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Introduction

 Granular materials are the combination of discrete solid (macroscopic) particles
* many interesting phenomena - can we understand them all together?
history-dependence, slow relaxation, creep, shear-localization, “avalanches”, ...

fluid-solid transition => jamming

Examples:
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fluid-solid transition => jamming “point”
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Polydispersity and
what’s the difference between
ISO, UNI and SHEAR?
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Introduction

* Granular materials are the combination of discrete solid (macroscopic) particles
* many interesting phenomena - can we understand them all together?
history-dependence, slow relaxation, creep, shear-localization, “avalanches”, ...

fluid-solid transition => jamming “peint” — no point!
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Overview — where do we start?

- Jam-packed discrete systems ... not a (single) jamming point ...
- Simplest model system (linear, no friction, no cohesion, no walls)
- no dynamics, jiggling, (granular) temperature, Brownian dynamics

- microstructure + dilatancy + anisotropy + history
GOAL:
Multi-scale: micro => macro

Macro-scale continuum model with microstructure

Later: Add friction as a material parameter ...

DEM (Discrete element method) = MD

Develop force — delta (overlap) interaction relation, when two entities interact
Solve Newton’s equation of motion

mit; = F; + Z F,j
JENj£i

Exclude:
nonlinear elastic
nonlinear plastic
Friction

Linear (Hookean); Simplest Cohesive
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Bulk? Solve Newton’s equation of motion

mit; = F; + Z F,/
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Exclude:
nonlinear elastic
nonlinear plastic
Friction

Linear (Hookean); Simplest Cohesive
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DEM (Discrete element method) = MD

Develop force — delta (overlap) interaction relation, when two entities interact
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Bulk? Solve Newton’s equation of motion

mit; = F; + Z F,j
JENj£i

Mass-spring
network

Exclude:
nonlinear elastic
nonlinear plastic
Friction

Linear (Hookean); Simplest Cohesive

>0




No tension: Simplest Model System (RVE)

- 3D (true) tri-axial periodic box

- Linear visco-elastic contact model
M =kS+yS

- Strain controlled

- Quasi-static deformation

- Polydisperse spheres

- Frictionless samples

- No gravity

- Homogeneous / no walls

Material parameters

Number of Particles N N=21"
Average radius <r> <r>=1mm
Polydispersity W =F o/ Foin 3
Particle density p p= 2000 [kg/m?3]
Normal stiffness kn kn =5.108 [kg/s?]
Normal Viscosity v 1 [ke/s]

Background viscosity yP 0.1 [kg/s]
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- all complexities are removed!
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- all complexities are removed!
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... and its history / protocol dependence ...

... ISOTROPIC & DEVIATORIC ...




Microstructure

... ISOTROPIC & DEVIATORIC ...

“packing efficiency” < Anisotropy

Microstructure — 15t focus on isotropic

... ISOTROPIC & DEVIATORIC ...

“packing efficiency” & Anisetrepy




Sample Preparation — from the beginning!

tapping ... => accepted procedure ...
similar to temperature (isotropic)
or annealing ...

or: over-compression

Sample Preparation — from the beginning!

Isotropic Compression and de-compression

. -1 0 0
E=¢| 0 -1 0
0 0 -1
0.9 : ‘ : .
08 ™, Vs -
/
07 F Ve o 4
/ J
e J

0.5 |

0.4 |

03 1 1 1
0 200 400 600 800 1000
Time[ms]




(cyclic) isotropic deformation

- Intermediate cyclic over-compression (amplitude 0.73)
- red: 15tcycle ... blue: 100th cycle ...
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Main Experiment 1 - Cyclic isotropic over-compression

) -1 0 0
E=¢, 0o -1 0
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Choose a un-jammed state.
Perform cyclic isotropic (de-)compression for M=100 cycles.

) . . /max
Perform for different over-compression amplitudes. @;

Measure the jamming point MOJJ- =oy(M, Oll-nax)

N. Kumar and S. Luding, preprint (2014); O.1. Imole et al. KONA (2013)
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Main Experiment 1 - Cyclic isotropic over-compression
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- For higher over-compression, jamming point is higher

- Jamming point increases (KWW stretched exponential function).

Mo i 1= 0a(& M) = X5 — (%655 — o, )exp [— (M/p)"]

- Minimum value is achieved @S J = 0.6567 =1 ;=03

Message 1

response of microstructure to isotropic deformations!

- a new state variable is needed!
=> take e.g. coordination number, z, C*, ...
But: at p=0, there is no information in C*=6!

- p>0: “efficiency” of packing high ~ coordination number low
- proposal: use the jamming “point” itself as state variable!

i.e. the density at which the system un-jams
or loses mechanical stability (stress free reference)
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Message 1

response of microstructure to isotropic deformations!

- anew state variable is needed! use: @,
- proposal: use the jamming “point” itself as state variable!

Response to tapping/annealing or over-compression:
=> jamming “point” density slowly increases!

Constitutive model for Pressure

p=p(v,..)
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Isotropic compression — Pressure

p= po%—a) [1 = vp(—ev)]
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What’s the point? Almost linear!

* DPVe \ \%
pr=Tm= po(—ev)[1 — vp(—¢ev)] g, =—ln@

There are some material constants (depend on polydispersity, friction)
Like:

Po-¥,<<1,C,=6,C,,a=0.56,8,~0(1),9,,0,,..and ... v,

How to calibrate/measure them — done ...
(some of them are even known analytically)

Po-Co=0,8;= 0(1)
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Tapping = coffee-experiment!
homework — do it yourself

P

Tapping “isotropic”
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Tapping “isotropic”

BC “isobaric” + tapping
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BC “isobaric” + tapping

pM

BC “isochoric” + tapping
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BC “isochoric” + tapping

Isotropic (de)compression
(like in the particle simulations before)

P
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Isotropic (de)compression

pl\

Isotropic (de)compression
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Isotropic compression

Isotropic (de)compression
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Isotropic (de)compression

pM

Isotropic (de)compression
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Isotropic (de)compression

pM

Isotropic (de)compression
to an unjammed state

P,
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Isotropic (de)compression

P

to an unjammed state
now lets shear!

* no shear = compression or extension

|sotropy <-> Shear

£ 0
e=| 7
[0 sy]
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Anisotropy <-> Shear ?

* Simple shear

0 2¢& 0 e 0 ¢
£= = +
0 O -£ 0 e 0

Rotation + symmetric shear

Anisotropy <-> Shear ?

* Simple shear

0 2e¢ 0 ¢ 0 ¢
£= = +
0 O -£ 0 g 0

Rotation + symmetric shear
* Rotate symmetric shear tensor by 45 degrees

0 ) , (& O
Rys- e 0 "Ry = 0 -

. . “ ” . .
* biaxial=pure “shear : compression+extension
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Main Experiment 2 — Shear (volume-conserving)

2 => 3 cyclic: see later ...
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Choose un-jammed states (with different preparation history).
Perform deviatoric (volume conserving) shear deformation to strain 0.28.

Measure the shear strain needed to jam the system.

Main Experiment 2 — Shear (volume-conserving)

Three stages observed: Shear Unjammed - Fragile > Shear jammed

Minimum volume fraction, below which incite shear is needed to jam the system.
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How does it look for many different histories?
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So much for the jamming point ...

* fluid-solid transition => jamming “peint” — no point!

\ Fluid with solid
$u=0)

éxr : 92 ) (D>
|

$(u>0)

S. Luding, Nature, 2016

Main Experiment 2.5 — Shear (volume-conserving)

Many different histories
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Message 2

response of microstructure to isotropic deformations!
- a new state variable is needed! use: @,

- isotropic deformation leads to an increase of @, (slow)

response of microstructure to

- no new state variable is needed! (use struture F,)
deformation leads to a decrease of @, (fast)

Connecting the two Experiments

0, (H)

N,

log(H)
- Combine the two history-dependencies,

by superposing the two limit experiments: isotropic and pure shear deformation
- Rate of increase in the jamming point by isotropic deformation

is much slower than the rate of decrease by pure shear.
- Ultimate lower bound, defined as the shear-jamming density ... minimal jamming point reached
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Jamming by application of shear
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BC “isochoric” shear

BC “isochoric” shear
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BC “isochoric” shear

BC “isochoric” shear

i.e. pressure-dilatancy
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BC “isobaric” shear

BC “isobaric” shear
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BC “isobaric” shear

P,
BC “isobaric” shear
i.e. dilatanc
P, Y
A /71
d, )
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BC “isobaric” shear

BC “isochoric” shear-jamming
like in the particle simulations before!

P

4
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BC isochoric shear

BC isochoric shear-jamming
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BC isochoric shear-jamming

BC isochoric shear-reversal

i.e. shear un-jamming
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BC “isobaric” shear-jamming

pM

BC “isobaric” shear-jamming
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BC “non-isobaric” shear-jamming

P,

NOW — we are elastic
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NOW — we are elastic

finite N, p + tiny €

Connecting the two Experiments

1 Moy = (™ M) =% ¢ — (C¢1i — ds) exp [— (M/ /lﬁi)ﬂi]

2: g7’ /e = —log ¢5o = —log | 77—

a=1.37 and £;,>'=0.10

85‘] a e
b5(ea) = ¢sg + (¢ — Ppsr) exp [<( d >(€0)a( a) )]
d
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Evolution of jamming points with history

Mg 1i = (o™ M) =% ¢5; — (Cdyi — dsr) exp [— (M/,zi)?’i}

¢;(H)

9ss

Predictive power — cyclic isotropic deformation

- Intermediate cyclic over-compression (amplitude 0.73) for 100 cycles.

004 7
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0.01
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-Well predicted isotropic - pressure and coordination number (during loading and un-loading).
- Only by adding motion of jamming-point in the constitutive model.
- Curves saturate for large cycles for loading and un-loading and is also predicted.
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Predictive power — cyclic isotropic deformation

- Intermediate cyclic over-compression (amplitude 0.73) for 100 cycles.
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-Well predicted isotropic - pressure and coordination number (during loading and un-loading).
- Only by adding motion of jamming-point in the constitutive model.
- Curves saturate for large cycles for loading and un-loading and is also predicted.

Constitutive Model: Anisotropy Model

Isotropy (before) + Anisotropy F

dev
(5P* = 3B($€v +Sa (Sede\’f
0%y = JEPee + GO S, 054en
0Fsev = [Opsign (cdev) Fioy SFOcdey

Due to A, and A,, the model provides a cross coupling
between the two types of stress and strain in the model

Need to define - Initial state and the deformation path
... then integrate the incremental evolution ...
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Predictive power — cyclic pure shear deformation

- Cyclic shear for 3 cycles (after the first loading, system forgets history).
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- Quantities like — fraction of non-rattlers, coordination number, pressure —

by mainly modifying the constitutive model with non-constant jamming point.

Something for experimentalists

Measuring jamming points from the accessible macroscopic quantities — easiest pressure ©

0.675
:I T T T T T 0l73 T T E
F 078 —— ]
. 082 —=— ]
Main text Eq.(1) —— 1
067 | 3

0655 1 1 1 1 1 1 1 1 1 ]

066 068 07 072 0.74 076 078 08 082

¢

During isotropic deformation at three different amplitudes,
and extracting it from pressure ... comparison with the theoretical framework

41



Something for experimentalists

Measuring jamming points from the accessible macroscopic quantities — easiest pressure ©
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During shear deformation, and extracting it from pressure, coordination number.
Comparison with the theoretical framework

Evolution of jamming points with history
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Energy
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Explanation — Energy landscape

Energy

- Isotropic deformation — leads to an increase in local and total jamming point,
wheras the shear deformation decreases it...

- Deeper valleys with higher barriers, can be achieved with higher over-compression.

Minimal meso-statistical model

» Experiment (O. Pouliquen, Marseille)
» & Model (developed during my visit)
» Results

¢ Slow compaction

¢ Cyclic compaction
e Summary
» Next steps ?

22.03.2016
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Experiments

» Dense, monodisperse periodic shear
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Model

e Packing:
* Local configuration?
» Energy landscape
» Potential energy — Density
 Particles:
» Explore the energy landscape
* Random walk = Sinai Diffusion
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Model
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Slow compaction

e Experiment vs. model simulation
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Cyclic compaction

22.03.2016
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Summary

Minimal (?) model

Define configuration energy landscape
Tap/Shear = Explore landscape
Experimental phenomenology

22.03.2016

Next Steps

» How to get the energy landscape ?

» Temperature = ?

* Monte Carlo time-scale ?

 Correlations ?

» Energy landscape as function of
system parameters ?

22.03.2016
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So much for the jamming point ...

* fluid-solid transition => jamming “peint” — no point!

| Fluid with solid
features

éxr : 92 ) (D>
|

$u=0)

$(u>0)

S. Luding, Nature, 2016

BC “isochoric” + tapping
equivalent to temperature

P

3

v
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BC “isochoric” — relaxation/creep

P,

BC “isochoric” shear
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BC “isochoric” shear

BC “isochoric” shear
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BC “isochoric” shear

i.e. pressure-dilatancy

Equilibrium: shear + T

i.e. pressure-dilatancy
and -relaxation
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So much for the jamming point ...

* fluid-solid transition => jamming “peint” — no point!

\ Fluid with solid
$u=0)

$er | 60 60 <« (D>
I
|

S. Luding, Nature, 2016
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