Pneumatic transport

J. Ruud van Ommen

Department of Chemical Engineering Delft University of Technology

JMBC course Particle Technology 2015

Based on M. Rhodes, Introduction to Particle Technology, 2nd edition, 2008, and material from prof. Ehrman, Univ of Maryland

Pneumatic transport

- Basic definition using gas to transport a particulate solid through a pipeline
 - Ex: grain, flour, plastic, pulverized coal
- Two modes
 - Dilute phase particles are fully suspended, like entrainment in FB but deliberate, solids less than 1 % by volume, lots of pumping req'd
 - Dense phase particles not suspended, loading > 30 %
 by volume, lots of interparticle interactions

Phase diagram for dilute phase vertical pneumatic transport

feed rate is G1

Phase diagram for dilute phase horizontal pneumatic transport

Gas velocity

Definitions

- Superficial gas velocity $U_{fs} = Q_f$ (gas volumetric flow) /A (cross sectional area of pipe)
- Superficial solids velocity $U_{ps} = Q_p/A$ (Q_p = volumetric flow of solids)
- Actual gas velocity $U_f = Q_f / A\epsilon$ (void fraction)
- Actual particle velocity $U_p = Q_p / [A(1-\epsilon)]$

Important relationships

- Mass flow rate of particles $M_{\rm p} = {\rm AU}_p \left(1 \mathcal{E}\right) \, \rho_{\rm p}$
- Mass flow of fluid

$$M_{f} = AU_{f} \varepsilon \rho_{f}$$

• Solids loading = M_p/M_f

Pressure drop in pneumatic transport

Contributors to pressure drop

- 1. Gas acceleration (gas acting on gas)
- 2. Particle acceleration (gas acting on particles)

66

- 3. Gas/pipe friction wall friction
- 4. Solids/pipe friction
- 5. Static head of solids fighting
- 6. Static head of gas

Not considered: interparticle forces

fighting gravity

66

Force balance on pipe

- solids wall friction force

Net force acting on pipe contents = rate of increase in momentum of contents

- gravity = rate of increase in momentum of gas + rate of increase in momentum solids

$$(P_1 - P_2) - F_{fw}L - F_{pw}L - \rho_p L(1 - \varepsilon)g \sin\Theta - \rho_f L \varepsilon g \sin\Theta = \frac{1}{2}\varepsilon\rho_f U_f^2 + \frac{1}{2}(1 - \varepsilon)\rho_p U_p^2$$

 F_{fw} and F_{pw} are gas to wall and solids to wall friction force respectively, L = pipe length, Θ = angle of pipe with horizontal What happens for horizontal flow?

Terms and physical meaning

 $(P_1 - P_2)$ $F_{fw}L$ $F_{pw}L$ $\rho_p L(1-\varepsilon)g\,\sin\Theta$ $\rho_f L\,\varepsilon\,g\,\sin\Theta$ $\frac{1}{2} \epsilon \rho_{\mathrm{f}} U_{f}^{2}$ $\frac{1}{2}(1-\varepsilon)\rho_{\rm p}U_{\rm p}^{2}$

- 1. Total pressure drop
- 2. Gas acceleration (gas acting on gas)
- 3. Particle acceleration (gas acting on particles)
- Gas/pipe friction wall friction
 Solids/pipe friction wall friction
 Static head of solids fighting gravity
 Static head of gas fighting gravity

Tools to calculate pressure drop

Correlations for F_{pw} For vertical transport [G = solids mass flux, mass particles/(area x time)]

$$F_{pw} L = 0.057 \text{ G L} \sqrt{\frac{g}{D}}$$

Horizontal transport

$$F_{pw} L = \frac{2f_p G U_p L}{D}$$

where

and

$$U_{p} = U(1 - 0.0638 \text{ x}^{0.3} \rho_{p}^{0.5})$$
$$f_{p} = \frac{3\rho_{f} D}{8\rho_{p} x} C_{D} \left[\frac{U_{f} - U_{p}}{U_{p}} \right]^{2}$$

For gas/wall friction pressure drop, calculate with friction factor assuming it is independent of presence of particles.

Simple method for s.s. horizontal flow

From Particle Technology by Orr (1966)

Ratio of total pressure loss
due to solids/air system
(ΔPt)
to total pressure loss due to
only air flowing (ΔPa)

$$\frac{\Delta P_t}{\Delta P_a} = 1 + \frac{R}{k} \qquad \begin{array}{c} \text{R} = \underline{\text{mass of solid material}}\\ \text{mass of air} \end{array}$$

k as a function of superficial velocity

k is an empirically derived coefficient

Bends

Generally problematic. Solids that may be in suspension in vert/horiz transport may salt out as they go around bends. Worst case: vertical going to horizontal

blinded tees recommended if bends are unavoidable

No reliable correlations exist for bend pressure drops.

Only a rough rule of thumb:

Bend $\Delta P = \Delta P$ for 7.5 m of vertical pipe under same flow conditions

Pneumatic conveying systems – Typical designs

Dilute-phase conveying system

Dense-phase conveying system