

	 Content Introduction: How to make powders and granules Type of industries, typical size of granulators Continuous granulation Current 'art' Cases of control (-Case of aspertame) State-of-the-Art in industrial processes Future of control of these granulators
	-Will high shear granulation survive the next decades?
robent	2

Liquid to Powder	Liquid to Agglomerate	Powder to Agglomerate
(LP)	(LA)	(PA)
 Spray drying Flash drying 	•Multi stage drying •Filtermat •Fluid bed agglomeration •AGT •Procell •Cont. fluid bed aggl. •Fluid bed coating •Pan coating •Drum coating •(Prilling)	 Low shear granulation Pan and drum granulation Low-medium shear granulation High Shear granulation High Shear granulation High bed granulation Fluid bed granulation Belletising Briquetting Tabletting (Sintering)

Typical size of granulators

Pharmaceutical: 5-200 litres

ŤUDelft

- Food and food additives: 20-5000 liters
- Waste handling industries: 0.1-100 T/day
- Fertiliser industries 10-1000 T/day
- Detergent industries: 0.1-10 T/day

	Sizes:			
	Model	Volume	Throughput	Dimensions
		[Liter]	[approx, t/h]	L x W x H [mm]
	KM 150 D	150	4.5	2 x 1
	KM 300 D	300	9	3 x 1
	KM 600 D	600	18	4 x 1.5
- J. S.	KM 1200 D	1200	36	4 x 1.5
Para Part State	KM 2000 D	2000	60	5 x 1.5
	KM 3000 D	3000	90	6 x 1.5
	KM 4200 D	4200	126	7 x 2
	KM 6000 D	6000	180	8 x 2.5
	KM 8000 D	8000	240	8 x 2,5
	KM 10000 D	10000	300	9 x 3
	KM 13500 D	13500	405	10 x 3
	KM 15000 D	15000	450	11 x 3
KM 1200 D	KM 20000 D	20000	600	12 x 3
Kivi 1200 D	KM 30000 D	30000	900	14 × 3 5

4/29/2019

11

CFWS1 last year we had different outputs. Constantijn Sanders; 11-6-2007

	What is the current state of the art
	 Circuits are controlled by experienced operators
	 Model for granulator is available, but mostly developed in house
	 On-line analysis is not yet available, except for psd measurements
	 Sensors for psd available, the rest still difficult
	 Population balances for feed forward control is developed now
	 Expert systems are being tested
ŤU Delft	44

	Modeling - approach	
	 predict outlet conditions: temperatures, moisture contents, psd validation using pilot plant experiments assumptions correction factors: particle rotation (gas-particles) heat from the wall (oil-particles) influence of rotor fitted from experiments use residence time experiments to describe particle motion 	
ŤU Delft	71	

4/29/2019

	Literature
	 Butensky, M. and D. Hyman, "Rotary drum granulation. An experimental study of the factors affecting granule size," <i>Ind. Eng. Chem. Fundam.</i>, 10, 212-219 (1971) Capes, C.E. and P.V. Danckwerts, "Granule formation by the agglomeration of damp powders: Part 1: The mechanism of granule growth", <i>Trans. I. Chem. Eng.</i>, 43, 116-124 (1965) Ennis, B.J., G.I. Tardos and R. Pfeffer, "A microlevel-based characterization of granulation phenomena", <i>Powder Technol.</i>, 65, 257-272 (1991) Ennis, B.J., "Unto dust shalt thou return", <i>Powders & Grains</i> 97, Behringer and Jenkins (eds), Balkema, Rotterdam, 13-23 (1997) Ennis, B.J. and J.D. Litster, "Particle size enlargement" in Perry's Chemical Engineers' Handbook, Eds. Perry, R. and Green, D., T^m Ed., 20-56 to 20-89 (1997) Forrest, S., "Granulation in a high shear mixer", Hons. Thesis, University of Queensland, Brisbane, Australia (1988) Hawkyard, J.B., "A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil; Using energy considerations", <i>Int. J. Mech. Sci.</i>, 11, 313-333 (1969) Hoormaert, F., P.A.L. Wauters, G.M.H. Meesters, S.E. Pratsinis and B. Scarlett, "Agglomeration behaviour of powders in a Lödige mixer granulator", <i>Powder Technol.</i>, 96, 116-128 (1998) Iveson, S.M., J.D. Litster, "Growth regime map for liquid-bound granules," <i>AIChE J.</i>, 44, 1510-1518 (1988a) Iveson, S.M. and J.D. Litster, "Fundamental studies of granule consolidation, Part 1: Effects of binder surface tension," <i>Powder Technol.</i>, 99, 243-250 (1998b) Iveson, S.M. and J.D. Litster, "Liquid-bound granule impact deformation and coefficient of restitution," <i>Powder Technol.</i>, 99, 234-242 (1998c)
ŤU Delft	75

	Literature
T IDolft-	 Kapur, P.C., "Balling and granulation", <i>Advances in Chemical Engineering</i>, 10, 55-123 (1978) Knight, P.C., "An investigation of the kinetics of granulation using a high shear mixer", <i>Powder Technol.</i>, 17, 159-169 (1993) Kristensen, H.G., P. Holm and T. Schæfer, "Mechanical properties of moist agglomerates in relation to granulation mechanisms: Part 1: Deformability of moist, densified agglomerates", <i>Powder Technol.</i>, 44, 227-237 (1985a) Kristensen, H.G., P. Holm and T. Schæfer, "Mechanical properties of moist agglomerates in relation to granulation mechanisms: Part 2: Effects of particle size distribution", <i>Powder Technol.</i>, 44, 239-24 (1985b) Liu, L.X., S.M. Iveson, J.D. Litster and B.J. Ennis, "Coalescence of deformable granules in wet granulation processes", <i>AIChE J.</i>, accepted Nov. (1999) Menon, N., "Fundamental aspect of scale up in high shear granulation", <i>M.Sc.</i> thesis, Delft University of Technology, Delft, The Netherlands, November (1996) Moseley, J.L. and T.J. O'Brien, "A model for agglomeration in a fluidised bed", <i>Chem. Eng. Sci.</i>, 48, 3043-3050 (1993) Newitt, D.M. and J.M. Conway-Jones, "A contribution to the theory and practice of granulation", <i>Trans. I. Chem. Eng.</i>, 36, 422-441 (1958) Quichyama, N. and T. Tanaka, "The probability of coalescence in granulation kinetics", <i>I&EC Process Des. Dev.</i>, 14, 286-289 (1975) Pietsch, W., "Size enlargement by agglomeration", Wiley (1991) Ramaker, J.S., M. Albada Jelgersma, P. Vonk. and N.W.F. Kossen, "Scale-down of a high-shear pelletisation process: Flow profile and growth kinetics", <i>Int. J. Pharm.</i>, 16 (1998) 89-97 Ritala, M., P. Holm, T. Schæfer and H.G. Kristensen, "Influence of liquid bonding strength on power consumption during granulation in a high shear mixer", <i>Drug Dev. Ind. Pharm.</i>, 14, 1041-1060 (1988)
IO Dent	76

	Literature
	 Schæfer, T., P. Holm and H.G. Kristensen, "Comparison between granule growth in a horizontal and vertical high shear mixer. I. Granulation of dicalcium phosphate", <i>Arch. Pharm. Chem. Sci. Ed.</i>, 14, 209-224 (1986a) Schaefer, T., P. Holm and H.G. Kristensen, "Comparison between granule growth in a horizontal and vertical high shear mixer. II. Granulation of lactose", <i>Arch. Pharm. Chem. Sci. Ed.</i>, 14, 225-237 (1986b) Sherington, P.J., "The granulation of sand as an aid to understanding fertilizer granulation," <i>The Chemical Engineer</i>, July/August, 201-215 (1968) Tardos, G.I., M.I. Khan and P.R. Mort, "Critical parameters and limiting conditions in binder granulation of fine powders," <i>Powder Technol.</i>, 94 (1998) 245-258 Thornton, C. and Z. Ning, "A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres", <i>Powder Technol.</i>, 99, 154-162 (1998) Wauters, P.A.L., R. van de Water, J.D. Litster, G.M.H. Meesters and B. Scarlett, "Growth and compaction behaviour of copper concentrate granules in a rotating drum", <i>Powder Technol.</i>, submitted (1999) Weast, R.C. (ed.), "CRC handbook of chemistry and physics", 62nd Edition, CRC Press, Boca Raton, Florida (1981-82)
ŤU Delft	77

		7
	Literature	
	 B.J. Ennis and J.D. Litster, Size reduction and size enlargement, in: R.H. Perry and D.W. Green (Eds.), Perry's Chemical Engineers' Handbook, McGraw-Hill, New York, USA, 1997. W. Pietsch, Size Enlargement by Agglomeration, Wiley, New York, 1991. P.A.L. Wauters, Modelling and Mechanisms of Granulation, PhD thesis, Delft University of Technology, Delft, The Netherlands (2001) S.M. Iveson, J.D. Litster, K.P. Hapgood and B.J. Ennis, Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review, <i>Powder Technol.</i>, 117 (2001) 3-39. D.M. Newitt and J.M. Conway-Jones, A contribution to the theory and practice of granulation, <i>Trans. Instn. Chem. Engrs.</i>, 36 (1958) 422-442. B.J. Ennis, G.I. Tardos, and R. Pfeffer, A microlevel-based characterization of granulation phenomena, <i>Powder Technol.</i>, 65 (1991) 257-272. S.M. Iveson and J.D. Litster, Growth regime map for liquid-bound granules, <i>AIChE J.</i>, 44 (1998) 1510-1518. S.M. Iveson, P.A.L. Wauters, S. Forrest, J.D. Litster, G.M.H. Meesters and B. Scarlett, Growth regime map for liquid-bound granules; <i>AIChE J.</i>, 44 (2001) 83-97. J.D. Litster, K.P. Hapgood, J.N. Michaels, A. Sims, M. Roberts, S.K. Kameneni and T. Hsu, Liquid distribution in wet granulation: dimensionless spray flux, <i>Powder Technol.</i>, 114 (2001) 32-39. F. Hoornaert, P.A.L. Wauters, G.M.H. Meesters, S.E. Pratsinis, and B. Scarlett, Agglomeration behaviour of powders in a Lodige mixer granulator, <i>Powder Technol.</i>, 96 (1998) 116-128. A.A. Adetayo, M. Pottmann and B. Ogunnaike, Effective control of a continuous granulation process, Control of Particulate Processes V, April 6-9, 1997, Delft, The Netherlands 	
ŤU Delft		78

<section-header><section-header><text><text><text><text><text><text><text><text><text><text><text>

	Literature
	Journal papers
	•Numerical methods:
	1.Aggregation during precipitation from solution: A method for extracting rates from experimental data, A.S. Bramley, M.J. Hounslow and R.L. Ryall, <i>J. Colloid. Interf. Sci.</i> , 183 (1996), 155-165
	2.A discretized population balance for continuous systems at steady-state, M.J. Hounslow, <i>AIChE J.</i> , 36 (1990), 106-116
	3.A discretized population balance for nucleation, growth and aggregation, M.J. Hounslow, R.L. Ryall and V.R. Marshall, <i>AIChE J.</i> , 34 (1988), 1821-1832
	 4.Approximate population balance equations for aggregation-breakage processes, M. Vanni, J. Colloid. Interf. Sci., 221 (2000), 143-160
	5.On the solution of population balance equations by discretization -I a fixed pivot technique, S. Kumar and D. Ramkrishna, <i>Chem. Eng. Sci.</i> , 51 (1996), 1311-1332
	6.Constant-number Monte Carlo simulation of population balances, M. Smith and T. Matsoukas, <i>Chem. Eng. Sci.</i> , 53 (1998) 1777-1786.
	7.Finite-element methods for steady-state population balance equations, M. Nicmanis and M.J. Hounslow, <i>AIChE J.</i> , 44 (1998) 2258-2272
ŤU Delft	80

