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Mesoscale modeling of particles 
    and particles in fluids 

 
 - Multi-Scale (Models) and  
 - Continuum Theory (Applications) 
 - Jamming and un-jamming 

Stefan Luding, Multiscale Mechanics (MSM),  
MESA+, CTW, University of Twente, NL 

Landslide 
Bingham Canyon copper mine, US (2013) 

http://www.news.com.au/	

Avalanche 
Galtür, Austria (1999) 
http://www.theskichannel.com/	

Ground fissure 
http://flickeflu.com/	

Introduction 

Dense granular flow 
& shear banding 

Geophysics, engineering, 
and science 
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Single  
        particle 

Contacts 

Many  
    particle  
          simulation 

Continuum Theory 

Overview 
 

 Introduction 

 Contact models 

 Many particle simulation 

 Local micro-macro 

 Continuum Theory 

 … model with anisotropy 

 Particles & Fluids 

  

From particles to continuum theory 
 
1. particles/powders – discrete ingredients 
2. fluid- and solid-like constitutive relations 
 
– multiple scales (from nano-meter to meters) 
– from particles+contacts to application scale … 
 
Scales: 
+ particle modeling (DEM) -> micro-scale 
-- 
+ continuum modeling -> macro-scale 
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From particles to continuum theory 
 
1. particles/powders – discrete ingredients 
2. fluid- and solid-like constitutive relations 
 
– multiple scales (from nano-meter to meters) 
– from particles+contacts to application scale … 
 
Scales: 
+ particle modeling (DEM) -> micro-scale 
-- (stochastic) plastic events => meso-scale  
+ continuum modeling -> macro-scale 
 

Elastic spheres (idealized) 

 Before          During      After   

Elasto-plastic spheres (realistic) 

 Mostly use idealized non-plastic particles …  



4	


Mechanical 
(dp>10µm) 

Chemical 
(10nm<dp<10µm) 

Atomic Cluster 
(dp<10nm) 

Particle Interactions 
Surface and Field Forces Material Connections 

by: J. Tomas,  
Magdeburg 

2P+MD+DEM Literature  
 (http://www2.msm.ctw.utwente.nl/sluding/publications.html) 

[1] S. Luding, Introduction to Discrete Element Methods: Basics of Contact Force 
Models and how to perform the Micro-Macro Transition to Continuum Theory, 
European Journal of Environmental and Civil Engineering - EJECE 12 - No. 7-8 (Special 
Issue: Alert Course, Aussois), 785-826 (2008), 
[http://www2.msm.ctw.utwente.nl/sluding/PAPERS/luding_alert2008.pdf] 
[2] S. Luding, Cohesive frictional powders: Contact models for tension 
Granular Matter 10(4), 235-246, 2008 [http://www2.msm.ctw.utwente.nl/sluding/
PAPERS/LudingC5.pdf]   
[3] S. Luding Collisions & Contacts between two particles, 
in: Physics of dry granular Media, eds. H. J. Herrmann, J.-P. Hovi, and S. Luding, 
Kluwer Academic Publishers, Dordrecht, 1998 [http://www2.msm.ctw.utwente.nl/
sluding/PAPERS/coll2p.pdf] 
[4] M. Lätzel, S. Luding, and H. J. Herrmann,  
Macroscopic material properties from quasi-static, microscopic simulations of a two-
dimensional shear-cell , Granular Matter 2(3), 123-135, 2000  
[http://www2.msm.ctw.utwente.nl/sluding/PAPERS/micmac.pdf] 
[5] S. Luding, Anisotropy in cohesive, frictional granular media  
J. Phys.: Condens. Matter 17, S2623-S2640, 2005 [http://www2.msm.ctw.utwente.nl/
sluding/PAPERS/jpcm1.pdf] 
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- really simple J 
- linear, analytical 

- very easy to implement 

Linear Contact model 
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http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 
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Normal 
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Discrete particle model 

Contact if Overlap > 0 
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1 for un-/re-loading
hys
i

k
f

δ⎧
⎪= ⎨
⎪⎩

- (really too) simple J 
- linear 

- very easy to implement 

Linear Contact model 

- really simple J 
- linear, analytical 

- very easy to implement 

Linear Contact model 
if

δ

overlap 

rel. velocity 

acceleration 

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 
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- really simple J 
- linear, analytical 

- very easy to implement 

Linear Contact model 
if

δ

overlap 

rel. velocity 

acceleration 

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 
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- really simple J 
- linear, analytical 

- very easy to implement 
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- really simple J 
- linear, analytical 

- very easy to implement 

Linear Contact model 

elastic freq. 0
ij

k
mω =

eigen-freq. 

visc. diss. 
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http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 
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- comments/problems 
Linear Contact model 

restitution coefficient 
Always >= 0 
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http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 

Forces negative 
ó adhesion fi = !mij

!!! = k! + " !! < 0

=> Reconsider definition of t_c … 
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Linear Contact model  

elastic freq. 0
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http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 

Time-scales 

contact duration ct π
ω= wall

wallc ct tπ
ω= >

time-step 50
cttΔ <=

time between contacts 

n ct t<

n ct t>

sound propagation  ... with number of layers L c LN t N

experiment T
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Time-scales 

contact duration ct π
ω= argl e small

c ct t>

time-step 50
cttΔ <=

different sized particles 
n ct t<

n ct t>

sound propagation  ... with number of layers L c LN t N

experiment T

time between contacts 

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf 

Convection 
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Equations of motion 

mi
d 2!ri
dt2

=
!
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!ri !
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Forces and torques: 

Normal 

Contacts 

Many  
    particle  

          simulation 

Discrete particle model 

Contact if Overlap > 0 

Algorithmic trick(s) for speed-up 

•  Linked cells neighborhood search O(1) (short range forces) 

•  Linked cells update after 10-100 time-steps O(N ) 
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3/ 2
1 for un-/re-loading

hys
i

k
f

δ⎧
⎪= ⎨
⎪
⎩

- simple J 
- non-linear 

- easy to implement 

Hertz Contact model 

Contacts 
1. loading 

 
 

2. unloading 
3. re-loading 

 
 

4. tensile failure 
 

2

transition to 
stiffness: k

max. tensile 
force

2

elastic un/re-loading 
stiffness: k
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f 

Irreversible elasto-plastic adhesive contacts
•  Loading 

Plastic def. 
•  Unloading 
“elasto-plastic” 

•  Re-loading 
“elastic” 

•  Cohesion  
•  Long-range  

 forces …                                        

Coefficient of Restitution (analytical) 
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Attractive forces … 

 Mostly ignore dry and wet attraction … see later … 

Nano-indenter -> contacts  

torsion 
+rolling 

R. Fuchs, T. Weinhart, et al. Granular Matter, 2014 
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Nano-indenter -> contacts  

torsion 
+rolling 

etched 1800W
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R. Fuchs, T. Weinhart, et al. Granular Matter, 2014 

Nano-indenter -> contacts  

torsion 
+rolling 

R. Fuchs, T. Weinhart, et al. Granular Matter, 2014 
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- Static friction  
-  Dynamic friction 

project into tangential plane 
compute test force 
 
sticking: 
sliding: 

 

Tangential contact model 

- spring 
-  dashpot 
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Challenge: 

Fast contact detection 
between particles with 
strongly different sizes 

Size ratio >> 10 

Number of particles > 106 

•  Breakage / Grinding 
•  Concrete … 
•  Aerosols/Smog 
•  Food Powders 

fly ash sample at 2000x magnification, 
University of Kentucky,  CAER 

Particles with wide size-distributions 

Mostly ignored, use some to avoid crystallization 
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Hierarchical grid: fast, robust & flexible 
example: L=2 level grid 

HGRID: Analytical prediction vs Simulations 

2* >L2* ≅L

uniform size uniform volume 

)( KmNLT L +=

optimal L=7 
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Open source 
(mercurydpm.org) 

Based on: 
-  HGrid (contacts) 
-  MicroMacro (tools) 

	   	  Dosing	  applica,on	  example	  …	  

Open source 

Based on: 
-  HGrid  
-  MicroMacro 

flowable powder vs. 
sticky, chunky powder 
 

	   	  Dosing	  applica,on	  example	  …	  O. I. Imole, MSM, 2013 
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Open source 

Based on: 
-  HGrid  
-  MicroMacro 

flowable powder vs. 
sticky, chunky powder 
 

	   	  Dosing	  applica,on	  example	  …	  O. I. Imole, MSM, 2013 

Dosing – parameter calibration 
 

  

*Based on 
 O. I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo, E. C. Montes, M. Ramaioli, and S. Luding.  
 
Experiments and Discrete Element Simulation of the Dosing of Cohesive Powders in  
a Canister Geometry. submitted to Powder Techn. 2014 & PhD-thesis, O. I. Imole 2014  

124 Chapter 5 Dosing of cohesive powders in a simplified canister geometry

the interparticle friction is fixed in each case and cohesion is varied. Note that for each
simulation, we obtain data on the cumulative dosed mass and the number of doses. From
each simulation, the respective mass per dose β are obtained within the linear region where
initial conditions and other artefacts due to arching are absent. The mass per dose β is then
systematically compared for different interparticle friction and cohesion and bench-marked
against the obtained experimental β value. We choose β as a calibration parameter since
it is largely independent of the initial mass (see Fig. 5.3a). The For the sake of brevity,
this calibration procedure is performed on using a total mass of 48grams in the box and the
narrow pitch coil with 8 complete turns. We attempted a calibration with higher masses as
compared with the experiments but we observe that due to arching occurring when cohesion
is high, the plot of the cumulative dosed mass becomes non-linear. This made defining an
appropriate β challenging therefore requires further work. In the mean time, we focus the
calibration with the lower mass.
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µ=0.65
!exp

Figure 5.6: Calibration of the cohesive stiffness Kc = kc/k and inter particle friction µ . Here
we plot the mass per dose β for different Kc and different µ as given in the inset. The dotted
horizontal line shows the experimental β value.

In Fig. 5.6, we show the mass per dose β , plotted against the interparticle cohesive stiffness
Kc and different interparticle friction coefficient µ . The horizontal dotted line shows the
mass per dose obtained in the experiment with value 3.702g/dose. A first observation is the
consistent decrease of β with increasing Kc for all friction. This is due to reduced flowability
of the bulk sample with increasing cohesion. We note however that for the highest friction,
we observe a slight increase in the β values obtained at high cohesion. This is a consequence
of arching that sets in due to high cohesion causing a bridge in the flow especially in the
region above the coil. This leads to highly unsteady mass throughput from the box.

Comparing the data for different friction, we observe a decrease in β with increasing µ .
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Dosing: DEM vs. experiment 
 

  

5.5 Numerical Results 125

Increased interparticle friction leads to an an increased resistance to flow which reduces
the rate at which the material is being dispensed out of the box and consequently lower β .
Similar to what is found in other studies, for interparticle friction within the range µ =0.5
and 0.65, the effect becomes less strong as seen in the saturation and collapse of β .

As seen from Fig. 5.6, the experimental measured mass per dose (dotted horizontal line)
intersects with the different friction data at different points leading to different possible Kc

values. A choice therefore has to be made of the appropriate Kc which reproduces the exper-
iments and leads to the least variability between successive doses in the simulations. In this
case, we choose the lowest possible Kc which gives the match with the experimental β value
at Kc = 0.872 and µ = 0.50.

5.5.3 Comparison with Experiments

In order to test the validity of the interparticle friction and cohesion parameters obtained from
the calibration test, we perform simulation setting Kc = 0.872 and µ = 0.5. We then compare
the simulation results with experiments. We note that the total mass mtot used in experiment
is approximately 60grams while the simulation mass is 48grams. For both experiment and
simulation, the narrow coil with 8 turns is used. For each dose, the coil is rotated at a speed
of 90rpm for 2 seconds.
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!m
 [

g
]

N

experiment
simulation

Figure 5.7: Comparison between simulation and experiment. Here we plot the cumulative
dosed mass as function of the number of dose obtained from experiment and simulation. For
simulations, mtot = 48g, and parameters are Kc = 0.872, and µ = 0.5.

*Based on 
 O. I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo, E. C. Montes, M. Ramaioli, and S. Luding.  
 
Experiments and Discrete Element Simulation of the Dosing of Cohesive Powders in  
a Canister Geometry, Powder Technology 2016 & PhD-thesis, O. I. Imole 2014  

Software used … 
•   DEMSolutions/EDEM 
•   DCS Computing/LIGGGHTS 
•   MercuryDPM 
•   and some others  
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Software used … 
•   DEMSolutions/EDEM 
•   DCS Computing/LIGGGHTS 
•   MercuryDPM 
•   and some others 

   unique features: 
   - open-source (really ;-) 
   - HGrid for largely different particle sizes 
   - mercuryCG for coarse-graining to continuum 
   - analytical complex geometry-support
   - etc.  

Software used … 
•   DEMSolutions/EDEM 
•   DCS Computing/LIGGGHTS 
•   MercuryDPM 
•   and some others 

 
    

-  MercuryCloud 
-  Training 
-  Consulting 
-  Support 
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Software used … 
•   DEMSolutions/EDEM 
•   DCS Computing/LIGGGHTS 
•   MercuryDPM 
•   and some others 

    
 
-  MercuryCloud  no need to buy hardware/pay on demand 
-  Training   you still need someone who understands J 
-  Consulting  … or you order the full service 
-  Support 

Granular Matter:  
 shear thin/thick fluid? or plastic solid? 
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Inherent Yield Stress 

Powders heap Liquid spreads 

Yield stress = resistance against flow 

Powder and Liquid Flow (differences) 

Dense particle systems:  
 
 
 
 
 
 
 
 
 
 
 

 experiments - simulations 
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Biaxial box element test 

•  Top wall: strain controlled 

•  Right wall: stress controlled 

•  Evolution with time … ? 
 

( )0 f
f( ) 1 cos

2
z zz t z tω−= + +

const.p =

Bi-axial box (stress chains) 
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Bi-axial box (stress chains) 

Bi-axial box (kinetic energy) 
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Bi-axial box (kinetic energy) 

Bi-axial box (rotations) 
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Bi-axial box (rotations) 

    

inhomogeneity & anisotropy, rotations instabilities & structures, 

Multiple micro-mechanisms 
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Bi-axial box (displacements) 

Bi-axial compression with px=const. 
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Yield loci 

critical state yield 

Bi-axial compression with px=const. 
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2/ 0, 1/2, 1, 2, and 4ck k =

fmin 

1 2
0

2

1
1 c

k kc c
kk

−=
+

macro cohesion 

Micro-macro for cohesion  

micro adhesion: fmin 

Results for friction µ=0.5 and different px and kc=0 

Pressure dependence 
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kc = 0 and µ = 0.5 

Internal friction angle 27φ ≈ o

31φ ≈ oTotal friction angle 

Friction – no cohesion 

Micro-macro for friction 

prepared μp=0 

prepared μp=0.5 

steady-state shear 

micro contact-friction μp macro friction-angle μ 

μ
:=
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An-isotropy (in absence of friction&cohesion) 
in stress 

An-isotropy (Stress) 

( )maxβ
ε
∂ = −

∂ sD D
D

ss s
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Stiffness/structure tensor 

vertical 

horizontal 

shear 

Different moduli: 
•  against shear C2 

•  perpendicular C1 

•  one shear modulus 

An-isotropy (Stress & Structure) 

( )maxβ
ε
∂ = −

∂ sD D
D

ss s

( )maxF
D

A A Aβ
ε
∂ = −

∂

Macro-Friction 

~ elastic Modulus 

sD =
! D

p
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An-isotropy (Stress & Structure) 

!
!!D

sD = !s smax " sD( )

( )maxF
D

A A Aβ
ε
∂ = −

∂

Macro-Friction 

~ elastic Modulus 

max. anisotropy 
Anisotropy evolution rate 

An-isotropy (Stress & Structure) 

!
!!D

sD = !s smax ! sD( ) = !ssmax 1!!D( )

( )maxF
D

A A Aβ
ε
∂ = −

∂

Macro-Friction 

~ elastic Modulus (G/p) 

max. anisotropy 
Anisotropy (structural) evolution rate 

plastic prob. 



36	


Constitutive model – elastic-plastic, incr. 
quasi-static, scalar (in the biaxial box eigen-system) 
 
 
 
 
and: evolution of microstructure (isotropic) … 
 
 
 
and: evolution of microstructure (deviator) … 
 
 
 
… based on homogeneous element test DEM data 

      (for finite strain) 

  !"V = B#V + A 1$% D( )#D

!" D = A#V +G 1!!D( )!D

  

!
!"D

A = #A Amax $ A( )

   

!
!"V

#c!B!G $ 0

Constitutive model – shear stress  
 (scalar in the biaxial box eigen-system) 

!A

Dε
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Constitutive model – cyclic loading 
  (in the biaxial box eigen-system) 

400Aβ =2000Aβ =

V V DAEδσ ε ε= +

Constitutive model – scalar: dilatancy 
 
 
 
 
 
 
 
 
 
 
 

       … for fast structural evolution 

D V DBAδσ ε ε= +

( )max
AA A A dδ β γ= −

2000Aβ =

Dε
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V V DAEδσ ε ε= +

Constitutive model – scalar: contractancy 
 
 
 
 
 
 
 
 
 
 
 

       … for slow structural evolution   

D V DBAδσ ε ε= +

( )max
AA A A dδ β γ= −

400Aβ =

Dε

V V DAEδσ ε ε= +

Constitutive model – anisotropy rate 
  (in the biaxial box eigen-system) 

D V DBAδσ ε ε= +

( )max
AA A A dδ β γ= −contractant 

dilatant 
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Constitutive model – scalar, anisotropic 
   

 
Cross-coupling of isotropic and deviatoric parts 
 
and 
 
Interplay between: 

 shear stress (rate) G/p and anisotropy (rate) βA 
 
G/p  > βA : contractant, collapsing material 
G/p  < βA : dilatant, “hardening” material 

Calibration: Elastic Moduli (3D) 

N. Kumar et al. Acta Mechanica, (2014) 
Luding and Perdahcioglu CIT (2011), Magnanimo and Luding, Granular Matter (2011) 

Constitutive behavior of an anisotropic material described incrementally as 

Stress – Strain  

Preparation: ISO+SHEAR (dev) 

Purely deviatoric perturbations 
(amplitude ?) 

Similarly, purely isotropic perturbations  
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Cons,tu,ve	  model	  with	  structural	  anisotropy	  

Due to A1 and A2, the model provides a cross coupling  
 between the two types of stress and strain in the model 

Need to define:  initial state and deformation path = history  

  S := 1!" D( )

+ other terms (3D, not shown)  

with probability for elastic deformation: 
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Eq. (4.11)
Initial
Critical

 0.3

 0.5

 0.7

 0  0.1  0.2  0.3

B

dev

Cons,tu,ve	  model	  –	  calibra,on	  
	   	  Direct	  moduli	  (B,G,A)	  probing	  …	  

	  
	  
	  

	   	   	   	   	  B	  =	  b0	  FV	  
	  
	  

	  	   	  	   	  	   	   	  (with	  isotropic	  FV)	  
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Cons,tu,ve	  model	  –	  calibra,on	  
	   	  Direct	  moduli	  (B,G,A)	  probing	  …	  

	  
	  
	  
	  

	   	   	   	   	  G	  =	  B	  g(FV)	  
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Cons,tu,ve	  model	  –	  calibra,on	  
	   	  Direct	  moduli	  (B,G,A)	  probing	  …	  
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Cons,tu,ve	  model	  –	  calibra,on	  (elas,c)	  
	   	  Direct	  moduli	  (B,G,A)	  probing	  …	  

	  
Bulk	  Modulus:	   	   	  	  B	  =	  b0	  FV	  
	  
Shear	  Modulus: 	   	  	  G	  =	  B	  g(FV)	  [1-‐σ*dev	  Fdev]	  
	  
Anisotropy	  Modulus: 	  	  A	  =	  B	  Fdev	  
	  
with	  actual	  microstructure	  FV	  (iso)	  and	  Fdev(iatoric)	  



43	


Calibra,on	  (volume	  conserving	  shear	  -‐-‐	  loading)	  
 Initial state: isotropic volume fraction 0.71; Deformation path: shear loading 

  Shear Stress       Deviatoric Fabric 

Valida,on	  (volume	  conserving	  cyclic	  shear)	  
 Initial state: isotropic volume fraction 0.71; Deformation path: cyclic (pure) shear 

Ø  Initial state after one cycle is anisotropic 
Ø  Soft response during strain reversals well predicted by the model  

  Shear Stress       Deviatoric Fabric 
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does global averaging make sense? 
 
micro-macro for various deformation modes 

 - (visco)-elasticity   
 - yield stress 
 - anisotropy 

But: inhomogeneity must be ignored 
 
Instead: advantages of local averaging: 

 - shearband position known! 
 - long time-averaging -> slow+fast 

  - space-averaging -> small resolution 

Ring geometry 
mic-mac 
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Fenistein, D. and Hecke, M. V. 2003. Kinematics – wide shear zones in 
granular bulk flow.  Nature  425, 256--256 

Split bottom ring-shear cell: Simulation setup 

g 

•   polydisperse particles of average size 1.1 mm 
    and width of size distribution 0.1892  
•   wide and stable shear band 
•   no side wall effects! 

Coulomb’s law of friction (global vs. local) 

0 load 

Rigid body 

Sliding friction 

Granular flow 

τ
 
 

Pµτ =
Pressure induced due to gravity P
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Shear Band 
 local mic-mac averaging => 

shear rate  

shear stress 

pressure 

Constitutive relations	

Local quantities 

F,,φρothers 

γ
τ
P

Constitutive relations – shear rate  

no friction                                friction 

γ
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macro-‐Fric,on	  vs.	  micro-‐fric,on	  

The slope of termination locus increases with friction (non-linear) 

αµµ aII += 0)(  ! "1
Macro-Friction coefficient 

Fitting	

co
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na
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n 

nu
m

be
r 

Rigid particles – effect of strain-rate 
macro-friction coefficient coordination number 

6>z
Quasi-
static 

regime	

Quasi-
static 

regime	
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Density dependence on stiffness and gravity 
In quasi-static, rigid regime:	 ! (I = 0,P* = 0) !!0

! (P*) =!0 ! avI + bvP
*" 50.0≈β

Volume fraction in quasi-static regime 

Fitting	

3.3. Local volume fraction
Infigure 6, the local volume fraction ν r h( , ) is plotted against the local dimensionless pressure, p*. Because of
slow quasistaticflows, no strong dilation is observed, i.e., no strong dependence of ν on local shear rate. The
packing is rather loose for lower p* and tends to a critical value ν = ±0.642 0.002c , in agreement with [63]. The
data can befittedwell by the functional form

ν ν= +
ν

p

p

*
, (18)c

*

with = ±νp 0.48 0.02* ( νp* can be further expressed in terms of volumetric fabric as reported in [64]).
Interestingly, no significant difference in volume fraction ν is observed for < −p* 10 3, while for > −p* 10 3

within the fluctuations, ν increases almost linearly with p* (the curvature is due to the logarithmic p* axis). The
relation between ν and p* is well established in the case of static packings [64, 65]. Herewe show that the same
relation holds for a slow granular flow, involving considerable small butfinite strain rates.

3.4. Local structure
Shearing of a granular assembly always leads to the buildup of contact anisotropy in the system [66–68]. To
study this property we analyze the deviatoric fabric as defined in (3) and use (5) to quantify anisotropy of the
contact network.

3.4.1. Local anisotropy
Figure 7 displays the local deviatoric fabric, F r h( , )dev , plotted against the local dimensionless pressure p*,
where F r h( , )dev for different values of the particle stiffness and gravity is found to collapse on a unique curve
(solid line). This dependence can bewritten in a similar fashion as (17),

= −
β

( )F p F
p

p
*

*
, (19)r

F

dev dev
*

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where F r
dev is the anisotropy of contact network in the rigid limit, the exponent is found to be β ≈ ±0.5 0.032 ,

and ≈ ±p 26.3 0.6F
* . The decrease in Fdev with increasing p* can be explained in terms of the increasing volume

fraction ν r h( , )with increase in p*.When the packing becomes denser, particles have less free space to (re)
arrange.Hence they cannot align along the preferential direction, thus anisotropy in response to the local shear
is found to decrease with increase in p*.

Infigures 5 and 7, we observe that the local effective friction and the local contact anisotropy show a similar
trend in the quasistatic state (β β⋍1 2). Infigure 8, we plot μ p( *)0

local against F p( *)dev for different values of κ,
where a linear correlation can be inferred as,

μ μ= +( ) ( )p bF p* * , (20)0
local

iso dev

where μ = ± ≈0.01 0.01( 0)iso is the effective friction coefficient in the (extrapolated) limit of the isotropic
contact network =F( 0)dev and = ±b 1.38 0.02 is a constant of proportionality. This clearly shows that in the
critical state, the shear resistance accompanies the anisotropy in the contact network. The linear relation can be a
consequence of the linear contactmodel, the relationmight be different in case of aHertzian contactmodel. It is

Figure 6.The local volume fraction, ν r h( , ), in the systemplotted against the local dimensionless pressure, p*, on a log-linear scale.
Different symbols represent different values of κ as given in the legend. The solid line represents (18). Local data are shown for
γ γ> = −˙ ˙ 0.1 sc

1.
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Macroscopic friction - rheology 

Time scales 

Friction coefficient 

nc km=τ

gdg =τ dPmP =τ

γτ 1=s

Dimensionless numbers 

  µ(I ) = µ0 + aI + ...

  
µ(P*) = µ0 ! b P*( )1/2

in quasi-static regime 

sPI ττ=Inertial number	

( )2*
PcP ττ=“Softness” parameter	

 
! = " P " g
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Micro Parameters Status 
     µp          µ Done 

kn, g          P*
          µ Done 

Rheology updates 

 
Present focus: cohesion! dry & wet 

  fc           Bo         µ 
   

Local rheology (macro-friction) depends on pressure:  
      from weak to strong cohesion 

•   Local friction coefficient is non-linearly varying in the large Bol limit 
 and approaches constant values for small Bol 

•   Control parameter: local Bond number with higher order correction 

10-2 10-1 100 101 102

100

1/Bol

µ

 

 

0.0295
0.0634
0.1230
0.1838
0.3026
0.6426
0.9662
1.2720
1.7226

  µ = µo + !1Bol + !2Bol
2

where ,15.0=oµ  !1 = 0.22

Bog 
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Recent News (multiplicative rheology) 

Local constitutive relations?  
 … including granular temperature? 

via the Reynolds stress or kinetic pressure? Pk ? 

Dependence on stiffness and cohesion in inertial flow states 

Outlook 

µ(I ,P*,Bol ) = µ0 +
µ! " µ0

1+ I0 I
#

$%
&

'(
1" b P*( ) f (Bol )

with: I = !! d / P !  and dim.-less compressibility/stress P*

Micro Parameters Status 
      fc           Bo      µ Done 

     µp          µ Done 
     kn, g          P*         µ Done 

Small I correction       µ in progress 

Rheology updates 
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Quasistatic Flow 

Dependence on stiffness (gravity) in inertial flow states 

Very small strain rate: 
[Koval et al. PRE 2009]  

?  ),( *
0

* βαµµ bPaIPI −+=

flow rheology, we find that a second dimensionless number, the ratio of softness and stress time scales,must be
involved to characterize the bulkflowbehavior. For very slow shear rate the former can be ignored, while the
latter affects the shear strength by decreasing it with an increase in either gravity (and thus local pressure) or
particle softness. For fasterflows, the effective friction is found to increase in general with increasing shear rate.
However, the tails of shear bands feature an anomalously small effective friction—as observed previously
[9, 10, 72]. For the dependence of effectivemacroscopic friction on the preceding three quantities, the change in
localmicrostructure (contact anisotropy) is found to be a key parameter, with similar norm, but different shape
factor.

Open issuesThe deviations observed in μ0
local for slowflowsmight also bewell captured using the non-local

models developed recently byKamrin et al [10, 11, 72]; this work is in progress. Another related issue that
remains untouched is the effect of particle softness and external compression (gravity here) on the non-locality.
A study of effect of pressure (gravity) on primary and secondary velocity fields, as done recently in [73, 74], also
deserves a further study, as well as the effect of softness and pressure on the shear banding. Looking towards the
future, we are now in a position to address various important issues, such as unexpectedly high shear strength of
thematerial at low (normal) stress or reduced gravity and a direct relation between the contact anisotropy and
the shear strength of thematerial. These issues are vital for a better explanation of themacroscopic behavior of
the granular systems fromamacroscopic observation. The current study dealt with a dense systemwith small
interparticle friction (μ = 0.01p ), where the effect of softness on themacroscopic behavior ismore direct than

for large μp. However, an issue that remains unanswered andwill be an extension of this study is whether the

same effect can also be observed for relatively loose systems (with higher interparticle friction). The question of
whether the correlation between contact anisotropy and shear strength is just a consequence of relatively low
interparticle friction or if it will also hold for amore realisticmaterial (with higher interparticle friction) remains
to be answered. Finally, the influence of polydispersity on ourmajorfindings is an open question too.
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AppendixA. Pressure dependence of localmacroscopic friction

In this section, we explore the pressure dependence of our rheological laws as presented in section 4. Figure A1
shows the fits for three different pressure levels (height in the split-bottom cell), namely close to bottom,mid-
height, and top.Wefind for pressure levels thefitted law (22)well describes the data. Figure A2 shows thefitting
parameters α and I*, versus rotation rate Ω π2 for different pressure levels. Interestingly, we observe that bothα
and I* collapse irrespective of pressure value.We conclude that thefitting variables do not depend on pressure,
and no extra pressure parameter is required in (22).

Figure A1. μ plotted against I for different local pressures in the system (a) p=100, (b) p=200, and (c) p=400 −Nm 2.
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with μ p( *)0
local , a term that involves softness correction, as given in (17).We observe that data from a simulation

using a single gravity = −g( 10 ms )2 and contact stiffness = −k( 100 Nm )n
1 does not give awide variation in μ

and μ = 0.140
local , μ = 0.5,2

local and =σI 0.10 fit well the data. ATaylor expansion (in the range < σI I0 ) for the

preceding equation is μ μ μ μ≅ + − σI( ) ( ) I
I0

local
2
local

0
local

0
, which is similar to the linear frictional law proposed

in [6, 55]. Two different trends emerge, i.e., the shear band center data can be verywellfitted by (21) and for
⩾I 0.01data collapse on a unique curve. On the other hand, for lower values of I, deviations from this relation

are observed, depending on the external rotation rate. The friction coefficient in slowflows (steady state)
becomes smaller than μ0

local, i.e., in our system the granularmaterial is able toflowbelow μ0
local. The deviation of

our data from themain law (21) is consistent with observations in [9, 10], where this deviation is explained based
on the heterogeneity in the stressfield (arising due to strain rate). In our system,we have gradients in stress
arising due to gradients in both strain rate and pressure.

In order to quantify the deviation from (21), wefit the data with:

μ μ α< = −( ) ( ) ( )I I p p I I*, * * 1 ln * , (22)0
local ⎡

⎣⎢
⎤
⎦⎥

where α is a constant and I* is the characteristic inertial numberwhen μ μ≅ 0
local. This relation is inspired by the

relation proposed in [9] for two-dimensional (2D) ring shear cell setup. As the relationwas initially derived for a
2D setupwith constant pressure, we fit it to our data at three different heights (i.e., constant pressure), close to
top, atmid-height, and close to bottom. Infigure 10, different colored dashed lines represent this fit at themid-
height of the system for each value of rotation rate explored.We observe that the prediction is in close agreement
with the data, even though our systemhas different dimensions and boundary conditions. Data and
corresponding fits for different heights (pressures) are reported in appendix A.Wefind that bothα and I* do not
depend on pressure.

4.2. Fabric anisotropy
In order to look for the connection between anisotropic fabric and effective friction coefficient in the inertial
regime, herewe explore the dependence of Fdev on I. Infigure 11, we plot the local Fdev as obtained by
simulationswith different rates of rotation against I .Weobserve that like μ, Fdev varies strongly against I and its
dependence on I can be represented as:

= +
−

+( ) ( ) ( ) ( )
F I p F p

F p F p

I I
, * *

* *

1
, (23)

Fdev dev
0

dev
(2)

dev
0

0

with F p( *)dev
0 being the fabric anisotropy in the quasistatic state (as given in (19)), F p( *)dev

(2) is the threshold
fabric anisotropy, and IF0 is the typical inertial number, which is an order ofmagnitude different from σI0 . Green,
red, and black lines show thefit to the preceding relation at pressure levels 100, 200, and 400 −Nm 2, respectively,
with points in the center of the shear band highlighted (black circles). Fit parameters to these results are
presented in table 3. It is noticeable that unlike μ, I alone is not able to describe Fdev , with the effect of pressure
being prominent in case of slowflows i.e., low I. In contrast, for fast flows, the deviatoric fabric seems to become
independent of pressure.

Figure 10.The local effective friction coefficient plotted against the inertial number I for results from simulationswith different rates
of rotation. The solid black line represents (21), with μ = 0.140

local , μ = 0.3,2
local and =σI 0.026.0 The dotted line shows the Taylor

expansion of (21). Different symbols represent different rates of rotation as given in the legend, lines with the same color represent the
solution of (22). Black circles represent the data in the center of the shear band, other data are shown for γ γ> = −˙ ˙ 0.01 sc

1.
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center 
 
 
 

tails? 

shear- 
band 

Most recent news: granular temperature 

Local constitutive relations, in 3D – and fully tensorial?  

Dependence on stiffness and dynamic Tg (inertial & static) 

Outlook 

   

µ(I , P*, Bol , Ik ) = µ0 +
µ! " µ0

1+ I0 I
#

$%
&

'(
f

P* (P*) fBol
(Bol )

1
1+1 ) *( ) Ik

with: kinetic Ik = !+ d Pk , = I P Pk ; kinetic stress Pk
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Rheology – stress-fabric relation 
Fully tensorial 3D => … in progress … 

The increase in the contact anisotropywith inertial number is in accordance with some recent studies
[49, 68]. It is important tomention that for even higher rates of rotation of the system, i.e., inertial number

>I 0.1, Fdev shows a different behavior as predicted by (23) and a decreasing trend is observed (as reported in
[45]), which is beyond the scope of this work. Thismight be due to the fact that for >I 0.1 the packing becomes
very loose (ν ⩽ 0.55 ). Also for such high rates of rotation, the centrifugal force on grains due to rotation
becomes comparable to the gravitational force. As a result, the top surface is notflat anymore; instead the surface
develops a dip in themiddle, as observed previously [45, 70, 71]. In this range, the kinetic and contact
contributions of the local effective friction μ also become comparable.

Starting fromboth variations of local effective friction and fabric anisotropy as a function of inertial number
I, it is tempting to ask the question if the correlation in (20) holds for the inertial regime aswell. The result is
displayed infigure 12. The solid line shows (20), whichfits well the shear band center data being highlighted by
black circles. It is noticeable that the fit used by the shear band data in the quasistatic state workswell for some
range in the inertial regime >I 0.005. On the other hand the data outside the shear band shows a different
behavior and is found to be below the solid line, which is consistent with the trend observed in case of μ and Fdev

(separately) as a function of I. However, for even fasterflows, a different trend is observed that can also befitted

Figure 11.The local fabric anisotropy Fdev plotted against the inertial number I for results from simulationswith different rates of
rotation. Different symbols represent different rates of rotation as given in the legend. Lines arefit to (23) for pressure levels

=p 100, 200, and 400 −Nm 2 respectively, with fit parameters given in table 3. The arrow shows increasing pressure. Black circles
represent the data in the center of the shear band, other data are shown for γ γ> = −˙ ˙ 0.01 sc

1.

Table 3.Table showing thefit parameters Fdev
0 , Fdev

(2) , and
IF0 in (23) for different values of pressure p (in units of

−Nm 2 ).

p Fdev
0 Fdev

(2) IF0

100 0.1 ± 0.0005 0.17 ± 0.0005 0.012
200 0.095 ± 0.0008 0.17 ± 0.0001 0.011
400 0.085 ± 0.0001 0.17 ± 0.0004 0.009

Figure 12. μ plotted against Fdev for results from simulationswith different rates of rotation, as given in the legend. The solid line
represents (20), while the dashed line (with slope ⋍3.5 ) isfit by the eye. Black circles represent the data in the center of the shear band,
other data are shown for γ γ> = −˙ ˙ 0.01 sc

1. The red dashed line separates quasistatic and inertial regimes, based on the data in figure 8.
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values for larger p*, further establishing the difference between structure and stress tensors. However, in order to
have a clear picture for the fabric tensor, the strong andweak subnetworks should be studied separately, since
only the strong subnetwork carries almost all of the fabric anisotropy [53, 69]. Alongwith a non-zero σ2

eigenvaluewe do expect other aspects to showup, like the non-collinearity of the stress/strain/fabric
eigensystems, related to induced anisotropy.Nevertheless, these features cannot be investigated further here,
due to the highfluctuations in the data.

As discussed in section 3.1 the cutoff shear rate γ̇c can depend on the simulation time or the averaging time.
In this section, we focused on the data only inside the shear band, which are in the critical state and have
forgotten their initial configuration due to large strain.However, the velocity gradients in the setup are smooth,
which implies that part of the systemoutside the shear band is alsoflowing, albeit slowly. If the simulation runs
longer (and hence longer averaging time can be used), the cutoff can be lowered. Eventually, if the simulation
would run infinitely long, no cutoff on the local strain rate is needed. If we reduce the cutoff on the local strain
rate (see next section), by setting γ Ω ≡ Ω

π˙ ( )c 2
, we observemuchwider variation of data for the local effective

friction coefficient, the deviatoric fabric and the volume fraction.However, the qualitative picture (trend)
remains unaffected for allmeasured quantities. However, the shape factors are not strongly influencedwithin a
change in γ̇c , within nearly an order ofmagnitude. Only for very small γ̇ deviations occur as presented next for
faster and slower shear.

4. Combined rheology towards inertial regime

The previous section showed that in the quasistatic state the friction coefficient and deviatoric fabric are strongly
correlated in the critical state, though their shape factors are found to be considerably different.Motivated by
this, we check if this correlation alsoworks in the rate-dependent inertial regime. To test the correlation, both
lower and higher inertial number data are generated by varying the external rotation rateΩ for afixed gravity

= −g 10 ms 2 and contact stiffness = −k 100 Nmn
1. In the following, wewill explore the evolution of the local

macroscopic friction coefficient μ and deviatoric fabric with the inertial number I andmerge it with the
dependence of both μ and deviatoric fabric on p*, to propose a combined rheological law. As explained in the
previous section and section 3.1, the cutoff shear rate for an established critical state also depends on the time
interval for data procurement and the averaging timewindow. In this section, the total simulation and averaging
times are increased. Hence, the cutoff on local strain rate is set to γ Ω ≡ Ω

π˙ ( )c 2
so as to capture themaximumdata

(in the critical state) and present a unique local rheology law outside and inside the shear band.

4.1. Friction law
The local effective friction coefficient μ = τ r h

p r h
( , )
( , )

is plotted against inertial number I in figure 10.Different

symbols showdata fromdifferent rates of rotation as given in the legend; the black solid circles represent the data
in the center of the shear band. The solid black line shows the friction law, as proposed in [7]:

μ μ
μ μ

= +
−

+ σ( ) ( ) ( ) ( )
I p p

p p

I I
, * *

* *

1
, (21)0

local
2
local

0
local

0

Figure 9. Shape factor for (left) stress, and (right) fabric plotted against local dimensionless pressure p*. Different symbols represent
different values of κ as given in the legend of figure 6. Black circles represent the data in the center of the shear band, other data are
shown for γ γ> = −˙ ˙ 0.1 sc

1. Solid line represents zero, while dashed line is the prediction from [49].
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Rheology – stress-fabric relation 
Fully tensorial 3D => … in progress … 
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Summary 
 

micro-macro constitutive model 
  based on homogeneous DEM  

 

memory/history => micro-structure evolution 
plastic/relaxation events ó stochastic? 
 

  ISO+DEV        => three! moduli (3D +axial) 
 

macro:  
incremental stress (structure) – strain relations 
 

=> prediction of macro flow behavior … 
 

   … but what about fluctuations? 
 

Isotropic stress 

Deviatoric stress 

Anisotropy 

probability for:  
 - elastic events 

 - plastic events   

  0 = !"V = 2B#V + AS d$

  0 = !" D = A#V + 2GS d$

  
0 = ! A = "A Amax # A( ) d$

  
S = 1!" D

" D
max = 1!# D

Constitutive model  
 scalar! … how about the fluctuations? 

!V | d"

 ! D
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How to model? 
 
1 – critical state 
2 – fluctuations  
3 – anisotropy … 
 
 
 
 
Minimal  
constitutive model? 
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How to model? 
 
1 – critical state 
2 – fluctuations  
3 – anisotropy … 
 
lost by time/ensemble 
averaging/micro-macro 
 
Minimal (too minimal?) 
constitutive model?  

Influence	  of	  coarse	  graining	  parameters	  on	  the	  analysis	  of	  DEM	  simula,on	  results	  

	  
Carlos	  Labra,	  Thomas	  Weinhart,	  Jin	  Y.	  Ooi	  and	  Stefan	  Luding	  
	  
Powder	  Technology,	  in	  press,	  April	  2016	  
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Outline 

o  Introduction 
o  Temporal and spatial coarse graining 
o  Silo flow example 

─  Influence of coarse graining parameters 
─  Shear band identification and development 
─  Bulk stress interpretation 

o  Conclusion 

Temporal-spatial coarse graining 

•  Define	  the	  macro-‐density	  using	  a	  coarse-‐graining	  funcJon:	  	  

•  	  	  

•  Define	  velocity	  such	  that	  mass	  balance,	  ∂ρ/∂t	  +	  ∇	  ·∙	  (ρV)	  =	  0,	  is	  
saJsfied:	  

•  	  	  	  
•  	   weight	  funcJon:	  

Density	  ρ	  for	  a	  2D-‐Gaussian	  coarse-‐graining	  func4on.	  
w	  =	  d/8.	  
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Temporal-spatial coarse graining 

•  Define stress and wall drag such that momentum balance is 
satisfied  

Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O., From discrete particles to continuum fields near a boundary. 
Granular Matter 14(2), 289-294 (2012) 

4040

30
0

150

Figure 2: Silo geometry (in mm). Dark grey area denotes walls, the light grey area at the
base denotes the outflow. The system is periodic in y-direction.

29

Test case: Silo flow model 

Silo flow model with internal flow pattern is used 
–  Stagnant zone – core flow 
–  High shear-rate localization zone 
–  Fast core flow zone 
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Test case: Silo flow model 
Silo flow model with internal flow pattern is used 

(a) t=0.745s

! ! !

x2 x1 x0

(b) t=1.200s (c) t=1.490s (d) t=2.240s

Figure 4: Silo flow evolution.

31
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Test case:  
Silo flow model 

Horizontal variation: 
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Figure 5: Instantaneous solid fraction, momentum and stress profile in the flowing (x0),
shear (x1) and stagnant (x2) zone at height z = 10 cm, averaged over y, with w = d.
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shear band – which field? 
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Figure 12: Tensorial shear rate γ̇, horizontal shear rate ∂xvz , and inertial number I =
γ̇d√
p/ρp

scaled onto the interval [0, 1] by its maximum at each height, see (16). Data for

ν < 0.1 (white area on the top) is not considered. Dots denote the maxima of the depicted
values in the left and right half of the domain, black contours denote demarcation of the
shear band where the scaled value is less than a tolerance (tol = 0.6). All values averaged
over y and 1 ≤ t ≤ 1.4 for w = d.
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shear band – which w (CG-width)? 
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Figure 13: Horizontal shear rate ∂xvz at
z = 0.1 cm averaged over y and 1.0 s <
t < 1.4 s for varying coarse graining
width w.
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plateau! 

stress components 
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Figure 16: Profiles of normal and shear stress components, averaged over y and 1.0 s <
t < 1.4 s with w = d.
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Shear stress ratio (macro-friction) 
… in the bulk and on the wall 
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Figure 18: Left : Mobilised macroscopic friction µ = |σD|/p as function of position. Dots
and lines denote the centre and width of the shear zone, respectively (according to (18)).
Right : Friction as function of inertial number. The data from the shear zone data for
I > 0.1 is fitted linearly. All data averaged over y and 1 ≤ t ≤ 1.4 for w = d.
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Micro-macro: coarse-graining 
•  micro-macro CG applied to silo flow example 
•  Influence of CG parameters analysed (width and time-window) 

-  Macro-variables should be independent of both 
    temporal and spatial averaging scale. 

•  Study of shear band development 
-  Shear band defined as above average vertical shear in each horizontal slice 

-  Better use objective tensor norms or other invariants relative to local state 

•  Study of bulk and wall stress 
-  Anisotropic normal bulk stresses with signs of force chains & arches 
-  Wall supports most of the bulk mass  

   (due to high microscopic wall friction)e 

•  Next? use those results from DEM for your purpose! 
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Multiscale modeling of  particles in a fluid 

Fully resolved (DNS) Meso-resolved Atomistic (MD) 

Continuum approach Atomistic approach 

10!11m 10!8m 10!5m 10!2m

Example: Fluidization DEM-FEM Mesoscale 

Fluidization on moving mesh with 800 particles (with gravity) 
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Why fibrous media?	


•  Composite materials	

•  Collides and suspensions	

•  Filtration & separation 	

•  Geophysics & soil science 	

•  Biological tissues	

•  Polymer membranes	

Ø  Drag/permeability	

•  Fluidized beds	

•  Rheology 	

•  …	


Flow direction	


K. Yazdchi et al., IJMF 37(8), 2011-2013. 

Fluid-Particle micro-macro 	


•  Characterization of microstructure 	


•  From micro to macro properties (permeability)	


•  Darcy’s law – upscaling the transport equations	


Ø  Geometrical/Orientational/Network	
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Microstructure ���
	
orientation angles 	


6
6

1 1

1 1 k
kj

nN
iglobal

k jk

e
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θψ
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How to find the neighbors?  

Z. Wang et al., J. Chem. Phys., 134, 2011. 

6
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Delaunay edges	
 6 near-neighbors	
Cutoff radius	


Content 	


•  Characterization of microstructure 	


•  From micro to macro properties (permeability)	
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Permeability-Porosity	


dense moderate dilute 

Lubrication? Carman-Kozeny Cell method 
2 5
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K. Yazdchi et al., Composites Part A 43(11), 2012. 
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Microstructural model	

Lubrication theory: 

2.

2

5

2.51 1
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ε γ
ε

⎛ ⎞−= − =⎜ ⎟⎜ ⎟−⎝ ⎠

0.8ε =

0.4ε = Shortest Delaunay edges 	

(or 2nd nearest neighbor distances)	
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Example: Fluidization DEM-FEM 

Fluidization on moving mesh with 800 particles (with gravity) 
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sintered model porous media beds  
v  sintered mono- & weakly polydisperse glass beads: 

v  porosity: φ ≈ 0.12 – 0.38   

v  different glass bead diameters:  dP = 0.4 – 8 mm  

v  cylindrical samples, different (db = 25, 30 & 50 mm)  

(Ref.: I. Gueven, in preparation) 
 

dp = 0.6-0.8mm dp = 3.0mm dp = 5.0mm dp = 8.0 mm 

3D multiphase flow + CT-scan (FOM-Shell)  

Different experimental stages with increasing complexity      
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results – pore throat distribution 

Investigated subvolume for pore throat analysis with dimensions of 1300 (x) X 1300 (y) X 
2200 voxel3 (left). The considered subset contained about 150,000 glass beads with particle 
diameters ranging mostly between 0.4 and 0.6 mm. The total number of pore throat areas 

within the considered cuboid was about 257,000.  Resulting pore throat size distribution with 
corresponding cumulative curve (right).  

  

results – pore throat size distribution 
and correlation to permeability 

Pore throat distribution of different sintered  glass bead packages obtained from subvolumes 
 for pore throat analysis with dimensions  of 1300 (x) X 1300 (y) X 2200 voxel3.  The investigated 
subset contains  about 150,000 glass beads with particle diameters ranging mostly between 0.4 

and 0.6 mm. The total number of pore throat areas within the considered cuboid varries between 
3,800  and 257,000.    

  

v  dp = 1.0 – 1.2 mm v  dp = 0.6 – 0.8 mm v  dp = 0.8 – 1.0 mm 

v  dp = 1.5 – 2.0 mm v  dp = 2.0 – 2.5 mm v  dp = 3.0 mm 
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Fluid-particle simulation – multiscale … 
    but which length scale? 

Van der Hoef, M. A., van Sint Annaland, Deen, N. G., & Kuipers, J. A. M. (2008). 
Numerical simulation of dense gas-solid uidized beds: A multiscale modeling strategy. 

Annual Review of Fluid Mechanics, 40 (1), 47-70. 

Length scale of interest 
determines simulation 

method 

Fluid resolution > 
particle diameter 

Fluid-particle simulation – multiscale … 
    but which length scale? 

Van der Hoef, M. A., van Sint Annaland, Deen, N. G., & Kuipers, J. A. M. (2008). 
Numerical simulation of dense gas-solid uidized beds: A multiscale modeling strategy. 

Annual Review of Fluid Mechanics, 40 (1), 47-70. 

Length scale of interest 
determines simulation 

method 

Fluid resolution > 
particle diameter 

LB-DEM 
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results - porosity & permeability  

Numerical and experimental determined porosity (left) and permeability (right) values for sintered 
glass bead samples showing different particle diameter 

v  porosity v  permeability 

permeability ç èpore throat  

results - porosity & permeability  

permeability ç èpore throat  

40 CHAPTER 2. STATIONARY HYADRAULIC PROPERTIES

Figure 2.16: Local spatial distribution of mean pore throat diameter values of
subsets with edge lengths of 256 voxels within the initial cuboid (left). Frequency
distribution for equivalent mean pore throat diameter �dpt� (red curve) and the
corresponding cumulative curve (green curve) (right).
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Flow	
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≅

Average horizontal velocity at 	
 0.6ε =
Upscaling => Uniform averaging cells	


Fluid solved by SPH (Smooth Particle Hydrodynamics) 
 Locally Averaged Navier Stokes Equations 

•  Anderson and Jacksons (1967) derived  
  locally averaged Navier Stokes equations (AVNS) 

•  Solid particle distribution is converted to a smooth porosity field 
    (Ref.: M. Robinson et al. 2012-2014)  
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Variable resolution fluid solver 
•  SPH resolution (smoothing length h) depends on density 
•  Therefore, resolution coupled to porosity (h ≈ε-1/3) 
•  Retains accuracy, as particles increase effective viscosity  

     but inhibits turbulent flow 

M. Robinson, M. Ramaioli, S. Luding, MSM, IJMF, 2013 

Fluid-Particle Drag Force 

•  Force on DEM particle due to fluid: 

•  Where fd is the drag force model 
•  Stokes drag (creeping flow, single particle) 
•  Di Felice (1994) drag model (higher Re, multiple particles) 

 

dpi PV ff +⋅∇+−∇= )( τ

§  Drag force calculated on each DEM particle 
•  Particle drag force then interpolated to surrounding SPH particles 
•  Constructed so that Newton’s third law is satisfied 

fd 

Wiafd 

Wibfd 

M. Robinson, M. Ramaioli, S. Luding, MSM, IJMF, 2013 
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3D Sedimentation Test Cases - Validation 

1.  Single Particle Sedimentation (SPS) 
2.  Sedimentation of a constant porosity block (CPB) 
3.  Rayleigh Taylor Instability (RTI) 

SPS CPB,RTI 

M. Robinson, M. Ramaioli, S. Luding, MSM, IJMF, 2013 

Set of Realistic Fluid-Particle Parameters 

•  Particle properties chosen to match glass beads used in 
dispersion cell experiments 

•  Contact law – linear spring dashpot 
•  Very low stiffness to speed up calculations  

  – particle collisions not important here 

Property Value 

Density 2500 kg/m3 

Diameter 1x10-4 m 

Spring Stiffness 1x10-4 kg/s2 

Damping 0 kg/s 
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Set of Realistic Fluid-Particle Parameters 
•  Three different fluids used to provide a  

  range of particle Reynolds Numbers 
•  Parameters based on  

  air, water and 10% glycerol-water solution 

Property Air Water Glycerol-water 
Density 1.18 kg/m3 1000 kg/m3 1150 kg/m3 

Viscosity 1.86x10-5 Pa·s 8.9x10-4 Pa·s 8.9x10-3 Pa·s 
Rep 0.65 – 3.19 0.15 – 0.85 0.002 – 0.011 

Multiple Particle Sedimentation – SPH Results 
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Wet Start 

Dry Start 
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Dry Start 

Simulation of powder dispersion by a liquid jet 

•  Application: Particle dispersion  
 (collaboration with Nestle) 

 
•  Method: SPH-DEM 

•  Results: 
•  Wet – Recovers quanitative features 

from experiment: Jet, dispersion …  
•  Dry – Fails to recover some  

major features (e.g. bed lift regime).  
 
TODO: 
Surface tension not modeled yet. 
Second phase not modeled yet. 
Different size particles … 

M. Robinson, M. Ramaioli,  
S. Luding, MSM, PG2013 
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Mul,-‐species	  DEM-‐SPH	  model	  
•  G. Raso (MSc thesis, Univ. Calabria, UT) 
Test/validation case 4: Homogeneous 2-species sedimentation 

More	  mul,-‐scale	  models?	  
	  …	  using	  micro-‐macro	  techniques	  

	  
	  
	  
	  
	  
	  
Plug	  those	  into	  your	  con,nuum	  solver	  J	  

	   	   	   	  …	  no	  DEM	  needed?	  
	  

•  Constitutive models for soils and powders (dry) 
- with (strain) evolution of micro-structure (anisotropy) 

•  Constitutive models for wet&cohesive particle systems 
- interaction between micro-structure, cohesion&perm. 

•  Constitutive models for multi-phase systems 
- mixing vs. segregation (not shown) 
- one => two => many species/phases 
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Shallow	  flow	  equa,ons	  (3D-‐>2D)	  
2.3. Verification of 1D theory via 2D DGFEM

2

37

y

x

!u

Figure 2.8: Top: Illustrates a schematic of an inclined channel with contracting and expanding sidewalls. Mid-
dle: Plot of the flow height h=h(x) as a function of downstream coordinate x for supercritical flow F = 3, ob-
tained by solving the 2D shallow granular model using a discontinuous Galerkin finite element method in our
open-source code (hpgem.org). Bottom left: contour plot of the flow height, h(x, y), as a function of down- and
cross-slope coordinate, x and y for a prescribed upstream inflow Froude number F=3. Bottom right: Compar-
ison of profile of Froude number F = F (x) and height h = h(x) as a function of downstream coordinate x for
supercritical flow F = 3, obtained from the 1D and 2D shallow granular model. The circles indicate the aver-
aged DGFEM solution and the solid line represents the solution obtained using the 1D theory.

•  D. Tunuguntla 
(PhD-thesis 2015) 

-  calibrated by DEM 
-  boundary conditions 
-  multi-species 

mixing & segregation 
-  erosion & sedim. 

Shallow	  flow	  equa,ons	  (3D-‐>2D)	  

•  D. Tunuguntla 
(PhD-thesis 2015) 

-  inspired & calibrated  
by experiment & DEM 

-  boundary conditions 
-  multi-species 

mixing & segregation 
-  erosion & sedim. 

3

46 Micro-macro transition
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Figure 3.1: A snapshot of a bidisperse mixture flowing in a periodic box inclined at 26◦ to the horizontal (dis-
crete particle simulation). Colours/shades indicate the base/boundary (yellowish green, F

b ), species type-1
and type-2 (blue, F1 and red, F2). We define the bulk as F1 ∪F2.

require ensemble-averaging, we nevertheless illustrate spatial coarse-graining (averag-
ing in space alone) to be well complemented by temporal averaging (averaging in time).
On the contrary, for unsteady flows, we demonstrate the necessity of defining both the
spatial and temporal coarse-graining scale to construct macroscopic fields.

Outline
To extract the averaged macroscopic fields, the coarse-graining (CG) expressions are sys-
tematically derived in Sec. 3.2. As a test case, Sec. 3.3, we apply the available CG expres-
sions to bidisperse mixtures flowing over an inclined channel, see Fig. 3.1. In Sec. 3.3.2,
for flows in steady state, we show that there exists a range or plateau of smoothing lengths
(coarse-graining scale/width) for which the fields are invariant. Once the averaging scale
is determined, Sec. 3.3.3 showcases how spatial averaging is well complemented by tem-
poral averaging. For bidisperse unsteady flows, not only does Sec. 3.3.4 illustrate the
need of defining both spatial and temporal averaging scales, but it also illustrates that
there exists a range of both spatial and temporal averaging scales for which the fields are
invariant. Finally, Sec. 3.4 summarises and concludes our main findings.

3.2. Spatial coarse-graining
The current section comprehensively extends the approach of [4, 10] to bidisperse spher-
ical systems, and can be easily extended to polydisperse mixtures as well. Traditionally,
the coarse-graining formulae were derived from the classical laws of conservation of
mass, momentum, energy, etc., [9]. Thereby, leading to expressions for the total den-
sity, stress, etc., in terms of the properties of all the particles. Here, we generalise this to
mixtures (multi-components); therefore, our starting point will be mixture theory [44],
which constructs partial mass, momentum and energy balances for each distinct con-
stituent of a mixture.

4

78 Segregation model
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Figure 4.2: For a = 3, ρ̂ = 0.5 and ŝ = 1.26, the development of volume fraction φ is shown as a function of the
downslope coordinate x and flow depth z. The domain is initially filled with a mixture of φ1 =φ(x, y,0) = 0.25
and the bulk flow is from left to right. (i) Constant shear rate (γ̇= 1) i.e. simple shear flow α= 0, Ŝr = 1.5, (a)-(b)
Homogeneous mixture inflow (φ0 = 0.6) and (c)-(d) normally graded mixture inflow. (ii) Bagnold-type shear
rate (Eq. 4.20), M = 0.1: (e)-(f) Homogeneous mixture inflow (φ0 = 0.6) and (g)-(h) normally graded mixture
inflow. No. of elements: 160×60.
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PARDEM	  
	  
•  DEM	  –	  increasingly	  popular	  for	  modelling	  	  

	  parJculate	  systems	  on	  the	  PARJcle	  scale	  
•  IniJally	  a	  scienJfic	  tool	  to	  invesJgate	  and	  qualitaJvely	  

understand	  parJculate	  solid	  behaviour	  and	  phenomena	  
•  Increasing	  use	  of	  DEM	  for	  quanJtaJve	  simulaJon	  based	  

design	  and	  opJmisaJon	  of	  engineering	  systems	  
•  One	  major	  obstacle	  for	  widespread	  adopJon:	  	  

	  	  	  	  	  lack	  of	  valida,on	  and	  model	  calibra,on	  methodologies	  
•  Also	  require	  well	  trained	  R&D	  engineers	  	  

	   	   	  to	  exploit	  the	  full	  potenJal	  of	  DEM	  	  

PARDEM	  
T-‐MAPPP	  =>	  session	  this	  a`ernoon	  J	  
•  DEM	  –	  increasingly	  popular	  for	  modelling	  	  

	  parJculate	  systems	  on	  the	  PARJcle	  scale	  
•  IniJally	  a	  scienJfic	  tool	  to	  invesJgate	  and	  qualitaJvely	  

understand	  parJculate	  solid	  behaviour	  and	  phenomena	  
•  Increasing	  use	  of	  DEM	  for	  quanJtaJve	  simulaJon	  based	  

design	  and	  opJmisaJon	  of	  engineering	  systems	  
•  One	  major	  obstacle	  for	  widespread	  adopJon:	  	  

	  	  	  	  	  lack	  of	  valida,on	  and	  model	  calibra,on	  methodologies	  
•  Also	  require	  well	  trained	  R&D	  engineers	  	  

	   	   	  to	  exploit	  the	  full	  potenJal	  of	  DEM	  	  
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Constitutive model  
 scalar! (in the biaxial box eigen-system) 

! p = !"V = 2B#V + ASd$

!" = !# D = A$V + 2GSd%

!A = "A Amax ! A( ) d#
S =1!! D

! D
max =1!

sD
sD
max

Isotropic stress 

Deviatoric stress 

Anisotropy 

 

 stress-isotropy 

 

Isotropic|deviatoric strain increment 

 

B … Bulk-, G … Shear-, A … Anisotropy-Modulus 

!V | d"

! p = !"V = 2B#V + ASd$

!" = !# D = A$V + 2GSd%

!A = "A Amax ! A( ) d#

Isotropic stress 

Deviatoric stress 

Anisotropy 

probability for:  
 - elastic events 

 - plastic events   

  
S = 1!" D

" D
max = 1!# D

Constitutive model  
 scalar! …  

!V | d"

 ! D
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! p = !"V = 2B#V + ASd$

!" = !# D = A$V + 2GSd%

!A = "A Amax ! A( ) d#

Isotropic stress 

Deviatoric stress 

Anisotropy 

probability for:  
 - elastic events 

 - plastic events   

  
S = 1!" D

" D
max = 1!# D

Constitutive model  
 scalar! … but where is the time-scale? 

!V | d"

 ! D

Constitutive model  
 scalar! … but where is the time-scale? 

! p = 2B"V + ASd# ! 1
$ p
pdt

!" D = A#V + 2GSd$ ! 1%D
" Ddt

!A = "A Amax ! A( ) d! ! 1" A
Adt

Isotropic stress 

Deviatoric stress 

Anisotropy 

 

  

!V | d"
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Constitutive model  
 scalar! … but where is the time-scale? 

! p = 2B"V + ASd# ! 1
$ p
pdt

!" D = A#V + 2GSd$ ! 1%D
" Ddt

!A = "A Amax ! A( ) d! ! 1" A
Adt

S =1!! D
! D
max =1!

sD
sD
max

Isotropic stress 

Deviatoric stress 

Anisotropy 
Isotropic? 

!V | d"

Constitutive model  
 scalar! … but where is the time-scale? 

  
! p = 2B"V # 1

$ p
p # pc( )dt

!" D = 2Gd# ! f" Ddt

Isotropic stress 

Deviatoric stress 

!V | d"*Krijgsman & Luding, P&G 2013 

* 
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Isotropic stress 

Deviatoric stress 

 
fluidity (Nguyen et al. 2011, Kamrin/Koval 2012) 
… with an evolution equation by its own … 

Steady (critical) state:  

Constitutive model  
 scalar! … but where is the time-scale? 

  
! p = 2B"V # 1

$ p
p # pc( )dt

!" D = 2Gd# ! f" Ddt

!V | d"

f ! !!

2G f !! ="
D

max =#G

? 

Constitutive model  
 scalar! … but where is the time-scale? 

  
! p = 2B"V + AS d# $ 1

% p
p $ pc( )dt

!" D = A#V + 2GSd$ ! 1%D
" Ddt

!A = "A Amax ! A( ) d! ! 1" A
Adt

S =1!! D
! D
max =1!

sD
sD
max

Isotropic stress 

Deviatoric stress 

Anisotropy 
Isotropy? 

Granular Solid Hydrodynamics 
GSH-type formulation (M. Liu 2003-2015) 

!V | d"
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Constitutive model  
 scalar! … but where is the time-scale? 

  
! p = 2B"V # 1

$ p
p # pc( )dt

!" D = 2Gd# ! 1$D
" Ddt

Isotropic stress 

Deviatoric stress 

 
different relaxation times for p and sD 

Granular Solid Hydrodynamics 
GSH-type formulation (M. Liu 2003-2011) 

!V | d"

1
! !Tg ! !" ? 

Constitutive model isotropic! … 
… in the critical state! 

0 = 2Gd! ! 1"D
# Ddt

Deviatoric stress (Luding) 

Deviatoric stress (GSH) 

 
relaxation rate 
 
viscosity 

 
 
GSH-type formulation (M. Liu 2003-2015) !V | d"

0 = 2GSd!

S =1!! D
! D
max =1!

sD
sD
max
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Constitutive model isotropic! … 
… in the critical state! 

0 = 2Gd! ! 1"D
# D
maxdt

Deviatoric stress (Luding) 

Deviatoric stress (GSH) 

 
relaxation rate 
 
app. viscosity 

 
 
GSH-type formulation (M. Liu 2003-2015) !V | d"

1
!D

= 2G
" D
max
!# = 2G p

sD
max
!#

0 = 2G 1! sD sD
max

"
#$

%
&'
d!

! =" D
max

!! = 2G"D

Constitutive model – back anisotropy 
 scalar! … with plastic and relaxation term 

! p = ASd" ! 1
! p

p ! pc( )dt

  
!" D = 2G S d# $ 1

% D
" D dt

Isotropic stress 

Deviatoric stress 

 
with probability for elastic deformations: 

!V | d"

  
S = 1!" D

" D
max = 1! sD

sD
max = 1! sD

µ I , P*, Bo( ) = 1!# D
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Constitutive model – back anisotropy 
 scalar! … with plastic and relaxation term 

! p = ASd" ! 1
! p

p ! pc( )dt

  
!" D = 2G S d# $ 1

% D
" D dt

Isotropic stress 

Deviatoric stress 

 
steady state => 

 

… => 

0 = 2G 1! sD
sD
max

"
#$

%
&'
d! ! 1

! D
" Ddt

  
0 = 2G 1!" D

µ p
#
$%

&
'(

d) ! 1
* D

" D dt

! D = 2G !! 2G !! µ p +1 ! D( ) = µ p 1+ µ p 2! DG !!( )( )

Constitutive model – back anisotropy 
 scalar! … with plastic and relaxation term 

! p = ASd" ! 1
! p

p ! pc( )dt

  
!" D = 2G S d# $ 1

% D
" D dt

Isotropic stress 

Deviatoric stress 

fluidity in  
steady state => 

   

1 g :=! D
!" p = 1 !" µ + p 2G# D( )

= µ !" + µ p 2G# D( )( )
= # Dµ !"# D + µ p 2G( )( )

(for small !"# D ) $ 2G# D p( ) = 2G# D / B%V

! D = d Tg = d "v
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 0.05
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g 
/ (

 d
el

ta
 v

r /
 <

d>
 )

volume fraction: phi

g = p \dot\gamma / \tau

fast
slow
xslow
xs-g/2
fast p=100
xs p=100
xs-g/2 p=100

fluidity in s.s.:  

Constitutive model – back anisotropy 
 scalar! … with plastic and relaxation term 

g! D := p !!" D /! D = !!" D µ + p 2G( )( )

! D = d Tg = d "v

•  Contact duration tc 
•  inverse shear rate ts 
•  Time between collisions tn 
•  inverse dissipation rate td 
•  inverse isotropic pressure-change rate 
•  inverse anisotropic stress-change rate 
•  Relaxation time = f(tc,tn,ts,td)? 
•  Non-co-linearity relaxation? 

Interaction of time-scales? 

Time-scales (summary) 
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Constitutive model  
 scalar! … but where is the time-scale? 

  
!" D = 2G Sd# $ 1

% D
" D dt

S =1!! D
! D
max =1!

sD
sD
max

How to measure, e.g., time-scale 

Deviatoric stress 

 
stop! 

!V | d"

1
!D t( )!Tg

!D

!! D = ! 1"D
! D

!Tg = !I

Constitutive model – co-linear? 
 scalar! … but where is the time-scale? 

!"# = 1
2 d$ s ! 1

%"
"# !"&( )dt

How to measure, e.g., non-colinearity 

Relaxation model: 

 
in general non-colinear (also for A)! 

Note the difference between  

 

!V | d"

!"

! s and !
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•  Micro-/Macro-Flow Rheology 

-  micro-mechanics&fluctuations … macro-flow 

-  micro-contact-friction … macro-friction-angle 

-  relation between fluctuations and macro-response? 
 

•  Non-Newtonian Rheology (Anisotropy, Micro-polar?) 
 

•  Does global averaging make sense anyway? 
… spatial (size-effects) vs. temporal (plastic events) 

Summary micro-macro  

Flow	


20c

p

A
A

≅ 160c

p

A
A

≅

Average horizontal velocity at 	
 0.6ε =
Upscaling => Uniform averaging cells	
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Effect of particle’s cohesion (dry) 

Cohesive contact model 

The local Bond number 

f
fBO min=

0 

  BO = 0.33   BO = 2.85

Force chain network without/with cohesion 

Effect of particle’s cohesion (dry) 

[ A. Singh, V. Magnanimo, K. Saitoh, and S. Luding, PRE, 2014 ]	

1<OB

Distance from the split Width ( ) ΩHr,ω

Effect of cohesion 
is suppressed. 

1>OB
The difference increases 

with Bo. 
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Effect of particle’s cohesion (dry) 

Cohesive contact model 

The local Bond number 

f
fBO min=

0 

Force network anisotropy with cohesion 
9
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(b)

FIG. 16: (Color online) Fit parameters (a) ! and (b) f0
plotted against Bond number Bo. Different symbols represent

value of local pressure (as given in the inset).

exponential function [76]

P( f ∗)∼ e−( f ∗/ f0)! (9)

with a characteristic force f0 and a fitting exponent ! . Figure
16 displays the characteristic force and the exponent against
the global Bond number Bo. If Bo < 1, we obtain f0 =
1.4± 0.1 and ! = 1.6± 0.1, which is very close to that pre-
dicted by Eerd et al. [76] for three-dimensional non-cohesive
ensemble generated byMD simulations. For Bo> 1, however,
both characteristic force and fitting exponent decrease with
increasing cohesion. The decreasing fitting exponent hints at
stronger fluctuations in the force distribution. A Gaussian tail
of the probability distribution would indicate a more homoge-
neous random spatial distribution of forces. The deviation to-
wards an exponential distribution can be linked to an increase
in heterogeneity in the spatial force distribution; as mentioned
in previous studies [77–79]. Therefore, we conclude that the
tail of the PDF becomes more exponential with increasing co-
hesion, which implies a heterogeneous spatial distributions of
strong forces.
Also we observe that the fitting exponent decreases with

increasing pressure, which implies that at high pressure where
cohesion is more active due to the contact model the spatial
distribution is more heterogeneous compared to that for low
pressure.

C. Anisotropy of force chain networks in shear bands

In the case of simple shear, there are two non-zero eigen-
values of the strain rate tensor, which are equal in magnitude
but opposite in sign, and the third eigenvalue is zero. The
plane containing the eigen-vectors with non-zero eigenvalues
is called the “shear plane”, where the eigen-vector with zero
eigenvalue is perpendicular to this plane (parallel to the shear
band). We call the eigen-directions with positive, negative,
and zero eigenvalues as the compressive, tensile, and neutral
directions, respectively. Since the compressive and tensile di-
rections are associated with loading and unloading of contacts,
respectively, it is intuitive that in the absence of any external
force, the mean force would be positive in compressive direc-
tion, negative in tensile direction, and almost zero in neutral
direction.

FIG. 17: (Color online) A sketch showing the shear band as
dotted line, shear plane, and three eigen-directions of the
strain rate tensor. Grey lines show inner and outer cylinders,
while solid brown line shows the split, dashed black line
shows the shear band which initiates at the split at bottom
and moves towards inner cylinder as it moves towards the
top. Green arrow represents the eigen-direction for neutral
eigenvalue of the strain rate tensor, which is tangential to the
shear band, perpendicular to this vector is the shear plane
(yellow shaded region), which contains the eigen-directions

for compression (red arrow) and tensile (blue arrow)
eigenvalues.

In our system, both compressive forces and shear play a
combined role, where the neutral direction gets a contribution
from external compressive force only, while the two princi-
pal (compressive and tensile) directions get contributions from
both shear and external compressive force. Because the cohe-
sive force is activated by unloading, it should affect the force
along the tensile direction. Note that the shear band here is not
vertical, instead its orientation changes with depth as shown
in the schematic in Fig. 17. In this figure, the eigen-direction
of the neutral (zero) eigenvalue (green arrow) moves with the
shear band. This turning of the neutral eigen-direction makes
the shear plane tilt as well (which is shown by the yellow
shaded regions). To extract the contacts aligned along these
directions at a given pressure in the system, we first calcu-
late the local strain rate tensor and extract the three eigen-
directions n" . Next, we look for contacts with unit contact
vector nc, which satisfy the condition |nc.n" | ≥ 0.9 . The
contacts which satisfy the condition for compressive eigen-
direction are termed compressive, and tensile and neutral con-
tacts are defined similarly. The forces carried by compressive,
tensile, and neutral contacts are denoted by fcom, ften, and fneu
respectively.
Figure 18 shows the mean forces relative to overall local

mean force, f ′com/ten/neu ≡ 〈 fcom/ten/neu〉−〈 f 〉, plotted against
pressure for different values of Bo. We find that f ′com(> 0)
and f ′ten(< 0) are symmetric about zero, and f ′neu ) 0. Be-
cause the mean force along the neutral direction is indepen-
dent of Bo, the cohesion does not affect the neutral direction
(due to the absence of shear in this direction). However, f ′ten

[ A. Singh, V. Magnanimo, K. Saitoh, and S. Luding, PRE, 2014 ]	

Effect of particle’s cohesion (dry) 
Cohesive contact model 

Local Bond number 
f
fBO min=

0 

Force network anisotropy + cohesion 10
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FIG. 18: (Color online) Mean forces in different
eigen-directions of the strain rate tensor, relative to the

overall mean force plotted against the local pressure in the
system. Different symbols represent the global Bond number

Bo (as given in the inset).

decreases with pressure and cohesion, while f ′com increases
to keep the mean overall force to stay independent of cohe-
sion. Both positive and negative forces are present in all di-
rections. However, the positive and negative forces dominate
in the compressive and tensile directions, respectively. The
anisotropy of forces is more pronounced with increasing pres-
sure and cohesion, as observed in Fig. 8.
Next, we study the PDFs of forces in the compressive, ten-

sile, and neutral directions. Figure 19 displays the PDFs along
each direction for non-cohesive Bo = 0 and highly cohesive
Bo = 2.85 systems, where the forces along different direc-
tions are normalized by the overall mean force. In a non-
cohesive system (Fig. 19(a)), we observe that for f ∗ < 1, the
PDF along the tensile direction is higher compared to that for
the compressive direction, which is intuitive as the majority of
contacts will have smaller forces in the tensile direction. For
f ∗ > 1, however, the PDF along the compressive direction is
higher compared to that along the tensile direction, as force
along the compressive direction should be stronger compared
to that along the tensile direction [80]. For a highly cohesive
system (Fig. 19(b)), a similar behavior is observed for posi-
tive forces, while for small positive and negative forces, due
to attractive forces the probability is higher along the tensile
direction compared to the compressive direction. The PDFs
of forces in the neutral direction lie in between those in com-
pressive and tensile directions, suggesting a close to average
distribution of forces in the neutral direction.
Figure 20 shows the variations of the PDFs along compres-

sive and tensile directions for different values of Bo. If Bo< 1,
the PDFs collapse on top of each other. However, the PDFs
get wider with increasing cohesion aboveBo= 1 (such widen-
ing is more prominent for positive and negative forces in the
compressive and tensile directions, respectively). Again, we
confirm that strong cohesion leads to an increases of positive
and negative forces in the compressive and tensile directions,
respectively. Therefore, the force distributions in the principal
directions gets more heterogeneous with increasing cohesion
for Bo > 1, and hence the heterogeneity of the overall force
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 0  1  2  3  4  5  6  7  8  9

P
(f* )

f*

 Compressive direction
 Tensile direction
 Neutral direction

 Overall force

(a)
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P
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 Tensile direction
 Neutral direction
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(b)

FIG. 19: (Color online) Probability distributions of
normalized forces f ∗ = f/〈 f 〉 in compressive, tensile, and
neutral directions inside the shear bands. Here, we show the
results for high pressure in (a) non-cohesive Bo= 0 and (b)
high cohesive Bo= 2.85 systems. The PDFs of the overall

normalized forces are shown as dashed line.

structure increases.
The results in this section, suggest that for low Bo, com-

pressive forces and shear dominates and governs the distribu-
tion of forces along compressive and tensile directions. The
forces respond to external compression and shear, i.e., due to
shear, particles can rearrange and avoid very large forces. In
contrast, for high Bo, cohesion dominates over external com-
pression and the contact forces respond mainly to cohesion
and shear. Due to the sticky nature of cohesive forces, rear-
rangements of the contact network become difficult, and very
large contact forces as well as strong sticking forces occur
together, and hence the contact network becomes more het-
erogeneous.

IV. DISCUSSION AND CONCLUSION

In this paper, we have studied the effect of cohesion on
shear banding in dry cohesive powders. We used a dimen-
sionless parameter the global Bond number Bo to quantify
how strong cohesive forces are relative to compressive forces.
We found that Bo% 1, very well predicts the transition from a
free-flowing, non-cohesive system to a cohesive system. Inter-
estingly, we found that also many other features of the system
show a transition at Bo≈ 1.

[ A. Singh, V. Magnanimo, K. Saitoh, and S. Luding, PRE, 2014 ]	
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Wet Granular Material 

Suspension 
S* = 1.0 
 
 

Pendular 
0.05 < S* < 0.3 
 

Funicular 
0.3 < S* < 0.9 
 

State of wet granular material is defined by the bulk saturation (S*) of the materials i.e. the ratio of the  
liquid volume to void volume (liquid  volume + confined air volume) 

Capillary 
S* > 0.9 
 

No capillary forces 
between the particles 

Capillary forces/ Cohesion active between the particles 

Mitarai N. and Nori  F. , 2006. Wet Granular Materials. Adv. Phys. 55, 1 - 45  

Willett’s model for capillary forces between spheres 

bV
RSS =

Willett, C.D., Adams, M.J., Johnson S.A. and Seville J.P.K.. 2000. Capillary Bridges 
between Two Spherical Bodies. Langmuir 16, 9396-9405   

Contact Angle of the liquid −θ

−R Mean harmonic radius of contact particles 

−bV
Separation Distance −S

Capillary bridge force between the particles: 

where 

 The bridge rupture distance is defined by: 
−γ Surface tension 

311 bVSc ⎟
⎠
⎞⎜

⎝
⎛

2
+= θ

25.2

cos(γ2

SS

R
fcij

+1.05+1

)
=

θπ

Liquid Bridge Volume 
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Loading 

Unloading 

Unloading Adhesive 
branch 

Loading 

Unloading 

Liquid bridge + Linear contact model 

31
8 

Friction and cohesion (wet) 
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Dry:  

Cohesive:  

,Pµτ =

)0(, ==+= bo VcccPµτ

µ: Macroscopic friction coefficient 
c: Macroscopic cohesive strength 

Singh, A., Magnanimo, V.  and Luding S.,  2014, Effect of friction on the force distribution in sheared 
granular materials, Proc. of NUMGE2014. 
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Micro-macro correlation for liquid bridge model 

31
9 

,*

*

*
baSc

c +=
γ

*

* )(16.0
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γ
γocb
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≈≈

≈
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p
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c

pg d
SS
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=== ** ,
/

,
/ 2

* γγ

fg: gravitational force on single particle 
dp: mean diameter of particle 
 

Roy, S., Singh, A., Weinhart, T.  and Luding S.,  2015, Micro-macro Transition and Simplified Contact 
Models for Wet Granular Materials, Journal of CPM. 

Simplified linear contact model for wet particles 

Key Parameters for equal cohesion: 
•  Adhesive Energy E 
•  Maximum adhesive force which is linearly 
proportional to the surface tension of liquid 

Roy, S., Singh, A., Weinhart, T.  and Luding S.,  2015, Micro-macro Transition and Simplified Contact 
Models for Wet Granular Materials, Journal of CPM. 

• liquid bridge model 
▼ linear model 

0 50 100 150 200
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γ  0.040 Nm-1
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Local Rheology for wet granular materials: slow shear 
and cohesion 

32
1 

•   Control parameter: Bond number, pressure 
•   Global Bond number Bog  is  experimentally measurable quantity 

)( *

max

Pf
fBo c

l =

:max
cf Maximum adhesive force 

:)( *Pf Mean normal repulsive force at a given height of the shear cell 

max2* / cp fPdP =

)(
cos2
*Pf

R θγπ=

?),( *PBof=µ
)( *

max

max

Pf
fBo c

g =

Global Apparent Viscosity from Weak to Strong Cohesion 

0 0.5 1 1.5 2200

400

600

800

1000

1200

1400

1600

η

Bog

go Bo'ηηη +=
:oη Viscosity for dry materials 
(232 Pa.s-1) 

747'≈η Pa.s-1 

:gBo Global Bond number 

go Bo'
*

ηη
ηη

+
=

)( *
max

max

Pf
fBo c
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Local rheology (macro-friction) depends on pressure:  
      from weak to strong cohesion 

•   Local friction coefficient is non-linearly varying in the large Bol limit 
and approaches constant value  under small Bol  limit 
•   Control parameter: local Bond number with higher order correction 

10-2 10-1 100 101 102

100

1/Bol

µ

 

 

0.0295
0.0634
0.1230
0.1838
0.3026
0.6426
0.9662
1.2720
1.7226

  µ = µo + !1Bol + !2Bol
2

where ,15.0=oµ  !1 = 0.22

Bog 

Local rheology (apparent viscosity):  
          from weak to strong cohesion 

•   Non-Newtonian behavior of granular materials with shear thinning 
•   Towards shear thickening for increasingly cohesive materials 
•   Control parameters: Inertial number and Bond number 

,
γ
.

ρ
P
d

I p= dp : mean particle diameter   

ρ : particle density 

Weak cohesion Moderate cohesion Strong cohesion 

.
γ

τη =

10-4 10-3 10-2
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100

101

I

η
*
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10-1

100

101

I

η
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10-4 10-3 10-2
10-1

100

101

I

η
*

Towards Shear 
Thickening 

Red: P > 380 Pa 
Green: 100 < P < 380 Pa 
Blue: P < 100 Pa 
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Shear Thinning: Wet Granular Materials 

1.  Bird-Carreau fit (dry) 
2.  Herschel-Bulkley fit (dry) 

3.  µ(Bol) rheology fit 
 

New:  
Bond number dependent rheology 
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106

108

Strain rate [s-1]

η
 [P

a.
s]

 

 50 < P < 100 Pa
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280 < P < 320 Pa
P > 380 Pa

1
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P 
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η
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50 < P < 100 Pa
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280 < P < 320 Pa
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γµ
ηη

/),,( *
*

mlm PBoPI
=

Rheology of wet granular materials 

Summary: 

•   Four local dimensionless numbers are the controlling parameters (µp, I, P*, Bol) 

•  Existing µ(I) and µ(I, P*) rheology for quasistatic flow – embedded … extended 

Our own contribution: 

•   Both friction and (apparent) viscosity increase with cohesion (surface tension) 

•   Under small pressure,  
 the viscosity changes from strong shear thinning to less shear thinning  

 
 

 Prediction of the non-linear apparent viscosity (S. Roy et al.)  
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Powder chunks -> examples 
Vibration test  

p=100 p=10 


