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Anomalous energy cascades in dense granular
materials yielding under simple shear deformations”
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Granular materials

Ubiquitous in nature
Understanding of their flow properties is crucial to industry

Different from usual fluids
Constituents are macroscopic particles (from few mm to mm)

* Thermal fluctuations are negligibly small.
* Inelastic interactions cause energy dissipations.
* The microscopic (Coulomb’s) friction is intrinsic.



Granular rheology

Dependent not only on the shear rate, y,
but also on the fraction of granular materials, ¢J0

uasi-static rapid-flow

—_----

~y
yielding (jammed)™

The microscopic insight
unjammed is still unknown!
,...‘,-""' ¢0 < ¢C

Y
Unjammed state, ¢J0 <gic

 Bagnold’s scaling, o~y 72, predicted by kinetic theory

Yielding state, ¢J0 >¢lc

* A finite yield stress in a quasi-static limit, y -0
* The shear stress is rate-independent if y «1



Molecular dynamics simulations

Rigid body dynamics (frictional contact model)

fli/: Linear spring-dashpot
+ Coulomb’s friction

Simple shear deformations
(di ydi ) (xdi+Ayyli yli)

The Lees-Edwards boundaries

Steady states

The applied strain is 1<y<2.

(Bi-dispersed granular particles in 2D)



Non-affine velocity fields
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Probability distribution functions (PDFs)
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The PDFs of non-affine velocities are much wider than the
Gaussian fit (dotted line), implying their strong correlations.

Isotropic distributions

The PDFs are symmetric around zero and P(dulx ) and P(duly ) well
correspond with each other, i.e. non-affine velocities are isotropic in space.



Correlation functions (cf. structure functions)

C(r)=(u()om))

(Different fraction, ¢J0 )

Strong correlations in granular materials yielding, ¢40 >¢.c,
under quasi-static deformations, y «1.

The correlation length, C(7ic )/€C(0) =eT—1 . See the symbols in the next.



Energy spectra

E®)=(pl0 /2 )([du &)[T2)

(Different fraction, ¢J0 )

T L | T T

Anomalous energy cascades in yielding states, $.0 >¢!ic, and
quasi-static regime, y «1 (cf. £(&)~%7-3 in 2D turbulence).

Note that the spectrum is the Fourier transform of the correlation function.



Savage’s continuum theory

Hydrodynamic equations

Do/Dt =—pVla ula

dDula /Dt =VIfF oglaff

(mass)

(momentum)

pDE/Dt =alaff Via ulf —Via gla—y

Constitutive model

(energy)

aglaff =n(Via wlf +VIif ula )+odaf [(—n)Vilull—p]

p=pJdkin +plcon

Kinetic part

Contact part

pdkin @b
pdecon «log(@ploo —@plc /Ploo |

~9)

The contact contribution, p/con, is rate-independent.
Transport coefficients and dissipation rate also consist of both parts.



A theoretical expression of the spectrum

Fluctuations
d=@d0 +0p(1,¢)

6=640 +06(r,t)
u=cyelxr+ou(r,t)
Non-affine velocity fields

Linearized hydrodynamics
LY =—1wyY

¥ . Hydrodynamic modes
(i.e. Fourier components of the fluctuations)

Perturbation theory

~E(k)/EQ) =0ulx T2 +0uly T2
=all T(1) T2 +€72 CT2

=y tim «1

k~c and y~ef2 (See our paper)



Theory (hydrodynamics) vs. MD

A good agreement in macro- and mesoscopic scales, kdim <1.

A qualitatively good agreement in microscopic scale, kdim >1.



The basic picture behind the energy cascade

(energy supply) (energy transfer) (energy dissipation)
simple shear interactions between inelastic
deformations collective motions interactions

macro meso micro kd,,



Overdamped dynamics
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D. Vagberg, P. Olsson, and S. Teitel, PRL 113 (2014) 148002. Suppl.
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The microscopic friction
(a) udm =0 (b) udm =0.4 () #dm =1.6
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® Anomalous statistics of non-affine velocities (non-Gaussian behavior
and strong correlations) and the power-law decay of energy spectrum
are specific to dense granular materials yielding under quasi-static
deformations.

® Dense granular rheology is well described by Savage’s continuum
theory, where the constitutive model includes both the kinetic and
contact contributions (see Reference).

® We have derived a theoretical expression of the energy spectrum and
have confirmed a good agreement with MD simulations over the wide
range of length scales.
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