FROM PARTICLES TO CONTINUUM Evolution of micro-structure (isotropic & anisotropic)

N. Kumar, V. Magnanimo and S. Luding

Multi-Scale Mechanics (MSM), CTW, MESA+, University of Twente, The Netherlands

ESMC Madrid, July, 10th, 2015

Introduction Granular materials are the combination of discrete solid (macroscopic) particles many interesting phenomena - can we understand them all together? history-dependence, slow relaxation, creep, shear-localization, "avalanches", ... fluid-solid transition => jamming Examples:

Material parameters		
Parameter	Symbol	Material A
Number of Particles	Ν	N= 21 ^{^3}
Average radius	<r></r>	<r> = 1 mm</r>
Polydispersity	w =r _{max} /r _{min}	3
Particle density	ρ	ρ= 2000 [kg/m³]
Normal stiffness	k ⁿ	k ⁿ =5.10 ⁸ [kg/s ²]
Normal Viscosity	γ	1 [kg/s]
Background viscosity	γ^{b}	0.1 [kg/s]

- all complexities are removed!

- what remains?

Overview – where do we stand?

- all complexities are removed!

- what remains?

microstructure!

tapping ... => accepted procedure ... similar to temperature (isotropic) or annealing ...

or: over-compression

