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Overview of segregation:
From inclined planes to drums; via a volcano

A. R. Thornton 5th March 2015
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Granular segregation, hard or easy?

• Granular segregation is very easy to observe, preventing
segregation is often the problem.

• Segregation in granular materials can occur for a number of
reasons

• Difference in size
• Difference in size
• Difference in density
• Difference in contact properties
• Difference in angle of repose
• Differential forcing (air drag etc...)
• plus many others ....

Introduction Mixing Chutes Segregation Model Multiscale Coupled Model Segregation equation To rotating drums Conclusions



6/92

Extract from a 1978 paper : Particle segregation ... and
what to do about it
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What is a mixture?
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Type of mixtures

Segregated Random Ordered
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What is a mixture?
The true composition of a mixture p is often not know, but by
sampling N times, each with value yi, we can obtain an
estimate, ȳ

mean : ȳ =
1

N

N∑

i=1

yi

standard deviation : σ =

∑N
i=1 (yi − ȳ)

N − 1

random case : σ2
r =

p(1− p)
n

where n is the number of particles in the samples.

segregated case :σ2
o = p(1− p)
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Mixing indices

• Lacey mixing index ML =
σ2
0−σ2

σ2
0−σ2

r

• Problem with ML is practical values only lie in range
0.75− 1.0

• Poole, Taylor & Wall mixing index MP = σr
σ

• This gives better discrimination

• Many, many other indexes exist

• Note σ measured by sampling may not be the true mixture
σ. This brings us to the topic of confidence intervals which
will not be discussed here.
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Tumbling mixer
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Ribbon blade mixers
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Rotating mixers
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Air-jet mixer
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Pneumatic mixer
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Motivation

Movie loading please wait
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Co-ordinate setup

ξ

x

z
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Basic concepts

• Follow structure of Savage & Lun (1988)

• Two constituents mixture theory
• Small particles, s
• Large particles, b

• With volume fractions

0 ≤ φµ ≤ 1, µ = s, b

and
φs + φb = 1

[Gray & Thornton(2005), Proc. Royal Soc.]
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Mixture theory - basic postulate
The basic mixture postulate

States that every point in the mixture is ‘occupied simultaneously
by all constituents’

• Mixture theory deals with partial variables defined per
unit mixture volume.

• Whereas intrinsic variables are defined by unit constituent
volume.

• So each constituent we can define a local volume fraction
φν and clearly

n∑

ν=1

φν = 1

• Hence the sum across all constituents of an intrinsic
variables is equal to the bulk quaintly i.e. density

ρ =

n∑

ν=1

ρν
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Mixture theory

• Mass balance
∂ρν

∂t
+∇ · (ρνuν) = 0,

• Momentum balance

ρν
Duν

Dt
= −∇pν + ρνg + βν .

where
ρνg is the gravitational acceleration
βν is the interaction drag
ρν , pν and uν are partial variables defined per unit mixture
volume
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Mixture theory - key relations
• The internal drags must sum to zero

Σνβ
ν = 0

• The partial and intrinsic density are related by simple
linear volume fraction scaling

ρν = φνρν∗

• The partial and intrinsic velocities are the same

uν = uν∗

• The pressures are related by an unknown function normally
take to be the volume fraction

pν = fν(φν)pν∗

where * denotes an intrinsic variable.
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Assumptions

• Bulk flow incompressible

• Normal acceleration terms are negligible

• Interaction drag is Darcy type

• Kinetic sieving process
• Modelled by a non-linear pressure
• Different forms suggested

[Gray & Thornton(2005), Proc. Royal Soc.]
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Pressure scalings

Gray & Thornton : fν = φν −Bφν(1− φν)

Marks, Rognon & Einav : fν = φν sν∑
sνφν

Tunuguntla, et al. : fν = φν (sν)γ∑
(sν)γφν

γ determines how pressure scales:

γ = 1 size,

γ = 2 area, or,

γ = 3 volume.

[Gray & Thornton(2005), JFM]
[Marks et al.(2012)Marks, Rognon & Einav, JFM]
[Tunuguntla et al.(2014)Tunuguntla, Bokhove & Thornton, JFM]
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The binary segregation equation
∂φ

∂t
+
∂

∂x
(φu)+

∂

∂y
(φv)+

∂

∂z
(φw)−Sr

∂

∂z
(F [φ]) =

∂

∂z

(
Dr

∂φ

∂z

)

where φ : is the volume fraction of small particles
u, v, w : down slope/cross slope/normal velocity components
Sr : is a dimensionless segregation rate
and Dr : is a dimensionless diffusion rate.

G & T : F [φ] = (φ (1− φ))

T, B & T : F [φ] = (ŝγ − ρ̂)

[
φ(1− φ)

φ+ (1− φ)ŝγ

]
ŝ =

s2

s1
, ρ̂ =

ρ2∗

ρ1∗ .

Note : Experiments and simulations show Dr/Sr ≈ 1/20.

[Gray & Thornton(2005), Proc. Royal Soc.]
[Tunuguntla et al.(2014)Tunuguntla, Bokhove & Thornton, JFM]
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Exact Solutions

x

x

z

z

x

x

z

z

[Gray & Thornton(2005), Thornton et al.(2006)Thornton, Gray & Hogg,
Proc.Roy.Soc./JFM]
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Experimental comparison

Introduction Mixing Chutes Segregation Model Multiscale Coupled Model Segregation equation To rotating drums Conclusions



33/92

Wave breaking numerical results

Click to start movie

Click to start movie
[Gray & Thornton(2005), Proc. Royal. Soc.]
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The binary segregation equation
∂φ

∂t
+
∂

∂x
(φu)+

∂

∂y
(φv)+

∂

∂z
(φw)−Sr

∂

∂z
(F [φ]) =

∂

∂z

(
Dr

∂φ

∂z

)

where φ : is the volume fraction of small particles
u, v, w : down slope/cross slope/normal velocity components
Sr : is a dimensionless segregation rate
and Dr : is a dimensionless diffusion rate.

G & T : F [φ] = (φ (1− φ))

T, B & T : F [φ] = (ŝγ − ρ̂)

[
φ(1− φ)

φ+ (1− φ)ŝγ

]
ŝ =

s2

s1
, ρ̂ =

ρ2∗

ρ1∗ .

Note : Experiments and simulations show Dr/Sr ≈ 1/20.

[Gray & Thornton(2005), Proc. Royal Soc.]
[Tunuguntla et al.(2014)Tunuguntla, Bokhove & Thornton, JFM]
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The force model
• Discrete particle model governed by Newtonian mechanics:

mi
d2~xi
dt2

= ~fi

• Contact forces and body forces:

~fi =
∑

j

~fij +~bi,

• Contact force model:

~fij = fnij~n+ f tij~t,

fnij = kδij+γv
n
ij , f tij = −min(µfnij , k

tδtij+γ
tvtij)

[Luding(2008), Enviro. and Civil. Eng.]
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Contact Properties

Can relate these properties to a restitution coefficient r and
contact time tc

r = e

−πγ√
4kmij−γ2

tc =
2mijπ√

4kmij − γ2

We define γ and k for each pair of particle-interactions such
that r and tc are the same.

[Luding(2008), Enviro. and Civil. Eng.]
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Introduction to MercuryDPM

The simulations presented are done in MercuryDPM, our
in-house code. Features :

• Hierarchical Grid contact detection algorithm

• Built-in coarse-graining statistical package

• Access to continuum fields in real time

• Contact laws for granular materials

• Simple C++ implementation

• Complex walls

Currently available as a beta version from
http://MercuryDPM.org
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Screw Feeder

Movie loading please wait
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Discrete particle simulation of a periodic chute

• Periodic box inclined at 26
degrees

• The box is filled with equal
volume fraction of each type

• Also with equal total depth of
flow in mean particle size

• The base of the box is rough

• Simulations undertaken in
MercuryDPM
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DPM of size segregation

Movie loading please wait

[Thornton et al.(2012b)Thornton, Weinhart, Luding & Bokhove, Mod. Phys.
C.]
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Centre of mass during segregation

Notes
• Without tangential dissipation the flow occasional

spontaneous compacted
• Added tangential dissipation removed this effect
• Also adding tangential elastic forces lead to steadier states

[Thornton et al.(2012b)Thornton, Weinhart, Luding & Bokhove, Mod. Phys.
C.]
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Where is the base and free surface?

Considered

• The point where the bulk density decreases

• The point where the downwards normal stress goes to zero
[Thornton et al.(2012b)Thornton, Weinhart, Luding & Bokhove, Mod. Phys.

C.]
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Comparison with theory

[Thornton et al.(2012b)Thornton, Weinhart, Luding & Bokhove, Mod. Phys.
C.]
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Size ratio versus Péclet

Fit to Ps = Pmax(1− e−k(σ−1−1)) with Pmax = 7.35 and
k = 5.21.

[Thornton et al.(2012b)Thornton, Weinhart, Luding & Bokhove, Mod. Phys.
C.]
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MD long chute
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Size Only Segregation

Purely size segregation ŝ = 2 and ρ̂ = 1.
Type-1: small particles and Type-2: large particles.

[Tunuguntla et al.(2014)Tunuguntla, Bokhove & Thornton, JFM]
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Density Only Segregation

Purely density-based segregation ŝ = 1 and ρ̂ = 2.
Type-1: light particles and Type-2: heavy particles.

[Tunuguntla et al.(2014)Tunuguntla, Bokhove & Thornton, JFM]
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Density Balance Size

size- and density-based segregation ŝ = 1.1 and ρ̂ = 1.3.
Type-1: small and light and Type-2: large and heavy.

[Tunuguntla et al.(2014)Tunuguntla, Bokhove & Thornton, JFM]
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Phase Space Segregation Strength

• We define
Dcom = (COM2 −
COMB)/COMB.

• Solid black line γ = 3.

• Dotted line from Kinetic
theory of Jenkins and
Yoon.

10 D. R. Tunuguntla, O. Bokhove and A.R. Thornton
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Figure 4. For particle volume fraction of each species-type being φi = 50%, the above plot

illustrates D̂com = (COM2−COMB)/COMB for different values of ρ̂ and ŝ. From theory, the
solid line represents the weak segregation line for a = 3 and the dotted-dashed line is the weak
segregation line analytically predicted for spheres by Yoon and Jenkins (2002). In their theory,
large particles are assumed to be dilute in a dense gas of small particles.

For all the performed simulations, we use a linear spring dashpot model with a contact
duration of tc = 0.005

√
dm/g, coefficient of restitution rc = 0.88 and contact friction

coefficient µc = 0.5. More details about the contact model can be found in Weinhart
et al. (2012),Luding (2008) and Cundall & Strack (1979).

4.2. Analysis

The sensitivity to both basal and initial conditions on the steady-state has been thor-
oughly investigated and hardly any sensitivity was found (Voortwis 2013). Once the flow
has reached its steady state, we calculated a relative difference between the centres of
mass D̂com(ρ̂, ŝ) = (COM2 − COMB)/COMB, as a function of ŝ and ρ̂. Here COM2 is
the vertical centre of mass of species-2 particles and COMB is the bulks’ vertical centre
of mass. For a given ŝ and ρ̂, the flow is steady when the function value, D̂com, remains
constant with time. In Fig. 4, we plot the values of D̂com for given ρ̂ and ŝ. When the
value of D̂com is positive, particles of species-2 are near the free surface; vice-versa, when
it is negative, particles of species-2 are near the base, see Fig. 3. Close inspection of the
data shows very weak segregation along the solid line ŝ a = ρ̂ with a = 3, also implying
that the pressure is scaled by the volume of the particle. Below the solid line the species-
2 particles rise towards the free-surface and above the solid-line species-2 particles fall
towards the base. The dashed-solid line corresponds to the prediction via kinetic theory
for a binary mixture (Jenkins & Yoon 2002). The mismatch between the dashed-solid

[Tunuguntla et al.(2014)Tunuguntla, Bokhove & Thornton, JFM]
[Jenkins & Yoon(2002), PRL]
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Mount Ruaprhu avalanche

Movie loading please wait
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Experimental results
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Savage-Hutter Assumption

• Assumes a flowing granular material is fluidised and
incompressible

• The equations are depth integrated and averages are
defined i.e.

f̄ =

∫ s

b
f dz

• Exploits that in real avalanches ε = H/L� 1

• Using Mohr-Coulomb yield criterion by model the ratio of
K = σ̄xx/σ̄zz

• Here we will use a simpler inviscid fluid model which
assumes K = 1

• Also assume ū2 = αū2; often taken α = 1.
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Shallow water like theories

∂h

∂t
+

∂

∂x
(hū) +

∂

∂y
(hv̄) = 0,

∂

∂t
(hū) +

∂

∂x

(
hū2
)

+
∂

∂y
(hūv̄) +

1

2

∂

∂x

(
gh2 cos θ

)
=

gh

(
sin θ − µ ū√

ū2 + v̄2
cos θ

)

∂

∂t
(hv̄) +

∂

∂x
(hūv̄) +

∂

∂y

(
hv̄2
)

+
1

2

∂

∂y

(
gh2 cos θ

)
=

gh

(
−µ v̄√

ū2 + v̄2
cos θ

)

[Savage & Hutter(1989), JFM]
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The Pouliquen friction law

• The law

µ(h,u) = tan δ1 + [tan δ2 − tan δ1] exp

{
−√gβh3/2

L ‖u‖

}

• δ1 is minimum angle for the material to flow

• δ2 is the maximum angle at which steady uniform flows can
be observed

• L is a characteristic length scale

[Pouliquen(1999), Phys. Fluids 11 (3)]
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The Pouliquen finger shape
By Coupling the Pouliquen friction law with the shallow-water
type equations can show there is a travelling wave solution
given by the simple first order o.d.e.

tan θ − µ(h∞h0(x), U∞) =
dh0

dx

h0(0) = 0
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Pouliquen’s Analysis

• Introduce a depth average concentration C(x, y, t) of small
particles.

• Choose µ(h, ‖u‖, C) to be a simple linear scaling i.e.

µ(h, ‖u‖, C) = (1− C)µl(h, ‖u‖) + Cµs(h, ‖u‖).

• Assume C = 1
2

(
1 + tanh

(
x+Ll

D

))

• Performed a stability analysis and concluded
mono-dispersed fronts were stable.

• Bi-dispersed fronts are unstable if δl1, δ
l
2, L

l, δs1, δ
s
2 and Ls

are chosen such that µS(1, 1) < µl(1, 1).
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3D segregation equation

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂y
(φv) +

∂

∂z
(φw)− ∂

∂z
(Srφ (1− φ)) = 0

where
φ : is the volume fraction of small particles
u, v, w : down slope/cross slope/normal velocity components
Sr : is a dimensionless segregation rate

[Gray & Thornton(2005), Proc. Royal. Soc.]
[Thornton et al.(2006)Thornton, Gray & Hogg, JFM]
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Exact Solutions

x

x

z

z

x

x

z

z

[Gray & Thornton(2005), Thornton et al.(2006)Thornton, Gray & Hogg,
Proc.Roy.Soc./JFM]
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Experimental comparison
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Adding in segregation dynamics
• Depth integrate the 3D segregation equation
• Introduce the averages

C = φ̄ =
1

h

∫ 1

0
φ dz

• Assume segregation is instantaneous i.e. take the limit
Sr →∞ and that the velocity profile is
u = ū

(
α+ 2(1− α)

(
z−b
h

))
.

• Leads to

∂

∂t
(hC) +

∂

∂x
(hūC) +

∂

∂y
(hv̄C) =

(1− α)

(
∂

∂x
(hū(C − C2)) +

∂

∂y
(h v̄(C − C2))

)
= 0. (2)
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The fully coupled system

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0,

∂

∂t
(hu) +

∂

∂x

(
hu2
)

+
∂

∂y
(huv) +

1

2

∂

∂x

(
gh2 cos θ

)
=

gh

(
sin θ − µ u√

u2 + v2
cos θ

)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y

(
hv2
)

+
1

2

∂

∂y

(
gh2 cos θ

)
=

hg

(
−µ v√

u2 + v2
cos θ

)

∂

∂t
(hφ̄) +

∂

∂x
(huφ̄) +

∂

∂y
(hvφ̄) =

(1− α)

(
∂

∂x
(hu(φ̄− φ̄2)) +

∂

∂y
(h v(φ̄− φ̄2))

)
.

µ = µ(h, ‖u‖, φ̄)

where
µ = φ̄µs + (1− φ̄)µl

and

µν(h, u) = tan δν1 + [tan δν2 − tan δν1 ] exp

{
−√gβh3/2

Lνu

}

[Woodhouse et al.(2012)Woodhouse, Thornton, Johnson, Kokelaar & Gray,
JFM]
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One-dimensional travelling wave solution
We will seek one-dimenstional travelling solution. Hence
making the transformation

x̂ = x− uf t,
∂

∂y
= 0. t̂ = t

It can be shown that the equation for ū can be reduced to the
following o.d.e.

dū

dx̂
=

s(
(1− ūf )− ε cos θ

(1−uf)
(ū−uf)

2

) ,

where
s = µ

u√
u2 + v2

cos θ
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Relationships with ū and h

Once you have solved the o.d.e for ū, both h and C are similar
given by the following algebraic equations

h =
1− uf
ū− uf

.

C2 + c1C + c0 = 0

where

c1 =
αū− uf
(1− α) ū

and c0 =
ū− uf
ū

(
C0 (1− C0)

1− uf
− C0

1− α

)
.
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Solution
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The bulbous head solution

ε 0.1 φinflow 0.9
δs1 20◦ δs2 30◦

δl1 27◦ δl2 37◦

α 0.0 Ll = Ls 1.0
x-length 500 y-length 20

no. points x 500 no. points y 500

Movie loading please wait

Movie loading please wait
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The bulbous head solution

• By considering mass balance we can show

Ufront = Uinflow
(
1− αφ0 + φ2

0 − αφ2
0

)

Uback = Uinflow (α+ (1− α)φ0)

• Since the front consists of a pure phase of large particles its
shape is given by Pouliquen’s finger solutions. Hence

hhead = ε

[
Ufront ln

(
tan δl2 − tan δl1
tan θ − tan δl1

)]2/3

• Combination of 1D segregation solution and Pouliquen finger shape
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The fully coupled system

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0,

∂

∂t
(hu) +

∂

∂x

(
hu2
)

+
∂

∂y
(huv) +

1

2

∂

∂x

(
gh2 cos θ

)
=

gh

(
sin θ − µ u√

u2 + v2
cos θ

)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y

(
hv2
)

+
1

2

∂

∂y

(
gh2 cos θ

)
=

hg

(
−µ v√

u2 + v2
cos θ

)

∂

∂t
(hφ̄) +

∂

∂x
(huφ̄) +

∂

∂y
(hvφ̄) =

(1− α)

(
∂

∂x
(hu(φ̄− φ̄2)) +

∂

∂y
(h v(φ̄− φ̄2))

)
.

µ = µ(h, ‖u‖, φ̄)

where
µ = φ̄µs + (1− φ̄)µl

and

µν(h, u) = tan δν1 + [tan δν2 − tan δν1 ] exp

{
−√gβh3/2

Lνu

}

[Woodhouse et al.(2012)Woodhouse, Thornton, Johnson, Kokelaar & Gray,
JFM]
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The Pouliquen friction law
• The law

µ(h,u) = tan δ1 + [tan δ2 − tan δ1] exp

{
−√gβh3/2

L ‖u‖

}

• Empirical law determined by measuring the minimum
height for flow at various different inclination angles
hstop(θ)

• Experiments show

u√
gh

= β
h

hstop

where β = 0.136 is a universal constant
• δ1 is minimum angle for the material to flow
• δ2 is the maximum angle at which steady uniform flows can

be observed
• L is a characteristic length scale

[Pouliquen(1999), Phys. Fluids 11 (3)]

Introduction Mixing Chutes Segregation Model Multiscale Coupled Model Segregation equation To rotating drums Conclusions



One-dimensional travelling wave solution 75/92

Comparison to Pouliquen friction law

h/hstop(θ)
F

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

• Fit is to hstop(θ) = Ad
tan(θ2)− tan(θ)

tan(θ)− tan(θ1)
.

[Weinhart et al.(2012)Weinhart, Thornton, Luding & Bokhove, Granular
Matter]

[Thornton et al.(2012a)Thornton, Weinhart, Luding & Bokhove, EPJ E]
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Closure for the bed friction µ(h, ū)
Substituting µ = tan(θ) into F = β h

hstop(θ) − γ yields the closure

µ(h, ū) = tan(θ1) + (tan(θ2)− tan(θ1))

(
β

Ad

h

F + γ
+ 1

)−1

.
µ

(F + γ)/h

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

[Weinhart et al.(2012)Weinhart, Thornton, Luding & Bokhove, Granular
Matter]
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Comparison to Pouliquen friction law

• Fit is to hstop(θ) = Ad
tan(θ2)− tan(θ)

tan(θ)− tan(θ1)
.

• F = βh/hstop
• That is the Pouliquen flow does holds for bidispersed.
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Lowering the angle

Click here to start movie

[Woodhouse et al.(2012)Woodhouse, Thornton, Johnson, Kokelaar & Gray,
JFM]
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Grid dependence
So problem solved, well no.

[Woodhouse et al.(2012)Woodhouse, Thornton, Johnson, Kokelaar & Gray,
JFM]
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Results
Asymptotic results for high kx show

• That for ū0 6= us to leading order eigenvalues are purely
imaginary for kx >> 1.

• However, on the curve ū0 = us σ ≈ k1/2 for kx >> 1.

• Linear stability analysis of a constant solution shows
system is ill posed on a single curve.

• Both fingering and propagating head solutions can be
formed

• The number of fingers produced is grid dependent
• However, it is linear unstable at high wave numbers
• Shallow layer of fluid on an incline has a similar problem
• System can be stabilised by adding viscous and diffusion

terms
[Woodhouse et al.(2012)Woodhouse, Thornton, Johnson, Kokelaar & Gray,
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Outline - Next Section II
Segregation in long rotating cylinders

9 Conclusions
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DPM of segregation in rotating drum

Movie loading please wait
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Schematic of segregating in rotating drum

Small particles in blue
Large particles in red

Introduction Mixing Chutes Segregation Model Multiscale Coupled Model Segregation equation To rotating drums Conclusions



86/92

Segregating in a Rotating Triangle
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Final Patterns in Rotating Triangle
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Segregating in Rotating Cylinder
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Outline - Next Section II
Segregation in long rotating cylinders

9 Conclusions
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• Discussed definition of mixed state
• Showing different industrial mixers
• Showed a family of models for granular segregation
• Showed how to use DPM to calibrate and validate such

models
• Coupled segregation and bulk flow models
• Showed how a reduced version of this model can be applied

to rotating drums
• Consider axial patterns in long rotating cylinders
• Coupled the segregation model with shallow water

equations to consider geophysical problems
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• Offer corse in:
• A Practical Introduction to C++
• The Fundamentals of Discrete Particle Simulations

• 3 day course starts from 497.50 euros (722.50 with
accommodation).

• Next given 20th − 24th July

• http://MercuryLab.org
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