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Overview of segregation:
From inclined planes to drums; via a volcano

A. R. Thornton 2th May 2019
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Granular segregation, hard or easy?

• Granular segregation is very easy to observe, preventing
segregation is often the problem.

• Segregation in granular materials can occur for a number of
reasons
• Difference in size
• Difference in size
• Difference in density
• Difference in contact properties
• Difference in angle of repose
• Differential forcing (air drag etc...)
• plus many others ....
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Extract from a 1978 paper : Particle segregation ... and
what to do about it
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What is a mixture?
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Type of mixtures

Segregated Random Ordered
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What is a mixture?
The true composition of a mixture p is often not know, but by
sampling N times, each with value yi, we can obtain an
estimate, ȳ

mean : ȳ =
1

N

N∑
i=1

yi

standard deviation : σ =

∑N
i=1 (yi − ȳ)

N − 1

random case : σ2
r =

p(1− p)
n

where n is the number of particles in the samples.

segregated case :σ2
o = p(1− p)
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Mixing indices

• Lacey mixing index ML =
σ2

0−σ2

σ2
0−σ2

r

• Problem with ML is practical values only lie in range
0.75− 1.0

• Poole, Taylor & Wall mixing index MP = σr
σ

• This gives better discrimination

• Many, many other indexes exist

• Note σ measured by sampling may not be the true mixture
σ. This brings us to the topic of confidence intervals which
will not be discussed here.
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Tumbling mixer
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Ribbon blade mixers
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Rotating mixers
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Air-jet mixer
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Pneumatic mixer
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Grains in industry
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Figure5.2:Schematicsofthethreedosingaugersusedforthedosingexperiments.

inanormalizedform
as:

DoseM
ass

AverageDoseM
ass

(5.1)

where
the

average
dose

massiscomputed
asthe

massthatmaximisesthe
numberofdoses

belonging
to
theintervalbounded

by
theaveragedosemass±

aprescribed
tolerance,thatde-

pendsonthepowderused.Dosenumbercanalsobesubstitutedbythe(cumulative)Normalized

PouredM
ass,definedbytheratio:

NPM
=Cumulativemassofpowderpoured

untilthecurrentdose

Totalmassinitiallyinthecanister

(5.2)

5.3.2
Experim

entalresultsusingacohesivebeveragepowder

Only
theexperimentalresultsobtained

with
thecohesivebeveragepowderarereported

in
this

section.Theresultsobtainedusingglassbeadsarereporteddirectlyinparagraph5.5.3,where

they
arecompared

with
DEM
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normalized

dosing
profileobtained
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dosing

screw
1
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moremarkedlyafter80
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shape
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surface
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dosage.

The
successive

positionsofthe
powder

surface
overtime

are
plotted
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a
graph

(one
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each
10%

poured
capacity).

A
constant

pitch
coillikescrew

1
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uniform
productwithdrawalfrom

thecanister,with
a

strongerwithdrawalatthebackofthescrew
ascanbeseenin5.4.Theproductisfilledonlyto
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Motivation
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Co-ordinate setup

ξ

x

z

Intro Mixing Chutes Cont. Model Multiscale CG Closure Validation Coupled Drums Conc. References



23/100

Outline - Next Section I
1 Introduction

2 Introduction to mixing
Type of mixers

3 Gravity driven flows

4 A continuum model of segregation

5 Multiscale modelling

6 Coarse-graining

7 Closing the model

8 Experimental, and simulations validation

9 Coupled Theory of Segregation
Granular fingering
One-dimensional travelling wave solution
Grid dependence

10 To rotating drums

Intro Mixing Chutes Cont. Model Multiscale CG Closure Validation Coupled Drums Conc. References



24/100

Outline - Next Section II
Segregation in long rotating cylinders

11 Conclusions

Intro Mixing Chutes Cont. Model Multiscale CG Closure Validation Coupled Drums Conc. References



25/100

Basic concepts

• Follow structure of Savage & Lun (1988)

• Two constituents mixture theory
• Small particles, s
• Large particles, b

• With volume fractions

0 ≤ φµ ≤ 1, µ = s, b

and
φs + φb = 1

(Gray & Thornton, 2005, Proc. Royal Soc.)

Intro Mixing Chutes Cont. Model Multiscale CG Closure Validation Coupled Drums Conc. References



26/100

Mixture theory - basic postulate
The basic mixture postulate

States that every point in the mixture is ‘occupied simultaneously
by all constituents’

• Mixture theory deals with partial variables defined per
unit mixture volume.
• Whereas intrinsic variables are defined by unit constituent

volume.

• So each constituent we can define a local volume fraction
φν and clearly

n∑
ν=1

φν = 1

• Hence the sum across all constituents of an intrinsic
variables is equal to the bulk quaintly i.e. density

ρ =

n∑
ν=1

ρν
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Mixture theory

• Mass balance
∂ρν

∂t
+∇ · (ρνuν) = 0,

• Momentum balance

ρν
Duν

Dt
= −∇pν + ρνg + βν .

where
ρνg is the gravitational acceleration
βν is the interaction drag
ρν , pν and uν are partial variables defined per unit mixture
volume
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Mixture theory - key relations
• The internal drags must sum to zero

Σνβ
ν = 0

• The partial and intrinsic density are related by simple
linear volume fraction scaling

ρν = φνρν∗

• The partial and intrinsic velocities are the same

uν = uν∗

• The pressures are related by an unknown function normally
taken to be the volume fraction

pν = φνpν∗ fν(φν) = pν∗/p

where * denotes an intrinsic variable.
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Assumptions

• Bulk flow incompressible

• Normal acceleration terms are negligible

• Interaction drag is Darcy type, β

• Kinetic sieving process
• Modelled by a non-linear (partial) pressure, f(φ)
• Different forms suggested

(Gray & Thornton, 2005, Proc. Royal Soc.)
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Stress scalings
Gray & Thornton : fν = 1−B(1− φν)

Marks, Rognon & Einav : fν = sν∑
sνφν

Tunuguntla, et al. : fν = (sν)3∑
(sν)3φν

Gajjar & Gray : fν = AC(1− φν)(1− Cφν)

where s is the size ratio.

fν(φν) = σν∗/σ F = (fν − φν) /c
∂σzz
∂z

(Gray & Thornton, 2005, JFM)
(Marks, Rognon & Einav, 2012, JFM)
(Tunuguntla, Bokhove & Thornton, 2014, JFM)
(Gajjar & Gray, 2014, JFM)
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The binary segregation equation

∂φ

∂t
+
∂

∂x
(φu)+

∂

∂y
(φv)+

∂

∂z
(φw)−Sr

∂

∂z
(F [φ]) =

∂

∂z

(
Dr

∂φ

∂z

)
where φ : is the volume fraction of small particles
u, v, w : down slope/cross slope/normal velocity components
Sr : is a dimensionless segregation rate
and Dr : is a dimensionless diffusion rate.

G & T : F [φ] = (φ (1− φ))

T, B & T : F [φ] = γ̇ (ŝa − ρ̂)

[
φ(1− φ)

φ+ (1− φ)ŝa

]
ŝ =

s2

s1
, ρ̂ =

ρ2∗

ρ1∗ .

Note : Experiments and simulations show Dr/Sr ≈ 1/20.

(Gray & Thornton, 2005, Proc. Royal Soc.)
(Tunuguntla et al., 2014, JFM)
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The binary (dimensionless) segregation equation

∂φ

∂t
+
∂

∂x
(φu)+

∂

∂y
(φv)+

∂

∂z
(φw)−Sr

∂

∂z
(F [φ]) =

∂

∂z

(
Dr

∂φ

∂z

)
where φ : is the volume fraction of small particles
u, v, w : down slope/cross slope/normal velocity components
Sr : is a dimensionless segregation rate
and Dr : is a dimensionless diffusion rate.

F (φ) is the segregation flux function.

Note : Experiments and simulations show
1/Pe = Dr/Sr ≈ 1/20.

(Gray & Thornton, 2005, Proc. Royal Soc.)
(Tunuguntla, Weinhart & Thornton, 2017, CPM)
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The binary segregation equation

∂φ

∂t
+
∂

∂x
(φu)+

∂

∂y
(φv)+

∂

∂z
(φw)−Sr

∂

∂z
(F [φ]) =

∂

∂z

(
Dr

∂φ

∂z

)
• Bridgwater suggested form: F = φg(φ)

• Savage & Lun derived a very complex form for F

• Dolgunin & Ukolov suggested form: F = Bφ (1− φ)

• Mixture theory framework proposed: F = Bφ (1− φ) ρg

• Driven by kinetic stress: F = −B (φ (1− φ)) 1
ρ
∂σkzz
∂x

• Density segregation: F = g
c γ̇ (ŝ− ρ̂)

[
φ(1−φ)
φ+(1−φ)ŝ

]
• Measured from particle simulations:

• F = g
c γ̇
(
ŝ3 − ρ̂

) [ φ(1−φ)
φ+(1−φ)ŝ3

]
• F = Bds ln

(
dl
ds

)
γ̇φ (1− φ)
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The binary segregation equation

∂φ

∂t
+
∂

∂x
(φu)+

∂

∂y
(φv)+

∂

∂z
(φw)−Sr

∂

∂z
(F [φ]) =

∂

∂z

(
Dr

∂φ

∂z

)

• Bridgwater suggested form: F = φg(φ)

• Savage & Lun derived a very complex form for F

• Dolgunin & Ukolov suggested form: F = Bφ (1− φ)

• Mixture theory framework proposed: F = Bφ (1− φ) ρg

• Driven by kinetic stress: F = −B (φ (1− φ)) 1
ρ
∂σkzz
∂x

• Density segregation: F = g
c γ̇ (ŝ− ρ̂)

[
φ(1−φ)
φ+(1−φ)ŝ

]
• Measured from particle simulations:

• F = g
c γ̇
(
ŝ3 − ρ̂

) [ φ(1−φ)
φ+(1−φ)ŝ3

]
• F = Bds ln

(
dl
ds

)
γ̇φ (1− φ)

(Bridgwater, Foo & Stephens, 1985, Powder Tech.)
(Bridgwater et al., 1985; Savage & Lun, 1988, Powder Tech./JFM)
(Bridgwater et al., 1985; Dolgunin & Ukolov, 1995; Savage & Lun, 1988,

Powder Tech./JFM)
(Gray & Thornton, 2005; Gray & Chugunov, 2006, Proc. Royal Soc./JFM)
(Fan & Hill, 2011, NJP)
(Marks et al., 2012, JFM)
(Tunuguntla et al., 2014; Schlick, Isner, Freireich, Fan, Umbanhowar, Ottino &

Lueptow, 2016, Comp. Part. Mech./JFM)
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Exact Solutions: GT style flux

x

x

z

z

(Gray & Thornton, 2005; Thornton, Gray & Hogg, 2006, Proc.Roy.Soc./JFM)
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Experimental comparison
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The binary (dimensionless) segregation equation

∂φ

∂t
+
∂

∂x
(φu)+

∂

∂y
(φv)+

∂

∂z
(φw)−Sr

∂

∂z
(F [φ]) =

∂

∂z

(
Dr

∂φ

∂z

)
where φ : is the volume fraction of small particles
u, v, w : down slope/cross slope/normal velocity components
Sr : is a dimensionless segregation rate
and Dr : is a dimensionless diffusion rate.

F (φ) is the segregation flux function.

Note : Experiments and simulations show
1/Pe = Dr/Sr ≈ 1/20.

(Gray & Thornton, 2005, Proc. Royal Soc.)
(Tunuguntla et al., 2017, CPM)
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The force model

• Discrete particle model governed by Newtonian mechanics:

mi
d2~xi
dt2

= ~fi

• Contact forces and body forces:

~fi =
∑
j

~fij +~bi,

• Contact force model:

~fij = fnij~n+ f tij~t,

fnij = kδij+γv
n
ij , f tij = −min(µfnij , k

tδtij+γ
tvtij)

(Luding, 2008, Enviro. and Civil. Eng.)
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Linear(-ised) elastic normal force

Overlap δ

N
o
rm

a
l

co
n
ta

ct
fo

rc
e
f
n fn = kδ • Appropriate for larger

particles, upscaled
systems.

• Simple to analyse,
efficient.

! Stiffness has to be
sufficiently high (δ < R

100).

• Constant tc, restitution ε
if diss. coeff. γ = const.
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Contact Properties

Can relate these properties to a restitution coefficient r and
contact time tc

r = e

−πγ√
4kmij−γ2

tc =
2mijπ√

4kmij − γ2

We define γ and k for each pair of particle-interactions such
that r and tc are the same.

(Luding, 2008, Enviro. and Civil. Eng.)
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Overlap δ

N
or

m
al

co
n
ta

ct
fo

rc
e
f
n fn = 4

3E
∗aδ

• Stiffness depends on
modulus
E∗ = [

(1−ν2
1 )

E1
+

(1−ν2
2 )

E2
]−1

and contact radius
a ≈
√
Rδ.

• Appropriate for small
particles (< 100µm).

• Variable collision time.

• Yields constant
restitution coefficient for
γ ∝
√
Eam.
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Linearised elastoplastic normal force

Overlap δ

N
o
rm

al
co

n
ta

ct
fo

rc
e
f
n

→
f
n =

k 1
δ

↔
f
n
=
k
∗ 2
δ

↔
f
n
=
k 2
δ

• Appropriate for larger,
plastic deformation.

• k2 increasing towards
maximum k∗2 (plastic
yield).
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Introduction to MercuryDPM

The simulations presented are done in MercuryDPM, our
open-source code. Features :

• Hierarchical Grid contact detection algorithm

• Built-in coarse-graining statistical package

• Access to continuum fields in real time

• Contact laws for granular materials

• Simple C++ implementation

• Complex walls

Currently available as a beta version from
http://MercuryDPM.org
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Particle simulations with MercuryDPM

• Fast
Contact detection algorithm
allows polydisperse simulations

• Flexible
Support for complex walls
and boundary conditions

• Accurate
Coarse-graining technique
to evaluate continuum fields

• Open-source
Available at MercuryDPM.org y
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Screw Feeder and Mixers
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Coarse-Graining

• Microscopic density field,

ρmicro(~r) =
∑n

i=1
miδi(~r − ~ri),

• Macroscopic density field,

ρ(~r) =
∑n

i=1
miφ(~r − ~ri),

with coarse-graining function φ, e.g.

φGω (~r) =
1

(
√

2πω)d
exp

(
−|~r|

2

2ω

)
.

• Other fields defined to be consistent with macroscopic
equations

(Goldhirsch, 2010, Granular Matter)
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Mass Conservation

• mass conservation, ∂
∂tρ+∇(ρ~V ) = 0,

• define the velocity field as

~V =
~j

ρ
, where ~j =

∑n

i=1
mi~viφ(~r − ~ri).

• This is compatible with the macroscopic field

(Goldhirsch, 2010, Granular Matter)
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Momentum balance

• momentum equations, ∂
∂t(ρ

~V ) + ~V · ∇(ρ~V ) = ρ~g +∇~σ,
• define the stress tensor by ~σ = ~σc + ~σk with contact and

kinetic stress,

σcαβ =
1

2

∑
c

fijαrijβ

∫ 1

0
φ(~r − (~ri + s~rij)) ds,

σkαβ =
∑n

i=1
miv

′
iαv
′
iβφ(~r − ~ri), α, β = 1, 2, 3,

with fluctuation velocity ~v′i = ~vi − ~V .

• Definitions are compatible with the momentum balance.

• Can be done for other fields (boundary forces,
drag, partial fields for multiphase flows).

(Goldhirsch, 2010, Granular Matter)
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CG: Multi-components

• Stresses are determined s.t. momentum is conserved

∂t(ρ
ν~v ν) +∇ · (ρν ~V ν ~V ν) = ∇ · σν +~b+ ~t+ ~βν .

• Total partial stress, σν = σk,ν + σc,ν where

σk,ν =
∑
i∈Fν

mi~vi
′~vi
′φi with ν = 1, 2 &

σc,ν =
∑
i∈Fν

∑
j∈Fν
j 6=i

~fij ~aijψij +
∑
i∈Fν

∑
j∈F/Fν

~fij ~aijψij +
∑
i∈Fν

∑
j∈W

~fij ~aijψij ,

with ψij =

∫ 1

0
φ(~r − ~ri + s~aij)ds and ~aij is the branch vector

(Tunuguntla, Thornton & Weinhart, 2016, CPM)
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What is macroscopic field?

• We have a smoothing length w, how do we choose it?

• If w too small you see individual particles - Not the
macroscopic field.

• If w too large you average over macroscopic variations in
the field.

• Between these two values there should be a plateau, this is
the macroscopic field.

(Goldhirsch, 2010, Granular Matter)
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CG Application: Steady bidisperse flows

-
x

6
z ?~g

∈ F1

∈ F2 ∈ Base

ν

Figure: Volume fraction vs flow
depth

(Tunuguntla et al., 2016, CPM)
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Scale independence

(Tunuguntla et al., 2016, CPM)
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Advantages of MercuryCG

1 Already freely available in open-source code MercuryDPM.

2 Local mass/momentum balance is satisfied exactly,
(for any smoothing width w, no ensemble averaging
required).

3 Gives continuum field everywhere; no grid.

4 Only one parameter to determine.

5 Can account for boundary interactions.

6 Extended to granular mixtures.

(Thornton & Weinhart, 2009-2018, http://MercuryDPM.org)
(Goldhirsch, 2010, Gran. Mat. 2010)
(Weinhart, Hartkamp, Thornton & Luding, 2013a, Phys of Fluids 2013)
(Weinhart, Thornton, Luding & Bokhove, 2012, Granular Matter 2013)
(Tunuguntla et al., 2017, Comp. Part. Mech. 2016)
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CG Application: Steady bidisperse flows
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Figure: Volume fraction vs flow
depth

(Tunuguntla et al., 2016, CPM)
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Stress distribution
Contact Stress Kinetic Stress
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• Variation in kinetic stress stronger.

• However both stresses show correct dependence.

• We will assume segregation driven by kinetic stress.

(Weinhart, Luding & Thornton, 2013b, P&G 2013)
(Fan & Hill, 2011, NJP 2011)

Intro Mixing Chutes Cont. Model Multiscale CG Closure Validation Coupled Drums Conc. References



62/100

Time dependent CG kinetic stress

• Comparison shown for
three size-ratios 1.3, 1.5,
1.7

• Best fit is model of
Gajjar & Gray.

• Should be noted free
parameter Aγ is size
dependent.

(Tunuguntla et al., 2017, CPM)
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The binary segregation equation
∂φ

∂t
+
∂

∂x
(φu)+

∂

∂y
(φv)+

∂

∂z
(φw)−Sr

∂

∂z
(F [φ]) =

∂

∂z

(
Dr

∂φ

∂z

)
where φ : is the volume fraction of small particles
u, v, w : down slope/cross slope/normal velocity components
Sr : is a dimensionless segregation rate
and Dr : is a dimensionless diffusion rate.

F [φ] = −Aφ (1− φ) (1− κ[s]φ) 1
ρ
∂σkzz
∂x

Note : In chute flows Dr/Sr ≈ 1/20 and ∂σkzz
∂x ≈ Cρg

(Gray & Thornton, 2005, Proc. Royal Soc.)
(Gray & Thornton, 2005; Gray & Chugunov, 2006, Proc. Royal Soc./JFM)
(Fan & Hill, 2011, NJP)
(Fan & Hill, 2011; Gajjar & Gray, 2014, JFM/NJP)
(Tunuguntla et al., 2017, Comp. Part. Mech.)
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3D Moving Channel and RIMS

II

3 Overview
3.1 Goal

The objective is to follow individually particles that are inside of a granular flow. This
should give more accurate results than those found by [Wiederseiner et al., 2011].

3.2 Initial setup
The initial system can be visualized on the figure 3 .

Figure 3 – Experimental setup. On the left : The setup at the beginning (in mai). On the right :
Scheme of the dispositive.

4 Refractive index matching technique
4.1 How it works

The refractive matching index technique would be used to visualize the flow[Dijksman et al., 2012,
Jesuthasan et al., 2006]. The granular flow is composed of transparent particules that are dis-
posed in a liquid at the same refractive index. A chemical component (rhodamine) is added,
that could be illuminated by a radiation at a specific wavelength. When the flow is illuminated
by a laser sheet at that wavelength, it is also possible to observe a slice inside of the granular
media. Some problems have to be solved to get a good match :

– According to [Dijksman et al., 2012], the index di�erence should not exceed 2 ◊ 10≠3. It
was not possible to gat a so tiny di�erence, because it was hard to get the solution to
be homogenious, and as the ethanol inside the solution evaporates quickly, the indice is
always variating.

– The amount of rhodamine should be carefully determined : if there is too much rhodamine
in the solution, the laser sheet is too strengthly absorbed.

– The absorbtion is not uniform

9

1

5

6
(b)

6

6
3

32
4

(van der Vaart, Thornton, Johnson, Weinhart, Jing, Gajjar, Gray & Ancey,
2018, Gran. Mat.)
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RIMS Experiments

(van der Vaart et al., 2018, Gran. Mat.)
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Particle Simulations

(van der Vaart et al., 2018, Gran. Mat.)
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Breaking Wave Comparison

(van der Vaart et al., 2018, Gran. Mat.)
(Gajjar, van der Vaart, Thornton, Johnson, Ancey & Gray, 2016, JFM)
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Segregation patterns in Geomechanics

Scree slope Scree slope Debris flow
Lake District, U.K. Nordaustlandet (Norway) The Moon

Fingering Elongated run-off (Bulbous head) Stratification

(Kokelaar, Bashi, Joy, Viroulet & Gray, 2018, JGR Planets)
(Johnson, Kokelaar, Iverson, Logan, Lahusen & Gray, 2012, JGR)
(Gray & Ancey, 2009, JFM)
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Mount Ruapehu avalanche
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Experimental results

Intro Mixing Chutes Cont. Model Multiscale CG Closure Validation Coupled Drums Conc. References



Fingering 75/100

Shallow water like theories

∂h

∂t
+

∂

∂x
(hū) +

∂

∂y
(hv̄) = 0,

∂

∂t
(hū) +

∂

∂x

(
hū2
)

+
∂

∂y
(hūv̄) +

1

2

∂

∂x

(
gh2 cos θ

)
=

gh

(
sin θ − µ ū√

ū2 + v̄2
cos θ

)

∂

∂t
(hv̄) +

∂

∂x
(hūv̄) +

∂

∂y

(
hv̄2
)

+
1

2

∂

∂y

(
gh2 cos θ

)
=

gh

(
−µ v̄√

ū2 + v̄2
cos θ

)
(Savage & Hutter, 1989, JFM)
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The Pouliquen friction law

• The law

µν(h,u) = tan δν1 +
tan δν2 − tan δν1

βνh
AνdνF + 1

• δν1 is minimum angle for the material to flow

• δν2 is the maximum angle at which steady uniform flows
can be observed

• Aν is a characteristic length scale

• βν = 0.136 (for most materials)

• dν is the diameter of the particles

• F is the Froude number
(Pouliquen, 1999, Phys. Fluids 11 (3))
(Denissen, Weinhart, te Voortwis, Luding, Gray & Thornton, 2019, JFM)
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The binary segregation equation
∂φ

∂t
+
∂

∂x
(φu)+

∂

∂y
(φv)+

∂

∂z
(φw)−Sr

∂

∂z
(F [φ]) =

∂

∂z

(
Dr

∂φ

∂z

)
where φ : is the volume fraction of small particles
u, v, w : down slope/cross slope/normal velocity components
Sr : is a dimensionless segregation rate
and Dr : is a dimensionless diffusion rate.

F [φ] = −Aφ (1− φ) (1− κ[s]φ) 1
ρ
∂σkzz
∂x

Note : In chute flows Dr/Sr ≈ 1/20 and ∂σkzz
∂x ≈ Cρg

(Gray & Thornton, 2005, Proc. Royal Soc.)
(Gray & Thornton, 2005; Gray & Chugunov, 2006, Proc. Royal Soc./JFM)
(Fan & Hill, 2011, NJP)
(Fan & Hill, 2011; Gajjar & Gray, 2014, JFM/NJP)
(Tunuguntla et al., 2017, Comp. Part. Mech.)
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Adding in segregation dynamics
• Depth integrate the 3D segregation equation
• Introduce the averages

φ̄ =
1

h

∫ 1

0
φ dz

• Assume segregation is instantaneous i.e. take the limit
Sr →∞ and that the velocity profile is
u = ū

(
α+ 2(1− α)

(
z−b
h

))
.

• Leads to

∂

∂t
(hφ̄) +

∂

∂x
(hūφ̄) +

∂

∂y
(hv̄φ̄) =

(1− α)

(
∂

∂x
(hū(φ̄− φ̄2)) +

∂

∂y
(h v̄(φ̄− φ̄2))

)
= 0.
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The fully coupled 2D system

∂h

∂t
+

∂

∂x
(hu) = 0,

∂

∂t
(αhu)+

∂

∂x

(
hu2 +

1

2
gh2 cos θ

)
= gh

(
sin θ − µ u√

u2 + v2
cos θ

)
∂

∂t
(hφ̄) +

∂

∂x

(
(huφ̄) + (1− αs)(hu(φ̄− φ̄2))

)
with

µ = φ̄µs + (1− φ̄)µl α =
1

3
(1− αs)2 + 1

and

µν(h,u) = tan δν1 +
tan δν2 − tan δν1

βνh
AνdνF + 1

(Denissen et al., 2019, JFM)
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The bulbous head solution

ε 0.1 φinflow 0.9
δs1 20◦ δs2 30◦

δl1 27◦ δl2 37◦

α 0.0 Ll = Ls 1.0
x-length 500 y-length 20

no. points x 500 no. points y 500

Movie loading please wait

Movie loading please wait
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The bulbous head solution

• By considering mass balance we can show

Ufront = Uinflow
(
1− αφ0 + φ2

0 − αφ2
0

)
Uback = Uinflow (α+ (1− α)φ0)

• Since the front consists of a pure phase of large particles its
shape is given by Pouliquen’s finger solutions. Hence

hhead = ε

[
Ufront ln

(
tan δl2 − tan δl1
tan θ − tan δl1

)]2/3

• Combination of 1D segregation solution and Pouliquen finger shape
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The bulbous head solution

(Denissen et al., 2019, JFM)
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One-dimensional travelling wave solution
We will seek one-dimenstional travelling solution. Hence
making the transformation

x̂ = x− uf t,
∂

∂y
= 0. t̂ = t

It can be shown that the equation for ū can be reduced to the
following o.d.e.

dū

dx̂
=

s(
(1− ūf )− ε cos θ

(1−uf)
(ū−uf)

2

) ,
where

s = µ
u√

u2 + v2
cos θ
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Relationships with ū and h

Once you have solved the o.d.e for ū, both h and C are similar
given by the following algebraic equations

h =
1− uf
ū− uf

.

C2 + c1C + c0 = 0

where

c1 =
αū− uf
(1− α) ū

and c0 =
ū− uf
ū

(
C0 (1− C0)

1− uf
− C0

1− α

)
.
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Solution

0

0.2

0.4

0.6

0.8

1

−20 −15 −10 −5 0 5
0.66

0.68

0.7

0.72

0.74

0.76

0

0.2

0.4

0.6

0.8

1

LARGE
SMALL

h

C

ū
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Travelling wave solution versus DGFEM

• Black line is DGFEM solution

• Blue line is a Saingier (Pouliquen) finger solution

• Red line is a segregation travelling wave solution

(Denissen et al., 2019, JFM)
(Saingier, Deboeuf & Lagree, 2016, Phys. Fluids)
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DGFEM versus particle simulations

• Black line is DGFEM
solution

• Red/green are large/small
particles from a simulation

• There are no fitting
parameters

• Parameters of model are
‘measured’

• This is very compressed the
flow is very long and thin

(Denissen et al., 2019, JFM)
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Grid dependence
So problem solved, well no.

(Woodhouse et al., 2012, JFM)
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Results
Asymptotic results for high kx show
• That for ū0 6= us to leading order eigenvalues are purely

imaginary for kx >> 1.
• However, on the curve ū0 = us σ ≈ k1/2 for kx >> 1.

• Linear stability analysis of a constant solution shows
system is ill posed on a single curve.
• Both fingering and propagating head solutions can be

formed
• The number of fingers produced is grid dependent
• However, it is linear unstable at high wave numbers
• Shallow layer of fluid on an incline has a similar problem
• System can be stabilised by adding viscous to the

momentum balance
(Woodhouse et al., 2012, JFM)
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DPM of segregation in a rotating drum
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Schematic of segregating in rotating drum

Small particles in blue
Large particles in red
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Segregating in a Rotating Triangle
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Final Patterns in Rotating Triangle
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Segregating in Rotating Cylinder
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Outline - Next Section II
Segregation in long rotating cylinders
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• Discussed definition of mixed state
• Showing different industrial mixers
• Showed a family of models for granular segregation
• Showed how to use DPM to calibrate and validate such

models
• Coupled segregation and bulk flow models
• Showed how a reduced version of this model can be applied

to rotating drums
• Consider axial patterns in long rotating cylinders
• Coupled the segregation model with shallow water

equations to consider geophysical problems
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