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How to make powders and 
agglomerates

Concentrating

Drying

agglomeration
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Liquid to Powder       Liquid to Agglomerate      Powder to Agglomerate
(LP)                                  (LA)                                   (PA)

• Spray drying

• Flash drying

– Low shear granulation

– Pan and drum 
granulation

– Low-medium shear 
granulation

– High Shear 
granulation

– Fluid bed granulation

– Extrusion

– Pelletising

– Briquetting

– Tabletting

– (Sintering)

•Multi stage drying
•Filtermat
•Fluid bed 
agglomeration

•AGT
•Procell
•Cont. fluid bed aggl.

•Fluid bed coating

•Pan coating

•Drum coating

•(Prilling)
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Which industries use h.s. granulation

• Pharmaceutical (batch)

• Food and food additives (batch, cont..)

• Waste handling industries (continuous)

• Fertiliser industries (continuous)

• Detergent industries (continuous) 
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Typical size of granulators

• Pharmaceutical: 5-200 litres 

• Food and food additives: 20-5000 liters

• Waste handling industries: 0.1-100 T/day 

• Fertiliser industries 10-1000 T/day

• Detergent industries: 0.1-10 T/day 
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Definition of Lödige on continuous High shear 
granulation

• Mixing and Granulating Systems

Continuous Mixer KM

The continuous ploughshare® mixer operates on principle of the mechanically 
generated fluid bed – the mixing technique developed and introduced by Lödige. 
Ploughshare® shovels rotate close to the inner wall of a horizontal, cylindrical drum 
and thrust the mix components from the bed of product into the open mixing space. 
The mechanically generated fluid bed ensures intensive mixing of even large 
quantities of product in a very short period of time. The quality of the mix is obtained 
when the product reaches the mixer outlet.
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Typical HS granulator
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Glatt High shear device
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A continuous High shear granulator

 
CB High Speed Processor 
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A continuous High shear granulator

  

 

KM 1200 D 
Application: production of fertilizer 
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Choppers: create the shear

Different coppers give 
different granulation 
behaviour.
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Plough shares; mixing devices
Mixers or plough shares are not as 
different as the choppers

16
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What influences granulation

Powder

Binder

Process

Morphology

Chemical 
composition

Size 
distribution

Viscosity
Surface 
tension

Liquid/solid 
ratio

Intensity of 
agitation

Duration

Rate/method 
of liquid 
addition

Etcetera!
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Granule growth, batch operation

20

Granule growth, batch operation
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Particle formation, Steady growth

seed growth

agglomeration breakage

22

Particle formation; induction growth:

+
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Surface wetness
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Regime maps

• Regime map for granule growth:

Low Deformation System

Steady Growth Behaviour Induction Behaviour

surface wet

Granule
   Size

High Deformation System

Granulation Time

 rapid
coalescence
growth

slow
consolidation coalescence

    growth

    Increasing
Liquid Content

Granule
   Size Increasing

Liquid
Content

Granulation Time
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Particle growth

Low Deformation System

Steady Growth Behaviour Induction Behaviour

surface wet

Granule
   Size

High Deformation System

Granulation Time

 rapid
coalescence
growth

slow
consolidation coalescence

    growth

    Increasing
Liquid Content

Granule
   Size Increasing

Liquid
Content

Granulation Time
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Granulation regime map (Iveson et al.)

• Regime map for granule growth (2)
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Regime Maps

• Liquid addition/nucleation important 
• more attention (Regime map):

a

p

Drop
controlled

Mechanical
Dispersion

regime

Intermediate

narrower nuclei
size distribution

0.01 0.1 1.0 10

0.1

1.0

10

no change
in distribution

Caking

a: dimensionless spray flux 
(measure for surface 
coverage of binder)

p: drop penetration time
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Continuous granulation

• What is different compared to batch
– continuous feed

– changing feed in time

– recycle loops

– one can control during 

granulation, contrary to batch 

granulation
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Continuous granulation

Case study continuous granulation control

DSM Research

30

Granulation 

Binder Liquid

Granulator Fluid bed dryer

Feed

Fluidising 
medium



Screens

Product

Oversize

Undersize

Crushe
r

?
Recycle

Particle size analysis

Solid flow measurement

Solid/fluid flow

Information 
flow

Measurement
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• 1.80m drum, 3 sections, slight angle with horizontal
• 2 spray nozzles in first section
• Residence time 10 min
• Hans Wildeboer Movie

The Pilot Plant at the U. of Queensland

32
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Experimental
Design

2212Liquid/Solid

450250Rpm

204HPC/Water

305Starch/Lactose

Upper
limit

(%)

Lower
limit

(%)

VO

VOS Camera

High Shear Mixer

Image Analysis

Model

Rate
Constant

Batch Plant Model

34

0 100 200 300 400 500 600

-0.1

0

0.1

y
1
: d

50
 mean size 

ISE: 1.47

0 100 200 300 400 500 600

-0.1

0

0.1

y
2
: (d

84
/d

16
)0.5 distribution width

ISE: 11.7

u : aggregation rate

0 100 200 300 400 500 600

-0.1

0

0.1

y
1
: d

50
 mean size 

ISE: 1.29

0 100 200 300 400 500 600

-0.1

0

0.1

y
2
: (d

84
/d

16
)0.5 distribution width

ISE: 1.81

u : aggregation rate

MPC PID

Open loop

• Two setpoint changes at 300 and 480 seconds
• Pulse change in feed flow rate at 150 seconds
• Noise in the granulation process: aggregation rate (=u1)

time y1 y2

0 0 0

300 0.065 0.04

480 -0.05 0.04

Integral Square Error (ISE)

D
is

tu
rb

an
c
e 

p
u
ls

e

Disturbance pulse

Closed loop

Setpoint

Setpoint changes

MPC and PID Results

MPC PID

y1 1.3 1.5

y2 1.8 11.7

CFWS1



Slide 34

CFWS1 last year we had different outputs.
Constantijn Sanders; 11-6-2007
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Continuous Granulation

• Importance of control of liquid to solid 
ratio:
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Continuous granulation; model based control

• Importance of properly functioning equipment 
(hopper):
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Continuous granulation; model based control
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Continuous granulation; model based control
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Continuous granulation; model based control
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What more do we need...

• Models for granulator, crusher, screens, 
and dryers

• On line analysis of relevant particle 
properties

• Control strategies (feed forward, feed 
back, expert systems etc.)

• Multi-dimensional population balance 
models
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Multi-dimensional population balances

Problems with one-dimensional population 
balances:

•One-dimensional population balance 
modelling mainly suitable for simulation of 
‘regimes’, not for process optimization or 
process design

•Highly empirical->Does not reveal much 
about the mechanism

42

Multi-dimensional population balances

• In granulation, moisture content and porosity 
have profound effect on the behaviour of the 
granules

• Moisture content and porosity are not the 
same for all granules!

• In order to improve the model for granulation, 
these properties should be incorporated.
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Multi-dimensional population balances
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• Model for agglomeration only:

44

What is the current state of the art

• Circuits are controlled by experienced 
operators

• Model for granulator is available, but mostly 
developed in house

• On-line analysis is not yet available, except 
for psd measurements

• Sensors for psd available, the rest still 
difficult

• Population balances for feed forward control 
is developed now

• Expert systems are being tested 
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Who are doing the development

• Companies who use the granulators 
(Merck, DuPont, DSM, P&G, Unilever, 
AKZO-Nobel and more), Glatt

• Universities (Univ. Delft, Queensland, 
Sheffield, Magdenburg, Birmingham, 
Imperial College London, etc

46

Will high shear granulation survive the 
next decades

-extrusion is coming up in the pharmaceutical industry as a 
replacement of the high shear granulation
-if proven to be better/more efficient this might be a game changer
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48https://www.thermofisher.com/nl/en/home/industrial/pharma-biopharma/drug-formulation-manufacturing.html
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…it is Very similar to High shear granulation

https://tools.thermofisher.com/content/sfs/brochures/TEK-16-013-Twin-Screw-Broschure.pdf

50
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51https://tools.thermofisher.com/content/sfs/brochures/LR79-e-Dry-granulation-as-a-twinscrew-process-in-pharmaceutical-applications.pdf
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Granulated product from an Extruder-
mixer
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Cases 
granulation

Continuous granulation

Case study; granulation of aspartame

DSM Research



4/29/2019

28

55

Case study – granulation and drying

• formation of aspartame granules in a turbo dryer
• aspartame (C14H18N2O5)

– discovered in 1965
– dipeptide of L-aspartic acid and L-phenyl alanine
– most widely used artificial sweetener: 

beverages, table-top sweetener, 
dairy products, confectionaries

– crystalline material

N
H

OO
CH3

NH2

O

OH

O
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Aspartame production process
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Turbo dryer – schematic

oil in

oil out

feed

gas in

gas outproduct
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Turbodryer
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Aim and approach

• Control the particle size distribution of the product 
without adversely influencing other product properties

ModelCompaction

Size reduction

Drying

60

Size reduction – mechanisms

breakage behavior depends on the strength
of the particles and on the direction and the
extent of the applied forces

fragmentation chipping attrition abrasion
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Size reduction – experiments

• 100 collisions per second
• no particle-particle 
interactions
• amplitude controls 
impact velocity
• controlled damage

experiments:
• mc = 0.02-0.33
• dp = 600-700 mm
• vimp = 6 m/s
• tvib = 5-1280 s

particlesresonance platecounter weight

vibration plate
amplitude

62

Size reduction – breakage curves
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Size reduction – breakage times
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Size reduction – particle size distribution

mc = 12.7% mc = 31.7%

• low moisture content: attrition
• high moisture content: fracture
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Compaction

• important mechanism in numerous 
particulate processes (e.g. induction time 
behavior in granulation)

• in turbo dryer
– determines bulk density

– strong interaction with drying
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Compaction – example                 
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Compaction - experiments

• Open turbo dryer
feed air

heated
wall

shaft

paddle

spokemeasure:
• psd
• porosity
• moisture content

68

Compaction – porosity
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Compaction – particle size distribution
plant, predried
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Modeling – schematic

Oil

Particles

Gas

Surroundings

gas-particlegas-particle

oil-surroundingsoil-surroundings

oil-gasoil-gas

rotorrotor

oil-particlesoil-particles
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Modeling - approach

• predict outlet conditions: temperatures, moisture 
contents, psd

• validation using pilot plant experiments
• assumptions
• correction factors:

– particle rotation (gas-particles)
– heat from the wall (oil-particles)

• influence of rotor fitted from experiments
• use residence time experiments to describe particle 

motion

72

Modeling – predictions

• relatively good prediction of outlet conditions

moisture content solids gas temperature

- - - 5% error - - -10% error

• prediction of psd less accurate  data
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Conclusion – schematic

Model

strength

transport to surface strength

surface / volumeporosity

drying

compaction breakage

74

Thank you
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