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Overview of segregation:
From inclined planes to drums; via a volcano

A. R. Thornton 5% March 2015
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Granular segregation, hard or easy?

e Granular segregation is very easy to observe, preventing
segregation is often the problem.

e Segregation in granular materials can occur for a number of
reasons

Difference in size

Difference in size

Difference in density

Difference in contact properties

Difference in angle of repose

Differential forcing (air drag etc...)

plus many others ....

Introduction
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Extract from a 1978 paper : Particle segregation ... and
what to do about it

“13y's and don’is of handling
" segregating materials

mass-Aow bins with tafl cylindrical
oS :
- a mixing device for charging a.
ipleoutlet bin at the center to causc

rm syromerric segregation.

oportion and mix badly segregating

jals just before process usage, with as litthe
capacity as possible.

nee a tangential cnery for pneumatic

sing of fluidizable solids whenever ]
e, or provide a defiector plate.

split material into various bips from a
conveyor, since the material may be
cgated on the belt

‘%t design a ndnsymmetric multfple-outler

Dont use frec-fall chutes to transfer matevials
ving differing friction angles unless there is
mixing device downstrean.
n't charge a mixture of fine fuidizable
owder and nonfluidizable ‘coarse particles

m a puesmatic conveying line with a2
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® Introduction to mixing
Type of mixers
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What is a mixture?
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What is a mixture?

The true composition of a mixture p is often not know, but by
sampling N times, each with value y;, we can obtain an

estimate, ¥
m : = —
ean : § =} Ui
i=1
N _
>ic1 (Wi — 9)

N1
s p(1—p)

random case : o7 =
n

-
where n is the number of particles in the samples.

standard deviation : o =

segregated case :02 = p(1 — p)
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Mixing indices

P . 0'2—0'2

e Lacey mixing index My, = —5——

0 ™

e Problem with M7, is practical values only lie in range
0.75—-1.0

e Poole, Taylor & Wall mixing index Mp =

Or
g
e This gives better discrimination
e Many, many other indexes exist

e Note ¢ measured by sampling may not be the true mixture
o. This brings us to the topic of confidence intervals which
will not be discussed here.
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Mixing
[ Jelele]e}




UNIVERSITY OF TWENTE.

MSM

Type of mixers ! ‘ 14/92

Ribbon blade mixers

Faliaikin
g\ \/e

.:J" I\

Mixing
[e] lele]e}
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ORBITING SCRE W HIGH SPEED
L NIXER RPAan KiIXER -




UNIVERSITY OF TWENTE.

MSM

Type of mixers ‘ 16/92

Air-jet mixer

T ANG EAr77. 42
A/’R T=T7TS

Mixing
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Mixing
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© Segregation in simple chutes
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O A model of segregation

ion Model
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Basic concepts

e Follow structure of Savage & Lun (1988)
e Two constituents mixture theory

e Small particles, s
e Large particles, b

e With volume fractions
0< o' <1, pu=s,b

and

¢*+ ¢’ =1

[Gray & Thornton(2005), Proc. Royal Soc.]

Se tion Model
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Mixture theory - basic postulate
ic mixture postulate

States that every point in the mixture is ‘occupied simultaneously
by all constituents’

e Mixture theory deals with partial variables defined per
unit mixture volume.
e Whereas intrinsic variables are defined by unit constituent

volume.

e So each constituent we can define a local volume fraction
¢” and clearly
n
Y ¢ =1
v=1

e Hence the sum across all constituents of an intrinsic

tion Model
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Mixture theory

e Mass balance

op”
. 12 1% :O
e Momentum balance
Du”
v = _Vp¥ v v
Py p"+p'g+8

where

p”g is the gravitational acceleration

B is the interaction drag

pY,p” and u” are partial variables defined per unit mixture
volume

ion Model
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Mixture theory - key relations
e The internal drags must sum to zero
.87 =0

e The partial and intrinsic density are related by simple
linear volume fraction scaling

pl/ — ¢pr*
e The partial and intrinsic velocities are the same

ul/ — ul/*

e The pressures are related by an unknown function normally
take to be the volume fraction

P’ = f(e")p”

ion Model
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Assumptions

Bulk flow incompressible

Normal acceleration terms are negligible

Interaction drag is Darcy type

Kinetic sieving process

e Modelled by a non-linear pressure
o Different forms suggested

[Gray & Thornton(2005), Proc. Royal Soc.]

ion Model
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Pressure scalings

Gray & Thornton : Y =¢" — Bo¥(1 —¢Y)
Marks, Rognon & Einav fr= d)”zi—zqs,,
Tunuguntla, et al. : fv = (jz) St e

~ determines how pressure scales:
v =1 size,
v = 2 area, or,

v = 3 volume.

[Gray & Thornton(2005), JEM]
[Marks et al.(2012)Marks, Rognon & Einav, JEM]
[Tunuguntla et al. (2014)Tunuguntla, Bokhove & Thornton, JFM]

tion Model




UNIVERSITY OF TWENTE.

30/92

The binary segregation equation

o¢p 0 0 ad 0 ad foler
T il il —S.—(F S ) Nt
g 0t 00+ ou) -5, L (Fid) = 5 (D.57)
where ¢ : is the volume fraction of small particles
u,v,w: down slope/cross slope/normal velocity components
Sy is a dimensionless segregation rate
and D, : is a dimensionless diffusion rate.

G&T Flg] = (¢(1—9))

o a0 —9) s P
. f— ’Y —_ == — =

Note : Experiments and simulations show D,./S, ~ 1/20.

[Gray & Thornton(2005), Proc. Royal Soc.]
[Tunuguntla et al.(2014) Tunuguntla, Bokhove & Thornton, JEM]

Segregation Model




UNIVERSITY OF TWENTE.

31/92

Exact Solutions
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Introduction Mixing Chutes Segregation Model Multiscale Coupled Model Segregation equation To rotats
[e]e]e]e]e] [e]e]e} 00000000000 o]
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Wave breaking numerical results

Click to start movie

tion Model
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@ Multiscale modelling
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The binary segregation equation

o¢p 0 0 ad 0 ad foler
T il il —S.—(F S ) Nt
g 0t 00+ ou) -5, L (Fid) = 5 (D.57)
where ¢ : is the volume fraction of small particles
u,v,w: down slope/cross slope/normal velocity components
Sy is a dimensionless segregation rate
and D, : is a dimensionless diffusion rate.

G&T Flg] = (¢(1—9))

o a0 —9) s P
. f— ’Y —_ == — =

Note : Experiments and simulations show D,./S, ~ 1/20.

[Gray & Thornton(2005), Proc. Royal Soc.]
[Tunuguntla et al.(2014) Tunuguntla, Bokhove & Thornton, JEM]

Multiscale




UNIVERSITY OF TWENTE.

The force model

e Discrete particle model governed by Newtonian mechanics:

e Contact forces and body forces:
J

e Contact force model:

S Lo
fij = fim + fist,

i = kdij+yv, ffj = —min(uf;, ktéfj—l—’ytvfj)

LudiniiQOOSi, Enviro. and Civil. Eni.
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Contact Properties

Can relate these properties to a restitution coefficient r and

contact time ¢,
.

r=e\ /4kmij—'y2

2mij7r
tc e —
\/4kmij — ’y2

We define v and k for each pair of particle-interactions such
that r and t. are the same.

[Luding(2008), Enviro. and Civil. Eng.]
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Introduction to MercuryDPM

The simulations presented are done in MercuryDPM, our
in-house code. Features :

e Hierarchical Grid contact detection algorithm

Built-in coarse-graining statistical package

Access to continuum fields in real time

Contact laws for granular materials

Simple C++ implementation
e Complex walls

Currently available as a beta version from
http://MercuryDPM.org

Multiscale

39/92
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Screw Feeder

segregation Model Multisca,
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Discrete particle simulation of a periodic chute

e Periodic box inclined at 26
degrees

e The box is filled with equal
volume fraction of each type

e Also with equal total depth of
flow in mean particle size

e The base of the box is rough

e Simulations undertaken in

MercuryDPM

Multiscale
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DPM of size segregation

JIERCURYDPM

Movie loading please wait
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Centre of mass during segregation

o=11 oc=13 og=2
0.75 0.75 0.75
0.7 0.7 0.7
0.65 0.65 0.65
0.6 0.6 0.6
0.55 = 0.55 0.55 large
o 0.5 o 0.5 o 05 total |4
o &1 >

045 045 © 45 small
0.4 \_\—_— 04 0.4

0.35 035 0.35
0.3 0.3 0.3

0.25 0.25 0.25
Notes 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

e Without t:;ngential dissipati(;n the flow occasional
spontaneous compacted
e Added tangential dissipation removed this effect
__e Also adding tangential elastic forces lead to steadier states

[Thornton et al.(2012b) Thornton, Weinhart, Luding & Bokhove, Mod. Phys.

7
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Where iS the ]r\:)ca f)'nr:I ‘F‘v-aa 0117*'Fr)na‘?

1
0.9
0.8
0.7
0.6

n 05
0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Considered
e The point where the bulk density decreases

e The point where the downwards normal stress goes to zero
[Thornton et al.(2012b) Thornton, Weinhart, Luding & Bokhove, Mod. Phys.
Cl]
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Comparison with theorv
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Size ratio v

v % fit to full flow height
fit to dense base layer

1 11 12 13 14 15 16 1.7 18 19 2

U_l

Fit to Py = Ppaz(1 — e 5@ =) with Py, = 7.35 and

J. — £ 91

[T};:)rnt(;lriue?al.(2012b)Thornton, Weinhart, Luding & Bokhove, Mod. Phys.
Cl]
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MD long chute

1ition Model Multisca,
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Size Only Segregation

Normalised-Z-COM vs. DPM time

= Type-2
Q 1.4} pasmtn iy
g 1.2 3
5o Bulk
el
% 1 (
g 0.8 Type-1
Sos
0 2000 4000 6000
DPM time

Purely size segregation § =2 and p = 1.
Type-1: small particles and Type-2: large particles.

[Tunuguntla et al.(2014) Tunuguntla, Bokhove & Thornton, JEM]
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Density Only Segregation

Normalised-Z-COM vs. DPM time

= Type-1
o] e
O 1.1 s
N Bulk
-3 -~
@2
g 0.9 Type-2
0.8
0 2000 4000 6000
DPM time

Purely density-based segregation § =1 and p = 2.
Type-1: light particles and Type-2: heavy particles.

[Tunuguntla et al.(2014) Tunuguntla, Bokhove & Thornton, JEM]
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Density Balance Size

Normalised-Z-COM vs. DPM time

= ! Type-2,
Q 1.04}
(-.) #
N 1.02 oo {
O ~ BU
2 1 V-
= Type-1
ol g
S 5 ;
2 0960yl | if
0 2000 4000 6000

DPM time

size- and density-based segregation s = 1.1 and p = 1.3.
Type-1: small and light and Type-2: large and heavy.

[Tunuguntla et al.(2014) Tunuguntla, Bokhove & Thornton, JEM]
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Phase Space Segregation Strength

0.5

T T 7
1l o 0 ® 0 @ @ @ ’,\'\o o
EEEEEX ‘e @
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® We define EEEEEEX ‘oo e 02
Deom = (COM2 — Wi ® ® e e e e e f oo e e o1
COMB)/COMB. ( e 00000 v/ o0 o0 o0
e Solid black line vy = 3. Sl e e @@ o v oo o0 "
® Dotted line from Kinetic e .,f‘ ® © e o o0 o
theory of Jenkins and oopee :»‘. ® ¢ o000 02
Yoor. se 00 o 060000 s
o4t o @ @ @ o o © ® © O
° o000 00 04

) 01 0.6 08 1.0
[Tunuguntla et al.(2014) Tunuguntla, Bokhove & Thornton, JEM]
[Jenkins & Yoon(2002), PRL]
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@ Coupled Theory of Segregation
Granular fingering
The Pouliquen friction law

Coupled Model
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Mount Ruaprhu avalanche

Movie loading please wait
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Savage-Hutter Assumption

e Assumes a flowing granular material is fluidised and
incompressible

e The equations are depth integrated and averages are
defined i.e. 5
= ra
b

e Exploits that in real avalanches e = H/L < 1

e Using Mohr-Coulomb yield criterion by model the ratio of
K= 5’xa:/ Oz

e Here we will use a simpler inviscid fluid model which
assumes K =1

e Also assume u2 = a@?; often taken o = 1.

Coupled Model
(o] le}
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Fingering

%_ﬁ_a b 0
ot  Ox Y
0 0 0 10

g (hu) + g (hu?) + ay (hav) + == (gh*cosb) =

[Savage & Hutter(1989), JFM]

Coupled Model

ooce
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The Pouliquen friction law

The law

_ h3/2
p(h,uw) = tand; + [tan do — tan d;] exp {\l/;g”—ﬂu”}

e §; is minimum angle for the material to flow

02 is the maximum angle at which steady uniform flows can
be observed

L is a characteristic length scale

[Pouliquen(1999), Phys. Fluids 11 (3)]

Coupled Model

[ Jele}
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Pouliquen friction

The Pouliquen finger shape
By Coupling the Pouliquen friction law with the shallow-water
type equations can show there is a travelling wave solution
given by the simple first order o.d.e.

_dhg

tan 6 — M(hooho(l‘), Uoo) — dr

Coupled Model

(o] J
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Pouliquen’s Analysis

e Introduce a depth average concentration C(z,y,t) of small
particles.

e Choose p(h, ||lul|,C) to be a simple linear scaling i.e.
p(hy [lull, ©) = (1 = ) (h, [[ull) + Cp®(h, [[ul)).

o Assume C =1 (1 + tanh <%))
e Performed a stability analysis and concluded
mono-dispersed fronts were stable.

e Bi-dispersed fronts are unstable if 6%, 65, L!, 6§, 65 and L*
are chosen such that p°(1,1) < p!(1,1).

Coupled Model

[e]e] ]
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@ Segregation equation
One-dimensional travelling wave solution
Grid dependence

ation equation
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Outline - Next Section 11
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3D segregation equation

foler 0 0 0 0
§+%(¢U)+a—y(¢v)+&(¢w) P (Srp(1—9¢)) =0

where

¢ : is the volume fraction of small particles

u,v,w: down slope/cross slope/normal velocity components
Sy : is a dimensionless segregation rate

[Gray & Thornton(2005), Proc. Royal. Soc.]
[Thornton et al.(2006) Thornton, Gray & Hogg, JEM]

tion equation
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Exact Solutions

1.0
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Introduction Mixing Chutes Segregation Model Multiscale Coupled Model Segregation equation To rotats

[e]e]e]e]e} 000 00000000000 [e]
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Adding in segregation dynamics

e Depth integrate the 3D segregation equation
e Introduce the averages

_ 1 /1
CZ(b:E/O odz

e Assume segregation is instantaneous i.e. take the limit
S, — oo and that the velocity profile is
u=1u(a+2(1-a)(32)).

e Leads to
0 0 0
5 —(hC) + a—(huC) + a—(th’)
(1-a ( u(C — C?%) + ;;(h@(C—C?))) =0. (2)

Segregation equation

66,/92
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One-dimensional travelling wa

One-dimensional travelling wave solution

We will seek one-dimenstional travelling solution. Hence
making the transformation

T=x—urt 9 0. t=t
= _f7 a—: =
Y

It can be shown that the equation for u can be reduced to the
following o.d.e.

@ B S
di ((1 —Uf) — €cos 0%)
(t—uy)
where
u
§ = p——=cos 0

Se tion equation

68/92
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One-dimensional travelling wa

Relationships with @ and h

Once you have solved the o.d.e for #, both h and C are similar
given by the following algebraic equations

1_
[ —
U—Uf

C?+¢1C+¢=0

where

QU — Uuf
(1-a)u

1 —uy l—«a

c = and ¢y =

U —uy (00(1—00) Co )

ation equation

0000000

69/92
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h

U0.76
0.74 -
0.72- -

0.7+ -
0.68 -

0.66 L L L

ion equation

00e00000000
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One-dimensional travelling wave solution

The bulbous head solution

€ 0.1
i 20°
st 27°
« 0.0

z-length 500
no. points x 500

¢inflow
03
&
Ly =L
y-length
no. points y

0.9
30°
37°
1.0
20
500

ation equation

00000
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30 G w0 0 G0 40 40 w0 480 a0 500

e By considering mass balance we can show
Ufront = Uinflow (1 —ago + ¢(2) - Oé¢(2))
Upack = Uinflow (Oé + (1 - O‘) ¢O)
e Since the front consists of a pure phase of large particles its

shape is given by Pouliquen’s finger solutions. Hence

ion equation

0000
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Segregation equation
00000e00000
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One-dimensional travelling wa

The Pouliquen friction law
e The law

_ h3/2
p(h,u) = tan o1 + [tan d2 — tan d1] exp —VgPITT
L |ull
e Empirical law determined by measuring the minimum
height for flow at various different inclination angles
hstop(0)

e Experiments show

U _ 5 h
vgh hstop

where § = 0.136 is a universal constant
e 1 is minimum angle for the material to flow
e §5 is the maximum angle at which steady uniform flows can

Se tion equation

000000e0000
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Comparison to Pouliquen friction law

s
&
ssssee e

h/d

D18 20 22 24 26 28 30 0 5 10 15 20
[ h/ h‘SfOP(e)

e Fit is to hgsop(f) = tan(0,) — tan(6)

[Weinhart et al.(2012) Weinhart, Tﬁ(%%ggr) (%Hée&)Bokhove, Granular
Matter]

[Thornton et al.(2012a)Thornton, Weinhart, Luding & Bokhove, EPJ E]
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One-dimensional travelling wave solution

Closure for the bed friction u(h, )
Substituting p = tan(f) into F' = 3 #pw) — ~ yields the closure

h -1
p(h,u) = tan(6y) + (tan(f2) — tan(61)) (AﬁdF——i-fy + 1) .

0 0.010.020.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

(F+)/h

[Weinhart et al.(2012)Weinhart, Thornton, Luding & Bokhove, Granular
Matter]

Se tion equation

00000000800
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One-dimensional travelling wave solution 92

Comparison to Pouliquen friction law

30*1 .
\ —¢=1 4
1 — =12 .
ik . —Lol 35 ——¢=13=0173
K II! ——¢=1/2,=10.163
o 1 3/ ——¢=0,8=0173
I
: ‘ n ; 2.5
:osp & flowing 8
10F s
o 1
L arresting = — o5
18 20 22 24 26 28 %0 .

10 15 20

e Fit is to hgop(0) = Ad

o ['= ﬁh/hstop
e That is the Pouliquen flow does holds for bidispersed.

tan(fz) — tan(ﬁ)ﬂ
tan(6) — tan(f;)

tion equation

OOOOOOOO0.0
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One-dimensional travelling wave solution

Basal particles

Large particles

15 . Small particles
s Flow height based on depthaveraged density and stress

s Front boundary

0000000000
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Lowering the angle

Click here to start movie

[Woodhouse et al.(2012)Woodhouse, Thornton, Johnson, Kokelaar & Gray,
JEM]

ation equation
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Grid dependence

So problem solved, well no.
20 N=500

18
16

20 25 30 30
x x X

JEM
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Results
Asymptotic results for high &, show

That for 1wy # us to leading order eigenvalues are purely
imaginary for k; >> 1.
However, on the curve g = us o~ kY2 for ky >> 1.

Linear stability analysis of a constant solution shows
system is ill posed on a single curve.

Both fingering and propagating head solutions can be
formed

The number of fingers produced is grid dependent
However, it is linear unstable at high wave numbers
Shallow layer of fluid on an incline has a similar problem
System can be stabilised by adding viscous and diffusion
terms
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® To rotating drums
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Outline - Next Section 11

Segregation in long rotating cylinders
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Large particles in red
Small particles in blue
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e Discussed definition of mixed state

e Showing different industrial mixers

e Showed a family of models for granular segregation

e Showed how to use DPM to calibrate and validate such
models

e Coupled segregation and bulk flow models

e Showed how a reduced version of this model can be applied
to rotating drums

e Consider axial patterns in long rotating cylinders

e Coupled the segregation model with shallow water

eiuations to consider ieoihisical iroblems
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