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Introduction

Question

 Which parameters can be changed if we want to design or optimize a stirred 

media milling process?
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Important operating parameters of stirred media 

mills

1. Operating parameters of the mill
• Grinding or dispersing time 

• throughput

• Stirrer tip speed

• Grinding media size

• Grinding media material (density, elasticity and hardness)

• Filling ratio of the grinding media

2. Operation mode of the mill (One or multiple passage mode, pendulum or 
circuit operation)

3. Formulation (composition of the suspension)
• Solids concentration of the pigments

• Fluid (water, solvents, resins and so on)

• Additives or dispersing agents (Reduction of the viscosity and/or avoidance of 
reagglomeration or flocculation)

4. Mill geometry
• Type of the mill

• Size and dimensions of the mill
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Main objectives

a) Product quality, which is defined among others by

 Particle size distribution, gloss, intensity of colour, transparency

 Product purity (no contamination by wear of mill and grinding media)

 No product degradation (for example by too high temperatures)

 Stability (against reagglomeration, flocculation, sedimentation and so on)

b) Economy, which is determined above all by

 Investment costs

 Operating costs (energy, cooling water, maintenance and so on)

 Production capacity 

 Cleaning expenditure
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Description of product quality

 Depending on the industry and on the product the quality is determined for 

example by: 

• Optical (visual) characteristics of the particles or pigments respectively 

(intensity of color, glace, transparency)

• Mechanical characteristics of fillers 

• Storage stability of dispersions and suspensions 

• Reactivity of disperse solids because of larger surfaces 

• Sintering activity of ceramic materials 

 Product properties are mainly determined by the physical properties, namely 

the particle size distribution (property function) 
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Property function: 

Transmission as function of median particle size

Fig. 3.1: Relation between transmission (quality parameter) and median 

particle size
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Description of product quality

 Depending on the industry and on the product the quality is determined for 

example by: 

• Optical (visual) characteristics of the particles or pigments respectively 

(intensity of color, glace, transparency)

• Mechanical characteristics of fillers 

• Storage stability of dispersions and suspensions 

• Reactivity of disperse solids because of larger surfaces 

• Sintering activity of ceramic materials 

 Product properties are mainly determined by the physical properties, namely 

the particle size distribution (property function) 

 Particle size distribution is taken as main quality parameter 

 Product quality is described by characteristic numbers (e.g. median size x50

and characteristic size x90)
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Specific energy

 Energy transferred into the grinding chamber related to the stressed product 

mass 

 Batch operation:
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where P := mean power draw of the motor 

P0 := no-load power 

(3.2)

(3.4)
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Question

 Why is it important to minimize the specific energy consumption?
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Basic equation of production rate 

where := Solids mass throughput (solids mass flow rate)

mP,Batch := Mass of a batch 

tBatch := Production time for a batch 

P := Power draw of mill motor (gross power)

P0 := No-load power draw of mill motor (mill without content) 

PGC := Power transferred into grinding chamber (net power)

Em := Specific energy for demanded product quality
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Example 1

Determination of production capacity

 The installed motor power of the mill is 25 kW with a no-load power of 5 kW 

for the stirrer tip speed under consideration. 

 The specific energy requirement of your product (related on solids mass) for 

the given operating parameters is 100 kWh/t

 Which product mass of solids can you produce per hour with your mill?

1. net power: 25 kW – 5 kW = 20 kW

2. Production rate: 

You can produce 200 kg/h of mass of solids product per hour

t/h0.2
kWh/t100

kW20

E

PP
m

m

0
P 



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Example 2

 The demanded production rate is 1 t/h of solid product 

 The specific energy requirement of your product (related on solids mass) for 

the given operating parameters is 100 kWh/t 

 Which net power input must the mill or mills have under the assumptions, 

that the specific energy requirement is independent on mill size? 

1. net power:  

The net power required is 100 kW whereas the operating parameters of the 

production scale mill must be chosen in a way, that this net power is really 

transferred into the grinding chamber

kW100
t/h1

kWh/t 100

m

E
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m
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Question 
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 When do we get the maximum possible production rate?
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Basic equation of production rate 

 Maximum production rate is achieved, if 

• power input into grinding chamber, P – P0, is as high as possible

• specific energy for production of certain product quality, Em, is as 

low as possible.

 Minimum specific energy decreases relative mill and grinding media wear to 

a minimum

 Power input and specific energy requirement depend on several operating 

parameters like vt, dGM, rGM, cm etc.

 Problem: Finding set of operating parameters, which cause the 

highest power input P – P0 and the lowest specific energy Em

 Equation is also basis for transfer of results from laboratory mill to a 

production mill (Scale-up)
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Determination of power draw and 

specific energy

Power draw 

 Highest possible power draw of a stirred media mill is restricted by 

• installed motor power

• installed cooling capacity (in case of temperature sensitive product)

• wear of mill and grinding media. 

 Determination of operating parameters, at which the highest possible power 

draw is really transferred into the grinding chamber using relation between 

power number and Reynolds number

Specific energy

 Determination of operating parameters, at which the specific energy 

consumption for a certain product quality has a minimum value, using the so-

called stress model  
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Determination of product quality as function of 

milling time and specific energy

 Experiments give information how the product quality at different operating 

parameters depend on 

• Grinding and dispersing time

• Specific energy.

 Experiments show how 

• Power draw 

• Throughput behavior

• Cooling behavior

• Wear behavior

depend on the operating parameters.

 Different possibilities to run a grinding or dispersing test

03.05.2019 | Arno Kwade       Fundamental Considerations | Seite 20

Different possibilities to run a test

1. Batch operation

2. One Passage mode
      (continuous operation)

3. Multiple passage

4. Circuit operation (with stirred vessel)

Sample

2,4,...passage pendulum

1,3,... passage

1,3,... passage

2,4,...passage pendulum

Fig. 3.2



11

03.05.2019 | Arno Kwade       Fundamental Considerations | Seite 21

Different possibilities to run a test

1. Batch operation

2. One Passage mode
      (continuous operation)

3. Multiple passage

4. Circuit operation (with stirred vessel)

Sample

2,4,...passage pendulum

1,3,... passage

1,3,... passage

2,4,...passage pendulum

Fig. 3.2

03.05.2019 | Arno Kwade       Fundamental Considerations | Seite 22

Different possibilities to run a test

1. Batch operation

2. One Passage mode
      (continuous operation)

3. Multiple passage

4. Circuit operation (with stirred vessel)

Sample

2,4,...passage pendulum

1,3,... passage

1,3,... passage

2,4,...passage pendulum

Fig. 3.2



12

03.05.2019 | Arno Kwade       Fundamental Considerations | Seite 23

Mean milling time for different operation modes

 Discontinuous operation (i.e. no flow through grinding chamber) 

 Continuous operation (e.g. one passage mode)

 Batch operation (circuit or pendulum operation)
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(3.3)
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 Discontinuous Operation (i.e. no flow through grinding chamber) 

 Continuous operation (e.g. one passage mode)

 Batch operation (circuit or pendulum operation)

Specific energy for different operation modes
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Example 3

Discontinuous operation

 Grinding time 20 min, Mass 1 kg, net power 2 kW

 Mean residence time: 

 Specific energy: 
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Example 3

Continuous operation

 Volume flow rate of suspension 5 l/h, 

solids concentration by volume 20%, solids density 2 kg/l, 

mill volume 1 l, 

grinding media filling ratio 0.8, porosity of bulk grinding media 0.4

net power at stationary operation 2 kW

 Mean residence time: 

 Specific energy: 
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Example 3

Batch operation (circuit or pendulum operation)

 Grinding time 10 h, 

solids concentration by volume 20%, solids density 2 kg/l, 

mill volume 1 l, suspension volume 50 l 

grinding media filling ratio 0.8, porosity of bulk grinding media 0.4

net power 2 kW, Grinding time 10 h

 Mean residence time: 

 Specific energy: 
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Question

 What diagrams would you plot after running the grinding or 

dispersing tests?



15

03.05.2019 | Arno Kwade       Fundamental Considerations | Seite 29

Product fineness as function of specific energy 

(linear scale)

Fig. 3.3
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Product fineness as function of specific energy 

(log-log scale)

Fig. 3.4
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Product fineness as function of grinding time 

(log-log scale)

Fig. 3.5
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Resistance against fragmentation

(dispersing and grinding)

 Strength of particles (primary particles and particles collectives as for 

example aggregates) depends on  

• Particle structure 

• Binding and adhesion forces between nanoparticles  

• Size of the particle collectives and primary particles 

• Particle structure

K.Borho et al.: Produkteigenschaften und Verfahrenstechnik, 

Chem.-Ing.-Tech. 63 (1991), 8, pp. 792-808
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Particle structures  

Primary particle Aggregate Agglomerate Flocculate

The stress intensity required for 

fragmentation (grinding or dispersing) decreases
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Resistance against fragmentation 

(dispersing and grinding) 
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Different stress mechanism

b) by shearing on one surface
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Stress mechanisms in different dispersing machines

1) shear stress

2) compression stress 
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Basic idea of stress models  

Practical example

 Smashing a stone with a hammer into pieces

 Different possibilities to hit the stone

 Small or large hammer

 Low or high speed 

 One or more hits 
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Two different points of view

 What is the hammer doing?

I. How often does the hammer 

strike (independent on 

number of stones)?

 Frequency of strokes  

II. How strong are the strokes?

 Energy of the hammer

 Mill related model 

 What happens with the stone?

I. How often are the stone and 

the resulting fragments hit?

 Number of hits

II. What are the intensities 

of the hits?

 Specific energy supply

 Product related model 
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Mill related stress model

 The grinding behaviour of a mill is determined by

• the type of stress (e.g. impact or compression and shear)

• frequency of strokes or stress events

 stress frequency, SFM

• the energy made available at each stress event  

 stress energy, SE

 Total number of stress events:   SNM = SFM · tc

where tc is comminution time for a certain product quality

 Stress energy is not constant for all stress events

 Frequency distribution of the stress energy

(3.13)
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Density function of stress energy 
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Product related stress model

 The product quality and fineness achieved in a grinding or dispersion 

process is determined by 

• how the feed particles and the resulting fragments are stressed 

 type of stress (e.g. impact or compression and shear)

• how often each feed particle and the resulting fragments are stressed     

 stress number per feed particle, SNF

• how high the specific energy or specific force at each stress event is

 stress intensity, SI

 Number of stress events and stress intensities are not constant for all 

particles and can only be characterized by distributions

 The stress intensity determines, how effective the specific energy 

transferred to the product is transposed into product quality and product 

fineness.
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Macroprocess - Relation of stress energy and 

stress number with specific energy

E   = 
m

SE  SN
 = 

m

SE

 = E Mm,E
totP,

t

totP,

i

SN

1=i
Pm,

t







SE1

SE2

SE4

SE3

Em,M

Em,P E

where Em,M := Specific energy input into grinding chamber

Em,P := Specific energy transferred to product particles

E := Energy transfer factor

(3.16)
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Relation between model parameters and 

specific energy consumption 

Grinding and dispersing result is constant, if  

• Specific energy Em,P = E  Em,M  SNM  SE 

and 

• Stress energy SE

are constant.

 
V  

SE  SF
 = 

V  

P
 = 

V

P

GCE

M

GCE

P

GC

M







Power density

where PP [J/s] := power available for the product

E [-] := energy transfer factor

PM [J/s] := power consumption of the mill

(3.18)
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Number of stress events

Number of stress events of each feed particle and the resulting fragments, SN: 

P

SC

N

PN
SN




where Nc := Number of grinding media contacts

PS := Probability, that a particle is caught and sufficiently stressed

NP := Number of feed particles in the process

Probability, that a particle is caught and sufficiently stressed:

2

GMS dP 

GMS dP 

Desagglomeration/ Desintegration:

Real grinding:

(3.23)

(3.25)

(3.26)
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Stress number

Deagglomeration/Disintegration:

Real grinding:

GMvGM
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c))1(1(

)1(
SN


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
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2

GMvGM
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d

tn

c))1(1(

)1(
SN









where n [s-1] := rotational stirrer speed

t [s] := grinding or dispersing time

GM [-] := filling ratio of the grinding media

 [-] := porosity of the bulk grinding media

cV [-] := solids concentration by volume

(3.28)

(3.29)
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Energy and intensity of stress events

Kinetic energy is consumed for

• Displacement of the suspension between two grinding media 

• Deformation of the grinding media during stressing  

• Deformation and stressing of the product particles 

2

2

1
vmE GMkin 

232

62

1

2

1
vdvmE GMGMGMkin  r


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Stress energy of the grinding media

 Conditions

• Only one particle is stressed intensively

• The tangential velocity of the grinding media is proportional to 

the stirrer tip speed 

• The mill geometry and size is constant

• The displacement of the suspension does not result in a 

decrease of grinding media velocity 

• The elasticity of the product particles is much higher than the 

elasticity of the grinding media

 Definition of the stress energy of the grinding media

SE  SEGM = dGM
3 · rGM · vt

2

 SEGM is a measure for the real maximum stress energy in the 

grinding chamber

(3.30)
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Example 4

 Calculation of stress energy of grinding media 

a) Grinding media size 1 mm, grinding media density 6000 kg/m3, Stirrer tip 

speed 10 m/s

SEGM = dGM
3 · rGM · vt

2 = (110-3 m)3  6000 kg/m3  (10 m/s)2

= 10-9  6000  100 kg m2 / s2 = 6  10-4 J = 0.6 mJ 

b) Grinding media size 2 mm, grinding media density 6000 kg/m3, Stirrer tip 

speed 10 m/s

SEGM = dGM
3 · rGM · vt

2 = (210-3 m)3  6000 kg/m3  (10 m/s)2

= 8 10-9  6000  100 kg m2 / s2 = 48  10-4 J = 4.8 mJ 
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Stress energy of products with low elasticity
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Stress energy of products with low elasticity

1

GM

P2

tGM

3

GMPmax,P,V
El

El
1vdSEE











r

1

GM

P

GMP

GM

max,GM,Vmax,P,V

max,P,V

rel,P
El

El
1

ElEl

El

EE

E
E



















Part of the energy, which is transferred to the product particles:

Measure for the stress energy transferred to the product:

(3.32)

(3.34)
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Effect of the Young modulus of grinding media on 

the part of energy transferred to the product
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Stress intensity at two important stress 

mechanisms

 Shear stress in a fluid (laminar flow) 

 Compression stress between two surfaces (grinding media)
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