

ime-step $\Delta t <=$	$=\frac{t_c}{50}$
contact duration t_c =	$= \frac{\pi}{\omega} \qquad t_n < t_c \\ t_c^{wall} = \frac{\pi}{\omega} > t_c$
	time between contacts
	$t_n > t_c$
sound propagation	$N_L t_c$ with number of layers N_L
experiment	Т

Software used ...

- DEMSolutions/EDEM
- DCS Computing/LIGGGHTS
- MercuryDPM
- and some others

	Software used			
•	DEMSolutions/E DCS Computing			
•	MercuryDPM			
	Merc	ury L&b		
-	Mercury <i>Cloud</i> Training	no need to buy hardware/pay on demand you still need someone who understands ©		
-	Consulting Support	or you order the full service		
	-			

Recent News (multiplicative rheology)

Dependence on stiffness and cohesion in inertial flow states

$$\mu(I, P^*, Bo_l) = \left(\mu_0 + \frac{\mu_{\infty} - \mu_0}{1 + I_0/I}\right) \left(1 - b\sqrt{P^*}\right) f(Bo_l)$$

with: $I = \dot{\gamma} d / \sqrt{P/\rho}$ and dim.-less compressibility/stress P^*

Outlook

Local constitutive relations? ... including granular temperature? via the Reynolds stress or kinetic pressure? P_k ?

g

WIND RACE TO AND A DECEMBER OF A DECEMBEROFO A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF	THE UNIVERSITY of EDINBURGH	UNIVERSITY OF TWENTE.
Influence of coarse graining parameters on the analysis of DEM simulation results		
Carlos Labra, Thomas Weinhart, Jin Y. Ooi and Stefan Luding		
Powder Technology, in press, April 2016		
UNIVERSITY OF TWENTE.		

Simulation of powder dispersion by a liquid jet Application: Particle dispersion 2.38 • (collaboration with Nestle) Method: SPH-DEM ٠ Results: • • Wet - Recovers quanitative features from experiment: Jet, dispersion ... • Dry – Fails to recover some major features (e.g. bed lift regime). 2.7686 TODO: Surface tension not modeled yet. Second phase not modeled yet. Different size particles ... M. Robinson, M. Ramaioli, S. Luding, MSM, PG2013

