
 
 
 

The Molecular Dynamic Simulation of neutral Argon 
Particles 

 
 

By Michiel Bosch 

 
Bachelor of Science Thesis 

(01-05-2007) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supervisor  
Stefan Luding 
Thesis Committee 
Prof. Andreas Schmidt-Ott 
Dr. Stefan Luding 
Dr. Ger Koper



10/03/2008 Bachelor Thesis: Michiel Bosch 2 

Summary 
 
Missing 



10/03/2008 Bachelor Thesis: Michiel Bosch 3 

Table of content 
 
1 Introduction................................................................................................................. 4 
2 Theory ......................................................................................................................... 5 

2.1 Molecular Simulations Techniques..................................................................... 5 
2.2 Kinetic Theory .................................................................................................... 7 
2.3 Collision models ............................................................................................... 10 
2.4 Diffusion ........................................................................................................... 13 

3 Experimentation........................................................................................................ 15 
3.1 The program...................................................................................................... 15 
3.2 Simulation setup................................................................................................ 16 
3.3 Evaluating the simulation output ...................................................................... 21 

4 Results....................................................................................................................... 24 
4.1 Volume fraction ................................................................................................ 24 
4.2 Temperature ...................................................................................................... 25 
4.3 Number of particles........................................................................................... 26 
4.4 Collision models ............................................................................................... 26 
4.5 Number of cells................................................................................................. 29 

5 Conclusion and recommendations ............................................................................ 31 
6 References................................................................................................................. 32 
 



10/03/2008 Bachelor Thesis: Michiel Bosch 4 

1 Introduction 
 
Nano-particles are finding more and more applications in industry. For most applications 
nano-particles are required to have a narrow size distribution. This has proven to be a 
challenge for they grow at different rates and easily agglomerate. A novel technique is 
being developed to produce these particles using microwave plasma fields. The technique 
leads to the synthesis of nano-particles with a narrow size distribution. Each particle is 
given an equal charge which results in the particles repelling each other. This repulsion 
leads to a controlled growth of the particles and agglomeration is thwarted. In order to 
develop a better understanding of this behavior of these plasma fields, an attempt is made 
to numerically simulate the particles forming the plasma.  

The first numerical simulation was carried out in 1953 when electronic computer became 
available for the first time. Where Metropolis et al conducted a simulation of dense 
liquids, thereby introducing the Monte Carlo (MC) method. A few years later in 1956 the 
first Molecular Dynamic (MD) simulation was reported. Since then computers have 
become readily available and many MD theories have been developed but the basic 
algorithms of these methods have not changed.  

Numerical simulations form a bridge between laboratory experiments and the theory. To 
test the validity of a theory numerical simulations are performed, if the theory and the 
simulation do not agree it can be said that the theory is flawed. So by doing these 
simulations expensive laboratory experiments can be limited to when the theory is in 
agreement. With an increasing computational capacity larger and more accurate 
simulations can be conducted, thereby increasing their presents in the scientific world. 

The simulations generate information at the microscopic level, which can be used to 
determine macroscopic properties, for example transport coefficients such as diffusion 
constants. Previous studies have used both MC and MD to determine the diffusion of 
low-density gas systems. A lot of this research is out dated due to the increased computer 
capabilities. 

Using the MD neutral Argon particles where simulated. Argon was chosen for it is most 
favored gas used in plasma field studies. From these results a diffusion constant can be 
determined which can then be compared to the diffusion constant from the theory. At the 
conditions simulated the Chapman Enskog equation for the diffusion seems to be an 
adequate method for determining the diffusion constant. The system conditions where 
then varied to see whether the outcome would still be accurate. Parameters as temperature 
and density where varied along with some simulation parameters such as the number of 
particles. Different collision models where applied to see the effect on the outcome. 

Once the limitations of the simulations are known further aspects can be included in the 
simulation such as adding positive charged particles or introducing electrons. The 
outcome of this research should give a better understanding of the plasma field behavior. 
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2 Theory  
 
In order to setup a representative simulation and to be able to interpret the data generated 
from the MD simulations, the theory involved must first be carefully understood.  
 

2.1 Molecular Simulations Techniques 
 
There are two main types of molecular simulations techniques; Monte Carlo and 
Molecular Dynamics simulations in addition there are many combinations between the 
two methods, however they are not discussed in this report. 

 

2.1.1 Monte Carlo 
 
Monte Carlo (MC) simulations are based on determining the potential energy per location 
for different geometries. To describe the random walk process the Metropolis method is 
most commonly used, composed of the following steps.  

1. Specify the initial coordinates of the system (ri). 

2. Choose a random atom i and move it with a random displacement (Δri). 

3. Calculate the potential energy of the displacement (ΔUi). 

4. If  ΔUi < 0 accept the new coordinates and go back tot 2. 

5. Otherwise generate a random number R between 0 and 1 and 

if  exp( -ΔUi / kBT) < R accept the new coordinates and go back tot 2. 

if  exp( -ΔUi / kBT) ≥ R keep the original coordinates and go back tot 2. 

 

The simulation behaves as a so-called ‘Markov process’ meaning that each iteration is 
independent of another. The particles have no memory of its past, meaning that a 
transition to a future state depends only on its present state. Therefore the possibility of 
the system returning to its original state is just as likely as change to any other 
configuration. This probability is defined by the Boltzmann factor (exp( -ΔUi / kBT)).  By 
calculating the potential energy for each configuration, certain thermodynamic properties 
can be determined. 

 

2.1.2 Molecular Dynamics 
 
Molecular Dynamics (MD) actually simulates what the atoms do as time progresses. The 
information generated from these simulations are a series snapshots taken at certain 
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intervals (time steps). Based on the potential energy the acceleration can be calculated 
and thereby change is velocity is determined.  
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  (2.1) 

 
From particles position, velocity and acceleration the position and the velocity for the 
next time step can be calculated. Due to computational complexity of this method the 
amount of computer power required is quite substantial. To reduce computation time the 
system can be divided into several cells. One particle interacts with all the particles in the 
same cell as well as the surrounding cells as a whole. This method combines the particles 
in the surrounding cells to big pseudo-particles, thereby reducing the computer power 
required to calculate the potential energy of each particle. In the illustration below can be 
seen that the gray particle has to interact with much less particles by dividing the system 
into cells. 

 

 
Figure 2.1: Illustration of the multiple cells method 

 

Due to limiting computer capacity the amount of particles simulated is restricted, 
resulting in a system of a certain size. If the system size is sufficiently small boundary 
effects can influence calculations. To circumvent this problem ‘periodic boundary 
conditions’ have been developed, illustrated below. The system that is simulated is 
surrounded by identical images of it self, in other words the velocities and positions of 
the corresponding particles in the different boxes are identical. Visually this implies that 
when a particle leaves the system on the left it will enter the system again on the right. 
Using this approach a system of infinite size can be simulated. 
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Figure 2.2: Illustration of the periodic boundaries principle 

 

MD is a deterministic method of simulating and MC is a more stochastic method. 
Opinions on which method to apply in this case vary. MC simulations require much less 
computer capacity than MD simulations. As stated earlier the choice was made to use 
MD simulations for they will most probably give a more accurate result. 

 

2.2 Kinetic Theory 
 
A system of particles can initially be approximated using kinetic molecular theory. Of 
course this theory assumes that the particles behave as an ideal gas, but nonetheless it is a 
relatively accurate model to account for the velocity distribution and the mean fee paths 
of the particles. Kinetic theory describes the properties of gases by considering their 
composition and motion. This theory is only valid under the following assumptions: 
 

• The gas consists of a large number of particles each with certain mass. 

• The particles are in a state of constant random movement, obeying Newton’s laws 
of motion. 

• The volume fraction of the system is very small, in other words the average 
distance between each of the particles is much larger than their radius. 

• The energy of the particles depends solely on the temperature of the system.  

• All collisions are fully elastic collisions, meaning that the kinetic energy after a 
collision is exactly the same as before the collision. 

• All collisions are binary. 

• All particles are in a state of ‘molecular chaos’ meaning that the velocities of 
colliding particles are uncorrelated, and independent of position. 

Using these assumptions the velocity and the mean free path of the particles can be 
determined.  
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2.2.1 Velocity 
 
Every particle has a velocity with a different magnitude and direction. In order to 
determine the velocity of the particles in the system a relation is found [lit.8], making the 
velocity temperature dependant. 
 
 PV NkT=  (2.2) 
 22 1

2dPV N mv=  (2.3) 
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This temperature is known as the kinetic temperature. The energy in this case is solely 
translational kinetic energy. The particles are assumed to be point masses and other 
degrees of freedom such as rotation and vibration have been neglected. From above 
equations the mean squared velocity in three dimensions is: 
 

 2 3 Bk Tv
m

=  (2.6) 

 
In order to determine the velocity of each individual particle a Gaussian distribution of 
speed is used. This distribution is a result of the classical distribution function for energy. 
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Inserting the kinetic energy in this distribution and normalizing it results in a one-
dimensional distribution of the velocity with an average velocity of zero. 
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When converting the distribution from Cartesian coordinates to spherical coordinates and 
integrating along the angles the Maxwell-Boltzmann distribution of speed is found.  
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From this distribution certain characteristic velocities can be calculated. These are the 
most probable, the average and the root-mean-square velocity respectively.  
 



10/03/2008 Bachelor Thesis: Michiel Bosch 9 

 2 B
P

k Tv
m

=  (2.10) 

 8 Bk Tv
mπ

=  (2.11) 

 3 B
rms

k Tv
m

=  (2.12) 

 
This distribution can be used to determine the particles initial velocity, realistically 
distributing their movement in different directions and speeds. 
 

2.2.2 Mean free path 
 
The average distance between collisions of two particles is known as the mean free path 
(λ). The maximum area around a particle in which a collision could take place is a sphere-
shell with diameter (2d) this is the effective collision area. 
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Figure 2.3: Mean free path illustration 

 
This area will travel in time creating a tube shaped volume in which collisions will take 
place, thereby treating the target particle as a point mass. Now the mean free path can 
easily be calculated by taking the length of the path divided by the number of collisions.  
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= =
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 (2.13) 

 
The numerator is the distance travelled and the denominator is the interaction volume 
multiplied by the number density (nv). 
The above formula is inaccurate because the average molecular velocity is used thereby 
neglecting the fact that the target molecules are also moving. The frequencies of the 
collisions depend on the relative velocity of the particles defined below. 
 

 
2 2

1 2 2relv v v v= + =  (2.14) 
 
The mean free path estimation thereby becomes: 
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The mean free path is useful in determining the simulation parameters such the time step, 
as will be described later. 

 

2.3 Collision models 
 
As explained before, during a collision all the kinetic energy is converted to potential and 
visa versa. This is illustrated in the plot below where a simple two particle collision is 
simulated. As can be seen the total energy remains constant thus complying with the 
energy conservation law. 
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kinetic
potential
total

 
Figure 2.4: Energy vs time of a two particle collision 

 
The collisions taking place between the particles can be described using several models 
depending on the particle properties.  For the assumption that the particles experience 
hard sphere collisions the linear spring model is used, for long-range van der Waals 
interaction the Lennard Jones potential is applied and finally if there are charged particles 
present the Coulomb potential is used. 
 

2.3.1 Linear spring 
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When assumed that the particles are hard spheres and there is no long-range interaction 
the only interaction will be the collisions of the particles. The particle collisions in this 
case are modelled by using a linear spring model. For instance two spheres approach each 
other and when the distance between each particle is less than zero the interaction follows 
the harmonic oscillation from the model in which the particles will overlap to a certain 
maximum and then repel each other. 
 

δδ

 
Figure 2.5: Linear spring collsion illustration 

 
 ( ) ( )0 / exp( )sin( )t v t tδ ω η ω= −  (2.16) 
 
In the harmonic oscillation the frequency is dependant on the spring constant k. The 
damping factor η is a result of the decreasing velocity. 
 
 2 2

0ω ω η= −  (2.17) 

 ( ) /(2 )rel redv t mη =  (2.18) 

 0 / redk mω =  (2.19) 
 
Where mred is the reduced mass (particles with the same mass mred =m/2) and v the 
relative velocity. The potential energy can of this harmonic oscillation be formulated as a 
function of the overlap or the distance of the center-mass of particle i from the center 
mass of particle j.  
 
 2 21 1

2 2 ( )spring i j ijU k k a a rδ= = + −  (2.20) 
 
As stated before δ can not be smaller than zero, this implies that the formula is only valid 
when rij < (ai + aj). When rij > (ai + aj) Uspring is set to zero. 
 

2.3.2 Lennard Jones potential 
 
The Lennard Jones potential (LJ) is a simple approximation of the van der Waals 
interaction where the particles at a certain distance r from each other are initially attracted 
towards each other and are then abruptly repelled. 1/r12 is the repulsion term and 1/r6 is 
the attraction term. ε is the depth of the well and σ is the separation at which ULJ = 0 
called the collision diameter. The values for ε and σ are tabulated for the different 
elements. 
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Figure 2.6: Lennard Jones potential as a function of the distance 

 

2.3.3 Coulomb Potential 
 
Coulomb’s law states that particles of equal charge repel each other and particles of 
similar charge attract. Like point mass assumption in the kinetic theory described above 
the particles are assigned point charges. The potential energy of this repulsion or 
attraction force is expressed in equation(2.22). Where ε is the elementary charge 
(1.602·10-19 C), ε0 is the electrical vacuum permittivity (8.854·10-12 C) and q the number 
and sign of the charge. 
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Figure 2.7: Coulomb potential as a function of the distance. 

 

2.4 Diffusion 
 
Diffusion describes the molecular transport of one substance relative to another because 
of their kinetic energy for random motion. In this case there is only one substance, so the 
diffusion is the molecular transport of the substance in itself, called self-diffusion. 
Chapman and Enskog have developed an equation that relates the self-diffusion to the 
kinetic temperature. 
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Where d is the dimension n the number density (m-3) and σ the diameter of the particles 
(m). ge is the pair correlation function dependant on the volume fraction (ν) given below. 
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Using the above equation the theoretical diffusion constant can be determined for 
different temperatures and densities. From the numerical simulations the diffusion 
constant can be determined using the correlation between the distance travelled and the 
diffusion. 
 
 r Dt∝  (2.25) 
 
From literature an equation relating the diffusion constant to the mean squared of the 
distance travelled was found [lit. 6]. For the three dimensional case the diffusion in each 
direction is given by the function below. 
 
 2 2r Dt=  (2.26) 
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3 Experimentation 
 
Initially some simple experimentation was done in order understand the program. The 
next simulations that where conducted where to see what would happen if two particles 
would collided and to experiment with the calculation time steps in such a way that the 
output is still correct and that the total energy of the system remains constant (see Figure 
2.4). After many attempts a working simulation was obtained for one thousand particles. 
The next step was to develop some Matlab code which could interpret the data the 
program gives as output. After lots of experimentation a proper simulation is run of 
which the results analyzed produce a realistic output. Of this simulation several variables 
can be varied to view the effect. The default settings are given in appendix BLA. From 
these settings only one parameter is varied each time keeping the rest constant. 
 

3.1 The program 
 
The simulation program developed by Stephan Luding was designed to simulate particles 
with various properties using the molecular dynamic model described above. The 
particles simulated where argon particles of which the properties required are tabulated 
below. 
 

Table 3-1: Properties of Argon 

Mass: 39.96 [g/mol] 
Diameter: 3.58e-10 [m] 
   

Lennard Jones parameters:  
ε: 6.760e-21 [J] 
σ: 3.432e-10 [m] 

 
The program can not handle values as small as the values presented in the table above, 
especially when converting the mass per mole to the mass per particle. So by 
manipulating the units to more sizable values the simulations could be conducted more 
accurately. In the table below the conversion factors are given. 
  

Table 3-2: Conversion values for the units 

Mass: 1·10-15 [Umass/kg] 
Length: 1·10-6 [Ulength/m] 
Time: 1·10-3 [Utime/s] 

 
All the settings required for the program are placed in ini-files. Each file has its own 
purpose. The table below shows what is specified in each ini-file. For the most basic 
simulations only a par.ini and a c3d.ini are required.  
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Table 3-3: The ini-files for the MD program 

Par.ini Time specifications, spring constant and particle density 
C3d.ini System size, particle location, velocities and radius 
Lcell.ini Number of cells in each direction (x,y,z) 
Species.ini Particle properties (e.g. particle density) 
Specnum.ini Associating particle numbers (c3d.ini) with the particle 

properties (species.ini, longrange.ini) 
Longrange.ini Long-range interaction properties. 

 
A lot of the inter-particle effects where not included in the simulation and where 
therefore set to zero in the ini-files (eg. rotation, vibration). Once the ini-files have been 
specified the simulation can be started. The program does not just produce the output 
required for the further calculations but also on its progress and the parameters it has 
loaded from the ini-files. This is saved to a file, making it easier to trace errors when they 
occur. A set of ini-files is presented in appendix BLA, these ini-files correspond to the 
simulation run using the default settings. 
 

3.2 Simulation setup 
 
In creating a simulation several criteria have to be met in order for the simulation to be 
realistic, but also to prevent the simulation from crashing. What is done when setting up a 
simulation is; several particles are given random location and velocities in a defined 
system space. When the simulation starts the particles will start to move and interact with 
each other, where an output is given per specified time step of each particles location. All 
the inputs that are needed to start a successful simulation are described below. 
 

3.2.1 Input parameters 
 
The main parameters required for a representative simulation are the volume fraction and 
the temperature of the system and the number of particles to be simulated. These 
parameters have to be chosen in a manner that will result in a simulation with a realistic 
output. 

Volume fraction 
The volume fraction (ν) should be chosen sufficiently low for the kinetic theory described 
above to be applicable. If not, results will deviate from theory. 
 

 
( )34

3

3

N r
l
π

ν =  (3.1) 

Temperature 
The temperature (T) can be chosen freely, although the higher the temperature the more 
excited the particles are and the higher there velocities will be. High velocities result in 
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small simulation time steps as will be discussed below which will lead to long 
computation times. 

Number of particles 
The number of particles (N) influences the accuracy of the simulation. More particles 
results in a less scattering of the data and a larger the reproducibility. But more particles 
also mean more calculations, therefore longer computation times. A value should be 
chosen that leads to acceptable computation times as well sufficient reproducibility. 

System size 
The system size influences several other factors in the simulation, but for a representative 
simulation, it is important that several collisions take place before the particles cross the 
system boundary. Otherwise the particles might travel several times across the system 
before a single collision has taken place. This results in an unrealistic simulation and will 
lead to faulty diffusion calculations. So the length of the system should at least be larger 
than mean free path.  
 
 l λ>>  (3.2) 
 
The system size is however not an independent variable. It depends on the chosen volume 
fraction and the number of particles. So when these two values lead to a system which is 
not large enough for several collisions to take place these values should be adjusted. 

Time step of the Output 
The time step of the output must be chosen small enough so that there are several outputs 
before the particles cross the system. Otherwise it is not possible to tell if the particle 
jumped from left to right or from right to left when they cross the system boundary. 
 

 output
lt
v

Δ <<  (3.3) 

 

Time step of the calculations 
The time step of the calculation (Δt) must be smaller than the collision time (tc) otherwise 
the particle-particle interaction is not calculated frequently enough and particles might 
suddenly be occupying the same space at the same time. When this happens the repulsive 
energy repels the particles with such great force that the speed of these particles will 
increase considerably and thereby increasing the total energy of the system, which is of 
course physically incorrect.  
 
 ct t>> Δ  (3.4) 
 

3.2.2 Collision time 
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The collision time is the moment from which a particle starts to decelerates towards 
another particle until the moment where the particle stops accelerating away from that 
particle. The kinetic energy is converted to potential energy which is then converted back 
to kinetic energy. The collision time depends greatly on the collision model used. 

Linear spring 
When the interaction between the particles is simulated using the linear spring model, the 
collision time is determined by assuming a frontal collision, a collision where all the 
kinetic energy is converted to potential energy and back again. In the case of the linear 
spring model this results in a so called maximum overlap (δmax). 
 

 max
red

rel
mv

k
δ =  (3.5) 

 
The collision time can no easily calculated by dividing the maximum overlap by the 
relative velocity; 
 

 max red
c
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mt
v k
δ

= =  (3.6) 

 
The collision time, as can be seen, is determined by the spring constant. So when only 
using a linear spring the spring constant can be varied along with the time step to reduce 
computation time.  
There is however a limit to how small the spring constant can be, for the maximum 
overlap should always be much larger than the radius of the particle. So the choice in 
spring constant is on one hand limited by the time step and on the other hand by the 
radius of the particle. 
 
 ct t>> Δ  (3.4) 
 maxa δ>>  (3.7) 

 

Lennard Jones  
To estimate a collision time for this type if interaction a function for the ‘LJ constant’ is 
calculated which can be inserted in equation(3.6). When taking the second derivative of 
the linear spring model one is only left with k. So by taking the second derivative of the 
LJ potential a function is found for the ‘LJ constant’. 
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The value of r that should be used in this equation is determined from the point at which 
all the kinetic energy is converted to potential energy. Resulting in the collision time 
below. 
 

 red
c

LJ

mt
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=  (3.10) 

 

Coulomb Potential 
The same approach can be used for the coulomb potential, resulting in a ‘CP constant’. 
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When using longrange interaction like the Lennard Jones potential or the Coulomb 
potential, a cut-off radius must be specified in order to limit the amount of calculations. 
At a chosen distances these potentials are then set to zero. These distances are chosen 
arbitrarily. Once the collision time is known a proper time step can be chosen. Choosing 
an appropriate calculation time step is critical. Too large time steps errors can occur 
resulting in the increase or decrease of the total amount of energy in the system. On the 
other hand too small time steps will cause exceedingly long computation times. 
 

3.2.3 Particle initial conditions 
 
The particle starting situation must be defined. This is done by assigning each particle a 
location and a velocity in a certain direction. Certain other properties also have to be 
defined such as radius, density and interaction parameters.  

Initial Location 
Distributing the particles over a certain space has some complications. Firstly the 
particles should not overlap each other and secondly there can be no drift.  
Generating random locations without overlap is done by creating more random particles 
than specified and just removing the particles that overlap others and then removing the 
surplus particles to the amount specified. To see if a particle overlaps another, the 
distance between the particles is calculated which should be larger than twice the radius 
of the particle, if not the particle is removed. 
 
 2r σ>  (3.12) 
 
When working at high volume fractions (larger than 20%) this method is not very 
efficient. The probability that particles will overlap is quite large and by creating more 
particles as described above this probability is increased further. In this case the particles 
are assigned positions on a 3 dimensional lattice so that they will be equidistant from 
each other.  
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Initial velocity 
The second problem is the velocity. The velocity of each particle was initially determined 
by the temperature according to the average particle velocity from the Maxwell 
distribution of speed equation (2.11). The particle direction was generated randomly so 
that the average velocity over all the particles was zero. 
 

 
0.5

8 bk Tv
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This is unfortunately not an accurate model of reality, a better approach was to use a 
Gaussian distribution in each direction with the standard deviation of σ=kBT/m, resulting 
in a 3 dimensional Maxwell-Boltzmann velocity distribution with an average velocity of 
zero. A cut-off was defined in order not to have ultra fast particles, which could lead to 
simulation problems. The cut-off was set to twice the standard deviation thereby 
removing approximately the fastest 5% of the particles. After generating this distribution 
the average velocity is still not exactly zero and therefore drift is present in the system. 
Drift has to be removed for it will influence the diffusion calculations. Since the direction 
of the velocity is purely random, calculating the average velocity in each direction and 
subtracting it from each velocity component removes the drift. 
 
 i iv v v= −  (3.14) 
 
Now two manipulations have been done to the original set of velocities: removing the 
fastest 5% and removing the drift. These manipulations have resulted in a decrease of the 
total energy in the system. Without correction no comparison will be found with the 
theory. The correction factor applied to the velocities is the ratio between the theoretical 
root mean squared velocity and the actual root mean square velocity. 
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 (3.15) 

 
After all these computations a set of particles with random locations and velocity is 
obtained. 
 
All the specifications needed for a simulation are generated by Matlab programs using the 
equations above. The program code is given in appendix BLA. All one needs to do is 
input the parameters. A check is then preformed to verify if these parameters conform to 
the limitations and restrictions described above. The Matlab program then generates the 
ini-files needed and an information file giving the settings as well as several calculated 
values useful for evaluating the results and tracing errors (e.g. the mean free path and the 
collision time). The parameters which need to be specified are listed below. 
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Table 3-4: Paramters needed to setup a simulation 

Time step of the calculations  
Time step of the output  
Temperature  
Number of particles  
Volume fraction  
Longrange forces (yes or no) 
The spring constant (when using the linear spring otherwise 0) 
The cut-off radii (when using longrange forces) 

 

3.3 Evaluating the simulation output 
 
Firstly, before the results generated can be used to determine the diffusion constant it is 
necessary to see if the energy of the system of particles remains constant during the entire 
simulation. Once this is the case the diffusion constant can be calculated. 
 

3.3.1 Energy balance validation 
 
For each output time step the total potential and kinetic energies of the particles is 
reported. The sum of these values should remain constant during the entire simulation.  
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Figure 3.1: Energy plot, illustrating the energy fluctuations in time. 
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In this plot the deviations in the total energy can be observed, but the average total energy 
over time remains more or less constant. Some minor deviations are usually observed, but 
these are due to numerical errors and as long as there is no major change in the total 
energy over time the results can be used for further calculation. 
 

3.3.2 Diffusion calculation 
 
The program gives the location of all the simulated particles per output time step. From 
this information the mean squared distance travelled can be calculated needed to 
determine the diffusion constant as explained above. The mean square distance is the 
average of the square distance of every particle from it’s origin per time step.  
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Since in the simulation periodic boundaries where used it is difficult to calculated the 
distance to the origin for then the distance will never be larger than the system size. So 
instead the distance travelled between each time step was calculated and then summed to 
get the distance from the origin. 
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Another problem is the fact that particles can leave the system on one side and enter on 
the other. It will seem like the particles have travelled across the system in just one time 
step, having a sudden increase in velocity. To eliminate this problem, the particles that 
travel more than half the system length in one time step will be subjected to a correction. 
The correction depends on the direction in which the particles travel. If the particles leave 
the system on the left and enter on the right, it will seem like they have travel in a 
negative direction. So in this case by adding the length of the system this problem will be 
corrected and visa versa for particles leaving from the right. 
 
 left right t t tr r r l− +ΔΔ = − +  (3.18) 
 right left t t tr r r l− +ΔΔ = − −  (3.19) 
 
The diffusion constant can now be determined by fitting equation (2.26) to the data. 
 

 
2

2
r

D
t

=  (3.20) 

 



10/03/2008 Bachelor Thesis: Michiel Bosch 23 

By plotting the diffusion constant versus time in a logarithmic plot the different stages of 
diffusive behaviour can be seen. Initially the system is in the ballistic regime but after 
some time diffusion remains constant, meaning that diffusion limitation is reached. The 
time needed to reach the diffusion limited regime is known as the settling time, this is 
illustrated in the plot below. 
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Figure 3.2: Log-log plot of the diffusion constant versus time.  

 
Once again all the calculations that are done after a simulation has been completed are 
performed in Matlab. The program code can be found in appendix BLA. The diffusion 
constant of the system in the diffusion limited regime is calculated by taking the average 
diffusion from the moment the plot becomes more or less horizontal. So for every 
simulation one diffusion constant can be determined and compared to the Chapman 
Enskog diffusion constant.  
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4 Results 
 
Many different simulations where conducted using the default settings and varing only 
one parameter each time.. The purpose was to see what the effect is of several parameters 
on the diffusion constant. As mentioned earlier the volume fraction, temperature, number 
of particles and the different collision models where investigated. For various values of 
these parameters the diffusion constant wass compared the Chapman Enskog diffusion 
constant.   
 

4.1 Volume fraction 
 
Simulations where conducted, varying only the volume fraction, the rest of the 
parameters where kept constant. The diffusion constant was determined for each volume 
fraction. The plot below shows the results of the simulations, the solid line represents the 
Chapman Enskog diffusion from equation(2.23). 
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Figure 4.1: The diffusion constant as a function of the volume fraction 

 
It is clear from the plot, that the lower the volume fraction is the smaller the relative 
deviation of the diffusion constant from the theoretical will be. This is true because for 
the lower the volume fraction the more compliance there is with the kinetic theory from 
which the theoretical diffusion is determined. The mean free path also becomes larger at 
lower volume fraction and therefore collisions are less frequent. This results in a longer 
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settling time which then implies longer simulation times. In Appendix bla a few diffusion 
plots are given. 
 

4.2 Temperature 
 
As explained above the temperature has a direct influence on the velocity of the particles 
in the system. The higher the temperature the faster the particles will move. So for the 
simulations this implies; the higher the temperature the shorter the collision time and 
therefore the smaller the time step of the calculation has to be. The temperature was 
varied from 100K to 1000K with and increment of 100K. The plot below shows the 
simulated diffusion constant as well as the theoretical diffusion constant for each 
temperature.  
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Figure 4.2: Temperature dependence of the diffusion constant 

 
As can be seen at increasing temperature the simulated diffusion constant deviates more 
from the theoretical. An explanation is the short collision times at high temperature 
resulting in inaccurate calculations because the time step is kept constant in each 
simulation. Another phenomenon which is observed is a decrease in settling time at 
higher temperatures. This is of course due to the increasing velocity. Looking solely at 
the calculation time, high temperatures causes short settling times but small time steps 
and visa versa for low temperature. The settling time decreases at a much lower rate than 
the time step has to be reduced. This Means that the higher the temperature the longer the 
calculation time.   
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4.3 Number of particles 
 
To see what the influence is of the amount of particles several simulations have been 
done, each with a larger set of particles. The plot below clearly shows that with an 
increased amount of particles the scattering of the data is less. 
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Figure 4.3: The diffusion constant as a function of the number of particles 

 
The more particles simulated, the larger the system size will be at constant volume 
fraction. Therefore the wall effects will be less when using more particles. The only 
problem is that with a large number of particles the computation time increases 
drastically. More particles mean more interactions and therefore more calculations but 
more accuracy. 
 

4.4 Collision models 
 
The different collision models explained in the theory are used individually and in 
combination. Some experiment where conducted to see the influence of spring constant 
on the diffusion. The Lennard Jones potential was applied individually and in 
combination with the linear spring too see which best represents the actual behaviour of 
the particles.  When using the coulomb optional several problems where encountered, as 
will be explained below.  
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4.4.1 Linear Spring model 
 
The spring constant was varied to see which value best coincides with the theoretical 
diffusion. As explained above the spring constant is has a lower limit, for the maximum 
overlap must be smaller that the radius (equation (3.7)), and an upper limit, the collision 
time larger then the time step of the simulation (equation (3.4)). 
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Figure 4.4: The deviation of the diffusion constant from the theory at various spring constants 

 
The plot above clearly shows an optimum at a spring constant of 1·109 kg/s2. The spring 
constant directly influences the time step needed for calculations. A favourable time step 
would be a small one, but unfortunately this does not give the best result. However in the 
default settings for the simulations conducted a spring constant of 1·108 1·109 kg/s2 is 
used in order to reduce computational time and still have a relatively accurate output. 
 

4.4.2 Lennard Jones potential 
 

Several simulations where conducted; one without LJ-potential, several with LJ-potential 
and one with only the LJ-potential.  The simulations with the LJ-potential where 
conducted several times with varying cutoff radius. The cutoff radius of the LJ potential 
is defined as a multiple of the radii of the two particles involved in the collision, meaning 
that the LJcutoff has to be specified in the ini-files. 

 1 2( )cutoff cutoffr LJ a a= ⋅ +  (4.1) 
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When a cutoff radius of one is chosen, the LJ potential is cutoff at the distance at which 
the particles touch each other. The diffusion constant from this simulation is no different 
from the simulation with only the spring constant. The reason is that the linear spring 
model will overrule the LJ potential at this distance. This is illustrated in the energy plot 
below.  
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Figure 4.5: Energy plot as a function of the distance between two particles’ centre mass. The green 

line shows the total energy of the system, the blue line the potential enrgy plot as a result of the linear 
spring and the red line is the Lennard Jones potential. 

 

When conducting a simulation without the linear spring model no diffusion limitation is 
found. The particles stay in the ballistic regime and the diffusion increases linearly in 
time. When the particles start to deform as a result of a collision the LJ potential does not 
accurately calculate the potential energy and therefore the linear spring is needed at this 
distance. In the later experiments both interaction where used and the cut-off radius of the 
LJ potential was varied. The results from these experiments are presented in the table 
below.  
Table 4-1: Diffusion constants calculated from simulation including the LJ potential at different cut-

off radii. 

Cutoff radius 
(LJcutoff) 

Average diffusion 
constant [μm²/s] 

Standard deviation 
[μm²/s] 

No LJ 2152 104 
1.5 2051 31 
2.0 2073 102 
4.0 2001 110 

 

The diffusion constant changes at different cutoff radii. An explanation is that the 
scattering of the data is larger at an increased cutoff radius resulting a more widely spread 
diffusion constant. As can be seen in the table at a cutoff radius of 1.5 a relatively low 
standard deviation is found. The value of the diffusion constant at this cutoff radius is 
also closer to the theoretical self-diffusion constant (1957 μm²/s). Unfortunately 
calculations are greatly complicated when applying the LJ potential and cause 
simulations to take exceedingly long.  
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4.4.3 Coulomb potential 
 
When simulating charged particles, the coulomb potential is used. The problem however 
with this potential is that the radius at which it has and influence is extremely large. So a 
very large system has to be used and a very small calculation time step. This results in 
long and tedious simulations for which the computational power required is quite 
substantial. These simulations where attempted but aborted due to the limiting computer 
power available.  
 
The plots below show the three collision models used. The solid green line is the total 
energy of the system. The potential energy resulting from the collision models cannot 
exceed this value. As can be seen from the plot below the radius at which the coulomb 
potential has reached this value is at an enormous radius (>100). This implies that the 
‘radius’ of a charged particles, or the closest two particles of equal charge can approach 
each other is over a hundred times their radius. The opposite is of course true for particles 
of different charge. They accelerate towards each other at an enormous rate leading to 
very high velocities requiring very small calculation time-steps for accurate results. 
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Figure 4.6: The three collision models’ potential energy plotted vs. the distance between the particles’ 
centre mass. The green line shows the total energy of the system, the blue line the potential enrgy plot 

as a result of the linear spring, the red line is the Lennard Jones potential and magenta line the 
Coulomb potential. 

The time steps required to perform these calculations are so small that simulations would 
take weeks and therefore the Coulomb potential was not simulated. 

4.5 Number of cells 
 
The number of cells is a method to reduce the amount of calculations as explained 
previously. The problem however is that the interaction range of the particles should fall 
inside one cell otherwise a distorted interaction is calculated. Some experimentation was 
done for various amounts of cells. The plot below shows the simulation results. The only 
thing which was varied was the amount of cells the rest was kept constant. 
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Figure 4.7: Number of linked cells vs. the diffusion constant 

 
As can be seen no relation can be seen between the amount of cells and the deviation 
from the theoretical diffusion. Of course if more simulations where to be conducted at an 
increasing amount of cells at some point a limit will be found. Another problem with 
using more cells, every time a particle leaves a cell and moves to another, the system has 
to resort the linked cells resulting in extra computation time. So there is an optimum 
some where between the amount of linked cells used and the computation time, which 
was not determined is this project.   
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5 Conclusion and recommendations 
 
From almost all the simulations conducted it can be concluded that settings which result 
in longer computation time result in better comparison with the theory. Also the closer 
the simulated system resembles an ideal gas the close the calculated diffusion constant is 
to the theory. For the two collision models used, linear spring and the Lennard Jones 
potential, an optimal value is found for the parameters varied in each case. For the 
Lennard Jones potential one would expect that the larger the cut-off radius the more 
accurate the calculations are. The situation as seen in the results is that at short cut-off 
radii the scattering of the data is less. Also using the Lennard Jones potential together 
with the linear spring model, result in a better comparison with the theoretical self-
diffusion constant.  
The main problem with all the simulations conducted is the time needed to do them. The 
average computation time is roughly half a day. Therefore less simulations where 
conducted than preferred. There are also many variables which influence the outcome of 
the simulations.  For example, it might be that finding an optimum for the spring constant 
is different when using different time steps. This would have to be confirmed.  
 
An option is to use the Monte Carlo method instead of the Molecular Dynamic method 
for it requires much less computer power. However the question still remains if it is as 
accurate but this can then be proven. Another alternative is to simple use more powerful 
computers making it possible to conduct faster and more accurate simulations.  
A more complicated option is to use random forces at certain intervals thereby mimicking 
collisions and making it possible to use larger time steps. A problem however when 
applying these forces is that the total energy of the system is influenced and care has to be 
taken to assure that the total energy remains constant. 
 
Once the diffusion constant can be determined using these simulations, the next step 
would be to develop a new diffusion theory for the situation when there are also charged 
particles present. This theory can then be verified using simulations. Although when 
using charged particles very low densities have to be used and considerable computer 
power is required. Simulating electrons will prove even more difficult for they move a lot 
faster than the other particles. An option is then to assume that the other particles are not 
moving and assigning unique location to each and just simulating the electrons. Again 
here it might be a good idea to use random forces. 
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