

Content	Institut für Partikeltechnik
 3.1 Description of grinding and dispersing results Product quality Productions capacity Results related to grinding time and specific energy 3.2 Stress mechanism and stress models Mill related stress models 	
Product related stress models Relation between model parameters	
 3.3 General application of the stress models Particles between two grinding media Estimation of stress events and frequency Estimation of stress energy and intensity Comparison of stress intensity and particle strength Specific energy and efficiency factor 	
Universitie Univer	

Content	IDAT
3.1 Description of grinding and dispersing results	
 Product quality Productions capacity Results related to grinding time and specific energy 	
3.2 Stress mechanism and stress models	
 Mill related stress models Product related stress models Relation between model parameters 	
3.3 General application of the stress models	
 Particles between two grinding media Estimation of stress events and frequency Estimation of stress energy and intensity Comparison of stress intensity and particle strength Specific energy and efficiency factor 	
Universität Braunschweig 03.05.2019 Arno Kwade Fundamental Considerations Seite 6	

Example 3	Institut für Partikeltechnik
Continuous operation	
Volume flow rate of suspension 5 l/h, solids concentration by volume 20%, solids density 2 kg/l, mill volume 1 l, grinding media filling ratio 0.8, porosity of bulk grinding media net power at stationary operation 2 kW	a 0.4
Mean residence time:	
$\bar{t} \approx rac{V_{GC} - V_{GM}}{\dot{V}_{Susp}} =$	
Specific energy:	
$E_{m} = \frac{P_{stationary} - P_{0}}{\dot{m}_{P}} =$	
Universität Braunschweig 03.05.2019 Arno Kwade Fundamental Considerations Seite 26	

Content	i PAT
3.1 Description of grinding and dispersing results	
 Product quality Productions capacity Results related to grinding time and specific energy 	
3.2 Stress mechanism and stress models	
 Mill related stress models Product related stress models Relation between model parameters 	
3.3 General application of the stress models	
 Particles between two grinding media Estimation of stress events and frequency Estimation of stress energy and intensity Comparison of stress intensity and particle strength Specific energy and efficiency factor 	
Universität Braunschweig 03.05.2019 Arno Kwade Fundamental Considerations Seite 32	

Particle str	uctures			Institut für Partikeltechnik
Primary particle	Aggregate	Agglomerate	e	Flocculate
The stress intensity required for fragmentation (grinding or dispersing) decreases				
Technische Universität Braunschweig	05.2019 Arno Kwade Fu	undamental Conside	rations Seite 34	

Stress n	umb	ber			Institut für Partikeltechnik
Deagglon	nerati	on/C)isint/	egration:	
	SN	∝_ (φ 1-φ	$\frac{p_{GM} \cdot (1 - \varepsilon)}{p_{GM} \cdot (1 - \varepsilon)) \cdot c_v} \left(\frac{n \cdot t}{d_{GM}} \right)$	(3.28)
Real grin	iding:			<u> </u>	
	SN	∞ –́(′	<u>ф</u> 1 — ф	$\frac{D_{\text{GM}} \cdot (1 - \epsilon)}{D_{\text{GM}} \cdot (1 - \epsilon)) \cdot C_{\text{v}}} \cdot \frac{n \cdot t}{d_{\text{GM}}^2}$	(3.29)
where n	[s ⁻¹]	:=	rota	tional stirrer speed	
	t	[s]	:=	grinding or dispersing time	
	ϕ_{GM}	[-]	:=	filling ratio of the grinding media	
	3	[-]	:=	porosity of the bulk grinding media	
	\mathbf{c}_{V}	[-]	:=	solids concentration by volume	
Technische Universität Braunschweig	03.05	.2019	Arno ŀ	Wade Fundamental Considerations Seite 50	

