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Granular material regimes 



Solid+liquid+gas 

[Forterre & Pouliquen, Annu.	
  Rev.	
  Fluid	
  Mech.	
  (2008)] 



Solid+liquid+gas 

[Jaeger et al. (1996), Forterre & Pouliquen, Annu.	
  Rev.	
  Fluid	
  Mech.	
  (2008)] 

Three	
  regimes:	
  
	
  
•  solid	
  –	
  sta9c	
  
par9cles	
  interact	
  via	
  fric9onal	
  contacts	
  

•  liquid	
  –	
  dense,	
  flow-­‐like	
  behavior	
  
both	
  collisions	
  and	
  fric9on	
  

•  gas	
  –	
  rapid	
  dilute	
  flow	
  
par9cles	
  interact	
  via	
  collisions	
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Abstract

The paper attempts to give a critical overview of the field of granular flow with attention both to the history and the underlying physics that
govern the field. It starts with a discussion of the basic transport mechanisms in a granular flow. It continues with a discussion of contact
mechanics – the way that individual particles see each other mechanically. It then discusses the historical limiting regimes of granular flow, the
Quasistatic and the Rapid-Flow regimes. Finally, it concludes with a review of the Elastic picture of granular flow, which both unifies the
Quasistatic and Rapid regimes and fills in the intervening space. It shows that the rheological behavior of granular systems changes with system
scale constraints, and, in particular, that the materials behave differently under controlled-stress and controlled-concentration conditions. The
Elastic model defines an entire flowmap of granular flow and thus allows one to place boundaries on where the Quasistatic and Rapid-Flow
models (sometimes called kinetic theory models) are something of a red herring and cannot be applied to common granular flows.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Transport mechanism; Quasistatic regime; Rapid-Flow regime; Granular flow

1. Introduction

Under the correct conditions, a granular solid can flow like a
fluid. This was probably first recorded be Lucretius (ca. 98–
55 B.C.), who wrote “One can scoop up poppy seeds with a
ladle as easily as if they were water and, when dipping the ladle,
the seeds flow in a continuous stream,” (quotation taken from
Jacques [1]). As long as there has been mining and agriculture,
man has attempted to exploit the flowability of granular solids
to ease handling and storage problems. In particular, the ability
of gravity to drive a granular flow, as noted by Lucretius, greatly
simplifies and provides a cost-free mechanism of transport. As a
result, the most common granular handling devices, chutes and
hoppers, are gravity-driven flows. Yet the design of granular
systems is still something of a black art, in part because even the
most basic flow mechanisms of granular materials are not well
understood. In fact, science has not identified the set of material
properties that control the flow behavior.

For the purposes of this article, a granular solid is taken to be
a collection of discrete solid particles. In general the spaces
between the particles are filled with an interstitial fluid, usually

air. However, it will be assumed herein that the particles are
large and heavy in the sense that they are immune to effects of
the interstitial fluid. For the most part we will also ignore
cohesion between particles; cohesion arises from surface forces
or related phenomena such as liquid bridges, both of which act
on the surface area and thus can generally be neglected for large
particles with small surface area to volume ratios. Note that
these requirements collectively define what is meant by “large”
although those criteria cannot yet be quantitatively defined by a
set of dimensionless parameters.

This paper grew out of a long lecture given to the Ohio State
summer course on Powder Technology. It is an attempt to put
the state of knowledge of granular flows into perspective. It is
not intended to be a review article, in the sense that I am not
trying to mention every paper written on the subject, but instead
attempt to hit the highpoints and give a critical and balanced
view to the whole subject.

2. Internal force transmission

The unique features of granular material arise from the
manner in which force is internally transmitted. In continuum
mechanics this is represented by a stress tensor τ, each
component of which τij represents the force in the i-direction

Powder Technology 162 (2006) 208–229
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Institut Universitaire des Systèmes Thermiques Industriels, Centre National de la
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Abstract
We review flows of dense cohesionless granular materials, with a
special focus on the question of constitutive equations. We first dis-
cuss the existence of a dense flow regime characterized by enduring
contacts. We then emphasize that dimensional analysis strongly con-
strains the relation between stresses and shear rates, and show that
results from experiments and simulations in different configurations
support a description in terms of a frictional visco-plastic constitutive
law. We then discuss the successes and limitations of this empirical
rheology in light of recent alternative theoretical approaches. Fi-
nally, we briefly present depth-averaged methods developed for free
surface granular flows.

1

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
8.

40
:1

-2
4.

 D
ow

nl
oa

de
d 

fr
om

 a
rjo

ur
na

ls
.a

nn
ua

lre
vi

ew
s.o

rg
by

 P
ol

ite
cn

ic
o 

D
i M

ila
no

 o
n 

06
/2

6/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



Internal	
  forces	
  transmission 
 



Contact forces 

•  Unique	
  feature	
  of	
  granular	
  material	
  arises	
  from	
  internal	
  force	
  
transmission	
  

	
  
•  Most	
  fundamental	
  microscopic	
  property	
  of	
  granular	
  materials:	
  

irreversible	
  energy	
  dissipa9on	
  in	
  the	
  course	
  of	
  interac9on	
  collision	
  
between	
  par9cles.	
  



Any	
  quan9ty:	
  
-­‐	
  Scalar	
  
-­‐	
  Vector	
  
-­‐	
  Tensor:	
  Stress	
  

Q = 1
V c
∑ wV

p( ) l pcF c

p

V

cF

Micro-­‐macro	
  transi5on	
  
Stress tensor 

Overview	
  of	
  more	
  complex	
  formula9ons	
  in	
  	
  
[Weinhart	
  et	
  al.	
  	
  (2010)]	
  



Stress tensor 

a.	
  Contact	
  stress	
  tensor	
  

Due	
  to	
  the	
  force	
  transmission	
  across	
  interpar9cle	
  forces	
  

b.	
  Streaming	
  stress	
  tensor	
  

Due	
  to	
  the	
  mo9on	
  of	
  a	
  par9cle	
  rela9ve	
  to	
  the	
  	
  
bulk	
  material	
  (Reynolds	
  stress	
  tensor	
  in	
  turbolent	
  flows)	
  

σ ij
s =

ρpφ

V
u 'i

p=1

Np

∑ u ' j

σ ij
c =
1
V

Fi
C

C=1

Nc

∑ l j



Stress tensor 

a.	
  Contact	
  stress	
  tensor	
  

In	
  hoppers,	
  chutes,	
  landslides:	
  	
  	
  φ > 50%	
  
is	
  usually	
  dominant	
  in	
  common	
  granular	
  flows	
  	
  

b.	
  Streaming	
  stress	
  tensor	
  

can	
  usually	
  be	
  neglected	
  	
  



Hertzian contact law 



Hertzian contact law 

F = 2
3
R1/2

Eg

1−νg
2

"

#
$$

%

&
''δ

3/2 = k(δ1/2 )δ → k∝δ∝ p

Contact	
  s5ffness	
  

the	
  deforma9on	
  δ	
  increases	
  	
  
with	
  applied	
  pressure	
  p	
  



Solid	
  state 
 



Small strain (elastic) stiffness 

Classical	
  solids:	
  elas9c	
  s9ffness	
  is	
  a	
  material	
  constant	
  	
  
Granular	
  materials:	
  elas9c	
  s9ffness	
  depends	
  on	
  pressure	
  and	
  volume	
  frac5on	
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Granular Elasticity: how to characterize it?  

v
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=
K + 4

3
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ρ
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=
G
ρ

P

P

Ƈ Coherent compressional wave

Ƈ Effective medium theory (EMT)  (Duffty & Mindlin 1957; Digby 1981, Walton 1987)

Jia & Mills, Powders & Grains 2001

- Goddard (1990)
- Makse, Johnson, Schwartz (2000)
- Velicky, Caroli (2002)
- Coste, Gilles (2003); Roux (2000)

Coherent wave velocity versus pressure V(P)
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with affine approximation

[Domenico (1977), Jia& Mills (2001), Wildenberg et al (2013),… ] 
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Granular Elasticity 
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vp = vp (φ, p)   vs = vs (φ, p) 
 
dependence on (macro): 
pressure, volume fraction  
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Hertzian contact:	
   k ∝ p1/3

v
p
∝ p1/6 v

s
∝ p1/6



Small strain (elastic) stiffness 

[Gland et al., PRE	
  (2005)] 

Because	
  of	
  Hertzian	
  interac9on	
  we	
  expect:	
   K(p)∝G(p)∝ p1/3

G
 [M

Pa
]	



Gbulk ∝
k
R

[Bathurst and Rothenburg, J.	
  Appl.	
  Mech.	
  (1988)] 
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macroscopic stress–strain–strength behaviour and a strategic
model calibration and verification. For reasons of simplicity,
the influence of soil fabric anisotropy has been largely
ignored or treated crudely in geotechnical analyses.
A strong motivation for a serious treatment of the fabric

anisotropy of granular soils has arisen in recent years from
great uncertainties in the analysis of flow liquefaction defor-
mation and the determination of the undrained critical state
or steady-state strength (Finn, 2000; Yang, 2002). A back-
analysis of the failed Lower San Fernando Dam (Finn, 2000)
indicated that the average steady-state strength of sand was
only 35% of the laboratory triaxial compression value, which
had already been reduced by a factor of 6.5 to correct for
disturbance (Seed et al., 1989). This observation does not fit

the established theory of critical-state soil mechanics, in
which the undrained critical-state strength of a soil is a
function only of its void ratio or density. On the contrary, it
has been consistently observed that the undrained response
of a granular soil and its critical-state strength may depend
on the stress path and initial fabric as well.

This paper presents an investigation into fabric anisotropy
effects on granular soil behaviour, in which the two primary
problems mentioned above were addressed in an integrated
manner. First, an image-analysis-based technique combined
with a mathematical approach was developed to measure
and quantify the initial fabric of a granular soil assembly at
the microscale level. The different fabrics formed by two
sample preparation methods widely used in the laboratory
were identified and compared. Second, an existing platform
model (Li & Dafalias, 2002) was extended to account for
the combined effects of inherent fabric and loading direction
on granular soil response in a tractable way. Third, a series
of laboratory tests was conducted on Toyoura sand under
various loading and sample preparation conditions. Detailed
comparisons of the model simulations and test results are
made to assess the model performance in capturing the
fabric anisotropic effects.

MEASUREMENT OF FABRIC ANISOTROPY
Measuring the fabric of a granular soil assembly is of

fundamental importance, yet it is a challenge in the study of
anisotropy effects. Available experimental data on soil fabric
are scarce. In recent years image analysis has emerged as a
promising technique in geotechnical research, because it
allows the soil structure to be characterised at the microscale
level (Kuo & Frost, 1996; Jang et al., 1999). In doing this,
the fabric of a soil specimen should be preserved in a
manner with minimum disturbance, and the representative
coupon surfaces are then sectioned for image analysis by a
scanning electron microscope (SEM). Generally, there are
two methods for preservation of the fabric of a granular soil
specimen: one is to impregnate the specimen with resin and
cure it, and the other is to saturate the specimen with water
and freeze it. Of these two methods, the former is consid-
ered more viable, because a frozen specimen may not be
strong enough to sustain sectioning, grinding and polishing
in the process of acquiring high-quality coupon surfaces for
image analysis.

In this study Toyoura sand, a Japanese standard sand
consisting of subrounded to subangular particles, was used.
The basic properties of this sand are: mean diameter ¼
0.23 mm; uniformity coefficient ¼ 1.32; specific gravity ¼
2.65; maximum void ratio ¼ 0.977; and minimum void ratio
¼ 0.597. Both the dry deposition and moist tamping methods
(Ishihara, 1993) were employed to produce specimens for
laboratory testing. In the dry deposition (DD) method, oven-
dried sand is filled into the mould in several layers using a
funnel. In each layer the sand is poured by keeping the
funnel’s nozzle slightly above the sand surface so that the
sand is deposited in the loosest state. A denser specimen of
target density can be prepared by tapping the mould using a
rubber mallet. In the moist tamping (MT) method, moist sand
(typically with 5% water content) is placed in five or ten
layers in the mould. In each layer a tamper is used to compact
the sand. The tamping energy applied to the upper layers is
generally higher than that to the lower layers, so that a
relatively uniform density can be achieved. Generally, the dry
deposition method is considered suitable for modelling the
natural deposition process, whereas the moist tamping meth-
od can model the soil fabric of rolled construction fills better,
and has the advantage of preventing segregation of well-
graded materials (Kuerbis & Vaid, 1988; Ishihara, 1993).
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Fig. 1. Effects of sample preparation methods and loading paths
on undrained response of Toyoura sand: (a) in triaxial
compression (Dr 20%); (b) prepared by moist tamping
(Dr 30%)
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[Yoshimine (1988), Yang, Li and Yang (2008), …] 

Compression  
(Triaxial) test 

Granular Elasticity 

scopically equivalent load vectors in all five available
samples for each one of the investigated macroscopic states.
Figure 1 displays on logarithmic plots the pressure depen-
dence of shear and bulk moduli in all series A, A0, B, C, and
D during the first compression. Figure 1 clearly shows that
the moduli are primarily sensitive to coordination number,
with well coordinated samples A, B !and A0" displaying
larger moduli than C and D, in which the contact network is
more tenuous !z*#4.5 and z#4 under low pressure
$13,14%". Moduli are much less sensitive to packing fraction
!: C and D results are close to each other at low pressure,
when !C#0.638 and !D#0.594 $13,14%. They are not
strongly influenced either by the width of the force distribu-
tion: A and A0 states have almost the same moduli !only
some values of G below 100 kPa differ by more than 5%",
whereas the probability distribution function of normal
forces strongly differ as pressure grows $see paper II !$14%,
Fig. 5"%.

The increase of elastic constants with pressure naturally
stems from the dependence of contact stiffnesses on the force
they transmit, as expressed by Eqs. !3" and !4", and due to
relation !2" the typical contact stiffness grows as P1/3 $see
Eq. !19"%, which is the expected pressure dependence for
macroscopic moduli. Power laws are often used to relate
elastic moduli to confining stresses $16,21,22,40%, and pos-

sible origins for the observation of exponents larger than 1 /3
!as on Fig. 1" have been discussed by several authors
$40,41%. One possible explanation is the creation of new con-
tacts under the effect of the increase of the confining pres-
sure, which leads to a denser, stiffer contact network. This
mechanism appears in particular to account for the pressure
dependence of elastic moduli in regular, crystal-like arrays of
identical particles as in the experiments described in Refs.
$3,5%. Because of the slight lattice distorsions obtained with
imperfect and slightly polydisperse spheres, the contact co-
ordination number, which is limited, in the rigid limit of "
→#, to 4 in 2D and 6 in 3D $32%, is smaller than the nearest
neighbor coordination number on the dense lattices studied
!such as 12 for FCC in 3D $3% and 6 for the 2D triangular
lattice $5%". This leaves a large number of neighbor pairs at a
distance related to the width of the particle size distribution,
where additional contacts are induced by higher pressures.
This has been shown by numerical simulations $42% to pro-
duce a pressure dependence of moduli closer to P1/2 in some
pressure range, a phenomenon predicted in part by a theory
presented in $43%. With general, amorphous packings, the
situation is different because distances between neighbors
that are not in contact are no longer related to a small poly-
dispersity parameter, but are distributed, approximately as a
power law in some range !see paper I $13%", in a way that is
characteristic of the disordered geometry. Departures from
the P1/3 scaling are larger in low z states !Fig. 1", and the
largest in C configurations, in which contact gains under
growing P are faster than in D ones. However, apparent
power laws with exponents larger than 1 /3 are observed at
very low pressures, when, from paper II $$14%, Fig. 2a%, the
increase of z with P is rather slow. Moreover, in the case of
C and D systems, the exponent of the power law fit for the
pressure dependence of shear modulus G is significantly
larger !about 0.5" than the one for bulk modulus B !about
0.4". These features are discussed in Sec. IV B below.
Changes of ratio G /B as P grows are equivalent to changes
of the Poisson ratio of the granular material, given by

$* =
3B − 2G

6B + 2G
. !23"

$* decreases only slightly as P grows for well coordinated
states A and B, from $*#0.13 at P=10 kPa to $*#0.09
under 100 MPa. Its larger variations in poorly coordinated
configurations C and D, for which it decreases from 0.3 to
about 0.1 in the same range, corresponds to G increasing
with P faster than B.

B. Simple prediction schemes and relations to microstructure

The simplest approximation scheme to estimate the values
of elastic moduli, knowing the density and the coordination
number, is based on the assumption of homogeneous strains
!or, equivalently, of affine displacements". It was introduced,
e.g., in $28%, and it is also used by Makse et al. in Refs.
$6,10% !where it is called an effective medium theory". It
amounts to evaluating the stress increments corresponding to
strain %= using formula !1", in which the contact force varia-
tions are evaluated, via Eq. !5", with relative displacements
given by

(a)

(b)

FIG. 1. !Color online" Bulk modulus B !a" and shear modulus G
!b" vs confining pressure P for series A !crosses, continuous line",
A0 !round dots, dotted line", B !asterisks, dotted line", C !square
dots, continuous line", and D !open squares, dotted line". Note that
results for A, A0, and B are hardly distinguishable. The dashed line
marked “KJ” corresponds to some experimental data $6% between
50 and 400 kPa commented on in Sec. VI

IVANA AGNOLIN AND JEAN-NOËL ROUX PHYSICAL REVIEW E 76, 061304 !2007"

061304-6

[Agnolin et al (2007)] 

Not enough! 
Response depends on preparation 
[Chen et al (1988), Agnolin et at (2005), Jia (2005) 
Kuwano&Jardine (2002), Ezaoui et al. (2009), … ] 

vp = vp (φ, p)   vs = vs (φ, p) 



WHY?  

microstructure matters 

[Behringer (Duke)]  



We can look closer: simulation of wave propagation by DEM 

DEM simulations: wave propagation 



Material idealization – DEM simulations 

Micromechanical Analysis of the Incremental Behavior of Frictional Granular Materials

Granular Materials

Material

MATERIAL: Granular Medium

Real Material
Random aggregate
Elastic Frictional particles
Interact by mean of contact forces

Idealized Material
Random aggregate of
IDENTICAL
FRICTIONAL
SPHERES
Interact by mean of contact forcesHetz-Mindlin interaction 

s

Ft 

µ F
n 

tangential force (Mindlin) 
δ

Fn 

normal force (Hertz) 



DEM simulations: wave propagation - lattice 

[Moureille & Luding, Ultrasonics (2008), De Mol, M.Sc thesis (2013)] 



DEM simulations: wave propagation - random 

[Moureille & Luding, Ultrasonics (2008), De Mol, M.Sc thesis (2013)] 



DEM simulations: wave propagation  
           - dispersion relation 

[Moureille & Luding, Ultrasonics (2008), De Mol, M.Sc thesis (2013)] 

regular lattice random system 



Elastic moduli dependence on  microstructure 
V. Magnanimo et al.
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Fig. 3: Elastic moduli K and G, normalized by the material
moduliGg andKg, vs. the confining pressure p0, for four groups
of packings realized by the same protocol determined by µi.

the pressure. Consequently, there is more than a simple
overlapping among particles with the increase of the pres-

sure, evidenced by the departure of the p1/30 -dependence
in fig. 3 [7,22]. We find that there is a non-trivial depen-
dence of the moduli on the coordination number which
goes beyond the usual pressure-induced increments of Z
found previously [7]. This is associated to fluctuations
in the coordination number, in particle translation and
rotation [10]. These fluctuations can all be related to Z.
We will next try to elucidate this dependence.
We focus on the micro-structure of the aggregate and,

in particular, we consider the number of particles in
contact through the coordination number Z and the para-
meter χ. For packings having similar Z, we find that the
contact distribution function collapses irrespective of the
confining pressure, see fig. 5. Consequently, we may relate
the coordination number to the fluctuation in the number
of contact per particle. This is corroborated by plotting
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the pressure. Consequently, there is more than a simple
overlapping among particles with the increase of the pres-

sure, evidenced by the departure of the p1/30 -dependence
in fig. 3 [7,22]. We find that there is a non-trivial depen-
dence of the moduli on the coordination number which
goes beyond the usual pressure-induced increments of Z
found previously [7]. This is associated to fluctuations
in the coordination number, in particle translation and
rotation [10]. These fluctuations can all be related to Z.
We will next try to elucidate this dependence.
We focus on the micro-structure of the aggregate and,

in particular, we consider the number of particles in
contact through the coordination number Z and the para-
meter χ. For packings having similar Z, we find that the
contact distribution function collapses irrespective of the
confining pressure, see fig. 5. Consequently, we may relate
the coordination number to the fluctuation in the number
of contact per particle. This is corroborated by plotting
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the pressure. Consequently, there is more than a simple
overlapping among particles with the increase of the pres-

sure, evidenced by the departure of the p1/30 -dependence
in fig. 3 [7,22]. We find that there is a non-trivial depen-
dence of the moduli on the coordination number which
goes beyond the usual pressure-induced increments of Z
found previously [7]. This is associated to fluctuations
in the coordination number, in particle translation and
rotation [10]. These fluctuations can all be related to Z.
We will next try to elucidate this dependence.
We focus on the micro-structure of the aggregate and,

in particular, we consider the number of particles in
contact through the coordination number Z and the para-
meter χ. For packings having similar Z, we find that the
contact distribution function collapses irrespective of the
confining pressure, see fig. 5. Consequently, we may relate
the coordination number to the fluctuation in the number
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Characterizing the shear and bulk moduli of an idealized granular material
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Fig. 6: Relation between χ and coordination number Z.
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Fig. 7: Elastic moduli K and G, normalized by the material
moduli Gg and Kg, vs. the coordination number Z, for four
groups of packings with the same confining pressure p0.

5 6 7
300

320

340

360

380

400

420

440

460

480

500

  Average strain theory

 K
/ 

p
1

/3

0

Z

K [100 kPa]  

K [200 kPa]

K [500 kPa]

K [1    MPa]

K [10  MPa]

5 6 7

200

300

400

500

600

700

  Average strain theory

G
/ 

p
1

/3

0

Z

G [100 kPa]

G [200 kPa]

G [500 kPa]

G [1    MPa]

G [10  MPa]
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curves.

χ vs. Z in fig. 6. Then, we show the dependence of the
measured elastic moduli on Z, using groups of packings
with the same confining pressure p0 (fig. 7). While in fig. 8
we plot the bulk and shear moduli normalized by the

confining pressure (p1/30 ), obtaining unique curves. Predic-
tions from the average strain theory are also proposed.
Finally, it is interesting to focus on the ratio of the

elastic moduli, η=G/K [24]. In this ratio the p1/30 pressure
dependence cancels out and, for packings with the same φ,
all that remains is a pure dependence on Z. The plot of η
vs. Z (fig. 9) results in a universal curve independent of the
confining pressure. That is, once the initial state has been
achieved, a measurement of the overall shear and bulk
modulus can be associated with a unique coordination
number. Such a universal curve reveals a dependence on Z
that strongly deviates from the prediction of the average
strain theory based on the Hertz contact that predicts that
η is constant. Our results clearly demonstrate the influence
of the microstructure characterized by Z.
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with the same confining pressure p0 (fig. 7). While in fig. 8
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confining pressure (p1/30 ), obtaining unique curves. Predic-
tions from the average strain theory are also proposed.
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dependence cancels out and, for packings with the same φ,
all that remains is a pure dependence on Z. The plot of η
vs. Z (fig. 9) results in a universal curve independent of the
confining pressure. That is, once the initial state has been
achieved, a measurement of the overall shear and bulk
modulus can be associated with a unique coordination
number. Such a universal curve reveals a dependence on Z
that strongly deviates from the prediction of the average
strain theory based on the Hertz contact that predicts that
η is constant. Our results clearly demonstrate the influence
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types of test (e.g. resonant column and field geophysical
tests, as by Dyvik & Madshus, 1985; Davis & Bennell,
1986, Bennell & Taylor Smith, 1991), other laboratories’
determinations on the same material, and in-laboratory com-
parisons with previous tests on similar materials. The test’s
value lies in its simplicity, its relatively low cost and its
potential for determining anisotropy of shear modulus.

Resonant column testing. The resonant column apparatus,
which has been successfully used for more than 40 years in
the field of soil dynamics, provides a method of determining
the shear modulus (G) and Young’s modulus (E or Eflex) of
soils and weak rocks at very small strain levels, and of
obtaining estimates of the rate of stiffness degradation with
increasing strain. Different apparatus configurations allow
vibration of a soil specimen in torsion (Hardin & Music,
1963; Stokoe et al., 1980; Menq & Stokoe, 2003), in flexure
(Cascante et al., 1998) and axially (Drnevich, 1972).
Torsional testing appears not to suffer from bedding effects
(although compliance is an issue, as will be discussed below),
and is therefore to be preferred for stiffness determinations.
Figure 36(a) shows a simple schematic diagram of a

Stokoe resonant column apparatus. An electromagnet drive
head, to which four magnets are attached, is bolted to the
specimen top cap. Torsion can be applied by running current
through the four coils in which the magnets sit, which are
held in place by a substantial support frame. Flexure can be
applied by running current through two diametrically op-
posed coils. At the start of a test a relatively low sinusoidal
drive voltage is applied, and a frequency sweep is carried
out. As the frequency is increased, the amplitude of the
vibrations, measured by an accelerometer mounted on the
drive head, increases up to a peak, and then decays. This is
shown by the lowest curve in Fig. 37. The peak amplitude,
which occurs at low levels of damping at the resonant
frequency, is recorded. Given the mass polar moment of
inertia of the drive head and top platen, the specimen mass
and its dimensions, and assuming linear elasticity, the shear
modulus (Gv) of the soil can be calculated.
The process is then repeated with a higher applied vol-

tage. Measured amplitude, and therefore strain, increases. At
first, at the lowest strain levels, the peak frequency is
unaffected by the increasing voltage, but as shear strain
increases shear stiffness decreases, and the peak frequency
of the system drops (Fig. 37). The shear modulus at very
small strain (G0), and a curve of shear modulus against
shear strain (stiffness degradation), can be obtained from the
results.
Resonant column testing is the subject of ASTM standard

D 4015-07 (ASTM, 2007), which provides generic guidance
for the calibration and operation of a range of resonant
column devices to determine both stiffness and damping, but
does not attempt to provide engineering guidelines on the
appropriate use of the apparatus, nor of problems that may
be encountered. This can be found elsewhere in the literature
(e.g. Bennell et al., 1984; Bennell & Taylor Smith, 1991). A
suitable test procedure might be described as follows.

(a) Set up specimen within the apparatus. An estimate of
the expected very-small-strain shear modulus will be
useful in judging apparatus compliance, which may
need correction, and specimen slippage effects, which
may be avoidable by cementing the specimen to the
platens or, for weaker materials, by using vanes
protruding into the specimen (Drnevich, 1978; Clayton
et al. 2009b).

(b) Re-establish the in situ effective stress(es) on the
specimen, by applying suitable cell and (elevated) back-

pressures, and allow drainage while monitoring volume
change and specimen height.

(c) Immediately after re-establishment of in situ stresses,
measure the very-small-strain shear modulus (Gv) (and
normally damping) of the specimen, and monitor it at
regular intervals on a logarithmic scale (for example at
approximately 1, 2, 4, 8, 16, 32 min, 1, 2, 4, 8, 16,
32 h, etc. after the start of this stage). Low-amplitude
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Fig. 36. (a) Schematic drawing and (b) photograph of Stokoe
resonant column apparatus
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types of test (e.g. resonant column and field geophysical
tests, as by Dyvik & Madshus, 1985; Davis & Bennell,
1986, Bennell & Taylor Smith, 1991), other laboratories’
determinations on the same material, and in-laboratory com-
parisons with previous tests on similar materials. The test’s
value lies in its simplicity, its relatively low cost and its
potential for determining anisotropy of shear modulus.

Resonant column testing. The resonant column apparatus,
which has been successfully used for more than 40 years in
the field of soil dynamics, provides a method of determining
the shear modulus (G) and Young’s modulus (E or Eflex) of
soils and weak rocks at very small strain levels, and of
obtaining estimates of the rate of stiffness degradation with
increasing strain. Different apparatus configurations allow
vibration of a soil specimen in torsion (Hardin & Music,
1963; Stokoe et al., 1980; Menq & Stokoe, 2003), in flexure
(Cascante et al., 1998) and axially (Drnevich, 1972).
Torsional testing appears not to suffer from bedding effects
(although compliance is an issue, as will be discussed below),
and is therefore to be preferred for stiffness determinations.
Figure 36(a) shows a simple schematic diagram of a

Stokoe resonant column apparatus. An electromagnet drive
head, to which four magnets are attached, is bolted to the
specimen top cap. Torsion can be applied by running current
through the four coils in which the magnets sit, which are
held in place by a substantial support frame. Flexure can be
applied by running current through two diametrically op-
posed coils. At the start of a test a relatively low sinusoidal
drive voltage is applied, and a frequency sweep is carried
out. As the frequency is increased, the amplitude of the
vibrations, measured by an accelerometer mounted on the
drive head, increases up to a peak, and then decays. This is
shown by the lowest curve in Fig. 37. The peak amplitude,
which occurs at low levels of damping at the resonant
frequency, is recorded. Given the mass polar moment of
inertia of the drive head and top platen, the specimen mass
and its dimensions, and assuming linear elasticity, the shear
modulus (Gv) of the soil can be calculated.
The process is then repeated with a higher applied vol-

tage. Measured amplitude, and therefore strain, increases. At
first, at the lowest strain levels, the peak frequency is
unaffected by the increasing voltage, but as shear strain
increases shear stiffness decreases, and the peak frequency
of the system drops (Fig. 37). The shear modulus at very
small strain (G0), and a curve of shear modulus against
shear strain (stiffness degradation), can be obtained from the
results.
Resonant column testing is the subject of ASTM standard

D 4015-07 (ASTM, 2007), which provides generic guidance
for the calibration and operation of a range of resonant
column devices to determine both stiffness and damping, but
does not attempt to provide engineering guidelines on the
appropriate use of the apparatus, nor of problems that may
be encountered. This can be found elsewhere in the literature
(e.g. Bennell et al., 1984; Bennell & Taylor Smith, 1991). A
suitable test procedure might be described as follows.

(a) Set up specimen within the apparatus. An estimate of
the expected very-small-strain shear modulus will be
useful in judging apparatus compliance, which may
need correction, and specimen slippage effects, which
may be avoidable by cementing the specimen to the
platens or, for weaker materials, by using vanes
protruding into the specimen (Drnevich, 1978; Clayton
et al. 2009b).

(b) Re-establish the in situ effective stress(es) on the
specimen, by applying suitable cell and (elevated) back-

pressures, and allow drainage while monitoring volume
change and specimen height.

(c) Immediately after re-establishment of in situ stresses,
measure the very-small-strain shear modulus (Gv) (and
normally damping) of the specimen, and monitor it at
regular intervals on a logarithmic scale (for example at
approximately 1, 2, 4, 8, 16, 32 min, 1, 2, 4, 8, 16,
32 h, etc. after the start of this stage). Low-amplitude
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construction project involving the construction of a mass rapid
transit underground railway known as the MRT Blue line
yielded useful geotechnical information about Bangkok sub-
soils. In particular, the pressuremeter investigation data from
the Bangkok MRT Blue line project were employed in this
study. Finally, the analysis of small strain stiffness, with the
concept of threshold shear strain taken into account (Vucetic,
1994), was performed to determine the two required imputed
parameters for HSS.

1.1. Definition and roles of small strain stiffness

The initial stiffness modulus is an important soil parameter
related to the predictions of the ground movements and
field data interpretations. In soil dynamics and earthquake
engineering, the small strain shear modulus (Gmax) and the
damping ratio (D) are important parameters in soil character-
isation. A stiffness degradation curve is normally used to
explain the shear stiffness for a wide range of shear strain.
Atkinson and Sallfors (1991) categorised the strain levels into
three groups: the very small strain level, where the stiffness
modulus is constant in the elastic range; the small strain level,
where the stiffness modulus varies non-linearly with the strain;
and the large strain level, where the soil is close to failure and the
soil stiffness is relatively small. This explanation was illustrated
using the normalised stiffness degradation curve by comparing
with the ground response from geotechnical construction and the
measurement accuracy from laboratory investigation (Atkinson
and Sallfors, 1991; Mair, 1993) as shown in Fig. 1.

The significance of small strain non-linear behaviour of soils
in deep excavations was examined by Kung et al. (2009).
Comparisons of the diaphragm wall deflections and the ground
surface settlements in Taipei clays were observed from the
field measurements and were predicted from finite element
analyses based on the small strain non-linear type of soil
model. The results showed that the analysis with the small strain
model yielded a realistic settlement profile when compared to
the field observations. Similarly, in the case of the ground

movements induced by tunnelling, the finite element study of
London underground tunnelling (Addenbrooke et al., 1997)
revealed that non-linear small strain stiffness are necessary to
achieve ground settlement predictions. The above discussions
demonstrate the significance of non-linear small strain stiffness
in enhancing the predictive capabilities of finite element based
models. The current in-depth study on the small strain para-
meters of Bangkok Clays is presented in this paper.

1.2. Laboratory and in-situ studies of Bangkok Clays

The studies on the small strain stiffness characteristics of
Bangkok Clays were mainly based on laboratory and in-situ
tests at Chulalongkorn University and the Asian Institute of
Technology. The studies at Chulalongkorn University were
focused on the laboratory testing. Teachavorasinskun et al.
(2002a) conducted a series of cyclic triaxial tests on Bangkok
Soft Clay using precise external measurements at strain level
of 0.01%. Teachavorasinskun et al. (2002b) also conducted a
series of cyclic triaxial tests on the Bangkok Soft Clay with
applied load frequency of 1 and 0.1 Hz. Recently, Ratananikom
et al. (2012) investigated an anisotropic elastic parameter of
Bangkok Clay using the triaxial apparatus equipped with local
strain measuring systems and bender element. In addition, the
in-situ tests such as the down-hole seismic test (Teachavor-
asinskun and Lukkunaprasit, 2004) and the surface wave
analysis technique (Likitlersuang and Kyaw, 2010) have been
carried out to determine the shear wave velocity profiles of
Bangkok subsoil.
On the other hand, the in-situ testing was considerably

studied at the Asian Institute of Technology. The down-hole
seismic tests in Bangkok subsoil were firstly carried out by
Ashford et al. (1996) to define the small strain shear modulus
(Gmax). The seismic cone penetration tests (Dong, 1998) and
the bender element tests (Theramast, 1998) were performed in
parallel on the soil specimen collected from the same site in
Bangkok area. Likitlersuang et al. (2013) determined the
in-situ shear modulus from the pressuremeter testing results
taken from the Bangkok MRT Blue Line project.
The aforementioned laboratory and in-situ testing results are

employed to determine the small strain stiffness characteristics
of Bangkok Clays in this study.

2. Determination of small strain stiffness

2.1. Laboratory and in-situ measurements of small strain
stiffness

The laboratory and in-situ tests for measuring the pre-failure
small strain stiffness of soils are briefly reviewed here. Laboratory
testing plays a vital role in determining the stiffness of soils, but it
is already noted that they can suffer from various disadvantages
such as sample disturbance, sample preparation and apparatus
sophistication (Clayton, 2011). Two different methods are usually
made in the laboratory tests. The first method involves measur-
ing the local strain in triaxial testing (Goto et al., 1991; Scholey,
et al., 1995). Standard instrumentation, such as the linear[Atkinson (1991), Mair (1993)] 
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types of test (e.g. resonant column and field geophysical
tests, as by Dyvik & Madshus, 1985; Davis & Bennell,
1986, Bennell & Taylor Smith, 1991), other laboratories’
determinations on the same material, and in-laboratory com-
parisons with previous tests on similar materials. The test’s
value lies in its simplicity, its relatively low cost and its
potential for determining anisotropy of shear modulus.

Resonant column testing. The resonant column apparatus,
which has been successfully used for more than 40 years in
the field of soil dynamics, provides a method of determining
the shear modulus (G) and Young’s modulus (E or Eflex) of
soils and weak rocks at very small strain levels, and of
obtaining estimates of the rate of stiffness degradation with
increasing strain. Different apparatus configurations allow
vibration of a soil specimen in torsion (Hardin & Music,
1963; Stokoe et al., 1980; Menq & Stokoe, 2003), in flexure
(Cascante et al., 1998) and axially (Drnevich, 1972).
Torsional testing appears not to suffer from bedding effects
(although compliance is an issue, as will be discussed below),
and is therefore to be preferred for stiffness determinations.
Figure 36(a) shows a simple schematic diagram of a

Stokoe resonant column apparatus. An electromagnet drive
head, to which four magnets are attached, is bolted to the
specimen top cap. Torsion can be applied by running current
through the four coils in which the magnets sit, which are
held in place by a substantial support frame. Flexure can be
applied by running current through two diametrically op-
posed coils. At the start of a test a relatively low sinusoidal
drive voltage is applied, and a frequency sweep is carried
out. As the frequency is increased, the amplitude of the
vibrations, measured by an accelerometer mounted on the
drive head, increases up to a peak, and then decays. This is
shown by the lowest curve in Fig. 37. The peak amplitude,
which occurs at low levels of damping at the resonant
frequency, is recorded. Given the mass polar moment of
inertia of the drive head and top platen, the specimen mass
and its dimensions, and assuming linear elasticity, the shear
modulus (Gv) of the soil can be calculated.
The process is then repeated with a higher applied vol-

tage. Measured amplitude, and therefore strain, increases. At
first, at the lowest strain levels, the peak frequency is
unaffected by the increasing voltage, but as shear strain
increases shear stiffness decreases, and the peak frequency
of the system drops (Fig. 37). The shear modulus at very
small strain (G0), and a curve of shear modulus against
shear strain (stiffness degradation), can be obtained from the
results.
Resonant column testing is the subject of ASTM standard

D 4015-07 (ASTM, 2007), which provides generic guidance
for the calibration and operation of a range of resonant
column devices to determine both stiffness and damping, but
does not attempt to provide engineering guidelines on the
appropriate use of the apparatus, nor of problems that may
be encountered. This can be found elsewhere in the literature
(e.g. Bennell et al., 1984; Bennell & Taylor Smith, 1991). A
suitable test procedure might be described as follows.

(a) Set up specimen within the apparatus. An estimate of
the expected very-small-strain shear modulus will be
useful in judging apparatus compliance, which may
need correction, and specimen slippage effects, which
may be avoidable by cementing the specimen to the
platens or, for weaker materials, by using vanes
protruding into the specimen (Drnevich, 1978; Clayton
et al. 2009b).

(b) Re-establish the in situ effective stress(es) on the
specimen, by applying suitable cell and (elevated) back-

pressures, and allow drainage while monitoring volume
change and specimen height.

(c) Immediately after re-establishment of in situ stresses,
measure the very-small-strain shear modulus (Gv) (and
normally damping) of the specimen, and monitor it at
regular intervals on a logarithmic scale (for example at
approximately 1, 2, 4, 8, 16, 32 min, 1, 2, 4, 8, 16,
32 h, etc. after the start of this stage). Low-amplitude
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Fig. 36. (a) Schematic drawing and (b) photograph of Stokoe
resonant column apparatus
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1986, Bennell & Taylor Smith, 1991), other laboratories’
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potential for determining anisotropy of shear modulus.
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out. As the frequency is increased, the amplitude of the
vibrations, measured by an accelerometer mounted on the
drive head, increases up to a peak, and then decays. This is
shown by the lowest curve in Fig. 37. The peak amplitude,
which occurs at low levels of damping at the resonant
frequency, is recorded. Given the mass polar moment of
inertia of the drive head and top platen, the specimen mass
and its dimensions, and assuming linear elasticity, the shear
modulus (Gv) of the soil can be calculated.
The process is then repeated with a higher applied vol-

tage. Measured amplitude, and therefore strain, increases. At
first, at the lowest strain levels, the peak frequency is
unaffected by the increasing voltage, but as shear strain
increases shear stiffness decreases, and the peak frequency
of the system drops (Fig. 37). The shear modulus at very
small strain (G0), and a curve of shear modulus against
shear strain (stiffness degradation), can be obtained from the
results.
Resonant column testing is the subject of ASTM standard

D 4015-07 (ASTM, 2007), which provides generic guidance
for the calibration and operation of a range of resonant
column devices to determine both stiffness and damping, but
does not attempt to provide engineering guidelines on the
appropriate use of the apparatus, nor of problems that may
be encountered. This can be found elsewhere in the literature
(e.g. Bennell et al., 1984; Bennell & Taylor Smith, 1991). A
suitable test procedure might be described as follows.

(a) Set up specimen within the apparatus. An estimate of
the expected very-small-strain shear modulus will be
useful in judging apparatus compliance, which may
need correction, and specimen slippage effects, which
may be avoidable by cementing the specimen to the
platens or, for weaker materials, by using vanes
protruding into the specimen (Drnevich, 1978; Clayton
et al. 2009b).

(b) Re-establish the in situ effective stress(es) on the
specimen, by applying suitable cell and (elevated) back-

pressures, and allow drainage while monitoring volume
change and specimen height.

(c) Immediately after re-establishment of in situ stresses,
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Figure 7: CN versus q from DEM simulation with µ
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Quasi-static limit and fluid–solid transitions

Solid state rheology and solid-to-fluid transition

Solid-like granular assemblies are traditionally de-
scribed, e.g., for soil mechanics applications (Wood
1990; Mitchell 1993), with solid state rheological laws.
Those usually assume incremental forms (i.e., they re-
late stress and strain increments) to account for hystere-
sis of internal states of grain packings. Rather complex
constitutive relations have been developed (of elasto-
plastic or hypoplastic forms (Darve 1987)), which are
outside the scope of the present paper. Some general
features of the rheology of solid granular materials
should, nevertheless, be recalled. First, let us specify
that solid materials are usually studied under constant
normal stress p. As shear stress σ is increased from
zero, a threshold value σ1 is eventually reached, corre-
sponding to the onset of flow. Due to the absence of
a force scale, such a threshold correspond to a given
stress ratio: one thus observes σ1 = µ∗ P. µ∗ is a static
internal friction coefficient.

However, one should specify how the material needs
to deform before the threshold is reached, and how µ∗

may depend on the initial state. It has been well known,
ever since the phenomenon was observed and named
by Reynolds, that granular materials possess dilatancy,
i.e., shear strains of solid-like granular packings entail
volume changes. A description of the circumstances
in which a granular material may undergo arbitrary
large plastic strains, i.e., start to flow, was achieved
by the classical theory known as critical state soil me-
chanics (Schofield and Wroth 1968; Wood 1990). Its
essential prediction is that, while different equilibrium
packing states are possible, depending on the sam-
ple assembling process and subsequent history, granu-
lar materials, once subjected to monotonic, quasistatic
shear strains of sufficient amplitudes, tend to approach
an attractor state that does not depend on initial con-
ditions, known as the critical state, corresponding to
steady plastic flow at constant volume. Figure 8 is a
schematic representation of the approach to the critical
state for initially dense and loose systems.

The critical state is characterized by its solid fraction
"c and a value µ∗

c for the internal friction coefficient.
By definition, a dense material is such that " > "c.
Once sheared under constant P, it dilates, and " de-
creases until the limit value "c is approached. Mean-
while, the shear stress goes through a maximum σpeak

and then decreases towards σc. Loose systems, on the
other hand, are defined by " < "c. Under shear, they
contract and gradually approach "c from below, while
the shear stress monotonically increases towards µ∗

c P.
Both laboratory measurements and computer simula-
tions of model systems (Thornton 2000; Radjaï and
Roux 2004; Radjaï et al. 2004) confirm those properties.
Simulations also indicate that the critical state is char-
acterized by a specific distribution of contact orienta-
tions (or “fabric”) (Radjaï and Roux 2004). Numerical
results reveal that stiffness parameter κ is irrelevant
if it is large enough (Roux and Chevoir 2005), and
some simulations (Radjaï and Roux 2004; Radjaï et al.
2004) are performed with models of rigid grains. Conse-
quently, if the material remains homogeneous, the crit-
ical state only depends on geometric data (shape and
size distribution of the grains) and on the intergranular
friction coefficient. Interestingly, frictionless beads are
observed in simulations to exhibit a finite macroscopic
coefficient of friction without dilatancy (Fazekas et al.
2007; Peyneau and Roux 2008a, b), and solid fraction "

stays equal to the random close packing value "RCP "
0.64 in all solid-like configurations, as well as in slow
plastic flow. From an initial isotropically stressed solid,
σ monotonically increases upon shearing to its steady-
state value, about 0.1 P.

From the behavior of continuously sheared granular
materials in the quasi-static limit and from the critical
state concept, two basic characteristics are defined,
macroscopic friction coefficient µ∗

c and critical solid
fraction "c, which, for sufficiently stiff contacts, only
depend on geometry and intergranular friction coef-
ficient µ. µ∗

c is a growing function of µ. For circular
or spherical grains, it grows from about 0.1 for µ = 0
and saturates (Mahboubi-Ardakani 1995) for µ " 0.3
at a maximum value (around 0.3, depending on poly-
dispersity). "c is a decreasing function of µ, with "c =

Fig. 8 Schematic view of a
shear stress vs shear strain
curve and b solid fraction vs
shear strain curve for an
initially dense (solid line) and
an initially loose (dotted line)
material
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!RCP for µ = 0 (0.85 in 2D and 0.639 in 3D). Figure 9
gives plots of µ∗

c and !c/!RCP as functions of µ from
simulations of disk and sphere assemblies in two and
three dimensions.

“Static” vs “dynamic” friction

The critical state is usually identified with the steady
state in shear flow, under controlled normal stress, in
the quasi-static limit of I → 0. This assumes no discon-
tinuity in this limit or, in other words, that the static
internal friction coefficient, which defines the maximum
shear stress a solid granular assembly can withstand
at rest, under controlled normal stress, coincides with
the dynamic one, i.e., the ratio of shear to normal
stresses measured in the limit of slow flow. In a sense,
µ∗

peak = σpeak/P, as measured on gradually shearing a
dense material (see Fig. 8), can be regarded as a static
coefficient of friction, which is larger than the dynamic
one, µ∗

c . This obvious source of hysteresis, observed on
first shearing a solid material from an initial dense state,
is absent in assemblies of frictionless beads. Another
issue is whether the macroscopic friction coefficient
identified in the solid state prepared in the critical
state coincides with the average of shear to normal
stress ratio in the limit of slow flow. In this respect,
the observation of different characteristic angles for
which granular layers on rough inclines (Daerr and
Douady 1999) under gravity start and stop flowing
suggests a hysteresis effect. However, the influence of
the layer thickness and of the solid surface suggests
to attribute such a difference to boundary and size
effects. Such an interpretation is supported, in the case
of frictionless particles, by the results of two numerical
simulation studies: Peyneau and Roux (2008a) showed
(with spheres in 3D) the friction angle corresponding to

the onset of flow from rest to coincide with the dynamic
friction angle, and Xu and O’Hern (2006) (with disks
in 2D) showed the friction angle corresponding to the
cessation of flow to coincide with the dynamic friction
angle as well. In both cases, the static angle is larger
than the dynamic one, but the difference vanishes in the
limit of large systems. Finally, let us recall contact aging,
as another possible cause of friction hysteresis (Coste
2004).

Pressure-controlled vs volume-controlled behavior

The existence of an attractor state with given solid
fraction is consistent with the impossibility of finding
a quasi-static plastic flow pointed out in “Dimensional
analysis” when the material density is fixed. Such a flow
is only possible for ! = !c. Dense flows with ! < !c

are not quasi-static, the volume increase is due to in-
ertia effects (effect of I > 0). For ! > !c, the material
cannot flow, unless, on setting a prescribed shear rate
γ̇ , one forces contact deflections large enough to allow
particles to flow past one another in spite of steric
constraints. This regime, in which particle deformabil-
ity plays an essential role, was studied in Campbell
(2002). It should be noted that tiny density increments
entail very large stresses and considerable material
strain within intergranular contacts, very likely to entail
breaking, damage, or large plastic deflections signif-
icantly affecting particle shapes. If ! approaches !c

from above in steady shear flow with fixed ! and γ̇ ,
one should measure a normal stress p such that ratio I
takes a value corresponding to !. As I approaches zero
for ! → !c, this eventually leads to a divergence of p,
and of σ ∼ µS

∗ p for any finite value of γ̇ . If ! is used as
a control parameter, the value ! = !c thus appears as
a singular point. Some analogies with the phenomenol-

(a) (b)

Fig. 9 µ∗
c (a) and !c/!RCP (b) as functions of µ, from results of

2D simulations (filled symbols): (da Cruz et al. 2005) (squares—
x = 20%), (Estrada et al. 2008) (triangles—x = 60%), and 3D
simulations (open symbols): (Roux and Chevoir 2005; Peyneau

and Roux 2008a) (circles—x = 0%), (Thornton 2000) (triangle—
x $ 60%), (Fazekas et al. 2007) (squares—x = 0%), (Campbell
2005) (stars—x = 0%)

[Lamaitre et al., Rheol.	
  Acta	
  (2009)] 
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compressed together due to solid deformation at the contact
points and are squeezed into the interparticle pore space. But for
a wide range of smaller loadings, the critical concentration is
independent of the applied stress. In many soil mechanics
applications, the applied stress can be large, (for example
beneath a large building). But in most granular flows, the
applied stresses are relatively small and as the total strains are
large, it is reasonable to assume that the flow is incompressible
and fixed at the critical concentration, νc.

These plasticity-derived techniques have been used widely in
soil mechanics to predict the failures of soils below foundations
and structures such as retaining walls and earthen dams. There
were also problems that became apparent. For example, the first
versions of these theories predict the material would continu-
ously expand with shearing and never approach a critical state
(e.g. [22]).

When extended to study granular flows, this technique has
had partial success in predicting the flow from hoppers (e.g.
Jenike and Shield [23], Davidson and Nedderman [24], and
Brennen and Pearce [25]). As that material flows within the
hopper, it is assumed that the material is always yielding so that:

s ¼ r tan/ ð8Þ

everywhere within the hopper. Furthermore, as the material
experiences large shear strains, it is always assumed to be at the
critical concentration, υc, and it is treated as incompressible.
There were many successes of these theories. In particular they
showed that the flowrate from a hopper was independent of the
depth of material, a characteristic that makes sand hourglasses
an easily built method of timekeeping. (This is a direct
reflection of the 1895 analysis of Janssen [26] – perhaps the

second great work in granular flow –which showed that beyond
a certain height the weight of a bed within a bin is supported by
friction on the sidewalls. Thus, the pressure on the bottom of the
bin is independent of bed depth. As that pressure controls the
flowrate through the orifice, the flowrate is depth-independent.)
But the techniques suffered from mathematical problems of
applying boundary conditions and the flowrate predictions
could have been better. Jackson [22] examines this in some
detail.

A likely source of the problems, is the assumption that ϕ is a
constant material property. Fig. 5 shows measurements of tanϕ
in two dimensional hopper flow simulation by Potapov and
Campbell [27]. In it, tanϕ can be seen to vary by more than a
factor of 3, violating the fundamental assumptions of quasistatic
flow theory. This variation of tanϕ can explain the discrepancies
between the theory and experiment. However, it is not
understood why tanϕ changes, as simple shear simulations on
similarly constituted materials indicate that tanϕ is a constant at
small shear rates (e.g. [28]).

4.1. The “frictional” nature of granular materials

Eq. (8) indicates that tanϕ is the ratio of shear to normal
forces in the material and thus can be understood as an apparant
friction coefficient. Recently, it has become popular to refer to
quasistatic flows as “frictional”. However, this is misleading as
the internal behavior of the material is not what one would
classically call “frictional”.

Fig. 5. A contour diagram of the apparent friction coefficient, tanϕ, from a two-
dimensional simulation of a hopper with a 60° angle and a polydisperse granular
material, from Potapov and Campbell [27]. The annotations max and min
indicate the areas where tanϕ takes its maximum and minimum values,
quantitative values of which are written at the bottom of the plot. Note that tanϕ
is far a constant, but changes by a factor of more than three.

Fig. 6. A photoelastic image of the force chains generated in the two-
dimensional shear cell of Howell et al. [29,30]. Here, the inner cylinder is
rotating counter-clockwise to force the particles together into chains.
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Jamming phase diagram 

[Liu and Nagel., Nature	
  (1998)] 



Jamming gripper 

hkps://www.youtube.com/watch?v=bFW7VQpY-­‐Ik	
  

[Brown et al., PNAS	
  (2010)] 



Optimization of jamming gripper 
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