Nanoparticle Technology focus on gas phase processing

J. Ruud van Ommen

Product & Process Engineering (cheme.nl/ppe) Dept. of Chemical Engineering Delft University of Technology, the Netherlands j.r.vanommen@tudelft.nl

JMBC course Particle Technology 2019

With input from: A. Schmidt-Ott, N. de Jaeger, and several others

Delft University of Technology

Challenge the future

Delft

Basic properties of nanoparticles

Gas phase production of nanoparticles

Sizing & forces on single particles

Particle-particle forces

Particle coating

Applications

Technische Universiteit Delft

Present and future applications of nanoparticles

Medical diagnostics Drugs targeted to specific cells **DNA** analysis Information storage Refrigeration **Optical computers** Improved ceramics and insulators Harder metals **Batteries** Hydrogen storage Solar cells Fuel cells Catalysts Chemical sensors Paints Sunscreen creams

What determines the properties of solid matter?

Size also determines properties!

Convert to small particles

The color of gold depends on size!

From Metal Clusters in Catalysis and Material Science, ed. By B. Corain, G. Schmid and N. Toshima, Elsevier, Amsterdam 2008

Reason for size dependence of light absorption in metal nanoparticles: Surface plasmon resonance

Frequency of photons matches the natural frequency of oscillating surface electrons

From Metal Clusters in Catalysis and Material Science, ed. By B. Corain, G. Schmid and N. Toshima, Elsevier, Amsterdam 2008

Quantum dots

Semiconductors: the band gap mainly determines optical properties, and is particle size dependent:

 \rightarrow Very small metal particles are semiconductors!

Formation of a metallic state, exemplified by lithium.

Quantum dots

Sunscreen

TiO₂ or ZnO nanoparticles block ultraviolet radiation but do not scatter visible light

Rayleigh scattering intensity *I*_{total} :

 $d \ll \lambda$ (d:Diameter, λ :Wavelength)

3 reasons to "go nano":

Curiosity!

Structuring in the nano regime leads to more possible properties of matter, and these are continuously tunable!

The smaller the faster!

As the particle size becomes smaller: Diffusion becomes faster!

Mean square diffusion length over time t:

Diffusion length \approx particle radius \rightarrow

$$x^{2} = 4Dt$$

$$t \propto R^{2}$$

$$\frac{t(10nm)}{t(10\mu m)} = 10^{6}$$

Nanoparticulate Electrode of Lithium-Ion Battery: Charging in 1 Minute!

Nanoparticle Based Chemical Sensor

FIGURE 1.1.1 The increasing miniaturization of components in computing and information technology. Adapted from R. Kurzweil, The Age of Spiritual Machines, Penguin Books, 1999.

Many small particles dissolve faster than few large ones of the same volume

a) because of larger joint surface area

Particle smaller \rightarrow coordination number smaller \rightarrow binding energy smaller \rightarrow

vapor pressure larger

melting point smaller

The relation between the melting point of Au particles and their size (Buffat et al.)

R. Eckert, Caltech, 1993

Melting point of Al vs. particle size

Two alumina nano particles heated at 1350 °C for 2 h coalesced partially to form a neck (Fusing point of $AI_2O_3 > 2000$ °C)

Vapor pressure p of a small droplet (particle) in terms of saturation ratio:

$$\frac{p}{p_s} = \exp\frac{4\gamma M}{\rho RTD_p}$$

γ: Surface tension
M: Molar weight
ρ: Density
R: Gas constant
T: Temperature
Dp : Particle diameter
V_m: Molar volume

$$\frac{1}{\rho} = V_m \longrightarrow \frac{p}{p_s} = \exp \frac{\frac{4\gamma}{D_p} V_m}{RT}$$

$$\frac{4\gamma}{D_p} = \Delta p \quad ! \text{ (pressure difference inside/outside particle)}$$

M

Forms of magnetism

ferromagnetic

superparamagnetic

paramagnetic

Ferromagnetism

Basic properties of nanoparticles

Gas phase production of nanoparticles

Sizing & forces on single particles

Particle-particle forces

Particle coating

Applications

Particle Production by Homogeneous Nucleation of Vapor

Glowing Wire Generator

Hot Wire Particle Generator

Peinike et al., J. Aerosol Science 37 (2006) 1651 – 1661

Size Distributions on Ag Nanoparticles from a Hot Wire: Variation of the Wire Temperature

Particle Generation by Spark Discharge

- •Produces high-purity particles similar to laser ablation
- •Works for any conducting and semiconducting material
- •Production of mixed particles possible!
- •A high fraction of the particles are charged

Producing monocrystalline particles by heating in gas suspension

(E. Kruis et al.)

E. Kruis et al., Size distribution of size-selected PbS nanoparticles ($d_m = 15$ nm) as a function of sintering temperature.

Laser pyrolysis of a volatile precursor

Precursors: e.g. SiH₄, Ferrocene, ...

Advantage: Large particle production rate (kilograms/day) possible

Disadvantage: For each particle material a (mixture of) precursor(s) has to be found.
Flame synthesis

Good scale-up potential compared to earlier techniques

Vanadia / Titania nanoparticles

Stark et al., ETH: http://www.ptl.ethz.ch/posters/Stark_titania_vanadia.pdf

Basic properties of nanoparticles

Gas phase production of nanoparticles

Sizing & forces on single particles

Particle-particle forces

Particle coating

Applications

Intermezzo: aerosols

A suspension of *liquid* or *solid* particles in a gaseous medium with some degree of stability.

Anthropogenic Tobacco smoke Fly ashes Soot Medicine Pesticides

<u>Natural</u>

Clouds, fog Mineral particles Resuspended soil Salt particles from the sea Viruses and bacteria

Particle size ranges

Typical aerosol particle sizes are in the range of: $1 \text{ nm } < d_p < 100 \text{ }\mu\text{m}$ $10^{-9} \text{ m} < d_p < 10^{-4} \text{ m}$ Size range: 5 orders of magnitude!

Most aerosol sizing instruments effectively measure a size range no larger than 1.5 – 2 orders of magnitude

Transport losses

Six deposition mechanisms in a duct

- 1. Interception
- 2. Inertial impaction
- 3. Diffusion
- 4. Gravitational settling
- 5. Electrostatic attraction

6. Thermophoresis (hot gases through could pipe)

Basic properties of nanoparticles

Gas phase production of nanoparticles

Sizing & forces on single particles

Particle-particle forces

Particle coating

Applications

Interparticle forces

Particles in the gas phase

van der Waals Force

(London – van der Waals Force)

Van der Waals force between flat surfaces:

$$F_{\rm vdw,f} = \frac{H_v}{6\pi h^3} A$$

Van der Waals force between spheres:

$$F_{\rm vdw,s} = \frac{H_{\rm v}d_{\rm p}}{12h^2}$$

А	Contact area between flat plates	m²
d _p	Particle diameter	m
h	Separation distance between surfaces / particles	m
Н	Hamaker constant	J

Typical range $10^{-21} - 10^{-19}$ J, depends on surface chemistry and separating medium

Question:

Compare vdW force and gravity for two 10 nm particles with 1 nm distance

Interparticle forces

The main forces between two silica particles of 10 nm as a function of the interparticle distance, normalized by gravity.

Hamaker constants

Material 1	Material 2	Material 3	Hamaker constant (approximate) (J)	Example
Alumina	Air	Alumina	$15 imes 10^{-20}$	Oxide minerals in air are
0:1:	A	Cilian	65 10-20	strongly attractive and conesive
Silica	Air	Silica	0.5×10^{-1}	
Zirconia	Air	Zirconia	20×10^{-20}	
Titania	Air	Titania	$15 imes 10^{-20}$	
Alumina	Water	Alumina	5.0×10^{-20}	Oxide minerals in water are attractive but less so than in air
Silica	Water	Silica	$0.7 imes10^{-20}$	
Zirconia	Water	Zirconia	$8.0 imes10^{-20}$	
Titania	Water	Titania	$5.5 imes10^{-20}$	
Metals	Water	Metals	$40 imes 10^{-20}$	Conductivity of metals makes
			20	them strongly attractive
Air	Water	Air	$3.7 imes 10^{-20}$	Foams
Octane	Water	Octane	$0.4 imes10^{-20}$	Oil in water emulsions
Water	Octane	Water	$0.4 imes10^{-20}$	Water in oil emulsions
Silica	Water	Air	$-0.9 imes 10^{-20}$	Particle bubble attachment in mineral flotation, weak repulsion

Table 5.1 Hamaker constants of some common material combinations

Rhodes, Introduction to Particle Technology – 2nd ed., John Wiley Ltd, Hobroken, USA, 2008.

Butt, H.J., Kappl, M., 2010. Wiley VCH, Weinheim.

Interparticle forces

The main forces between two silica particles of 10 nm as a function of the interparticle distance, normalized by gravity.

Particles in the liquid phase

For a dispersion of powder in liquid, the interparticle forces are more complicated

Colloid: heterogeneous system consisting of a mixture of particles between 1 nm and 1000 nm dispersed in a continuous medium (typically a liquid).

The Basics of Colloid Science

- London-Van der Waals attraction
- Electrostatic repulsion
- Steric repulsion
- Electrosteric repulsion
- Ostwald ripening

Electrostatic Stability DLVO

Two approaching particles undergo two forces:

1. London-Van der Waals attraction

2. Electrostatic repulsion

$$V_{tot} = V_{vdw} + V_{er}$$

The *total interaction energy* is the algebraic sum of these forces as a function of distance of approach of the particles

The DLVO theory is named after Derjaguin and Landau, Verwey and Overbeek.

Electric Double Layer

www.chemistry.nmsu.edu/studntres/chem435/Lab14/double_layer.html

Surface charge depends on medium

The Total Interaction Energy Curve

Important parameters:

- 1/K Debye Length, double layer thickness: depends on conc.
- a particle size
- ζ surface charge
- A Hamaker constant, nature of particle & fluid

Steric Stability

Two approaching particles undergo London-Van der Waals forces and forces arrising from the adsorption of polymeric or oligomeric molecules osmotic repulsion

 $V_{tot} = V_{vdw} + V_{ster}$

Again the algebraic sum of these forces as a function of distance of approach of the particles gives the total interaction energy

Electrosteric Stability

The combination of electrostatic and steric stability

Two situations can occur:

 Depending on the length of stabilising functional group or molecular weight of a nonionic polymer, the steric barrier hides completely the electrostatic one

• If the polymer is a polyelectrolyte, carrying charges itself, then the electrostatic barrier is visible in the curve

Ostwald Ripening

Ostwald ripening occurs as a consequence of the Kelvin equation, relating solubility of low soluble materials with particle size. The originally installed PSD drifts away as a function of time.

ace energy

particles with radius r_1 and r_2

$$\frac{RT}{M}\ln\frac{S_2}{S_1} = \frac{2\sigma}{\rho} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

S_1 and	S ₂	solubilities o
σ		specific surfa

- ρ **density**
- M molecular weight

0

- R gasconstant
 - temperature

For an animation, see: http://www.roentzsch.org/OR/

Basic properties of nanoparticles

Gas phase production of nanoparticles

Sizing & forces on single particles

Particle-particle forces

Particle coating

Applications

Two types of coating

 Continuous coating: A closed layer around a nanoparticle

particle 10nm–10µm

coating 1 nm or larger

• **Discrete coating**: Deposition of nanoparticles on larger

particles

host particle $1-100\mu m$

guest particles $10nm-1\mu m$

Discrete coating: applications

- Pharmaceutics with controlled-release properties
- Use for dry powder inhalers: carrier particles coated with active particles
- Coloring and UV protection in cosmetics
- Toner particles with different colors
- Improving liquid chromatography (HPLC) by using uniform polyethylene microspheres coated with silica
- Copper coated molybdenum particles: improved properties such as low porosity, high hardness, and a lower coefficient of thermal expansion

Pfeffer et al., Powder Technol 117 (2001) 40

Discrete coating

Often carried out as dry powder coating. Several devices are used to mix host particles and guest particles, for example:

magnetically assisted impaction coater rotating fluidized bed coater

ŤUDelft

Pfeffer et al., Powder Technol 117 (2001) 40

More precise, but limited to smaller amounts -

- Volatile liquid evaporates
- Droplet breaks up at Rayleigh limit
- Negative voltage provides negative charge

Results: SEM images

100 nm polystyrene particles on 50 μ m glass beads (stationary)

See also: Elliset al., Chem Eng J 181 (2012) 798

TUDelft

Electrospraying Bovine Serum Albumin

Lactose coated with Bovine Serum Albumin by electrospraying a solution of the protein in ethanol and acetic acid

Tavares Cardoso et al., Int. J. Pharmac. 414 (2011)

Nanoparticles with continuous coating

coating, overcoating, film deposition, ...

Wide variety of applications:

- Li ion batteries
- Catalysts
- Biomarkers
- Pharma: controlled release
- Absorber in sunscreen
- Dental materials
- and many more

Core-shell nanoparticles (NPs)

Diameter (incl. coating) 20 nm Coating thickness 1 nm

Question:

What is the volume fraction of the coating?

Answer:

$$f = \frac{\delta \cdot 4\pi r^2}{4/3\pi r^3} = \frac{3\delta}{r} = 0.3$$

Product and Process Engineering

Synthesis of core-shell nanoparticles (NPs)

Diam. 5 -100 nm coating 1-10 nm

Standard batch synthesis in liquid phase

Disadvantages:

chemgroups.northwestern.edu/odom/

- Poor control over process conditions
- Unsuitable to scale up

TU Delft - Product & Process Engineering is investigating two alternative approaches

Synthesis of core-shell nanoparticles (NPs)

Alternative 1

Microfluididic synthesis:

- Excellent control over process conditions
- Well suited to investigate mechanisms

Fluid bed atomic layer deposition:

- Major reduction of waste
- Well suited to scale up

Product and Process Engineering

properties of microfluidic devices

Fast mixing Defined residence time Gas Gas

Colloidal Silica. Khan Langmuir 2005

rapid mixing no dispersion

Song, Angew., 2003, 42,767.

In-line optimization

Krishnadashan, Lab Chip, 2007, 7, 1434.

Quenching

Yen, Angew., 2005, 44, 5447

Addition of reagents

Link, Lab Chip, 2006

Scale-up??

Li, Lab Chip, 2009, 9, 2715

Gas phase coating

 PVD: physcial vapour deposition deposit thin film by condensation of a vaporized form of the material onto surface; normally not used for particles

 CVD: chemical vapour deposition reactions are taking place simultaneously

• ALD: atomic layer deposition CVD split in half reactions

Gas phase coating

Method	ALD	MBE	CVD	Sputter	Evapor	PLD
Thickness Uniformity	good	fair	good	good	fair	fair
Film Density	good	good	good	good	poor	good
Step Coverage	good	poor	varies	poor	poor	poor
Interface Quality	good	good	varies	poor	good	varies
Number of Materials	fair	good	poor	good	fair	poor
Low Temp. Deposition	good	good	varies	good	good	good
Deposition Rate	fair	poor	good	good	good	good
Industrial Applicability	good	fair	good	good	good	poor

ALD = atomic layer deposition, MBE = molecular beam epitaxy.

CVD = chemical vapor deposition, PLD = pulsed laser deposition.

MBE and sputter: line of sight methods, not suited for particles

Source: Cambridge Nanotech 2005

Gas phase coating

Chemical Vapor Deposition process mechanism

 Al_2O_3 CVD: trimethylaluminum + H_2O

King et al., AIChE annual meeting, 2009

Atomic Layer Deposition (ALD)

$A - B - A - B - A - B - A - B - \dots$ etc.

Number of cycles determines layer thickness

Atomic Layer Deposition (ALD)

Deposition of alumina layer using tri-methyl aluminum (TMA) and water:

$$A \begin{cases} \|AI-OH + AI(CH_3)_3 (g) \neq \|AI-O-AI(CH_3)_2 + CH_4 (g) \\ 2\|AI-OH + AI(CH_3)_3 (g) \neq (\|AI-O)_2 - AI-CH_3 + 2 CH_4 (g) \\ \\ \|AI(CH_3)_2 + 2H_2O(g) \neq \|AI(OH)_2 + 2 CH_4 (g) \\ \\ \|AI-CH_3 + H_2O (g) \neq \|AI-OH + CH_4 (g) \end{cases}$$

 $A - B - A - B - A - B - A - B - \dots$ etc.

Nanoparticles are fluidized as agglomerates!

Wang et al., Powder Technol. 124 (2002) 152:

Fluidized bed reactor for ALD

Question:

can we indeed coat individual particles?

TEM pictures of results

Uncoated

TUDelft

Coated (5 ALD cycles)

Obtained at atmospheric pressure!

Beetstra et al, Chem. Vap. Dep. 2009

Results: BET analysis

	# ALD Cycles	Surface area [m ² /g]	D _{equiv} [nm]	
	0	1.9	730	
or	5	1.7	820	
	11	1.5	930	
	28	1.3	1070	

Primary particles of 100-500 nm; Agglomerates of 30-50 µm

The results show that we are mainly coating primary particles, not just the outer surface of the agglomerates

Results: battery tests at 60°C

in cooperation with Erik Kelder

ALD fluidized bed reactor

Nanoparticles are fluidized as very dilute agglomerates of ~200 μ m, with an agglomerate density of just ~50 kg/m³

- Already shown for batch of 120 g, scaleup is fairly easy
- Operated at 1 bar!

Wide range of coatings possible 'Periodic table of ALD'

Miikkulainen et al., J. Appl. Phys. 113 (2013) 021301; Status Dec. 2010

Pt deposition

TiO₂ particles "coated" with Pt (5 ALD cycles) at atmospheric pressure

Island growth!

Pt on TiO₂

Product and Process Engineering

Vapour-phase coating

MLD

Molecular layer deposition: same approach as ALD, but now with organic molecules.

TUDelft Adamczyk et al., Langmuir 24 (2008) 2081

Basic properties of nanoparticles

Gas phase production of nanoparticles

Sizing & forces on single particles

Particle-particle forces

Particle coating

Applications

Applications of Nanoparticles

Pigment

• Carbon black, TiO₂

Medicine

diagnostics, drug delivery

Chemistry

catalysis

Energy

• batteries, hydrogen storage, photovoltaic cells, LEDs

Construction

nanostructured materials

• Food

ingredients, packaging

Personal care

sunscreens

This list is not complete!

• ...

Carbon Black

- Produced by the incomplete combustion of heavy petroleum products such as FCC tar, coal tar, ethylene cracking tar,
- Large surface area: typically nanoparticles of 20 200 nm
- 70% used in tyres (20% in other rubber application):
 - pigment
 - reinforcement
 - increase of heat transfer
- Top 50 industrial chemicals manufactured worldwide, based on annual tonnage. Worldwide production is about 8.1 million metric tons (2006).

Titanium dioxide (=Titania)

- Titanium dioxide occurs in nature as the minerals rutile, anatase and brookite; there are some other crystal forms as well.
- Main application: pigment; also: photocatalyst, UV-blocker
- Most particles produced in the range 200-300 nm, but also in finer grades
- Production: Crude ore (containing at least 70% TiO₂) is reduced with carbon, and oxidized with chlorine to give TiCl₄. This is distilled, and re-oxidized with oxygen to give pure TiO₂ while regenerating chlorine.
- Worldwide production is about 4.4 million metric tons (2004).

Applications in medicine

Relevant sizes

Definition of Nanomedicine

Definition 1 (broad): pharmaceutical technology that uses molecular tools and knowledge of the human body for medical diagnosis and treatment.

Definition 2 (narrower): pharmaceutical technology that makes use of physical effects occurring in nanoscale objects that exist at the interface between the molecular and macroscopic world in which quantum mechanics still reigns.

Wagner et al., Nature Biotechnology 24 (2006) 1211

Nanomedicine: strongly growing

Nanomedicine publications and patents worldwide

TUDelft

Wagner et al., Nature Biotechnology 24 (2006) 1211

The growth continues...

In contrast with previous slide, just papers than have "nanomedicine" in title, abstract or keywords. Source: SCOPUS

TUDelft

Nanomaterials in clinical trials or FDA-approved

Nanomaterials in proof-of-concept research stages

Kim et al., N Engl J Med 2010 363: 2434.

Commercial efforts in nanomedicine

	# products	Sales (\$ billions)	Total	Advanced stages*	Companies	
Drug delivery	23	5.4	98	9	113	
Biomaterials	9	0.07	9	6	32	
In vivo imaging	3	0.02	8	2	13	
<i>In vitro</i> diagnostics	2	0.78	30	4	35	
Active implants	1	0.65	5	1	7	
Drugs & therapy	0	0	7	1	7	
Total	38	6.8	157	23	207	
Sales numbers of nanomedicines are estimates for the year 2004.						
*Drugs where the product is in clinical phase 2/3 or 3 and for all other products where market introduction is expected within two years.						
Delft Wagner et al., <i>Nature Biotechnology</i> 24 (2006) 1213						

Ť

Pharmaceutical nanocarriers

- 1 Traditional "plain" nanocarrier (a drug loaded into the carrier);
- 2 Targeted nanocarrier or immunocarrier (b specific targeting ligand, usually a monoclonal antibody, attached to the carrier surface);
- 3 Magnetic nanocarrier (c magnetic particles loaded into the carrier together with the drug and allowing for the carrier sensitivity towards the external magnetic field and its use as a contrast agent for magnetic resonance imaging);
- 4 Long-circulating nanocarrier (d surface-attached protecting polymer (usually PEG, Polyethylene glycol) allowing for prolonged circulation of the nanocarrier in the blood);

UDelft

Torchilin, Advanced Drug Delivery Reviews 58 (2006) 1532

Pharmaceutical nanocarriers

- 5 Contrast nanocarrier for imaging purposes (e heavy metal atom – 111In, 99mTc, Gd, Mn – loaded onto the nanocarrier via the carrierincorporated chelating moiety for gamma- or MR imaging appl.);
- 6 Cell-penetrating nanocarrier (f cell-penetrating peptide, CPP, attached to the carrier surface and allowing for the carrier enhanced uptake by the cells);
- 7 DNA-carrying nanocarrier such as lipoplex or polyplex (g DNA complexed by the carrier via the carrier surface positive charge);
- 8 Hypothetical multifunctional pharmaceutical nanocarrier combining the properties of the carriers # 1–7.

UDelft

Torchilin, Advanced Drug Delivery Reviews 58 (2006) 1532

Nanoparticle as transport vehicle

Schematic representation of a nanoparticle transporting an active enzyme through the cell membrane and releasing it into the cytoplasm (adapted from: Slowing et al., 2007).

Use of Quantum Dots

Detection of prostate tumor in a mouse using quantum dots.

Gao et al., Nat. Biotech. 2004

Applications in catalysis

Example: three-way catalytic converter

The alumina washcoat is impregnated with nanoparticles of Pt, Rh, Ce, zirconia, lanthana, ...

Bell, Science 299 (2003) 1688

Influence of particle diameter

 $\textbf{CO + <math>\frac{1}{2} \text{ O}_2 \rightarrow \textbf{CO}_2}$

30.0 nm

Effect ascribed to oxidation of Au atoms in contact with the support

Bell, Science 299 (2003) 1688

30.0 nm

Influence of coordination number

Lopez et al., Journal of Catalysis 223 (2004) 232

Sabatier principle

Example reaction:

TUDelft

Volcano plot:

Laursen et al., J. Chem. Educ. 2011, 88, 1711-1715

Sabatier principle

Laursen et al., J. Chem. Educ. 2011, 88, 1711-1715

Influence of stretching

Lopez et al., Journal of Catalysis 223 (2004) 232

How to stretch the atoms in a catalyst particle?

Stretching atoms in a catalyst particle

Place a coating of only 1 (or max 2-3) atom-layers thick on a different metal

Ru core with Pt shell

Alayoglu et al., Nature Mater. (2008)

The adsorption energy of N and N₂ on an fcc-Fe(1 1 1) surface as a function of the nearest neighbour distance , d_{Fe-Fe} . The binding energies are compared to N₂ (g) and a clean metal surface. The triangles give the energies in the case of a monolayer of Fe on Ru (0 0 0 1).

TUDelft

Logadottir, A., Nørskov, J.K., Surface Science 489, 135-143 (2001)

Core-shell NPs for thermal stability

Joo et al., Nature Mat. 8 (2009) 126

Core-shell NPs for thermal stability

Schematic representation of the synthesis of Pt@mSiO2 nanoparticles (Pt NPs coated with mesoporous silica)

Core-shell NPs for thermal stability

T=350°C

T=350°C

T=550°C

At low temperatures it is not a problem. Example: photocatalysis!

However, agglomeration / aggregation can still play a role.

Kinetic growth models in a 2-D

Diffusion-limited	Ballistic	Reaction-limited
	AND	
Particle-cluster (D _f =2.50)	$\begin{array}{c} \textbf{Particle-cluster} \\ (D_f = 3.00) \end{array}$	Particle-cluster (D _f =3.00)
The second secon	What when	AND
Cluster-cluster	Cluster-cluster	Cluster-cluster
$(D_f = 1.80)$	$(D_f = 1.95)$	$(D_f = 2.09)$

The mass fractal dimension D of their 3-D analogs are given

TUDelft Friedlander, *Smoke, Dust, and Haze*, 2nd ed., Oxford Univ. Press, 2000

Sustainable energy solutions

Photovoltaic cell

Fuel cell

Solar H₂ production

Li ion battery

Product and Process Engineering

Nanotechnology for sustainable energy Quantum dot film (\rightarrow PV cells?) Fuel cell

Valdesueiro et al., J Phys Chem C 120 (2016) 4266

Solar H₂ production

Maeda et al., Chem Eur J 16 (2010) 7750

Lawrence Berkeley National Lab.

Many novel solutions rely on core-shell nanoparticles

″uDelft

Product and Process Engineering