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Granular material regimes



Solid+liquid+gas

[Forterre & Pouliquen, Annu. Rev. Fluid Mech. (2008)]



Solid+liquid+gas

[Jaeger et al. (1996), Forterre & Pouliquen, Annu. Rev. Fluid Mech. (2008)]

Three regimes:

• solid – static
particles interact via frictional contacts

• liquid – dense, flow-like behavior
both collisions and friction

• gas – rapid dilute flow
particles interact via collisions



Outline
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• Solid state 
• Quasistatic regime and flow threshold
• Collisional and rapid granular flows
• Dense slow flows and inertial regime – (extended) rheology
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Abstract

The paper attempts to give a critical overview of the field of granular flow with attention both to the history and the underlying physics that
govern the field. It starts with a discussion of the basic transport mechanisms in a granular flow. It continues with a discussion of contact
mechanics – the way that individual particles see each other mechanically. It then discusses the historical limiting regimes of granular flow, the
Quasistatic and the Rapid-Flow regimes. Finally, it concludes with a review of the Elastic picture of granular flow, which both unifies the
Quasistatic and Rapid regimes and fills in the intervening space. It shows that the rheological behavior of granular systems changes with system
scale constraints, and, in particular, that the materials behave differently under controlled-stress and controlled-concentration conditions. The
Elastic model defines an entire flowmap of granular flow and thus allows one to place boundaries on where the Quasistatic and Rapid-Flow
models (sometimes called kinetic theory models) are something of a red herring and cannot be applied to common granular flows.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Under the correct conditions, a granular solid can flow like a
fluid. This was probably first recorded be Lucretius (ca. 98–
55 B.C.), who wrote “One can scoop up poppy seeds with a
ladle as easily as if they were water and, when dipping the ladle,
the seeds flow in a continuous stream,” (quotation taken from
Jacques [1]). As long as there has been mining and agriculture,
man has attempted to exploit the flowability of granular solids
to ease handling and storage problems. In particular, the ability
of gravity to drive a granular flow, as noted by Lucretius, greatly
simplifies and provides a cost-free mechanism of transport. As a
result, the most common granular handling devices, chutes and
hoppers, are gravity-driven flows. Yet the design of granular
systems is still something of a black art, in part because even the
most basic flow mechanisms of granular materials are not well
understood. In fact, science has not identified the set of material
properties that control the flow behavior.

For the purposes of this article, a granular solid is taken to be
a collection of discrete solid particles. In general the spaces
between the particles are filled with an interstitial fluid, usually

air. However, it will be assumed herein that the particles are
large and heavy in the sense that they are immune to effects of
the interstitial fluid. For the most part we will also ignore
cohesion between particles; cohesion arises from surface forces
or related phenomena such as liquid bridges, both of which act
on the surface area and thus can generally be neglected for large
particles with small surface area to volume ratios. Note that
these requirements collectively define what is meant by “large”
although those criteria cannot yet be quantitatively defined by a
set of dimensionless parameters.

This paper grew out of a long lecture given to the Ohio State
summer course on Powder Technology. It is an attempt to put
the state of knowledge of granular flows into perspective. It is
not intended to be a review article, in the sense that I am not
trying to mention every paper written on the subject, but instead
attempt to hit the highpoints and give a critical and balanced
view to the whole subject.

2. Internal force transmission

The unique features of granular material arise from the
manner in which force is internally transmitted. In continuum
mechanics this is represented by a stress tensor τ, each
component of which τij represents the force in the i-direction
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Abstract
We review flows of dense cohesionless granular materials, with a
special focus on the question of constitutive equations. We first dis-
cuss the existence of a dense flow regime characterized by enduring
contacts. We then emphasize that dimensional analysis strongly con-
strains the relation between stresses and shear rates, and show that
results from experiments and simulations in different configurations
support a description in terms of a frictional visco-plastic constitutive
law. We then discuss the successes and limitations of this empirical
rheology in light of recent alternative theoretical approaches. Fi-
nally, we briefly present depth-averaged methods developed for free
surface granular flows.
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Internal forces transmission



Contact forces

• Unique feature of granular material arises from internal force 
transmission

• Most fundamental microscopic property of granular materials: 
irreversible energy dissipation in the course of interaction collision 
between particles.



Any quantity:
- Scalar
- Vector
- Tensor: Stress

Q = 1
V c
∑ wV

p( ) l pcF c

p

V

cF

Micro-macro transition
Stress tensor

Overview of more complex formulations in 
[Weinhart et al. (2010)]
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Stress tensor

a. Contact stress tensor
Due to the force transmission across interparticle forces

b. Streaming stress tensor
Due to the motion of a particle relative to the 
bulk material (Reynolds stress tensor in turbolent flows)

σ ij
s =

ρpφ

V
u 'i

p=1

Np

∑ u ' j

σ ij
c =
1
V

Fi
C

C=1

Nc

∑ l j



Stress tensor

a. Contact stress tensor
In hoppers, chutes, landslides:   f > 50%
is usually dominant in common granular flows 

b. Streaming stress tensor
in loose flows or granular gases



Hertzian contact law



Hertzian contact law
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Solid state



Small strain (elastic) stiffness

Classical solids: elastic stiffness is a material constant 
Granular materials: elastic stiffness depends on pressure and volume fraction



Experimental measurements

v
p
=
E
ρ

v
s
=
G
ρ

Static probing à G, E

Dynamic method à vs, vp



Experimental measurements

Static probing à G, E

Dynamic method à vs, vp
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Earthquakes

Oil/Gas exploration

Soil characterization 



Small strain (elastic) stiffness

Because of Hertzian interaction we expect: K(p)∝G(p)∝ p1/3

G
 [M

Pa
]

Gbulk ∝
k
R

[Bathurst and Rothenburg, J. Appl. Mech. (1988)]

P

P

♦ Coherent compressional wave

♦ Effective medium theory (EMT)  (Duffty & Mindlin 1957; Digby 1981, Walton 1987)

Jia & Mills, Powders & Grains 2001

- Goddard (1990)
- Makse, Johnson, Schwartz (2000)
- Velicky, Caroli (2002)
- Coste, Gilles (2003); Roux (2000)

Coherent wave velocity versus pressure V(P)

Hertzian
contact :
k ∝ P1/3

with Z coordination number
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 glass
 sand

V
(m

/s
)

P(kPa)

1/6

Glass beads d: 0.6 -0.8  mm

( 4 / 3 ) /LV K G ρ= +

Zglass ≈ 6

Zsand ≈ 4

Wildenberg, Young, van Hecke, Jia, P&G 2013

/TV G ρ=

with affine approximation

[Domenico (1977), Jia& Mills (2001), Wildenberg et al (2013), Gland et al., PRE (2005),… ]



Wave propagation
(dynamic method)

Piezoelectric transducers



v
s
=
G
ρ

v
p
=
E
ρ

Wave propagation
(dynamic method)



Dependence on coordination number 

[Magnanimo et al., EPL (2008)]

Characterizing the shear and bulk moduli of an idealized granular material
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Fig. 6: Relation between χ and coordination number Z.
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moduli Gg and Kg, vs. the coordination number Z, for four
groups of packings with the same confining pressure p0.
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Fig. 8: Elastic moduli K and G, normalized by p1/3
0
, vs.

the coordination number Z: all the data collapse into unique
curves.

χ vs. Z in fig. 6. Then, we show the dependence of the
measured elastic moduli on Z, using groups of packings
with the same confining pressure p0 (fig. 7). While in fig. 8
we plot the bulk and shear moduli normalized by the

confining pressure (p1/30 ), obtaining unique curves. Predic-
tions from the average strain theory are also proposed.
Finally, it is interesting to focus on the ratio of the

elastic moduli, η=G/K [24]. In this ratio the p1/30 pressure
dependence cancels out and, for packings with the same φ,
all that remains is a pure dependence on Z. The plot of η
vs. Z (fig. 9) results in a universal curve independent of the
confining pressure. That is, once the initial state has been
achieved, a measurement of the overall shear and bulk
modulus can be associated with a unique coordination
number. Such a universal curve reveals a dependence on Z
that strongly deviates from the prediction of the average
strain theory based on the Hertz contact that predicts that
η is constant. Our results clearly demonstrate the influence
of the microstructure characterized by Z.

34006-p5
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Finally, it is interesting to focus on the ratio of the

elastic moduli, η=G/K [24]. In this ratio the p1/30 pressure
dependence cancels out and, for packings with the same φ,
all that remains is a pure dependence on Z. The plot of η
vs. Z (fig. 9) results in a universal curve independent of the
confining pressure. That is, once the initial state has been
achieved, a measurement of the overall shear and bulk
modulus can be associated with a unique coordination
number. Such a universal curve reveals a dependence on Z
that strongly deviates from the prediction of the average
strain theory based on the Hertz contact that predicts that
η is constant. Our results clearly demonstrate the influence
of the microstructure characterized by Z.
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Coordination number
Avarage number of contacts in the system Z = 2Nc

Np



Quasitatic behavior 
and flow threshold



Shearing

elasto-plasticity
…



Quasistatic behavior

Coulomb (1773)
Yielding of granular material as frictional process
Interested in prediction of soil failures for Civil Engineering

τ < c+σ tanφ

When                             the material yields and starts to flow

c = cohesion
f = friction angle 

f and c are material constant

τ = c+σ tanφ

t

s



Quasistatic behavior

Coulomb (1773)
Yielding of granular material as frictional process
Interested in prediction of soil failures for Civil Engineering

τ < c+σ tanφ

When                             the material yields and starts to flow

c = cohesion
f = friction angle 

f and c are material constant

τ = c+σ tanφ



Critical state

Rheol Acta (2009) 48:925–942 933

Quasi-static limit and fluid–solid transitions

Solid state rheology and solid-to-fluid transition

Solid-like granular assemblies are traditionally de-
scribed, e.g., for soil mechanics applications (Wood
1990; Mitchell 1993), with solid state rheological laws.
Those usually assume incremental forms (i.e., they re-
late stress and strain increments) to account for hystere-
sis of internal states of grain packings. Rather complex
constitutive relations have been developed (of elasto-
plastic or hypoplastic forms (Darve 1987)), which are
outside the scope of the present paper. Some general
features of the rheology of solid granular materials
should, nevertheless, be recalled. First, let us specify
that solid materials are usually studied under constant
normal stress p. As shear stress σ is increased from
zero, a threshold value σ1 is eventually reached, corre-
sponding to the onset of flow. Due to the absence of
a force scale, such a threshold correspond to a given
stress ratio: one thus observes σ1 = µ∗ P. µ∗ is a static
internal friction coefficient.

However, one should specify how the material needs
to deform before the threshold is reached, and how µ∗

may depend on the initial state. It has been well known,
ever since the phenomenon was observed and named
by Reynolds, that granular materials possess dilatancy,
i.e., shear strains of solid-like granular packings entail
volume changes. A description of the circumstances
in which a granular material may undergo arbitrary
large plastic strains, i.e., start to flow, was achieved
by the classical theory known as critical state soil me-
chanics (Schofield and Wroth 1968; Wood 1990). Its
essential prediction is that, while different equilibrium
packing states are possible, depending on the sam-
ple assembling process and subsequent history, granu-
lar materials, once subjected to monotonic, quasistatic
shear strains of sufficient amplitudes, tend to approach
an attractor state that does not depend on initial con-
ditions, known as the critical state, corresponding to
steady plastic flow at constant volume. Figure 8 is a
schematic representation of the approach to the critical
state for initially dense and loose systems.

The critical state is characterized by its solid fraction
"c and a value µ∗

c for the internal friction coefficient.
By definition, a dense material is such that " > "c.
Once sheared under constant P, it dilates, and " de-
creases until the limit value "c is approached. Mean-
while, the shear stress goes through a maximum σpeak

and then decreases towards σc. Loose systems, on the
other hand, are defined by " < "c. Under shear, they
contract and gradually approach "c from below, while
the shear stress monotonically increases towards µ∗

c P.
Both laboratory measurements and computer simula-
tions of model systems (Thornton 2000; Radjaï and
Roux 2004; Radjaï et al. 2004) confirm those properties.
Simulations also indicate that the critical state is char-
acterized by a specific distribution of contact orienta-
tions (or “fabric”) (Radjaï and Roux 2004). Numerical
results reveal that stiffness parameter κ is irrelevant
if it is large enough (Roux and Chevoir 2005), and
some simulations (Radjaï and Roux 2004; Radjaï et al.
2004) are performed with models of rigid grains. Conse-
quently, if the material remains homogeneous, the crit-
ical state only depends on geometric data (shape and
size distribution of the grains) and on the intergranular
friction coefficient. Interestingly, frictionless beads are
observed in simulations to exhibit a finite macroscopic
coefficient of friction without dilatancy (Fazekas et al.
2007; Peyneau and Roux 2008a, b), and solid fraction "

stays equal to the random close packing value "RCP ≃
0.64 in all solid-like configurations, as well as in slow
plastic flow. From an initial isotropically stressed solid,
σ monotonically increases upon shearing to its steady-
state value, about 0.1 P.

From the behavior of continuously sheared granular
materials in the quasi-static limit and from the critical
state concept, two basic characteristics are defined,
macroscopic friction coefficient µ∗

c and critical solid
fraction "c, which, for sufficiently stiff contacts, only
depend on geometry and intergranular friction coef-
ficient µ. µ∗

c is a growing function of µ. For circular
or spherical grains, it grows from about 0.1 for µ = 0
and saturates (Mahboubi-Ardakani 1995) for µ ≃ 0.3
at a maximum value (around 0.3, depending on poly-
dispersity). "c is a decreasing function of µ, with "c =

Fig. 8 Schematic view of a
shear stress vs shear strain
curve and b solid fraction vs
shear strain curve for an
initially dense (solid line) and
an initially loose (dotted line)
material

A shearing granular material will ALWAYS approach a critical concentration
This is the ONSET OF FLOW

fc is again a material constant

overconsolidated

underconsolidated

overconsolidated

underconsolidated

The granular material DILATES



Critical state

Soil mechanics: widely used

Particle Technology: flow behavior from silo (à A. Kwade)
• when the material starts flowing is always yielding 

everywhere in the hopper (mass flow) or in a region (core flow)

• the material is always at the critical concentration and it is incompressible.

τ = c+σ tanφ



Critical state

Soil mechanics: widely used

Particle Technology: flow behavior from silo (à TUBS)
• when the material starts flowing is always yielding 

everywhere in the hopper (mass flow) or in a region (core flow)

• the material is always at the critical concentration and it is incompressible.

N.B.!! 
Application of Critical State theory in silos is based on Janssen theory:
the pressure at bottom of the silo is independent of bed height 

à the whole bulk material is in the critical state. 

τ = c+σ tanφ



Critical state for silos - problems
f is not constant in the silo

compressed together due to solid deformation at the contact
points and are squeezed into the interparticle pore space. But for
a wide range of smaller loadings, the critical concentration is
independent of the applied stress. In many soil mechanics
applications, the applied stress can be large, (for example
beneath a large building). But in most granular flows, the
applied stresses are relatively small and as the total strains are
large, it is reasonable to assume that the flow is incompressible
and fixed at the critical concentration, νc.

These plasticity-derived techniques have been used widely in
soil mechanics to predict the failures of soils below foundations
and structures such as retaining walls and earthen dams. There
were also problems that became apparent. For example, the first
versions of these theories predict the material would continu-
ously expand with shearing and never approach a critical state
(e.g. [22]).

When extended to study granular flows, this technique has
had partial success in predicting the flow from hoppers (e.g.
Jenike and Shield [23], Davidson and Nedderman [24], and
Brennen and Pearce [25]). As that material flows within the
hopper, it is assumed that the material is always yielding so that:

s ¼ r tan/ ð8Þ

everywhere within the hopper. Furthermore, as the material
experiences large shear strains, it is always assumed to be at the
critical concentration, υc, and it is treated as incompressible.
There were many successes of these theories. In particular they
showed that the flowrate from a hopper was independent of the
depth of material, a characteristic that makes sand hourglasses
an easily built method of timekeeping. (This is a direct
reflection of the 1895 analysis of Janssen [26] – perhaps the

second great work in granular flow –which showed that beyond
a certain height the weight of a bed within a bin is supported by
friction on the sidewalls. Thus, the pressure on the bottom of the
bin is independent of bed depth. As that pressure controls the
flowrate through the orifice, the flowrate is depth-independent.)
But the techniques suffered from mathematical problems of
applying boundary conditions and the flowrate predictions
could have been better. Jackson [22] examines this in some
detail.

A likely source of the problems, is the assumption that ϕ is a
constant material property. Fig. 5 shows measurements of tanϕ
in two dimensional hopper flow simulation by Potapov and
Campbell [27]. In it, tanϕ can be seen to vary by more than a
factor of 3, violating the fundamental assumptions of quasistatic
flow theory. This variation of tanϕ can explain the discrepancies
between the theory and experiment. However, it is not
understood why tanϕ changes, as simple shear simulations on
similarly constituted materials indicate that tanϕ is a constant at
small shear rates (e.g. [28]).

4.1. The “frictional” nature of granular materials

Eq. (8) indicates that tanϕ is the ratio of shear to normal
forces in the material and thus can be understood as an apparant
friction coefficient. Recently, it has become popular to refer to
quasistatic flows as “frictional”. However, this is misleading as
the internal behavior of the material is not what one would
classically call “frictional”.

Fig. 5. A contour diagram of the apparent friction coefficient, tanϕ, from a two-
dimensional simulation of a hopper with a 60° angle and a polydisperse granular
material, from Potapov and Campbell [27]. The annotations max and min
indicate the areas where tanϕ takes its maximum and minimum values,
quantitative values of which are written at the bottom of the plot. Note that tanϕ
is far a constant, but changes by a factor of more than three.

Fig. 6. A photoelastic image of the force chains generated in the two-
dimensional shear cell of Howell et al. [29,30]. Here, the inner cylinder is
rotating counter-clockwise to force the particles together into chains.

212 C.S. Campbell / Powder Technology 162 (2006) 208–229



Friction and dilatancy laws
In solid and quasistatic flow, forces are transmitted through force chains



Shear bands and dilatant zones
Frictional Behavior = Mohr-Coulomb failure 
Granular materials fail along narrow but finite zones: SHEAR BANDS



Shear bands and dilatant zones
Frictional Behavior = Mohr-Coulomb failure 
Granular materials fail along narrow but finite zones: SHEAR BANDS

GLOBALLY à frictional behavior 
LOCALLY à force chains

τ xy
τ yy

=
Fxly
Fyly

= const



Collisional or rapid granular flows 



Dimensionless analysis (Buckingham Pi theorem)

Bagnold theory

σ ij = f (φ,ρp,d, γ )

σ ij = f (φ)ρpd
2 γ 2

The shear stress varies as the square of the shear rate 



Granular Temperature

Tg =
1
3
u 'i
2 =

1
3

u '2 + v '2 + w '2( )

1. granules moving in a flow = molecules in the kinetic theory of gases
2. random velocities = thermal motion of molecules.

Granular temperature = magnitude of fluctuating velocities

Trace of the streaming stress tensor

Tg =
1
3ρφ

tr(σ ij
s )

deriving a set of equations for Rapid Granular Flows



Granular Hydrodynamic

Dρφ
Dt

= ρφ∇⋅u = 0

ρφ
Du
Dt

=∇p(p,φ,Tg,e)+∇⋅ η(ρ,φ,Tg,e)∇u( )

ρφ
DTg
Dt

=∇⋅ α(ρ,φ,Tg,e)∇Tg( )+σ ⋅∇u−Γ(ρ,φ,Tg,e)

Conservation of mass

Conservation of momentum

Conservation of granular energy (granular temperature)



Kinetic Theory – Range of applicability

• Nearly elastic particles (e=0.9)

• Extremely small concentration: 
magnitude of thermal velocities is much larger 
than the relative velocities induced by shear 

• Isotropy in the angular distribution of collisions

• Molecular chaos:
no correlations in the velocities or positions of colliding particles

• Absence of friction between particles and walls: 
silos can not be modeled with kinetic theory

Binary collisions



Kinetic Theory – Range of applicability

ANRV332-FL40-01 ARI 10 November 2007 15:46

e

φ
0

1

0 φc

Liquid

Gas

Figure 3
Schematic phase diagram. ! is the volume fraction, and e is the restitution coefficient.

force network. In this regime, the properties are almost insensitive to the coefficient
of restitution e (GDR MiDi 2004), although as discussed above, the transition to the
kinetic regime depends on e. To better understand this liquid regime, researchers have
investigated different flow configurations, the most common presented in Figure 4.
These configurations can be divided in two families: flows confined between walls
as in shear cells or silo and free surface flows such as flows down an inclined plane,
flows in a rotating drum, or flows on a pile. GDR MiDi (2004) discusses in detail
the characteristics of these configurations in terms of velocity profiles, density pro-
files, and velocity fluctuations. Recently, by analogy with classical hydrodynamics
problems, more complex flow configurations have been analyzed, such as dam-break
problems (Lajeunesse et al. 2004, Lube et al. 2004), coating-like problems (Deboeuf
et al. 2006, Felix & Thomas 2004), mixing experiments (Ottino & Khakhar 2000),
split Couette devices (Fenistein et al. 2004), drag problems (Hill et al. 2005), and
instabilities (Aranson & Tsimring 2006).

A recurrent and central question underlying all the studies involves the constitutive
equations of this peculiar liquid. Dense granular flows can be placed in the visco-
plastic family of materials because of two broad properties. First, a flow threshold
exists, although it is expressed in terms of friction instead of yield stress, as in a classical
visco-plastic material. Second, when the material is flowing, shear rate dependence is
observed, which gives it a viscous-like behavior. In the following section, we present
recent advances in our understanding of the rheology of dense granular flows.

3. RHEOLOGY OF DENSE GRANULAR FLOWS

3.1. Dimensional Analysis: Plane Shear

We first consider the simplest flow configuration consisting of spherical grains of
diameter d and density ρp sheared between two rough plates at a shear rate γ̇ in the
absence of gravity (Figure 4a). A shear stress τ then develops on the top plate. It is
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[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]



Kinetic Theory – Extended theories

Jenkins, Dense shearing flows of inelastic disks. Phys.Fluids (2006) 

Vescovi, Di Prisco & Berzi, From solid to granular gases: the steady state for 
granular materials (2013)

[…]



Granular material: continuum approach 

Solid: soil mechanics

Gas: kinetic theory

Liquid ??



Dense (slow) flows 
and inertial regime



Inertia number

I = γd
p
ρp

For large systems – and rigid grains

Only based on dimensional analysis
The transition can be described trough a single dimensionless number

Inertia number

Rheology of dense flows at constant pressure: 
the inertial number

GDR Midi Eur. Phys. J. 04, Da Cruz et al PRE 05

rigid grains: a single dimensionless number

inertial number

I =
micro time
macro time

quasi-static (solid) dense (liquid) rapid (gas)
I

10�3 10�1
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Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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[Da Cruz et al. (2005); Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]
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Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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[Da Cruz et al. (2005); Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]

I = micro time scale / macro time scale

d
p
ρp

1
γ

microscopic time scale
time needed for a particle to fall in a hole of size d under 
the pressure P 
- typical time scale of rearrangements -

macroscopic time scale
linked to the mean deformation
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Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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[Da Cruz et al. (2005); Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]

I = micro time scale / macro time scale

small – quasi-static
macroscopic deformation is slow compared to
microscopic rearrangement

I

large – rapid flowsI

Rheology of dense flows at constant pressure: 
the inertial number

GDR Midi Eur. Phys. J. 04, Da Cruz et al PRE 05

rigid grains: a single dimensionless number

inertial number

I =
micro time
macro time

quasi-static (solid) dense (liquid) rapid (gas)
I

10�3 10�1

mercredi 11 avril 2012



Quasistatic à Dense à Rapid



Granular flow model

[MiDi, (2004). On dense granular flows. The European Physical Journal E, 14(4), 341-365]
[Forterre Y, Pouliquen O. Flows of dense granular media. Annu. Rev. Fluid Mech., 2008, 40: 1-24]

Rheology of dense flows

Bulk friction ! " = !$ +
!& − !$
1 + ⁄"$ "

* " = *$ 1 − "
"+

Dilatancy

Rheology of dense flows at constant pressure: 
the inertial number

GDR Midi Eur. Phys. J. 04, Da Cruz et al PRE 05

rigid grains: a single dimensionless number

inertial number

I =
micro time
macro time

quasi-static (solid) dense (liquid) rapid (gas)
I

10�3 10�1

mercredi 11 avril 2012



Granular flow model

[MiDi, (2004). On dense granular flows. The European Physical Journal E, 14(4), 341-365]
[Forterre Y, Pouliquen O. Flows of dense granular media. Annu. Rev. Fluid Mech., 2008, 40: 1-24]

Bulk friction ! " = !$ +
!& − !$
1 + ⁄"$ "

* " = *$ 1 − "
"+

Dilatancy

Inertial
number

" = -̇.

/0 1
! " Rheology: rigid

frictionless
cohesionless

Rheology of dense flows



Pouliquen µ-I rheology – local constitutive relation 

τ =σµ(I ) φ = φ(I )

µ1 = tan 21�

I0 = 0.3
glass beads : 

Forterre & Pouliquen Annu. Rev Fluid Mech. 2008  

I

µ(I)

µs

0

tan(θ
2
)

“milieux_granulaires” — 2010/12/17 — 15:24 — page 238 — #251✐
✐

✐
✐

✐
✐

✐
✐

238 Les milieux granulaires : entre fluide et solide

On généralise donc la relation trouvée en cisaillement plan à un cisaillement
inhomogène caractérisé par un taux de cisaillement local γ̇(z) et une pression
locale P (z). La contrainte tangentielle locale τ(z) et la fraction volumique
locale φ(z) sont données par

τ = µ(I)P et φ = φ(I), avec I =
|γ̇(z)|d√
P (z)/ρp

. (6.5)

En ajustant les résultats expérimentaux et numériques, il est également pos-
sible de donner une expression empirique de la loi de friction µ(I) et de fraction
volumique φ(I), par exemple (Jop et al., 2005 ; Pouliquen et al., 2006)

µ(I) = µ1 +
µ2 − µ1

I0/I + 1
et φ = φc − (φc − φm)I. (6.6)

Typiquement, pour un matériau granulaire composé de billes de verre mono-
disperses, on a µ1 = tan 21◦, µ2 = tan 33◦, I0 = 0 ,3 , φc = 0 ,6 et φm = 0 ,4 .
Les fonctions ainsi choisies sont tracées sur la figure 6.6c. On remarque que
la loi de friction sature vers une valeur maximale µ2 pour des grandes valeurs
de I. Nous reviendrons sur ce point lorsque nous discuterons de la forme des
fronts d’avalanche sur plans inclinés (§6.3.3).

Les lois qui contrôlent la friction et la fraction volumique (équation 6.6)
proviennent d’expériences et de simulations. Elles sont donc entièrement phé-
noménologiques. Une manière simple d’interpréter la décroissance de la frac-
tion volumique avec le nombre inertiel I consiste à reprendre l’image de la
figure 6.7 montrant une bille se déplaçant au-dessus des deux billes de la
couche du dessous. Quand la particule est dans un trou, on peut supposer que
la fraction volumique de l’empilement est maximale et vaut φc. Cependant,
quand un réarrangement a lieu, la particule doit sortir de son piège et on peut
supposer que la fraction volumique passe alors par un minimum noté φm. Sa-
chant que le temps de réarrangement est tmicro et que le temps pendant lequel
la particule reste piégée est tmacro − tmicro, on retrouve pour la fraction volu-
mique moyenne φ = [φmtmicro +φc(tmacro − tmicro)]/tmacro = φc − (φc −φm)I.

Il est plus délicat d’interpréter la forme particulière de la loi de friction
µ(I), et en particulier la croissance du frottement effectif avec I. Par exemple,
si l’on reprend les résultats de la théorie cinétique appliquée au cisaillement
simple que nous avons vue au chapitre 5 (§5.4.1), on constate que la théorie
cinétique prédit une décroissance de µ avec I, et non une croissance comme
observé dans le régime dense (Forterre & Pouliquen, 2008, voir aussi la fi-
gure 6.19). Pour comprendre l’augmentation de la friction avec le nombre I,
certains auteurs ont étudié l’évolution de la distribution du réseau de contacts
et de forces dans les écoulements denses. Il semble que l’augmentation de l’ani-
sotropie des contacts soit corrélée avec l’augmentation de la friction (da Cruz
et al., 2005). Une autre façon d’interpréter microscopiquement la loi de friction
consiste à étudier le problème plus simple du mouvement d’un grain unique
sur un fond rugueux rigide périodique (Quartier et al., 2000 ; Andreotti, 2007).

- inclined plane (exp, num)
- annular shear (exp)

3D (spheres)

µ2 = tan 33�

Empirical friction law

mercredi 11 avril 2012

(rigid grains)

[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008)]
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the shear stress and normal stress are given by what is called the Bagnold scaling:

τ = ρp d 2 f1(#)γ̇ 2 and P = ρp d 2 f2(#)γ̇ 2. (3)

This expression is not restricted to the collisional arguments initially given by Bagnold
(1954), but simply comes from dimensional analysis and is valid for all shear rates (Lois
et al. 2005). As a consequence, in a constant volume experiment, no threshold appears
to exist, and τ goes to zero when γ̇ goes to zero, although the ratio τ/P remains finite.
It is important to notice that this description is identical to Expression 2 given for
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Different geometries
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Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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[Forterre and Pouliquen, Ann. Rev. Fluid Mech. (2008), Weinhart et al. Phy. Fluids (2013)]



Additional characteristic length-scales

[MiDi, (2004). On dense granular flows. The European Physical Journal E, 14(4), 341-365]
[A. Singh et al., (2015) NJP] 

Micro-mechanical time scales

nc km=t

gdg =t dPmP =t

gt !1=s

Dimensionless numbers

sPI tt=Inertial number

( )2*
PcP tt=“Softness”

Bond number !" = $%,'%(
)*+,

= ⁄./ .01 ,

.01 =
23*̅

$%,'%(



Influence of Softness



g

Wide and stable shear band
No side wall effect
Pressure induced by gravity

Split bottom shear cell

τ

[Fenistein D, van Hecke M, Nature, 2003, 425(6955): 256-256]



Shear Band (steady/critical state) local mic-mac averaging =>

Constitutive relations

Split bottom shear cell



Shear Band (steady/critical state) local mic-mac averaging =>

shear rate 
shear stress
pressure

Constitutive relations

Local quantities g!
t

P

Split bottom shear cell

Shear 
Band



aµµ aII += 0)(  α ≈1

Macro-Friction coefficient

Rigid particles – effect of strain-rate

Quasi-static
regime

In rigid quasi-static limit 0)( µµ »I



aµµ aII += 0)(  α ≈1

Macro-Friction coefficient

Dependence on stiffness and gravity

Quasi-static
regime

nk
dPP º*

  µ(P*) = µ0 − bP*β 50.0»b0)( µµ »IIn soft quasi-static limit

P∗



aµµ aII += 0)(  α ≈1

Macro-Friction coefficient

Dependence on stiffness and gravity
nk
dPP º*

  µ(P*) = µ0 − bP*β 50.0»b0)( µµ »IIn soft quasi-static limit

!

P∗ P∗



Inertial and soft flow-rheology

Dependence on softness in inertial flow states

! ", $∗ = !' − )*" +,* $∗

[A. Singh et al., NJP (2015) => S. Roy et al. NJP (2017)]

! ", $∗ = !'-.-/ = !' 1 − "
"*

1 + $∗
$*∗

Can’t we do better? Yes: we make it multiplicative!

1 ", $∗ = 1'2.2/ = 1' 1 + 1 "1'
1 − $∗

$3∗
'.5

1 ", $∗ = 1' + )"6 − ,$∗'.5



Let’s add Cohesion (and Friction)



Contact model: liquid bridge

Loading - Particles are 
approaching each other.

Unloading – Particles are 
detaching.

Tensile branch – Attractive 
forces are influencing 
detachment.

Linear visco-elastic frictional with jump-in adhesive contact model

[Willett et al., Langmuir 16, 9396-9405 (2000)]  
[S. Luding, Gran. Matter, 10(4), 235 (2008)]

!" = $%,'%(
)*+,



Simple Shear REV

N = 4096 ν = 0.5-0.82

e = 0.802 w = rmax/rmin = 2, 
μp = 0 to 1 and Bo: 0 to 5

No gravity

Symbols Value Scaled units SI-unit units

tu 1 μs s

xu 1 mm m

mu 1 μg kg

ρ 2000 2000 

(μg·mm-3)

2000

(kg·m-3)

dmean 2.2 2.2 (mm) 0.0022 (m)

k1 105 105

(μg·μs-2)

108

(kg·s-2)

k2 k1

kc 0

P 1 1

(μg·mm-1·μs2)

108

(kg·m-1·s-2)



Loading - Particles are 
approaching each other.

Unloading – Particles are 
detaching.

Tensile branch – Attractive 
forces are influencing 
detachment.

[S. Luding, Gran. Matter, 10(4), 235 (2008)]

!" = $%,'%(
)*+,

Reversible linear visco-elastic frictional contact model

Contact model: cohesive particles



Can we represent our shear band zone with representative element volume (REV)?

Shear Band = REVs ? 

Split bottom shear cell – Simple Shear REV 



Stress controlled simple shear (SS)

Different geometries and contact models

Split bottom ring shear cell (SB)

Reversible linear visco-elastic 
frictional adhesive contact model

Irreversible linear visco-elastic frictional 
jump-in adhesive contact model



Cohesive material in the split bottom shear cell

[S. Roy et al. NJP (2017)]
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*
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Non-cohesive slightly frictional soft particles
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Cohesive frictional soft particles

Volume fraction ϕ:

What about Bo?

Missing

! ", $∗ = !'()(* = !' 1 − "
"-

1 + $∗
$-∗

! ", $∗, /0 = !'()(*(1 = !' 1 − "
"-

1 + $∗
$-∗

?

Valid for both local, inhomogeneous and global homogeneous systems
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Phase Diagram: 
Coupled effect of friction and cohesion
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[H. Shi et al., under review, Gran. Matter (2019)]
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