
Faculty of

Engineering Technology

Programming in Engineering

Stefan Luding, Anthony Thornton

edition: 2010

Contents

Contents i

Preface vii

Acknowledgement vii

History vii

A C++ 1

1 Introduction to C/C++ 2

1.1 Objective of the course . 2

1.2 Installation of a C++ compiler/GUI . 2

1.2.1 Windows XP . 3

1.2.2 Windows VISTA/ Windows 7 . 3

1.2.3 MAC . 4

1.3 A short history of C/C++ . 4

2 Programming-style 5

2.1 Comments (see also §3.1) . 5

2.2 Clear style . 6

3 The basics 7

3.1 Language Elements . 7

– i –

Contents ii

3.2 Data-types, Variables, Constants . 10

3.2.1 Numbers . 10

3.2.2 Basic data-types and their declaration 11

3.2.3 Variable-attributes . 13

3.2.4 string type . 13

3.2.5 String stream . 14

3.2.6 Life-time and position in memory . 15

3.2.7 Fields . 16

3.2.8 Valarray . 17

3.3 Summary . 18

4 Decision structures 20

4.1 The if-command . 20

4.2 The ternary ?: operator . 21

4.3 switch-command . 22

5 Loop control structures 23

5.1 (do) while-loops . 23

5.2 for-loops . 24

5.3 break and continue . 24

5.4 goto-command, labels . 25

6 Functions and Operators 27

6.1 Transfer of arguments . 29

6.1.1 Example of passing by reference . 29

6.2 Functions without arguments or return value – void 30

6.3 Libraries . 31

6.4 Operators . 32

6.4.1 Arithmetic operators . 32

6.4.2 Comparison and logical operators . 33

6.4.3 Further operators . 34

Contents iii

6.5 inline functions . 34

6.6 Overloading of functions . 34

7 Pointers, pointer-field duality, and references 37

7.1 Pointers . 37

7.1.1 Pointer to void . 40

7.2 pointer-field duality . 40

7.3 Transfer of field-variables to functions . 41

8 I/O (Input and Output) 45

8.1 Elementfunctions of iostreams . 45

8.2 Formatting . 46

8.3 Files . 47

9 Some advanced topics 49

9.1 Dynamical Memory Management . 49

9.2 Object Oriented Programming . 50

9.2.1 Example of Object Oriented Code involving Classes 50

9.3 Organisation implementation and header-files 52

9.3.1 Compiling and linking . 53

10 Literature and longer exercises 54

10.1 Further reading . 54

10.2 Exercises C/C++ . 55

B MATLAB 60

11 Getting started with Matlab 61

11.1 Input via the command-line . 61

11.2 help-facilities . 64

11.3 Interrupting a command or program . 65

Contents iv

11.4 Path . 65

11.5 Workspace issues . 66

11.6 Saving and loading data . 66

11.7 Exercises . 67

12 Basic syntax and variables 68

12.1 Matlab as a calculator . 68

12.1.1 An introduction to floating-point numbers 69

12.1.2 Assignments and variables . 70

12.2 Exercises . 72

13 Mathematics with vectors and matrices 73

13.1 Vectors . 73

13.1.1 Colon notation . 74

13.1.2 Extracting and appending parts of a vector 74

13.1.3 Column vectors and transposing . 75

13.1.4 Product, divisions and powers of vectors 76

13.2 Matrices . 78

13.2.1 Special matrices . 80

13.2.2 Building matrices and extracting parts of matrices 81

13.2.3 Operations on matrices . 83

13.3 Exercises . 85

14 Scripts 89

14.1 Script m-files . 89

14.2 Exercises . 90

15 Visualization 91

15.1 2D plots . 91

15.2 Several functions in one figure . 92

15.3 Adding text . 94

Contents v

15.4 Editing plots . 94

15.5 Changing the axis . 95

15.6 Exporting graph . 96

15.7 Plotting surfaces . 96

15.7.1 Contour plots . 97

15.8 3D line plots . 98

15.9 Animations . 98

15.10Exercises . 99

16 Control flow 101

16.1 Logical and relational operators . 101

16.1.1 The command find . 103

16.2 Conditional code execution . 105

16.2.1 Using if ... elseif ... else ... end 105

16.2.2 Using switch . 107

16.3 Loops . 108

16.4 Evaluation of logical and relational expressions in the control flow structures . 110

16.5 Exercises . 111

17 Functions 113

17.1 Function m-file . 113

17.1.1 Subfunctions . 116

17.1.2 Special function variables . 116

17.1.3 Local and global variables . 117

17.1.4 Indirect function evaluation - optional 117

17.2 Scripts vs. functions . 119

17.3 Exercises . 119

18 Writing and debugging Matlab programs 122

18.1 Structural programming . 122

18.2 Debugging . 124

Contents vi

18.3 Recommended programming style . 125

19 Cell arrays and structures - optional 127

19.1 Cell arrays . 127

19.2 Structures . 128

20 File input/output operations 131

20.1 Text files . 132

20.2 Working with Excel . 134

21 Numerical analysis 135

21.1 Differentiation . 135

21.2 Integration . 137

21.2.1 Matlab commands . 137

21.3 Solving differential equations - The ODE toolbox 139

21.3.1 1st order ODE . 140

21.3.2 Systems of ODE . 141

21.4 Exercises . 142

22 Exercises Day 1 144

22.1 Matrices and Vectors . 144

22.2 Visualization . 146

23 Exercises Day 2 148

Contents vii

Preface

The manuscript contains a short introduction into the interpreter language Matlab and the
object-oriented compiler language C++ extended by different small and larger exercises.

It consists of two parts : First part an introduction to C++ and second part Matlab . Both
parts are self-contained, but cross-references and similarities are highlighted.

Therefore, students who are interested in self-study, could begin either with the C++ or the
Matlab part. Within both chapters, you will find small examples. These examples can be
used for self-evaluation. At the end of the C++ and the Matlab chapter, you will find various
larger exercises similar to the exercises of the final assignment.

Acknowledgement

This work includes material from “Programming in Engineering” by Stefan Luding, Holger Steeb
& Katja Bertoldi (University of Twente) and “Introduction to Matlab” by Elżbieta Pȩkalska
(Delft University of Technology) with contributions from Hans Zwart (University of Twente).
The respective authors have given us permission to re-use their work.

History

Version 1.0 The manuscript was compiled for the 10-day sumer course Programming in En-
gineering, July - 18 July 2008.

Version 1.1 Updated for self-study purposes, 3 September 2008

Version 1.2 Compiled for the 10-day summer course Programming in Engineering, 6 July-17
July 2009. This version also used for self-study program beginning 2 September
2009.

Version 1.3 Extended and updated by Stefan Luding and Anthony Thornton, for the 10-day
summer course Programming in Enginerring 5 July - 18 July 2010. This version
also will be used for self-study program beginning 30 August 2010.

September 13, 2010 Stefan Luding
Anthony Thornton

Part: A
C++

– 1 –

Chapter 1

Introduction to C/C++

1.1 Objective of the course

The goal of this short course in C/C++ is not to become a perfect C/C++ programming guru.
For this we refer to special courses and a broad range of expert literature – see below in section

The goal of this introduction to C/C++ is to better understand computer hardware and software,
to perform basic tasks, operations, and programming within the framework of the programming
language C/C++. Goal of this course is to first install yourself an advanced Graphical User
Interface (GUI) software toolbox like DEV-C++ and make you understand simple C/C++
programs, allow you to write own code, and to get used to error-searching/debugging of code.

First of all you need a C++ compiler. On UNIX, LINUX and MAC systems this should be
installed already. (If not, install the g++ compiler and debugger.) On MS-Windows you have to
follow the instructions in section 1.2.

1.2 Installation of a C++ compiler/GUI

There are many commercial C++ compilers for various operating systems available. While many
Unix-type operating systems like modern Linux distributions have C++ compilers and debuggers
embedded (g++ and gcc), this is not the case for a MS-Windows systems like Microsoft Windows
XP or Microsoft Vista. Nevertheless, you can use the following open source GUI-based C++
compiler (GNU General Public License (GPL)) on a MS-Windows system.

– 2 –

1.2. Installation of a C++ compiler/GUI 3

1.2.1 Windows XP

� Download.
Go to: http://sourceforge.net/projects/dev-cpp/ and click on:
Download Dev-C++. Download the Binaries package devcpp-4.9.9.2 setup.exe.

� Installation.
Double click on the setup file. On the Choose components window,
select the Full type of installation.

� First time configuration.
Accept all the default configurations.

A very useful tool is to have line numbers displayed.
Tools → Editor options → Display → Line numbers

In case the linker does not find some functions, you have to set the following command
line options.
Tools → Compiler options
and insert -lm -l . into both fields and activate the input.

� Ready to start.
First create a new C++ source file and save it under the name e.g. test.cpp.

1 #include <cstdlib >

2 #include <iostream >

3 using namespace std;
4 int main(int argc, char * argv[])
5 {
6 system("PAUSE");
7 return EXIT SUCCESS;
8 }

Alternatively, you can create a new project:
File → New → Project → Console Application.
At this point the project is created with a main file in it. You need to save the main file
under the name e.g. test.cpp. Then you have the leave the project and open the source
file (projects are much too complicated/overshooting for our purposes - we recommend to
avoid them). Then you can compile it and run it!
Furthermore, you can try to modify the file and compile and run it.

1 cout <<"hello!" << endl;
2 system("PAUSE");
3 return EXIT SUCCESS;

1.2.2 Windows VISTA/ Windows 7

Here is the solution to install Dev-C++ under windows Vista.

http://www.techsupportforum.com/pro/programming/186469-good-free-

vista-compatible-c-compiler.html

1.3. A short history of C/C++ 4

Re: Good, Free, Vista-Compatible C++ Compiler

I had the same problem, looked around, and found one that really works great for

me. It’s the Dev-C++, however, it’s the beta version of one. The regular one didn’t

work for me. This is what it’s called:

Dev-C++ 5.0 beta 9.2 (4.9.9.2) (9.0 MB) with Mingw/GCC 3.4.2

you can find it here, just scroll down a little, should be the first one under downloads,

hope that helps

http://www.bloodshed.net/dev/devcpp.html

1.2.3 MAC

For the MAC you need to download and install Xcode. This comes with g++ compiler and a
development environment called Xcode. Unfortunately you have to register with apple to be
able to download the package (only takes ten minutes). For more information
http://developer.apple.com/technologies/tools/xcode.html

1.3 A short history of C/C++

C was developed in the 70’s by K. Thompson, B. Kernighan, and D. Ritchie, and was introduced
together with the operating system UNIX. Today, LINUX is the free derivate of UNIX, and like
its ancestor is based on C, i.e., the operating system is – in big parts – written in C. The original
goal was a standardized language for the structured programming. However, the so-called ANSI-
standard was only introduced as late as 1988 as ANSI-C.

C++ can be seen as an extension of C, developed, propagated and introduced between 1983
und 1985 by B. Stroustrup. Besides the goal to develop a higher, object oriented language,
down-ward compatibility with C was desired. Therefore, C is to be seen as a fraction/part of
C++. The ANSI Standard for C++ was only fixed in June 1998. In the framework of this
course, we will use C++ syntax whenever this is simpler than C, e.g. for I/O (input/output).

Some reasons for the use of C/C++ are

� it is free! (e.g. g++ compiler or DevC++ environment)

� it is system-independent – applicable also on super-computers

� it is rather low level – close to the operating system

� it is extendable, re-usable, and robust, ...

Chapter 2

Programming-style

This section briefly discusses some issues related to a good style of programming. Good style
means that programs are simple and easy to read. It involves some rules like indentations that
make the program also optically structured and, finally, it involves comments that describe in
words what the program is doing.

Note that a good style does not only help other people reading and understanding your program,
it also will help you to understand your own program – after you have not looked at it for a
while. Think not of the few 100 lines we will write in this course, think of several 10,000 lines
of code that a programmer can write during a thesis for example.

In “real life” people do NOT spend most of the time with programming itself, but with debug-
ging (error-search), updates, changes, optimization and re-using of existing codes and code-
fragments. For these tasks, a clean, proper, and consistent style is not only helpful, but abso-
lutely necessary.

This is – by the way – true for all programming languages, including MATLAB.

2.1 Comments (see also §3.1)

There are two things a program should do: First, it tells the computer what to do and, second,
it also tells the (human) reader of the program what it does.

A working program without comments is a time-bomb. Even the simplest ideas flowing into
the program will be forgotten after some time ... and without comments, a program can not be
re-used. Without comments, a program cannot be understood or changed so that either it has
to be program anew, or a lot of time is spent re-understand the exciting program; both are a
waste of time.

– 5 –

2.2. Clear style 6

In C++ there are two types of comments.

The first, traditional comments begin with /* and end with */. They can enclose single charac-
ters or many lines and are most convenient for larger comments, or for making old code invisible
to the compiler.

The alternative comment begins with two slash // and ends automatically at the end of a line.
It can start anywhere in the line and is thus convenient for commenting on single commands.

As a suggestion, each program should contain at the beginning:

� Header
Name of program and what is it supposed to do.

� Author
Author and (e-mail) contact address

� Date
Date of changes

� How to use the program
Here the mode of usage is described

� Files (I/O)
Input data file format and output data-files

� Restrictions
Are there, e.g., restrictions to the input-data-files?

� Revisions
Dates and type of changes performed

� Error-management
What happens when a program detects an error

� Other remarks
...

2.2 Clear style

A program should be read like a thesis or a scientific paper. It should contain an introduction,
like the header-comments above, and it should be clearly separated in chapters, paragraphs, etc.
with clear boundaries. Comments can be used as a way to optically separate paragraphs within
the program.

Chapter 3

The basics

3.1 Language Elements

The first language element are comments. They do not affect the function of the program or
the computer – they enhance the understanding of the program when read by another (human)
user. A comment is everything between ’/*’ and ’*/’ or after ’//’.

The second essential element are data, i.e., counters, physical constants, variables, etc. It is
necessary to first tell the computer which data are required for the program to work. This could
be done anywhere in the program, however, it is neither efficient nor clean or clear programming.
It is recommended to define data (only) at the beginning of a function/program. Exceptions to
this rule will be discussed below.

Operators, Control Structures, and Functions are required to manipulate the data. Examples for
operators are the basic computations +, -, *, or /. However, there are many more as summarized
in the following table and discussed in more detail later in this script.

expression short-form for:

x += y x = x+y

x -= y x = x-y

x *= y x = x*y

x /= y x = x/y

x %= y x = x%y

Table 3.1: Short expressions and the long form they replace

Examples for control structures are for- and while-loops, situation dependent execution with
if, else if, and else structures, block begin- and end-brackets { ... } and many others
as defined in the next subsections.

– 7 –

3.1. Language Elements 8

operator evaluation from

:: left to right
() [] -> . X++ X-- typeid XXX_cast<TYPE>() left to right
! ~ ++X --X + - * & (TYPE) sizeof new delete right to left
.* ->* left to right
* / % left to right
+ - left to right
>> << left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
= *= /= %= += -= <<= >>= &= |= ^= right to left
?: right to left
throw –
, left to right

Table 3.2: Priority and associativity of operators

Examples for functions are the trigonometric functions sin and cos, but functions can also be
user-defined groups or sequences of operations that are repeated many times. Use of functions
makes the program shorter and better readable.

Note that the so-called main program main() is also a function – it is always called main. (That
means no other function can use this name.) Begin and end of a function are marked by the
curly brackets ‘{’ and ‘}’.

The next class of language elements are those used for the communication between the user and
the computer, the so-called I/O (input/output) functions and operators. In C/C++ normed
libraries exist already that contain the definitions of the I/O commands.

The simplest way of I/O is output on the screen and input via the keyboard. The next way
– especially when a lot of information has to be input into the program or is returned – is via
data-files (for both input and output).

Finally, there are organisational elements, that do not per-se belong to the programming lan-
guage, but can be used for management of the program before compilation and execution, e.g.,
by the so-called pre-processor. This allows to shorten and clarify the program by just moving
big, un-clear code-fragments out of the program, or by conditionally selecting alternative parts
of the code.

The first program (DevC++ New Program) looks like:

#include <cstdlib>

#include <iostream>

3.1. Language Elements 9

using namespace std;

int main(int argc, char *argv[])

{

system("PAUSE");

return EXIT_SUCCESS;

}

� The first lines include libraries #include <iostream> and #include <cstdlib>, get the
definitions from the standard libraries for I/O and standard C-routines and functions. The
former are required for input and output of text and numbers, the latter contain various
helpful and necessary tools. This line must be situated at the beginning of each main-
program – outside of the main()... function. This library contains operators/functions
like ‘cin’, ‘cout’, ‘<<’ or ‘>>’.

� The command using namespace std imports all symbols (like cin or cout) from names-
pace std. Such namespaces in C++ are used, to separate algorithms from different li-
braries. A command cout from another namespace, e.g., a self-defined one, cannot be
used anymore. This is supposed to help against confusing names for functions: in prin-
ciple, C++ allows “overloading”; event though this provides an enormous freedom, it is
better to avoid it in order to avoid confusion. In general, we will use the C++ standard
libraries, whereas for using C-functions, the command using is explicitly needed.

Note: You can also import individual symbols, for example using std::cout imports the
command cout from the std namespace. We will see what this command does in §4.1

� The command main(...) is a function of type Integer int. Every program contains at
least one such function (there can be much more functions, but only one special “main”.
The terms in brackets are used to transfer parameters to the function main, however, we
delay the discussion of this to later.

� return EXIT_SUCCESS; returns the value of 0 to the calling program, i.e., to the operating
system. EXIT_SUCCESS is defined in the standard library as integer with value zero. Zero
is the common return value if the function finished without errors.

� The brackets {...} enclose the main-program, i.e. the commands, the main function
main(...) consists of. In general, program blocks are enclosed by these curly brackets,
and each begin-bracket { must be accompanied by an end-bracket }.

� The command system("PAUSE"); writes the word “Pause” to the screen and then waits
for a key-stroke from the user. This is a convenient way to stop the program before it
completely ends and disappears from the screen.

Note : This is a windows only command, in linux or on a MAC your program will run in
a terminal anyway so the final output can always be seen.

� Note that every command has to be ended by a semicolon ‘;’. This is because a new line
alone is not the beginning of a new command or program element. It is better to not use
several ‘;’ within a single line in order to keep the program clean and readable. Since
the semicolon has the function to separate two commands, it is not found at the end of
program-blocks, that are already clearly terminated by the end-bracket of the pair {...}.

3.2. Data-types, Variables, Constants 10

3.2 Data-types, Variables, Constants

3.2.1 Numbers

Computers process numbers (and also symbols) in binary representation. The binary system was
developed by G.W. Leibniz when studying Chinese letters. Based on the binary representation,
also octal (3 bits) or hexa-decimal (8 bits) representations are used in the computer.

Example – if you really want to know:
The number 496 can be represented in the following ways (where the subscript indicates the
type of representation, and the superscipt are mathematical powers):

49610 = 4 · 102 + 9 · 101 + 6 · 100

= 1 · 28 + 1 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20

= 1111100002

= 7 · 82 + 6 · 81 + 0 · 80

= 7608 = 0760 (in C++)

= 1 · 162 + 15 · 161 + 0 · 160

= 1F016 = 0x1F0 (in C++) (3.1)

The number 5 is much simpler:

510 = 5 · 100

= 1 · 22 + 0 · 21 + 1 · 20

= 0000001012

= 0 · 81 + 5 · 80

= 58 = 0005 (in C++)

= 0 · 161 + 5 · 160

= 00516 = 0x005 (in C++) (3.2)

Numbers x in floating-point representation (0.496e+03) are transformed to fixed-point notation
using the formula

x = mbe (3.3)

with the “mantissa” m (here 496), the basis b (b = 10 could be also b = 2, 8, 10, 16), and the
exponent e (here 3). The in-fact implementation of floating-point numbers is machine/processor-
dependent and will not be discussed here.

Exercise #2 is related to this paragraph ...

3.2. Data-types, Variables, Constants 11

3.2.2 Basic data-types and their declaration

The most basic built-in data-types in C++ are: bool, char, int, float, double. Histori-
cally the processors were optimized to deal with those – however, the development of processors
has progressed so much that also other data-types are efficiently treated. Usually, a compiler
can optimize a code such that a user does not feel anymore the difference between different types
of data.

The type bool is a logical data-type that can be used, e.g. to deal with the result of a logical
comparison using logical operators, see Sec. (6.4). It can only have two values true or false.
Furthermore, its freely transformable to data-type int, where true corresponds to 1 and false

to 0. This transformation was introduced for compatibility reasons, to old programs where
instead of bool just int’s was used. Some simple declarations are:

bool test; // declare test

test = (0 < 5); // comparison with result true

// test is set to true

int i(test); // i is declared and set to 1

int j=0; // j is declared and set to 0

Initialisation/Construction of a variable can be performed as type variable = type constant or
equivalently as type variable(type constant). (For experts: The equal symbol ’=’ here is not the
setting of the variable, since this was just created; technically, here is not the set-to Operator
’=’ called, but a copy-operator.)

The type int is that type that is recognized by the compiler (i.e. the compiler-programmer)
as most appropriate for dealing with integer numbers. Its size is not fixed in the standard.
However, with help of the operator sizeof, one can determine the size of a type int in units of
a data-type char, which is also the smallest data-type (again, selected by the compiler as most
appropriate for single letters).

Different computers also support further integer data-types, e.g., 16, 32, or 64 bits large. These
are defined using short and long or (not ANSI conform) long long. The longer form of
declaration short int and long int is not required. Note that an integer variable always has
an integer value – even if one assigns a real (floating-point) value to it.

Examples for integer declarations are:

bool test; // declare test

test =(0 < 5); // (see above)

int i(test); // i is declared and set to 1

int j=0; // j is declared and set to 0

long l, n, m; // l, n, and m are declared "long"

short s1, s2; // s1 and s2 are declared "short"

cout << sizeof(test) << " "

<< sizeof(i) << " "

<< sizeof(l) << " "

3.2. Data-types, Variables, Constants 12

<< sizeof(s1) << endl; // check size of: test, i, l, s1

i = 37;

j = 38.5674; // ATTENTION

cout << i << " " << j << " " << i/j << endl;

// this leads to output: 37 38 0

The data-types float and double are the single- and double-precision floating point data-types
that are implemented optimally in the processor. The type-specifier long can be used to modify
double in order to get quad-precision (if supported). The in-fact representation of floating-point
numbers is hardware dependent, e.g., in 1998 at least the double-precision basic operations were
hard-ware implemented. Nowadays, with 64-bit processors more and faster operations with
larger numbers are possible. Type float should only be used if memory is a problem, since for
the (processor) operations, often float has to be modified to double.

C/C++ does not specify how variables are represented in memory and the use of memory is not
specified per type either. However, at least the relations:
1 = sizeof(char) = sizeof(bool)

≤ sizeof(short) ≤ sizeof(int) = sizeof(unsigned) ≤ sizeof(long)

and
sizeof(float) ≤ sizeof(double) ≤ sizeof(long double) are always true.

In general, on UNIX-machines, int-variables are 32, short 16, and char 8 bit long. Double-
precision double requires 64 bit, and float only 32 bit. The values that are used are different
from machine to machine, but also can be different from compiler to compiler.

In the following example, different data-types are declared:

#include <string>

using string; // Define this at the very beginning

char c1 = 'x'; // one character: 'x'

char c2[] = "hello"; // text array with 5 characters

// (note: length is 6 due to added '\0')

string str("hello"); // the C++ way, arbitrary length strings

// (note: length is 5 - no added '\0')

char c3 = '\n'; // the new-line character

int i_var; // integer variable with name i_var

long int il_var = 1; // long constant

long int jl_var = 1L; // another long constant

short is_var; // short integer variable (int per default)

double d_var = 34.2; // real number 34.2 with double precision

Note that for char variables single characters can be enclosed by two apostrophes ', where as
longer chains of characters must be enclosed by a double apostrophe ". Above, the variables
c1 and c3 both have length unity (1), whereas the chain "hello" is accessible in the “field” c2

and has length 6, since during its declaration, automatically, a symbol '\0' is added. (Try the
definition char c2 = 'hello'; that will lead to an error.) More flexible is the C++ method to

3.2. Data-types, Variables, Constants 13

use string, which do not need the terminator '\0'. Note that for strings, the standard-library
string must be included, see above.

For a computer there are three types of single quotes, left quotes ‘, right quotes ’ and straight
quotes '. Characters must be enclosed by two straight quotes or your code will not compile.
Some operating systems try and be clever and insert ‘ the first time you ask for a quote and ’
the second time. If you get this problem turn off sticky keys on your operating system and it
should disappear.

Declaration of variables is not limited to the beginning of a block, but can be done everywhere
at first occurrence of a variable – be it clear, useful, and efficient or not.

Important and useful is the declaration within a for(;;) loop, as discussed in more detail later:

double a;

cin >> a; // input a via keyboard

int i_trunc = a; // throw away the fractional part

for (int i=0; i < i_trunc; i++)

{

...

}

In the above program, the variable i is outside of the for(;;) loop not existent, i.e., neither
before nor after.

Summary
(i) Declarations can be located at arbitrary position in the program
(ii) Initialisation with () or = form
(iii) sizeof(type) can be used if the size of a type must be known, e.g., for portability between
different computers/architectures.

3.2.3 Variable-attributes

Besides the attributes short or long integer variables can be also modified by signed and
unsigned, that allow to use integers (positive or negative) or exclusively positive integers, re-
spectively. The int can be dropped here.

Exercise 3.1.
Write a problem to find out the size of variables of different types on your computer. �

3.2.4 string type

String objects are a special type of container, specifically designed to operate with sequences of
characters. Each character of the string can be access using the [] operator i.e.

string a;

3.2. Data-types, Variables, Constants 14

a="Hello";

string b;

b=a[2];

cout << b <<endl;

would write out the letter ‘l’ , recall c++ arrays start numbering at 0.

Additional with the + operator can be used to concatenate two strings together, for examples

string a,b,c;

a="Hello ";

b="World";

c=a+b;

cout << c << endl;

would produce ‘HelloWorld’.

Note: The function c_str() returns a const pointer to a regular C string, identical to the current
string. The returned string is null-terminated. This is often required because a lot of routies
require C strings not C + + strings to be passed to them.

3.2.5 String stream

Stringstream provides an interface to manipulate strings as if they were input/output streams.
It is located in the header called sstream as you would expect from the other stream names, but
the type is called stringstream.

This is described here, after string for ease of finding, but iostreams are described in more detail
in chapter 8, so please refer to this section for a more detailed explanation of streams.

Below is a small example code that creates a filename by passing information into a stringstream
and re-extract the string at the end.

#include<sstream>

#include<fstream>

#include<iostream>

stringstream file_name;

stringstream problem_name("my_problem");

ofstream script_file;

file_name << problem_name.str() <<".disp";

script_file.open((file_name.str()).c_str());

The key commands are << which adds data to the stringstream this can be any type for which
the << operator is defined. The .str() method return a traditional C + + string, see section
3.2.4 were .c_str() is also described.

3.2. Data-types, Variables, Constants 15

The nice thing about stringstreams is they automatically deal with type conversion. For example
the code below will convert a string to int via a stringstream.

#include <iostream>

#include <sstream>

using namespace std;

int main()

{

int a;

string s = "456";

istringstream sin(s);

sin >> a;

cout << a << endl;

return 0;

}

3.2.6 Life-time and position in memory

auto If there is no further declaration, variables are automatic. This means they are con-
structed as soon as the program reaches the line where they are declared. As soon as the
program leaves the block where they are declared, the memory is freed again. (The block is, in
general, the inner-most enclosing pair of brackets, or like in the case of a for(;;) loop, the end
of this object.) For experts: Variables of this type are usually assigned by the compiler to the
so-called stack. The value of such a variable is random! if not explicitly assigned or initialized.
Thus make sure to initialize your variables!

Aside: stacks, heaps, etc.
In computer science, a stack is a last in, first out (LIFO) abstract data type and data struc-
ture. A stack can have any abstract data type as an element, but is characterized by only two
fundamental operations, the push and the pop. The push operation adds to the top of the list,
hiding any items already on the stack, or initializing the stack if it is empty. The pop operation
removes an item from the top of the list, and returns this value to the caller. A pop either reveals
previously concealed items, or results in an empty list. (See Wikipedia for further reading).
A queue is a particular kind of collection in which the entities in the collection are kept in order
and the principal (or only) operations on the collection are the addition of entities to the rear
terminal position and removal of entities from the front terminal position. This makes the queue
a First-In-First-Out (FIFO) data structure. (See Wikipedia for further reading).
In computer science, a heap is a specialized tree-based data structure that satisfies the heap
property: if B is a child node of A, then key(A) ≤ key(B). This implies that an element with
the greatest key is always in the root node, and so such a heap is sometimes called a max-heap.
(Alternatively, if the comparison is reversed, the smallest element is always in the root node,
which results in a min-heap.) The several variants of heaps are the prototypical most efficient
implementations of the abstract data type priority queues. Priority queues are useful in many ap-
plications. In particular, heaps are crucial in several efficient graph algorithms. (See Wikipedia
for further reading).

3.2. Data-types, Variables, Constants 16

static The keyword static makes a variable exist during the whole duration of the program.
For experts: Such variables are saved on the heap-memory. If not initialized otherwise, they get
the value 0 (zero). A static variable inside a function has thus the value 0, if the function is
called for the first time, and keep this (or another assigned value) between subsequent calls to
this function. In contrast, an automatic variable is every time newly created and initialized.
The following function counts how often it was called and returns this value.

int f_count_calls(){

static int count; // 0 at first function call

return ++count; // increment before use as return value

// (i.e. returns one on the first call)

}

const Variables that are decleared const, can only be assigned a value at initialization and
not anymore thereafter. This is used to define constants within a namespace that – by the
compiler – can be optimized such that their use costs less time than using variables. Thus, if
variables can be defined as constants, this might lead to a faster program execution.

const int Size = 100;

const double Pi = 3.1415926; // Self-defined value of PI

// When including cmath one can

// use the predefined constant M_PI

3.2.7 Fields

Fields are used to combine variables of the same type in a connected range of memory. For
experts: Access to variables can be faster if they are in such a connected range of memory and,
on the other hand, using fields also can make a program shorter and more clear. Access to the
elements of a field is achieved by an integer index. A linear field (with one index) can be seen as
a vector, while a field with two indices represents a matrix. Mathematical formulas with indices
can often be represented in a program using fields.

A field is declared in C/C++ by adding brackets [] to the variable name. At the same time,
this operator is also used to access the elements of the field, see below. In C/C++ fields always
start with the index 0, so that the last valid index is the length of the field reduced by 1.
Multi-dimensional fields are declared by multiple (not enfolded) pairs of brackets, see below.

Such fields receive – at declaration – a fixed size. Thus, the argument in brackets [], must be
either a number, a const variable, or a well-defined variable with a known value for the compiler
(at compilation time).

#include <string>

using string;

// array of 20 int's

int a[20];

3.2. Data-types, Variables, Constants 17

// initialization of field a -- ERROR!

for (int i=0; i <= 20; i++)

a[i] = i;

// initialization of field a

for (int i=0; i < 20; i++)

a[i] = i;

// array of three strings, initialized to some values:

string stra2[] = { "Katia", "Holger", "Stefan" };

// two dimensional array of 20x30 elements of int type

int ia[20][30];

// initialization of field ia

for (int i=0; i < 20; i++)

for (int j=0; j < 30; j++)

ia[i][j] = i*j;

Later, we will see that fields and pointers are closely related. The use of pointers allows to define
“dynamic” fields of a size that is determined during run-time, e.g., following a user-decision and
-input.

3.2.8 Valarray

C++ supports two new containers that allow simpler manipulation of fields. This first is valarry,
which will be introduced by the following example.

#include <iostream>

#include <valarray>

using namespace std;

int main()

{

//Declay an integer array of length ten

valarray<int> my_vec(10);

//Assign the value i squared to each element

for (int i=0;i<10;i++)

my_vec[i]=i*i;

//Write out each element's value to the screen

for (int i=0;i<10;i++)

cout << my_vec[i] << endl;

//Write out the sum of all the elements to the screen.

cout << my_vec.sum() << endl;

}

3.3. Summary 18

All math functions declared in cmath can be used with valarry for examples sin or cos. A major
advantage of valarry is it supports dynamic size control, i.e. by calling my_vec.resize(20)

you can change after creation the size of my_vec, this is useful when the size of a field is not
known at compile-time.

In the above examples my_vec is a class which has both data (in this case integers) and functions
(e.g. resize or sum). For an example of how to create your class see §9.2.1.

valarray can only store numerical data, but a very similar container class vector can store any
type, including chars and strings. This is implemented in the header vector.

Access to data stored, in both valarray and vector classes can be slower than pointer based
method described in §3.2.7, but the use of iterators (not covered by this course) can massively
improve access time for these classes.

3.3 Summary

So far we have introduced the basic element of a program: variables, and discussed the many dif-
ferent types that are available. Also a few other commands have been used with out explanation,
(but you can probably work out what they do) like cout, cin and for.

In the rest of this part, we will cover how to make decisions in a program, repeat sections of
program, interact with the users and how to store data in a permanent way.

Exercise 3.2.
Explain what each line of the following code does i.e. add the comments

#include <iostream>

using namespace std;

int main(int argc, char *argv[])

{

int n, m;

cout << "Enter two integers: \n";

cin >> n >> m;

int sum=m+n;

cout << "Sum of the two integers is " << sum << endl;

3.3. Summary 19

system("PAUSE");

return EXIT_SUCCESS;

}

�

Exercise 3.3.
Modifly the program to ask for three numbers �

Exercise 3.4.
Modifly your program to ask for both a person first name and surname. Get the program to
output the persons initials, along with the sum of the three numbers they give. �

Chapter 4

Decision structures

For implementing algorithms into a certain programming language, this language has to provide
certain control-structures that allow repeated or conditional execution of parts of the program.

In C (and C++) the most-used control strucures are the if-statement for the conditional ex-
ecution, as well as the switch()...case:-statement, that jumps to one of many blocks of
commands, based on the value of a certain variable. Finally, there is the command goto, that
sometimes can be used to escape from (deeply nested) loops, see §5. (Actually I would not
recommend ever using a goto, deaply nested loops can be exited by making the outer loop a
function and using the return command, see §6).

4.1 The if-command

The if-command is used to execute parts of the program only under certain conditions. This
command can be (but does not have to be) complemented by an else-statement, that is vis-
ited/exectuted in case the condition in the if-command is false. The else-part can consist
of arbitrarily many else if and one else. As well if, else if, and else-branches can be
single lines (terminated by a semicolon) or blocks, enclosed in curly brackets {}. An else-block
always relates to the previous, actual if-command, i.e., also if it is part of an else if. In the
following example, the second if-command is a statement by its own, outside the else-part of
the first if.

#include<iostream>

#include<cmath>

// ...

// solution of quadratic equations x^2 + p x + q = 0

– 20 –

4.2. The ternary ?: operator 21

double p=2., q=3.; // or other values

double sol1, sol2;

double root_arg = 0.25*p*p - q; // calculate the argument for the root

if (root_arg > 0.)

{ // begin of if-block

sol1 = 0.5*p + sqrt(root_arg);

sol2 = 0.5*p - sqrt(root_arg);

} // end if-block

else if (root_arg < 0.) // 'error' condition, 'else' part

cout << "no real solution exists" << endl;

else // refers to last if(root_arg < 0.)

sol1 = sol2 = 0.5 * p; // assignment from right to left

cout << "Solutions 1,2: " << sol1 << ' ' << sol2 << endl;

if (sol1 > 0.)

cout << "graph cuts positive x-axis";

// ok, else branch missing

4.2 The ternary ?: operator

For completeness, also the ternary ?: operator is treated here. Ternary means that this operator
requires three arguments and is used to conditionally evaluate parts of expressions.

inline int abs(int number) {

// compute absolute value

return number > 0 ? number : -number ;

//Equivalent form with brackets

//return (number > 0) ? (number) : (-number);

}

Is the term before the question-mark true, then the term before the colon is examined. Oth-
erwise, the term after the colon will be used. The two alternatives must be of the same type.
Note that here, the use of brackets is recommended – partly because the ternary operator is of
low priority and also because the terms that belong together should be made clear.

int i1 = 3 > 4 ? 0 : 1; // i1 is 1

int i2 = 3 * (3 > 4 ? 0 : 1); // i2 is 3

int i3 = 3 * 3 > 4 ? 0 : 1; // i3 is 0, since * binds

// stronger than >

This operator always can be avoided by using an if-command, however, it could be more clear
or at least shorter in some situations. In any case it is a possibility to write un-readable code
and therefore should be used sparsely.

4.3. switch-command 22

(As final remark, the ternary operator is also embedded in the graphics program gnuplot.)

4.3 switch-command

A command related to the if and the goto commands is the switch-command. Dependent on
the value of an integer variable, several case-blocks are visited. This construct is often used
when there is a larger number of possible alternatives to be chosen from.

In principle, a switch can always be replaced by if...else if-constructs, but often the switch
is more clear and helps understanding and structuring the program.

char c;

cin >> c;

switch(c)

{ // begin case block

case 'a': cout << "hello world!";

break;

case 'b': cout << "HELLO "; // fallthrough intended, comment missing break

case 'c': cout << "WORLD!";

break;

default: cout << "unknown input";

break; // not necessary, but good style

} // end case block

The above program-segment returns in small letters "hello world!" if the letter 'a' is typed.
In case c the word WORLD! is printed, but in case b the full sequence HELLO WORLD!. This strange
behavior comes from the missing break in the block b. This behavior, namely that a execution
is performed until a break, is called (“fallthrough”). Since this is often not desired, using this
option required a comment whenever a break is missing. The default-label ist optional and is
visited if none of the other labels is valid in the case-list.

Exercises

Exercise 4.1.
Modify the program from Exercise 3.4, so that it asks the users if he/she wants to enter 2 or 3
numbers. Read in the correct number of inputs and compute the sum. �

Exercise 4.2.
Write a program that reads in a date in the format dd/mm/yyyy format and prints out 12th of
March 2010 etc... �

Chapter 5

Loop control structures

Often you want to repeat sections of a program, the most common way is using for-loops.
Alternatively, the rejecting while()- and the accepting do{...}while()-loops exist.

5.1 (do) while-loops

Loops that are constructed using while are executed until the condition in the condition part of
the loop is not true anymore. Is the condition already false at first occurence of the while-loop,
the loop will not be executed at all.

char c=0; // 'loop initialization'

while(c != 'y' && c != 'n') // first time c==0, so we enter the loop

cin >> c; // can also be a block { }

The symbol/character variable has to be initialised such that the loop is entered. In such cases,
the do ... while(...) loop might be more intuitive.

char c;

do {

cin >> c;

} while(c != 'y' && c != 'n');

– 23 –

5.2. for-loops 24

5.2 for-loops

When working with fields, one often needs loops that access all elements of a field, one by one.
One can program this with while:

const int Size = 20;

// ..

int a[Size];

// ..

int i=0; // loop initialization

while (i < Size) // loop condition, rejecting if false

{

a[i] = i;

i++; // loop control, performed after each pass

}

A shorter alternative used the for(;;) loop. The following is almost equivalent to the above,
but shorter by avoiding the line with i, and more clear, since the begin, end, and stepsize of the
loop are defined at its start.

int a[20];

// ..

for(int i=0; i < 20; i++)

a[i] = i; // work on elements 0 .. 19

There are two advantages: First, the loop-beginning, -ending, and stepping is nicely combined
in one line and, second, the variable i is only defined within the loop and not used (and not
needed) outside.

5.3 break and continue

In order to exit a single, not-nested for or while loop, one can use the break command. The
loop is terminated and the program continues directly after the loop. Thus break can be used
to terminate loops under certain conditions, earlier than the loop implies, or it can be used to
exit “endless” loops.

// copy input to output

while(true)

{

char c;

cin >> c;

if (cin.fail()) break; // end of input or something wrong

cout << c;

}

5.4. goto-command, labels 25

The command continue terminates the processing of the present block and continues, dependent
on the type of the loop, at the corresponding control-command (for(;;)), or ((do{}) while()).

#include <cmath> // for sqrt() function

double a[20];

// ...

double sum_sqrt=0.;

for(int i=0; i < 20; i++)

{

if (a[i] < 0.) continue; // work on next element

sum_sqrt += sqrt(a[i]);

}

Note again that continue and break only exit the innermost loop-block and cannot be used to
exit nested loops.

5.4 goto-command, labels

In order to leave deeply nested loops, the goto command can be used.

void f()

{

int a[20][30];

for(int i=0; i<20; i++)

for(int j=0; j <30; j++)

if (a[i][j] == 42) // found the answer

goto label_end_of_loop; // multi level break

label_end_of_loop: // label, we jump here from inside the loop

}

The label with name label_end_of_loop marks the jump-goal of the goto. Within a function
the name can be freely chosen – terminated by a colon :. The problem with goto is, that it
is not visible from where the jump to this label comes. Furthermore, using goto often requires
further use – and thus further unclear structure of the program.

It is allowed to leave local blocks using goto, but one cannot enter a block inside an if-block.
Neither is it possible to jump out of a function.

Since goto’s always can be avoided, it is better to do so. For example the goto in the above
function could be replaces with a return, see §6.

5.4. goto-command, labels 26

Exercises

Exercise 5.1.
Write a code which reads in N numbers and computes their sum. �

Exercise 5.2.
Write a program to compute the squares of all integers between two numbers. �

Exercise 5.3.
Write a program that computes the factorial of an inputed number N . Recall the factorial of
N = N ∗ (N − 1) ∗ (N − 2) ∗ ... ∗ 1. �

Chapter 6

Functions and Operators

Longer programs usually contain parts or blocks that are repeated a certain (large) number of
times. These parts can then be defined elsewehere (as a function) and within the program are
replaced by a short-cut or place-holder, i.e., the name of the function. It is wise to give the
function a name that already implies its function.

A function (also called procedure or subroutine in other languages), has input and output
variables/parameters. In the simplest case the transfer of input-parameters is done as argument,
and the output as a return-value.

C++ enforces that the types of input and output are specified. In the following example, the
function power computes from a double base value and an integer number exponent a new
number in double precision that is returned to the calling function/program. The name already
implies the algorithm used here.

// raise 'base' to the power 'exponent', with exponent being integer,

// base being double; accept also negative exponents and check ...

double power(double base, int exponent){

double result = 1.; // will multiply this by base 'exponent' times

bool neg_exp = false;

if (exponent < 0) // for negative exponents we use a single

{ // division at the end of the function

neg_exp = true;

exponent = -exponent;

}

for (int i=0; i < exponent; i++)

result *= base; // successive multiplication

if (neg_exp) // have to take the inverse

result = 1./result;

– 27 –

28

return result; // return the result to the calling program

}

Exercise 6.1.
Search for the explanation of Flow-Chart in, e.g., Wikipedia, and plot the Flow-Chart of the
Power-Function. �

Note that C++ already has a function pow that is described by
double pow(double base, double exponent),
only different in the type of the exponent.

The names of the arguments are free to be chosen. Inside the function block these names are to
be used. Note that like for loops, there is no semicolon after the function.

The keyword return terminates the function at the specified position, moves the value of the
variable specified after it on the stack, and returns to the calling program. In the case above,
the expression consists only of a single variable result. Round brackets are not required here.
A subroutine can contain several return keywords at different places in the function block. This
can be a useful tool to deal with problems/errors. Hence the return command can be used to
exit deeply nested for loop to forcing the exit of the whole function.

Finally, one has to define or declare a function before it can be used in the program. This
declaration is essentially the first line of the function (with semicolon). This so-called prototype
tells the compiler the name of the function and the types of it and its arguments. Actually, if
you careful about the order you do not need to prototype functions, but you must place the full
function definition before the first call (use) of the function. This is often tricky to keep track
of and prototyping is recommended.

double power(double base, int exponent);

At first definition, the command block is replaced by the single semicolon. Note that the type
is required, but the name of the arguments in the function is not needed here. However, a clear
program specifies variables that tell something about their purpose.

Declarations can (in principle) be repeated arbitrarily often in a program – they are a promise
to the compiler that the function will be defined later. Unlike variables, functions are always
global – it is not allowed to define them inside a block with limited existence. Actually function
and varibles can be wrapped together in a very neat package, called a class, see §9.2.1 for more
details, solving this global scope problem.

A program that reads a number from the keyboard and then uses the function power to finally
write the result could look like this.

#include <iostream>

using namespace std;

6.1. Transfer of arguments 29

double power(double base, int exponent); // declaration of 'power'

int main() // definition of main

{

double in;

cin >> in; // read value from keyboard

cout << "-3rd to 3rd power of " << in << ": ";

for(int i= -3; i <= 3; i++){

cout << power(in, i) << " "; // call power and use return value

}

cout << "\n";

return 0; // return to operating system

}

double power(double base, int exponent) // definition of power

{

double result = 1.;

// ... program text as above

return result;

}

6.1 Transfer of arguments

The transfer of arguments to a function takes place “by value”, i.e., before the function is called,
the arguments are copied and the function uses these copies. This way, the variables that contain
the values that are transferred to the function can not be changed. If this is desired, e.g., because
one return value is not enough and many variables are to be changed in a function, then one
either use pointers, as disucssed later in section 7 or pass by reference.

If you add & after a variable name in the declaration the actually variable, not a copy, is passed
to the function, therefore changes to that variable within the function effect the original variable.

6.1.1 Example of passing by reference

#include <iostream>

#include <valarray>

using namespace std;

int add(int a, int b);

6.2. Functions without arguments or return value – void 30

int add2(int &a, int &b);

int main()

{

int a=1;

int b=2;

cout << a <<" "<<b << endl;

cout << add(a,b) << endl;

cout << a << " " <<b <<endl;

cout << a << " " << b <<endl;

cout << add2(a,b)<<endl;

cout << a << " " << b << endl;

}

int add(int a, int b)

{

a=a+b;

return a;

}

int add2(int &a, int &b)

{

a=a+b;

return a;

}

Exercise 6.2.
Run this program and from the output explain the difference between the functions add and
add2. �

6.2 Functions without arguments or return value – void

The keyword void can be used like a type, but is not really a type. It is useful to mark functions
that don’t have a return value. Examples are functions that just write something to the screen
or to a file and functions that modify the input-variables directly.

void error(string message){

cout << "error occured: " << message << "\n";

}

Also functions without arguments sometimes can be useful. In C++ this is implied by an empty
list of arguments like for the pseudo-randomnumber generator as declared in the C library
stdlib.h:

6.3. Libraries 31

void srand(unsigned int seed);

int rand(void);

It is used by first selecting a sequence of random numbers by calling (once only) the initialization
function srand(.) with a positive number. Then, for each call of rand() a new, integer number
is returned. In order to transform the integers to real numbers, one can e.g. divide by the
maximum.

Exercise 6.3.
Use the random number generator of C/C++ and later the random numbers in MATLAB to
generate a vector of 10 random numbers ri=1,...,10 ∈ [0 : 1]. �

6.3 Libraries

As seen above, declarations/prototypes are sufficient for the compiler to translate a program.
Wherever called in the program, the function-call is prepared during compilation. The function
itself can be then defined and “linked” to the program later. Function-definitions are found in
so-called object-files (*.o) or libraries (see section §9.3 for more information of code organisation
into small objects, which are compiled and linked independly).

The classical example for a library is the cmath file that was included at the beginning and
involves functions like the sqrt(). The declarations are found in cmath itself, and the translat-
ed/compiled definitions are found in libm.a. A program-block that uses the sqrt() function
can look like this.

double d;

cin >> d;

if (d < 0.)

cout << "cannot compute the square root of negative numbers\n";

else

{ // compute sqrt(d) and print value

cout << "sqrt(" << d << ") = " << sqrt(d) << "\n";

}

}

The compiler must contain the linker-option “-lm” and must know the correct path where it can
find the library. As a remark, under LINUX, the compilation would look like this:

g++ myprog.cc -o myprog -lm

In DevC++ the corresponding command can be found under “Compilation”.

The short -l means “library” and m is the abbreviation for the file libm.a, that one gets by
adding lib, m and the ending .a.

6.4. Operators 32

6.4 Operators

Operators allow us to make a program readable. Sometimes, unfortunately, they also make
a program un-readable, cryptic and unclear. A term like 3 * z + 5 is easily understandable,
whereas the term plus(mult(3,z),5) that is expressed using functions is much less clear.

There exist unary, binary, and ternary operators, see sec. 4.2. Binary operators like the
multiplication- and addition-operators, have two arguments, while unary operators, like the
adress-operator & require only one.

6.4.1 Arithmetic operators

The arithmetic operators are +, -, *, / and %. The Operator % (modulo) forms the integer
rest of the division of the left with the right operand (both integer). If both are positve, the
result is positive and strictly smaller than the right operand. For one or two negative operands,
the result depends on implementation.

Combining the above operators with the ’=’ allows to repeat the left operand, as for example:

int i=3, j=7; // initialize

i = 3 + j % i; // i = 3 + (j mod i), i is set to 4

i += 3 * 4 + j; // i = i + (3 * 4 + j), i is set to 23

i /= 5; // integer division, i is now 4

i /= 5; // integer division, i is now 0 !

The type that is returned by an operator expression depends on the type of the operand. If
both operands are type T, also the result is type T. For different operand-types the “better” type
wins; one operand is first transformed to the “better” type, then the operation is carried out.
C/C++ has the following “type promotions”:

bool -> char -> short -> int -> long

-> float -> double -> long double

signed -> unsigned (!)

These rule of type-transformation are also valid for the following operators.

The unary operators ++ and -- exist in postfix and prefix-form, and they lead to an increment
or decrement by one, respectively. In the postfix form, the value of the operand before the
operation is returned, whereas in the pre-fix form, the value after is returned.

int i=5, j;

j = i++; // j is 5 now (i before increment) i is incremented to 6

double a[20];

i=j; // i=j=5

6.4. Operators 33

cout << a[++j] << a[j++]; // prints a[6] twice, j is now 7

cout << a[i++] << a[++i]; // prints a[5] and a[7], i is now 7

// j++ = i; // ERROR: cannot assign to a temporary

// i = (j++)++; // ERROR: cannot apply ++ to a temporary

6.4.2 Comparison and logical operators

For operations between two integral datatypes, there exist bitwise, logical, and shift operators.
(C++ also provides keywords for these). These operators are summarized in table 6.1, and they
also can be combined with the =.

| bitor bitwise OR
& bitand bitwise AND
^ xor bitwise XOR
<< left-shift, n-times
>> right-shift, n-times
~ compl complement, bitwise NOT, unary
|= or_eq bitwise OR, to-left assignment
&= and_eq bitwise AND, with assignment
^= xor_eq bitwise XOR, with assignment
<<= left-shift, n-times with assignment
>>= right-shift, n-times with assignment

Table 6.1: Bit-manipulation-operators

The logical operators are && (or and) and || (or) and the negation !. The operators && and
|| have the special property that the evaluation of this expression is terminated already if the
result is clear (so-called sequencing). This property is also shared by the comma-Operator , –
that sometimes is used to construct complicated for-loops. Its value is the same as the value of
the right expression.

double a[20];

unsigned ind[5];

// safe, even if some ind[i] >= 20, since the last expression

// will anyway not be evaluated in that case

for (int i=0; i < 5 && ind[i] < 20 && a[ind[i]] >= 0; i++)

sqrt(a[ind[5]]);

// sequence operator used to combine two expressions

int i, j;

for (i=0, j=2; i < 18; i++, j++)

a[i] = a[j];

The (arithmetic) comparison-operators are ==, !=, <, <=, > and >=. The value of a logical
operation and the result of a comparison in C++ are of type bool, i.e. either true or false.

6.5. inline functions 34

6.4.3 Further operators

The only ternary operator, ?:, which is used to select alternative expressions of the same type,
was already discussed (see sec. 4.2).

int i;

cout << (i > 0) ? i : 0; // never prints a negative number

The operator () leads to a function-call, [] is the index-operator for fields and pointers, a
point '.' allows to select an element from a structure and -> is equivalent when a pointer to a
structure is given.

class Person {

public:

string name;

int age;

};

void f(){

Person p;

Person *p_p = &p;

p.age = 25;

p_p->age = 25; // equivalent

}

The unary operators * and & are used to find the value of the memory location where a pointer
points at, and to find an address of an arbitrary variable (see sec. 7).

Operator-expressions are (like in C) treated according to their priority and associativity, see
table 6.2.

6.5 inline functions

In general, several things happen when a function is either called or closed. Some of this can be
avoided or optmized by use of so-called inline-functions. However, we will not go into detail
here. (Further reading if needed).

6.6 Overloading of functions

In contrast to C and some other languages, in C++ not only the name and type of a function,
but also the types of the arguments are relevant. Therefore it is possible to define a function
for each type int, double or struct Date {...}, all with the same name. The name does not

6.6. Overloading of functions 35

operator evaluation from

:: left to right
() [] -> . X++ X-- typeid XXX_cast<TYPE>() left to right
! ~ ++X --X + - * & (TYPE) sizeof new delete right to left
.* ->* left to right
* / % left to right
+ - left to right
>> << left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
= *= /= %= += -= <<= >>= &= |= ^= right to left
?: right to left
throw –
, left to right

Table 6.2: Priority and associativity of operators

have to contain type information thus. In C++, the compiler selects the right function with the
appropriate type by itself. One can think of an internal function-name used by the compiler
that also contains the argument-types.

void swap(int &a, int &b) // internal name e.g. swap_int_int

{

int tmp = a;

a = b; b = tmp;

}

void swap(double &a, double &b) // swap_double_double

{

double tmp = a;

a = b; b = tmp;

}

void f()

{

double a, b;

int i, j;

// ...

swap(a, b); // double version

swap(i, j); // int version

}

6.6. Overloading of functions 36

Exercises

Exercise 6.4.
Write a program that reads in ten numbers, using the swap function above sort the numbers
into ascending order and write out the order list. �

Exercise 6.5.
Write a function, which calls itself, to calculate the N th Fibonacci number. Recall fib(N) =
fib(N − 1) + fib(N − 2) and fib(1) = 0, fib(2) = 1. �

Chapter 7

Pointers, pointer-field duality, and references

7.1 Pointers

From the viewpoint of the computer, every memory-cell in the (virtual) memory is uniquely
marked by a certain number (address). C/C++ allows to use these adresses in memory-space
for programming purposes. Since it is allowed to self-define names for these address-pointers,
the program can also become much more clear and readable. The declarations:

int i=5;

double a=12.34;

char *c1="hello"; // declaration of an array of char

int j=0;

create the memory-entries in Fig. 7.1 (left column). Only the memory-entries (the values of the
variables) occupy space in the computer memory. The names of variables do not occupy space
even if one would use instead of i the more meaningful name counter.

In general, there is no guarantee that sequentially defined varibales also occupy memory sequen-
tially (except for fields). The variable c1 of type char contains a pointer to another range of
memory where the values of the field are stored. The definition of *c1 reserves some range in
memory that is large enough to store the word "hello". The elements 'h', 'e', 'l', 'l', and
'o' can also be accessed using the form c1[0], c1[1], c1[2], c1[3], and c1[4]. Note again
that numbering in C/C++ always starts with 0.

If one has to insert or delete a range of a sorted list (quickly and efficiently), then this is not
possible using a linear field like the above *c1. A linear field is special in so far that all data
are stored in subsequent positions in memory. As well inserting as removing entries from this
field requires copying the full range “above” the modified element. (In average that is half the
field-length to be moved). This is acceptable for short fields but not for long ones. A possible

– 37 –

7.1. Pointers 38

valu
e

ad
res

s (co
mp.def.

)

nam
e

i
a

(user
-def.

)

5

12.34

c1[5]

0 j
...

0xff10

h

e

l

0xfd10

0xfd18

0xfd20

0xfd28

0xff10

0xff11

0xff12

...

l

o

\0

0xff13

0xff14

0xff15

&c1

c1[0]
c1[1]
c1[2]
c1[3]
c1[4]

Figure 7.1: (Schematic) memory occupations (left), computer-internal memory adress (mid),
and (user-defined) name of variables (right).

solution to this is a linked list which contains not only the values of the elements but also the
information where the next element can be found. The actual location does not matter, i.e.,
only the names of the memory-cells have to be modified. For example, in order to remove an
element x from a linked list, only the name entry of the previous element has to be changed such
that it does not point to x anymore, but to the following element. This information is available
in the x-element and thus just has to be copied. Deleting several subsequent entries requires
the same effort and entering a (part of a) linked list from somewhere else is also rather efficient.
However, due to this additional options, a linked list also usually requires more memory than a
normal field.

In order to allow a computer independent dealing with such objects like linked lists, C/C++
provides also the type pointer. A pointer can point to an arbitrary data-type – which actually
could be a pointer itself. In order to declare a pointer, a (star) * is used. In order to get the
adress of a variable, the &-operator is used. The declarations in the program-fragment:

// Declaration part

int i = 5; // initialisation

int *p_i = &i; // p_i is a pointer to an int,

// here the variable i

int **pp_i = (&p_i); // pointer to pointer to int

// How to use * and & legally in the program

i = 0; // set i to 0

*p_i = 1; // set i to 1, p_i remains unchanged

7.1. Pointers 39

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

DATA

DATA

DATADATA

DATA

DATA

DATA

Figure 7.2: Use of pointers in a linked list. (Top) the list before an element is removed, (bottom)
the list after, where the black element denotes the removed one that is not part of the list
anymore..

**pp_i = 2; // set i to 2, p_i remains unchanged

int j = 7; // declare another integer j

*pp_i = &j; // change p_i to point on j, *p_i != i

p_i = &i; // let p_i point to i again

lead to memory occupation as indicated in Fig. 7.3.

i5

*

...

...

...

0xfa10

0xfc28

0xfe080xfc28

0xfa10

ppi

pi
*

Figure 7.3: Memory occupation as in Fig. 7.1.

In order to change the value of a variable a pointer points to, or in order to use this value in an
operation, also the * operator is used.

*p_i = 27; // i is 27 now

*p_i = 2 * (*p_i) + 5; // equivalent to: i = 2 * i + 5;

7.2. pointer-field duality 40

Constant pointers are declared by using a const right of the pointersymbol *. They must be
initialized already at declaration, since they are fixed thereafter and cannot be changed anymore.

const int *cp_i = &i; // ok, i cannot be changed

// through use of cp_i

// cp_i can be changed

const char newline = '\n';

const char * const p_nl = &newline; // const pointer to const char

// note: p_nl = '0'; -> error!

The * operator has thus two meanings: In a variable declaration, it marks a pointer, whereas in
front of a variable (of type pointer) it leads to access on the memory (value) of the corresponding
memory space.

Analogously, also the & operator has two meanings: During variable declaration, it denotes a
reference, whereas in front of a variable, it is the so-called adress of operator, i.e. it provides
the adress of the variable.

Note that it is possible to do arithmetics/mathematics with pointers. Above, p_i = p_i + 5

would let the pointer point to 5 int memory entries further. For this, the compiler needs to
know how big the corresponding data-type is. Also the difference of pointers can be formed but
that makes only sense inside a field.

Navigation within a field can be done in the following way:

int p[30]; // declare a field of int

*(p_i + 25) = 15; // the value of the 25th entry (past the one

// pointed to by p_i) is set to 15

p_i[25] = 15; // equivalent ...

The language guarantees that 0 is never the adress of a real data-element. A pointer with value
0 can thus be used to indicate an error or, e.g., the end of a list.

7.1.1 Pointer to void

The type pointer to void is generic. It is guaranteed that any pointer can be transferred into
a pointer to void, without loss of information. In C the void * was often used to transfer
information to functions/routines that can deal with arbitrary pointers. (e.g. sort-function
like quicksort, or the return value of malloc). In C++ it is recommended to use template-
functions that guarantee type-consistency and type-safety. (Further reading if needed).

7.2 pointer-field duality

Between pointers and fields exists a very close relation, see above the use of [] for the “indirect”
de-referencing of pointers. A field a[..] is internally transformed to a pointer on the first

7.3. Transfer of field-variables to functions 41

element of the field. Access to the field is then dealt with via the pointer-arithmetics mentioned
above. This is also the reasone why C/C++-fields always start with 0 (i.e. the localisation of
field entries can be done with less operations).

int a[20];

int *p = a; // ok, a is name of the field and can

// be used as address to the field

int *p = &(a[0]); // ... equivalent

p[5] = 4; // access to a through pointer arithmetic,

// a[5] is set to the value of 4

a[5] = 4; // ... equivalent

int b[20][30]; // b is now an array of 20 arrays of

// 30 elements of type int

// int *p = b; error! wrong type, since

// b is of type pointer to 30 int here

int *r = b[0]; // ok, r points to the first int

// in the first (of 20) array(s) of 30 ints

int (*q)[30] = b; // ok, q points to the first set of 30 int's,

// q and b can now be used synonymous

q[12][15] = 26; // ok, set element (13,16) to the value 26

(*(q+12))[15] = 26; // ... equivalent

((q+12)+15) = 26; // ... equivalent

b[12][15] = 26; // ... equivalent

Exercise 7.1.
Practice the use of pointers, using the above examples as a starting point. �

7.3 Transfer of field-variables to functions

In order to transfer a field to a function, it is sufficient to just transfer the pointer, see sec. 6.
For a one-dimensional field this is just the pointer to the first element, while for two-d fields it
is a pointer to a field with a compatible, fixed number of elements. Only the first dimension of
the field can be left out in this case, all others have to be specified at compile-time. This makes
the C-type fields rather in-practical to be used when dynamic memory management is desired.

void f(int b[][30]) // function prototype that transfers b

void g(int (*q)[30]) // function prototype that transfers

int b[20][30];

int c[10][30];

int d[15][31];

f(b); g(b); f(c); g(c); // ok

f(d); g(d); // errors, since second dimension not ==30

7.3. Transfer of field-variables to functions 42

Summary: Transfer of Variables to Functions

As summary and examples for the use of fields in functions, the example in exercise 7 is re-
written in order to use functions that use the field:

#include <cstdlib>

#include <iostream>

#include <cmath>

using namespace std;

int read_field(int flen, int *fi);

void write_field(int flen, int *fi);

void sort_field(int flen, int *fi);

int main(int argc, char *argv[])

{

const int Mfmax=20;

int fi[Mfmax];

int ifmax=0;

int ftmp;

ifmax = read_field(ifmax, fi); // get field from subroutine

write_field(ifmax, fi); // control what you got

sort_field(ifmax, fi); // sort the field

write_field(ifmax, fi); // control what you got

system("PAUSE");

return EXIT_SUCCESS;

}

// function reads the field from another field and returns it back

int read_field(int flen, int *fi)

{

const int field_length=17;

int field[field_length] = {1, 0, -10, 12, -2, 5, 5, 1, -4, -2, -4, -8, 3, 25, 51, -4, -5};

for(int i=0; i<field_length; i++)

{

fi[i]=field[i];

}

flen = field_length;

return flen;

}

// function writes field to screen

void write_field(int flen, int *fi)

{

for(int i=0; i<flen; i++)

7.3. Transfer of field-variables to functions 43

cout << fi[i] << " ";

cout << endl;

return;

}

// function sorts the field and returns it

void sort_field(int flen, int *fi)

{

int ftmp;

for(int i=0; i<flen; i++)

{

for(int j=flen-1; j>=1; j--)

{

if(fi[j]<fi[j-1])

{

ftmp=fi[j-1];

fi[j-1]=fi[j];

fi[j]=ftmp;

}

}

}

}

Excerises

Exercise 7.2.

Consider the following code extract and explain the effect of each line, stating the value

int a=15;

int b=10;

int *p1=&a;

int *p2=&b;

int **p3=(&p1);

*p1=5;

*p2=20;

**p3=1;

*p2=*p1;

p1=p2;

*p1=10;

*p2=5

**p3=8;

cout << a << "\t" << b << endl;

7.3. Transfer of field-variables to functions 44

�

Chapter 8

I/O (Input and Output)

The I/O in C++ is completely renewed as compard to C. This was mostly necessary because of
the complex format in C with non-constant number of variables.

The two most important objects are I/O-channels like istream and ostream. Both are declared
in the header iostream. In the previous chapters, the standard I/O channels ‘cin’ and ‘cout’
with the operators ‘<<’ or ‘>>’ were already used frequently. In the following alternatives and
extensions are explained.

In which sequence is I/O processed?

#include <iostream>

// The programmer types this

cout << "Salary: " << Person.mSalary;

// ... but the compiler reads this:

(cout << "Salary: ") << Person.mSalary;

In order to write the string Salary: to the screen, the operator << is called from the ostream

cout and returns another ostream with which the next << is called. This time, Person.mSalary
is the second argument. Analogously after an input with cin, another istream is returned so
that one can input again.

8.1 Elementfunctions of iostreams

Instead of the form as used up to now, I/O can also be performed in the form of functions – for
compatibility. However, the function-form has much wider range of applications, see Tab. 8.1.

– 45 –

8.2. Formatting 46

char c1='x';

cout << c1 << '\n'; // Syntax used up to now

cout.put(c1); // Equivalent form using functions

cout.put('\n');

ostream::put (char c); writes character c to ostream
Example: cout.put(c1);

char c=’x’; For comparison ...
cout << c; also writes the char ’c’

istream::get (char c); reads character c from istream
Example: cin.get(c1);

char c; For comparison ...
cin >> c; Reads character c, ignores SPACE, TAB, EOL

Table 8.1: Prototypes of some element-functions for I/O alternative to the use of cout und cin.

There are many related element-functions like this that allow a much more controlled and well-
behaved input and output of data. (Further reading if needed).

8.2 Formatting

Typically it is necessary to change the format of the output, e.g., in order to obtain a better
readable table, or in order to prepare the output for the transfer to another software, or to write
the full precision on the screen, or ... see Tab. 8.2 for a summary.

Manipulator Description

int width=12;

cout << setw(width); sets the minimal number of digits for the following
output only.

int prec=5;

cout << setprecision(prec); Changes the number of digits behind the comma,
or the max. number of digits

char c='*';

cout << setfill(c); Defines a filling-symbol as, e.g., *.

Table 8.2: Examples of formatting functions for the output

In order to call these functions, first use: #include<iomanip>. Note that there are modifications
that only act on the next output, and others that remain active permanently.

#include<iomanip>

double x=1234.5;

cout << x << '\n'; // leads to: 1234.5

cout << setfill ('*') << setw (10) << setprecision (5);

cout << x << '\n'; // leads to: ****1234.5

cout << x << '\n'; // back to previous setting: 1234.5

8.3. Files 47

Furthermore there exist switches (flags) for the formatted output that need no parameters, as
summarized in Tab.8.3:

Flag Group function

left adjustfield left-adjust
right adjustfield right-adjust
internal adjustfield +/- left

dec basefield decimal numbers
hex basefield hexadecimal numbers
oct basefield octal numbers

showbase shows the dec-basis of hex- and oct-numbers

showpos prints ’+’ before number if positive

uppercase E, X, A-F instead of: e, x, a-f

fixed floatfield Fixed-point notation
scientific floatfield scientific notation

Table 8.3: Flags for the formatted output of data

In order to activate flags one can use alternatively

cout.setf (ios:: 'flag', ios:: 'group')

cout << setiosflags (ios:: 'flag', ios:: 'group')

where the possibilities for 'flag' and 'group' are summarized above in Tab. 8.3, where the
second parameter is not always needed. In order to change the setting, or set it to default, for
a single flag or for groups of flags, one can use:

cout.unsetf (ios:: 'flag')

cout << resetiosflags (ios:: 'flag')

cout.unsetf (ios:: 'group')

cout << resetiosflags (ios:: 'group')

8.3 Files

For reading and writing on files, one can use the channels fstream and ofstream. These are
derived from the std-streams istream and ostream.

include <fstream>

...

double z=1.234;

int m=5;

ofstream outs ("filename", ios::out);

// open the file with name

8.3. Files 48

// 'filename' for writing

// ios::out can be skipped

outs << x << '\n'; // the use of the self-defined output-stream

outs << j << '\n'; // 'outs' is analogous to the use of 'cout'

outs.close(); // close the out-fstream 'outs'

ifstream ins ("filename", ios::in);

// open the file with name

// 'filename' to read from

// ios::in can be skipped

ins >> z; // the use of the self-defined input-stream

ins >> m; // 'ins' is analogous to the use of 'cin'

ins.close(); // close the in-fstream 'ins'

At least now, when working with files, we need information whether we have reached the end
of the file (EOF) or if the opening of the file was successful. For this, the so-called status-
informations can be used, which return – dependent on the status of a file – either true or
false:

ins.good() // true, if no error occured in stream 'ins'

ins.eof() // true, if the end of file/stream is reached

ins.bad() // true, if an hardware error occured

ins.fail() // true, if a logical error or a

// hardware error occured

ins.clear() // set ins.good() to true

ins.clear(ios::failbit | ins.rdstate())

// set fail() manually to true

Example: How to read from a file to its end?

The following examples show which problems can occur doing this.

int n;

while (!cin.eof()){

cin >> n;

// this reads too far

}

while((cin >> n).good){

// ... this reads not far enough

}

while(cin >> n){

// ... this is the way it works

}

Chapter 9

Some advanced topics

9.1 Dynamical Memory Management

In order to request memory, C++ provides the operators new and new [] for single variables or
for fields, respectively. In order to free the memory, delete and delete [] have to be used.

int *p_i = new int;

int n = 40;

int *pa_i = new int[n];

// ...

delete p_i;

delete[] pa_i;

The request for memory requires the type after new, and a pointer to this new element is
returned. For fields, new[] is used and the number of memory-elements within the brackets is
requested. The request returns a pointer to the first element in the field.

int *pa_i = new int[n];

pa_i[0]=5;

pa_i[1]=4;

The operator new returns an “exception” bad_alloc, if the request for memory does not succeed
and then terminates. It is possible to ’catch’ error and continoue without ending the code, using
the commands try and catch (this will not be covered by this course).

– 49 –

9.2. Object Oriented Programming 50

9.2 Object Oriented Programming

9.2.1 Example of Object Oriented Code involving Classes

Just as an example for classes – without further explanations, the following (complete) program.
Note that the Class-Definitions appear before the main() program, which is especially short.

Class definitions can be placed in separate files as discussed below in the next subsection.

Exercise 9.1.
For Experts: Think about what can be improved in the following code – for this you first will
have to understand ... Further reading/learning required. �

#include <stdlib.h>

#include <iostream>

#include <fstream>

using namespace std;

class CSample

{

public:

// destructor

~CSample();

// constructor

CSample(); // ADDED

int Input(const char* fname);

double GetSum();

double GetMax();

int Size;

private:

int Nmax;

double *a;

bool mem_alloc; // ADDED

};

//--------------------------------------

int CSample::Input(const char* fname)

{

ifstream in(fname);

in >> Nmax;

Size = Nmax;

//memory allocation

a = new double[Nmax]; // ADDED

9.2. Object Oriented Programming 51

mem_alloc=true;

for (int i=0; i<Nmax; i++)

{

in >> a[i];

}

in.close();

return 1;

}

double CSample::GetSum()

{

double sum;

sum = 0;

for (int i=0; i<Nmax; i++)

{

sum = sum + a[i];

}

return sum;

}

double CSample::GetMax()

{

if (a==0) return 0; // ADDED

double m;

m = a[0];

for (int i=1; i<Nmax; i++)

{

if (a[i] > m)

{

m = a[i];

}

}

return m;

}

CSample::CSample() // ADDED

{

mem_alloc = false;

a = 0;

Nmax = 0;

}

CSample::~CSample()

{

// free memory

if (mem_alloc) delete [] a; // ADDED

}

//= MAIN PROGRAM ==============================

9.3. Organisation implementation and header-files 52

// Uses the class CSample

// to read in data, print the size of the data-field,

// compute the sum of, and the maximum.

int main()

{

CSample Test;

Test.Input("data.dat");

cout << "Size = " << Test.Size << "\n";

cout << "Sum = " << Test.GetSum() << "\n";

cout << "Max = " << Test.GetMax() << "\n";

cout << endl;

system("PAUSE");

return EXIT_SUCCESS;

}

9.3 Organisation implementation and header-files

Big programs and program-packages should not be kept in a single file since this can lead to
long compilation times and non-clear dealing with and navigation in the file. Furthermore it
causes big trouble if more persons work on (a single file) at the same time.

Therefore, one typically splits programs into several files (projects), that can be compiled in-
dependently from each other. There are compilable (Implementation-) C++-files with the ex-
tension .cc or .cpp. Files that only contain declarations are called header-files and are used
to make functions and data from one file known to another. These have the extension .h. In
general (except for main.cc) an implementation-file comes together with a header-file.

header-files should contain:

1. so-called include-guards, that hinder the multiple inclusion of header-files (required by the
standard)

#ifndef HEADER_H

#define HEADER_H

// declarations

#endif

2. Declarations of functions that are used amongst several modules. For declarations of local
functions, another header-file can be used.

3. Definition of inline functions

4. Declaration of classes and their elementfunctionen

5. extern declarations of global variables, and declaration of static varbiables

6. Declaration and definition of template-functions and -classes

implementation-files should contain:

9.3. Organisation implementation and header-files 53

1. Implementation of elementfunctions of not-template-classes

2. Implementation of regular functions

3. Declaration von file-scope, class-scope and global static variables

9.3.1 Compiling and linking

Each separate sub-package is compiled to an object file using the -c flag e.g. gcc -c matrix_part.cpp.
This will create an object file called matrix_part.o. Then to link the separate object files into
an executable call gcc matrix_part.o other_part.o main_part.o -o my_prog.exe . The
use of a Makefile can help automate the process for very large problems (this will not be covered
by this course).

Chapter 10

Literature and longer exercises

10.1 Further reading

The many new terms used in the last pages indicates that C++ has much more possibilities,
rules and options to be explored. Classes, templates, over-loading, scopes, etc. can not be
discussed in this short course. However, here is a list of further literature:

1. Wikipedia ...

2. Brian W. Kernighan and Dennis M. Ritchie, The C-Programming Language, 2nd edition,
Prentice Hall, 1988.

3. B. Stroustrup, The C++ Programming Language, 3rd edition, Addison Wesley, 1997.

4. Steve Ouallinie, Practical C++ Programming, O’Reilly, 1995.

5. C. S. Horstmann, Mastering C++, John Wiley & Sons, New York, 1996.

6. S. B. Lippman, C++ Einführung und Leitfaden, 3. Auflage, Addison-Wesley, Bonn, 1998.

– 54 –

10.2. Exercises C/C++ 55

10.2 Exercises C/C++

Exercise 1

Describe with a few words what the following program is doing. Do not copy this file into your
computer - solve this by reading it and write a few sentences (in 15 minutes). Then plot a
flow-chart or flow-diagram.

#include<iostream>

#include<fstream>

#include<cmath>

using namespace std;

int main(int argc, char *argv[])

{

// Define field x(t) with length 1000

double x[1000], t; // output variables

// initial conditions

double A, delta; // A=amplitude, delta=phase-angle

double mass, ksprng; // mass=mass, ksprng=spring-constant

double t_max, dt; // t_max=max-time, dt=time-intervall

// Request input of the parameters

cout << "amplitude "; cin >> A;

cout << "phase-angle "; cin >> delta;

cout << "mass "; cin >> mass;

cout << "spring-const. "; cin >> ksprng;

cout << "max-time "; cin >> t_max;

cout << "time-interval "; cin >> dt;

double omega=sqrt(ksprng/mass);

// Loop from t=0 to t=t_max

t=0.0;

for(int i=0; i<=t_max/dt; i++)

{

x[i]=A*sin(omega*t+delta); // Compute function

t=t+dt; // Step to next time

}

ofstream outfile("plot.data"); // Output to file

t=0.0;

for(int i=0; i<=t_max/dt; i++)

{

outfile << t << " " << x[i] << "\n";

t=t+dt;

}

}

10.2. Exercises C/C++ 56

Exercise 2

Writing the first program.
Extend the minimal, basic C++ program by the command lines int inum=0; cin >> inum;

where the second requests input of an integer number from the keyboard.

Write a C++ program that prints the binary representation of the integer number inum to the
screen. You can check if the program works by, e.g., using the number 496 from the lecture-
example.

Exercise 3

What is the greatest value of n that can be used in the sum

12 + 22 + 32 + . . . + n2

and gives a total value of the sum less than 100?
(a) Write a short C++ program that answers this question – like in the Matlab exercise 17.3
Then answer the question also for an exponent of 10 and a total value of the sum of
(b) less than 106 and
(c) less than 1012 (Advanced).
(d) If doing both parts compare the run-time between you C++ and MATLAB implementation.

Exercise 4

Declare an array with 10 001 entries. Compute the solution vector f(xi), with xi = 0, . . . , 10 000
(as fast as possible!)

f(xi) =
xi

sin(xi) + 2

In the same program, form the alternating sum

Sn = f(x0) + f(x1)− f(x2) + f(x3)− . . .

up to the last term and print the result to the screen. Finally, compare the result with the result
obtained in the Matlab section 17.3.

Exercise 5

Write a root-finding function in C/C++ and apply to general fifth order equation of your choice.
(Advanced)

10.2. Exercises C/C++ 57

Exercise 6

In the following program (part of which we have discussed today) there are hidden 10 syntax
and typo-errors. See how many you can find in 5-10 minutes.

#include <iosteam>

#include <cmath>

#include <cstdlib>

using namespce std;

int main(int argc, char *argv[])

{

int i;

int n=5;

int *p;

int a[10];

for(i=0; i<=10; i++ }

a[i]=10;

p[i]=10;

cout << a << " \n";

cout << *a << " \n";

cout << *(a) << " \n";

cout << a[1] << " \n"

cout << *(a+2) << " \n";

cout << size of(int) << " " << sizeoff(int*) << "\n";

cout << sizeof(double) << " " << sizeoff(double*) << "\n";

cout << " n: " << n << " " << &n << "\n";

i=n+1;

cout << " i: " << i << " " << &i << "\n";

p=&n;

cout << " p: " << p << " " << *p << "\n";

*p+=2

cout << " p: " << p << " " << *p << "\n";

p++;

cout << " p: " << p << " " << &p << "\n";

return 0;

}

10.2. Exercises C/C++ 58

Exercise 7

This is an example of pointers:

(a) Use the following program segment and play around using the pointers.

#include <cstdlib>

#include <iostream>

#include <cmath>

using namespace std;

int main(int argc, char *argv[])

{

char c='x';

int a[20];

int *p = a; // ok, a is name of the field and can

// be used as address to the field

// int *p = &(a[0]); // ... equivalent (error->redeclaration)

p[5] = 4; // access to a through pointer arithmetic,

// a[5] is set to the value of 4

a[5] = 4; // ... equivalent

//

int b[20][30]; // b is now an array of 20 arrays of

// 30 elements of type int

// int *p = b; error! wrong type, since

// b is of type pointer to 30 int here

int *r = b[0]; // ok, r points to the first int

// in the first (of 20) array(s) of 30 ints

int (*q)[30] = b; // ok, q points to the first set of 30 int's,

// q and b can now be used synonymous

q[12][15] = 26; // ok, set element (13,16) to the value 26

(*(q+12))[15] = 26; // ... equivalent

((q+12)+15) = 26; // ... equivalent

b[12][15] = 26; // ... equivalent

cout.put(c);

int *p_i = new int;

// Person *p_p = new Person("B.Stroustrup",45);

int n = 40;

int *pa_i = new int[n];

// ...

delete p_i;

// delete p_p;

delete[] pa_i;

//

//

pa_i[0]=5;

10.2. Exercises C/C++ 59

pa_i[1]=4;

for(int i=0; i<10; i++) cout << pa_i[i] << ' ';

return 0;

}

Serious programming exercise:

Define an int field (vector) that contains the numbers:
{ 1, 0, -10, 12, -2, 5, 5, 1, -4, -2, -4, -8, 3, 25, 51, -4, -5 }

Then sort the entries of this linear field/vector.

(b) Read the field from a file.
(c) Use a linked-list to store the field.
(d) Implement a linked list (with pointers) to store the field.
(e) Use this linked list (with pointers) to sort the field.
(f) Write the sorted list to an output file, but remove double entries from the list. What is the
length of the field before and after this sorting/remove operation?
(g) (Advanced) Implement a (heap) tree structure to sort the field such that the largest entry
is always on top of the tree.

Part: B
MATLAB

– 60 –

Chapter 11

Getting started with Matlab

Matlab is a tool for mathematical (technical) calculations. Firstly, it can be used as a scientific
calculator. Next, it allows you to plot or visualize data in many different ways, perform matrix
algebra, work with polynomials or integrate functions. Like in a programmable calculator, you
can create, execute and save a sequence of commands in order to make your computational pro-
cess automatic. It can be used to store or retrieve data. In the end, Matlab can also be treated
as a user-friendly programming language, which gives the possibility to handle mathematical
calculations in an easy way. In summary, as a computing/programming environment, Matlab

is especially designed to work with data sets as a whole such as vectors, matrices and images.
Therefore, PRTOOLS (http://prtools.org), a toolbox for Pattern Recognition, and DIPIM-

AGE (http://www.ph.tn.tudelft.nl/DIPlib/dipimage 1.html), a toolbox for Image Processing,
have been developed under Matlab.

Under Windows, you can start Matlab by double clicking on the Matlab icon that should
be on the desktop of your computer. On a unix system, type matlab at the command line.
Running Matlab creates one or more windows on your screen. The most important is the
Command Window , which is the place where you interact with Matlab, i.e. it is used to enter
commands and display text results. The string >> is the Matlab prompt (or EDU>> for the
Student Edition). When the Command Window is active, a cursor appears after the prompt,
indicating that Matlab is waiting for your command. Matlab responds by printing text in
the Command Window or by creating a Figure Window for graphics. To exit Matlab use
the command exit or quit. Control-C is a local abort which kills the current execution of a
command.

11.1 Input via the command-line

Matlab is an interactive system; commands followed by Enter are executed immediately. The
results are, if desired, displayed on screen. However, execution of a command will be possible if
the command is typed according to the rules. Table 11.1 shows a list of commands used to solve

– 61 –

11.1. Input via the command-line 62

indicated mathematical equations (a, b, x and y are numbers). Below you find basic information
to help you starting with Matlab :

• Commands in Matlab are executed by pressing Enter or Return. The output will be
displayed on screen immediately. Try the following (hit Enter after the end of line):

1 >> 3 + 7.5
2 >> 18/4
3 >> 3 * 7

Note that spaces are not important in Matlab.

• The result of the last performed computation is ascribed to the variable ans, which is an
example of a Matlab built-in variable. It can be used in the subsequent command. For
instance:

1 >> 14/4
2 ans =
3 3.5000
4 >> ansˆ(−6)
5 ans =
6 5.4399e −04

5.4399e-04 is a computer notation of 5.4399 ∗ 10−4 (see Preliminaries). Note that ans
is always overwritten by the last command that has no assignment.

• You can also define your own variables. Look how the information is stored in the variables
a and b:

1 >> a = 14/4
2 a =
3 3.5000
4 >> b = aˆ(−6)
5 b =
6 5.4399e −04

Read Preliminaries to better understand the concept of variables. You will learn more
on Matlab variables in section 12.1.2.

I can not find the Preliminaries section

• When the command is followed by a semicolon ’;’, the output is suppressed. Check the
difference between the following expressions:

1 >> 3 + 7.5
2 >> 3 + 7.5;

• It is possible to execute more than one command at the same time; the separate commands
should then be divided by commas (to display the output) or by semicolons (to suppress
the output display), e.g.:

1 >> sin(pi/4), cos(pi); sin(0)
2 ans =
3 0.7071
4 ans =
5 0

Note that the value of cos(pi) is not printed.

11.1. Input via the command-line 63

• By default, Matlab displays only 5 digits. The command format long increases this
number to 15, format short reduces it to 5 again. For instance:

1 >> 312/56
2 ans =
3 5.5714
4 >> format long
5 >> 312/56
6 ans =
7 5.57142857142857

• The output may contain some empty lines; this can be suppressed by the command format

compact. In contrast, the command format loose will insert extra empty lines.

• To enter a statement that is too long to be typed in one line, use three periods ’...’
followed by Enter or Return. For instance:

1 >> sin(1) + sin(2) − sin(3) + sin(4) − sin(5) + sin(6) − ...
2 sin(8) + sin(9) − sin(10) + sin(11) − sin(12)
3 ans =
4 1.0357

• Matlab is case sensitive, for example, a is written as a in Matlab; A will result in an
error in this case.

• All text after a percent sign % until the end of a line is treated as a comment. Enter e.g.
the following:

1 >> sin(3.14159) % this is an approximation of sin(pi)

You will notice that some examples in this text are followed by comments. They are meant
for you and you should skip them while typing.

• Previous commands can be fetched back with the ↑ -key. The command can also be
changed, the ← and → -keys may be used to move around in a line and edit it. In case
of a long line, Ctrl-a and Ctrl-e might be useful; they allow to move the cursor at the
beginning or the end of the line, respectively.

• To recall the most recent command starting from e.g. c, type c at the prompt followed by
the ↑ -key. Similarly, cos followed by the ↑ -key will find the last command starting from
cos.

Since Matlab executes the command immediately, it might be useful to have an idea of the
expected outcome. You might be surprised how long it takes to print out a 1000× 1000 matrix!

11.2. help-facilities 64

Mathematical notation Matlab command

a + b a + b

a− b a - b

ab a * b
a
b a / b or b \ a

xb x^b√
x sqrt(x) or x^0.5

|x| abs(x)

π pi

4 · 103 4e3 or 4*10^3

i(
√
−1) i or j

3− 4i 3-4*i or 3-4*j

e, ex exp(1), exp(x)

lnx, log x log(x), log10(x)

sin x, arctanx, ... sin(x), atan(x),...

Table 11.1: Mathematical notation in Matlab ’s commands.

11.2 help-facilities

There are several ways for getting help with MATLAB. A good way to start is to type:

1 >> helpdesk

The helpdesk command opens an HTML document, which contains the Matlab reference
book. This is quite a large document! Useful sections for beginners include Getting Started and
Matlab Functions. You might want to browse them before beginning your first session. Its
helpful to keep this browser window open while you are working with Matlab , so that you
can refer to it easily.
There are other ways of getting help with Matlab that do not make you search through the
whole reference book. If you already know the name of a Matlab function, for example, quit ,
and you want to learn about its use, enter:

1 >> help quit

You will see a description of the command quit . During your first experiences with Matlab

you can from time to time take a:

1 >> demo

session which will show you various features of Matlab . Another very useful feature is the
lookfor command. It looks for all the commands related to a given topic. Try:

1 >> lookfor 'help'

11.3. Interrupting a command or program 65

It will list all of the commands we just discussed.
Besides the inherent help of Matlab , you will find various online courses and references in the
internet and, last but not least, textbooks. Here, we just mention a view:
Online sources

� Matlab home page (from manufacturers)
http://www.mathworks.com

� Matlab online course (TU Eindhoven)
http://www.imc.tue.nl

� Matlab online Reference Documentation
http://www.math.ufl.edu/help/matlab/ReferenceTOC.html

Books and others references

� Matlab An Introduction with Applications, Amos Gilat, 2008.

� Matlab Programming for Engineers, Stephen Chapman, 2007.

� Essential Matlab for Engineers and Scientists, Brian Hahn and Dan Valentine, 2007.

11.3 Interrupting a command or program

Sometimes you might spot an error in your command or program. Due to this error it can
happen that the command or program does not stop. Pressing Ctrl-C (or Ctrl-Break on PC)
forces Matlab to stop the process. Sometimes, however, you may need to press a few times.
After this the Matlab prompt (>>) re-appears. This may take a while, though.

11.4 Path

In Matlab, commands or programs are contained in m-files, which are just plain text files and
have an extension ’.m’. The m-file must be located in one of the directories which Matlab

automatically searches. The list of these directories can be listed by the command path. One of
the directories that is always taken into account is the current working directory, which can be
identified by the command pwd. Use path, addpath and rmpath functions to modify the path.
It is also possible to access the path browser from the File menu-bar, instead.

Exercise 11.1.
Type path to check which directories are placed on your path. Add you personal directory to
the path (assuming that you created your personal directory for working with Matlab). �

11.5. Workspace issues 66

11.5 Workspace issues

If you work in the Command Window, Matlab memorizes all commands that you entered and
all variables that you created. These commands and variables are said to reside in the Matlab

workspace. They might be easily recalled when needed, e.g. to recall previous commands, the
↑ -key is used. Variables can be verified with the commands who, which gives a list of variables
present in the workspace, and whos, which includes also information on name, number of allo-
cated bytes and class of variables. For example, assuming that you performed all commands
from section 1.1, after typing who you should get the following information:

1 >> who
2 Your variables are:
3 a ans b x

The command clear <name> deletes the variable <name> from the Matlab workspace, clear
or clear all removes all variables. This is useful when starting a new exercise. For example:

1 >> clear a x
2 >> who
3 Your variables are:
4 ans b

Note that you cannot use comma after a variable, i.e. clear a, x, as it will be interpreted in
Matlabas clear a and print x on the screen. See what is the result of:

1 >> clear all
2 >> a = 1; b = 2; c = 3;
3 >> clear a, b, c

11.6 Saving and loading data

The easiest way to save or load Matlab variables is by using (clicking) the File menu-bar, and
then selecting the Save Workspace as... or Load Workspace... items respectively. Also
Matlab commands exist which save data to files and which load data from files.

The command save allows for saving your workspace variables either into a binary file or an
ASCII file (check Preliminaries on binary and ASCII files). Binary files automatically get
the ’.mat’ extension, which is not true for ASCII files. However, it is recommended to add a
’.txt’ or .dat extension.

Exercise 11.2.
Learn how to use the save command by exercising:

1 >> clear all
2 >> s1 = sin(pi/4);
3 >> c1 = cos(pi/4); c2 = cos(pi/2);
4 >> str = 'hello world' ; % this is a string

11.7. Exercises 67

5 >> save % saves all variables in binary format to
6 % matlab.mat
7 >> save data % saves all variables in binary format to data.mat
8 >> save numdata s1, c1 % saves numeric variables s1 and c1 to numdata.mat
9 >> save strdata str % saves a string variable str to strdata.mat

10 >> save allcos.dat c * −ascii % saves c1,c2 in 8 −digit ascii format to
11 % allcos.dat

�

The load command allows for loading variables into the workspace. It uses the same syntax as
save.

Exercise 11.3.
Assuming that you have done the previous exercise, try to load variables from the created files.
Before each load command, clear the workspace and after loading check which variables are
present in the workspace (use who).

1 >> load % loads all variables from the file matlab.mat
2 >> load data s1 c1 % loads only specified variables from the file
3 % data.mat
4 >> load strdata % loads all variables from the file strdata.mat

It is also possible to read ASCII files that contain rows of space separated values. Such a file
may contain comments that begin with a percent character. The resulting data is placed into a
variable with the same name as the ASCII file (without the extension). Check, for example:

1 >> load allcos.dat % loads data from allcos.dat into variable allcos
2 >> who % lists variables present in the workspace now

�

11.7 Exercises

Exercise 11.4.

• Is the inverse cosine function, known as cos−1 or arccos, one of the Matlab’s elementary
functions?

• Does Matlab have a mathematical function to calculate the greatest common divisor?

• Look for information on logarithms.

Use help or lookfor to find out. �

Chapter 12

Basic syntax and variables

12.1 Matlab as a calculator

There are three kinds of numbers used in Matlab: integers, real numbers and complex numbers.
In addition, Matlab has representations of the non-numbers: Inf, for positive infinity, gener-
ated e.g. by 1/0, and NaN, Not-a-Number, obtained as a result of the mathematically undefined
operations such as 0/0 or ∞ - ∞.

You have already got some experience with Matlab and you know that it can be used as a
calculator. To do that you can, for example, simply type:

1 >> (23 * 17)/7

The result will be:

1 ans =
2 55.8571

Matlab has six basic arithmetic operations, such as: +, -, *, / or \ (right and left divisions)
and ^ (power). Note that the two division operators are different:

1 >> 19/3 % mathematically: 19/3
2 ans =
3 6.3333
4 >> 19\3, 3/19 % mathematically: 3/19
5 ans =
6 0.1579
7 ans =
8 0.1579

Basic built-in functions, trigonometric, exponential, etc, are available for a user. Try help

elfun to get the list of elementary functions.

– 68 –

12.1. Matlab as a calculator 69

Exercise 12.1.
Evaluate the following expressions by hand and use Matlab to check the answers. Note the
difference between the left and right divisors. Use help to learn more on commands rounding
numbers, such as: round, floor, ceil, etc.

• 2/2 ∗ 3
• 8 ∗ 5\4
• 8 ∗ (5\4)
• 7− 5 ∗ 4\9
• 6− 2/5 + 7^2− 1

•
10/2\5− 3 + 2 ∗ 4

• 3^2/4

• 3^2^3

• 2 + round (6/9 + 3 ∗ 2)/2
• 2 + floor (6/9 + 3 ∗ 2)/2
• 2 + ceil (6/9 + 3 ∗ 2)/2
•
x = pi/3, x = x− 1, x = x + 5, x = abs(x)/x

�

intermezzo

12.1.1 An introduction to floating-point numbers

In a computer, numbers can be represented only in a discrete form. It means that numbers are
stored within a limited range and with a finite precision. Integers can be represented exactly
with the base of 2 (read Preliminaries on bits and the binary system). The typical size of an
integer is 16 bits, so the largest positive integer, which can be stored, is 216 = 65536. If negative
integers are permitted, then 16 bits allow for representing integers between −32768 and 32767.
Within this range, operations defined on the set of integers can be performed exactly.

However, this is not valid for other real numbers. In practice, computers are integer machines
and are capable of representing real numbers only by using complicated codes. The most popular
code is the floating point standard. The term floating point is derived from the fact that there
is no fixed number of digits before and after the decimal point, meaning that the decimal
point can float. Note that most floating-point numbers that a computer can represent are just
approximations. Therefore, care should be taken that these approximations lead to reasonable
results. If a programmer is not careful, small discrepancies in the approximations can cause
meaningless results. Note the difference between e.g. the integer arithmetic and floating-point
arithmetic:

Integer arithmetic: Floating-point arithmetic
2 + 4 = 6 18/7 = 2.5714

3 * 4 = 12 2.5714 * 7 = 17.9998

25/11 = 2 10000/3 = 3.3333e+03

When describing floating-point numbers, precision refers to the number of bits used for the
fractional part. The larger the precision, the more exact fractional quantities can be represented.
Floating-point numbers are often classified as single precision or double precision. A double-
precision number uses twice as many bits as a single-precision value, so it can represent fractional
values much better. However, the precision itself is not double. The extra bits are also used to
increase the range of magnitudes that can be represented.

12.1. Matlab as a calculator 70

Matlab relies on a computer’s floating point arithmetic. You could have noticed that in the
last exercise since the value of sin(π) was almost zero, and not completely zero. It came from
the fact that both the value of π is represented with a finite precision and the sin function is
also approximated.

The fundamental type in Matlab is double, which stands for a representation with a double
precision. It uses 64 bits. The single precision obtained by using the single type offers 32 bits.
Since most numeric operations require high accuracy the double type is used by default. This
means, that when the user is inputting integer values in Matlab (for instance, k = 4), the data
is still stored in double format.

The relative accuracy might be defined as the smallest positive number ǫ that added to 1, creates
the result larger than 1, i.e. 1 + ǫ > 1. It means that in floating-point arithmetic, for positive
values smaller than ǫ, the result equals to 1 (in exact arithmetic, of course, the result is always
larger than 1). In Matlab, ǫ is stored in the built-in variable eps ≈ 2.2204e-16. This means
that the relative accuracy of individual arithmetic operations is about 15 digits.

end intermezzo

12.1.2 Assignments and variables

Working with complex numbers is easily done with Matlab.

Exercise 12.2.
Choose two complex numbers, for example -3 + 2i and 5 - 7i. Add, subtract, multiply, and
divide these two numbers. �

During this exercise, the complex numbers had to be typed four times. To reduce this, assign
each number to a variable. For the previous exercise, this results in:

1 >> z = −3 + 2* i; w = 5 − 7* i;
2 >> y1 = z + w; y2 = z − w;
3 >> y3 = z * w;
4 >> y4 = z / w; y5 = w \ z;

Formally, there is no need to declare (i.e. define the name, size and the type of) a new variable
in Matlab. A variable is simply created by an assignment (e.g. z = -3 + 2*i), i.e. values
are assigned to variables. Each newly created numerical variable is always of the double type,
i.e. real numbers are approximated with the highest possible precision. You can change this
type by converting it into e.g. the single type1. In some cases, when huge matrices should be
handled and precision is not very important, this might be a way to proceed. Also, when only
integers are taken into consideration, it might be useful to convert the double representations
into e.g. int321 integer type. Note that integer numbers are represented exactly, no matter
which numeric type is used, as long as the number can be represented in the number of bits
used in the numeric type.

Bear in mind that undefined values cannot be assigned to variables. So, the following is not
possible:

1a variable a is converted into a different type by performing e.g. a = single(a), a = int32(a) etc.

12.1. Matlab as a calculator 71

1 >> clear x; % to make sure that x does not exist
2 >> f = xˆ2 + 4 * sin(x)

It becomes possible by:

1 >> x = pi / 3; f = xˆ2 + 4 * sin(x)

Variable name begins with a letter, followed by letters, numbers or underscores. Matlab

recognizes only first 31 characters of the name.

Exercise 12.3.
Here are some examples of different types of Matlab variables. You do not need to understand
them all now, since you will learn more about them during the course. Create them manually
in Matlab:

1 >> this is my very simple variable today = 5 % check what happens; the name is
2 % very long
3 >> 2t = 8 % what is the problem with this
4 % command?
5 >> M = [1 2; 3 4; 5 6] % a matrix
6 >> c = 'E' % a character
7 >> str = 'Hello world' % a string
8 >> m = ['J' , 'o' , 'h' , 'n'] % try to guess what it is

Check the types by using the command whos. Use clear <name> to remove a variable from the
workspace. �

As you already know, Matlab variables can be created by an assignment. There is also a
number of built-in variables, e.g. pi, eps or i, summarized in Table 12.1. In addition to
creating variables by assigning values to them, another possibility is to copy one variable, e.g.
b into another, e.g. a. In this way, the variable a is automatically created (if a already existed,
its previous value is lost):

1 >> b = 10.5;
2 >> a = b;

A variable can also be created as a result of the evaluated expression:

1 >> a = 10.5; c = aˆ2 + sin(pi * a)/4;

or by loading data from text or ’*.mat’ files.

If min is the name of a function (see help min), then a defined, e.g. as:

1 >> b = 5; c = 7;
2 >> a = min (b,c); % create a as the minimum of b and c

will call that function, with the values b and c as parameters. The result of this function (its
return value) will be written (assigned) into a. So, variables can be created as results of the
execution of built-in or user-defined functions (you will learn more how to built own functions
in section 17.1).

12.2. Exercises 72

Important: do not use variable names which are defined as function names (for instance mean

or error)2, becuase from this point you cannot access the function. For example try

1 >> mean([4 6])
2

3 ans =
4

5 5
6

7 >> mean=3
8

9 mean =
10

11 3
12

13 >> mean([4 6])
14 ??? Index exceeds matrix dimensions.

At the second calling mean is a variable not the function mean.

If you are going to use a suspicious variable name, use help <name> to find out if the function
already exists.

Variable name Value/meaning

ans the default variable name used for storing the last result

pi π = 3.14159...

eps the smallest positive number that added to 1 makes a result larger than 1

inf representation for positive infinity, e.g. 1/0

nan or NaN representation for not-a-number, e.g. 0/0

i or j i = j =
√
−1

nargin/nargout number of function input/output arguments used

realmin/realmax the smallest/largest usable positive real number: 1.7977e+308 / 2.2251e−308

Table 12.1: Built-in variables in Matlab.

12.2 Exercises

Exercise 12.4.
Define the format in Matlab such that empty lines are suppressed and the output is given with
15 digits. Calculate:

1 >> pi
2 >> sin(pi)

Note that the answer is not exactly 0. Use the command format to put Matlab in its standard-
format. �

2There is always one exception of the rule: variable i is often used as counter in a loop, while it is also used

as i =
√
−1.

Chapter 13

Mathematics with vectors and matrices

The basic element of Matlab is a matrix (or an array). Special cases are:

• a 1× 1-matrix: a scalar or a single number;

• a matrix existing only of one row or one column: a vector. [Actually this is stored as a
two matrix with one dimension being length 1].

Note that Matlab may behave differently depending on the input, whether it is a number, a
vector or a two-dimensional (or more-dimensional) matrix.

13.1 Vectors

Row vectors are lists of numbers separated either by commas or by spaces. They are examples
of simple arrays. First element has index 1. The number of entries is known as the length of
the vector (the command length exists as well). Their entities are referred to as elements or
components. The entries must be enclosed in []:

1 >> v = [−1 sin(3) 7]
2 v =
3 −1.0000 0.1411 7.0000
4 >> length(v)
5 ans =
6 3

A number of operations can be done on vectors. A vector can be multiplied by a scalar, or
added/subtracted to/from another vector with the same length, or a number can be added/-
subtracted to/from a vector. All these operations are carried out element-by-element. Vectors
can also be built from the already existing ones.

– 73 –

13.1. Vectors 74

1 >> v = [−1 2 7]; w = [2 3 4];
2 >> z = v + w % an element −by−element sum
3 z =
4 1 5 11
5 >> vv = v + 2 % add 2 to all elements of vector v
6 vv =
7 1 4 9
8 >> t = [2 * v, −w]
9 ans =

10 −2 4 14 −2 −3 −4

Also, a particular value can be changed or displayed:

1 >> v(2) = −1 % change the 2nd element of v
2 v =
3 −1 −1 7
4 >> w(2) % display the 2nd element of w
5 ans =
6 3

13.1.1 Colon notation

A colon notation is an important shortcut, used when producing row vectors (see Table 13.1
and help colon):

1 >> 2:5
2 ans =
3 2 3 4 5
4 >> −2:3
5 ans =
6 −2 −1 0 1 2 3

In general, first:step:last produces a vector of entities with the value first, incrementing
by the step until it reaches last:

1 >> 0.2:0.5:2.4
2 ans =
3 0.2000 0.7000 1.2000 1.7000 2.2000
4 >> −3:3:10
5 ans =
6 −3 0 3 6 9
7 >> 1.5: −0.5: −0.5 % negative step is also possible
8 ans =
9 1.5000 1.0000 0.5000 0 −0.5000

13.1.2 Extracting and appending parts of a vector

Parts of vectors can be extracted by using a colon notation:

13.1. Vectors 75

1 >> r = [−1:2:6, 2, 3, −2] % −1:2:6 = > −1 1 3 5
2 r =
3 −1 1 3 5 2 3 −2
4 >> r(3:6) % get elements of r which are on the positions
5 % from 3 to 6
6 ans =
7 3 5 2 3
8 >> r(1:2:5) % get elements of r which are on the positions
9 % 1, 3 and 5

10 ans =
11 −1 3 2
12 >> r(5: −1:2) % what will you get here?

Matlab allocates memory for all variables on the fly. This allows you to increase the size of a
vector simply by assigning a value to an element that has not been previously used.

1 >> x = linspace(21,25,5)
2

3 x =
4

5 21 22 23 24 25
6

7 >> x(7) = −9
8

9 x =
10

11 21 22 23 24 25 0 −9

13.1.3 Column vectors and transposing

To create column vectors, you should separate entries by by new lines or by a semicolon ’;’:

1 >> z = [1
2 7
3 7];
4 z =
5 1
6 7
7 7
8 >> u = [−1; 3; 5]
9 u =

10 −1
11 3
12 5

The operations applied to row vectors can be applied to column vectors, as well. You cannot,
however, add a column vector to a row vector. To do that, you need an operation called
transposing, which converts a column vector into a row vector and vice versa:

1 >> u' % u is a column vector and u' is a row vector
2 ans =
3 −1 3 5

13.1. Vectors 76

4 >> v = [−1 2 7]; % v is a row vector
5 >> u + v % you cannot add a column vector u to a row
6 % vector v
7 ??? Error using == > +
8 Matrix dimensions must agree.
9 >> u' + v

10 ans =
11 −2 5 12
12 >> u + v'
13 ans =
14 −2
15 5
16 12

If z is a complex vector, then z’ gives the conjugate transpose of z. For instance:

1 >> z = [1+2i, −1+i]
2 z =
3 1.0000 + 2.0000i −1.0000 + 1.0000i
4 >> z' % this is the conjugate transpose
5 ans =
6 1.0000 − 2.0000i
7 −1.0000 − 1.0000i
8 >> z.' % this is the traditional transpose
9 ans =

10 1.0000 + 2.0000i
11 −1.0000 + 1.0000i

13.1.4 Product, divisions and powers of vectors

You can now compute the inner product between two vectors x and y of the same length,
xT y =

∑

i xi yi, in a simple way:

1 >> u = [−1; 3; 5] % a column vector
2 >> v = [−1; 2; 7] % a column vector
3 >> u * v % you cannot multiply a column vector by a column
4 % vector
5 ??? Error using == > *
6 Inner matrix dimensions must agree.
7 >> u' * v % this is the inner product
8 ans =
9 42

Another way to compute the inner product is by the use of the dot product, i.e. .*, which
performs element-wise multiplication. Given two vectors x and y of the same length, an element-
wise multiplication is defined as a vector [x1y1, x2y2, . . . , xnyn], thus, the corresponding elements
of two vectors are multiplied. For instance:

1 >> u . * v % this is an element −by−element multiplication
2 1
3 6
4 35
5 >> sum(u. * v) % this is an another way to compute the inner product
6 ans =

13.1. Vectors 77

7 42
8 >> z = [4 3 1]; % z is a row vector
9 >> sum(u'. * z) % this is the inner product

10 ans =
11 10
12 >> u' * z' % since z is a row vector, u' * z' is the inner product
13 ans =
14 10

You can now easily tabulate the values of a function for a given list of arguments. For instance:

1 >> x = 1:0.5:4;
2 >> y = sqrt(x) . * cos(x)
3 y =
4 0.5403 0.0866 −0.5885 −1.2667 −1.7147 −1.7520 −1.3073

Mathematically, a division of one vector by another is an undefined operation. However, in Mat-

lab, the operator ./ is introduced to perform an element-by-element division. It is, therefore,
defined for vectors of the same size and type:

1 >> x = 2:2:10
2 x =
3 2 4 6 8 10
4 >> y = 6:10
5 y =
6 6 7 8 9 10
7 >> x./y
8 ans =
9 0.3333 0.5714 0.7500 0.8889 1.0000

10 >> z = −1:3
11 z =
12 −1 0 1 2 3
13 >> x./z % division 4/0, resulting in Inf
14 Warning: Divide by zero.
15 ans =
16 −2.0000 Inf 6.0000 4.0000 3.3333
17 >> z./z % division 0/0, resulting in NaN
18 Warning: Divide by zero.
19 ans =
20 1 NaN 1 1 1

The operator ./ can also be used to divide a scalar by a vector:

1 >> x=1:5; 2/x % this is not possible
2 ??? Error using == > /
3 Matrix dimensions must agree.
4 >> 2./x % but this is!
5 ans =
6 2.0000 1.0000 0.6667 0.5000 0.4000

Exercise 13.1.
Get acquainted with operations on row and column vectors. Perform, for instance:

• Create a vector consisting of the even numbers between 21 and 47.

13.2. Matrices 78

• Let x = [4 5 9 6].

– Subtract 3 from each element.
– Add 11 to the odd-index elements.
– Compute the square root of each element.
– Raise to the power 3 each element.

• Create a vector x with the elements:

– 2, 4, 6, 8, ..., 16
– 9, 7, 5, 3, 1, -1, -3, -5

• Given x = [2 1 3 7 9 4 6], explain what the following commands do (note that x(end)

points to the last element of x):

– x (3)

– x (1:7)

– x (1:end)

– x (1:end-1)

– x (2:2:6)

– x (6:-2:1)

– x (end-2:-3:2)

– sum(x)

– mean(x)

– min(x)

�

Command Result

A(i,j) Aij

A(:,j) j-th column of A

A(i,:) i-th row of A

A(k:l,m:n) (l − k + 1)× (n−m + 1) matrix with elements Aij with k ≤ i ≤ l, m ≤ j ≤ n

v(i:j)’ ’vector-part’ (vi, vi+1, . . . , vj) of vector v

Table 13.1: Manipulation of (groups of) matrix elements.

13.2 Matrices

Row and column vectors are special types of matrices. An n × k matrix is a rectangular array
of numbers having n rows and k columns. Defining a matrix in Matlab is similar to defining
a vector. The generalization is straightforward, if you see that a matrix consists of row vectors
(or column vectors). Commas or spaces are used to separate elements in a row, and semicolons

are used to separate individual rows. For example, the matrix A =

1 2 3
4 5 6
7 8 9

 is defined as:

1 >> A = [1 2 3; 4 5 6; 7 8 9] % row by row input
2 A =
3 1 2 3
4 4 5 6
5 7 8 9

13.2. Matrices 79

Command Result

n = rank(A) n becomes the rank of matrix A
x = det(A) x becomes the determinant of matrix A
x = size(A) x becomes a row-vector with 2 elements: the number of rows and columns of A
x = trace(A) x becomes the trace (sum of diagonal elements) of matrix A
x = norm(v) x becomes the Euclidean length of vector v

C = A + B sum of two matrices
C = A - B subtraction of two matrices
C = A * B multiplication of two matrices
C = A .* B ’element-by-element’ multiplication (A and B are of equal size)
C = A^k power of a matrix (k ∈ Z; can also be used for A−1)
C = A.^k ’element-by-element’ power of a matrix
C = A’ the transposed of a matrix; AT

C = A ./ B ’element-by-element’ division (A and B are of equal size)
X = A \ B finds the solution in the least squares sense to the system of equations AX = B
X = B / A finds the solution of XA = B, analogous to the previous command

C = inv(A) C becomes the inverse of A
C = null(A) C is an orthonormal basis for the null space of A obtained from the singular

value decomposition
C = orth(A) C is an orthonormal basis for the range of A
L = eig(A) L is a vector containing the (possibly complex) eigenvalues of a square matrix A
[Q,L] = eig(A) produces a diagonal matrix L of eigenvalues and a full matrix Q whose columns

are the corresponding eigenvectors of a square matrix A
S = svd(A) S is a vector containing the singular values of a rectangular matrix A
[U,S,V] = svd(A) S is a diagonal matrix with nonnegative diagonal elements in decreasing order;

columns of U and V are the accompanying singular vectors of A

x = linspace(a,b,n) generates a vector x of n equally spaced points between a and b
x = logspace(a,b,n) generates a vector x starting at 10a and ended at 10b containing n values
A = eye(n) A is an n× n identity matrix
A = zeros(n,m) A is an n×m matrix with zeros (default m = n)
A = ones(n,m) A is an n×m matrix with ones (default m = n)
A = diag(v) results in a diagonal matrix with the elements v1, v2, . . . , vn on the diagonal
v = diag(A) results in a vector equivalent to the diagonal of A
X = tril(A) X is lower triangular part of A
X = triu(A) X is upper triangular part of A
A = rand(n,m) A is an n×m matrix of elements drawn from a uniform distribution on [0, 1]
A = randn(n,m) A is an n×m matrix of elements drawn from a standard normal distribution

v = max(A) v is a vector of the maximum values of the columns in A
v = max(A,dim) v is a vector of the maximum values along the dimension dim in A
v = min(A),

v = min(A,dim) ditto - with minimum
v = sum(A),

v = sum(A,dim) ditto - with sum

Table 13.2: Frequently used matrix operations and functions.

13.2. Matrices 80

Other examples are, for instance:

1 >> A2 = [1:4; −1:2:5]
2 A2 =
3 1 2 3 4
4 −1 1 3 5
5 >> A3 = [1 3
6 −4 7]
7 A3 =
8 1 3
9 −4 7

From that point of view, a row vector is a 1 × k matrix and a column vector is an n × 1
matrix. Transposing a vector changes it from a row to a column or the other way around. This
idea can be extended to a matrix, where the transpose operation interchanges rows with the
corresponding columns, as in the example:

1 >> A2
2 A2 =
3 1 2 3 4
4 −1 1 3 5
5 >> A2' % transpose of A2
6 ans =
7 1 −1
8 2 1
9 3 3

10 4 5
11 >> size(A2) % returns the size (dimensions) of A2: 2 rows,
12 % 4 columns
13 ans =
14 2 4
15 >> size(A2')
16 ans =
17 4 2

13.2.1 Special matrices

There is a number of built-in matrices of size specified by the user (see Table 13.2). A few
examples are given below:

1 >> E = [] % an empty matrix of 0 −by−0 elements!
2 E =
3 []
4 >> size(E)
5 ans =
6 0 0
7 >> I = eye(3); % the 3−by−3 identity matrix
8 I =
9 1 0 0

10 0 1 0
11 0 0 1
12 >> r = [1 3 −2]; R = diag(r) % create a diagonal matrix with r on the diagonal
13 R =
14 1 0 0
15 0 3 0

13.2. Matrices 81

16 0 0 −2
17 >> A = [1 2 3; 4 5 6; 7 8 9];
18 >> diag(A) % extracts the diagonal entries of A
19 ans =
20 1
21 5
22 9
23 >> B = ones(3,2)
24 B =
25 1 1
26 1 1
27 1 1
28 >> C = zeros (size(B')) % a matrix of all zeros of the size given by B'
29 C =
30 0 0 0
31 0 0 0
32 >> D = rand(2,3) % a matrix of random numbers; you will get a
33 % different one!
34 D =
35 0.0227 0.9101 0.9222
36 0.0299 0.0640 0.3309
37 >> v = linspace(1,2,4) % a vector is also an example of a matrix
38 v =
39 1.0000 1.3333 1.6667 2.0000

13.2.2 Building matrices and extracting parts of matrices

It is often needed to build a larger matrix from a number of smaller ones:

1 >> x = [4; −1], y = [−1 3]
2 x =
3 4
4 −1
5 y =
6 −1 3
7 >> X = [x y'] % X consists of the columns x and y'
8 X =
9 4 −1

10 −1 3
11 >> T = [−1 3 4; 4 5 6]; t = 1:3;
12 >> T = [T; t] % add to T a new row, namely the row vector t
13 T =
14 −1 3 4
15 4 5 6
16 1 2 3
17 >> G = [1 5; 4 5; 0 2]; % G is a matrix of the 3 −by−2 size; check size(G)
18 >> T2 = [T G] % join two matrices
19 T2 =
20 −1 3 4 1 5
21 4 5 6 4 5
22 1 2 3 0 2
23 >> T3 = [T; G ones(3,1)] % G is 3−by−2, T is 3 −by−3
24 T3 =
25 −1 3 4
26 4 5 6
27 1 2 3
28 1 5 1
29 4 5 1

13.2. Matrices 82

30 0 2 1
31 >> T3 = [T; G']; % this is also possible
32 T3 =
33 −1 3 4
34 4 5 6
35 1 2 3
36 1 4 0
37 5 5 2
38 >> [G' diag(5:6); ones(3,2) T] % you can join many matrices
39 ans =
40 1 4 0 5 0
41 5 5 2 0 6
42 1 1 −1 3 4
43 1 1 4 5 6
44 1 1 1 2 3

A part of a matrix can be extracted from a matrix in a similar way as it is done for vectors.
Each element in a matrix is indexed by a row and a column to which it belongs. Mathematically,
the element from the i-th row and the j-th column of the matrix A is denoted as Aij ; Matlab

provides the A(i,j) notation.

1 >> A = [1:3; 4:6; 7:9]
2 A =
3 1 2 3
4 4 5 6
5 7 8 9
6 >> A(1,2), A(2,3), A(3,1)
7 ans =
8 2
9 ans =

10 6
11 ans =
12 7
13 >> A(4,3) % this is not possible: A is a 3 −by−3 matrix!
14 ??? Index exceeds matrix dimensions.
15 >> A(2,3) = A(2,3) + 2 * A(1,1) % change the value of A(2,3)
16 A =
17 1 2 3
18 4 5 8
19 7 8 9

It is easy to automatically extend the size of a matrix. For the matrix A above it can be done
e.g. as follows:

1 >> A(5,2) = 5 % assign 5 to the position (5,2); the uninitialized
2 A = % elements of A become zeros
3 1 2 3
4 4 5 8
5 7 8 9
6 0 0 0
7 0 5 0

If needed, the other zero elements of the matrix A can also be defined, by e.g.:

1 >> A(4,:) = [2, 1, 2]; % assign vector [2, 1, 2] to the 4th row of A
2 >> A(5,[1,3]) = [4, 4]; % assign: A(5,1) = 4 and A(5,3) = 4

13.2. Matrices 83

3 >> A % what does the matrix A look like now?
4 A =
5 1 2 3
6 4 5 8
7 7 8 9
8 2 1 2
9 4 5 4

Different parts of the matrix A can now be extracted:

1 >> A(3,:) % extract the 3rd row of A
2 ans =
3 7 8 9
4 >> A(:,2) % extract the 2nd column of A
5 ans =
6 2
7 5
8 8
9 1

10 5
11 >> A(1:2,:) % extract the 1st and 2nd row of A
12 ans =
13 1 2 3
14 4 5 8
15 >> A([2,5],1:2) % extract a part of A
16 ans =
17 4 5
18 4 5

As you have seen in the examples above, it is possible to manipulate (groups of) matrix-elements.
The commands are shortly explained in Table 13.1.

The concept of an empty matrix [] is also very useful in Matlab. For instance, a few columns
or rows can be removed from a matrix by assigning an empty matrix to it. Try for example:

1 >> C = [1 2 3 4; 5 6 7 8; 1 1 1 1];
2 >> D = C; D(:,2) = [] % now a copy of C is in D; remove the 2nd column
3 % of D
4 >> C ([1,3],:) = [] % remove the rows 1 and 3 from C

13.2.3 Operations on matrices

Table 13.2 shows some frequently used matrix operations and functions. The important ones are
dot operations on matrices, matrix-vector products and matrix-matrix products. In the class
of the dot operations, there are dot product, dot division and dot power. Those operations
work as for vectors: they address matrices in the element-by-element way, therefore they can
be performed on matrices of the same sizes. They also allow for scalar-matrix operations. For
the dot product or division, the corresponding elements are either multiplied or divided. A few
examples of basic operations are given below:

1 >> B = [1 −1 3; 4 0 7]
2 B =
3 1 −1 3

13.2. Matrices 84

4 4 0 7
5 >> B2 = [1 2; 5 1; 5 6];
6 >> B = B + B2' % add two matrices; why is B2' needed instead of B2?
7 B =
8 2 4 8
9 6 1 13

10 >> B−2 % subtract 2 from all elements of B
11 ans =
12 0 2 6
13 4 −1 11
14 >> ans = B./4 % divide all elements of the matrix B by 4
15 ans =
16 0.5000 1.0000 2.0000
17 1.5000 0.2500 3.2500
18 >> 4/B % this is not possible
19 ??? Error using == > /
20 Matrix dimensions must agree.
21

22 >> 4./B % this is possible;
23 % equivalent to: 4. * ones(size(B))./ B
24 ans =
25 2.0000 1.0000 0.5000
26 0.6667 4.0000 0.3077
27 >> C = [1 −1 4; 7 0 −1];
28 >> B . * C % multiply element −by−element
29 ans =
30 2 −4 32
31 42 0 −13
32 >> ans.ˆ3 − 2 % do for all elements: raise to the power 3 and
33 % subtract 2
34 ans =
35 6 −66 32766
36 74086 −2 −2199
37 >> ans ./ B.ˆ2 % element −by−element division
38 ans =
39 0.7500 −1.0312 63.9961
40 342.9907 −2.0000 −1.0009
41 >> r = [1 3 −2]; r * B2 % this is a legal operation:
42 ans = % r is a 1 −by−3 matrix and B2 is a 3 −by−2 matrix
43 6 −7 % note that B2 * r is an illegal operation

Concerning the matrix-vector and matrix-matrix products, two things should be reminded from
linear algebra. First, an n × k matrix A (having n rows and k columns) can be multiplied
by a k × 1 (column) vector x, resulting in a column n × 1 vector y, i.e.: A x = y such that
yi =

∑k
p=1 Aip xp. Multiplying a 1 × n (row) vector x by a matrix A, results in a 1 × k (row)

vector y. Secondly, an n× k matrix A can be multiply by a matrix B, only if B has k rows, i.e.
B is k ×m (m is arbitrary). As a result, you get n ×m matrix C, such that A B = C, where
Cij =

∑k
p=1 Aip Bpj .

1 >> b = [1 3 −2];
2 >> B = [1 −1 3; 4 0 7]
3 B =
4 1 −1 3
5 4 0 7
6 >> b * B % not possible: b is 1 −by−3 and B is 2 −by−3
7 ??? Error using == > *
8 Inner matrix dimensions must agree.
9

10 >> b * B' % this is possible: a row vector multiplied by a

13.3. Exercises 85

11 % matrix
12 ans =
13 −8 −10
14 >> B' * ones(2,1)
15 ans =
16 5
17 −1
18 10
19 >> C = [3 1; 1 −3];
20 >> C * B
21 ans =
22 7 −3 16
23 −11 −1 −18
24 >> C.ˆ3 % this is an element −by−element power
25 ans =
26 27 1
27 1 −27
28 >> Cˆ3 % this is equivalent to C * C* C
29 ans =
30 30 10
31 10 −30
32 >> ones(3,4)./4 * diag(1:4)
33 ans =
34 0.2500 0.5000 0.7500 1.0000
35 0.2500 0.5000 0.7500 1.0000
36 0.2500 0.5000 0.7500 1.0000

13.3 Exercises

Exercise 13.2.
Create a vector containing 5 elements such that its components are equally spaced when you
take the logarith of it �

Exercise 13.3.
Perform the following exercises:

• Create a vector x with the elements:

– 1, 1/2, 1/3, 1/4, 1/5
– 0, 1/2, 2/3, 3/4, 4/5

To do this, devide a vector y by a vector z.

• Create a vector x with the elements: xn = (−1)n

2n−1
for n = 1, 2, 3, ... Find the sum of the

100-element vector.

• Given a vector t, write down the Matlab expressions that will compute:

– ln (2 + t + t2)
– cos (t)2 − sin (t)2

– et (1 + cos (3t))
– tan−1(t)

Test them for t = 1 : 0.2 : 2.

�

13.3. Exercises 86

Exercise 13.4.
Use the knowledge on computing the inner product to find:

1. the Euclidean length of the vector x = [2 1 3 7 9 4 6], which is defined as ||x|| =
√

(Σx2i).

2. the angle between two column vectors, which is defined as cos α = xTy

||x|| ||y|| . Note that you

can also use the Matlab command norm(v), which gives you the Euclidean length of a
vector v. The Matlab command acosd(x) can be used to find the inverse cosine of x
expressed in degrees. Compute the angle between two vectors:

• x = [3 2 1] and y = [1 2 3]
• x = 1 : 5 and y = 6 : 10

�

Exercise 13.5.
Clear all variables (use the command clear). Define the matrix A = [1:4; 5:8; 1 1 1 1].
Predict and check the result of the following operations:

• x = A(:, 3)

• B = A(1 : 3, 2 : 2)

• A(1, 1) = 9 + A(2, 3)

•
A(2 : 3, 1 : 3) = [0 0 0; 0 0 0]

• A(2 : 3, 1 : 2) = [1 1; 3 3]

• y = A(3 : 3, 1 : 4)

• A = [A; 2 1 7 7; 7 7 4 5]

• C = A([1, 3], 2)

• D = A([2, 3, 5], [1, 3, 4])

• D(2, :) = []

�

Exercise 13.6.
Define the matrices T = [3 4; 1 8; -4 3] and A = [diag(-1:2:3) T; -4 4 1 2 1]. Per-
form the following operations on the matrix A:

• extract a vector consisting of the 2nd and 4th elements of the 3rd row

• find the minimum of the 3rd column

• find the maximum of the 2nd row

• compute the sum of the 2nd column

• compute the mean of the 1st and 4th rows

• extract the submatrix consisting of the 1st and 3rd rows and all columns

• extract the submatrix consisting of the 1st and 2nd rows and the 3rd, 4th and 5th columns

• compute the total sum of the 1st and 2nd rows

• add 3 to all elements of the 2nd and 3rd columns

�

Exercise 13.7.
Let A = [2 4 1; 6 7 2; 3 5 9]. Provide the commands which:

• assign the first row of A to a vector x;

• assign the last 2 rows of A to a vector y;

• add up the columns of A;

13.3. Exercises 87

• add up the rows of A;

�

Exercise 13.8.
Let A = [2 7 9 7; 3 1 5 6; 8 1 2 5]. Explain the results or perform the following commands:

• A′

• A(1, :)′

• A(:, [14])

• A([23], [31])

•
reshape (A, 2, 6)

• A(:)

• flipud (A)

• fliplr (A)

• [A A(end, :)]

• [A; A(1 : 2, :)]

• sum (A)

• sum (A′)

• mean (A)

• mean (A′)

• sum (A, 2)

• mean (A, 2)

• min (A)

• max (A′)

• min (A(:, 4))

•
[min(A)′ max(A)′]

• max (min(A))

• [[A; sum (A)] [sum (A, 2); sum (A(:))]]

• assign the even-numbered columns of A to an
array B

• assign the odd-numbered rows to an array C

• convert A into a 4-by-3 array

• compute the reciprocal of each element of A

• compute the square-root of each element of A

• remove the second column of A

• add a row of all 1’s at the beginning and at the
end

• swap the 2nd row and the last row

�

Exercise 13.9.
Given the vectors x = [1 3 7], y = [2 4 2] and the matrices A = [3 1 6; 5 2 7] and B = [1 4; 7 8; 2 2],
determine which of the following statements can be correctly executed (and if not, try to un-
derstand why) and provide the result:

• x + y

• x + A

• x′ + y

• A− [x′ y′]

• [x; y] + A

• [x; y′]

• [x; y]

• A− 3

• A + B

• B′ + A

• B ∗ A
• A. ∗ B
• A′. ∗ B
• 2 ∗ B
• 2. ∗ B

• B./x′

• B./[x′ x′]

• 2/A

• ones(1, 3) ∗ A
• ones(1, 3) ∗ B

�

Exercise 13.10.
Perform all operations from Table 13.2, using some matrices A and B, vector v and scalars k, a,
b, n, and m. �

Exercise 13.11.
Let A be a square 6-by-6 matrix.

1. Create a matrix B, whose elements are the same as those of A except the entries on the
main diagonal. The diagonal of B should consist of 1s.

2. Create a tridiagonal matrix T, whose three diagonal are taken from the matrix A. Hint:
you may use the commands triu and tril.

�

13.3. Exercises 88

Exercise 13.12.
Let A be a random 5× 5 matrix and let b be a random 5× 1 vector. Given that Ax = b, try to
find x (look at Table 13.2). Explain what is the difference between the operators \, / and the
command inv. Having found x, check whether Ax− b is close to a zero vector. �

Exercise 13.13.
Let A = ones(6) + eye(6). Normalize the columns of the matrix A so that all columns of the
resulting matrix, say B, have the Euclidean norm (length) equal to 1. Next, find the angles
between consecutive columns of the matrix B. �

Exercise 13.14.
Find two 2 × 2 matrices A and B for which A. ∗ B 6= A ∗ B holds. Make use of the following
operations: /, \, or the command inv. �

Chapter 14

Scripts

14.1 Script m-files

Matlab commands can be entered at the Matlab prompt. When a problem is more compli-
cated this becomes inefficient. A solution is to use script m-files.

M-files are useful when the number of commands increases or when you want to change values of
some variables and re-evaluate them quickly. Formally, a script is an external file that contains
a sequence of Matlab commands (statements). However, it is not a function, since there are no
input/output parameters and the script variables remain in the workspace. So, when you run a
script, the commands in it are executed as if they have been entered through the keyboard.

The use of m-files is illustrated in the following paragraph.

How to create and run a script

� Open the Matlab editor (go to the File menu-bar, choose the New option followed by
m-file; as a result, the Matlab Editor Window will appear)

� Enter the lines listed below

1 x = 0:0.2:6;
2 y = sin(x);
3 plot(x,y);
4 title('Plot of y = sin(x)');

� Save the files as sinplot.m

� Run the script by typing in the Matlab prompt:

– 89 –

14.2. Exercises 90

1 sinplot

Alternatively to run the script you can press F5 or you can click on the run icon.

You might have problems with this because your path is not set correctly. The path is a
collection of directories (folders) where Matlab goes to look for programs to be run. If
you saved that file first in, say, Myfolder , you should tell this to Matlab by typing:

1 >> cd Myfolder

or opening the path browser utility from your Matlab window.

Note that the sinplot script affects the workspace. Check:

1 clear % all variables are removed from the workspace
2 who % no variables present
3 sinplot
4 who
5 Your variables are: x y

These generic names, x and y, may easily be used in further computations and this can cause side
effects. Side effects occur in general when a set of commands change variables other than the
input arguments. Since scripts create and change variables in the workspace (without warning),
a bug, hard to track down, may easily appear. So, it is important to remember that the
commands within a script have access to all variables in the workspace and all variables created
in this script become a part of the workspace. Therefore, it is better to use function m-files to
solve a specific problem.

14.2 Exercises

Exercise 14.1.
Write a script that for the given a, b and c returns the roots of the cubic equation: ax2+bx+c = 0.

(Hint: the solution to the equation is given by x = −b±
√

b2−4ac
2a) �

Chapter 15

Visualization

Matlab includes very powerful features for easy figure creation, plotting and image display.
Matlab can be used to visualize the results of an experiment. We will start by introducing the
most basic features here.

15.1 2D plots

The most important commands for basic 2-dimensional plotting are illustrated in the following
example:

Example 15.1:
Plotting the sinus function

1 x=0:0.1:10; % x ranges from 0 to 10 in steps of 0.1
2 y=sin(x); % y contains the sin of each value of x
3 figure % create an empty figure window
4 plot(y) % plots all of the y values (the values on the x −axis are
5 % indexes from 1 to 101)
6 figure % create an empty figure window
7 plot(x,y) % plots y against x (replacing the old plot on the same
8 % figure, now showing the units of x on the x −axis)
9 close % closes the figure window

Note that x and y have to be both either row or column vectors of the same length (i.e. having
the same number of elements).

To plot a graph of a function, it is important to sample the function sufficiently well. Compare
the following examples:

– 91 –

15.2. Several functions in one figure 92

1 % coarse sampling
2 n = 5;
3 x = 0:1/n:3;
4 y = sin(5 * x);
5 plot(x,y)

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 % good sampling
2 n = 25;
3 x = 0:1/n:3;
4 y = sin(5 * x);
5 plot(x,y)

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The plot command has many additional possible arguments, as can be seen by typing help plot .
There are also many other plotting commands for 2-dimensional plotting (help graph2d) and
also for 3-D plotting (help graph3d). You can close a figure window by clicking on the upper
right X box, using the close command on the figure’s file menu, or by typing close at the
command prompt. Use close all to close all figures and start a new task (or use close 1
to close Figure no.1 etc).

If you do not create an extra figure using figure , the previous function is removed as soon as
the next is displayed.

The color and point marker can be changed on a plot by adding a third parameter (in single
quotes) to the plot command. For example, to plot the a function as a red, dotted line, the
m-file should be changed to:

1 x = 0:0.1:100;
2 y = 3 * x;
3 plot(x,y, 'r:')

The third input consists of one to three characters which specify a color and/or a point marker
type. The list of colors and styles is reported in Table 15.1.

The commands loglog , semilogx and semilogy are similar to plot , except that they use
either one or two logarithmic axes.

15.2 Several functions in one figure

You can plot more than one function on the same figure. To plot a sine wave and cosine wave
on the same set of axes, using a different color and point marker for each, the following m-file

15.2. Several functions in one figure 93

Symbol Color Symbol Line style

r red ., o point, circle

g green * star

b blue x, + x-mark, plus

y yellow - solid line

m magenta -- dash line

c cyan : dot line

k black -. dash-dot line

Table 15.1: Plot colors and styles.

could be used:

1 x = 1:0.1:2 * pi;
2 y = sin(x);
3 z = cos(x);
4 plot(x,y, 'r' , x,z, 'gx')

By adding more sets of parameters to plot, you can plot as many different functions on the same
figure as you want. When plotting many things on the same graph it is useful to differentiate
the different functions based on color and point marker. This same effect can also be achieved
using the hold on and hold off commands. The same plot shown above could be generated
using the following m-file:

1 x = linspace(0,2 * pi,50);
2 y = sin(x);
3 z = cos(x);
4 hold on
5 plot(x,y, 'r')
6 plot(x,z, 'gx')
7 hold off

Always remember that if you use the hold on command, all plots from then on will be generated
on one set of axes, without erasing the previous plot, until the hold off command is issued.

It is also possible to produce a few subplots in one figure window. With the command subplot ,
the window can be horizontally and vertically divided into p× r subfigures, which are counted
from 1 to pr, row-wise, starting from the top left. The commands: plot , title , grid etc
work only in the current subfigure. So, if you want to change something in other subfigure, use
the command subplot to switch there.

1 x = 1:.1:4;
2 y1 = sin(3 * x);
3 y2 = cos(5 * x);
4 y3 = sin(3 * x). * cos(5 * x);
5 figure
6 subplot(1,3,1);
7 plot(x,y1, 'm');
8 title('sin(3 * x)')
9 subplot(1,3,2);

10 plot(x,y2, 'g');

15.3. Adding text 94

11 title('cos(5 * x)')
12 subplot(1,3,3);
13 plot(x,y3, 'k');
14 title('sin(3 * x) * cos(5 * x)')

15.3 Adding text

Another thing that may be important for your plots is labeling. You can give your plot a title
(with the title command), x-axis label (with the xlabel command), y-axis label (with the
ylabel command), and put text on the actual plot. All of the above commands are issued
after the actual plot command has been issued.

Furthermore, text can be put on the plot itself in one of two ways: the text command and the
gtext command. The first command involves knowing the coordinates of where you want the
text string. The command is text(xcor,ycor, 'textstring') . To use the other command,
you do not need to know the exact coordinates. The command is gtext('textstring') ,
and then you just move the cross-hair to the desired location with the mouse, and click on the
position you want the text placed.

To add a title, grid and to label the axes, one uses:

1 x=0:0.1:3;
2 y=sin(x);
3 z=cos(x);
4 hold on;
5 plot(x,y);
6 plot(x,z);
7 title('Sine and Cosine')
8 xlabel('x')
9 ylabel('sin(x) and cos(x)')

10 gtext('unnecessary labeling')
11 legend('sin' , 'cos')

The text ”unnecessary labeling” was placed right above the position, I clicked on.

Table 15.2 shows a few possibilities of the plot command, help plot shows them all.

15.4 Editing plots

Matlab formats a graph to provide readability, setting the scale of axes, including tick marks
on the axes, and using color and line style to distinguish the plots in the graph. However, if
you are creating presentation graphics, you may want to change this default formatting or add
descriptive labels, titles, legends and other annotations to help explain your data. Matlab

supports two ways to edit the plots you create:

� Using the Property Editor to select and edit objects interactively.

15.5. Changing the axis 95

Command Result

grid on/off adds a grid to the plot at the tick marks or removes it

box off/on removes the axes box or shows it

axis([xmin xmax ymin ymax]) sets the minimum and maximum values of the axes

xlabel(’text’) plots the label text on the x-axis

ylabel(’text’) plots the label text on the y-axis

zlabel(’text’) plots the label text on the z-axis

title(’text’) plots a title above the graph

text(x,y,’text’) adds text at the point (x,y)

gtext(’text’) adds text at a manually (with a mouse) indicated point

legend(’fun1’,’fun2’) plots a legend box (move it with your mouse) to name your functions

legend off deletes the legend box

clf clear the current figure

figure(n) creates a figure number n

subplot creates a subplot in the current figure

Table 15.2: Useful commands to make plots.

� Using Matlab functions at the command-line or in an M-file (look at ”Line Properties”
in the help for the list of properties).

1 figure
2 hold on
3 x = 1:.1:4;
4 h1=plot(x,cos(x))
5 h=plot(x,sin(x))
6 set(h1, 'LineWidth' ,2, 'LineStyle' , '.' , 'Color' , 'g')
7 set(h, 'LineWidth' ,2, 'LineStyle' , 'ˆ' , 'Color' , 'r')
8 hold off

In this above example, h and h1 are handles (basically pointers to objects, see c++ part). The
function get(h) returns all properties of the handle h, this can be very useful for touching up
plots.

15.5 Changing the axis

An important important way to customize your plots to meet your needs is with the axis
command. The axis command changes the axis of the plot shown, so only the part of the axis
that is desirable is displayed. The axis command is used by entering the following command
right after the plot command (or any command that has a plot as an output):

1 axis([xmin, xmax, ymin, ymax])

15.6. Exporting graph 96

15.6 Exporting graph

To copy the plot into Word you can select directly on the figure

1 Edit → Copy Figure

You can also print to a file if you specify the file name. If you do not provide an extension, print
adds one. Since they are many parameters they will not be explained here (check help print
to learn more). Instead, try to understand the examples:

1 % print the current Figure to the current printer in color
2 print −dwinc
3 % print Figure no.1 to the file myfile.eps in black
4 print −f1 −deps myfile.eps
5 % print Figure no.1 to the file myfilec.eps in color
6 print −f1 −depsc myfilec.eps
7 % print the current Figure to the file myfile1.tiff
8 print −dtiff myfile1.tiff
9 % print the current Figure to the file myfile1.ps in color

10 print −dpsc myfile1c.ps
11 % print Figure no.2 to the file myfile2.jpg
12 print −f2 −djpeg myfile2

15.7 Plotting surfaces

Matlab provides a number of commands to plot 3D data. A surface is defined by a function
f(x, y), where for each pair of (x, y), the height z is computed as z = f(x, y). To plot a surface,
a rectangular domain of the (x, y)-plane should be sampled. The mesh (or grid) is constructed
by the use of the command meshgrid as follows:

1 [X, Y] = meshgrid (−1:.5:1, 0:.5:2)
2 X =
3 −1.0000 −0.5000 0 0.5000 1.0000
4 −1.0000 −0.5000 0 0.5000 1.0000
5 −1.0000 −0.5000 0 0.5000 1.0000
6 −1.0000 −0.5000 0 0.5000 1.0000
7 −1.0000 −0.5000 0 0.5000 1.0000
8 Y =
9 0 0 0 0 0

10 0.5000 0.5000 0.5000 0.5000 0.5000
11 1.0000 1.0000 1.0000 1.0000 1.0000
12 1.5000 1.5000 1.5000 1.5000 1.5000
13 2.0000 2.0000 2.0000 2.0000 2.0000

The domain [−1, 1] × [0, 2] is now sampled with 0.5 in both directions and it is described by
points [X(i, j), Y (i, j)]. To plot a smooth surface, the chosen domain should be sampled in a
dense way. To plot a surface, the command mesh or surf can be used:

15.7. Plotting surfaces 97

1 [X,Y] = meshgrid(−1:.05:1, 0:.05:2);
2 Z = sin(5 * X) . * cos(2 * Y);
3 mesh(X,Y,Z);
4 title ('Function z = sin(5x) * cos(2y)')

Use colormap to define different colors for plotting.

15.7.1 Contour plots

A filled (2D) contour plot displays isolines calculated from matrix z and fills the areas between
the isolines using constant colors. The color of the filled areas depends on the current figure’s
colormap.

Example 15.2:
To view a contour plot of the function z = x exp(−x2 − y2) over the range −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 3

1 [X,Y] = meshgrid(−2:.05:2, −2:.05:3);
2 Z = X. * exp(−X.ˆ2 −Y.ˆ2);
3 figure
4 [C,h]=contourf(X,Y,Z,25);
5 colormap hsv
6 figure
7 [C,h] = contour(X,Y,Z,15);
8 close

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 15.1: Output of the contourf and contour example

Example 15.3:
To locate e.g. the minimum value of the function the function z = x exp(−x2− y2) on the grid,
you can proceed as follows:

1 [X,Y] = meshgrid(−2:.05:2, −2:.05:3);
2 Z = X. * exp(−X.ˆ2 −Y.ˆ2);
3 [mm,I] = min(Z); % a row vector of the min. elements from each column

15.8. 3D line plots 98

4 % I is a vector of corresponding
5 [Zmin, j] = min (mm); % Zmin is the minimum value, j is the index
6 % Zmin is the value of Z(I(j),j)
7 xpos = X(I(j),j); %
8 ypos = Y(I(j),j); % position of the minimum value
9 contour (X,Y,Z,25);

10 xlabel('x −axis'); ylabel('y −axis');
11 hold on
12 plot(xpos(1),ypos, ' * ');
13 text(xpos(1)+0.1,ypos, 'Minimum');
14 hold off

15.8 3D line plots

The command plot3 to plot lines in 3D is equivalent to the command plot in 2D. The format
is the same as for plot , it is, however, extended by an extra coordinate. An example is plotting
the curve r defined parametrically as r(t) = [t sin(t), t cos(t), t] over the interval [−10 π, 10 π].

1 t = linspace(−10* pi,10 * pi,200);
2 plot3(t. * sin(t), t. * cos(t), t, 'md−'); % plot the curve in magenta
3 title('Curve r(t) = [t sin(t), t cos(t), t]');
4 xlabel('x −axis');
5 ylabel('y −axis');
6 zlabel('z −axis');
7 grid

15.9 Animations

A sequence of graphs can be put in motion in Matlab (the version should be at least 5.0), i.e.
you can make a movie using Matlab graphics tools. The Matlab command addframe(avifile,frame)
appends the data in frame to the AVI file identified by the variable avifile , which was created
by a previous call to the file output.avi .

Example 15.4:
Create a movie of an evolving sinus curve in the interval 4 π.

1 clear all
2 fig=figure;
3 mov = avifile('output.avi')
4 x = 0:0.1:4 * pi;
5 xx(1) = 0;
6 yy(1) = 0;
7 for k=1:length(x)
8 xx(k) = x(k);
9 yy(k) = sin(x(k));

10 h=plot(xx,yy);
11 axis([0 4 * pi −1.5 1.5])
12 set(h, 'color' , 'm' , 'linewidth' ,2, 'marker' , 'o')
13 F=getframe(fig);
14 mov = addframe(mov,F);

15.10. Exercises 99

15 end
16 mov = close(mov);

Here, a for -loop construction has been used to create the movie frames. You will learn more
on loops in the next classes, see section 16.3.

Via the command getframe each frame is stored in the column of the matrix mov. Note that
to create a movie requires quite some memory.

15.10 Exercises

Exercise 15.1.
Make a plot connecting the coordinates: (2, 6), (2.5, 18), (5, 17.5), (4.2, 12.5) and (2,12) by a
line. �

Exercise 15.2.
Plot the function y = sin(x) + x− x cos(x) in two separate figures for the intervals: 0 < x < 30
and −100 < x < 100. Add a title and axes description. �

Exercise 15.3.
Plot a circle with the radius r = 2, knowing that the parametric equation of a circle is
[x(t), y(t)] = [r cos(t), r sin(t)] for t = [0, 2π]. �

Exercise 15.4.
Plot an ellipse with semiaxes a = 4 and b = 2. �

Exercise 15.5.
Plot the functions f(x) = x, g(x) = x3, h(x) = ex and z(x) = ex2

over the interval [0, 4] on
the normal scale and on the log-log scale. Use an appropriate sampling to get smooth curves.
Describe your plots by using the functions: xlabel , ylabel , title and legend. �

Exercise 15.6.
Make a plot of the functions: f(x) = sin(1/x) and f(x) = cos(1/x) over the interval [0.01, 0.1].
How do you create x so that the plots look sufficiently smooth? �

Exercise 15.7.
Produce a nice graph which demonstrates as clearly as possible the behavior of the function

f(x, y) = x y2

x2+y4 near the point (0, 0). Note that the sampling around this points should be
dense enough. �

Exercise 15.8.
Plot a sphere, which is parametrically defined as [x(t, s), y(t, s), z(t, s)] = [cos(t)∗cos(s), cos(t)∗
sin(s), sin(t)] for t, s = [0, 2 π] (use surf). Make first equal axes, then remove them. Use
shading interp to remove black lines (use shading faceted to restore the original pic-
ture). �

15.10. Exercises 100

Exercise 15.9.
Plot the parametric function of r and θ: [x(r, θ), y(r, θ), z(r, θ)] = [r cos(θ), r sin(θ), sin(6 cos(r)−
nθ)] for θ = [0, 2 π] and r = [0, 4]. Choose n to be constant. Observe, how the graph changes
depending on different n. �

Exercise 15.10.
Plot the surface f(x, y) = x y e−x2−y2

over the domain [−2, 2]× [−2, 2]. Find the values and the
locations of the minima and maxima of this function. �

Exercise 15.11.
Make a 3D smooth plot of the curve defined parametrically as: [x(t), y(t), z(t)] = [sin(t), cos(t), sin2(t)]
for t = [0, 2π]. Plot the curve in green, with the points marked by circles. Add a title, descrip-
tion of axes and the grid. You can rotate the image by clicking Tools at the Figure window
and choosing the Rotate 3D option or by typing rotate3D at the prompt. Then by clicking
at the image and dragging your mouse you can rotate the axes. Experiment with this option. �

Exercise 15.12.
Write a script that makes a movie consisting of 5 frames of the surface f(x, y) = sin(nx) sin(ky)
over the domain [0, 2π]× [0, 2π] and n = 1 : 5. Add a title, description of axes and shading. �

Exercise 15.13.
Plot an equilateral triangle with two vertices [a a] and [b a]. Find the third vertex. Use fill
to paint the triangle. �

Chapter 16

Control flow

A control flow structure is a block of commands that allows conditional code execution and
making loops.

16.1 Logical and relational operators

To use control flow commands, it is necessary to perform operations that result in logical values:
TRUE or FALSE. In Matlab the result of a logical operation is 1 if it is true and 0 if it is
false. Table 16.1 shows the relational and logical operations. Another way to get to know more
about them is to type help relop. The relational operators <, <=, >, >=, == and ~= can be
used to compare two arrays of the same size or an array to a scalar. The logical operators &, |

and ~ allow for the logical combination or negation of relational operators. In addition, three
functions are also available: xor, any and all (use help to find out more).

Important: The logical & and | have the equal precedence in Matlab, which means that those
operators associate from left to right. A common situation is:

1 >> b = 10;
2 >> 1 | b > 0 & 0
3 ans =
4 0
5 >> (1 | b > 0) & 0 % this indicates the same as above
6 ans =
7 0
8 >> 1 | (b > 0 & 0)
9 ans =

10 1

– 101 –

16.1. Logical and relational operators 102

Command Result

a = (b > c) a is 1 if b is larger than c. Similar are: <, >= and <=

a = (b == c) a is 1 if b is equal to c

a = (b ~= c) a is 1 if b is not equal c

a = ~b logical complement: a is 1 if b is 0

a = (b & c) logical AND: a is 1 if b = TRUE AND c = TRUE

a = (b | c) logical OR: a is 1 if b = TRUE OR c = TRUE

Table 16.1: Relational and logical operations.

This shows that you should always use brackets to indicate in which way the operators should
be evaluated.

The introduction of the logical data type has forced some changes in the use of non-logical
0-1 vectors as indices for subscripting. You can see the differences by executing the following
commands that attempt to extract the elements of y that correspond to either the odd or even
elements of x, assuming that x and y are two vectors of the same length.

• y (rem (x, 2)) vs. y (logical (rem (x, 2))) % odd elements

• y (~rem (x, 2)) vs. y (~logical (rem (x, 2))) % even elements

These examples show that a numerical 0 can not be used as an array index, i.e. the first
expression will result in a Matlab error if any of the remainders computed with the rem

function equals zero. Converting these zeros into logical 0’s solves the problem. Note that both
expressions to select the even elements do work as the logical complement ~ implicitly converts
the numerical results of rem into logical values.

Exercise 16.1.
Exercise with logical and relational operators:

1. Predict and check the result of each of the operations of Table 16.1 for b = 0 and c = -1.

2. Predict and check the result of each logical operator for b = [2 31 -40 0] and c = 0.

3. Define two random vectors (randn(1,7)) and perform all logical operations, including xor,
any and all.

�

Exercise 16.2.
Exercise with logical and relational operators:

1. Let x = [1 5 2 8 9 0 1] and y = [5 2 2 6 0 0 2]. Execute and explain the results of the
following commands:

• x > y

• y < x

• x == y

• x <= y

• y >= x

• x | y

• x & (~y)
• (x > y) | (y < x)
• (x > y) & (y < x)

16.1. Logical and relational operators 103

2. Let x = 1 : 10 and y = [3 5 6 1 8 2 9 4 0 7]. The exercises here show the techniques of
logical-indexing. Execute and interpret the results of the following commands:

• (x > 3) & (x < 8)
• x (x > 5)
• y (x <= 4)

• x ((x < 2) | (x >= 8))
• y ((x < 2) | (x >= 8))
• x (y < 0)

�

Exercise 16.3.
Let x = [3 16 9 12 -1 0 -12 9 6 1]. Provide the command(s) that will:

• set the positive values of x to zero;

• set values that are multiples of 3 to 3 (make use of rem);

• multiply the even values of x by 5;

• extract the values of x that are greater than 10 into a vector called y;

• set the values in x that are less than the mean to 0;

• set the values in x that are above the mean to their difference from the mean.

�

Exercise 16.4.
Execute the following commands and try to understand how z is defined.

1 >> hold on
2 >> x = −3:0.05:3; y = sin(3 * x);
3 >> subplot(1,2,1); plot(x,y); axis tight
4 >> z = (y < 0.5) . * y;
5 >> subplot(1,2,2); plot(x,y, 'r:'); plot(x,z, 'r'); axis tight
6 >> hold off

�

Before moving on, check whether you now understand the following relations:

1 >> a = randperm(10); % random permutation
2 >> b = 1:10;
3 >> b − (a ≤ 7) % subtracts from b a 0 −1 vector, taking 1 for
4 >> % a ≤ 7 and 0 otherwise
5 >> (a ≥ 2) & (a < 4) % returns ones at positions where 2 ≤ a < 4
6 >> ¬(b > 4) % returns ones at positions where b ≤ 4
7 >> (a == b) | b == 3 % returns ones at positions where a is equal to b or
8 >> % b is equal to 3
9 >> any(a > 5) % returns 1 when ANY of the a elements are larger than 5

10 >> any(b < 5 & a > 8) % returns 1 when there in the evaluated expression
11 >> % (b < 5 & a > 8) appears at least one 1
12 >> all(b > 2) % returns 1 when ALL b elements are larger than 2

16.1.1 The command find

You can extract all elements from the vector or the matrix satisfying a given condition, e.g.
equal to 1 or larger than 5, by using logical addressing. The same result can be obtained via
the command find, which return the positions (indices) of such elements. For instance:

16.1. Logical and relational operators 104

1 >> x = [1 1 3 4 1];
2 >> i = (x == 1)
3 i =
4 1 1 0 0 1
5 >> y = x(i)
6 y =
7 1 1 1
8 >> j = find(x == 1) % j holds indices of those elements satisfying x == 1
9 j =

10 1 2 5
11 >> z = x(j)
12 z =
13 1 1 1

An another example is:

1 >> x = −1:0.05:1;
2 >> y = sin(x) . * sin(3 * pi * x);
3 >> plot (x,y, ' −'); hold on
4 >> k = find (y ≤ −0.1)
5 k =
6 9 10 11 12 13 29 30 31 32 33
7 >> plot (x(k), y(k), 'ro');
8 >> r = find (x > 0.5 & y > 0)
9 r =

10 35 36 37 38 39 40 41
11 >> plot (x(r), y(r), 'r * ');

find operates in a similar way on matrices:

1 >> A = [1 3 −3 −5; −1 2 −1 0; 3 −7 2 7];
2 >> k = find (A ≥ 2.5)
3 k =
4 3
5 4
6 12
7 >> A(k)
8 ans =
9 3

10 3
11 7

In this way, find reshapes first the matrix A into a column vector, i.e. it operates on A(:) in
which all columns are concatenated one after another. Therefore, k is a list of indices of elements
larger than or equal to 2.5 and A(k) gives the values of the selected elements. Also the row and
column indices can be returned, as shown below:

1 >> [I,J] = find (A ≥ 2.5)
2 I =
3 3
4 1
5 3
6 J =
7 1
8 2
9 4

10 >> [A(I(1),J(1)), A(I(2),J(2)), A(I(3),J(3))] % lists the values
11 ans =

16.2. Conditional code execution 105

12 3 3 7

Exercise 16.5.
Let A = ceil(5 ∗ randn(6, 6)). Perform the following:

• find the indices and list all elements of A which are smaller than -3;

• find the indices and list all elements of A which are smaller than 5 and larger than -1;

• remove those columns of A which contain at least one 0 element.

Exercise with both: logical indexing and the command find. �

16.2 Conditional code execution

16.2.1 Using if ... elseif ... else ... end

Selection control structures, if-blocks, are used to decide which instruction to execute next
depending whether expression is TRUE or not. The general description is given below. In the
examples below the command disp is frequently used. This command displays on the screen
the text between the quotes.

• if ... end

Syntax

if logical_expression

statement1

statement2

....

end

Example

if (a > 0)

b = a;

disp ('a is positive');

end

• if ... else ... end

Syntax

if logical_expression

block of statements

evaluated if TRUE

else

block of statements

evaluated if FALSE

end

Example

if (temperature > 100)

disp ('Above boiling.');

toohigh = 1;

else

disp ('Temperature is OK.');

toohigh = 0;

end

16.2. Conditional code execution 106

• if ... elseif ... else ... end

Syntax

if logical_expression1

block of statements evaluated

if logical_expression1 is TRUE

elseif logical_expression2

block of statements evaluated

if logical_expression2 is TRUE

else

block of statements evaluated

if no other expression is TRUE

end

Example

if (height > 190)

disp ('very tall');

elseif (height > 170)

disp ('tall');

elseif (height < 150)

disp ('small');

else

disp ('average');

end

Exercise 16.6.
In each of the following questions, evaluate the given code fragments. Investigate each of the
fragments for the various starting values given on the right. Use Matlab to check your answers
(be careful, since those fragments are not always the proper Matlab expressions):

1.
1 if n > 1 a) n = 7 m = ?
2 m = n + 2 b) n = 0 m = ?
3 else c) n = −7 m = ?
4 m = n − 2
5 end

2.
1 if s ≤ 1 a) s = 1 t = ?
2 t = 2z b) s = 7 t = ?
3 elseif s < 10 c) s = 57 t = ?
4 t = 9 − z d) s = 300 t = ?
5 elseif s < 100
6 t = sqrt(s)
7 else
8 t = s
9 end

3.
1 if t ≥ 24 a) t = 50 h = ?
2 z = 3t + 1 b) t = 19 h = ?
3 elseif t < 9 c) t = −6 h = ?
4 z = tˆ2/3 − 2t d) t = 0 h = ?
5 else
6 z = −t
7 end

4.
1 if 0 < x < 7 a) x = −1 y = ?
2 y = 4x b) x = 5 y = ?
3 elseif 7 < x < 55 c) x = 30 y = ?
4 y = −10x d) x = 56 y = ?
5 else
6 y = 333
7 end

16.2. Conditional code execution 107

�

Exercise 16.7.
Create a script that asks for a number N and computes the drag coefficient C, depending on
the Reynold’s number N (make use of the if ... elseif ... construction). The command
input might be useful here (use help if needed).

C =

0, N ≤ 0

24/N, N ∈ (0, 0.1]

24/N (1 + 0.14 N0.7), N ∈ (0.1, 1e3]

0.43, N ∈ (1e3, 5e5]

0.19− 8e4/N, N > 5e5

Check whether your script works correctly. Compute the drag coefficient for e.g. N = -3e3, 0.01,
56, 1e3, 3e6 (remember that e.g. 3e3 is a Matlab notation of 3 ∗ 103). �

Exercise 16.8.
Write a script that asks for an integer and checks whether it can be divided by 2 or 3. Consider
all possibilities, such as: divisible by both 2 and 3, divisible by 2 and not by 3 etc (use the
command rem). �

16.2.2 Using switch

Another selection structure is switch, which switches between several cases depending on an
expression, which is either a scalar or a string.

Syntax

switch expression

case choice1

block of commands1

case {choice2a, choice2b,...}

block of commands2

...

otherwise

block of commands

end

Example

method = 2;

switch method

case {1,2}

disp('Method is linear.');

case 3

disp('Method is cubic.');

case 4

disp('Method is nearest.');

otherwise

disp('Unknown method.');

end

The statements following the first case where the expression matches the choice are executed.
This construction can be very handy to avoid long if .. elseif ... else ... end con-
structions. The expression can be a scalar or a string. A scalar expression matches a choice if
expression == choice. A string expression matches a choice if strcmp(expression, choice)

returns 1 (is true) (strcmp compares two strings).
Important: Note that the switch-construction only allows the execution of one group of com-
mands.

16.3. Loops 108

Exercise 16.9.
Assume that the months are represented by numbers from 1 to 12. Write a script that asks you
to provide a month and returns the number of days in that particular month. Alternatively,
write a script that asks you to provide a month name (e.g. ’June’) instead of a number. Use
the switch-construction. �

16.3 Loops

Iteration control structures, loops, are used to repeat a block of statements until some condition
is satisfied. Two types of loops exist:

• the for loop that repeats a group of statements a fixed number of times;

Syntax

for index = first:step:last

block of statements

end

Example

sumx = 0;

for i=1:length(x)

sumx = sumx + x(i);

end

You can specify any step, including a negative value. The index of the for-loop can also
be a vector. See some examples of possible variations:

Example 1

for i=1:2:n

...

end

Example 2

for i=n:-1:3

....

end

Example 3

for x=0:0.5:4

disp(x^2);

end

Example 4

for x=[25 9 81]

disp(sqrt(x));

end

• while loop, which evaluates a group of commands as long as expression is TRUE.

Syntax

while expression

statement1

statement2

statement3

...

end

Example

N = 100;

iter = 1;

msum = 0;

while iter <= N

msum = msum + iter;

iter = iter + 1;

end;

A simple example how to use the loop construct can be to draw graphs of f(x) = cos(n x) for
n = 1, . . . , 9 in different subplots. Execute the following script:

1 figure
2 hold on
3 x = linspace(0,2 * pi);
4 for n=1:9

16.3. Loops 109

5 subplot(3,3,n);
6 y = cos(n * x);
7 plot(x,y);
8 axis tight
9 end

Given two vectors x and y, an example use of the loop construction is to create a matrix A whose
elements are defined, e.g. as Aij = xi yj. Enter the following commands to a script:

1 n = length(x);
2 m = length(y);
3 for i=1:n
4 for j=1:m
5 A(i,j) = x(i) * y(j);
6 end
7 end

and create A for x = [1 2 -1 5 -7 2 4] and y = [3 1 -5 7]. Note that A is of size n-by-m. The
same problem can be solved by using the while-loop, as follows:

1 n = length(x);
2 m = length(y);
3 i = 1; j = 1; % initialize i and j
4 while i ≤ n
5 while j ≤ m
6 A(i,j) = x(i) * y(j);
7 j = j+1; % increment j; it does not happen automatically
8 end
9 i = i+1; % increment i

10 end

Exercise 16.10.
Determine the sum of the first 50 squared numbers with a control loop. �

Exercise 16.11.
Write a script to find the largest value n such that the sum:

√
13 +

√
23 + . . . +

√
n3 is less than

1000. �

Exercise 16.12.
Use a loop construction to carry out the computations. Write short scripts.

1. Given the vector x = [1 8 3 9 0 1], create a short set of commands that will:

• add up the values of the elements (check with sum);
• computes the running sum (for element j, the running sum is the sum of the elements

from 1 to j; check with cumsum);
• computes the sine of the given x-values (should be a vector).

2. Given x = [4 1 6 -1 -2 2] and y = [6 2 -7 1 5 -1], compute matrices whose elements are
created according to the following formulas:

• aij = yi/xj;
• bi = xi yi and add the elements in btot;
• cij = xi/(2 + xi + yj);
• dij = 1/ max (xi, yj).

16.4. Evaluation of logical and relational expressions in the control flow structures 110

3. Write a script that transposes a matrix A. Check its correctness with the Matlab opera-
tion: A’.

4. Create an m-by-n array of random numbers (use rand). Move through the array, element
by element, and set any value that is less than 0.5 to 0 and any value that is greater than
(or equal to) 0.5 to 1.

5. Write a script that will use the random-number generator rand to determine:

• the number of random numbers it takes to add up to 10 (or more);
• the number of random numbers it takes before a number between 0.8 and 0.85 occurs;
• the number of random numbers it takes before the mean of those numbers is within

0.01 and 0.5.

It will be worthwhile to run your script several times because you are dealing with random
numbers. Can you predict any of the results that are described above?

�

Exercise 16.13.
Write a script that asks for a temperature in degrees Celsius tc and computes the equivalent
temperature in degrees Fahrenheit tf (use the formula tf = 9/5 ∗ tc + 32). The script should
keep running until no number is provided to convert. The functions input and isempty (use
help to learn more) should be useful here. �

16.4 Evaluation of logical and relational expressions in the control

flow structures

The relational and logical expressions may become more complicated. It is not difficult to
operate on them if you understand how they are evaluated. To explain more details, let us
consider the following example:

1 if (¬isempty(data)) & (max(data) < 5)
2
3 end

This construction of the if-block is necessary to avoid comparison if data happens to be an
empty matrix. In such a case you cannot evaluate the right logical expression and Matlab gives
an error. The & operator returns 1 only if both expressions: ~isempty (data) and max(data)

< 5 are true, and 0 otherwise. When data is an empty matrix, the next expression is not
evaluated since the whole &-expression is already known to be false. The second expression is
checked only if data is a non-empty matrix. Remember to put logical expression units between
brackets to avoid wrong evaluations!

Important: The fact that computers make use of floating-point arithmetic means that often
you should be careful when comparing two floating-point numbers just by:

1 if (x == y)
2
3 end

16.5. Exercises 111

(Of course, such a construction is allowed e.g. when you know that x and y represent integers.)
Instead of the above construction, you may try using this:

1 if (abs (x − y) < tolerance) % e.g. tolerance = 1e −10
2
3 end

Exercise 16.14.
Consider the following example:

1 max iter = 50;
2 tolerance = 1e −4;
3 iter = 0;
4 xold = 0.1;
5 x = 1;
6 while (abs (x − xold) > tolerance) & (iter < max iter)
7 xold = x;
8 x = cos(xold);
9 iter = iter + 1;

10 end

This short program tries to solve the equation cos(x) = x (x is the solution found). Make
the script solve cos from the presented code. Note that the while-loop is repeated as long
as both conditions are true. If either the condition (|x - xold| <= tolerance) or (iter >=

max iter) is fulfilled then the loop is quitted. Run the script solve cos for different tolerance
parameters, e.g.: 1e-3, 1e-6, 1e-8, 1e-10 etc. Use format long to check more precisely how
much the found x is really different from cos(x). For each tolerance value check the number
of performed iterations (iter value). �

Exercise 16.15.
Create the script solve cos2, which is equal to the one given, replacing the while-loop condition
by:

1 while (abs (x − xold) > tolerance) | (iter < max iter)

Try to understand the difference and confirm your expectations by running solve cos2. What
happens to iter? �

16.5 Exercises

Exercise 16.16.
The circumference of a unit circle (with radius 1) equals 2π. Knowing this, we can approximate
π or 2π as follows. Section the circle into triangles, figure 16.1. Starting with 4 triangles the
length of sn equals

√
2. A first approximation for the circumference of the circle is 4

√
2 ≈ 5.66.

Next the number of triangles is doubled. Length a is half of the previously determined length
sn. Then subsequently lengths b and c can be computed and also the length of the new section
sn+1 is known from which a new (and improved) approximation for the circumference of the
circle can be obtained.

16.5. Exercises 112

Figure 16.1: Sectioning a circle into triangle to approximate π. From the BEAM-B handout.

Write a script to evaluate the approximation for the circumference of the circle while the number
of triangles is doubled at least 20 times.

�

Chapter 17

Functions

M-files have been introduced in chapter 14 to collect Matlab commands in scripts. In this
chapter M-files are used to define Matlab functions.

17.1 Function m-file

Functions m-files are true subprograms, since they take input arguments and/or return output
parameters. They can call other functions, as well. Variables defined and used inside a function,
different from the input/output arguments, are invisible to other functions and the command
environment. The general syntax of a function is:

1 function [outputArgs] = function name (inputArgs)

outputArgs are enclosed in []:

– a comma-separated list of variable names;

– [] is optional when only one argument is present;

– functions without outputArgs are legal1.

inputArgs are enclosed in ():

– a comma-separated list of variable names;

– functions without inputArgs are legal.

Matlab provides a structure for creating your own functions. The first line of the file should
be a definition of a new function (also called a header). After that, a continuous sequence of
comment lines should appear. Their goal is to explain what the function does, especially when
this is not trivial. Not only a general description, but also the expected input parameters,

1In other programming languages, functions without output arguments are called procedures

– 113 –

17.1. Function m-file 114

returned output parameters and synopsis should appear there. The comment lines (counted up
to the first non-comment line) are important since they are displayed in response to the help

command. Finally, the remainder of the function is called the body. Function m-files terminate
execution and return when they reached the end of the file or, alternatively, when the command
return is encountered. As an example, the function average is defined as follows:

input argument
the first line must be
the function definition

help average

a blank line within the comment;
Notes information will NOT appear
when you ask:

%AVERAGE computes the average value of a vector x

function avr = average (x)

function nameoutput argument

comment % and returns it in avr

% Notes: an example of a function

n = length(x);
avr = sum(x)/n;
return;

function body

Important: The name of the function and the name of the file stored on disk should be
identical . In our case, the function should be stored in a file called average.m.

Exercise 17.1.
Create the function average and store it on disk as average.m. Remember about the com-
ment lines. Check its usability by calling help average. Run average.m by typing avr1 =

average(1:10); �

Here is an another example of a function:

1 function [avr,sd] = stat(x)
2 %STAT Simple statistics.
3 % Computes the average value and the standard deviation of a v ector x.
4 n = length(x);
5 avr = sum(x)/n;
6 sd = sqrt(sum((x − avr).ˆ2)/n);
7 return ;

Warning: The functions mean and std already exist in Matlab. As long as a function name
is used as variable name, Matlab can not perform the function. Many other, easily appealing
names, such as sum or prod are reserved by Matlab functions, so be careful when choosing
your names (see section 18.3).

The return statement can be used to force an early return. An exemplary use of the return is
given below:

1 function d = determinant(A)
2 %DETERMINANT Computes the determinant of a matrix A
3 [m,n] = size(A);
4 if (m 6= n)
5 disp ('Error. Matrix should be square.');
6 return ;
7 else
8 d = det(A); % standard Matlab function
9 end

17.1. Function m-file 115

10 return ;

The use of the return command in combination with a check of the number of input arguments
is given in the function checkarg, which is presented in section 17.1.2.

When controlling the proper use of parameters, the function error may prove useful. It displays
an error message, aborts function execution, and returns to the command environment. Here is
an example:

1 if (a ≥ 1)
2 error ('a must be smaller than 1');
3 end

Exercise 17.2.
Change some scripts that you created into functions, e.g. create the function drag, computing
the drag coefficient (see section 16.2), or solve cos (see section 16.4) or cubic roots (see
section 14). �

Exercise 17.3.
Write the function [elems, mns] = nonzero(A) that takes as the input argument a matrix A

and returns all nonzero elements of A in the column vector elems. The output parameter mns

holds values of the means of all columns of A. �

Exercise 17.4.
Write the function [meanrow, meancol] = allmeans(A) that takes as the input argument a
matrix A and returns the means of all its rows and columns respectively. �

Exercise 17.5.
Create the function [A,B,C] = sides(a,b,c) that takes three positive numbers a, b and c. If
they are sides of a triangle, then the function returns its angles A, B and C, measured in degrees.
Display an error when necessary. �

Exercise 17.6.
The area of a triangle with sides of length a, b, and c is given by: ar =

√

s (s− a) (s− b) (s− c),
where s = (a + b + c)/2. Write a function that accepts a, b and c as inputs and returns the
value ar as output. Note that the sides should be non-negative and should fulfill the triangle
inequality. Make use of the error command. �

Exercise 17.7.
Create the function randint that randomly generates a matrix of integer numbers (use the
command rand). These integers should come from the interval [a, b]. Exercise in documenting
the function. Use the following function header:

1 function r = randint(m,n,a,b) % a m−by−n matrix

If this seems too difficult, start first with the fixed interval, e.g. [a, b] = [0, 5] (and remove a and
b from the function definition) and then try to make it work for an arbitrary interval. �

17.1. Function m-file 116

17.1.1 Subfunctions

A function m-file may contain more than a single function. The function appearing first in
the m-file shares the file name, as mentioned before. Other functions are subfunctions and
can be called from the primary function only. So, they cannot be accessed from outside the
file, in which they are defined (neither from the Command Window nor via other m-files). A
subfunction is created by defining a new function with the function statement after the body of
the preceding function. The use of subfunctions is recommended to keep the function readable
when it becomes too long and too complicated. For example, average is now a subfunction
within the file stat.m:

1 function [a,sd] = stat(x)
2 %STAT Simple statistics.
3 % Computes the average value and the standard deviation of a v ector x.
4 n = length(x);
5 a = average(x,n);
6 sd = sqrt(sum((x − avr).ˆ2)/n);
7 return ;
8

9 function a = average (x,n)
10 %AVERAGE subfunction
11 a = sum(x)/n;
12 return ;

Exercise 17.8.
Modify the function stat presented above by using the subfunction average for the computation
of variable sd as well. �

17.1.2 Special function variables

Each function has two internal variables: nargin - the number of function input arguments that
were used to call the function and nargout - the number of output arguments. Analyze the
following function:

1 function [out1,out2] = checkarg (in1,in2,in3)
2 %CHECKARG Demo on using the nargin and nargout variables.
3 if (nargin == 0)
4 disp('no input arguments');
5 return ;
6 elseif (nargin == 1)
7 s = in1;
8 p = in1;
9 disp('1 input argument');

10 elseif (nargin == 2)
11 s = in1+in2;
12 p = in1 * in2;
13 disp('2 input arguments');
14 elseif (nargin == 3)
15 s = in1+in2+in3;
16 p = in1 * in2 * in3;
17 disp('3 input arguments');
18 else
19 error('Too many inputs.');

17.1. Function m-file 117

20 end
21

22 if (nargout == 0)
23 return ;
24 elseif (nargout == 1)
25 out1 = s;
26 else
27 out1 = s;
28 out2 = p;
29 end

Exercise 17.9.
Construct the function checkarg, call it with different number of input and output arguments
and try to understand its behavior. For example:

1 >> checkarg
2 >> s = checkarg(−6)
3 >> s = checkarg(23,7)
4 >> [s,p] = checkarg(3,4,5)

�

17.1.3 Local and global variables

Each m-file function has access to a part of memory separate from Matlab ’s workspace. This is
called the function workspace. This means that each m-file function has its own local variables,
which are separate from those of other function and from the workspace. To understand it better
analyze the following diagram:

Matlab workspace

>> a = -1;

>> b = 20;

>> c = myfun (a,b)

(a, b) −→ (x, y)

c ←− z

myfun.m

function z = myfun (x,y)

...

z = x + cos(x-y);

return;

In the Matlab workspace, variables a, b and c are available. Variables x, y and z are visible
only in the function myfun. However, if several functions and/or the workspace, all declare
a particular variable as global, then they all share this variable (see help global). Any
assignment to that variable is available to all other functions and/or the workspace. However,
you should be careful when using global variables. It is very easy to get confused and end up
with serious errors.

optional

17.1.4 Indirect function evaluation

Using indirect function evaluation makes programming even more general, since functions can
become input arguments. The crucial Matlab command here is feval, an abbreviation of

17.1. Function m-file 118

function evaluation. The feval command allows execution of a function specified by a string.
The general definition is as follows:

1 [y1,..,yn] = feval (F,x1, ...,xn),

where F is a name of a function defined in Matlab, x1,...,xn are input arguments and
y1,...,yn are possible output parameters. Consider an example:

1 >> x = pi; y = cos(x);
2 >> z = feval('cos' ,x);

The last command is also equivalent to the following two expressions:

1 >> F = 'cos' ;
2 >> z = feval(F,x)

Indirect function evaluation is a nice tool to build a program with a function given as an
argument.

Exercise 17.10.
Create the function funplot and try to understand how it works:

1 function funplot (F, xstart, xend, col);
2 %FUNPLOT makes a plot of the function F at the interval [xstar t, xend].
3 % The plot should be made in one of the standard Matlab colors, so
4 % 'col' is one of the following value: 'b','k','m','g','w', 'y' or 'r'.
5 % default values:
6 % [xstart,xend] = [0,10]
7 % col = 'b'
8

9 % Note: illustrates the use of feval command
10

11 if (nargin == 0)
12 error ('No function is provided.');
13 end
14 if (nargin < 2)
15 xstart = 0;
16 xend = 10;
17 end
18 if (nargin == 2)
19 error ('Wrong number of arguments. You should provide xstart and xe nd.');
20 end
21 if (nargin < 4)
22 col = 'b' ;
23 end
24

25 if (xstart == xend),
26 error ('The [xstart, xend] should be a non −zero range.');
27 elseif (xstart > xend),
28 exchange = xend;
29 xend = xstart;
30 xstart = exchange;
31 end
32

33 switch col
34 case {'b' , 'k' , 'm' , 'g' , 'w' , 'y' , 'r' }
35 ; % do nothing; the right color choice

17.2. Scripts vs. functions 119

36 otherwise
37 error ('Wrong col value provided.')
38 end
39

40 x = linspace(xstart, xend);
41 y = feval(F,x);
42 plot (x,y,col);
43 description = ['Plot of ' , F];
44 title (description);
45 return ;

Note the use of comments, the nargin variable and the switch-construction. Call funplot for
different built-in functions, like sin, exp, etc. Test it for your own functions as well. Write for
example a function myfun that computes sin(x cos(x)) or log(|x sin(x)|). Explain why it would
be wrong to use the fragment given below instead of its equivalent part in funplot.

1 if nargin < 2
2 xstart = 0;
3 xend = 10;
4 elseif nargin < 3
5 error ('Wrong number of arguments. You should provide xstart and xe nd.');
6 elseif nargin < 4
7 col = 'b' ;
8 end

�

end optional

17.2 Scripts vs. functions

The most important difference between a script and a function is that all script’s parameters
and variables are externally accessible (i.e. in the workspace), where function variables are not.
Therefore, a script is a good tool for documenting work, designing experiments and testing. In
general, create a function to solve a given problem for arbitrary parameters. Use a script to run
functions for specific parameters required by the assignment.

17.3 Exercises

Exercise 17.11.
Create a Matlab function to evaluate the expression

f(n) =

(

1 +
1

n

)n

as a function of n. Next check the outcome of this expression for increasing n. Can you verify
that lim

n→∞
f(n) = e? �

Exercise 17.12.
Create the function binom that computes the value of the binomial symbol

(

n
k

)

. Make the

17.3. Exercises 120

function header:
function b = binom (n,k). Note that in order to write this function, you will have to create
the factorial function, which computes the value of n! = 1 ∗ 2 ∗ ... ∗ n. This may become a
separate function (enclosed in a new file) or a subfunction in the binom.m file. Try to implement
both cases if you got acquainted with the notion of a subfunction. Having created the binom

function, write a script that displays on screen all the binomial symbols for n = 8 and k =
1, 2, ..., 8 or write a script that displays on screen the following ’triangle’ (use the fprintf

command; try help fprintf. Note fprintf is a c-command, which is in the header cstdio

(with the same syntax), but c++ streams are much better for dealing with input/output, so its
use is not recommended in c++.

(

1
1

)

(

2
1

) (

2
2

)

(

3
1

) (

3
2

) (

3
3

)

(

4
1

) (

4
2

) (

4
3

) (

4
4

)

�

Exercise 17.13.
Solve the following exercises by using either a script or a function. The nature of the input/out-

put and display options is left to you. Problems are presented with the increasing difficulty;
start simple and add complexity. If possible, try to solve all of them.

1. Write a function which computes the cumulative product of a vector elements. The cu-
mulative product up to xj - the j-th element of the vector x is defined by Cj =

∏j
k=1 xk

for j = 1 : length(x). Check your results with the built-in function cumprod.

2. Write Matlab function m = wmean (x,w) computing the weighted arithmetic mean, given

the vector x and a vector of nonnegative weights w, such that
∑n

i=1 wi > 0, i.e.
P

n

i=1
wi xi

P

n

i=1
wi

.

Add error messages to terminate execution of the function in the case when:

– x and w are of different lengths,
– at least one element of w s negative,
– sum of all weights is equal to zero.

3. What is the greatest value of n that can be used in the sum

12 + 22 + 32 + . . . + n2

and gives a total value of the sum less than 100?

4. Compute the value of π using the following series:

π2 − 8

16
=

∞
∑

n=1

1

(2n− 1)2 (2n + 1)2

How many terms are needed to obtain an accuracy of 1e-12? How accurate is the sum of
100 terms?

5. Write a program that approximates π by computing the sum:

π

4
≈

m
∑

n=0

(−1)n

2n + 1

17.3. Exercises 121

The more terms in summation the larger the accuracy (although this is not an efficient
formula, since you add and subtract numbers). How many terms are needed to approximate
π with 5 decimals? Use the sum to approximate π using 10, 100, 1e3, 1e4, 5e4, 1e5, 5e5
and 1e6 terms. For each of these numbers compute the approximation error. Plot the
error as a function of the term numbers used in a summation.

6. The Fibonacci numbers are computed according to the following relation:

Fn = Fn−1 + Fn−2, with F0 = F1 = 1

– Compute the first 10 Fibonacci numbers.
– For the first 50 Fibonacci numbers, compute the ratio Fn

Fn−1
. It is claimed that this

ratio approaches the value of the golden mean 1+
√

5
2 . What do your results show?

7. Consider a problem of computing the n-th Fibonacci number. Find three different ways to
implement this and construct three different functions, say fib1, fib2 and fib3. Measure
the execution time of each function (use the commands tic and toc) for, say, n = 20, 40
or 100.

8. The Legendre polynomials Pn(x) are defined by the following recurrence relation:

(n + 1)Pn+1(x)− (2n + 1)x Pn(x) + n Pn−1(x) = 0

with P0(x) = 1, P1(x) = x and P2(x) = (3x2 − 1)/2. Compute the next three Legendre
polynomials and plot all 6 over the interval [−1, 1].

9. Write a script that asks for an integer n (or a function that has n as the input argument)
and then computes the following: while the value of n is greater than 1, replace the
integer with (n/2) if the integer is even. Otherwise, replace the integer with (3n + 1).
Make provision to count the number of values in (or the length of) the sequence that
results.

Example calculation: If n = 10, the sequence of integers is 5, 16, 8, 4, 2, 1, so the length is
6.

Make a plot of the length of the sequence that occurs as a function of the integers from
2 to 30. For example, when n = 10, the length is 6 while for n = 15, the length is 17. Is
there any pattern? Try larger numbers to see if any pattern occurs. Is there any integer
for which the sequence does not terminate?

10. Provide all prime numbers smaller then the given N .

�

Exercise 17.14.
Declare an array with 10 001 entries. Compute the solution vector f(xi), with xi = 0, . . . , 10 000

f(xi) =
xi

sin(xi) + 2

In the same program, form the alternating sum

Sn = f(x0) + f(x1)− f(x2) + f(x3)− . . .

up to the last term and print the result to the screen.

�

Chapter 18

Writing and debugging Matlab programs

The recommendations in this section are general for programming in any language. Learn-
ing them now will turn out to be beneficial in the future or while learning real programming
languages like C/C++, where structured programming is indispensable.

18.1 Structural programming

Never write all code at once; program in small steps and make sure that each of these small
steps works as expected, before proceeding to the next one. Each step should be devoted to only
one task. Do not solve too many tasks in one module, because you may easily make a mess. This
is called a structured or modular way of programming. Formally, modularity is the hierarchical
organization of a system or a task into self-contained subtasks and subsystems, each having a
prescribed input-output communication. It is an essential feature of a well designed program.
The benefit of structural programming are: easier error detection and correction, modifiability,
extensibility and portability. A general approach to a program development is presented below:

1. Specification.
Read and understand the problem. The computer cannot do anything itself: you have to
tell it how to operate. Before using the computer, some level of preparation and thought
is required. Some basic questions to be asked are:

• What are the parameters/inputs for this problem?
• What are the results/outputs for this problem?
• What form should the inputs/outputs be provided in?
• What sort of algorithms is needed to find the outputs from the inputs?

2. Design.
Split your problem into a number of smaller and easier tasks. Decide how to implement
them. Start with a schematic implementation to solve your problem, e.g. create function

– 122 –

18.1. Structural programming 123

headers or script descriptions (decide about the input and output arguments). To do this,
you may use, for example, a top-down approach. You start at the most general level,
where your first functions are defined. Each function may be again composed of a number
of functions (subfunctions). While ’going down’ your functions become more precise and
more detailed.

As an example, imagine that you have to compare the results of the given problem for
two different datasets, stored in the files data1.dat and data2.dat. Schematically, such
a top-down approach could be designed as:

⋄ This is the top (the most general) level. A script solve it is created:

1 [d1, d2] = read data ('data1.dat' , 'data2.dat');
2 [res1, err1] = solve problem (d1);
3 [res2, err2] = solve problem (d2);
4 compare results (res1, res2, err1, err2);

⋄ This is the second level. The functions read data, solve problem and compare results

belong here. Each of them has to be defined in a separate file:

� 1 function [d1, d2] = read data (fname1, fname2)
2 % Here should be some description.
3 %
4 fid1 = fopen (fname1, 'w');
5 % check whether the file fname1 exists
6 fclose(fid1);
7 fid2 = fopen (fname2, 'w');
8 % check whether the file fname2 exists
9 fclose(fid2);

10
11 d1 = ...
12 d2 = ...
13 return ;

� 1 function [res, err] = solve problem (d)
2 % Here should be some (possibly detailed) description.
3 %
4
5 res = ... % the data d is used to compute res
6 err = compute error (res);
7 return ;

� 1 function compare results (res1, res2, err1, err2)
2 % Some description.
3 tol = 1e −6;
4
5 if abs (err1 − err2) > tol
6 fprintf ('The difference is significant.')
7 else
8 fprintf ('The difference is NOT significant.')
9 end ;

10 return ;

⋄ In this example, this is the last level. The function solve problem uses the function:
compute error, which has to be defined:

� 1 function err = compute error (res)
2 % Here should be some (possibly detailed) description.
3 %

18.2. Debugging 124

4
5 err = % the variable res is used to compute err
6 return ;

3. Coding.
Implement the algorithms sequentially (one by one). Turning your algorithm into an
efficient code is not a one-shot process. You will have to try, make errors, correct them
and even modify the algorithm. So, be patient. While implementing, make sure that all
your outputs are computed at some point. Remember about the comments and the style
requirements (see section 18.3).

4. Running and debugging (see also section 18.2).
Bugs will often exist in a newly written program. Never, ever, believe or assume that
the code you just created, works. Always check the correctness of each function
or script: Twice. You may add some extra lines to your code which will present the
intermediate results (screen displays, plots, writes to files) to help you controlling what is
going on. Those lines can be removed later.

5. Testing and Verification.
After the debugging process, the testing stage starts. Prepare a number of tests to verify
whether your program does what it is expected to do. Remember that good tests are those
for which the answers are known. Your program should produce correct results for normal
test conditions as well as boundary conditions.

6. Maintenance.
In solving your task, new ideas or problems may appear. Some can be interesting and
creative and some can help you to understand the original problem better; you may see
an extent to your problem or a way to incorporate new things. If you have a well-designed
problem, you will be able to easily modify it after some time. Take a responsibility to
improve your solutions or correct your errors when found later.

18.2 Debugging

Debugging is the process by which you isolate and fix any problem with your code. Two kinds of
errors may occur: syntax error and runtime error . Syntax errors can usually be easily corrected
by Matlab error messages. Already while editing a script or function m-file, the Matlab

editor will indicate possible errors. Add e.g. the following line to one of your m-files:

1 x = 2pi;

There should be a marker on the right side of the edit window. Moving the cursor over this
mark will reveal the message with the syntax error: “Parse error at ’pi’: usage appears to be
invalid MATLAB syntax.”.

Runtime errors are algorithmic in nature and they occur when e.g. you perform a calculation
incorrectly. They are usually difficult to track down, but they are apparent when you notice
unexpected results.

Debugging is an inevitable process. The best way to reduce the possibility of making a runtime
error is defensive programming :

18.3. Recommended programming style 125

• Do not assume that input is correct, simply check.

• Where reasonable and possible, provide a default option or value.

• Provide diagnostic error messages.

• Optionally print intermediate results to check the correctness of your code.

Defensive programming is a part of the early debugging process. Another important part is
modularity, breaking large task into small subtasks, which allows for developing tests for each
of them more easily. You should always remember to run the tests again after the changes have
been made. To make this easy, provide extra print statements that can be turned on or off.

Matlab provides an interactive debugger. It allows you to set and clear breakpoints, specific
lines in an m-file at which the execution halts. It also allows you to change the workspace and
execute the lines in an m-file one by one. The Matlab m-file editor also has a debugger. The
debugging process can be also done from the command line. To use the debugging facility to
find out what is happening, you start with the dbstop command. This command provides a
number of options for stopping execution of a function. A particularly useful option is:

Next year add some information on the actually debugger, and commands with keyboard etc...

1 dbstop if error

This stops any function causing an error. Then just run the Matlab function. Execution will
stop at the point where the error occurs, and you will get the Matlab prompt back so that
you can examine variables or step through execution from that point. The command dbstep

allows you to step through execution one line at a time. You can continue execution with the
dbcont. To exit debug mode, type dbquit. For more information, use help for the following
topics: dbstop, dbclear, dbcont, dbstep, dbtype, dbup and dbquit.

18.3 Recommended programming style

Programming style is a set of conventions that programmers follow to standardize their code to
some degree and to make the overall program easier to read and to debug. This will also allow
you to quickly understand what you did in your program when you look at it weeks or months
from now. The style conventions are for the reader only, but you will become that reader one
day.

Some style requirements and style guidelines are presented below. These are recommendations,
and some personal variations in style are acceptable, but you should not ignore them. It is
important to organize your programs properly since it will improve the readability, make the
debugging task easier and save time of the potential readers.

1. You should always comment difficult parts of the program! But ... do not explain the
obvious.

2. Comments describing tricky parts of the code, assumptions, or design decisions are sug-
gested to be placed above the part of the code you are attempting to document. Try to
avoid big blocks of comments except for the description of the m-file header.

18.3. Recommended programming style 126

3. Indent a few spaces (preferably 2 or 3) before lines of the code and comments inside the
control flow structures. The layout should reflect the program ’flow’. Here is an example:

1 x = 0:0.1:500;
2 for i=1:length(x)
3 if x(i) > 0
4 s(i) = sqrt(x(i));
5 else
6 s(i) = 0;
7 end
8 end

The Matlab m-file editor will introduce such spaces by default.

4. Avoid the use of magic numbers; use a constant variable instead. When you need to change
the number, you will have to do it only once, rather than searching all over your code. An
example:

1 % A BAD code that uses % This is the way it SHOULD be
2 % magic numbers
3 r = rand(1,50); n = 50; % number of points
4 for i = 1:50 r = rand(1,n);
5 data(i) = i * r(i); data = (1:n) . * r;
6 end
7 y = sum(data)/50; avr = sum(data)/n;
8 disp(['Number of points is 50.']); disp(['Number of points is ' , ...
9 int2str(n)]);

5. Avoid the use of more than one code statement per line in your script or function m-files.

6. No line of code should exceed 80 characters (it is a rare case when this is not possible).
When necessary, use the Line Continuation Symbol, i.e. the characters ..., at the end of
a line of to indicate that the expression continues on the next line.

7. Avoid declaring global variables. You will hardly ever encounter a circumstance under
which you will really need them. Global variables can get you into trouble without your
noticing it!

8. Variables should have meaningful names. You may also use the standard notation, e.g.
x, y are real-valued, i, j, k are indices or n is an integer. This will reduce the number
of comments and make your code easier to read. However, here are some pitfalls when
choosing variable names:

• A meaningful variable name is good, but when it gets longer than 15 characters, it
tends to obscure rather than improve the code readability.

• Be careful with names since there might be a conflict with Matlab’s built-in func-
tions, or reserved names like mean, end, sum etc (check in index or ask which <name>

in Matlab - if you get the response <name> not found it means that you can safely
use it). Note that even the obvious examples of variables i or j overwrite the built-in
complex imaginary unit i.

• Avoid names that look similar or differ only slightly from each other.

9. Use white spaces; both horizontally and vertically, since it will greatly improve the read-
ability of your program. Blank lines should separate larger blocks of the code.

10. Test your program before submitting it. Do not just assume it works.

Chapter 19

Cell arrays and structures

19.1 Cell arrays

Cell arrays are arrays whose elements are cells. Each cell can contain any data, including numeric
arrays, strings, cell arrays etc. For instance, one cell can contain a string, another a numeric
array etc. Below, there is a schematic representation of an exemplar cell array:

’this is a text’

-1 0
0 -1

35

5900 6000 6100

John Smith

’implies effort’

’Living’

1 + 3i

cell 2,2

’Bye’

’Hi’ [7,7]

3 1 -7
7 2 4
0 -1 6
7 3 7

cell 1,1 cell 1,2 cell 1,3

cell 2,3cell 2,1

Cell arrays can be built up by assigning data to each cell. The cell contents are accessed by
brackets {}. For example:

1 >> A(1,1) = {[3 1 −7;7 2 4;0 −1 6;7 3 7] };
2 >> A(2,1) = {'this is a text' };
3 >> B(1,1) = {'John Smith' }; B(2,1) = {35}; B(3,1) = {[5900 6000 6100] }
4 >> A(1,2) = {B}; % cell array B becomes one of the cells of A
5 >> C(1,1) = {'Hi' }; C(2,1) = {[−1 0;0 −1] }; C(1,2) = {[7,7] }; C(2,2) = {'Bye' };
6 >> A(2,2) = {C}; % cell array C becomes one of the cells of A
7 >> A % A represents now the first 2 columns of the exemplar
8 % cell array

– 127 –

19.2. Structures 128

9 A =
10 [4x3 double] {3x1 cell }
11 'this is a text' {2x2 cell }
12 >> A(2,2) % access the cell but not its contents
13 ans =
14 {2x2 cell }
15 >> A{2,2 } % use {} to display the contents
16 ans =
17 'Hi' [1x2 double]
18 [2x2 double] 'Bye'
19 >> A{2,2 }{2,1 } % take the (2,1) element of the cell A {2,2 }
20 ans =
21 −1 0
22 0 −1

There are also two useful functions with meaningful names: celldisp and cellplot. Use help

to learn more.

The common application of cell arrays is the creation of text arrays. Consider the following
example:

1 >> M = {'January' ; 'February' ; 'March' ; 'April' ; 'May' ; 'June' ; 'July' ; 'August' ;
2 'September' ; 'October' ; 'November' ; 'December' };
3 >> fprintf ('It is %s. \n' , M{9});
4 It is September.

Exercise 19.1.
Exercise with the concept of a cell array, first by typing the examples presented above. Next,
create a cell array W with the names of week days, and using the command fprintf, display on
screen the current date with the day of the week. The goal of this exercise is also to use fprintf
with a format for a day name and a date, in the spirit of the above example. �

19.2 Structures

Structures are Matlab arrays with data objects composed of fields and are very similar to
classes in c++. Each field contains one item of information. For example, one field might include
a string representing a name, another a scalar representing age or an array of the last few salaries.
Structures are especially useful for creating and handling a database. One of the possible ways
to create a structure is by assigning data to individual fields. Imagine that you want to construct
a database with some information on workers of a company:

1 >> worker.name = 'John Smith' ;
2 >> worker.age = 35;
3 >> worker.salary = [5900, 6000, 6100];
4 >> worker =
5 name: 'John Smith'
6 age: 35
7 salary: [5900 6000 6100]

In this way, a 1×1 structure array worker with three fields: name, age and salary is constructed.
To expand the structure, add a subscript after the structure name:

19.2. Structures 129

1 >> worker(2).name = 'Linda Murphy' ; % after this, a 2nd subarray is created
2 >> worker(2).age = 41;
3 >> worker(2).salary = [7301, 7301]; % field sizes do not need to match!
4 >> worker
5 1x2 struct array with fields:
6 name
7 age
8 salary

Since this structure has now the size of 1×2, Matlab does not display the contents of all fields.
The data are now organized as follows:

worker array

worker(1)

.name John Smith

.age 35

.salary
 5900, 6000, 6100

worker(2)

.name Linda Murphy

.age 41

.salary
 7301, 7301

Structures can also be build by using the struct function. For example:

1 >> employee=struct('name' , 'John Smith' , 'age' ,35, 'salary' ,[5900, 6000, 6100]);

To create an empty structure with fields field1, field2

1 s = struct('field1' , {}, 'field2' , {})

To create an empty structure with no fields

1 struct([])

To access an entire field, include a field name after a period. To access a subarray, follow the
standard way of using subscripts:

1 >> worker(1).age
2 35
3 >> worker(2).salary(2)
4 7301
5 >> worker(2)
6 name: 'Linda Murphy'
7 age: 41
8 salary: [7301 7301]

An alternative way is to use the getfield function:

19.2. Structures 130

1 >> getfield(worker, {2}, 'salary')
2 7301 7301

There exists also a function setfield, which assigns values to a given field. New fields can be
added or deleted from every structure. To delete a field, use the command rmfield. Analyze
the following example:

1 >> worker2 = worker;
2 >> worker2 = rmfield (worker, 'age');
3 >> worker2(2).street = 'Bakerstreet 5' ;
4 >> worker2(2)
5 name: 'Linda Murphy'
6 salary: [7301 7301]
7 street: 'Bakerstreet 5'
8 >> worker2(1)
9 name: 'John Smith'

10 salary: [5900 6000 6100] % in all other substructures address field is empty
11 street: [] % you should assign new values for each substructure

Operating on fields and field elements is done in the same way as on any other array. Consider
the following example, where the average salary for each worker is computed.

1 avr salary(1) = mean (worker(1).salary);
2 avr salary(2) = mean (worker(2).salary);

Remark: structures as a concept are common organizations of data in other programming
languages. They are created in different ways, but the intention remains the same.

Exercise 19.2.
Construct a structure friend, with the following fields: name, address, age, birthday. Insert
a few friends with related information. Remove e.g. the field age and add the field phone. �

Concerning the use of lists and parentheses in Matlab, please see help lists and help paren.

General remark: Classes and objects allow for adding new data types and new operations to
Matlab. For instance, the class of a variable describes the structure of the variables and the
operations permitted as well as functions to be used. An object is an instance of a particular
classs. The use of classes and objects is the base of object-oriented programming , which is also
possible in Matlab.

Chapter 20

File input/output operations

Matlab File input and output (I/O) functions read and write arbitrary binary and formatted
text files. This enables you to read data collected in other formats and to save data for other
programs, as well. Before reading or writing a file you must open it with the fopen command:

1 >> fid = fopen (file name, permission);

The permission string specifies the type of access you want to have:

• ’r’ - for reading only

• ’w’ - for writing only

• ’a’ - for appending only

• ’r+’ - both for reading and writing

Here is an example:

1 >> fid = fopen ('results.txt' , 'w') % tries to open the file results.txt
2 % for writing

The fopen statement returns an integer file identifier, which is a handle to the file (used later
for addressing and accessing your file). When fopen fails (e.g. by trying to open a non-existing
file), the file identifier becomes −1. It is also possible to get an error message, which is returned
as the second optional output argument.

It is a good habit to test the file identifier each time when you open a file, especially for reading.
Below, the example is given, when the user provides a string until it is a name of a readable file:

– 131 –

20.1. Text files 132

1 fid = 0;
2 while fid < 1
3 fname = input ('Open file: ' , 's');
4 [fid, message] = fopen (fname, 'r');
5 if (fid == −1)
6 disp (message);
7 end
8 end

Exercise 20.1.
Create a script with the code given above and check its behavior when you give a name of a
non-existing file (e.g. noname.txt) and a readable file (e.g. one of your functions). �

When you finish working on a file, use fclose to close it up. Matlab automatically closes all
open files when you exit it. However, you should close your file when you finished using it:

1 fid = fopen ('results.txt' , 'w');
2 ...
3 fclose(fid);

Type also help fileformats to find out which are readable file formats in Matlab.

20.1 Text files

The fprintf command converts data to character strings and displays it on screen or writes it
to a file. The general syntax is:

1 fprintf (fid,format,a, ...)

For more detailed description, see section ??. Consider the following example:

1 >> x = 0:0.1:1;
2 >> y = [x; exp(x)];
3 >> fid = fopen ('exptab.txt' , 'w');
4 >> fprintf(fid, 'Exponential function \n');
5 >> fprintf(fid, '%6.2f %12.8f \n' ,y);
6 >> fclose(fid);

Exercise 20.2.
Prepare a script that creates the sintab.txt file, containing a short table of the sinus function.
�

The fscanf command is used to read a formatted text file. The general function definition is:

1 [A,count] = fscanf (fid, format, size)

This function reads text from a file specified by file identifier fid, converts it according to the
given format (the same rules apply as in case of the fprintf command) and returns it in a

20.1. Text files 133

matrix A. count is an optional output argument standing for the number of elements successfully
read. The optional argument size says how many elements should be read from the file. If it is
not given, then the entire file is considered. The following specifications can be used:

• n - read at most n elements into a column vector;

• inf - read at most to the end of the file;

• [m, n] - read at most m n elements filling at least an m-by-n matrix, in column order; n can
be inf.

Here is an example:

1 >> a = fscanf (fid, '%5d' , 25); % read 25 integers into a vector a
2 >> A = fscanf (fid, '%5d' , [5 5]); % read 25 integers into a 5 x 5 matrix A

Matlab can also read lines from a formatted text and store it in a string. Two functions can
be used for this purpose, fgets and fgetl. The only difference is that fgetl copies the newline
character while fgets does not.

Exercise 20.3.
Create the following script and try to understand how it works (use the help command to learn
more on the feof function):

1 fid = fopen ('exptab.txt' , 'r');
2 title = fgetl (fid);
3 k = 0;
4 while feof(fid) 6=1 % as long as end −of −file is not reached do
5 k = k+1;
6 line = fgetl (fid); % get a line from the exponential table
7 tab(k,:) = str2num (line); % convert the line into a vector from tab
8 % matrix
9 end

10 fclose(fid);

Look at the matrix tab. How does it differ from the originally created matrix? �

Reading lines from a formatted text file may especially be useful when you want to modify an
existing file. Then, you may read a specified number of lines of a file and add something at the
found spot.

Exercise 20.4.
Create a script that reads the exptab.txt file and at the end of the file adds new exponential
values, say, for x = 1.1 : 0.1 : 3. Note that you should open the exptab.txt file both for reading
and writing. �

A pair of useful commands to read and write ASCII delimited file (i.e. columns are separated
by a specified delimiter such as space ’ ’ or tab, ’�’) is dlmread and dlmwrite. A more general
command is textread, which reads formatted data from a text file into a set of variables. Not
only numeric data are read, but also characters and strings.

20.2. Working with Excel 134

20.2 Working with Excel

Using xlswrite you write Microsoft Excel spreadsheet file (.xls)

This example writes the following mixed text and numeric data to the file tempdata.xls

1 d = {'Time' , 'Temp' ; 12 98; 13 99; 14 97 };

The 4-by-2 matrix will be written to the rectangular region that starts at cell E1 in its upper
left corner

1 s=xlswrite('tempdata.xls' , d, 'Temperatures' , 'E1')

Using xlsread you read Microsoft Excel spreadsheet file (.xls)

Exercise 20.5.
Prepare a script that creates the costab.xls file, containing a short table of the cosinus function.
�

Exercise 20.6.
Open the file Mesh.inp. Extract the coordinate of the nodes (they are introduced by the string
∗Node) and the nodal sets (they are introduced by the string ∗Nset).

Plot the nodes on a figure with circles and the nodes contained in the nodal sets with triangles.

�

Chapter 21

Numerical analysis

Numerical analysis can be used whenever it is impossible or very difficult to determine the
analytical solution. This is often the case when analysing experimental results. Matlab can
be used to find, for example, the minimum, maximum or integral of a certain function or set of
experimental data.

In this section we will discuss some issues on numerical integration and differentiation. Apart
from that, the possibility to solve differential equations numerically will be introduced.

21.1 Differentiation

The derivative of a function f(x) is defined as f ′(x) = df(x)
dx = lim∆x→0

f(x+∆x)−f(x)
(x+∆x)−x . In practice,

the derivative of f(x) at a is the slope of the line tangent to f(x) at a. Numerical algorithms
for computing the derivative of a function thus require the estimate of the slope of the function
for some particular range of x values. Three common approaches to do this are the backward
difference, forward difference and central difference. The figure below helps to illustrate the
difference between these three approaches:

– 135 –

21.1. Differentiation 136

• Backward difference: f ′(x) ≈ f(xk)−f(xk−1)
xk−xk−1

• Forward difference: f ′(x) ≈ f(xk+1)−f(xk)
xk+1−xk

• Central difference: f ′(x) ≈ f(xk+1)−f(xk−1)
xk+1−xk−1

To calculate the numerical derivative, the Matlab function diff(x) can be used, which com-
putes the differences between adjacent values of the vector x. If values of f(x) are contained
in vector y and the corresponding x values in vector x, the derivative of the function can be
estimated using

1 >> deriv y = diff(y)./diff(x);

The vector (or matrix) that diff(x) returns contains one less element (or row) than x. The
corresponding x values are obtained from the original x vector by trimming either the first or
last value;

• Trimming the last value results in a forward difference estimate.

• Trimming the first value results in a backward difference estimate.

To find and plot for instance the derivative of a function f(x) = 5 cos(10x)+x3− 2x2− 6x+10,
we do:

1 >> x=0:.01:4;
2 >> y=5 * cos(10 * x) + x.ˆ3 − 2* x.ˆ2 − 6* x + 10;
3 >> subplot(1,2,1)
4 >> plot(x,y)
5 >> title('f(x) = 5cos(10x) + xˆ3 − 2xˆ2 − 6x +10')
6 >> deriv y = diff(y)./diff(x);
7 >> xd = x(2:length(x)); % Backward difference x values
8 >> subplot(1,2,2)
9 >> plot(xd,deriv y)

10 >> title('f`(x)')
11 >> hold on
12 >> dy=−50* sin(10 * x) + 3 * x.ˆ2 − 4* x − 6; % The exact function for f`(x)
13 >> plot(xd,dy(2:length(x)), 'r') % Showing that the numerical result is correct

21.2. Integration 137

21.2 Integration

The integral, or the surface underneath a 2D function, can be determined numerically. A broad
family of algorithms for calculating the numerical value of a definite integral have been derived,
some of which are displayed in the following figure.

� The left panel is a representation of the Rectangle rule. Here, the interpolating func-
tion is a constant function (a polynomial of degree zero) which passes through the point
((a + b)/2, f((a + b)/2)). The approximation of the integral can be described as follows:
∫ a
b f(x)dx ≈ (b− a)f(a+b

2)

� The middle panel is a representation of the Trapezoidal rule. Here, the interpolating
function is a straight line (a polynomial of degree 1) which passes through the points
(a, f(a)) and (b, f(b)). The approximation of the integral can be described as follows:
∫ a
b f(x)dx ≈ (b− a)f(a)+f(b)

2

� The right panel is a representation of the Simpson’s rule. Here, the interpolating function
is a polynomial of degree 2 which passes through the end points a and b, and the midpoint
m = (a + b)/2. The approximation of the integral can be described as follows:
∫ a
b f(x)dx ≈ b−a

6 (f(a) + 4f(a+b
2) + f(b))

As can be clearly seen in the figure, the accuracy of the different methods can be increased
by dividing the interval (a, b) into multiple subintervals, computing an approximation for each
subinterval, and then adding up all the results.

21.2.1 Matlab commands

Matlab has several commands to determine the integral of a function. One of these commands
is trapz, which numerically integrates using the Trapezoidal rule. The accuracy of this method

21.2. Integration 138

also depends on the distance between the data points. Use help to learn more.

1 >> x = 0:0.5:10; y = 0.5 * sqrt(x) + x . * sin(x);
2 >> integral1 = trapz(x,y)
3 integral1 =
4 18.1655
5

6 >> x = 0:0.05:10; y = 0.5 * sqrt(x) + x . * sin(x);
7 >> integral2 = trapz(x,y)
8 integral2 =
9 18.3846

A more accurate result can be obtained by using the command quad or quadl, which numerically
evaluate an integral of a function using an adapted Simpson’s rule. Where the input for trapz
is a vector or a matrix, the input for quad or quadl is specified by a string or by an inline
definition (have a look at the intermezzo to learn more about inline functions).

Let f = 1
(x−0.1)2+0.1

+ 1
(x−1)2+0.1

.

1 >> format compact
2 >> f= '1./((x −0.1).ˆ2+0.1)+1./((x −1).ˆ2+0.1)' ;
3 >> integral1=quad(f,0,2)
4 integral1 =
5 13.4118
6 >> integral2=quadl(f,0,2)
7 integral2 =
8 13.4118
9 >> whos

10 Name Size Bytes Class Attributes
11

12 f 1x37 74 char
13 integral1 1x1 8 double
14 integral2 1x1 8 double

Note in the previous example that f is defined as a character array (a string).

An extra parameter can be added to quad and quadl to specify the accuracy of the evaluation.
If this parameter is not defined as in the previous example, the default error tolerance is 1.e-6.

1 >> f= '1./((x −0.1).ˆ2+0.1)+1./((x −1).ˆ2+0.1)' ;
2 >> integral1=quad(f,0,2)
3 integral1 =
4 13.4118
5 >> integral2=quad(f,0,2,1.e −4)
6 integral2 =
7 13.4119
8 >> integral3=quad(f,0,2,1.e −1)
9 integral3 =

10 13.2654

Apart from the value of the approximated integral, Matlab can also return the number of
function evaluations that are needed to reach the defined (or default) error tolerance.

1 >> >> f= '1./((x −0.1).ˆ2+0.1)+1./((x −1).ˆ2+0.1)' ;
2 >> [integral1,fcnt1]=quad(f,0,2)
3 integral1 =

21.3. Solving differential equations - The ODE toolbox 139

4 13.4118
5 fcnt1 =
6 97
7 >> [integral2,fcnt2]=quad(f,0,2,1.e −3)
8 integral2 =
9 13.4117

10 fcnt2 =
11 29

This clearly illustrates that larger values for the tolerance result in fewer function evaluations
and thus faster computation.

intermezzo

Inline functions

It may also be useful to define a function that will only be used during the current Matlab ses-
sion. Matlab offers a command inline to define the so-called inline functions in the Command
Window. For instance,

1 >> f = inline('cos(x). * sin(2 * x)')
2 f =
3 Inline function :
4 f(x) = cos(x). * sin(2 * x)
5 >> g = inline('sqrt(x.ˆ2+y.ˆ2)' , 'x' , 'y')
6 g =
7 Inline function :
8 g(x,y) = sqrt(x.ˆ2+y.ˆ2)

You can evaluate this function in a usual way:

1 >> f(−2)
2 ans =
3 −0.3149
4 >> g(3,4)
5 ans =
6 5
7 >> A = [1 2; 3 4];
8 >> B = [2 3; 4 5];
9 >> g(A,B) % the function also works with arrays

10 ans =
11 2.2361 3.6056
12 5.0000 6.4031

end intermezzo

21.3 Solving differential equations - The ODE toolbox

Before going into mathematical details, we would like to point out that we have to be very
carefull using the ODE toolbox as a black box solver for various ordinary differential equations
(ODEs). Note that you have to analyze carefully the type of ODE before you use a certain
numerical method to solve it. With the numerical method, it is e.g. important to distinguish
so-called stiff and non-stiff ODEs.

21.3. Solving differential equations - The ODE toolbox 140

A stiff equation is a differential equation for which certain numerical methods for solving the
equation are numerically unstable, unless the step size is taken to be extremely small.

Here, we discuss only functions which can be used for non-stiff problems, such as ode23 and
ode45 . Note that in Matlab also solvers for stiff problems are included; ode15s, ode23s, ode23t
and ode23tb .

21.3.1 1st order ODE

Matlab has an extensive library of functions for solving ordinary differential equations. In this
course we will only show a very basic introduction. Therefore, we will focus on the main two, the
built-in functions ode23 and ode45 , which implement versions of Runge-Kutta 2nd/3rd-order
and Runge-Kutta 4th/5th-order, respectively.

Example 21.1:
Solve the following ODE of 1st order

dy

dx
= x y2 + y, y0 := y(x = 0) = 1,

in the intervall x ∈ [0, 0.5]

For any differential equation in the form dy/dx = y′ = f(x, y), we begin by defining the
function f(x, y). Note that for single equations, we can define f(x, y) as an inline function
which simplifies the procedure. The basic usage for Matlab ’s solver ode45 is

1 ode45(function ,domain,initial condition)

Thus, we can formulate the problem as

1 >> f = inline('x * yˆ2+y');
2 >> [x,y] = ode45(f,[0 0.5],1);
3 >> plot(x,y)

Matlab returns two column vectors, the first with values of x and the second with values of y
which can be plotted with the standard command plot(x,y) .

Approximating this solution numerically, the algorithm ode45 has selected a certain discretiza-
tion of the interval [0, 0.5], and Matlab has returned a value of y at each point in the parti-
tion. It is often the case that we would like to specify the partition, i.e. the numerical effort,
on which Matlab returns an approximation. For example, we might only want to approxi-
mate the solution at 5 points: y(.1), y(.2), . . . , y(.5). We can specify this by entering the vector
[0,.1,.2,.3,.4,.5] as the domain in ode45 . That is, we use

1 >> ic = 1.0;
2 >> disc = 0:0.1:0.5;
3 >> f = inline('x * yˆ2+y');
4 >> [x,y] = ode45(f,disc,ic);
5 >> plot(x,y)

21.3. Solving differential equations - The ODE toolbox 141

It is important to point out here that Matlab continues to use roughly the same partition
of values that it originally chose; the only thing that has changed is the values at which it is
returning a solution. In this way, no accuracy is lost.

Several options are available for Matlab ’s ode45 solver, giving the user limited control over
the algorithm. Two important options are relative and absolute tolerance, respecively RelTol

and AbsTol in Matlab . At each step of the ode45 algorithm, an error is approximated for
that step. If yk is the approximation of y(xk) at step k, and ek is the approximate error at this
step, then Matlab chooses its partition to insure

ek ≤ max(RelTol ∗ yk, AbsTol)

where the default values are RelTol = .001 and AbsTol = .000001. As an example for when we
might want to change these values, observe that if yk becomes large, then the error ek will be
allowed to grow quite large. In this case, we can increase the value of RelTol. For the equation
dy
dx = xy2 + y with y(0) = 1, the values of y get quite large as x nears 1.

1 >> f=inline('x * yˆ2+y');
2 >> [x,y]=ode45(f,[0 1],1);
3 Warning: Failure at t=9.999897e −001. Unable to meet integration tolerances
4 without reducing the step size below the smallest value allo wed (1.776357e −015)
5 at time t.
6 > In ode45 at 371

In order to fix this problem, we can choose a smaller value for RelTol.

1 >> f=inline('x * yˆ2+y');
2 >> options=odeset('RelTol' ,1e −10);
3 >> [x,y]=ode45(f,[0 1],1,options);

21.3.2 Systems of ODE

Solving a system of ODE in Matlab is quite similar to solving a single equation, though since a
system of equations cannot be defined as an inline function we must define it as an M-file. As an
example, let’s solve the system of Lorenz equations (The Lorenz equations have some properties
of equations arising in atmospherics. Solutions of the Lorenz equations have long served as an
example for chaotic behavior),

dx
dt = −σx + σy

dy
dt = ρx− y − xz

dz
dt = −βz + xy

where for the purposes of this example, we will take σ = 10, β = 8
3 , and ρ = 28, as well as

x(0) = −8, y(0) = 8, and z(0) = 27.

First, a Matlab M-file lorenz.m is created that contains the Lorenz equations

21.4. Exercises 142

1 function xyz = lorenz(t,x);
2 %LORENZ: Defines the Lorenz equations.
3 sig=10;
4 beta=8/3;
5 rho=28;
6 xyz=[−sig * x(1) + sig * x(2); rho * x(1) − x(2) − x(1) * x(3); −beta * x(3) + x(1) * x(2)];

Observe that x is stored as x(1), y is stored as x(2), and z is stored as x(3). Additionally, xyz
is a column vector, as is evident from the semicolon following the first appearance of x(2).

Now, the solution of this system of ODE over the interval t=[0,20] can be found:

1 >> x0=[−8 8 27];
2 >> tspan=[0,20];
3 >> [t,xyz]=ode45(@lorenz,tspan,x0);

The output for this last command consists of a column t of times followed by a matrix xyz
with three columns, the first of which corresponds with values of x at the associated times, and
similarly for the second and third columns for y and z.

Exercise 21.1.
Create a figure with 4 subplots. The first three should contain the components of the lorenz
equation as introduced in this chapter as a function of t over the interval t=[0,20]. The fourth
should display the ’Lorenz attractor’, which is a 3D plot of the three coordinates. �

21.4 Exercises

Exercise 21.2.
Determine the first and second derivative of the line through (x,y) with x = 4:13 and y

= [12.84 12.00 7.24 -0.96 -11.16 -20.96 -27.00 -24.96 -9.56 25.44]. Make a figure
containing the plot of the initial data, the first derivative, and the second derivative in separate
sub-plots. �

Exercise 21.3.
Make a figure containing 3 sub-plots. Plot the function f(x) = 2xcos(10x)− 3x2 + 6x + 10 with
x = 0:.01:4 and its derivative in separate sub-plots. Next, find the location of local minima
and maxima and plot these, together with the function f(x), in the third sub-plot (Note: a local
minimum or maximum is defined by a zero crossing of the derivative. In other words, these
are the locations where the values of the derivate go from a negative to a positive value or vice
versa). �

Exercise 21.4.
Write a script that repeats the example displayed in the section on noise. However, add a
column of plots showing the filtered data, the first derivative of the filtered data, and the
second derivative of the fltered data (thus acquiring a figure with 3x3 plots). Also plot the exact
derivatives of the function in the graphs as a control (you can use the Matlab symbolic toolbox
to find the derivatives). �

21.4. Exercises 143

Exercise 21.5.
Write scripts that compute the integral of the function f(x) = 1

1+x2 using the Rectangle rule,
the Trapezoidal rule and the Simpson’s rule. Use the scripts to find the integral over the interval
[0, 4]. Exercise with different accuracies (number of subintervals) and compare the results with
the analytical value of the integral. �

Exercise 21.6.
Adapt the scripts you prepared for the Trapezoidal rule and the Simpson’s rule to determine the
integral of f(x) = sin(x) over the interval [0, π

2]. Do this with different numbers of subintervals;
n=[2 4 8 16 32 64 128 256]. For both the Trapezoidal rule and the Simpson’s rule, create
a matrix with 4 rows containing the values of n, the approximation of the integral, the error of
the approximation, and the ratio between the errors of consecutive approximations. What does
this tell you about the accuracy of both methods? �

Exercise 21.7.
Find the integral of the function f(x) = e−x2/2 over the interval [−3, 3]. Exercise with the
Matlab commands trapz, quad and quadl, and different accuracies. With quad and quadl,
get an idea of the number of function evaluations that are needed to reach a certain accuracy �

Exercise 21.8.
The commands quad and quadl can also be used to integrate a function stored in a .m file (use
help to find out how to do this). Make a .m file defining the function y = sin(x5 + x3). Then
use quad to determine the integral of this function over the interval [0, 2]. Also try to find the
exact value of the integral using the symbolic toolbox. Why can numerical integration be useful,
even though it results in an approximation of the integral? �

Exercise 21.9.
Solve the following ODE of 1st order

dy

dx
= x y2 + y, y0 := y(x = 0) = 1,

in the domain x ∈ [0, 0.9] with an equidistant discretization of ∆x = 0.01. Use a m-file
firstode.m to define the function. Plot the result. �

Exercise 21.10.
The predator-prey model is a model that describes the number of predators and preys over time.
When the prey is defined as x and the predator is defined as y, the number of predators and
preys can be defined with the following system of ODE:

dx
dt = αx(1− y)

dy
dt = βy(x− 1)

where for the purposes of this example, we will take α = 5 and β = 1, as well as x(0) = 3 and
y(0) = 1. Solve the predator-prey model over the interval t=[0,10] and make a plot displaying
the populations of preys and predators in a single graph.

�

Chapter 22

Exercises Day 1

22.1 Matrices and Vectors

Exercise 22.1.
Create a vector containing 5 elements such that it’s components are equally spaced when you
take the logarith of it �

Exercise 22.2.
Perform the following exercises:

• Create a vector x with the elements:

– 1, 1/2, 1/3, 1/4, 1/5
– 0, 1/2, 2/3, 3/4, 4/5

To do this, divide a vector y by a vector z.

• Given a vector t, write down the Matlab expressions that will compute:

– ln (2 + t + t2)
– cos (t)2 − sin (t)2

– et (1 + cos (3t))
– tan−1(t)

Test them for t = 1 : 0.2 : 2.

�

Exercise 22.3.
Use the knowledge on computing the inner product to find:

1. the Euclidean length of the vector x = [2 1 3 7 9 4 6], which is defined as ||x|| =
√

(Σx2i).

– 144 –

22.1. Matrices and Vectors 145

2. the angle between two column vectors, which is defined as cos α = xTy

||x|| ||y|| . Note that you

can also use the Matlab command norm(v), which gives you the Euclidean length of a
vector v. The Matlab command acosd(x) can be used to find the inverse cosine of x
expressed in degrees. Compute the angle between two vectors:

• x = [3 2 1] and y = [1 2 3]
• x = 1 : 5 and y = 6 : 10

�

Exercise 22.4.
Clear all variables (use the command clear). Define the matrix A = [1:4; 5:8; 1 1 1 1].
Predict and check the result of the following operations:

• x = A(:, 3)

• B = A(1 : 3, 2 : 2)

• A(1, 1) = 9 + A(2, 3)

•
A(2 : 3, 1 : 3) = [0 0 0; 0 0 0]

• A(2 : 3, 1 : 2) = [1 1; 3 3]

• y = A(3 : 3, 1 : 4)

• A = [A; 2 1 7 7; 7 7 4 5]

• C = A([1, 3], 2)

• D = A([2, 3, 5], [1, 3, 4])

• D(2, :) = []

�

Exercise 22.5.
Define the matrices T = [3 4; 1 8; -4 3] and A = [diag(-1:2:3) T; -4 4 1 2 1]. Per-
form the following operations on the matrix A:

• extract a vector consisting of the 2nd and 4th elements of the 3rd row

• find the minimum of the 3rd column

• find the maximum of the 2nd row

• compute the sum of the 2nd column

• compute the mean of the 1st and 4th rows

• extract the submatrix consisting of the 1st and 3rd rows and all columns

• extract the submatrix consisting of the 1st and 2nd rows and the 3rd, 4th and 5th columns

• compute the total sum of the 1st and 2nd rows

• add 3 to all elements of the 2nd and 3rd columns

�

Exercise 22.6.
Let A = [2 4 1; 6 7 2; 3 5 9]. Provide the commands which:

• assign the first row of A to a vector x;

• assign the last 2 rows of A to a vector y;

• add up the columns of A;

• add up the rows of A;

22.2. Visualization 146

�

Exercise 22.7.
Let A = [2 7 9 7; 3 1 5 6; 8 1 2 5]. Explain the results or perform the following commands:

• A′

• A(1, :)′

• A(:, [14])

• A([23], [31])

•
reshape (A, 2, 6)

• A(:)

• flipud (A)

• fliplr (A)

• [A A(end, :)]

• [A; A(1 : 2, :)]

• sum (A)

• sum (A′)

• mean (A)

• mean (A′)

• sum (A, 2)

• mean (A, 2)

• min (A)

• max (A′)

• min (A(:, 4))

•
[min(A)′ max(A)′]

• max (min(A))

• [[A; sum (A)] [sum (A, 2); sum (A(:))]]

• assign the even-numbered columns of A to an
array B

• assign the odd-numbered rows to an array C

• convert A into a 4-by-3 array

• compute the reciprocal of each element of A

• compute the square-root of each element of A

• remove the second column of A

• add a row of all 1’s at the beginning and at the
end

• swap the 2nd row and the last row

�

Exercise 22.8.
Given the vectors x = [1 3 7], y = [2 4 2] and the matrices A = [3 1 6; 5 2 7] and B = [1 4; 7 8; 2 2],
determine which of the following statements can be correctly executed (and if not, try to un-
derstand why) and provide the result:

• x + y

• x + A

• x′ + y

• A− [x′ y′]

• [x; y] + A

• [x; y′]

• [x; y]

• A− 3

• A + B

• B′ + A

• B ∗ A
• A. ∗ B
• A′. ∗ B
• 2 ∗ B
• 2. ∗ B

• B./x′

• B./[x′ x′]

• 2/A

• ones(1, 3) ∗ A
• ones(1, 3) ∗ B

�

22.2 Visualization

Exercise 22.9.
Make a plot connecting the coordinates: (2, 6), (2.5, 18), (5, 17.5), (4.2, 12.5) and (2,12) by a
line. �

Exercise 22.10.
Plot the function y = sin(x) + x− x cos(x) in two separate figures for the intervals: 0 < x < 30
and −100 < x < 100. Add a title and axes description. �

Exercise 22.11.
Plot a circle with the radius r = 2, knowing that the parametric equation of a circle is

22.2. Visualization 147

[x(t), y(t)] = [r cos(t), r sin(t)] for t = [0, 2π]. �

Exercise 22.12.
Plot an ellipse with semiaxes a = 4 and b = 2. �

Exercise 22.13.
Plot the functions f(x) = x, g(x) = x3, h(x) = ex and z(x) = ex2

over the interval [0, 4] on
the normal scale and on the log-log scale. Use an appropriate sampling to get smooth curves.
Describe your plots by using the functions: xlabel , ylabel , title and legend. �

Exercise 22.14.
Make a plot of the functions: f(x) = sin(1/x) and f(x) = cos(1/x) over the interval [0.01, 0.1].
How do you create x so that the plots look sufficiently smooth? �

Exercise 22.15.
Produce a nice graph which demonstrates as clearly as possible the behavior of the function

f(x, y) = x y2

x2+y4 near the point (0, 0). Note that the sampling around this points should be
dense enough. �

Exercise 22.16.
Plot a sphere, which is parametrically defined as [x(t, s), y(t, s), z(t, s)] = [cos(t)∗cos(s), cos(t)∗
sin(s), sin(t)] for t, s = [0, 2 π] (use surf). Make first equal axes, then remove them. Use
shading interp to remove black lines (use shading faceted to restore the original pic-
ture). �

Exercise 22.17.
Plot the parametric function of r and θ: [x(r, θ), y(r, θ), z(r, θ)] = [r cos(θ), r sin(θ), sin(6 cos(r)−
nθ)] for θ = [0, 2 π] and r = [0, 4]. Choose n to be constant. Observe, how the graph changes
depending on different n. �

Exercise 22.18.
Plot the surface f(x, y) = x y e−x2−y2

over the domain [−2, 2]× [−2, 2]. Find the values and the
locations of the minima and maxima of this function. �

Exercise 22.19.
Make a 3D smooth plot of the curve defined parametrically as: [x(t), y(t), z(t)] = [sin(t), cos(t), sin2(t)]
for t = [0, 2π]. Plot the curve in green, with the points marked by circles. Add a title, descrip-
tion of axes and the grid. You can rotate the image by clicking Tools at the Figure window
and choosing the Rotate 3D option or by typing rotate3D at the prompt. Then by clicking
at the image and dragging your mouse you can rotate the axes. Exercise with this option. �

Exercise 22.20.
Plot an equilateral triangle with two vertices [a a] and [b a]. Find the third vertex. Use fill
to paint the triangle. �

Chapter 23

Exercises Day 2

Exercise 23.1.
A simple pendulum is one which can be considered to be a point mass suspended from a string
or rod of negligible mass. Let us consider oscillations with small amplitudes, so that sin θ ≃ θ
and the position of the pendulum is described by

θ = θ0 cos
(

√

g/L t
)

.

To do:

1. Let the user enter the pendulum length and the initial position (angle θ) of the pendulum
(Hint: look at the Matlab command inputdlg)

2. For these input values plot the variation of the angle θ as function of time

3. Plot the position of the pendulum at time t = [T/4, T/2, 3T/4, T], where T denotes the
period of the pendulum

4. Create a movie to illustrate the motion of the pendulum as shown in MoviePendulum1.avi.

5. Create a movie to illustrate the motion of the pendulum as shown in MoviePendulum2.avi.
Note that the color of the mass depends on its horizontal position.

�

– 148 –

149

Dont have the figures for this

Chapter 24

Exercises Day 3

24.1 Exercise 1

1. Open the file Input3D.inp. Extract the coordinate of the nodes and the element topology.

2. Plot the nodes on a figure with markers

0

0.5

1

0

0.5

1

0

0.5

1

1.5

2

2.5

3

These are all the nodes

– 150 –

24.1. Exercise 1 151

3. Plot all the nodes that are on the external faces of the prismatic body

0

0.5

1

0

0.5

1

0

0.5

1

1.5

2

2.5

3

these are the nodes on the boundary

24.1. Exercise 1 152

4. Plot the 8 vertices of the prismatic body and fill the top and bottom surfaces

0

0.5

1

0

0.5

1

0

0.5

1

1.5

2

2.5

3

these are the top and bottom surfaces

24.1. Exercise 1 153

5. Plot all the elements with filled tetrahedra

24.1. Exercise 1 154

6. Open the file j Input3D.dat. Read the displacements of all the nodes and the stress for
element 1 (For this particular type of loading the stress is the same in all the elements) at
different time steps

7. Plot the stress for element 1 versus log((U3 + 3)/3) (this is called true strain), where U3 is
the displacement in third direction of the node 141.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

35

40

True Strain

T
ru

e
S

tr
es

s
(S

33
)

24.1. Exercise 1 155

8. Plot the nodes at the last time step

0
0.5

0
0.5

0

1

2

3

4

5

6

These are the nodes at the last time increment

24.2. Exercise 2 156

9. Plot the elements at the last time step

10. Make a movie to capture the evolution of the mesh with time (see Movie3D.avi)

11. Make a movie to capture the evolution of U3 (see MovieU3.avi). Assign to each element a
displacement value U3 equal to the averaged value of the displacements U3 of all its nodes.

24.2 Exercise 2

Write a code that allows the user to draw a geometrical figure on a figure panel using a series
of points chosen by the user by clicking with the mouse.

� Open a figure and let the user select interactively the limits for the axes (use inputdlg).
Adjust the limits for the axes accordingly.

� Let the user select interactively the colour of the lines for the drawing and the type of
markers.

� the use should be able to draw on the figure panel using the mouse. By clicking the left
mouse button he picks points. Draw a marker at the selected points and connect the points
with a line. By clicking the right mouse button he picks the last point and stops drawing.

� Save all the points selected by the user in an excel file.

24.2. Exercise 2 157

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Brawing board

	Contents
	Preface
	Acknowledgement
	History
	A C++
	Introduction to C/C++
	Objective of the course
	Installation of a C++ compiler/GUI
	Windows XP
	Windows VISTA/ Windows 7
	MAC

	A short history of C/C++

	Programming-style
	Comments (see also §3.1)
	Clear style

	The basics
	Language Elements
	Data-types, Variables, Constants
	Numbers
	Basic data-types and their declaration
	Variable-attributes
	string type
	String stream
	Life-time and position in memory
	Fields
	Valarray

	Summary

	Decision structures
	The if-command
	The ternary ?: operator
	switch-command

	Loop control structures
	(do) while-loops
	for-loops
	break and continue
	goto-command, labels

	Functions and Operators
	Transfer of arguments
	Example of passing by reference

	Functions without arguments or return value -- void
	Libraries
	Operators
	Arithmetic operators
	Comparison and logical operators
	Further operators

	inline functions
	Overloading of functions

	Pointers, pointer-field duality, and references
	Pointers
	Pointer to void

	pointer-field duality
	Transfer of field-variables to functions

	I/O (Input and Output)
	Elementfunctions of iostreams
	Formatting
	Files

	Some advanced topics
	Dynamical Memory Management
	Object Oriented Programming
	Example of Object Oriented Code involving Classes

	Organisation implementation and header-files
	Compiling and linking

	Literature and longer exercises
	Further reading
	Exercises C/C++

	B MATLAB
	Getting started with Matlab
	Input via the command-line
	help-facilities
	Interrupting a command or program
	Path
	Workspace issues
	Saving and loading data
	Exercises

	Basic syntax and variables
	Matlab as a calculator
	An introduction to floating-point numbers
	Assignments and variables

	Exercises

	Mathematics with vectors and matrices
	Vectors
	Colon notation
	Extracting and appending parts of a vector
	Column vectors and transposing
	Product, divisions and powers of vectors

	Matrices
	Special matrices
	Building matrices and extracting parts of matrices
	Operations on matrices

	Exercises

	Scripts
	Script m-files
	Exercises

	Visualization
	2D plots
	Several functions in one figure
	Adding text
	Editing plots
	Changing the axis
	Exporting graph
	Plotting surfaces
	Contour plots

	3D line plots
	Animations
	Exercises

	Control flow
	Logical and relational operators
	The command find

	Conditional code execution
	Using if ... elseif ... else ... end
	Using switch

	Loops
	Evaluation of logical and relational expressions in the control flow structures
	Exercises

	Functions
	Function m-file
	Subfunctions
	Special function variables
	Local and global variables
	Indirect function evaluation - optional

	Scripts vs. functions
	Exercises

	Writing and debugging Matlab programs
	Structural programming
	Debugging
	Recommended programming style

	Cell arrays and structures - optional
	Cell arrays
	Structures

	File input/output operations
	Text files
	Working with Excel

	Numerical analysis
	Differentiation
	Integration
	Matlab commands

	Solving differential equations - The ODE toolbox
	1st order ODE
	Systems of ODE

	Exercises

	Exercises Day 1
	Matrices and Vectors
	Visualization

	Exercises Day 2
	Exercises Day 3
	Exercise 1
	Exercise 2

