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•  Granular materials are the combination of discrete solid (macroscopic) particles 

•  many interesting phenomena - can we understand them all together?   

 history-dependence, slow relaxation, creep, shear-localization, “avalanches”, … 

 fluid-solid transition => jamming  
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•  Granular materials are the combination of discrete solid (macroscopic) particles 

•  many interesting phenomena - can we understand them all together?   

 history-dependence, slow relaxation, creep, shear-localization, “avalanches”, … 

 fluid-solid transition => jamming “point”  

Examples: 	
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sandpile, the material is fragile in the sense
that a slight change in direction of the
applied stress will change the entire structure
of the force chains that give the pile its rigidi-
ty. Because there is no obvious relation con-
necting stress to strain throughout the pile,
Cates et al. bypass the strain altogether and
propose a relation between different compo-
nents of the stress tensor2,3. This continues to
be a hotly debated assumption4,6–8.

Cates et al. suggest that one way to re-
concile the two approaches is to allow the
particles to deform, so that the material
can respond elastically to sufficiently small
loads. One example of a system that is
jammed and yet not fragile is foam. Shaving
foam, for example, is jammed because the
bubbles are tightly packed together under an
isotropic stress, namely atmospheric pres-
sure. If it were fragile, it would respond plas-
tically to a shear stress, no matter how small.
However, because bubbles deform, foam
actually responds elastically as long as the
stress is below a threshold value. Sand grains
also deform slightly. Hence, for real systems,
a continuum elastic description will always
be useful. However, the new concept of
fragile matter brings a valuable perspective
from the opposite limit of completely non-
deformable particles.

We would like to point out that the class of
jammed materials may actually be broader
than the authors suggest. They consider
jamming only in systems with no attractive
interactions (where the particle dynamics
are constrained through an applied stress)
and where the individual particles are large
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so that there is no thermal motion. These two
constraints may not be essential. 

We know from studies of liquids and
glasses that a system with attractive interac-
tions often behaves in the same way as anoth-
er that has only repulsive forces but is con-
fined in a container (that constrains its den-
sity). In the case of jamming, the opposite
situation may be possible: that is, one might
be able to replace the constraints of an exter-
nal pressure or stress with an attractive inter-
action between the particles. Thus, a super-
cooled liquid can be jammed into a glass sim-
ply by lowering the temperature, not by
applying a stress. When a liquid is cooled
below its freezing point, its viscosity increas-
es rapidly. Eventually, it falls out of equilibri-
um into a disordered solid, or glass, where it
only explores a small part of phase space, just
as in the case of a jammed granular material
or foam.

So might the concept of jamming and
fragility include microscopic systems with
attractive interactions, which unjam as one
raises the temperature, as well as stressed
macroscopic systems with repulsive interac-
tions, which unjam as one applies an incom-
patible stress? We have sketched a speculative
phase diagram for jamming (Fig. 1) that ties
the different systems together. This phase
diagram depends on temperature, load and
density. 

According to this picture, jamming can
occur only when the density is high enough.
One can then unjam the system either by
raising temperature or by applying a stress.
The phase diagram raises some interesting
questions: for example, a glass may have a
lower glass transition temperature under
high shear stress. Likewise, a jammed granu-
lar material or foam may have a lower yield
stress when random motions (that is, ther-
mal fluctuations) are present. This would
explain the beneficial role of banging on
jammed conduits on the factory floor.

Whether jammed systems indeed share
features that can be described by a phase dia-
gram is an open question, but if our specula-
tion has any merit it would bring together
several different types of behaviour under
one rubric. Are the dynamics of different
systems approaching the jammed state also
similar? If temperature and applied stress
play similar roles in unjamming systems, is it
possible that driven, macroscopic, athermal
systems like granular materials and foams
might be described in terms of an effective
temperature? Is statistical mechanics useful
at all in describing these systems? These  and
related questions will take years to resolve,
but the picture of Cates et al. helps to point
out some of the interesting conceptual
problems that need to be addressed.
Andrea J. Liu is in the Department of Chemistry
and Biochemistry, University of California at Los
Angeles, Los Angeles, California 90095-1569, USA.
e-mail: liu@chem.ucla.edu

All around us, things seem to be getting
jammed. We travel on a highway and
we are caught in traffic jams. At the

wholefoods counter, grains and beans jam as
they refuse to flow out of the bottom of the
hopper into our bags. In factories,  powdered
raw materials clog the conduits that were
designed to carry them smoothly. Our
recourse in all these situations is to pound on
our conduits, hoppers and dashboards until
the jam miraculously disappears. We are
usually so irritated that we have not really
noticed that the jammed state, in all of these
situations, has common properties. For
example, the vibrations from the pounding
actually do some good in reinitiating flow —
except in the case of the traffic jam. Does the
jammed solid then have different properties
from the solids we normally encounter in the
laboratory?

Writing in Physical Review Letters, Cates,
Wittmer, Bouchaud and Claudin1 contend
that these jammed systems really belong to a
new class of materials: ‘fragile matter’. These
systems resemble solids because the particles
are driven into a jammed state by an exter-
nally applied stress. When jammed, the dis-
ordered system is caught in a small region of
phase space with no possibility of escape. 

Cates et al. propose that jammed systems
are fundamentally different from ordinary
solids in that, if the direction of the applied
stress changes even by a small amount, then
the jam will break up. A canonical example is
a pile of sand, which appears solid: the upper
surface slopes and sustains its shape despite
the force of gravity, which one would expect
to level the pile. But if one tilts or vibrates the
pile, the grains shift and the solid melts. The
authors argue that the unusual mechanical
properties of fragile matter require a new
theoretical description, which they first
applied to a heap created by pouring sand
onto the apex of a pile2,3. 

Traditionally, the forces within such a
pile have been described using continuum
elastoplastic theories. These are similar to
models that describe ordinary solids4: every
increment of stress in the material is related
to a corresponding deformation, or strain5.
The approach of Cates et al. is to start from a
pile of completely non-deformable parti-
cles, for which strain is not an obviously use-
ful variable. Their simple model of a chain of
hard particles insists that the jammed system
cannot be considered as an elastic body.
Although it can support a large applied load
in the same direction as the original jam-
ming forces, the chain will fall apart if even
an infinitesimal force is applied in a different
direction. For an extended material such as a

Figure 1 A possible phase diagram for jamming.
The jammed region, near the origin, is enclosed
by the depicted surface. The line in the
temperature–load plane is speculative, and
indicates how the yield stress might vary for
jammed systems in which there is thermal
motion.
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Eq. (15) in Ogarko & Luding (2012)

Figure 7: Evolution of jamming point νc with polydispersity w for the deformation modes considered.
Corresponding solid lines are the theoretical predictions for different modes using Eq. (11). Note that the
fit is applied only to w > 1.2, since local crystallization (Ogarko & Luding, 2012; Schröder-Turk et al.,
2010) might happen at lower polydispersity causing νc values much higher than the disordered, random
prediction.

(11) to the three deformation modes, and in Fig. 7 we show the prediction for hard spheres together
with the νc simulation data for the three modes, and the fitting curves, where the parameters ν0c and
ν∞c are presented in Table 2. Besides the quantitative disagreement due to the difference between hard
and soft spheres, both systems show a very similar trend, the predictions working well for all the three
modes. The simulations in Ogarko & Luding (2012), leading to Eq. (11), were carried out by very slow
isotropic compression from the low density collisional regime, where the fluctuation velocities were not
relaxed as done in this study. The strong kinetic energy fluctuations represent a type of ‘tapping’ that
allows the system to relax to better packed configurations with larger νc. The data in Fig. 7 from Ogarko
& Luding (2012) thus represents an upper limit of optimal compaction, which is not reached by e.g.
slow over-compression to νmax = 0.82. Eq. (11) can then capture the evolution of νc with polydispersity,
irrespective of the deformation modes, when the fit parameters are properly defined. This interesting
feature shows that νc acts as a state variable, able to describe the configuration of the assembly and thus
represent its history, as also reflected by the overlaps in Fig. 4.

4.2.2 Coordination Number

It has been shown in Göncü et al. (2010); Imole et al. (2013) that under isotropic deformation, the
corrected coordination number, C∗ follows the power law:

C∗(ν) = C0 + C1

(
ν

νc
− 1

)α

, (12)

where C0 = 6 is the isostatic value in the frictionless case. α and C1 are fit parameters, while we use
νc from p∗ extrapolation analysis as input value, leading to one less fit parameter for C∗. We observe a
very small variation (3 %) of α with polydispersity and deformation modes (Imole et al., 2013) but for
simplicity we set it to a fixed value of 0.60 in this work (Peyneau & Roux, 2008). Only C1 is then the
residual free fit parameter.

In Figs. 5(d – f), we compare the evolution of the corrected coordination number C∗ as a function
of volume fraction ν during isotropic, uniaxial and after deviatoric loading and show its dependence on
polydispersity. The behavior is qualitatively similar for all the three deformation paths: contacts close
and the coordination number increases with increasing volume fraction. Moreover, for the three modes,
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•  Granular materials are the combination of discrete solid (macroscopic) particles 

•  many interesting phenomena - can we understand them all together?   

 history-dependence, slow relaxation, creep, shear-localization, “avalanches”, … 

 fluid-solid transition => jamming “point” – no point! 
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sandpile, the material is fragile in the sense
that a slight change in direction of the
applied stress will change the entire structure
of the force chains that give the pile its rigidi-
ty. Because there is no obvious relation con-
necting stress to strain throughout the pile,
Cates et al. bypass the strain altogether and
propose a relation between different compo-
nents of the stress tensor2,3. This continues to
be a hotly debated assumption4,6–8.

Cates et al. suggest that one way to re-
concile the two approaches is to allow the
particles to deform, so that the material
can respond elastically to sufficiently small
loads. One example of a system that is
jammed and yet not fragile is foam. Shaving
foam, for example, is jammed because the
bubbles are tightly packed together under an
isotropic stress, namely atmospheric pres-
sure. If it were fragile, it would respond plas-
tically to a shear stress, no matter how small.
However, because bubbles deform, foam
actually responds elastically as long as the
stress is below a threshold value. Sand grains
also deform slightly. Hence, for real systems,
a continuum elastic description will always
be useful. However, the new concept of
fragile matter brings a valuable perspective
from the opposite limit of completely non-
deformable particles.

We would like to point out that the class of
jammed materials may actually be broader
than the authors suggest. They consider
jamming only in systems with no attractive
interactions (where the particle dynamics
are constrained through an applied stress)
and where the individual particles are large
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so that there is no thermal motion. These two
constraints may not be essential. 

We know from studies of liquids and
glasses that a system with attractive interac-
tions often behaves in the same way as anoth-
er that has only repulsive forces but is con-
fined in a container (that constrains its den-
sity). In the case of jamming, the opposite
situation may be possible: that is, one might
be able to replace the constraints of an exter-
nal pressure or stress with an attractive inter-
action between the particles. Thus, a super-
cooled liquid can be jammed into a glass sim-
ply by lowering the temperature, not by
applying a stress. When a liquid is cooled
below its freezing point, its viscosity increas-
es rapidly. Eventually, it falls out of equilibri-
um into a disordered solid, or glass, where it
only explores a small part of phase space, just
as in the case of a jammed granular material
or foam.

So might the concept of jamming and
fragility include microscopic systems with
attractive interactions, which unjam as one
raises the temperature, as well as stressed
macroscopic systems with repulsive interac-
tions, which unjam as one applies an incom-
patible stress? We have sketched a speculative
phase diagram for jamming (Fig. 1) that ties
the different systems together. This phase
diagram depends on temperature, load and
density. 

According to this picture, jamming can
occur only when the density is high enough.
One can then unjam the system either by
raising temperature or by applying a stress.
The phase diagram raises some interesting
questions: for example, a glass may have a
lower glass transition temperature under
high shear stress. Likewise, a jammed granu-
lar material or foam may have a lower yield
stress when random motions (that is, ther-
mal fluctuations) are present. This would
explain the beneficial role of banging on
jammed conduits on the factory floor.

Whether jammed systems indeed share
features that can be described by a phase dia-
gram is an open question, but if our specula-
tion has any merit it would bring together
several different types of behaviour under
one rubric. Are the dynamics of different
systems approaching the jammed state also
similar? If temperature and applied stress
play similar roles in unjamming systems, is it
possible that driven, macroscopic, athermal
systems like granular materials and foams
might be described in terms of an effective
temperature? Is statistical mechanics useful
at all in describing these systems? These  and
related questions will take years to resolve,
but the picture of Cates et al. helps to point
out some of the interesting conceptual
problems that need to be addressed.
Andrea J. Liu is in the Department of Chemistry
and Biochemistry, University of California at Los
Angeles, Los Angeles, California 90095-1569, USA.
e-mail: liu@chem.ucla.edu

All around us, things seem to be getting
jammed. We travel on a highway and
we are caught in traffic jams. At the

wholefoods counter, grains and beans jam as
they refuse to flow out of the bottom of the
hopper into our bags. In factories,  powdered
raw materials clog the conduits that were
designed to carry them smoothly. Our
recourse in all these situations is to pound on
our conduits, hoppers and dashboards until
the jam miraculously disappears. We are
usually so irritated that we have not really
noticed that the jammed state, in all of these
situations, has common properties. For
example, the vibrations from the pounding
actually do some good in reinitiating flow —
except in the case of the traffic jam. Does the
jammed solid then have different properties
from the solids we normally encounter in the
laboratory?

Writing in Physical Review Letters, Cates,
Wittmer, Bouchaud and Claudin1 contend
that these jammed systems really belong to a
new class of materials: ‘fragile matter’. These
systems resemble solids because the particles
are driven into a jammed state by an exter-
nally applied stress. When jammed, the dis-
ordered system is caught in a small region of
phase space with no possibility of escape. 

Cates et al. propose that jammed systems
are fundamentally different from ordinary
solids in that, if the direction of the applied
stress changes even by a small amount, then
the jam will break up. A canonical example is
a pile of sand, which appears solid: the upper
surface slopes and sustains its shape despite
the force of gravity, which one would expect
to level the pile. But if one tilts or vibrates the
pile, the grains shift and the solid melts. The
authors argue that the unusual mechanical
properties of fragile matter require a new
theoretical description, which they first
applied to a heap created by pouring sand
onto the apex of a pile2,3. 

Traditionally, the forces within such a
pile have been described using continuum
elastoplastic theories. These are similar to
models that describe ordinary solids4: every
increment of stress in the material is related
to a corresponding deformation, or strain5.
The approach of Cates et al. is to start from a
pile of completely non-deformable parti-
cles, for which strain is not an obviously use-
ful variable. Their simple model of a chain of
hard particles insists that the jammed system
cannot be considered as an elastic body.
Although it can support a large applied load
in the same direction as the original jam-
ming forces, the chain will fall apart if even
an infinitesimal force is applied in a different
direction. For an extended material such as a

Figure 1 A possible phase diagram for jamming.
The jammed region, near the origin, is enclosed
by the depicted surface. The line in the
temperature–load plane is speculative, and
indicates how the yield stress might vary for
jammed systems in which there is thermal
motion.
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Overview – where do we start?	
  

- Jam-packed discrete systems    … not a (single) jamming point … 
 
- Simplest model system (linear, no friction, no cohesion, no walls) 

                  
- no dynamics, jiggling, (granular) temperature, Brownian dynamics 
   
- microstructure + dilatancy + anisotropy + history 
 
 
GOAL: 

 Multi-scale: micro => macro 
 Macro-scale continuum model with microstructure  

 
Later: Add friction as a material parameter …	
  

DEM (Discrete element method) = MD	
  
Develop force – delta (overlap) interaction relation, when two entities interact 

δ

nf

Linear (Hookean); Simplest  
	
  

Exclude:  
nonlinear elastic  
nonlinear plastic 
Friction 
Cohesive 

Solve Newton’s equation of motion	
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DEM (Discrete element method) = MD	
  
Develop force – delta (overlap) interaction relation, when two entities interact 
 
Bulk? 
 
Mass-spring 
   network 

δ

nf

Linear (Hookean); Simplest  
	
  

Exclude:  
nonlinear elastic  
nonlinear plastic 
Friction 
Cohesive 

Solve Newton’s equation of motion	
  

DEM (Discrete element method) = MD	
  
Develop force – delta (overlap) interaction relation, when two entities interact 
 
Bulk? 
 
Mass-spring 
   network 

δ

nf

Linear (Hookean); Simplest  
	
  

Exclude:  
nonlinear elastic  
nonlinear plastic 
Friction 
Cohesive 

Solve Newton’s equation of motion	
  

dilatancy 
anisotropy 
re-structuring 
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No tension: Simplest Model System (RVE)	
  

-­‐ 	
  3D	
  (true)	
  tri-­‐axial	
  periodic	
  box	
  

-­‐	
  Linear	
  visco-­‐elas8c	
  contact	
  model	
  

	
  

-­‐ 	
  Strain	
  controlled	
  

-­‐ 	
  Quasi-­‐sta8c	
  deforma8on	
  

-­‐ 	
  Polydisperse	
  spheres	
  

-­‐ 	
  Fric8onless	
  samples	
  

-­‐ 	
  No	
  gravity	
  	
  

-­‐ 	
  Homogeneous	
  /	
  no	
  walls	
  
	
  

.
δγδ += knf

Material parameters	
  

	
  	
  	
  	
  	
  Parameter	
   	
  	
  	
  	
  	
  	
  	
  	
  Symbol	
   	
  	
  	
  	
  Material	
  A	
  

Number	
  of	
  Par4cles	
   	
  	
  	
  	
  	
  	
  	
  	
  N	
   	
  	
  	
  	
  	
  N=	
  21^3	
  

Average	
  radius	
   	
  	
  	
  	
  	
  	
  	
  	
  <r>	
   	
  	
  	
  <r>	
  =	
  1	
  mm	
  

Polydispersity	
   	
  	
  	
  w	
  =rmax/rmin	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  

Par4cle	
  density	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  ρ	
   	
  ρ=	
  2000	
  [kg/m3]	
  

Normal	
  s4ffness	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  kn	
   kn	
  =5.108	
  [kg/s2]	
  

Normal	
  Viscosity	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  γ	
   	
  	
  	
  	
  	
  1	
  [kg/s]	
  

Background	
  viscosity	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  γb	
  	
   	
  	
  	
  	
  0.1	
  [kg/s]	
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Overview – where do we stand?	
  

 
- all complexities are removed! 
 
- what remains? 

 	
  

Overview – where do we stand?	
  

 
- all complexities are removed! 
 
- what remains? 

  
 microstructure! 



8	



Overview – where do we stand?	
  

 
- all complexities are removed! 
 
- what remains? 

  
 microstructure! 

  … and its history / protocol dependence …	
  

Overview – where do we stand?	
  

 
- all complexities are removed! 
 
- what remains? 

  
 microstructure! 

  … and its history / protocol dependence … 
 

… ISOTROPIC & DEVIATORIC …	
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Microstructure	
  

 
 

… ISOTROPIC & DEVIATORIC … 
 

“packing efficiency”  ó  Anisotropy 
 
	
  

Microstructure – 1st focus on isotropic	
  

 
 

… ISOTROPIC & DEVIATORIC … 
 

“packing efficiency”  ó  Anisotropy 
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Sample Preparation – from the beginning! 
	
  

tapping … => accepted procedure … 
similar to temperature (isotropic) 

or annealing … 
 

or: over-compression 

Sample Preparation – from the beginning! 
	
  

Isotropic Compression and de-compression 



11	



(cyclic) isotropic deformation	
  

-  Intermediate cyclic over-compression (amplitude 0.73)  
-  red: 1st cycle … blue: 100th cycle … 
 

Main Experiment 1 - Cyclic	
  isotropic	
  over-­‐compression	
   
	
  

Choose a un-jammed state.  
Perform cyclic isotropic (de-)compression for M=100 cycles. 
 
Perform for different over-compression amplitudes. 

Measure the jamming point 

	
  N.	
  Kumar	
  and	
  S.	
  Luding,	
  preprint	
  (2014);	
  O.I.	
  Imole	
  et	
  al.	
  KONA	
  (2013)	
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Main Experiment 1 - Cyclic	
  isotropic	
  over-­‐compression	
   
	
  

- For higher over-compression, jamming point is higher 
 
- Jamming point increases (KWW stretched exponential function). 
 
 
 
- Minimum value is achieved 

Φc 

Φc 

Message 1	
  

response of microstructure to isotropic deformations! 
 
- a new state variable is needed! 
=> take e.g. coordination number, z, C*, … 
But: at p=0, there is no information in C*=6! 
 
- p>0: “efficiency” of packing high ~ coordination number low 
 
- proposal: use the jamming “point” itself as state variable! 

 i.e. the density at which the system un-jams 
  or loses mechanical stability (stress free reference) 
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Message 1	
  

response of microstructure to isotropic deformations! 
 
-   a new state variable is needed! use: ΦJ 
-  proposal: use the jamming “point” itself as state variable! 

Response to tapping/annealing or over-compression:  
 => jamming “point” density slowly increases! 

Cons4tu4ve	
  model	
  for	
  Pressure	
  	
  

p = p !,...( )
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Isotropic	
  compression	
  –	
  Pressure	
  	
  

What’s	
  the	
  point?	
  Almost	
  linear!	
  

!v = " ln v
vc

#
$%

&
'(

There are some material constants (depend on polydispersity, friction) 
Like:  

p0,C0 = 6, g3 !O 1( )

How to calibrate/measure them – done … 
(some of them are even known analytically) 

p0, ! p <<1, C0 = 6, C1," ! 0.56, g3 !O 1( ), !r, !v, ... and ... vc
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Tapping	
  =	
  coffee-­‐experiment!	
  
homework	
  –	
  do	
  it	
  yourself	
  

	
  p 

Φ ΦJ 

Tapping	
  “isotropic”	
  

p 

Φ ΦJ 
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Tapping	
  “isotropic”	
  

p 

Φ ΦJ 

BC	
  “isobaric”	
  +	
  tapping	
  

p 

Φ ΦJ 
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p 

Φ ΦJ 

BC	
  “isobaric”	
  +	
  tapping	
  

BC	
  “isochoric”	
  +	
  tapping	
  

p 

Φ ΦJ 
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p 

Φ ΦJ 

BC	
  “isochoric”	
  +	
  tapping	
  

Isotropic	
  (de)compression	
  
(like	
  in	
  the	
  par4cle	
  simula4ons	
  before)	
  

p 

Φ 
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Isotropic	
  (de)compression	
  

p 

Φ 

Isotropic	
  (de)compression	
  

p 

Φ ΦJ 
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Isotropic	
  compression	
  

p 

Φ Φc 

Isotropic	
  (de)compression	
  

p 

Φ ΦJ Φc 
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Isotropic	
  (de)compression	
  

p 

Φ ΦJ Φc 

Isotropic	
  (de)compression	
  

p 

Φ ΦJ Φc 
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Isotropic	
  (de)compression	
  

p 

Φ ΦJ 

Isotropic	
  (de)compression	
  
to	
  an	
  unjammed	
  state	
  

p 

Φ ΦJ Φc 
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Isotropic	
  (de)compression	
  
to	
  an	
  unjammed	
  state	
  

now	
  lets	
  shear!	
  p 

Φ ΦJ 

Isotropy	
  <-­‐>	
  Shear	
  
•  no	
  shear	
  =	
  compression	
  or	
  extension	
  

! =
!V 0

0 !V

!

"
#
#

$

%
&
&
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Anisotropy	
  <-­‐>	
  Shear	
  ?	
  
•  Simple	
  shear	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Rota4on	
  +	
  symmetric	
  shear	
  

0 00 2
0 00 0
ε εε

ε
ε ε

⎛ ⎞ ⎛ ⎞⎛ ⎞
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Main Experiment 2 – Shear	
  (volume-­‐conserving)	
  

Choose un-jammed states (with different preparation history). 
 
Perform deviatoric (volume conserving) shear deformation to strain 0.28. 
 
Measure the shear strain needed to jam the system. 

2 => 3 cyclic: see later … 
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Main Experiment 2 – Shear	
  (volume-­‐conserving)	
  

Three stages observed: Shear Unjammed à Fragile à Shear jammed 
 
Minimum volume fraction, below which incite shear is needed to jam the system. 
 
 
 

How does it look for many different histories?	
  

For one over-compression 
 amplitude (one history). 
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•  fluid-solid transition => jamming “point” – no point! 

So much for the jamming point …	
  

S. Luding, Nature, 2016 

Main Experiment 2.5 – Shear	
  (volume-­‐conserving)	
  

Many different histories	
  

Collapse on a master curve using 

Φc 

Φc  

Φc  
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Message 2	
  

response of microstructure to isotropic deformations! 
- a new state variable is needed! use: ΦJ 
- isotropic deformation leads to an increase of ΦJ (slow) 
 
response of microstructure to deviatoric/shear deformations! 
-  no new state variable is needed! (use struture Fdev) 
-  deviatoric deformation leads to a decrease of ΦJ (fast) 

Connecting the two Experiments	
  

- Combine the two history-dependencies,  
 by superposing the two limit experiments: isotropic and pure shear deformation. 

-  Rate of increase in the jamming point by isotropic deformation  
    is much slower than the rate of decrease by pure shear. 

-  Ultimate lower bound, defined as the shear-jamming density … minimal jamming point reached 
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Jamming by application of shear 

Jamming diagram with memory 

c 
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i.e. pressure-dilatancy 
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Φ ΦJ 

BC	
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  shear	
  

i.e. dilatancy 
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p 

Φ ΦJ 

BC	
  “isobaric”	
  shear	
  

Φc 

p 

Φ ΦJ 

BC	
  “isochoric”	
  shear-­‐jamming	
  
like	
  in	
  the	
  par4cle	
  simula4ons	
  before!	
  

Φc 
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Φ ΦJ 

BC	
  isochoric	
  shear	
  

Φc 
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Φ ΦJ 
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  shear-­‐jamming	
  

Φc 
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Φ ~ΦJ 

BC	
  isochoric	
  shear-­‐jamming	
  

Φc 

τ	



τ	



Φ ΦJ 

BC	
  isochoric	
  shear-­‐reversal	
  
i.e. shear un-jamming 

Φc 
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p 

Φ ΦJ 

BC	
  “non-­‐isobaric”	
  shear-­‐jamming	
  

Φc 

p 

Φ ΦJ 

NOW	
  –	
  we	
  are	
  elas4c	
  

Φc 
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p 

Φ ΦJ 

NOW	
  –	
  we	
  are	
  elas4c	
  

finite N, p + tiny ε 

Φc 

Connecting the two Experiments	
  

0.102 ± 0.001 as the fit parameters. Hence, if the initial jamming point MφJ,i or φJ(H) is
known based on the past history of the sample, the shear-jamming strain εSJd can be predicted.

From the measured shear-jamming strain, Eq. (2), knowing the initial and the limit value
of φJ , we now postulate its evolution under isochoric pure shear strain:

φJ(εd) = φSJ + (φ− φSJ) exp

[(

(

εSJd
)α

− (εd)
α

(

ε0d
)α

)]

. (3)

Inserting, εd = 0, εd = εSJd and εd = ∞ leads to φJ = MφJ,i, φJ = φ and φJ = φSJ , respectively.
This means the jamming point evolution due to shear strain εd is faster than exponential (since
α > 1) decreasing to its lower limit φSJ . This is qualitatively different from the stretched
exponential (slow) relaxation dynamics that leads to the increase of φJ due to over-compression
or tapping, see Fig. 3(a) for both cases.

Slow dynamics model
The last challenge is to unify the observations in a model that accounts for the changes in the
jamming densities for both isotropic and shear deformation modes. Over-compressing a soft
granular assembly is analogous to tapping (33, 58) more rigid ones, in so far that both methods
lead to more compact packing structures, i.e., both represent isotropic perturbations. These
changes are shown in Fig. 1(a), where the originally reported logarithmically slow dynamics
for tapping (57) is very similar to our results that are also very slow, with a stretched expo-
nential behavior; such slow relaxation dynamics can be explained by a simple Sinai-Diffusion
model of random walkers in a random, hierarchical, fractal-type free energy landscape (3, 56)
in the a-thermal limit, where the landscape does not change – for the sake of simplicity. The
granular packing is represented in this picture by an ensemble of random walkers in (arbitrary)
configuration space with (potential) energy according to the height of their position on the
landscape. (Their average energy corresponds to the jamming density and a decrease in energy
corresponds to an increase in φJ(H), thus representing the “memory” and history dependence.)
Perturbations, such as tapping with some amplitude (corresponding to “temperature”) allow
the ensemble to find denser configurations, i.e., deeper valleys in the landscape, representing
larger (jamming) densities. Similarly, over-compression is squeezing the ensemble “down-hill”,
also leading to an increase of φJ , as presented in Fig. 3(b). Larger amplitudes will allow the en-
semble to overcome larger barriers and thus find even deeper valleys. Repetitions have a smaller
chance to do so, which explains the slow dynamics in the hierarchical multi-scale structure of
the energy landscape.

In contrast to the isotropic perturbations, where the random walkers follow the “down-hill”
trend, shear is anisotropic and thus pushing parts of the system “up-hill”. For example, under
planar simple shear, one (eigen) direction is tensile (up) whereas an other is compressive (down).
If the ensemble is random, shear will only re-shuffle the population. But if the material was
previously forced or relaxed towards the (local) land-scape minima, shear can only lead to a
net up-hill drift of the ensemble, i.e., to decreasing φJ , referred to as dilatancy. For ongoing
perturbation, if volume is conserved, both coordination number and pressure slowly decrease
(SI Fig. S5) whereas for fixed confining pressure (data not shown) the volume would decrease
(compactancy). This process is much faster than relaxation, since it is driven by shear strain
amplitude. For large enough strain the system will be sufficiently re-shuffled, randomized, or
“re-juvenated” such that it can be close to its quenched, random state φSJ .

Prediction: minimal model
Finally, we test the proposed history dependent jamming point φJ(H) model, by predicting

p and C∗, when a granular assembly is subjected to cyclic isotropic compression to φmax
i = 0.73

for M = 1 and for M = 300 cycles, with ∞φJ,i = 0.667, as shown in Fig. 4(a-b) (prediction
details discussed in SI section S7). It is observed that using the history dependence of φJ(H),

6

α=1.37 and εd
SJ=0.10 

1: 

2: 
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The image cannot be displayed. 
Your computer may not have 

Evolution of jamming points with history 

Predictive power – cyclic isotropic deformation	
  

- Intermediate cyclic over-compression (amplitude 0.73) for 100 cycles. 
 

- Well predicted isotropic - pressure and coordination number (during loading and un-loading). 
-  Only by adding motion of jamming-point in the constitutive model. 
-  Curves saturate for large cycles for loading and un-loading and is also predicted.	
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Predictive power – cyclic isotropic deformation	
  

- Intermediate cyclic over-compression (amplitude 0.73) for 100 cycles. 
 

- Well predicted isotropic - pressure and coordination number (during loading and un-loading). 
-  Only by adding motion of jamming-point in the constitutive model. 
-  Curves saturate for large cycles for loading and un-loading and is also predicted.	
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Experiments by S. 
Frank-Richter and M. 
Sperl (DLR, Cologne) 

Cons4tu4ve	
  Model:	
  Anisotropy	
  Model	
  

Due to A1 and A2, the model provides a cross coupling  
 between the two types of stress and strain in the model 

Isotropy (before) + Anisotropy Fdev 

Need to define -  Initial state and the deformation path 
… then integrate the incremental evolution …  
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Predictive power – cyclic pure shear deformation	
  

- Cyclic shear for 3 cycles (after the first loading, system forgets history). 
 

-  Quantities like – fraction of non-rattlers, coordination number, pressure –  
by mainly modifying the constitutive model with non-constant jamming point. 

Something for experimentalists	
  

Measuring jamming points from the accessible macroscopic quantities – easiest pressure J 

During isotropic deformation at three different amplitudes,  
and extracting it from pressure … comparison with the theoretical framework	
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Something for experimentalists	
  

Measuring jamming points from the accessible macroscopic quantities – easiest pressure J 

During shear deformation, and extracting it from pressure, coordination number. 
Comparison with the theoretical framework	
  

!v = " ln v
vc

#
$%

&
'(

The image cannot be displayed. 
Your computer may not have 

Evolution of jamming points with history 
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Explanation – Energy landscape	
  

 - Isotropic deformation – leads to an increase in local and total  jamming point,  
 wheras the shear deformation decreases it… 

 
- Deeper valleys with higher barriers, can be achieved with higher over-compression. 
 
 
 

22.03.2016 

Minimal meso-statistical model 

•  Experiment (O. Pouliquen, Marseille) 
•  & Model (developed during my visit) 
•  Results 

•  Slow compaction 
•  Cyclic compaction 

•  Summary 
•  Next steps ? 
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22.03.2016 

Experiments 

•  Dense, monodisperse periodic shear 

Model 

•  Packing: 
•  Local configuration? 
•  Energy landscape 
•  Potential energy → Density 

•  Particles: 
•  Explore the energy landscape 
•  Random walk = Sinai Diffusion 
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Model 

•    

22.03.2016 

Slow compaction 

•  Experiment vs. model simulation 

min

mean min

1 E V
V V

ν −= −
−
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22.03.2016 

Cyclic compaction 

•  One Tap/Shear = Monte Carlo step 
•  Tapping Amplitude = Temperature 

22.03.2016 

Cyclic compaction 

•    



47	



22.03.2016 

1
9
7

Summary 

•  Minimal (?) model  
•  Define configuration energy landscape 
•  Tap/Shear = Explore landscape 
•  Experimental phenomenology  

22.03.2016 

Next Steps 

•  How to get the energy landscape ? 
•  Temperature = ? 
•  Monte Carlo time-scale ? 
•  Correlations ? 
•  Energy landscape as function of  

    system parameters ? 
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•  fluid-solid transition => jamming “point” – no point! 

So much for the jamming point …	
  

S. Luding, Nature, 2016 

BC	
  “isochoric”	
  +	
  tapping	
  
equivalent	
  to	
  temperature	
  
p 

Φ ΦJ 
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p 

Φ ΦJ 

BC	
  “isochoric”	
  shear	
  

i.e. pressure-dilatancy 

Φ ΦJ 

Equilibrium:	
  shear	
  +	
  T	
  
i.e. pressure-dilatancy 
           and -relaxation  τ	



Φc 
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•  fluid-solid transition => jamming “point” – no point! 

So much for the jamming point …	
  

S. Luding, Nature, 2016 


