ASSIGNMENT – CONTACT MODEL

1.	Given is the linear spring dashpot contact model.	8
	Derive analystically the contact duration for a normal two-particle collision.	
	How does it depend on stiffness and mass?	
	What changes if you collide a particle with a non-moving wall of infinite mass?	
	Given stiffness $k=10^8$ N/m and viscosity $v=100$ kg/s, what is the contact duration and the restitution coefficient for particles (spheres) made from aluminum, of different sizes ($d=0.01, 0.1, 1.0, 10, 100$ mm)?	
2.	Get your hands on an MD/DEM program ③	8
	What are the time cooled in your system?	
	what are the time-scales in your system?	
	Choose some settings for the linear and/or the Hertzian contact model	
	a Compute/estimate t_c - under average and under worst-case conditions	
	b	
	Verify that t_c/50 is a good time-step (by trying shorter and larger ones)	
	c Specify the other relevant time-scales in your system	
	(like e.g. 1/shear-rate, dissipation-time scale, time between collisions, etc.)	
3.		4
	2. What is the sound-propagation speed in your system?	
	2.a Estimate analytically2.b Compute with MD/DEM numerically2.c Compute with your MD/DEM code, the numerical macroscopic elastic constants in a	
	2D pre-stressed regular lattice.2.d or do it analytically (you dont need MD for it)	