point J (3.5.5).
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deformation field becomes increasingly non-affine when the jamming point is approached (adapted from [30, 31] with permission—copyright
by the American Physical Society).
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frictionless spheres to frictional and/or non-spherical particles.
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system is jammed, as it exhibits a finite shear modulus and
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as a function of the pressure, P .

In this section we address the special nature of point J
and discuss the scaling of the mechanical and geometrical
properties for jammed systems near point J. We start in
section 3.1 with a brief discussion of a few common contact
laws and various numerical protocols used to generate jammed
packings. We then present evidence that the jamming transition
of frictionless spheres is sharp and discuss the relevant control
parameters in section 3.2. In section 3.3 we discuss the special
geometrical features of systems at point J, as probed by the
contact number and pair correlation function. Away from
point J the contact number exhibits non-trivial scaling, which
appears to be closely related to the pair correlation function at
point J, as discussed in section 3.4. Many features of systems
near point J can be probed in linear response, and these are
discussed at length in section 3.5—these include the density of
states (3.5.1), diverging length and timescales (3.5.2), elastic
moduli (3.5.3) and non-affine displacements (3.5.4). We close
this section by a comparison of effective medium theory,
rigidity percolation and jamming, highlighting the unique
nature of jamming near point J (3.5.5).
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3. Dissipative interactions

transfer of kinetic energy into 
other degrees of freedom.

Dissipative interactions may arise:

‣ as a result of motion through another 
medium (see 4)

• Brownian motion (fluctuation-dissipation)
• dissipation in medium (viscosity, turbulence)

‣ as a result of contact forces:
• friction
• inelastic collisions



Dissipative collisions

v2,n

v1,n

h1 h2

e =
v2,n
v1,n

 
=

r
h2

h1

!

coefficient of 
normal restitution:

Grains have many internal degrees of freedom
through which kinetic energy is dissipated.

(sound, heat, deformation)



4. Inhomogeneous
Soft Matter is usually inhomogeneous. There are 
two main causes:

‣ colloids are particles subject to Brownian motion and 
hydrodynamic interactions with the embedding fluid.

1. The inhomogeneity is caused by the (unavoidable) 
presence of an interstitial fluid (intrinsic).

‣ polymers are modeled as Brownian particle-springs  

2. The inhomogeneity is due to inhomogeneity of 
the material (external).
‣ granular materials can be bidisperse or polydisperse
‣ clay is a material made up of clay (nanoscale) and silica 

particles 



Vibrated bidisperse mixture

Segregation !



“Brazil Nut Effect”



Three explanations BNE
1. percolation: small grains percolate the empty spots
   between the large ones.

2. exclusion: while vibrating small grains fill space
   below the large ones, not vice versa.

3. convection: interaction with
   walls trigger
   convection rolls.

large grains can follow the upward, 
but not the downward flow.



Role of intersitial air: single particle

Fg = 1
6�d3⇥pg

Fdrag = 3⇥�dV

d = particle diameter
V = typical particle velocity
η = air viscosity (2·10−5 Pa·s)
ρp = part. density (2.5·103 kg/m3) 
g = grav. acceleration (10 m/s2) 

B � Fdrag

Fg
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18�V

⇥pgd2
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Role of interstitial air: packed particle

Fg = 1
6�d3⇥pg

ε = 1 − φ = porosity (≈ 0.5)
k = Kozeny constant (≈ 5)

Ff�s = 2k
1� �

�3
Fdrag

Bp �
Ff�s
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V � 1 m/s⇥ d � 760 µm
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without air

Faraday heaping 
Vertically vibrated granular layer:

Numerical simulation of heaping with a hybrid GD-CFD code

with air



Interstitial liquids: suspensions

a granular suspension: cornstarch on a shaker



Walking on cornstarch



Macroscopic vs microscopic2 Chapter 1. Introduction
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Figure 1.1: Rheology of fluids2: (a) Plane Couette flow. (b) Qualitative rheograms for di�erent
types of fluids.

1.2 Scientific framework

Suspension can be found in many situations. In nature this extends from saturated sand/silt
soils forming treachery quicksand fields, to mudflows running from eroded hills. But also in
the built environment they are omnipresent, like crushed ore residuals (tailings) transpor-
ted from a mine (slurries), concrete used for construction and flour in water used to make a pie.

Although there are distinct di�erences between the aforementioned examples, dense sus-
pension have one thing in common; they are all assumed to shear-thicken given the right
shearing conditions3. Shear-thickening usually has undesirable consequences, like for in-
stance overloading of mixing or milling machinery, but can occasionally be utilised. An
interesting example is the application in body armour; a Kevlar® fabric impregnated with
a shear-thickening fluid was found to be 2.5 times more resistant to ballistic impact than
untreated Kevlar® fabric4.

Researchers have been trying to unravel the mysteries of the non-linear behaviour of dense
suspensions for a while and came up with several possible answers, like an order-disorder
transition3;5–7, the formation of hydroclusters due to viscous stresses4;8;9, and jamming
induced by dilation10;11 (chapter 2).

A schoolbook, and probably best known, example of a shear thickening fluid is cornstarch
suspended in water. Cornstarch, which is also known as cornflour (United Kingdom) and
“maizena”, named after a well known brand (Netherlands), consists of small irregularly-shaped
granules with a flat size distribution of 5–20 µm. A suspension of cornstarch is popularly
known as “oobleck”, named after a children’s book, and can be molded in one’s hands or
even walked over, as long as it is moved (sheared), but fluidises, as soon as the motion is
stopped. This stems from quite sudden and severe (or “discontinuous”) shear-thickening
which occurs in cornstarch suspensions provided that a su⌅ciently high concentration of
grains is present (chapter 3).

Beside its non-Newtonian behaviour in the traditional sense, dense cornstarch suspensions in
particular have been found to exhibit peculiar phenomena. For instance, the formation of



Why is Soft Matter a booming
subject in physics ?

There are many reasons, 
but one has been absolutely crucial:

NUMERICS



Some numerical techniques

‣Brownian dynamics

‣molecular dynamics
‣Monte Carlo

‣ lattice Boltzmann
‣Event driven hard sphere dynamics
‣Hard sphere dynamics
‣Soft sphere dynamics
‣ Two or multiple fluid models
‣Multi-particle collision dynamics
‣Hybrid MD lattice Boltzmann
‣Stochastic rotation dynamics 
‣Hybrid granular dynamics computational fluid dynamics



Some examples



Granular packing (for spheres)

0.57, RLP = 
   random loose packing

solid
fraction

0.64, RCP = 
   random close packing

0.74, crystal = 
   perfectly hexagonal

flu
id

so
lid



�(t) = �f � �f � �0
1 +B log(1 + t/⇥)

�(t = 0) = �0 ; �(t ! 1) = �f

Compactification experiment

regime 1: local reorganization
regime 2: global reorganization
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Analogy: car-parking in street
Model (Ben-Naim):

• Initial state: randomly parked cars (no extra fit in)
• Start to move cars randomly. Whenever there is a 

large enough gap, a new car jumps in.

regime 1: movement of a single car creates gap

regime 2: more than one car has to move:

required time for gap to open grows exponentially:



Importance of sidewalls:
Rayleigh-Janssen model

Force parallelogram as unit cell
of a 2D granular medium

vertical forces ⇒ horizontal forces
balanced by sidewalls

Lord Rayleigh:
K = coefficient of redirection;
ph, pv = horizontal, vertical pressureph = K pv



Importance of sidewalls:
Rayleigh-Janssen model (2)

Slice experiences friction 
force with sidewalls:
dF

friction

= µsphU dh

= µs(Kpv)U dh

[pv(h+ dh)� pv(h)]A +
µsKpvU dh = �gAdh

Vertical force balance on slice:

dpv
dh

+ µsK
U

A
pv = �g

Janssen’s
equation 

Integration gives:
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
1� exp

✓
�µsK

U

A
h

◆�



Janssen’s
equation pv(h) =

�gA

µsKU


1� exp

✓
�µsK

U

A
h

◆�

Importance of sidewalls:
Rayleigh-Janssen model (2)

(hydrostatic
regime)

(saturated
regime)

pv =
�gA

µsKU

pv = �ghpv

h

crossover:

h0 =
A

µsKU
⇡ D

2µsK
⇠ D



Effective weight of granulate 
in silo

� ⌘ µsKU

A
h (decompaction parameter)

What happens to the remaining weight?

Effective weight on bottom = Fv(h) = pv(h) A

(→ 0 for large χ, 
i.e., large h)Fv(h) = mg

1� exp(��)

�
⇡ mg

�



Collapsing silos

Walls take this weight!



Is a general hydrodynamic description
of granular matter possible ?



A) Hydrodynamic approach 
Coarse graining over small intervals Δx, Δt to define 
macroscopic quantities:

Assuming local “thermal” equilibrium, one can derive
mass, momentum, and energy conservation laws:

velocity:
u(x, t) =

*
X

i

v
i

(t) �(x
i

(t)� x)

+

�x,�t

density:
⇥(x, t) =

*
X

i

�(x
i

(t)� x)

+

�x,�t

temperature:
T (x, t) =

*
X

i

(v
i

(t)� u(x, t))2 �(x
i

(t)� x)

+

�x,�t



Conservation laws 

�T = constant

⇤2
x

(T 3/2) =
c3⇥

c2
�2T 3/2

In the stationary limit (u=0, ∂t=0) this becomes:

These equations can be solved analytically:

� = (1� e)/2 expresses inelasticity

In the dilute limit, using the ideal gas law:

� ⇥
t

u+ �u ⇥
x

u = �c1 ⇥x(�T )

� ⇤
t

T + �u ⇤
x

T + c1�T ⇤
x

u� c2 ⇤
2
x

(T 3/2) = �c3⇥�
2T 3/2

⇥
t

�+ ⇥
x

(�u) = 0



Hydrodynamic solution: 
NOTE: 
ideal case (ε = 0, no dissipation)
has the solution:
 T(x) = T0
 ρ(x) = ρ0

Using the boundary conditions:
[constant T at left border]

[elastic wall (no heat flux) at right border]

T (0) = T0

�
x

T (1) = 0



Particle dynamics solution: 

(using MD simulations)



v01 + v02 = v1 + v2

v01 � v02 = e(v1 � v2)

v01 = � v1 + (1� �) v2

v02 = (1� �) v1 + � v2

B) Discrete description 
2-particle collision with

* momentum conservation:

* energy dissipation:

This implies:

Before...

...after collision.

v01 v02

v2v1

with: � = (1� e)/2



Ideal case ε  = 0:
v1’ = v2 , v2’ = v1, exchange of velocities.
Finally all velocities will be given by the PDF of 
velocities on the left.
Uniform distribution of particles, consistent with 
continuum description.

Breakdown of continuum approach !

Non-ideal case ε  > 0:
Numerical result very different from continuum result!
1 fast particle vN ∼√T0 and (N−1) slow particles,
clustering to the right and dissipating energy. Fast 
particle transports energy from left to right.
No longer local “thermal” equilibrium !



Velocity center of mass (1)
assume: v0 = 1  (for simplicity)

vN = v0 = 1 , vi = 0 for i < N
before first collision:

vN = � , vN�1 = 1� � , vi = 0 for i < N � 1

after first collision (between N and N –1):

vN = � , vN�1 = (1� �)� , vN�2 = (1� �)2� , ... ,

v2 = (1� �)N�2� , v1 = (1� �)N�1

...
after (N-1)th collision (between 2 and 1):

v01 = � v1 + (1� �) v2

v02 = (1� �) v1 + � v2

N N –1 N –2 2 1.........vN

after second collision (between N –1 and N –2):
vN = � , vN�1 = (1� �)� , vN�2 = (1� �)2 , vi = 0 for i < N � 2



Velocity center of mass (2)

=
�

N � 1

 
N�2X

k=0

(1� �)k
!

= 1
N�1

�
1� (1� �)N�1

�

vCM = 1
N�1 (vN + vN�1 + vN�2 + ...+ v3 + v2)

= 1
N�1

⇥
�+ (1� �)�+ (1� �)2�+ ...+ (1� �)N�2�

⇤

⇡ 1
N�1 (1� exp [�(N � 1)�])

Mean velocity of cluster particles N,N−1,...,3,2:

drift of cluster towards wall !

vCM-cluster = 0

for large N 
‣ ε = 0, ideal case: 

‣ ε ≠ 0, real case: 
vCM-cluster > 0



In an isolated 1D case
granular hydrodynamics 

does not work.

What about the general case?



L

l

λ

λ = mean free path
l = typical length at which
     macroscopic quantities vary
L = typical system size

Kn = λ/L (global Knudsen 
number)

Knloc = λ/l (local Knudsen 
number)

Knudsen number

Hydrodynamics work if Kn << 1 !

Molecular system: local Kn <<1 

Granular system: local Kn large !

(not a Knudsen gas!)



(from A. Imhof and D. Pine)colloidal particles

Thank you!Thank you!


