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Granular material regimes




Solid+liquid+gas

[Forterre & Pouliquen, Annu. Rev. Fluid Mech. (2008)]



Solid+liquid+gas

Three regimes:

 solid — static
particles interact via frictional contacts

* liguid — dense, flow-like behavior
both collisions and friction

e gas—rapid dilute flow
particles interact via collisions

[Jaeger et al. (1996), Forterre & Pouliquen, Annu. Rev. Fluid Mech. (2008)]
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Internal forces transmission




Contact forces

* Unique feature of granular material arises from internal force
transmission

 Most fundamental microscopic property of granular materials:
irreversible energy dissipation in the course of interaction collision
between particles.



Micro-macro transition
Stress tensor
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Any quantity:

- Scalar

- Vector

- Tensor: Stress

Overview of more complex formulations in
[Weinhart et al. (2010)]




Stress tensor

a. Contact stress tensor

Due to the force transmission across interparticle forces

b. Streaming stress tensor

Due to the motion of a particle relative to the
bulk material (Reynolds stress tensor in turbolent flows)
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Stress tensor

a. Contact stress tensor

In hoppers, chutes, landslides: ¢ > 50%
is usually dominant in common granular flows

b. Streaming stress tensor

can usually be neglected




Hertzian contact law
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Hertzian contact law

Contact stiffness
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Solid state




Small strain (elastic) stiffness

Classical solids: elastic stiffness is a material constant
Granular materials: elastic stiffness depends on pressure and volume fraction
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Small strain (elastic) stiffness
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Small strain (elastic) stiffness
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Small strain (elastic) stiffness

10® x wave velocity/(ft s~!)

Soundspeed
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Small strain (elastic) stiffness

k

Gbulk L — [Bathurst and Rothenburg, J. Appl. Mech. (1988)]
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Because of Hertzian interaction we expect: K(p)xG(p)x p1/3
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[Gland et al., PRE (2005)]
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Dependence on coordination number
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Quasitatic behavior
and flow threshold




Shearing
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Quasistatic behavior

Coulomb (1773)
Yielding of granular material as frictional process
Interested in prediction of soil failures for Civil Engineering

T<c+otang

When T =c+o0tan¢ the material yields and starts to flow

¢ = cohesion
¢ = friction angle

¢ and c are material constant




Quasistatic behavior

Coulomb (1773)

Yielding of granular material as frictional process
Interested in prediction of soil failures for Civil Engineering

T<c+otang

When T =c+o0tan¢ the material yields and starts to flow

¢ = cohesion
¢ = friction angle

¢ and c are material constant
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Critical state

A shearing granular material will ALWAYS approach a critical concentration

This is the ONSET OF FLOW

overconsolidated
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¢. is again a material constant
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Critical state

Variation of critical concentration with applied stress
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Most flows are characterized by low stress and large applied strain
—> we can assume incompressible flow at the critical concentration ¢,



Critical state

Soil mechanics: widely used

Particle Technology: flow behavior from silo (= A. Kwade)
* when the material starts flowing is always yielding
everywhere in the hopper (mass flow) or in a region (core flow)

T=c+0tan¢g

* the material is always at the critical concentration and it is incompressible.




Critical state

Soil mechanics: widely used

Particle Technology: flow behavior from silo (= A. Kwade)
* when the material starts flowing is always yielding
everywhere in the hopper (mass flow) or in a region (core flow)

T=c+0tan¢g

* the material is always at the critical concentration and it is incompressible.

N.B.!!
Application of Critical State theory on is based on Janssen theory:
the pressure at bottom of the silo is independent of bed height

- the whole bulk material is in the critical state.



Dependence on microscopic properties
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[Lamaitre et al., Rheol. Acta (2009)]
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Critical state for silos - problems

¢ is not constant in the silo
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Critical state - can not describe hysteresis
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Friction and dilatancy laws

In solid and quasistatic flow, forces are transmitted through force chains
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Shear bands and dilatant zones

Frictional Behavior = Mohr-Coulomb failure
Granular materials fail along narrow but finite zones: SHEAR BANDS




Shear bands and dilatant zones

Frictional Behavior = Mohr-Coulomb failure
Granular materials fail along narrow but finite zones: SHEAR BANDS

GLOBALLY = frictional behavior
LOCALLY > force chains
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Jamming phase diagram

Temperature

&
>~ Jammed
~ grains etc.

Loose grains,
bubbles, droplets etc.

1/Density

[Liu and Nagel., Nature (1998)]



Jamming robot

Universal Gripper

U. Chicago, Cornell, iRobot
May 2010

[Brown et al., PNAS (2010)]




Collisional or rapid granular flows




Dimensionless analysis (Buckingham Pi theorem)

Bagnold theory

OU = f(¢’pp’d’)})
o,=f(@®)p,d"y’

The shear stress varies as the square of the shear rate



Granular Temperature

1. granules moving in a flow = molecules in the kinetic theory of gases
2. random velocities = thermal motion of molecules.

Granular temperature = magnitude of fluctuating velocities

1 12 1 12 12 12
7= () =5 () + (%) +(w?))
Trace of the streaming stress tensor

T = Ltr(al])

© 3p¢

deriving a set of equations for Rapid Granular Flows



Granular Hydrodynamic

Conservation of mass

Dp¢
=p¢pV-u=90
o, POV U

Conservation of momentum
Du
po— == Vp(p.§.T,.e)+V: (7(0.9.T,,€)Vu)

Conservation of granular energy (granular temperature)

DT,
pp—E =V (a(p.9.T, VT, |+ 0 Vu-T(p.$.T,.e)



Kinetic Theory - Range of applicability

—

Nearly elastic particles (e=0.9)

 Extremely small concentration: = Binary collisions
magnitude of thermal velocities is much larger
than the relative velocities induced by shear

——

* Isotropy in the angular distribution of collisions

 Molecular chaos:
no correlations in the velocities or positions of colliding particles

 Absence of friction between particles and walls:
silos can not be modeled with kinetic theory



Kinetic Theory - Range of applicability

Gas

Liquid

o

[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]



Kinetic Theory - Extended theories

Jenkins, Dense shearing flows of inelastic disks. Phys.Fluids (2006)

Vescovi, Di Prisco & Berzi, From solid to granular gases: the steady state for
granular materials (2013)

[...]



Granular material: continuum approach

Gas: kinetic t

Solid: soil mechanics



Dense (slow) flows
and inertial regime




Inertia number

For large systems — and rigid grains

Only based on dimensional analysis
The transition can be described trough a single dimensionless number

/
p

quasi-static (solid) dense (liquid) rapid (gas)
= - 1
10 101

[Da Cruz et al. (2005); Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]



Inertia number

yd o .
I = | = micro time scale / macro time scale
7
Pp
d microscopic time scale
p time needed for a particle to fall in a hole of size d
0 under the pressure P
p . .
- typical time scale of rearrangements -
1 macroscopic time scale
; linked to the mean deformation

[Da Cruz et al. (2005); Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]



Inertia number

I small — quasi-static
macroscopic deformation is slow compared to
microscopic rearrangement

I large - rapid flows

quasi-static (solid) dense (liquid) rapid (gas) /
>
1073 1071

[Da Cruz et al. (2005); Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]



Quasistatic = Dense = Rapi
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Pouliquen p-l rheology

T =ou(l)

¢ =)

0.6
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- inclined plane (exp, num)
- annular shear (exp)

[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]

(rigid grains)
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Pouliquen p-l rheology - local constitutive relation

T =ou(l) ¢=0¢(l) (rigid grains)
————— (),
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glass beads : w1 = tan21°

- inclined plane (exp, num)
o =tan3d3” Iy =0.3

- annular shear (exp)

[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]



Different geometries

[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008), Weinhart et al. Phy. Fluids (2013)]



Pouliquen p-l rheology - Tensorial extension

|) incompressible media, no normal stress difference

Uz’j — —Pd,;j + Tz’j

2) ’}/@J et T;, are colinear

Oou;  Ou,;
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Tij = ,u(;y) i & Ox;  Ox;
\ N v
— 5] = \/5%3%3'

effective viscosity

(Drucker-Prager criterion) 1
7| =1/ 57T

Flow threshold ‘T| — ,UJ1P

[Jop et al. Nature (2006)]



Pouliquen p-l rheology - Tensorial extension

|) incompressible media, no normal stress difference

Uz'j — —Pdij + Tz’j

2) ’}/@] et T;, are colinear

P Ou.; O .
/ I | | | B /L I J
= ( ) Y, T dr;  Ox;

Ti5 — . 1]
\r i .
— 7] = \/—%‘j%g‘

effective viscosity

OK for: free surface flows between rough walls (Jop, 2006)
flows down an inclined plane (Forterre, 2006)

[Jop et al. Nature (2006)]



Test of the viscoplastic law :
|- Heap flows
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Test of the viscoplastic law :
2 - Surface instability
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Limits of u-l rheology

* Microscopic origin
phenomenological — some work in [Weinhart et al. Phy. Fluids (2013)]

 Transition to Quasi-static regime
shear bands not described
Transition between rate-independent and rate-dependent regimes

1 solution: Non-local models
* Transition to Kinetic regime

collisional flows not correctly described
modified kinetic theory by introducing a rate-independent term

[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]



Non local effects
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[Singh et el., under review New J. Phys. (2015)]



Solid - fluid duality

0.4 e
031 -
02} -
0.1

0
0.1
02
03} -

04 b
10

0,/0

[Singh et el., under review New J. Phys. (2015), Weinhart et al. Phy. Fluids (2013)]



