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Granular material regimes 



Solid+liquid+gas 

[Forterre & Pouliquen, Annu.	
  Rev.	
  Fluid	
  Mech.	
  (2008)] 



Solid+liquid+gas 

[Jaeger et al. (1996), Forterre & Pouliquen, Annu.	
  Rev.	
  Fluid	
  Mech.	
  (2008)] 

Three	
  regimes:	
  
	
  
•  solid	
  –	
  sta(c	
  
par(cles	
  interact	
  via	
  fric(onal	
  contacts	
  

•  liquid	
  –	
  dense,	
  flow-­‐like	
  behavior	
  
both	
  collisions	
  and	
  fric(on	
  

•  gas	
  –	
  rapid	
  dilute	
  flow	
  
par(cles	
  interact	
  via	
  collisions	
  



Outline 
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Internal	
  forces	
  transmission 
 



Contact forces 

•  Unique	
  feature	
  of	
  granular	
  material	
  arises	
  from	
  internal	
  force	
  
transmission	
  

	
  
•  Most	
  fundamental	
  microscopic	
  property	
  of	
  granular	
  materials:	
  

irreversible	
  energy	
  dissipa(on	
  in	
  the	
  course	
  of	
  interac(on	
  collision	
  
between	
  par(cles.	
  



Any	
  quan(ty:	
  
-­‐	
  Scalar	
  
-­‐	
  Vector	
  
-­‐	
  Tensor:	
  Stress	
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Micro-­‐macro	
  transi6on	
  
Stress tensor 

Overview	
  of	
  more	
  complex	
  formula(ons	
  in	
  	
  
[Weinhart	
  et	
  al.	
  	
  (2010)]	
  



Stress tensor 

a.	
  Contact	
  stress	
  tensor	
  

Due	
  to	
  the	
  force	
  transmission	
  across	
  interpar(cle	
  forces	
  

b.	
  Streaming	
  stress	
  tensor	
  

Due	
  to	
  the	
  mo(on	
  of	
  a	
  par(cle	
  rela(ve	
  to	
  the	
  	
  
bulk	
  material	
  (Reynolds	
  stress	
  tensor	
  in	
  turbolent	
  flows)	
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Stress tensor 

a.	
  Contact	
  stress	
  tensor	
  

In	
  hoppers,	
  chutes,	
  landslides:	
  	
  	
  φ > 50%	
  
is	
  usually	
  dominant	
  in	
  common	
  granular	
  flows	
  	
  

b.	
  Streaming	
  stress	
  tensor	
  

can	
  usually	
  be	
  neglected	
  	
  



Hertzian contact law 



Hertzian contact law 
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Contact	
  s6ffness	
  



Solid	
  state 
 



Small strain (elastic) stiffness 

Classical	
  solids:	
  elas(c	
  s(ffness	
  is	
  a	
  material	
  constant	
  	
  
Granular	
  materials:	
  elas(c	
  s(ffness	
  depends	
  on	
  pressure	
  and	
  volume	
  frac6on	
  



Small strain (elastic) stiffness 

Cell	
  with	
  Bender	
  Elements	
  
Bender	
  Elements	
  



Small strain (elastic) stiffness 

Soundspeed	
  

Vp	
  =	
  Vp(φ,	
  p)	
  
Vs	
  =	
  Vs(φ,	
  p)	
  

Vp =
Mbulk

ρbulk

Vs =
Gbulk

ρbulk

Elas6c	
  moduli	
  



Soundspeed 

Vp = Vp(ν, p) 
Vs = Vs(ν, p) 

Small strain (elastic) stiffness 

Now Bathurst and Rothenburg [5] derived the bulk elastic
modulus of a random granular material from the contact
stiffness and showed that:

Ebulk~f nð Þ k
R

ð6Þ

where n is the coordination number. (The coordination number
is the number of contacts between a particle and its neighbors; it
appears in the bulk modulus since the larger the number of
contacts on a particle, the larger the number of contacts
available to resist an applied force and, consequently, the stiffer
the material.) Note first that the bulk modulus depends on the
stiffness, not directly on the modulus E of the material that
makes up the particles because it is through the stiffness than the
particle see one another elastically. While the stiffness is linearly
dependent on E, it also depends on R, the local radius of
curvature and thus depends on the geometry of the contact.

The bulk modulus in Eq. (6) makes it possible to use the
soundspeed in a static granular material as a way to probe the
contact stiffness. The soundspeed varies as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ebulk=qbulk

p
and is

thus proportional to
ffiffiffi
k

p
. Fig. 3 shows the soundspeed as a

function of the confining pressure p, applied to uniform-sized
stainless steel spheres arranged in a regular face-centered cubic
packing (which, being nearly spherical, smooth and placed in an
ordered arrangement, is about as nice a granular material as is
available). Data are taken from Goddard [6], who in turn took
the data from Duffy and Mindlin [7].

The pressure p, which is applied to the bulk assembly, must
be balanced by the forces on individual particle contacts. From
Eq. (5) one expects the stiffness k to vary as the cube root of the
normal force on the contact fn

1/3, and thus to the cube root of the
pressure, p. Thus the soundspeed should go as p1/6. As Fig. 3 is
a log–log plot, this means that the sound speed as a function of
pressure should have a slope of 1/6, represented by the solid
lines. Fig. 3 shows that this is true only at large confining
pressures. Surprisingly at low pressures the soundspeed varies
as p1/4, and only assumes the p1/6 predicted for Hertzian
contacts for large pressures. Working backwards through the
above calculation, this would imply that the stiffness varies as

fn
1/2 or is linearly proportional to the deformation δ. That is
behavior reminiscent of the interaction between the point of a
conical contact and a surface. (Conical contacts are non-
Hertzian because they have zero radius of curvature at the
point.) Goddard [6] pointed out that the observed behavior can
be explained if the particles initially interact across near-conical
asperities on the surface, thus accounting for the conical
behavior at low pressures. As the pressure increases, the
asperities are compressed until the spherical surfaces of the
particles come into direct contact eliciting a Hertzian response.
Goddard also presents a model that encompasses both limits and
the transitional region between. There have been attempts to
explain this behavior in terms of an increase in the coordination
number n with pressure (e.g. Makse et al. [8]) and such an
increase has been observed (see for example, Potapov and
Campbell [9]), but the Duffy and Mindlin data used materials
carefully assembled in an FCC packing so that the coordination
number was fixed. It is a bit surprising to find a significant effect
of asperities on high tolerance stainless steel balls, but if
examined on a small enough scale, any surface will exhibit
some asperities. One can only expect more severe behavior
from common granular materials and indeed soundspeed
measurements in sands by Richart and coworkers [10,11] (See
also [6]) show a pressure dependence more characteristic of
conical contacts.

All of the above results indicate a purely elastic contact.
Different behavior can be expected if the material yields
plastically under the application of the contact force. Analyses
of Hertzian contacts with plastic yielding performed by Walton
[12] and Thornton [13] show that, as the load on a contact is
increased, beyond an initial period of elastic behavior, the
normal force fn, varies nearly linearly with δ, indicating a nearly
constant normal stiffness k. However, the unloading follows a
different curve, again nearly linear, but with a steeper slope,
indicating a larger but still constant k. (This last means that the
force drops to zero before the particle centers are separated by
the sum of their radii. Physically, this occurs because the plastic
deformation leaves a flat indentation in the surface of the
particles so that they lose contact early.) This bi-linear behavior

Fig. 3. The sound speed as function of hydrostatic confining pressure in an FCC packing of 1/3 in. diameter steel balls with low tolerance (○, ±50×10−6 in.) and high
tolerance (▵, ±10×10−6 in.). The solid lines have a slope of 1/6, indicative of a Hertzian contact while the dashed lines have a slope of 1/4, indicative of a conical
contact. From Goddard [6] based on the data of Duffy and Mindlin [7].

210 C.S. Campbell / Powder Technology 162 (2006) 208–229



Small strain (elastic) stiffness 

[Gland et al., PRE	
  (2005)] 

Because	
  of	
  Hertzian	
  interac(on	
  we	
  expect:	
   K(p)∝G(p)∝ p1/3

G
 [M

Pa
]	



Gbulk ∝
k
R

[Bathurst and Rothenburg, J.	
  Appl.	
  Mech.	
  (1988)] 



Dependence on coordination number  

[Magnanimo et al., EPL	
  (2008)] 

Characterizing the shear and bulk moduli of an idealized granular material
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Fig. 6: Relation between χ and coordination number Z.
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Fig. 7: Elastic moduli K and G, normalized by the material
moduli Gg and Kg, vs. the coordination number Z, for four
groups of packings with the same confining pressure p0.
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Fig. 8: Elastic moduli K and G, normalized by p1/3
0
, vs.

the coordination number Z: all the data collapse into unique
curves.

χ vs. Z in fig. 6. Then, we show the dependence of the
measured elastic moduli on Z, using groups of packings
with the same confining pressure p0 (fig. 7). While in fig. 8
we plot the bulk and shear moduli normalized by the

confining pressure (p1/30 ), obtaining unique curves. Predic-
tions from the average strain theory are also proposed.
Finally, it is interesting to focus on the ratio of the

elastic moduli, η=G/K [24]. In this ratio the p1/30 pressure
dependence cancels out and, for packings with the same φ,
all that remains is a pure dependence on Z. The plot of η
vs. Z (fig. 9) results in a universal curve independent of the
confining pressure. That is, once the initial state has been
achieved, a measurement of the overall shear and bulk
modulus can be associated with a unique coordination
number. Such a universal curve reveals a dependence on Z
that strongly deviates from the prediction of the average
strain theory based on the Hertz contact that predicts that
η is constant. Our results clearly demonstrate the influence
of the microstructure characterized by Z.
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χ vs. Z in fig. 6. Then, we show the dependence of the
measured elastic moduli on Z, using groups of packings
with the same confining pressure p0 (fig. 7). While in fig. 8
we plot the bulk and shear moduli normalized by the

confining pressure (p1/30 ), obtaining unique curves. Predic-
tions from the average strain theory are also proposed.
Finally, it is interesting to focus on the ratio of the

elastic moduli, η=G/K [24]. In this ratio the p1/30 pressure
dependence cancels out and, for packings with the same φ,
all that remains is a pure dependence on Z. The plot of η
vs. Z (fig. 9) results in a universal curve independent of the
confining pressure. That is, once the initial state has been
achieved, a measurement of the overall shear and bulk
modulus can be associated with a unique coordination
number. Such a universal curve reveals a dependence on Z
that strongly deviates from the prediction of the average
strain theory based on the Hertz contact that predicts that
η is constant. Our results clearly demonstrate the influence
of the microstructure characterized by Z.
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Shearing 

elsto-­‐plas(city	
  
hypoplas(city	
  
…	
  



Quasistatic behavior 

Coulomb	
  (1773)	
  
Yielding	
  of	
  granular	
  material	
  as	
  fric(onal	
  process	
  
Interested	
  in	
  predic(on	
  of	
  soil	
  failures	
  for	
  Civil	
  Engineering	
  

τ < c+σ tanφ
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  the	
  material	
  yields	
  and	
  starts	
  to	
  flow	
  
	
  
c	
  =	
  cohesion	
  
φ  =	
  fric6on	
  angle	
  	
  

φ  and	
  c	
  are	
  material	
  constant	
  
	
  

τ = c+σ tanφ

τ	
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Critical state 

Rheol Acta (2009) 48:925–942 933

Quasi-static limit and fluid–solid transitions

Solid state rheology and solid-to-fluid transition

Solid-like granular assemblies are traditionally de-
scribed, e.g., for soil mechanics applications (Wood
1990; Mitchell 1993), with solid state rheological laws.
Those usually assume incremental forms (i.e., they re-
late stress and strain increments) to account for hystere-
sis of internal states of grain packings. Rather complex
constitutive relations have been developed (of elasto-
plastic or hypoplastic forms (Darve 1987)), which are
outside the scope of the present paper. Some general
features of the rheology of solid granular materials
should, nevertheless, be recalled. First, let us specify
that solid materials are usually studied under constant
normal stress p. As shear stress σ is increased from
zero, a threshold value σ1 is eventually reached, corre-
sponding to the onset of flow. Due to the absence of
a force scale, such a threshold correspond to a given
stress ratio: one thus observes σ1 = µ∗ P. µ∗ is a static
internal friction coefficient.

However, one should specify how the material needs
to deform before the threshold is reached, and how µ∗

may depend on the initial state. It has been well known,
ever since the phenomenon was observed and named
by Reynolds, that granular materials possess dilatancy,
i.e., shear strains of solid-like granular packings entail
volume changes. A description of the circumstances
in which a granular material may undergo arbitrary
large plastic strains, i.e., start to flow, was achieved
by the classical theory known as critical state soil me-
chanics (Schofield and Wroth 1968; Wood 1990). Its
essential prediction is that, while different equilibrium
packing states are possible, depending on the sam-
ple assembling process and subsequent history, granu-
lar materials, once subjected to monotonic, quasistatic
shear strains of sufficient amplitudes, tend to approach
an attractor state that does not depend on initial con-
ditions, known as the critical state, corresponding to
steady plastic flow at constant volume. Figure 8 is a
schematic representation of the approach to the critical
state for initially dense and loose systems.

The critical state is characterized by its solid fraction
"c and a value µ∗

c for the internal friction coefficient.
By definition, a dense material is such that " > "c.
Once sheared under constant P, it dilates, and " de-
creases until the limit value "c is approached. Mean-
while, the shear stress goes through a maximum σpeak

and then decreases towards σc. Loose systems, on the
other hand, are defined by " < "c. Under shear, they
contract and gradually approach "c from below, while
the shear stress monotonically increases towards µ∗

c P.
Both laboratory measurements and computer simula-
tions of model systems (Thornton 2000; Radjaï and
Roux 2004; Radjaï et al. 2004) confirm those properties.
Simulations also indicate that the critical state is char-
acterized by a specific distribution of contact orienta-
tions (or “fabric”) (Radjaï and Roux 2004). Numerical
results reveal that stiffness parameter κ is irrelevant
if it is large enough (Roux and Chevoir 2005), and
some simulations (Radjaï and Roux 2004; Radjaï et al.
2004) are performed with models of rigid grains. Conse-
quently, if the material remains homogeneous, the crit-
ical state only depends on geometric data (shape and
size distribution of the grains) and on the intergranular
friction coefficient. Interestingly, frictionless beads are
observed in simulations to exhibit a finite macroscopic
coefficient of friction without dilatancy (Fazekas et al.
2007; Peyneau and Roux 2008a, b), and solid fraction "

stays equal to the random close packing value "RCP "
0.64 in all solid-like configurations, as well as in slow
plastic flow. From an initial isotropically stressed solid,
σ monotonically increases upon shearing to its steady-
state value, about 0.1 P.

From the behavior of continuously sheared granular
materials in the quasi-static limit and from the critical
state concept, two basic characteristics are defined,
macroscopic friction coefficient µ∗

c and critical solid
fraction "c, which, for sufficiently stiff contacts, only
depend on geometry and intergranular friction coef-
ficient µ. µ∗

c is a growing function of µ. For circular
or spherical grains, it grows from about 0.1 for µ = 0
and saturates (Mahboubi-Ardakani 1995) for µ " 0.3
at a maximum value (around 0.3, depending on poly-
dispersity). "c is a decreasing function of µ, with "c =

Fig. 8 Schematic view of a
shear stress vs shear strain
curve and b solid fraction vs
shear strain curve for an
initially dense (solid line) and
an initially loose (dotted line)
material

A	
  shearing	
  granular	
  material	
  will	
  ALWAYS	
  approach	
  a	
  cri6cal	
  concentra(on	
  
This	
  is	
  the	
  ONSET	
  OF	
  FLOW	
  

φc	
  is	
  again	
  a	
  material	
  constant	
  

overconsolidated	
  

underconsolidated	
  

overconsolidated	
  

underconsolidated	
  

The	
  granular	
  material	
  DILATES	
  



Critical state 

Varia6on	
  of	
  cri6cal	
  concentra6on	
  with	
  applied	
  stress	
  

Most	
  flows	
  are	
  characterized	
  by	
  low	
  stress	
  and	
  large	
  applied	
  strain	
  
à	
  we	
  can	
  assume	
  incompressible	
  flow	
  at	
  the	
  cri(cal	
  concentra(on	
  φc	
  

φc	
  

φ	
  

σ	
  



Critical state 

Soil	
  mechanics:	
  widely	
  used	
  
	
  
Par6cle	
  Technology:	
  flow	
  behavior	
  from	
  silo	
  (à	
  A.	
  Kwade)	
  
•  when	
  the	
  material	
  starts	
  flowing	
  is	
  always	
  yielding	
  	
  

	
  everywhere	
  in	
  the	
  hopper	
  (mass	
  flow)	
  or	
  in	
  a	
  region	
  (core	
  flow)	
  

	
  
•  the	
  material	
  is	
  always	
  at	
  the	
  cri(cal	
  concentra(on	
  and	
  it	
  is	
  incompressible.	
  
	
  
	
  

τ = c+σ tanφ
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N.B.!!	
  	
  
Applica(on	
  of	
  Cri(cal	
  State	
  theory	
  on	
  	
  is	
  based	
  on	
  Janssen	
  theory:	
  
the	
  pressure	
  at	
  boeom	
  of	
  the	
  silo	
  is	
  independent	
  of	
  bed	
  height	
  	
  

	
  à	
  the	
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  bulk	
  material	
  is	
  in	
  the	
  cri(cal	
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τ = c+σ tanφ



Dependence on microscopic properties 

934 Rheol Acta (2009) 48:925–942

!RCP for µ = 0 (0.85 in 2D and 0.639 in 3D). Figure 9
gives plots of µ∗

c and !c/!RCP as functions of µ from
simulations of disk and sphere assemblies in two and
three dimensions.

“Static” vs “dynamic” friction

The critical state is usually identified with the steady
state in shear flow, under controlled normal stress, in
the quasi-static limit of I → 0. This assumes no discon-
tinuity in this limit or, in other words, that the static
internal friction coefficient, which defines the maximum
shear stress a solid granular assembly can withstand
at rest, under controlled normal stress, coincides with
the dynamic one, i.e., the ratio of shear to normal
stresses measured in the limit of slow flow. In a sense,
µ∗

peak = σpeak/P, as measured on gradually shearing a
dense material (see Fig. 8), can be regarded as a static
coefficient of friction, which is larger than the dynamic
one, µ∗

c . This obvious source of hysteresis, observed on
first shearing a solid material from an initial dense state,
is absent in assemblies of frictionless beads. Another
issue is whether the macroscopic friction coefficient
identified in the solid state prepared in the critical
state coincides with the average of shear to normal
stress ratio in the limit of slow flow. In this respect,
the observation of different characteristic angles for
which granular layers on rough inclines (Daerr and
Douady 1999) under gravity start and stop flowing
suggests a hysteresis effect. However, the influence of
the layer thickness and of the solid surface suggests
to attribute such a difference to boundary and size
effects. Such an interpretation is supported, in the case
of frictionless particles, by the results of two numerical
simulation studies: Peyneau and Roux (2008a) showed
(with spheres in 3D) the friction angle corresponding to

the onset of flow from rest to coincide with the dynamic
friction angle, and Xu and O’Hern (2006) (with disks
in 2D) showed the friction angle corresponding to the
cessation of flow to coincide with the dynamic friction
angle as well. In both cases, the static angle is larger
than the dynamic one, but the difference vanishes in the
limit of large systems. Finally, let us recall contact aging,
as another possible cause of friction hysteresis (Coste
2004).

Pressure-controlled vs volume-controlled behavior

The existence of an attractor state with given solid
fraction is consistent with the impossibility of finding
a quasi-static plastic flow pointed out in “Dimensional
analysis” when the material density is fixed. Such a flow
is only possible for ! = !c. Dense flows with ! < !c

are not quasi-static, the volume increase is due to in-
ertia effects (effect of I > 0). For ! > !c, the material
cannot flow, unless, on setting a prescribed shear rate
γ̇ , one forces contact deflections large enough to allow
particles to flow past one another in spite of steric
constraints. This regime, in which particle deformabil-
ity plays an essential role, was studied in Campbell
(2002). It should be noted that tiny density increments
entail very large stresses and considerable material
strain within intergranular contacts, very likely to entail
breaking, damage, or large plastic deflections signif-
icantly affecting particle shapes. If ! approaches !c

from above in steady shear flow with fixed ! and γ̇ ,
one should measure a normal stress p such that ratio I
takes a value corresponding to !. As I approaches zero
for ! → !c, this eventually leads to a divergence of p,
and of σ ∼ µS

∗ p for any finite value of γ̇ . If ! is used as
a control parameter, the value ! = !c thus appears as
a singular point. Some analogies with the phenomenol-

(a) (b)

Fig. 9 µ∗
c (a) and !c/!RCP (b) as functions of µ, from results of

2D simulations (filled symbols): (da Cruz et al. 2005) (squares—
x = 20%), (Estrada et al. 2008) (triangles—x = 60%), and 3D
simulations (open symbols): (Roux and Chevoir 2005; Peyneau

and Roux 2008a) (circles—x = 0%), (Thornton 2000) (triangle—
x $ 60%), (Fazekas et al. 2007) (squares—x = 0%), (Campbell
2005) (stars—x = 0%)

[Lamaitre et al., Rheol.	
  Acta	
  (2009)] 



Critical state for silos - problems 

φ	
  is	
  not	
  constant	
  in	
  the	
  silo	
  

compressed together due to solid deformation at the contact
points and are squeezed into the interparticle pore space. But for
a wide range of smaller loadings, the critical concentration is
independent of the applied stress. In many soil mechanics
applications, the applied stress can be large, (for example
beneath a large building). But in most granular flows, the
applied stresses are relatively small and as the total strains are
large, it is reasonable to assume that the flow is incompressible
and fixed at the critical concentration, νc.

These plasticity-derived techniques have been used widely in
soil mechanics to predict the failures of soils below foundations
and structures such as retaining walls and earthen dams. There
were also problems that became apparent. For example, the first
versions of these theories predict the material would continu-
ously expand with shearing and never approach a critical state
(e.g. [22]).

When extended to study granular flows, this technique has
had partial success in predicting the flow from hoppers (e.g.
Jenike and Shield [23], Davidson and Nedderman [24], and
Brennen and Pearce [25]). As that material flows within the
hopper, it is assumed that the material is always yielding so that:

s ¼ r tan/ ð8Þ

everywhere within the hopper. Furthermore, as the material
experiences large shear strains, it is always assumed to be at the
critical concentration, υc, and it is treated as incompressible.
There were many successes of these theories. In particular they
showed that the flowrate from a hopper was independent of the
depth of material, a characteristic that makes sand hourglasses
an easily built method of timekeeping. (This is a direct
reflection of the 1895 analysis of Janssen [26] – perhaps the

second great work in granular flow –which showed that beyond
a certain height the weight of a bed within a bin is supported by
friction on the sidewalls. Thus, the pressure on the bottom of the
bin is independent of bed depth. As that pressure controls the
flowrate through the orifice, the flowrate is depth-independent.)
But the techniques suffered from mathematical problems of
applying boundary conditions and the flowrate predictions
could have been better. Jackson [22] examines this in some
detail.

A likely source of the problems, is the assumption that ϕ is a
constant material property. Fig. 5 shows measurements of tanϕ
in two dimensional hopper flow simulation by Potapov and
Campbell [27]. In it, tanϕ can be seen to vary by more than a
factor of 3, violating the fundamental assumptions of quasistatic
flow theory. This variation of tanϕ can explain the discrepancies
between the theory and experiment. However, it is not
understood why tanϕ changes, as simple shear simulations on
similarly constituted materials indicate that tanϕ is a constant at
small shear rates (e.g. [28]).

4.1. The “frictional” nature of granular materials

Eq. (8) indicates that tanϕ is the ratio of shear to normal
forces in the material and thus can be understood as an apparant
friction coefficient. Recently, it has become popular to refer to
quasistatic flows as “frictional”. However, this is misleading as
the internal behavior of the material is not what one would
classically call “frictional”.

Fig. 5. A contour diagram of the apparent friction coefficient, tanϕ, from a two-
dimensional simulation of a hopper with a 60° angle and a polydisperse granular
material, from Potapov and Campbell [27]. The annotations max and min
indicate the areas where tanϕ takes its maximum and minimum values,
quantitative values of which are written at the bottom of the plot. Note that tanϕ
is far a constant, but changes by a factor of more than three.

Fig. 6. A photoelastic image of the force chains generated in the two-
dimensional shear cell of Howell et al. [29,30]. Here, the inner cylinder is
rotating counter-clockwise to force the particles together into chains.

212 C.S. Campbell / Powder Technology 162 (2006) 208–229
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Figure 2
Hysteresis and flow threshold in different systems. (a) Cylindrical Couette cell, with the
friction coefficient at the inner wall plotted as a function of the dimensionless mean shear rate.
Open circles represent increasing shear stress, and filled circles represent decreasing shear
stress (da Cruz et al. 2002). (b) Rotating drum with θstart (open circles) and θstop ( filled circles)
plotted as functions of the width of the drum (Courrech du Pont et al. 2003). (c) Inclined plane
with θstart (open circles) and θstop ( filled circles) plotted as functions of the layer thickness h
(Pouliquen & Forterre 2002).

the macroscopic behavior motivate many studies (Roux & Combes 2002). However,
such approaches focus on the initiation of the deformation and do not predict what
happens when continuous quasi-static flow is imposed on the material (Fenistein et al.
2004, Losert et al. 2000, Mueth et al. 2000, Veje et al. 1999).

A second shortcoming of the ideal friction criterion is that it cannot describe the
hysteresis observed in a stress-driven system. In a Couette cell, for example, one has
to increase the applied shear stress up to a critical value to induce flow, but once it
flows, the material stops only if the shear stress is decreased below a value less than
the starting value (Figure 2a). For free surface flows, as in a partially filled drum or
on a pile, one has to incline the free surface above a critical angle θstart to trigger an
avalanche, but the flow will stop only below a lower critical angle θstop. The origin of
hysteresis in granular media is well illustrated by the toy model of a single bead flowing
down a rough inclined substrate (Quartier et al. 2000). This analysis clearly shows
how hysteresis comes from the balance between kinetic energy, energy dissipation
due to collision, and the potential trap made by the roughness of the substrate.

The last weakness of the simple friction criterion is that the flow threshold depends
on the system size. In a rotating drum or on a pile, the width of the device plays an
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Friction and dilatancy laws 

In	
  solid	
  and	
  quasista(c	
  flow,	
  forces	
  are	
  transmieed	
  through	
  force	
  chains	
  



Shear bands and dilatant zones 

Fric6onal	
  Behavior	
  =	
  Mohr-­‐Coulomb	
  failure	
  	
  
Granular	
  materials	
  fail	
  along	
  narrow	
  but	
  finite	
  zones:	
  SHEAR	
  BANDS	
  
	
  	
  



Shear bands and dilatant zones 

Fric6onal	
  Behavior	
  =	
  Mohr-­‐Coulomb	
  failure	
  	
  
Granular	
  materials	
  fail	
  along	
  narrow	
  but	
  finite	
  zones:	
  SHEAR	
  BANDS	
  
	
  
GLOBALLY	
  à 	
  fric(onal	
  behavior	
  	
  
LOCALLY	
  à	
   	
  force	
  chains	
  
	
  	
  
τ xy
τ yy

=
Fxly
Fyly

= const



Jamming phase diagram 

[Liu and Nagel., Nature	
  (1998)] 



Jamming robot 

heps://www.youtube.com/watch?v=bFW7VQpY-­‐Ik	
  

[Brown et al., PNAS	
  (2010)] 



Collisional	
  or	
  rapid	
  granular	
  flows	
   
 



Dimensionless analysis (Buckingham Pi theorem) 

Bagnold	
  theory	
  

σ ij = f (φ,ρp,d, γ )

σ ij = f (φ)ρpd
2 γ 2

The	
  shear	
  stress	
  varies	
  as	
  the	
  square	
  of	
  the	
  shear	
  rate	
  	
  



Granular Temperature 

Tg =
1
3
u 'i
2 =

1
3

u '2 + v '2 + w '2( )

1.	
  granules	
  moving	
  in	
  a	
  flow	
  =	
  molecules	
  in	
  the	
  kine(c	
  theory	
  of	
  gases	
  
2.	
  random	
  veloci(es	
  =	
  thermal	
  mo(on	
  of	
  molecules.	
  

Granular	
  temperature	
  =	
  magnitude	
  of	
  fluctua6ng	
  veloci6es	
  

Trace	
  of	
  the	
  streaming	
  stress	
  tensor	
  

Tg =
1
3ρφ

tr(σ ij
s )

deriving	
  a	
  set	
  of	
  equa(ons	
  for	
  Rapid	
  Granular	
  Flows	
  



Granular Hydrodynamic 

Dρφ
Dt

= ρφ∇⋅u = 0

ρφ
Du
Dt

=∇p(p,φ,Tg,e)+∇⋅ η(ρ,φ,Tg,e)∇u( )

ρφ
DTg
Dt

=∇⋅ α(ρ,φ,Tg,e)∇Tg( )+σ ⋅∇u−Γ(ρ,φ,Tg,e)

Conserva6on	
  of	
  mass	
  

Conserva6on	
  of	
  momentum	
  

Conserva6on	
  of	
  granular	
  energy	
  (granular	
  temperature)	
  



Kinetic Theory – Range of applicability 

•  Nearly	
  elas6c	
  par6cles	
  (e=0.9)	
  
	
  
•  Extremely	
  small	
  concentra6on:	
  	
  

	
  magnitude	
  of	
  thermal	
  veloci(es	
  is	
  much	
  larger	
  	
  
	
  than	
  the	
  rela(ve	
  veloci(es	
  induced	
  by	
  shear	
  	
  

	
  
•  Isotropy	
  in	
  the	
  angular	
  distribu6on	
  of	
  collisions	
  

•  Molecular	
  chaos:	
  
	
  no	
  correla(ons	
  in	
  the	
  veloci(es	
  or	
  posi(ons	
  of	
  colliding	
  par(cles	
  

	
  
•  	
   Absence	
  of	
  fric6on	
  between	
  par6cles	
  and	
  walls:	
  	
  

	
  silos	
  can	
  not	
  be	
  modeled	
  with	
  kine(c	
  theory	
  
	
  

	
  	
  

Binary	
  collisions	
  



Kinetic Theory – Range of applicability 
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e

φ
0

1

0 φc

Liquid

Gas

Figure 3
Schematic phase diagram. ! is the volume fraction, and e is the restitution coefficient.

force network. In this regime, the properties are almost insensitive to the coefficient
of restitution e (GDR MiDi 2004), although as discussed above, the transition to the
kinetic regime depends on e. To better understand this liquid regime, researchers have
investigated different flow configurations, the most common presented in Figure 4.
These configurations can be divided in two families: flows confined between walls
as in shear cells or silo and free surface flows such as flows down an inclined plane,
flows in a rotating drum, or flows on a pile. GDR MiDi (2004) discusses in detail
the characteristics of these configurations in terms of velocity profiles, density pro-
files, and velocity fluctuations. Recently, by analogy with classical hydrodynamics
problems, more complex flow configurations have been analyzed, such as dam-break
problems (Lajeunesse et al. 2004, Lube et al. 2004), coating-like problems (Deboeuf
et al. 2006, Felix & Thomas 2004), mixing experiments (Ottino & Khakhar 2000),
split Couette devices (Fenistein et al. 2004), drag problems (Hill et al. 2005), and
instabilities (Aranson & Tsimring 2006).

A recurrent and central question underlying all the studies involves the constitutive
equations of this peculiar liquid. Dense granular flows can be placed in the visco-
plastic family of materials because of two broad properties. First, a flow threshold
exists, although it is expressed in terms of friction instead of yield stress, as in a classical
visco-plastic material. Second, when the material is flowing, shear rate dependence is
observed, which gives it a viscous-like behavior. In the following section, we present
recent advances in our understanding of the rheology of dense granular flows.

3. RHEOLOGY OF DENSE GRANULAR FLOWS

3.1. Dimensional Analysis: Plane Shear

We first consider the simplest flow configuration consisting of spherical grains of
diameter d and density ρp sheared between two rough plates at a shear rate γ̇ in the
absence of gravity (Figure 4a). A shear stress τ then develops on the top plate. It is
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[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)] 



Kinetic Theory – Extended theories 

Jenkins,	
  Dense	
  shearing	
  flows	
  of	
  inelas0c	
  disks.	
  Phys.Fluids	
  (2006)	
  	
  
	
  
Vescovi,	
  Di	
  Prisco	
  &	
  Berzi,	
  From	
  solid	
  to	
  granular	
  gases:	
  the	
  steady	
  state	
  for	
  
granular	
  materials	
  (2013)	
  
	
  
[…]	
  
	
  



Granular material: continuum approach  

Solid:	
  soil	
  mechanics	
  

Gas:	
  kine6c	
  theory	
  

Liquid	
  ??	
  



Dense	
  (slow)	
  flows	
  	
  
and	
  iner(al	
  regime 

 



Inertia number 

I = γd
p
ρp

For	
  large	
  systems	
  –	
  and	
  rigid	
  grains	
  
	
  
Only	
  based	
  on	
  dimensional	
  analysis	
  
The	
  transi(on	
  can	
  be	
  described	
  trough	
  a	
  single	
  dimensionless	
  number	
  
	
  
	
  

Iner6a	
  number	
  

Rheology of dense flows at constant pressure: 
the inertial number

GDR Midi Eur. Phys. J. 04, Da Cruz et al PRE 05

rigid grains: a single dimensionless number

inertial number

I =

micro time

macro time

quasi-static (solid) dense (liquid) rapid (gas)
I

10�3 10�1

mercredi 11 avril 2012

ANRV332-FL40-01 ARI 10 November 2007 15:46

ca b

e f

g g

d

Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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[Da Cruz et al. (2005); Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)] 
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Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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[Da Cruz et al. (2005); Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)] 

I	
  =	
  micro	
  6me	
  scale	
  /	
  macro	
  6me	
  scale	
  

d
p
ρp

1
γ

microscopic	
  6me	
  scale	
  
time needed for a particle to fall in a hole of size d 
under the pressure P  
- typical time scale of rearrangements -	
  

macroscopic	
  6me	
  scale	
  
linked to the mean deformation 
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Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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[Da Cruz et al. (2005); Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)] 

I	
  =	
  micro	
  6me	
  scale	
  /	
  macro	
  6me	
  scale	
  

small	
  –	
  quasi-­‐sta(c	
  
macroscopic deformation is slow compared to 
microscopic rearrangement	
  

I

large	
  –	
  rapid	
  flows	
  I

Rheology of dense flows at constant pressure: 
the inertial number

GDR Midi Eur. Phys. J. 04, Da Cruz et al PRE 05

rigid grains: a single dimensionless number

inertial number

I =

micro time

macro time

quasi-static (solid) dense (liquid) rapid (gas)
I

10�3 10�1

mercredi 11 avril 2012



Quasistatic à Dense à Rapid 



Pouliquen µ-I rheology  

µ1 = tan 21�

I0 = 0.3
glass beads : 

Forterre & Pouliquen Annu. Rev Fluid Mech. 2008  

I

µ(I)

µs

0

tan(θ
2
)
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238 Les milieux granulaires : entre fluide et solide

On généralise donc la relation trouvée en cisaillement plan à un cisaillement
inhomogène caractérisé par un taux de cisaillement local γ̇(z) et une pression
locale P (z). La contrainte tangentielle locale τ(z) et la fraction volumique
locale φ(z) sont données par

τ = µ(I)P et φ = φ(I), avec I =
|γ̇(z)|d√
P (z)/ρp

. (6.5)

En ajustant les résultats expérimentaux et numériques, il est également pos-
sible de donner une expression empirique de la loi de friction µ(I) et de fraction
volumique φ(I), par exemple (Jop et al., 2005 ; Pouliquen et al., 2006)

µ(I) = µ1 +
µ2 − µ1

I0/I + 1
et φ = φc − (φc − φm)I. (6.6)

Typiquement, pour un matériau granulaire composé de billes de verre mono-
disperses, on a µ1 = tan 21◦, µ2 = tan 33◦, I0 = 0,3 , φc = 0,6 et φm = 0,4.
Les fonctions ainsi choisies sont tracées sur la figure 6.6c. On remarque que
la loi de friction sature vers une valeur maximale µ2 pour des grandes valeurs
de I. Nous reviendrons sur ce point lorsque nous discuterons de la forme des
fronts d’avalanche sur plans inclinés (§6.3.3).

Les lois qui contrôlent la friction et la fraction volumique (équation 6.6)
proviennent d’expériences et de simulations. Elles sont donc entièrement phé-
noménologiques. Une manière simple d’interpréter la décroissance de la frac-
tion volumique avec le nombre inertiel I consiste à reprendre l’image de la
figure 6.7 montrant une bille se déplaçant au-dessus des deux billes de la
couche du dessous. Quand la particule est dans un trou, on peut supposer que
la fraction volumique de l’empilement est maximale et vaut φc. Cependant,
quand un réarrangement a lieu, la particule doit sortir de son piège et on peut
supposer que la fraction volumique passe alors par un minimum noté φm. Sa-
chant que le temps de réarrangement est tmicro et que le temps pendant lequel
la particule reste piégée est tmacro − tmicro, on retrouve pour la fraction volu-
mique moyenne φ = [φmtmicro +φc(tmacro − tmicro)]/tmacro = φc − (φc −φm)I.

Il est plus délicat d’interpréter la forme particulière de la loi de friction
µ(I), et en particulier la croissance du frottement effectif avec I. Par exemple,
si l’on reprend les résultats de la théorie cinétique appliquée au cisaillement
simple que nous avons vue au chapitre 5 (§5.4.1), on constate que la théorie
cinétique prédit une décroissance de µ avec I, et non une croissance comme
observé dans le régime dense (Forterre & Pouliquen, 2008, voir aussi la fi-
gure 6.19). Pour comprendre l’augmentation de la friction avec le nombre I,
certains auteurs ont étudié l’évolution de la distribution du réseau de contacts
et de forces dans les écoulements denses. Il semble que l’augmentation de l’ani-
sotropie des contacts soit corrélée avec l’augmentation de la friction (da Cruz
et al., 2005). Une autre façon d’interpréter microscopiquement la loi de friction
consiste à étudier le problème plus simple du mouvement d’un grain unique
sur un fond rugueux rigide périodique (Quartier et al., 2000 ; Andreotti, 2007).

- inclined plane (exp, num)
- annular shear (exp)

3D (spheres)

µ2 = tan 33�

Empirical friction law
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the shear stress and normal stress are given by what is called the Bagnold scaling:

τ = ρp d 2 f1(#)γ̇ 2 and P = ρp d 2 f2(#)γ̇ 2. (3)

This expression is not restricted to the collisional arguments initially given by Bagnold
(1954), but simply comes from dimensional analysis and is valid for all shear rates (Lois
et al. 2005). As a consequence, in a constant volume experiment, no threshold appears
to exist, and τ goes to zero when γ̇ goes to zero, although the ratio τ/P remains finite.
It is important to notice that this description is identical to Expression 2 given for
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Pouliquen µ-I rheology – local constitutive relation  

τ =σµ(I ) φ = φ(I )
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238 Les milieux granulaires : entre fluide et solide

On généralise donc la relation trouvée en cisaillement plan à un cisaillement
inhomogène caractérisé par un taux de cisaillement local γ̇(z) et une pression
locale P (z). La contrainte tangentielle locale τ(z) et la fraction volumique
locale φ(z) sont données par

τ = µ(I)P et φ = φ(I), avec I =
|γ̇(z)|d√
P (z)/ρp

. (6.5)

En ajustant les résultats expérimentaux et numériques, il est également pos-
sible de donner une expression empirique de la loi de friction µ(I) et de fraction
volumique φ(I), par exemple (Jop et al., 2005 ; Pouliquen et al., 2006)

µ(I) = µ1 +
µ2 − µ1

I0/I + 1
et φ = φc − (φc − φm)I. (6.6)

Typiquement, pour un matériau granulaire composé de billes de verre mono-
disperses, on a µ1 = tan 21◦, µ2 = tan 33◦, I0 = 0,3 , φc = 0,6 et φm = 0,4.
Les fonctions ainsi choisies sont tracées sur la figure 6.6c. On remarque que
la loi de friction sature vers une valeur maximale µ2 pour des grandes valeurs
de I. Nous reviendrons sur ce point lorsque nous discuterons de la forme des
fronts d’avalanche sur plans inclinés (§6.3.3).

Les lois qui contrôlent la friction et la fraction volumique (équation 6.6)
proviennent d’expériences et de simulations. Elles sont donc entièrement phé-
noménologiques. Une manière simple d’interpréter la décroissance de la frac-
tion volumique avec le nombre inertiel I consiste à reprendre l’image de la
figure 6.7 montrant une bille se déplaçant au-dessus des deux billes de la
couche du dessous. Quand la particule est dans un trou, on peut supposer que
la fraction volumique de l’empilement est maximale et vaut φc. Cependant,
quand un réarrangement a lieu, la particule doit sortir de son piège et on peut
supposer que la fraction volumique passe alors par un minimum noté φm. Sa-
chant que le temps de réarrangement est tmicro et que le temps pendant lequel
la particule reste piégée est tmacro − tmicro, on retrouve pour la fraction volu-
mique moyenne φ = [φmtmicro +φc(tmacro − tmicro)]/tmacro = φc − (φc −φm)I.

Il est plus délicat d’interpréter la forme particulière de la loi de friction
µ(I), et en particulier la croissance du frottement effectif avec I. Par exemple,
si l’on reprend les résultats de la théorie cinétique appliquée au cisaillement
simple que nous avons vue au chapitre 5 (§5.4.1), on constate que la théorie
cinétique prédit une décroissance de µ avec I, et non une croissance comme
observé dans le régime dense (Forterre & Pouliquen, 2008, voir aussi la fi-
gure 6.19). Pour comprendre l’augmentation de la friction avec le nombre I,
certains auteurs ont étudié l’évolution de la distribution du réseau de contacts
et de forces dans les écoulements denses. Il semble que l’augmentation de l’ani-
sotropie des contacts soit corrélée avec l’augmentation de la friction (da Cruz
et al., 2005). Une autre façon d’interpréter microscopiquement la loi de friction
consiste à étudier le problème plus simple du mouvement d’un grain unique
sur un fond rugueux rigide périodique (Quartier et al., 2000 ; Andreotti, 2007).
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This expression is not restricted to the collisional arguments initially given by Bagnold
(1954), but simply comes from dimensional analysis and is valid for all shear rates (Lois
et al. 2005). As a consequence, in a constant volume experiment, no threshold appears
to exist, and τ goes to zero when γ̇ goes to zero, although the ratio τ/P remains finite.
It is important to notice that this description is identical to Expression 2 given for
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Different geometries 
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ca b

e f

g g

d

Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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Pouliquen µ-I rheology – Tensorial extension Jop et al. Nature 06

Tensorial generalization:
a viscoplastic-like constitutive law

1) incompressible media, no normal stress difference
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[Jop et al. Nature (2006)] 
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Pouliquen µ-I rheology – Tensorial extension Test of the viscoplastic law : 
1- Heap flows146 CHAPITRE 4. THE GRANULAR LIQUID
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Fig. 4.12 – Flow on a pile confined between rough walls. (a) 3D velocity profile
predicted by the viscoplastic local rheology (4.8-4.9). (b) Quantative compa-
rison between the theory and experiments for the velocity profile observed at
the free surface for di�erent flow rate. From Jop et al. (2006).

Secondly, the interface between the flowing region and the static pile is not
as discontinuous as predicted by the theory. Experimentally, a slow creep is
observed in the static region, with an exponential tail which is not predicted
by the local rheology (Komatsu et al. 2001).

Granular collapse

A flow configuration, which has attracted a lot of attention the last ten
years, is the collapse of a granular column under gravity. A cylinder full
of grains is suddenly lift up (Fig. 4.13a). The material then spreads over
the surface. This configuration can be seen as a model for cli� collapses in
geophysics (Lajeunesse et al. 2004 ; Lube et al. 2004 ; Balmforth & Kers-
well 2005). Experiments have revealed interesting scaling for the spreading
distance as a function of the aspect ratio of the initial column. An inter-
esting question is whereas the local viscoplastic approach would be able to
correctly predict the dynamics of this fully three-dimensional flow. A first
indication of the relevance of the local rheology in this situation is given by
numerical simulations of the collapse problem using molecular dynamics si-
mulations (Lacaze & Kerswell 2009). Using a suitable coarse graining process
to compute the shear rate, the shear stress and the pressure, these authors
computed at each position and at each time the local value of the friction

©!2006!Nature Publishing Group!
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directions is present and where a full three-dimensional rheology is
needed.
We therefore propose the following 3D generalization of the friction

law for a granularmaterial. The basic assumption consists in neglecting
the small variation of the volume fraction observed in the dense
regime. The granular material is then described as an incompressible
fluid with the internal stress tensor given by the following relations:

jij ¼2 Pdij þ tij and tij ¼ hðj_gj;PÞ_gij

with hðj_gj;PÞ ¼mðIÞP=j_gj and I ¼ j_gjd=ðP=rsÞ0:5
ð3Þ

where _gij ¼ ›ui=›xj þ ›uj=›xi is the strain rate tensor and j_gj¼
ð0:5_gij _gijÞ0:5 is the second invariant of _gij: In this rheology, P
represents an isotropic pressure, and hðj_gj;PÞ is an effective viscosity,
which definition is related to the friction coefficient m(I) (equation
(2)). An important property of the proposed constitutive law is that
the effective viscosity diverges to infinity when the shear rate goes to
zero. This divergence ensures that a yield criterion exists. Looking at
equation (3) in the limit of j_gj going to zero, we can show that the
material flows only if the following condition is satisfied:

jtj. msP where jtj¼ ð0:5tijtijÞ0:5 ð4Þ
The yield criterion then takes the form of a Drucker–Prager-like
criterion24. Below the threshold, the medium behaves locally as a
rigid body. It is interesting to note that within this framework, the
granular media can be viewed as a visco-plastic fluid25. The specificity
compared to classical Bingham or Herschel–Bulkley fluids is that the
effective viscosity depends both on the shear rate and on the local
pressure. This property is linked to the frictional nature of stresses in
granular media.
To test this rheology we performed experiments of granular flows

on a heap as sketched in Fig. 2. This set-up is similar to our previous
study19 except that here sidewalls are made rough by gluing one layer
of beads on them. This imposes a well-defined no-slip boundary
condition at the walls. This configuration represents a severe test for
the model, since it gathers in a single configuration several specifi-
cities of granular flows. First, when grains are released from the
hopper, a steady regime is reached with a strongly sheared layer
flowing on top of a static zone. The slope and the thickness of the
flowing layer are selected by the system. Second, owing to the rough
sidewalls used here, a significant shear exists also in the transverse
direction, the flow pattern being thus fully three-dimensional. The
experiments are carried out using glass beads 0.53mm in diameter

and the two control parameters are the width W of the channel and
the flow rate per unit of width Q. The present study focuses on the
steady and uniform regime characterized by a constant slope and a
velocity aligned along the x direction and invariant along the flow
(a tiny y component can be observed close to the wall, which remains
20 times smaller than the stream-wise velocity). We performed
systematic measurements of the free-surface inclination v, of the
free-surface-velocity profile V surf(y) using particle-imaging veloci-
metry, and we get estimates of the thickness of the flowing layer h(y)
using an erosion method19.
To compare the experimental results with the predictions of the

local rheology, we perform numerical simulations of a granular fluid
described by the constitutive law equation (3) and flowing in an
inclined U-shaped channel with a no-slip boundary condition at the
three walls. The velocity u(y,z) is assumed to be aligned with x and to
depend only on y and z. To get the 3D steady velocity profile, we solve
the incompressible Navier–Stockes equations with the internal stress
being given by equation (3) using a finite difference scheme. For the
rheological parameters m s, m2 and I0 coming into play in equation
(2), we choose the values given by the experimental data of flows on
the inclined planes18 where the same particles were used (see ref. 19
for how to compute these parameters): ms ¼ tanð20:9Þ, m2 ¼
tanð32:76Þ and I0 ¼ 0.279. This choice means that no fitting par-
ameter will exist when we compare results from the simulations to
the experimental data. A typical velocity profile obtained by the
model is shown in Fig. 3. We first observe that a static zone develops
at the base of the channel. The limit of the static zone varies across the
channel, the flowing layer being larger in the centre than close to the
walls. The second observation is that the velocity profile is truly 3D
and sheared in both y and z directions.
We then tried to quantitatively compare the velocity profiles

predicted by the simulations with the ones measured experimentally.
In the simulation we impose the inclination and compute the flow

Figure 3 | Typical 3D velocity profile predicted by the rheology (W 5 142d,
v 5 22.68, Q/d3/2g 1/2 5 15.2). For clarity only one quarter of the lines of
the 71 £ 80 computational grid is plotted.

Figure 4 | Comparison of 3D simulations (lines) and experimental results
(symbols) for different flow rates (Q* 5 Q/d3/2g 1/2). a, b, c, Free-surface
velocity profiles for channel width W ¼ 16.5d (a), W ¼ 140d (b) and
W ¼ 546d (c). d, Depths of the flowing layer across the channel for
W ¼ 140d. The experimental and computational flow rates are equal within
2.5%. The error bars represent the dispersion of the measurements for
different experiments.
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directions is present and where a full three-dimensional rheology is
needed.
We therefore propose the following 3D generalization of the friction

law for a granularmaterial. The basic assumption consists in neglecting
the small variation of the volume fraction observed in the dense
regime. The granular material is then described as an incompressible
fluid with the internal stress tensor given by the following relations:

jij ¼2 Pdij þ tij and tij ¼ hðj_gj;PÞ_gij

with hðj_gj;PÞ ¼mðIÞP=j_gj and I ¼ j_gjd=ðP=rsÞ0:5
ð3Þ

where _gij ¼ ›ui=›xj þ ›uj=›xi is the strain rate tensor and j_gj¼
ð0:5_gij _gijÞ0:5 is the second invariant of _gij: In this rheology, P
represents an isotropic pressure, and hðj_gj;PÞ is an effective viscosity,
which definition is related to the friction coefficient m(I) (equation
(2)). An important property of the proposed constitutive law is that
the effective viscosity diverges to infinity when the shear rate goes to
zero. This divergence ensures that a yield criterion exists. Looking at
equation (3) in the limit of j_gj going to zero, we can show that the
material flows only if the following condition is satisfied:

jtj. msP where jtj¼ ð0:5tijtijÞ0:5 ð4Þ
The yield criterion then takes the form of a Drucker–Prager-like
criterion24. Below the threshold, the medium behaves locally as a
rigid body. It is interesting to note that within this framework, the
granular media can be viewed as a visco-plastic fluid25. The specificity
compared to classical Bingham or Herschel–Bulkley fluids is that the
effective viscosity depends both on the shear rate and on the local
pressure. This property is linked to the frictional nature of stresses in
granular media.
To test this rheology we performed experiments of granular flows

on a heap as sketched in Fig. 2. This set-up is similar to our previous
study19 except that here sidewalls are made rough by gluing one layer
of beads on them. This imposes a well-defined no-slip boundary
condition at the walls. This configuration represents a severe test for
the model, since it gathers in a single configuration several specifi-
cities of granular flows. First, when grains are released from the
hopper, a steady regime is reached with a strongly sheared layer
flowing on top of a static zone. The slope and the thickness of the
flowing layer are selected by the system. Second, owing to the rough
sidewalls used here, a significant shear exists also in the transverse
direction, the flow pattern being thus fully three-dimensional. The
experiments are carried out using glass beads 0.53mm in diameter

and the two control parameters are the width W of the channel and
the flow rate per unit of width Q. The present study focuses on the
steady and uniform regime characterized by a constant slope and a
velocity aligned along the x direction and invariant along the flow
(a tiny y component can be observed close to the wall, which remains
20 times smaller than the stream-wise velocity). We performed
systematic measurements of the free-surface inclination v, of the
free-surface-velocity profile V surf(y) using particle-imaging veloci-
metry, and we get estimates of the thickness of the flowing layer h(y)
using an erosion method19.
To compare the experimental results with the predictions of the

local rheology, we perform numerical simulations of a granular fluid
described by the constitutive law equation (3) and flowing in an
inclined U-shaped channel with a no-slip boundary condition at the
three walls. The velocity u(y,z) is assumed to be aligned with x and to
depend only on y and z. To get the 3D steady velocity profile, we solve
the incompressible Navier–Stockes equations with the internal stress
being given by equation (3) using a finite difference scheme. For the
rheological parameters m s, m2 and I0 coming into play in equation
(2), we choose the values given by the experimental data of flows on
the inclined planes18 where the same particles were used (see ref. 19
for how to compute these parameters): ms ¼ tanð20:9Þ, m2 ¼
tanð32:76Þ and I0 ¼ 0.279. This choice means that no fitting par-
ameter will exist when we compare results from the simulations to
the experimental data. A typical velocity profile obtained by the
model is shown in Fig. 3. We first observe that a static zone develops
at the base of the channel. The limit of the static zone varies across the
channel, the flowing layer being larger in the centre than close to the
walls. The second observation is that the velocity profile is truly 3D
and sheared in both y and z directions.
We then tried to quantitatively compare the velocity profiles

predicted by the simulations with the ones measured experimentally.
In the simulation we impose the inclination and compute the flow

Figure 3 | Typical 3D velocity profile predicted by the rheology (W 5 142d,
v 5 22.68, Q/d3/2g 1/2 5 15.2). For clarity only one quarter of the lines of
the 71 £ 80 computational grid is plotted.

Figure 4 | Comparison of 3D simulations (lines) and experimental results
(symbols) for different flow rates (Q* 5 Q/d3/2g 1/2). a, b, c, Free-surface
velocity profiles for channel width W ¼ 16.5d (a), W ¼ 140d (b) and
W ¼ 546d (c). d, Depths of the flowing layer across the channel for
W ¼ 140d. The experimental and computational flow rates are equal within
2.5%. The error bars represent the dispersion of the measurements for
different experiments.
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Pouliquen µ-I rheology – Tensorial extension Test of the viscoplastic law : 
2 - Surface instability 

Forterre J. Fluid Mech. 2006

23 24 25 26 27 28 29 30
0

0.2

0.4

0.6

0.8

1

� �

�

�
� �

0 0.5 1.0 1.5 2.0
-0.03

-0.02

-0.01

     0

0.01

0.02

mercredi 11 avril 2012



Limits of µ-I rheology 
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[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)] 



Non local effects 
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FIG. 9. (Color online) Shape factor for (a) stress, and (b)
fabric plotted against dimensionless pressure p∗. Different
symbols represent different values of κ as given in the legend
of Fig. 6. Blue circles represent the data in the center of the
shear band.

inertial regime. To test this, the high inertia number data
is generated by varying the external rotation rate Ω for
a fixed gravity and contact stiffness. In the following, we
will explore the evolution of local macroscopic friction
coefficient µ and deviatoric fabric with I.

A. Friction law

The variation of local friction coefficient µ against in-
ertial number I obtained from simulations with different
rate of rotation is shown in Fig. 10. It shows that µ is an
increasing function of I, starting from a minimum value
µlocal
0 as:

µ(I) = µlocal
0 + bµI

c1 , (20)

with µlocal
0 = 0.14, bµ = 0.85± 0.05 and c1 = 0.65± 0.01.

µlocal
0 is the friction coefficient in the quasi-static state.
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FIG. 10. (Color online) The friction coefficient plotted against
the inertial number I for results from simulations with differ-
ent rates of rotation. Different symbols represent different
rates of rotation as given in the legend. Blue squares repre-
sent the data in the center of the shear band.

The power law is different from the linear relation as ob-
served in [19], but consistent with the results of [57] for
simulations with frictionless beads. The fit to the above
function is done for data only inside the shear band (blue
squares). It is notable that for I ≥ 0.01, the linear re-
lations agrees well with the relation in Eq. (??), while
for lower values of I, a deviation from this relation is
observed. The local friction coefficient becomes smaller
than µlocal

0 . The deviation from this relation is consis-
tent with the observations of [45, 58], who explained this
deviation based on the heterogeneity in the stress distri-
bution.

B. Fabric anisotropy

In order to look for the connection between anisotropic
fabric and macroscopic friction coefficient for faster flows,
i.e. inertial regime here we explore the dependence of
Fdev on I. In Fig. 10 we plot local Fdev as obtained
by simulations with different rotation rate against I. We
observe that like ν and µ, Fdev strongly varies against I
and its dependence on I can be represented by a power
law as:

Fdev(I) = F local
dev0

+ bFdev
Ic2 , (21)

with F local
dev0

= 0.095, bFdev
≈ 0.3 and c1 = 0.62 ± 0.01.

F local
dev0

is the anisotropic fabric in the quasi-static limit.
The relation is a fit to the It is noticeable that for a given
I, the scatter in Fdev is more pronounced compared to
that in µ, which probably hints that I along is not enough
to describe Fdev. The increase in the contact anisotropy
with inertial number is in accordance with the recent
study of Azéma et al. [56].
Starting from both variations of macroscopic friction

and fabric anisotropy as a function of inertial number

[Singh et el., under review New J. Phys. (2015)] 
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FIG. 9. (Color online) Shape factor for (a) stress, and (b)
fabric plotted against dimensionless pressure p∗. Different
symbols represent different values of κ as given in the legend
of Fig. 6. Blue circles represent the data in the center of the
shear band.

inertial regime. To test this, the high inertia number data
is generated by varying the external rotation rate Ω for
a fixed gravity and contact stiffness. In the following, we
will explore the evolution of local macroscopic friction
coefficient µ and deviatoric fabric with I.

A. Friction law

The variation of local friction coefficient µ against in-
ertial number I obtained from simulations with different
rate of rotation is shown in Fig. 10. It shows that µ is an
increasing function of I, starting from a minimum value
µlocal
0 as:

µ(I) = µlocal
0 + bµI

c1 , (20)

with µlocal
0 = 0.14, bµ = 0.85± 0.05 and c1 = 0.65± 0.01.

µlocal
0 is the friction coefficient in the quasi-static state.
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FIG. 10. (Color online) The friction coefficient plotted against
the inertial number I for results from simulations with differ-
ent rates of rotation. Different symbols represent different
rates of rotation as given in the legend. Blue squares repre-
sent the data in the center of the shear band.

The power law is different from the linear relation as ob-
served in [19], but consistent with the results of [57] for
simulations with frictionless beads. The fit to the above
function is done for data only inside the shear band (blue
squares). It is notable that for I ≥ 0.01, the linear re-
lations agrees well with the relation in Eq. (??), while
for lower values of I, a deviation from this relation is
observed. The local friction coefficient becomes smaller
than µlocal

0 . The deviation from this relation is consis-
tent with the observations of [45, 58], who explained this
deviation based on the heterogeneity in the stress distri-
bution.

B. Fabric anisotropy

In order to look for the connection between anisotropic
fabric and macroscopic friction coefficient for faster flows,
i.e. inertial regime here we explore the dependence of
Fdev on I. In Fig. 10 we plot local Fdev as obtained
by simulations with different rotation rate against I. We
observe that like ν and µ, Fdev strongly varies against I
and its dependence on I can be represented by a power
law as:

Fdev(I) = F local
dev0

+ bFdev
Ic2 , (21)

with F local
dev0

= 0.095, bFdev
≈ 0.3 and c1 = 0.62 ± 0.01.

F local
dev0

is the anisotropic fabric in the quasi-static limit.
The relation is a fit to the It is noticeable that for a given
I, the scatter in Fdev is more pronounced compared to
that in µ, which probably hints that I along is not enough
to describe Fdev. The increase in the contact anisotropy
with inertial number is in accordance with the recent
study of Azéma et al. [56].
Starting from both variations of macroscopic friction

and fabric anisotropy as a function of inertial number

[Singh et el., under review New J. Phys. (2015), Weinhart et al. Phy. Fluids (2013)] 


