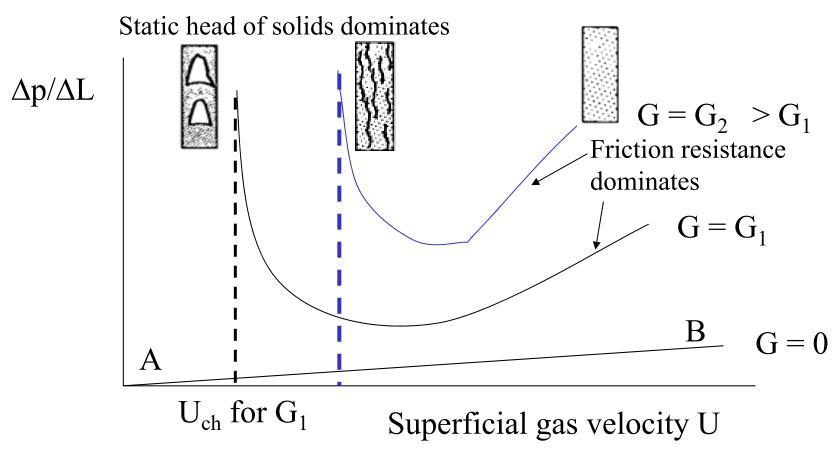
Pneumatic transport

J. Ruud van Ommen

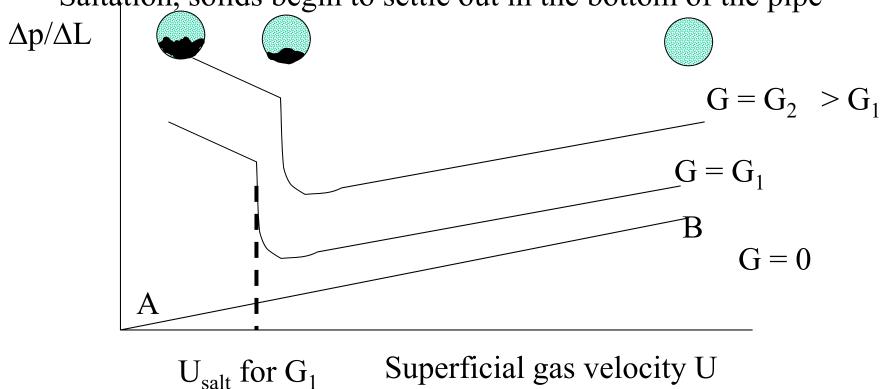
Department of Chemical Engineering Delft University of Technology

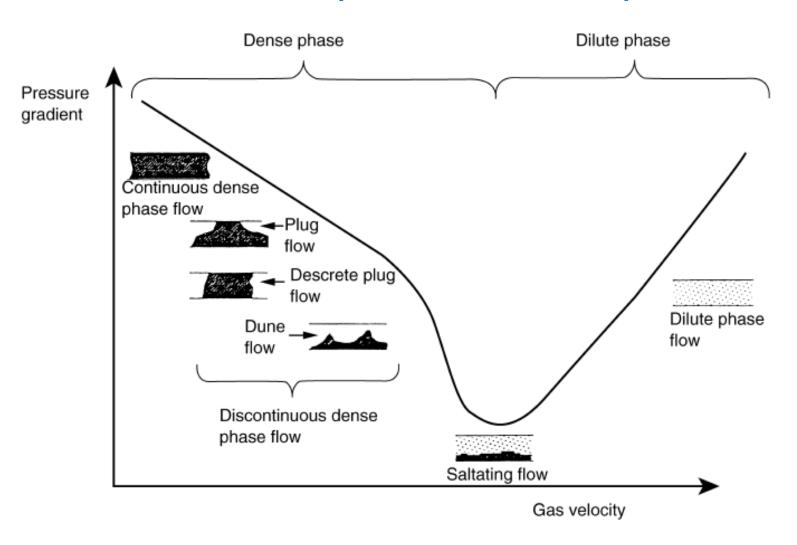

JMBC Particle Technology 2019

Based on M. Rhodes, Introduction to Particle Technology, 2nd edition, 2008, and material from prof. Ehrman, Univ of Maryland

Pneumatic transport

- Basic definition using gas to transport a particulate solid through a pipeline
 - Ex: grain, flour, plastic, pulverized coal
- Two modes
 - Dilute phase particles are fully suspended, like entrainment in FB but deliberate, solids less than 1 % by volume, lots of pumping req'd
 - Dense phase particles not suspended, loading > 30 %
 by volume, lots of interparticle interactions


Phase diagram for dilute phase vertical pneumatic transport


Uch, lowest velocity at which dilute phase transport line can be operated if solids feed rate is G1

Phase diagram for dilute phase horizontal pneumatic transport

Saltation, solids begin to settle out in the bottom of the pipe

Phase diagram for dense phase horizontal pneumatic transport

Definitions

- Superficial gas velocity $U_{fs} = Q_f$ (gas volumetric flow) /A (cross sectional area of pipe)
- Superficial solids velocity $U_{ps} = Q_p/A$ $(Q_p = volumetric flow of solids)$
- Actual gas velocity $U_f = Q_f / A\epsilon$ (void fraction)
- Actual particle velocity $U_p = Q_p/[A(1-\epsilon)]$

Important relationships

Mass flow rate of particles

$$M_{p} = AU_{p}(1-\varepsilon) \rho_{p}$$

Mass flow of fluid

$$M_f = AU_f \varepsilon \rho_f$$

• Solids loading = M_p/M_f

Pressure drop in pneumatic transport

Contributors to pressure drop

1. Gas acceleration gas acting on gas

2. Particle acceleration gas acting on particles

3. Gas/pipe friction wall friction

4. Solids/pipe friction wall friction

5. Static head of solids fighting gravity

6. Static head of gas fighting gravity

Not considered: interparticle forces

Pressure - gas/wall friction force

Force balance on pipe

Net force acting on pipe contents = rate of increase in momentum of contents

- solids wall friction force

- gravity = rate of increase in momentum of gas + rate of increase in momentum solids

$$(P_1 - P_2) - F_{fw}L - F_{pw}L - \rho_p L(1 - \varepsilon)g \sin\Theta - \rho_f L \varepsilon g \sin\Theta = \frac{1}{2}\varepsilon\rho_f U_f^2 + \frac{1}{2}(1 - \varepsilon)\rho_p U_p^2$$

 F_{fw} and F_{pw} are gas to wall and solids to wall friction force respectively, $L = pipe \ length, \ \Theta = angle \ of \ pipe \ with \ horizontal$ What happens for horizontal flow?

Terms and physical meaning

$$(P_1-P_2)$$

$$F_{fw}L$$

$$F_{pw}L$$

$$\rho_p L(1-\varepsilon)g\sin\Theta$$

$$\rho_f L \varepsilon g\sin\Theta$$

$$\rho_f L \varepsilon g \sin \Theta$$

$$\frac{1}{2} \varepsilon
ho_{\mathrm{f}} {U_f}^2$$

$$\frac{1}{2}(1-\varepsilon) \rho_{p} U_{p}^{2}$$

- Total pressure drop
- Gas acceleration (gas acting on gas)
- Particle acceleration (gas acting on particles)
- Gas/pipe friction wall friction
- Solids/pipe friction wall friction
- Static head of solids fighting gravity
- Static head of gas fighting gravity

Tools to calculate pressure drop

Correlations for F_{pw}

For vertical transport [G = solids mass flux, mass particles/(area x time)]

$$F_{pw} L = 0.057 G L \sqrt{\frac{g}{D}}$$

Horizontal transport

$$F_{pw} L = \frac{2f_p G U_p L}{D}$$

where

and

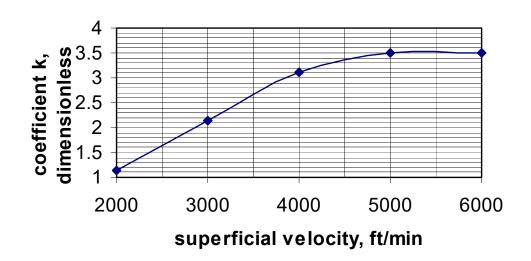
$$U_p = U(1 - 0.0638 \text{ x}^{0.3} \rho_p^{0.5})$$

$$f_p = \frac{3\rho_f D}{8\rho_p x} C_D \left[\frac{U_f - U_P}{U_p} \right]^2$$

For gas/wall friction pressure drop, calculate with friction factor assuming it is independent of presence of particles.

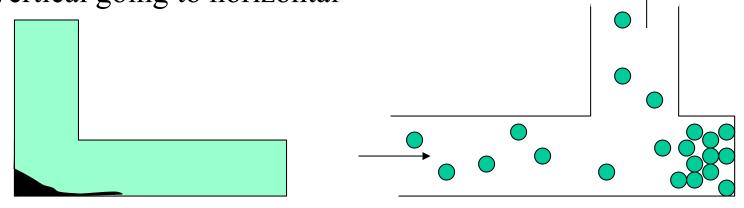
Simple method for steady state horizontal flow

From Particle Technology by Orr (1966)


Ratio of total pressure loss due to solids/air system (ΔPt) to total pressure loss due to only air flowing (ΔPa)

$$\frac{\Delta P_t}{\Delta P_a} = 1 + \frac{R}{k}$$

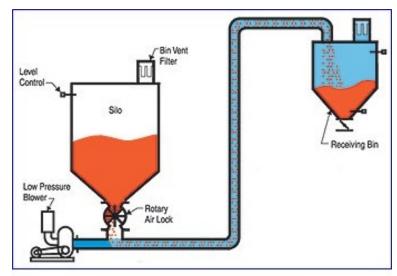
$$R = \frac{\text{mass of solid material}}{\text{mass of air}}$$


k as a function of superficial velocity

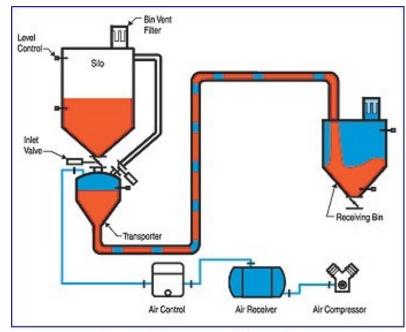
k is an empirically derived coefficient

Bends

Generally problematic. Solids that may be in suspension in vert/horiz transport may salt out as they go around bends. Worst case: vertical going to horizontal


blinded tees recommended if bends are unavoidable

No reliable correlations exist for bend pressure drops.


Only a rough rule of thumb:

Bend $\Delta P = \Delta P$ for 7.5 m of vertical pipe under same flow conditions

Pneumatic conveying systems – Typical designs

Dilute-phase conveying system

Dense-phase conveying system