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Summary

This thesis deals with the description of the static and kinematic properties
of a structured mono-dispersed frictionless 3D granular packing by means of
both theoretical derivations and DEM simulations. The packing used for this
research is the Hexagonal Close Packing (HCP), which is a common crystal
structure in nature. The properties of interest are the volume fraction of
the packing, the contact network of the spheres, the Elastic Modulus Tensor
(EMT) and the potential energy density. The aim is to evaluate how well
the properties of a granular packing can be estimated with DEM simulations
and what methods are required to improve the estimations. The simulations
were performed with both periodic and wall boundary systems.

For the simulations in the periodic boundary system the estimated prop-
erties of the HCP correspond very well with the theoretically derived prop-
erties. For the wall boundary systems the deviations from the theoretical
predictions are generally large. However, it is shown that with some simple
methods reasonable estimations can be made of the volume fraction and
EMT of a ‘perfect’ HCP from a relatively small HCP in a wall boundary
system.

The second goal of this thesis is to evaluate the performance of three
strain definitions described in literature that are claimed to be valid for
3D granular assemblies. This must lead to a recommendation for which
definition is the most suitable to implement in the DEM data processing
software. The first strain definition was proposed by Bagi and is based on
the replacement of the grains in the system by equivalent continua. The
second method uses the best-fit approach, where the average displacement
of all particles is used to define the strain tensor. The third and last method
was proposed by Satake and like the first method, the definition is based on
the division of the granular assembly is smaller sub-volumes.

All three strain definitions are capable of accurately describing the strain
tensor based on DEM simulations with uniaxial compression tests with
HCP’s in periodic boundary systems. For the wall boundary systems, the
deviations are generally very large. The main reason is that it was not pos-
sible to base the description of the strain tensor on the displacements of all
the spheres in the packing; a small selection of spheres was used instead,
which are in the case of wall boundary systems not representative for the en-
tire packing, in contrast with periodic boundary systems. Since the best-fit
method is the fastest and most straightforward of the three strain defin-
tions, its implementation in the DEM software is preferred over the other
two methods. However, more research on more complex packings should be
done before it can be judged which strain definition performs best under all
conditions.
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1 Introduction

This master thesis deals with the research that has been done within the
framework of the Chemical Engineering Master program. The research was
done at the NanoStructured Materials (NSM) section (former Particle Tech-
nology section) of the Delft University of Technology, over the period of
March 2005 - February 2006, under the supervision of Dr. S. Luding and O.
Mouraille. This chapter gives an introduction to the background and moti-
vation of the research. The goals are defined and the approach is explained,
together with the outline of this thesis.

1.1 Background and motivation of the research

The description of the behaviour of granular assemblies under applied forces
and deformations has been a strongly growing field of research in physics
and material science over roughly the past two decades. This proved to
be a difficult and challenging task, since granular assemblies are generally
highly inhomogeneous. Variables like size distribution, particle shape and
the randomness of the packing, among many other parameters, all have their
effect on the kinematics of a granular medium. Using the basic principles
from continuum mechanics as a reference point, constitutive relations were
derived for discrete media. Because of the complexity of granular solids,
the modelled granular systems were greatly simplified and idealized, aiming
at a more basic description of stress-strain relations. Such simplifications
can be obtained by making the system two dimensional, keeping the shape
of the particle simple (disks in 2D and spheres in 3D, but some extensions
to slightly more distorted shapes have also been modelled) and making the
system mono-dispersed and regularly structured.

An important tool in modelling the mechanical behaviour of granular
assemblies is the Discrete Element Model (DEM), developed in the 70’s by
Cundall and Strack [4]. It is a numerical model where the motion of all
particles, usually disks in 2D and spheres in 3D, is determined for every
time interval. In principle, DEM simulations can be used to determine all
kinds of properties of granular assemblies. Such properties are:

• The volume fraction

• The potential energy density

• The contact network

• The stress and strain (rate) tensor

• The elastic modulus tensor
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However, these properties cannot directly be obtained from the data output
of the simulations and have to be derived. So far, these properties have
mainly been derived for 2D granular assemblies with DEM. Simulations
with 3D assemblies have also been performed, but the derived properties
are often not accurate enough and methods to calculate these properties
have to be improved. Especially the definition of strain for granular media
has been a subject of debate over the past two decades. Various suggestions
for strain definitions have been proposed in literature ([3], [5], [7]-[12], [14],
[15]). Most of them focused on 2D assemblies, but some of the definitions
apply to 3D systems as well.

1.2 Goal of the thesis

This thesis deals with the questions how well properties of 3D granular as-
semblies in DEM simulations are estimated and which strain definitions that
have been proposed in literature are the most accurate and reliable. In or-
der to be able to evaluate whether the obtained results from the simulations
are correct, the simulations are performed with a system consisting of fric-
tionless equi-sized spheres forming a Hexagonal Close Packing (HCP). For
such regular structures, it is possible to theoretically derive the properties of
interest, like the volume fraction, potential energy density, contact network
and the elastic modulus tensor. Moreover, two of the three strain definitions
that are tested in this thesis strongly rely on geometrical properties of the
assembly for the division of the system in smaller cells. By using a struc-
tured packing, it is possible to theoretically derive the shapes of these cells
and base the fundamental characteristics of these two definitions on these
theoretically derived cell structures. If agreement is obtained between the
theoretical predictions and the results obtained from the DEM simulation
for the structured packing, the simulated granular assemblies can be made
more complex and less ideal in a next step, such that the properties cannot
be derived from theory any more. The long-term goal is to be able to rely on
DEM simulations for the derivation of the properties of realistic (non-ideal,
random) granular assemblies.

1.3 Approach and outline of the thesis

First, in the chapter ‘Stress and strain definitions for granular media’ an
overview is given of the most relevant stress and especially strain definitions
for granular media that have been proposed in literature over approximately
the past ten years. The definitions that are also valid for 3D granular media
will be tested for their accuracy in this thesis.

In the chapter ‘Theory of the HCP’, properties of the HCP will be derived
theoretically. First, the structure of the packing will be introduced, from
which the contact network can be derived. This contact network forms the
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basis for the description of the elastic modulus tensor, which relates stress
to strain. For deriving the volume fraction and potential energy density
a unit cell will be defined. This unit cell is an elementary volume that is
representative for the properties of the entire packing.

Next, a general introduction to the Discrete Element Model will be given
in chapter 4, followed by a description of how the HCP was prepared for the
simulations, both for periodic and wall boundary conditions. Furthermore,
it will be explained how the simulations were performed and methods to
retrieve results from the simulations will be discussed in this chapter.

The results are covered in two sections. In the first part, the properties
that were theoretically derived in the chapter ‘Theory of the HCP’ are now
obtained from the DEM simulations. The effect of the size of the packing
on its volume fraction will be determined and the contact network will be
retrieved from the data output. The kinetic stability of a static HCP is
evaluated, as well as its potential energy (density). The elastic modulus
tensor is obtained in two different ways:

• Using the contact network from a static snapshot.

• Calculating the slope of the stress against strain graph, obtained from
several snapshots.

In the second part of the results, the three strain definitions that are valid
for 3D assemblies, as described in chapter 2, will be tested for the HCP. The
three corresponding strain tensors were derived from the same simulations
in order to be able to compare the results.

The conclusions and discussions follow in chapter 6. The packing prop-
erties obtained from the simulations will be compared to the theoretical
predictions and the accuracy of the three strain definitions will be judged.

This thesis finalizes with some recommendations for improvements for
processing information from DEM simulations. Furthermore, a recommen-
dation will be given for which strain definition should be implemented in
the DEM programme in order to get the most reliable and accurate approx-
imation of the macroscopic strain tensor.
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2 Stress and strain definitions for granular media

2.1 Introduction

In continuum mechanics and material science, deformations of solid bodies
are described by stress-strain relations. These relations are called ‘consti-
tutive equations’, which should contain all relevant information about the
kinematic and mechanical characteristics of the material. The relation be-
tween stress loads and the strain field is given by the equilibrium equations
of continuum mechanics. The relation between displacements and the strain
field is given by the constitutive equations. These equilibrium and geomet-
rical equations are well-defined in continuum mechanics. However this is
not the case for granular assemblies. A granular medium is composed of
distinct particles which displace independently from each other and interact
only at contact points. The discrete and inhomogeneous character of such a
medium thus results in a complex discontinuous behavior under conditions
of loading and unloading.

While the definition for stress is relatively straightforward and well ac-
cepted by researchers, strain is more complicated to describe. Over the
past decades, several strain definitions have been proposed. Most of these
definitions can be categorized into one of two groups:

• Strains based on equivalent continua.

• Strains based on best-fit approaches.

Both groups can be subdivided into various types of definitions. These ver-
sions are usually strongly related and under specific conditions even identi-
cal.

In chapter 2.2, the definitions that are based on equivalent continua will
be discussed. These versions were proposed by Bagi [2], Kruyt & Rothenburg
[8], Kuhn [11] and Cambou & Dedecker [3], [5]. Chapter 2.3 deals with
definitions that are based on the best-fit approach. These definitions are
based on particle translations [7], contact deformations [3] [12] or the relative
translations of neighbouring grains [3]. A third type of strain definition
proposed by Satake in [15] that does not fall in the former two categories is
discussed in chapter 2.4. The conclusions and discussion are finally presented
in chapter 2.5.

The nomenclature used differs very much from publication to publication
and therefore it occurs that similar symbols have different meanings. To
avoid confusion, a table is presented at the beginning of every (sub)chapter
that gives an overview of the nomenclature used in the section indicated in
the caption of the table.

In the derivation of the strain definitions described in chapters 2.2 and
2.4, the granular system is divided into subdomains using tessellation meth-
ods. Three frequently used tessellation methods are:
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• Voronoi tessellation

• Dirichlet tessellation

• Delaunay network

A brief introduction to these methods will be given first to point out the
similarities and differences.

Voronoi tessellation

The Voronoi tessellation method is named after Georgy Voronoi and it can
be used for the decomposition of a metric space determined by distances to
a specified discrete set of objects in the space, for example by a discrete set
of points. For any set of points S in Euclidian space and for almost any
point x, there is one point of S to which x is closer than to x is to any
other point of S. If S contains only two points, a and b, then the set of
all points equidistant from a and b is a hyperplane. That hyperplane is the
boundary between the set of all points closer to a than to b, and the set of
all points closer to b than to a. It is the perpendicular bisector of the line
segment from a and b. The set of all points closer to point c of set S than
to any other point of S is the interior of a space called the ‘Voronoi cell’.
The Voronoi tessellation can also be applied to a granular medium, but only
when all the grains have the same size.

Dirichlet tessellation

The Voronoi and Dirichlet tessellations are often regarded as the same tes-
sellation methods. This may be true for a set of points in Euclidian space,
but for a granular medium the equality does not hold. The advantage of
the Dirichlet tessellation over the Voronoi tessellation method for a granular
assembly is that the grains do not necessarily have to be of the same size.
Consider a set of non-intersecting circular grains in 2D or non-intersecting
spherical grains in 3D. A domain can be assigned to each grain, consisting
of those points which have a shorter or equal tangent to that grain than to
any other grain. The common faces of the domains are the power planes in
3D, or power lines in 2D, of neighbouring grains. For a monosized granular
assembly, the Dirichlet and Voronoi tessellations give the same result.

The Delaunay network

The Delaunay network is constructed by using the Voronoi or Dirichlet cells
as a basis. Therefore, the Voronoi/Delaunay and Dirichlet/Delaunay meth-
ods are dual. Consider an assembly of circular or spherical grains. If the
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Voronoi or Dirichlet cell of two grains have a common side, the two grain
centers are connected by a straight line. These connecting lines form the
Delaunay network of the assembly. The Delaunay cells are triangles in 2D
and tetrahedra in 3D assemblies. Therefore this method is also frequently
called the ‘Delaunay triangulation method’.

The definition can be modified by only connecting the centers of con-
tacting grains by a straight line. In this version, the lines in the network
correspond to the internal supports in the microstructure. However, the
duality between the Voronoi and Dirichlet tessellation does not necessarily
hold in this case.
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2.2 Strain definitions based on an equivalent continuum

In this section, strain definitions based on an equivalent continuum are de-
scribed. The procedure of this method is to replace a system of particles
by an equivalent continuum and assume that all particles move and deform
according to the equivalent continuum. To this continuum an appropriate
translation field is assigned. Then, the deformation gradient of this contin-
uum is determined and averaged over the volume. This deformation gradient
is expressed in terms of micro-variables, like the displacement of individual
particles and geometrical properties of particles and contacts. The strain
tensor is the symmetric part of the translation gradient tensor. The various
strain definitions that follow this procedure differ from each other in the
way how an equivalent continuum is defined and how a suitable translation
field can be assigned to it. In the following paragraphs, the definitions pro-
posed by Bagi, Kruyt & Rothenburg, Kuhn and Cambou & Dedecker will
be discussed.

2.2.1 Bagi’s definition of stress and strain

The aim of Bagi’s research [2] was to find macro-level state-variables through
the proper averaging of micro-variables. The mechanical state of a granular
assembly and its dynamics due to applied forces could exactly be described
and predicted if the following characteristics are fully given:

• position and geometry of each grain;

• displacement (translations and rotations) of each grain;

• contact forces;

• material properties of the individual grain.

However, such a detailed description is not necessary and too complicated
from a practical point of view. The challenge is to describe the stress and
strain relations for a representative elementary volume of a granular system.
The question is which and how many micro-variables should be used, how
the representative elementary volume should be chosen and how the average
has to be performed.

Geometrical representation

Before Bagi elaborates on the definitions of stress and strain for granular
media, two different geometrical representations for discrete materials are
introduced. These are the material cell system and the space cell system.
These concepts will be described in more detail first.
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Table 1: Nomenclature used in section 2.2.1

Symbol Description

a vector that forms the basis of the definition of d

b vector whose direction is normal to a face of a space cell
and whose magnitude is equal to the area of the face

d complementary area vector

D dimension of the system

e displacement gradient tensor

F concentrated force acting on the boundary of a (sub)domain

l branch vector connecting the centers of two contacting grains

n outward unit normal vector

p load acting on a system

PG distance between a point P and a grain G

S the surface area of a (sub)domain

u continuous displacement field tensor

v vector connecting the grain center to one of its
contact points with another grain

V volume of a (sub)domain

x coordinate of a grain center or contact point

σ stress tensor

The material cell system

Bagi applies a modified version of the Dirichlet tessellation to define the
material cells. The difference lies in the fact that the grains are allowed to
have any arbitrary shape, while the Dirichlet tessellation can only be applied
to a system consisting of circular or spherical grains. Assume an assembly
of grains of arbitrary shape in 2D or 3D Euclidean space. The distance PG
is defined as the distance between a point P and a grain G. For a specific
grain G0, collect all those points P whose distance from G0 is less or equal
than from any other grain:

PG0 ≤ PGk (k 6= 0).

These points P form a domain around the G0 grain, as indicated in figure
1.
The material cell has the following properties:

• There is exactly one grain in each domain.

• The domains are contiguous.

• Grains on the boundary of an open assembly have infinitely large do-
mains while the domains are finite in the inside of the assembly.
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Figure 1: The material cell geometry. The boundaries of the cells are indicated
by the lines. Particles on the boundary of an open assembly have infinitely large
domains.

• The common face of neighbouring domains (belonging to the grains
G1 and G2) is the set of P points for which PG1 = PG2 ≤ PGk for
all k 6= 1 and k 6= 2.

• If two grains have a contact point, the corresponding domains must
have a common face that contains the contact point itself.

The space cell system

The construction of the space cell system is strongly based on the above
mentioned definitions and characteristics of the material cell system. Using
the material cell system as a starting point, the space cell system for a 2D
assembly can be defined as follows:

1. Nodes of the space cell system are the grain centers (each material cell
contains one node).

2. When two material cells have a common face, the corresponding grain
centers should be connected by a straight line. These lines will be the
edges in the space cell system.

3. The edges form closed cells, which are triangles in 2D and tetrahedrons
in 3D.

Figure 2 illustrates the space cell system of a 2D assembly.
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Figure 2: The space cell system. The boundaries of the space cells are indicated
by the red lines (forming triangles)

Stress

Bagi argues that for describing the stress tensor of a granular system, the
material cell system is the preferred geometrical representation. The def-
inition of the stress tensor is based on contact forces between grains and
material cells divide the space into subdomains in such a way that contact
forces act between them.

First, the stress tensor for a closed continuous domain with volume V
will be defined. This body is loaded on its boundary S by a distributed
force pi(xj). Depending on the loads a σij = σij(xk) stress tensor belongs
to every point of the domain satisfying the boundary conditions

σijnj = pi, (1)

were ni is the outwards unit normal vector on S. The volume average of the
stress tensor can be expressed as a surface integral:

σ̄ij =
1

V

∫∫∫

(V L)

σijdV =
1

V

∫∫

(S)

xipjdS. (2)

If the domain is divided into subdomains, the average stress tensor can
be calculated separately for each subdomain:

σ̄L
ij =

1

V L

∫∫

(SL)

xipjdS, (3)

where V L and SL are the volume and boundary of the L-th subdomain,
distributed forces pi(xj) act on SL from the neighbouring subdomains and
the external boundary.
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In the cases where there are concentrated forces acting on the boundary
of the domain and between the subdomains, equation (3) can be written in
a discrete form. When writing the forces acting from outside as point forces
F 1

i , F 2
i ,. . .,F k

i ,. . .; acting at boundary points x1
i , x2

i ,. . .,x
k
i ,. . ., equation (3)

can be transformed to:

σ̄ij =
1

V

∑

(k)

xk
i F

k
j , (4)

where the index k runs over the external point forces.
Now consider the L-th subdomain; the forces F 1

i , F 2
i ,. . .,F c

i ,. . . act on
its boundary at the points x1

i , x2
i ,. . .,x

c
i ,. . ., partly from the neighbouring

subdomains and partly from outside. The average stress here is

σ̄L
ij =

1

V

∑

(c)

xc
iF

c
j . (5)

Since the forces inside cancel other out each other the in the sum, the
volume-weighted average for the whole domain is (again):

σ̄ij =
1

V

∑

(L)

V Lσ̄L
ij =

1

V

∑

(L)





∑

(c)

xc
iF

c
j





=
1

V

∑

(k)

xk
i F

k
j .

(6)

By using the derived equation in (6), the stress tensor for a granular
medium will be defined. The equation will be transformed into a form that
only contains micro-variables for a discrete sysem. The xc

i vectors can be
decomposed into two parts, as shown in figure 3,

xc
i = xL

0i + vc
i (7)

where xL
0i is the coordinate of the center of the L-th grain. In lack of body

forces the equilibrium equation

∑

(c)

F c
j = 0 (8)

is valid and therefore

∑

(c)

xc
iF

c
j =

∑

(c)

vc
i F

c
j . (9)

The branch vector can be defined as
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L

x0
L

xi
c

vi
c

C

Figure 3: Illustration of the position vectors x

lci = v1c
i − v2c

i . (10)

In the double sum in equation (6) each contact is considered twice, except
from the boundary contacts. Instead of the vc

i vectors the branch vectors
can be applied. This means that the average stress tensor for a granular
material can be written as

σ̄ij =
1

V

∑

(c)

lciF
c
j . (11)

Strain

To define a strain tensor for a granular assembly, Bagi replaced each space
cell in the granular assembly by a continuum, so relations from continuum
theory could be applied. Formulating for an arbitrary surface S, this reads:

ēij =
1

V

∫∫

(S)

uinj dS, (12)

where ui is a continuous displacement field of the subdomain and nj is the
outwards unit normal vector on the surface area S of the cell volume V .
After discretizing the system the author could formulate an expression of
the displacement gradient tensor that contained discrete microvariables only.
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Figure 4 illustrates why the space cell system is the chosen geometri-
cal model to describe strain. For simple compression and simple shear, the
global deformation of the assembly is very well represented by the deforma-
tions of the space cells, since they characterise the distortions of the internal
structures itself, instead those of an individual grain or contact.

Figure 4: Compression and shear of a 2D assembly of particles. The thick solid
lines indicate the space cells.

Taking the L-th space cell, its average displacement gradient tensor is in
the continuous form:

ēL
ij =

1

V L

∫∫

(SL)

uinj dS. (13)

Using the fact that nj is constant along edges and assuming that ui(xj) is
linear along the edges, equation (13) can be written in the following discrete
form:

ēL
ij =

1

V L

D+1
∑

k=1

uk
i a

k
j , (14)

where D is the dimension of the system. The meaning of ak
j needs some

more explanation. Consider a space cell and number its nodes as 1, 2, ...,
D+1. Denote the faces of the cell by the number of that node, which is not
contained by the face (i.e. the k-th face contains all the nodes except the
k-th node). Assign a vector bk

i to each face in the following way:

• The magnitude of bk
i is equal to the area of the face (or length in 2D).

• The direction of bk
i is normal to the face, pointing outwards:

bk
i = |b|nk

i . (15)

The vector ak
i is then defined as

13



ak
i = − 1

D
bk
i = − b

D
nk

i . (16)

The introduced vectors a and b are illustrated in figure 5 in 2D.

1

3

2

a1

a2

a3

b1

b2

b3

Figure 5: Illustration of the vectors a and b. The magnitude of a equals the
branch length and the magnitude of b equals the area of the face in 3D or the length
of the face in 2D (in 2D a face is a one dimensional line and in 3D a face is an
area)

.

Since the sum over all ak
i vectors is zero, equation (14) can be modified by

subtracting the same u0
i vector from each nodal displacement of the cell:

ēij =
1

V L

D+1
∑

k=1

(

uk
i − u0

i

)

ak
j . (17)

This expression says that the rigid-body translations do not change the
deformation of the cell. Bagi chose u0

i to be the average translation of the
nodes:

u0
i =

1

D + 1

D+1
∑

k=1

uk
i , (18)

which gives that the average deformation gradient of the L-th cell is

ēL
ij =

1

D + 1

1

V L

∑

m<n

(um
i − un

i )
(

am
j − an

j

)

. (19)

The vector ak
i can be used to define a geometrical micro-variable of the space

cell system: the complementary area vector. This vector can be constructed
in the following way: Consider a pair of grains, G1 and G2, that have a
either a real or virtual contact1, so the two grain centers, 1 and 2, are

1Two particles have a virtual contact when they do not touch each other, but their
respective material cells do have a common face and the particle centers are connected by
an edge of a space cell.
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connected in the space cell system. Collect now all those space cells that
contain this edge. Assume that altogether T cells were found; denote them as
cell(1), cell(2),..., cell(t), ..., cell(T ). In the next step calculate the difference

a
1(t)
i −a

2(t)
i separately in each cell from t = 1 to T ; after summation over all

space cells containing the 1 − 2 edge, the complementary area vector

d12
i =

1

D + 1

T
∑

t=1

(

a
1(t)
i − a

2(t)
i

)

(20)

is obtained. Now going back to equation (19); if the term (um
i − un

i ) is
written as ∆umn

i and the result in equation (20) is used, equation (19) can
be written as

ēij =
1

V

∑

m<n

∆umn
i dmn

j . (21)

The definition contains micro-variables only, namely the relative displace-
ments of neighbouring nodes (∆umn

i ) and the corresponding complementary
area vector (dmn

j ). The symmetric part of this tensor expresses the deforma-
tions of the space cells and it is suggested to be the strain tensor of granular
assemblies. The anti-symmetric part of this strain tensor reflects the average
rigid-body rotation of the space cells.

Duality of the state variables

The proposed definitions of strain and stress in equations (21) and (11)
have some similarities; the summations run over the same contacts (except
for boundaries), the contact forces belong to the same pair of particles as the
relative displacements. However, there are some drawbacks of this method.
The material cells and space cells represent different volumes (or areas in
2D), as can be seen in figure 2. The relative difference in this area or volume
can be decreased by making the averaging volume large enough by including
more grains.

The definitions presented by Bagi are not yet suffient to reflect all pe-
culiarities of granular systems. Such features are the distributions of micro-
level variables (contact forces, relative displacements, geometrical micro-
variables) and the ability of individual grains (and clusters of grains as well)
to rotate, roll and slide.
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2.2.2 Kruyt & Rothenburg’s definition of strain

In a publication in 1996, Kruyt and Rothenburg suggested a strain definition
for two dimensional assemblies. The modelled system consisted of disks over
a small size distribution. As is shown in figure 6, only contacting grains
are connected, forming sets of polygons. These polygons are replaced by
continuous subdomains and for each subdomain the deformation gradient is
defined.

Table 2: Nomenclature used in section 2.2.2

Symbol Description

A area of a continuous domain

e deformation gradient tensor

g vector connecting the centers of two polygons

h vector perpendicular to g

∆u relative translation of two particle centers

Figure 6: Polygons are formed by connecting contacting disks

The average deformation gradient of this continuous domain with area ‘A’
can be expressed by

eij =
1

A

∑

c

∆uc
jh

c
i , (22)

where the summation with index ‘c’ runs over all contacting pairs of grains;
∆uc

j is the relative translation of the two particle centers forming pair ‘c’ and
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hc
i is a vector that is perpendicular to the gc

i vector connecting the centers
of the two polygons neighboring branch ‘c’:

hc
i = −eijg

c
j (23)

If pair ‘c’ is on the boundary, gc
i connects the center of the polygon with

the middle of branch ‘c’. In the special case where all the polygons of the
assembly are triangles, the definition proposed by Kruyt and Rothenburg in
equation (22) is equivalent to the definition suggested by Bagi, see equation
(21).
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2.2.3 Kuhn’s definition of strain

The definition of strain that Kuhn proposed in reference [11] is a combination
of the definitions suggested by Bagi [2] and by Kruyt and Rothenburg [8].
The difference with Bagi’s approach lies in the description of the space cells.
Like Kruyt & Rothenburg, Kuhn only connected the centers of grains if they
are in contact. This creates void cells that are not necessarily triangles,
but can also be polygons. Kuhn called his equivalent to the space cell the
Particle graph, where Ai represent void cells that are each surrounded by
branch vectors of contacting particles. An example is shown in figure 7.

Table 3: Nomenclature used in section 2.2.3

Symbol Description

A material region

b vectors that define the geometry of a polygon

l branch vector connecting the centers of
two contacting particles

L velocity gradient tensor

L number of void cells

M total number of contacts

M portion of the total number of contacts

N number of particles

N portion of the total number of particles

Q matrix that serves as a sort of prefactor
in the calculation of L

û relative velocity between two particles

Figure 7: Particle graph

The modified particle graph is represented by its L void cells (faces), M
contacts (edges or branch vectors) and N particles (vertices). The overbars
designate the portion of the total M and N contacts and particles that
remain after non-participating particles (particles with no contact) have
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been neglected. Superscripts i, j and k will be used as indices to represent
void cells, contacts and particles, respectively.

Kuhn defined the deformation rate within a material region A as a veloc-
ity gradient L, a function of position x. The author distinguished between
the velocity gradient at macroscale; the spatial average L within the entire

system, and the average velocity gradient at microscale L
i
, within each of

the L void cells, such that

L =
1

A

L
∑

i=1

AiL
i
. (24)

Where Bagi defined triangular regions [2], Kuhn defined polygonal regions.
The author made the equivalent assumption that the velocity varies linearly
along the edges of the polygons with mi edges. This leads to the expression:

L
i
=

1

6Ai

∑

j1,j2∈{0,1,...,mi−1}
Qmi

j1,j2û
i,j1 ⊗ bi,j2 . (25)

Here, the vector ûi,j is the relative velocity vector between two particles on
edge j of the ith void cell Ai. The b vectors define the geometry of polygon
i (see figure 8).
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(a) Relative velocity vectors (b) Branch vectors (c) Outward normal vectors

Figure 8: Vectors associated with edges of the ith void cell.

The dyadic product of the vectors ûi,j1 and bi,j2 is weighted by the elements
of an m × m matrix Qm, where m is the number of edges of a void cell i.
For the case where the void cell is a triangle, the matrix Q3 is

Q3 =





0 1 −1
−1 0 1
1 −1 0



 . (26)

The Qm matrices for polygons with m ≥ 4 edges can be found in [10].
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2.2.4 Cambou’s and Dedecker’s definition of strain

Another definition for strain that is only valid for two dimensional assemblies
was presented by Cambou and Dedecker in references [3] and [5]. It was
basically the same as the two dimensional version suggested by Bagi in [2].
The subsystems were made by Delaunay-triangularization (see Fig. 9).

Table 4: Nomenclature for section 2.2.4

Symbol Description

a displacement gradient tensor

u displacement vector

x spatial variable

ǫ strain tensor

ω rotation of the equivalent continuum

Figure 9: Delaunay-triangularization of a part of an assembly of disks

By using the Delaunay-triangularization method to discretize the medium,
it is possible to derive a mean value of the global strain:

ǫij =
〈

ǫe
ij

〉

, (27)

where ǫe is the strain tensor defined on each triangular element e (see Fig.
10).
Cambou used the assumption that the local strain is constant in each local
triangular element. This means that in any one element, the displacement
is linear with respect to a spatial variable x:

ue
i (xj) = ae

ijxj + ue
0i, (28)

in which a is the displacement gradient tensor and u0 is a constant vector.
The local strain of the equivalent continuum and the asymmetric displace-
ment gradient, which contains rotations of the system, can be calculated:
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Figure 10: Definition of the notations for vertices and sides.







ǫe
ij = 1

2

(

ae
ij + ae

ji

)

ωe
ij = 1

2

(

ae
ij − ae

ji

)

.
(29)
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2.3 Strain definitions based on best-fit approach

This section describes strain definitions that are based on the best-fit ap-
proach. The aim of this method is to find a deformation gradient that is
the best approximate of the real displacement of the system. The various
definitions that are proposed in literature differ from each other in the way
that the type of displacement is described. The definitions can be be based
on the following type of displacements:

• Particle translations

• Contact deformations

• Relative translations of neighbouring grains

Since describing the displacement seemed to be insufficient to describe the
kinematics, the best-fit strains based on contact deformations and on the
relative translation of neighbouring grains were proposed to improve the
description of the kinematics of a granular system [12] [3].

Table 5: Nomenclature used in chapter 2.3

Symbol Description

a tensor used for shorthand notation

b tensor used for shorthand notation

d tensor used for shorthand notation

e average deformation gradient tensor

f tensor used for shorthand notation

l branch vector connecting the centers of two
contacting spheres

u translation vector of a particle

x position vector of particle

w the inverse of f

z square sum of the deviation between average displacement
of the system and the individual displacement of a particle

z inverse of a

α deformation gradient tensor

∆ relative displacement of the contact

∆u relative displacement of the centers of two
contacting particles

ϕ rotation of a grain
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2.3.1 Definition based on particle translations

This best-fit strain definition is based on the translations of individual par-
ticles [7]. If the average translation of all particles is non-zero, then up

i is the
difference between the translation of particle ‘p’ and the average translation
of all grains. The position of particle ‘p’ is indicated by xp

i . It also holds
here that if the average of the particle positions is non-zero, then xp

i is the
difference of position of this particle from the average position (center of
mass).

A deformation gradient tensor αij can be defined that translates a par-
ticle ‘p’ from a position xp

i to a new position, such that

up
i = αijx

p
j (30)

is the translation. In most cases not every particle translates exactly ac-
cording to this tensor. In these cases, an αij that is valid for every particle
in the system does not exist. The purpose of the best-fit approach is to
define an αij that gives the best approximation of the real displacement of
the system. How this procedure works will be explained in more detail here.

Because equation (30) does not hold for every particle the difference

up
i − αijx

p
j

is non-zero. The αij must be found that makes the square sum of these
differences the smallest:

z (αij) =
∑

p

(

up
i − αijx

p
j

)(

up
i − αijx

p
j

)

→ min! (31)

The minumum of the function z(αij) can be found be determining the deriva-
tive with respect to αij :

∂z

∂αij
= 0,

for any i and j. This leads to two systems of linear equations (for a two
dimensional system), each of them consisting of two scalar equations:





∑

(p) xp
1x

p
1

∑

(p) xp
2x

p
1

∑

(p) xp
1x

p
2

∑

(p) xp
2x

p
2



 ·





α1i

α2i



 =





∑

(p) up
i x

p
1

∑

(p) up
i x

p
2



 . (32)

The shorthand notation for this expression is

ajkαki = bji, where ajk =
∑

(p)

xp
kx

p
j and bji =

∑

(p)

up
i x

p
j .
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The αij that follows from the equation above is the average translation
gradient tensor eij :

eij := αij = zik

∑

(p)

up
jx

p
k, (33)

where zik is the inverse of amn. The symmetric part of eij is the average
strain of the system of particles.
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2.3.2 Definition based on contact deformations

The best-fit strain definition based on contact deformations was proposed by
Liao et al. in 1997 [12]. The relative displacement of the contact is denoted
by ∆c

i . If every particle in the system is displaced by the same deformation
gradient tensor αij , then the displacement of contact c shared by particles
p and q can be described by

∆c
i = αjil

c
j = αji

(

xp
j − xq

j

)

, (34)

where xp
j and xq

j are the positions of particles p and q and lcj is the branch
vector connecting the centers of the two contacting particles. Usually, not
every particle in the assembly is displaced exactly by αij so

∆c
i − αjil

c
j 6= 0. (35)

As was the case with the particle translations in the previous paragraph,
there usually is a discrepancy between the average displacement of the sys-
tem and the individual displacement of contacts. Also here, the aim is to
find the αij that gives the best approximation of the average contact dis-
placements. This can be done by calculating the square sum function of the
deviations and determining its minimum:

z (αij) =
∑

(c)

(

∆c
i − αjil

c
j

) (

∆c
i − αjil

c
j

)

→ min! (36)

The function z(αij) has a minimum when the derivative with respect to αji

is zero:

∂z

∂αji
= 0 (37)

for any i and j, which leads to two systems of linear equations for a 2D
assembly and to three systems of linear equations for a 3D assembly:





∑

(c) lc1l
c
1

∑

(c) lc2l
c
1

∑

(c) lc1l
c
2

∑

(c) lc2l
c
2



 ·





α1i

α2i



 =





∑

(c) ∆c
i l

c
1

∑

(c) ∆c
i l

c
2



 . (38)

The shorthand notation for this expression is

fjkαki = dji where fjk =
∑

(c)

lckl
c
j and dji =

∑

(c)

∆c
i l

c
j .

The average contact displacement gradient tensor can now be written as

eij := αij = wik

∑

(c)

∆c
jl

c
k , (39)
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where wik is the inverse of fjl. The symmetric part of eij is the average
strain of the analyzed system.

Cambou et al. [3] proposed two modified versions of equation (39). In the
first modified version, the description of the relative translation is based on
the centers of contacting particles, ∆uc

j , instead of describing the translation
of the contact point of the two contacting particles. Following the same
procedure as Liao did in [12], Cambou came to the following definition based
on the relative displacement of the centers of contacting particles:

eij := wik

∑

(c)

∆uc
jl

c
k (40)

where wik is the same as in equation (39). The definitions presented by Liao
and Cambou in equations (39) and (40), respectively, give the same result
when the particles don’t have rotations.

The second modification of equation (39) that was proposed by Cambou
in [3] is that not only the displacements of pairs of contacting grains are
described, but also pairs of particles which grain centers are connected with
an edge in a Delaunay triangulation network. Such pairs of particles are
indicated with the superscript ‘e’. The resulting average translation gradient
tensor becomes, similar to equation (40):

eij = wik

∑

(e)

∆ue
j l

e
k (41)

The difference between the two modified definitions that Cambou proposed
with equations (40) and (41) comes into play when pairs of particles are close
together but not in contact. When every edge in the Delaunay triangulation
network corresponds to a contact between two grains, then the two equations
give the same result.
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2.3.3 Definition including particle rotations

The difference between the strain definition of Liao et al. in equation (39)
and the definition of Cambou in equation (40) can be used to express the
effect of particle rotations:

erot
ij = wik

∑

(c)

(

∆c
j − ∆uc

j

)

lck, (42)

where the term (∆c
j −∆uc

j) is the difference between the relative translation
in the contact point and the relative translation between the two centers of
two contacting particles. This difference originates from the rotations ϕ1c

i

and ϕ2c
i of the contacting grains. This can be expressed as:

∆c
j − ∆uc

j = ejmnϕ2c
m

(

xn − x2c
n

)

− ejmnϕ1c
m

(

xc
n − x1c

n

)

. (43)

In figure 11 the notation in the equation above is explained.

�2c�

�1c�

�c�xi
2c

xi
c

xi
1c

Figure 11: Explanation of the notation used in this section. The xi vectors are
the position vectors.

The symmetric part of erot
ij is called the rotational best-fit strain.
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2.4 The Satake strain

Satake proposed a new definition of strain in [15]. The author defined stress
and strain of granular assemblies using the micro-mechanical quantities at
contact points, like the contact force and contact displacement. The sub-
systems were constructed using Dirichlet tessellation. The definition is ap-
plicable for assemblies of disks in 2D and assemblies of spheres in 3D.

The procedure starts with the Dirichlet tessellation of a system of grains,
creating polyhedra. Every grain in the system corresponds to one polyhe-
dron and each face of a Dirichlet polyhedron corresponds to a contact with
a neighbouring grain. Such a contact can be a virtual contact as well, which
defines the corresponding virtual branch vectors. This means that the grains
are not in contact, but their corresponding polyhedra share a face. From
the Dirichlet tessellation, the Delaunay network can be constructed by con-
necting the centers of neighbouring polyhedra. In 3D, a Delaunay simplex
is a tetrahedron and in 2D a triangle. These simplexes form the basis for
the micro-mechanical description of the granular assembly. The author uses
the following notation in his publication:

• Dirichlet polyhedron (polygon) i: Polyhedron (polygon) corresponding
to grain i.

• face (side) i: a face (side) of a Dirichlet polyhedron (polygon) corre-
sponding to contact C. Face C is a polygon.

• Simplex : A cell obtained by Delaunay triangulation.

• Cij : contact of grains i and j.

• D (Dijkl in 3D, Dijk in 2D): Dirichlet center of a simplex (tetrahedron
ijkl, triangle ijk).

• Rc: region accompanied by contact C, or simply region of contact C.

• lij : branch vector which connects vertices i and j of a triangle in this
order, which must be taken counter-clockwise (when the triangle is
looked at from outside, in 3D). If the side ij corresponds to contact
C, i.e. Cij , lij is also written as lc.

• bi: face (side) vector whose magnitude is the area of the face (length
of the side) i and whose direction is outward normal to the face (side).

Consider a point D for a side ij of a simplex, which satisfies the following
equation:

Di
2 − Dj

2
= r2

i − r2
j , (44)
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where ri and rj are the radii of grains placed at i and j, respectively. Apply-
ing equation (44) to all sides of a simplex, the position vector D of a point
D satisfies the relation

lij · D = ci − cj , (45)

where

ci =
1

2

(

r2
i − i · i

)

, (46)

where i is a position vector of vertex i. For cj a similar expression applies.
The equations obtained for every side of a simplex meet at only one point
D (Dijkl in 3D and Dijk in 2D), which is called the Dirichlet center of the
simplex. The simultaneous solution of the equations of (45) lead to the
following expression of the position vector:

Dijkl =
1

3V

(

cibi + cjbj + ckbk + clbl
)

(47)

Dijk =
1

2A

(

cibi + cjbj + ckbk
)

, (48)

where V or A denotes the volume or area of the concerned simplex, in 3D
and 2D, respectively, and bi is a face vector in 3D or side vector in 2D whose
magnitude is the area of the face (or length of the side) i and whose direction
is outward normal to the face (side). Next, the region Rc of a contact C will
be defined. Rc is a region of a quadrilaterally shaped polyhedron formed
by points i and j and vertices of face C (side of C in 2D). Such a region
is called the region of contact C. As Rc in 3D consists of some Delaunay
tetrahedrons having a common side ij, a part of Rc belongs to one of such
tetrahedrons.

The dual branch vector hc is an important vector in the micro-mechanical
definition of the strain tensor for granular assemblies. The author defines
hi as

hi = Scnc (in 3D) (49)

hi = scnc (in 2D) , (50)

where Sc is the area vector of face C, sc is the length of side C and nc is the
outward normal vector of face C of polyhedron (side C of polygon) i, which
is the same as the direction of the branch vector lc. Vc or Ac, the volume or
area of Rc, is expressed respectively as

Vc =
1

3
lc · hc = |b| (51)
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Ac =
1

2
lc · hc = |b| . (52)

For the definition of stress, the author introduced the stress at contact C,
which is expressed as

σc =
1

3Vc
lcfc , (53)

where Vc is the volume of Rc and satisfies the relation
∑

Vc = V , and fc is
the contact force.

The author argues that the micro-mechanical definition of the strain
tensor should also start from that of strain at a contact C, which is written
as

ǫc =
1

3Vc
hcuc . (54)

This definition is based on the property

uc = lc · ǫc , (55)

which is analogous to the generalized continuum mechanics strain definition.
The author calls ǫc the micro-mechanical strain at contact C. The overall
strain tensor of a granular assembly is defined in the following form:

ǫ =
1

V

∑

hcuc =
1

V

∑

3Vcǫc. (56)

Satake points out that although a micro-mechanical strain definition was
also proposed by Bagi in [2] and by Kruyt & Rothenburg in [8], there are
some important differences between the definitions:

1. No effect of the particle radii is considered in the definition of the vector
dc (see chapter 2.2.1), because that is only defined by the shape and
size of the concerned simplex.

2. The vector hc has a reasonable relation

f = Scnc · σc (= hc · σc), (57)

which is an analogous form to the Cauchy’s theorem in continuum
mechanics, but dc does not have such a meaningful relation.

3. During a deformation, a virtual branch sometimes makes a sudden
change. In such a case, the change of Rc defined by hc is natural and
continuous, but that by dc is not.
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2.5 Conclusions and discussion

This literature survey discussed several techniques to describe strain for
granular assemblies. These methods were divided in three categories:

• Definitions based on an equivalent continuum.

• Definitions based on the best-fit approach.

• The Satake strain.

The differences between the various strain definitions based on an equiva-
lent continuum are rather small. Under generalized conditions, they usually
give the same result. When for instance every polygon in Kruyt & Rothen-
burg’s description is a triangle, the resulting strain definition is equivalent
to Bagi’s strain definition. In 2D, all four definitions based on equivalent
continua describe the average translation gradient of an equivalent contin-
uum whose boundaries are formed by the lines that go through the centers
of the boundary particles. Therefore, all four definitions can be generalized
to the following expression:

ēij =
1

A

∮

(B)

ujnidl, (58)

where A is the area within the boundaries, (B) denotes the boundary line, ui

is the translation of a point somewhere on a straight part of a boundary line.
It is given by linear interpolation of the translation of the two corresponding
grain centers; ni is the outwards normal vector in the boundary points and
the integration with respect to length dl is carried out along (B).

Of the definitions based on equivalent continua, Bagi’s definition is the
only one that can also be applied to 3D systems. The space cells in such
systems are tetrahedra, which are relatively easy to describe mathematically.
For the other three definitions, it was not clearly stated in the articles if and
how their strain definitions could be extended to 3D systems. In the case of
Kruyt & Rothenburg’s and Kuhn’s definitions, the constructed space cells
would be complexly shaped polyhedra. It can be imagined that it would be
quite cumbersome to define translations fields, the space volume etcetera for
such cells.

The differences between the various versions of the strains based in the
best-fit approach are more fundamental in most cases. These definitions
are based on different aspects of the material behaviour. In contrast to
the definitions based on equivalent continua, the various versions of the
best-fit strains cannot be expressed in a more generalized equation like in
equation (58). The best-fit strain based on individual particle translations
can directly be applied to 3D granular assemblies. For the other best-fit
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strain, the applicability for 3D systems was not discussed by the respective
authors.

The Satake strain described in chapter 2.4 is valid for both 2D and 3D
granular assemblies. It’s definition is based on the Dirichlet tessellation and
the subsequent Delaunay triangularization of the granular system. There is
some unclearity among researchers on how to interpret the contact defor-
mation for virtual contacts. Moreover, the Satake strain is computationally
expensive and therefore difficult to implement in Discrete Element Model
(DEM) software.

For describing strain for three dimensional granular assemblies with
(DEM) simulations, the equivalent continuum based strain definition pro-
posed by Bagi, the best-fit strain based on individual particle translations
and the Satake strain are the options to consider. However, these models are
not capable of accurately describing more complex behaviour of the system,
like rotations of individual grains or sudden changes in the contact network.
Still, a lot of improvements have to be realised to correctly describe strain
for 3D granular systems.
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3 Theory of the HCP

3.1 Introduction

In this section, the properties of a hexagonal close packing will be described
from a theoretical point of view. First the structure is introduced, based
on the contact network of each sphere. From this contact network, the
elastic modulus tensor can be derived. Next, a unit cell will be defined.
The remaining properties of the HCP can be derived using this unit cell;
the density (volume fraction) and the potential energy density. The same
properties will also be determined from DEM-simulations (see section 5). It
can then be verified if theory and simulations show agreement.

3.2 The structure

The hexagonal close packing (HCP) consists of alternating layers ‘A’ and
‘B’ of equi-sized spheres. A sphere in a layer ‘B’ lies in the hole that three
contacting spheres in the layer ‘A’ below (and above) make with each other
(see figure 12).

Figure 12: Topview on 2 layers of an HCP. The blue spheres in the top layer
(layer ‘B’ are made transparent to indicate their position relative to the yellow
spheres in the layer ‘A’ below.

Except for spheres at the boundary of a packing, each sphere has twelve
contacting neighbouring spheres:

• Six contacting spheres are in the same layer. Connecting the centers
of these six spheres with lines forms a hexagon.

• Three contacting spheres are in the layer above, forming a tetrahedron
with the center sphere.

• Three contacting spheres are in the layer below, also forming a tetra-
hedron with the center sphere.

A cluster of these thirteen contacting spheres is shown in figure 13.
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A

B

A

Figure 13: A cluster of contacting spheres. The red sphere in the center has six
contacts in the same layer, three contacts above and three contacts below the plane.

3.2.1 The contact network

If the positions of two contacting spheres in the packing is described by the
vectors p1 and p2, the branch vector l is defined as the difference between
these two points:

l = p2 − p1 . (59)

This branch vector describes the direction and the distance of the line that
connects the centers of the spheres and points from sphere 1 to sphere 2.
The overlap δ of the two particles is defined as:

δ = (2a) n̂ − l , (60)

assuming equi-sized spheres. Here, a is the radius of the spheres and n̂ is
the normal unit vector, defined by the direction of the branch vector:

n̂ =
l

l
, (61)

where the scalar l is the length of the vector l. The contact network of
a sphere in the HCP is described by the twelve normal unit vectors that
this particle has with its neighbours. While the contact networks of spheres
within a layer ‘A’ or ‘B’ are identical, the contact network of a sphere in
layer ‘A’ is similar but not equal to that of a sphere in layer ‘B’. The reason
for this will be explained later in this section. From the cluster shown on
the righthand side of figure 13, a ball-and-stick model can be created, giving
more insight in the orientation of the spheres (see figure 14).
To show how the normal unit vectors can be obtained, the tetrahedron
formed by spheres 1, 2, 3 and 8 in figure 14 will be used, as shown in figure
15.
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Figure 14: The contact network of a sphere in an HCP. Thick solid lines indicate
contacts with spheres in the layer above, thin solid lines with spheres in the same
layer and dashed lines with spheres in the layer below. The spheres are numbered
from 1 to 13.
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Figure 15: Four spheres form a tetrahedron

The center of the red sphere 1 in figures 14 and 15 is chosen as the origin
of a Cartesian coordinate system. The centers of spheres 1, 2 and 3 are in
the x− y plane, with sphere 2 lying on the x-axis with a distance l from the
origin. The normal vector for the contact between spheres 1 and 2 only has
an x component and therefore this vector can be written as:

n̂(c1−2) =





1
0
0



 . (62)

The normal vector referring to the contact between spheres 1 and 3 has x
and y components. Superposing the center of sphere 3 on the x- and y-axis
shows that the x-component is 0.5 and the y-component is 1

2 tan 60◦ = 1
2

√
3,

so that:
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n̂(c1−3) =





1
2

1
2

√
3

0



 . (63)

The normal vector belonging to the branch vector between spheres 1 and 8
has three non-zero components. The x-component is again 1

2 . From figure 15
it follows that the y-component equals 1

2 tan 30◦ = 1
2
√

3
. The z-component

can be found in two ways. One way is to calculate the height h of the
triangle that is formed with points 1, 8 and p. The easier way is to use the
knowledge that the square sum of the elements of a normal unit vector must
be unity:

h =





√

1 − (0.5)2 −
(

1

2
√

3

)2


 l =

√

2

3
l . (64)

The normal unit vector n̂c1−8 can therefore be written as

n̂c1−8 =







0.5
1

2
√

3
√

2
3






. (65)

The other normal unit vectors can also be obtained by forming tetrahe-
drons and choosing the center of the red sphere (no. 1) as the origin of a
Cartesian coordinate system. The set of all normal unit vectors connected
to all contacts for an arbitrary sphere in an HCP is summarized below:

n̂A
c1−2 n̂A

c1−3 n̂A
c1−4 n̂A

c1−5 n̂A
c1−6 n̂A

c1−7





1
0
0









0.5

0.5
√

3
0









−0.5

0.5
√

3
0









−1
0
0









−0.5

−0.5
√

3
0









0.5

−0.5
√

3
0





n̂A
c1−8 n̂A

c1−9 n̂A
c1−10 n̂A

c1−11 n̂A
c1−12 n̂A

c1−13







0.5
1

2
√

3
√

2
3













−0.5
1

2
√

3
√

2
3













0
− 1√

3
√

2
3













0.5
1

2
√

3

−
√

2
3













−0.5
1

2
√

3

−
√

2
3













0
− 1√

3

−
√

2
3







(66)

The contact network for a particle in layer B is slightly different from that
of a particle in layer A. If the configuration shown in figure 14 belongs to a
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sphere in layer A, than the spheres 8 to 13 are rotated 180◦ if the red sphere
is in a B-layer. The consequence is that the signs of the y-components of the
normal unit vectors for these contacts is flipped. So for an arbitrary sphere
in layer B, the normal unit vector for contacts 8 to 13 are (the contacts with
spheres in the same layer is identical as for a sphere in layer A):

n̂B
c1−8 n̂B

c1−9 n̂B
c1−10 n̂B

c1−11 n̂B
c1−12 n̂B

c1−13







0.5
− 1

2
√

3
√

2
3













−0.5
− 1

2
√

3
√

2
3













0
1√
3

√

2
3













0.5
− 1

2
√

3

−
√

2
3













−0.5
− 1

2
√

3

−
√

2
3













0
1√
3

−
√

2
3







(67)
This difference in the contact network between spheres in layers A and B
shows that there is an anisotropy in the structure of the HCP. The ques-
tion whether this has consequences for the elastic modulus tensor will be
answered in the next section.

3.3 The elastic modulus tensor

In continuum theory, the elastic response of a continuous medium on an
applied force is described by the generalized Hooke’s law, by relating stress
(σ) to strain (ǫ) with the Elastic Modulus Tensor (EMT) C, which is a
fourth order tensor:

σαβ = Cαβγδǫγδ . (68)

For a 3D system, the EMT has 81 components. However, they are not
independent. This is due to the symmetries of the stress and strain tensors,
which cause the following equalities for Cαβγδ:

Cαβγδ = Cβαγδ = Cαβδγ = Cβαδγ . (69)

There are also cases where there is an additional symmetry under exchange
of the first and second pair of indices:

Cαβγδ = Cγδαβ . (70)

Because of these symmetries, it is possible to write the EMT as a two di-
mensional matrix. With the matrix below, all the relevant information is
provided by the at most 21 independent entries:
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C =

















C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

C1313 C1312

C1212

















. (71)

The entries in the lower left triangle are not written down because they
have the same value as the entry on the mirrored position in the matrix
(e.g. C1122 = C2211). Even though the EMT is a four dimensional object, it
has a physical interpretation. The first two indices indicate the direction of
the applied stress. When α = β, a force is acting perpendicular on the x−,
y−, or z−plane. When the indices α and β are not equal, a shear force is
acting on a plane. The second pair of indices, γ and δ, refer to the direction
of strain. When γ = δ, there is a deformation in the x−, y− or z−direction.
The indices γ 6= δ refer to a shape change and possibly a rotation of the
system if non-symmetric strain would be allowed.

The generalized Hooke’s law can also be used for discrete media to relate
stress to strain. Since the stress and strain tensor can be defined in terms
of micro-mechanical variables of the system, the EMT can also be written
in terms of these variables. When only normal contributions are considered,
the strain tensor can be written as (see [13]):

ǫ
c =

δ

l
n̂n̂ , (72)

and the stress tensor can be written as

σ
c =

klδ

Vc
n̂n̂ . (73)

The variables l, δ and n̂ have already been introduced and discussed above.
The stiffness k represents the ’softness’ of the sphere contacts. The higher
the stiffness, the more a sphere resists to deformation (in the model, spheres
do not deform but overlap each other when pressed together). Here, Vc

is the appropriate volume related to the contact c over which the stress is
averaged.

Because the stress and strain tensors can be derived from a static contact
network, the EMT can also be derived from this contact network. It is the
partial derivative of the stress tensor with respect to the deformation:

Cαβγδ =
∂σαβ

∂ǫγδ
=

1

V

∑

p∈V

(

k

C
∑

c=1

(

l2

2

)

nc
αnc

βnc
γnc

δ

)

. (74)
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This equation says that the EMT for a specific system can be determined by
calculating the tensor for every contact ‘c’ and summing all these individual
tensors up. This procedure is repeated for every particle within the volume
‘V ’ and again summed up. The term l2

2 accounts for the size of the particles
and the fact that every contact is calculated twice.

With the definitions for the elastic modulus tensor given above, the
tensor will be derived for the contact network of a single particle in an
HCP. The contact network for a particle in layer ‘A’ is drawn in figure 14
and the related normal unit vectors are given in equation (66). To illustrate
how the EMT can be calculated for a single contact c, the contact between
particles 1 and 8 in figure 14 will be taken as an example. The normal unit
vector is

n̂A
c1−8 =







1
2
1

2
√

3
√

2
3






. (75)

To find the C1111 entry of the EMT, the first entry of n̂ must be taken to
the fourth power and mutiplied by the prefactor:

(C1111)
A
c1−8 =

kl2

Vc

(

(n1)
A
c1−8 ∗ (n1)

A
c1−8 ∗ (n1)

A
c1−8 ∗ (n1)

A
c1−8

)

=
kl2

Vc
(0.5 ∗ 0.5 ∗ 0.5 ∗ 0.5)

=
kl2

Vc

(

1

16

)

.

(76)

Every one of the four indices of the EMT refers to the same index of a
normal unit vector. So, to take a second example, the (C3212)

A
c1−8 entry is:

(C3212)
A
c1−8 =

kl2

Vc

(

(n3)
A
c1−8 ∗ (n2)

A
c1−8 ∗ (n1)

A
c1−8 ∗ (n2)

A
c1−8

)

=
kl2

Vc

(

√

2

3
∗ 1

2
√

3
∗ 0.5 ∗

√

2

3

)

=
kl2

Vc

(√
3

18

)

.

(77)

Doing the calculation for every entry of the EMT for this contact gives the
following result (see equation (71) for explanation of the indices):
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CA
c1−8 =

kl2

Vp









































1
16

1
48

1
6

√
3
√

6
72

√
6

24

√
3

48

1
144

1
18

√
3
√

6
216

√
6

72

√
3

144

4
9

√
3
√

6
27

√
6

9

√
3

18

1
18

√
3

18

√
6

72

1
6

√
3
√

6
72

1
48









































. (78)

Repeating these calculations for every contact and summing up the resulting
twelve matrices gives:

CA =
kl2

Vp







































5
2

5
6

2
3 0 0 0

5
2

2
3 0 0 0

8
3 0 0 0

2
3 0 0

2
3 0

5
6







































, (79)

using the rule that all equal entries of the matrices can be summed up
directly:

(C1111)
A = (C1111)

A
c1−2 + (C1111)

A
c1−3 + . . . + (C1111)

A
c1−13 (80)

As said before, in section 3.2.1, a sphere in layer ‘B’ has a slightly differ-
ent contact network from a sphere in layer ‘A’ (the differences are shown
in equations (66) and (67)). In order to see whether or not this has con-
sequences for the elastic modulus tensor, the EMT was also calculated for
a sphere in layer ‘B’. Using the contact network given in equation (67),
together with the first six contacts from equation (66), the same EMT as
for a sphere in layer ‘A’ was found, i.e.:

CB = CA . (81)
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This means that no additional averaging procedure is needed to account for
the effect of the different contact networks in different layers.

3.4 The unit cell

Before the volume fraction (density) and the potential energy density can
be derived for an HCP, a proper unit cell with volume Vp must be defined.
A unit cell is a small volume of a packing, but it represents all features of
the total system. A complete space-filling packing can be constructed by
‘glueing’ unit cells repeatedly together in all the x−, y− and z−directions.
A suitable unit cell must contain all possible types of normal unit vectors.
However, it does not necessarily have to contain complete contacts; only an
appropriate fraction of the contact is already sufficient to describe the prop-
erties of the full contact. Naturally, the size of the unit cell should be kept as
small as possible. This reduces the efforts to determine, e.g., the (potential
energy) density. A unit cell that fulfills the above mentioned requirements
for an HCP has the shape of a hexagonal prism. The hexagonally shaped
base lies in the x-y plane, halfway in layer ‘A’ (the center of an arbitrary
sphere in this layer lies on the same z-coordinate as the base of this cell).
From this base, the prism is oriented straight up, parallel to the z-axis. Ex-
actly on halfway the prism lies the center of an arbitrary sphere in layer ‘B’.
The edges of the hexagonal cross-section cut all the contacts this sphere has
in halves. The center of this sphere lies exactly in the center of the hexagon.
The upper face of the prism also lies exactly halfway towards another layer
‘A’. Figure 16 visualizes what the unit cell looks like by giving a topview
and a front view. Figure 17 shows that merging unit cells together forms an
HCP and that the cells are repeatable.

3.5 The volume fraction (density)

With the aid of the unit cell defined in section 3.4 the volume fraction of
an HCP can be calculated. This can be done by determining the volume of
the unit cell and the volume of (parts of) the spheres that this cell contains.
The volume fraction is the ratio between this total sphere volume (Vs∈cell)
and cell volume (Vcell):

ηHCP =
Vs∈cell

Vcell
. (82)

The volume of the unit cell will be calculated first. It will be expressed in
terms of the micro-variable l, the branch vector. The cell has the geometry
of a hexagonal prism. The volume of this prism is the area of its base times
its height. The top view in figure 16 shows that the width of the hexagon
is exactly one branch vector length. The hexagon can be divided in 12
triangles. One of such a triangle is drawn in figure 18.
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top view front view

Figure 16: Top view and front view on the unit cell of an HCP. The boundaries
of the cell are indicated by the thick, blue lines. If it is assumed that the black-lined
sphere is in a layer ‘A’, than the red lines (arcs) are parts of spheres in ‘B’-layers.
The thin black lines are branch vectors, connecting the centers of contacting spheres.

The area of this triangle is

Atriangle =
1

2
∗ 0.5l ∗ b . (83)

The height b can be expressed in terms of l:

b = tan 30◦ ∗ 0.5l =
l

2
√

3
, (84)

giving for Atriangle:

Atriangle =
1

2
∗ 0.5l ∗ l

2
√

3
=

l2

8
√

3
. (85)

The total area of the hexagon is thus:

Ahex = 12 ∗ Atriangle =
12l2

8
√

3
=

√
3

2
∗ l2 . (86)

In section 3.2.1 the normal unit vector for (among others) contacts between
particles in neighbouring layers was determined. From this unit vector it is

known that the shortest distance between the centers of two layers is
√

2
3 l.

The front view in figure 16 shows that the unit cell spans exactly two layers
of spheres. The height of the prism is therefore:
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top view front view

Figure 17: Merging unit cells together forms an HCP.

hhex = 2

√

2

3
∗ l . (87)

Finally, the volume of the unit cell is:

Vcell = Ahex ∗ hhex

=

√
3

2
∗ l2 ∗ 2

√

2

3
∗ l

=
√

2 ∗ l3 .

(88)

30°

0.5 l

b

Figure 18: Dimensions of the hexagonal base of the unit cell
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The next step is to determine the volume of the spheres that one unit cell
contains. From figure 16 it can be seen that a unit cell contains one complete
sphere and six fractions of different spheres. These six fractions together
form one complete sphere, so a unit cell contains the volume of 2 spheres.
Assuming that the overlapping volume between spheres is negligable com-
pared to the total volume of a sphere, the volume of the spheres can be
expressed in terms of l, which is two times the sphere radius. The volume
of the two spheres is therefore:

Vs∈cell = 2 ∗ 4π

3
∗
(

1

2
l

)3

=
π

3
∗ l3 .

(89)

Using equation (82) it follows that the density of an HCP is:

ηHCP =
Vs∈cell

Vcell

=
π ∗ l3

3 ∗
√

2 ∗ l3

=
π

3
√

2
≈ 0.7405 .

(90)

This density is known to be the highest that a packing of equi-sized spheres
can reach.

3.6 Potential energy density

In the following, the potential energy of an HCP will be expressed with
continuum quantities. However, single contact properties are not ‘real’ con-
tinuum quantities. The goal is to show that local, single contact properties
can be expressed in continuum notation.

The potential energy density of the system is the sum over the potential
energies of every single contact contained within the unit cell, divided by
the volume of the unit cell:

u =
1

Vcell

C
∑

c=1

uc . (91)

The potential energy as a function of the stress and strain tensor is defined
as

uc =
1

2
(σc : ǫ

c) , (92)
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where σc is the stress tensor for a single contact (see equation (73)) and ǫc

is the strain tensor for a single contact (see equation (72)) . The definition
in equation (92) is based on the assumption that the stress and strain tensor
are symmetric. The colon in equation (92) denotes the double dot product
between σc and ǫc. A double dot product of two tensors equals the trace
of the dot product between these two tensors. The proof for equation (92)
(for 2D) is given in Appendix A. When only deformations in the normal
direction are considered, the strain tensor can be written as

ǫ
c =

δ

l
n̂cn̂c , (93)

where δ is the overlap between the contacting particles and l is the branch
vector, connecting the centers of the contacting spheres. The stress tensor
is defined as

σ
c =

klδ

Vc
n̂cn̂c . (94)

The term n̂cn̂c denotes the dyadic product of the unit vector in normal
direction.

A unit cell of an HCP contains three types of contacts:

1. The contacts of the center sphere with spheres that are in the same
x− y plane. These are contacts c1− 2 to c1− 6 in figure 14. Only half
the lengths of these contacts lie in the unit cell.

2. The contacts of the center sphere with the spheres in the layers above
and below. These are contacts c1 − 7 to c1 − 13 in figure 14. The full
lengths of these contacts lie in the unit cell.

3. The contacts between spheres whose centers lie at the bottom or top
plane of the unit cell. These are contacts c8 − 9, c9 − 10, c8 − 10,
c11 − 12, c12 − 13 and c11 − 13 in figure 14. The full lengths of these
contacts lie in the unit cell, but only half of their volumes lie inside
the cell.

It is assumed here that all the contacts (in their complete form) have the
same stiffness k. Contacts of the same type therefore have the same potential
energy under identical deformation, i.e. for identical δ. For every type of
contact, one contact will be used as an example to determine the potential
energy.

3.6.1 Contact type 1

For the first type, the potential energy of contact c1− 3 will be determined.
Rewriting the definition of the potential energy density of equation (92) for
this contact gives:
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u(c1−3) =
1

2

(

σ
(c1−3) : ǫ

(c1−3)
)

. (95)

Since only half of the length of the contact lies in the unit cell, the stress
and strain tensor must be expressed as a function of δ′, l′ and k′, where the
prime indicates that it must be taken for a half contact, so:

δ′ =
1

2
δ

l′ =
1

2
l

k′ = 2k .

It may be counter-intuitive that the spring stiffness doubles when the spring
length is halved, but it follows from the definition of the spring constant,
which says that this constant is found by dividing the force acting on the
spring by its compression (expressed in length units). In this problem, the
force that acts on the spring is the same, but the compression of the spring
is halved, which results in the doubled spring constant. The strain tensor
for contact c1 − 3 is:

ǫ
(c1−3) =

δ′

l′
n̂(c1−3)n̂(c1−3)

=
1
2δ
1
2 l

n̂(c1−3)n̂(c1−3)

=
δ

l
n̂(c1−3)n̂(c1−3) .

(96)

The stress tensor for contact c1 − 3 is:

σ
(c1−3) =

k′l′δ′

Vc
n̂(c1−3)n̂(c1−3)

=
2k 1

2 l 1
2δ

Vc
n̂(c1−3)n̂(c1−3)

=
klδ

2Vc
n̂(c1−3)n̂(c1−3) .

(97)

Both tensors are written as a function of a prefactor times a matrix, which
is the dyadic product of the normal unit vector n̂(c1−3) = [12 , 1

2

√
3, 0]:

n̂(c1−3)n̂(c1−3) =







1
4

√
3

4 0√
3

4
3
4 0

0 0 0






. (98)
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The dot product σ · ǫ is the product

σ · ǫ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 ·





ǫ11 ǫ21 ǫ31
ǫ12 ǫ22 ǫ32
ǫ13 ǫ23 ǫ33



 . (99)

The potential energy density is a half times the trace of this product. This
can be written as (see Appendix A for more details):

u =
1

2
([σ11ǫ11 + σ21ǫ21 + σ13ǫ13]

+ [σ21ǫ21 + σ22ǫ22 + σ23ǫ23]

+ [σ31ǫ31 + σ32ǫ32 + σ33ǫ33]) .

(100)

For contact (c1 − 3) the result is

u =
1

2

(

klδ

2Vc

)(

δ

l

)









(

1

4

)2

+

(√
3

4

)2

+ (0)2





+





(√
3

4

)2

+

(

3

4

)2

+ (0)2



+
(

(0)2 + (0)2 + (0)2
)





=

(

kδ2

4Vc

)(

1

4
+

3

4
+ 0

)

=
kδ2

4Vc
.

(101)

All the contacts of this type have the same potential energy density as
(c1 − 3), so together this gives

u(c1−2→7) = 6 ∗ kδ2

4Vc
=

3kδ2

2Vc
. (102)

3.6.2 Contact type 2

Now the potential energy for the second type of contacts will be determined.
These contacts lie completely in the unit cell, so the stress and strain tensor
are as described in equations (94) and (93), respectively. Let’s take contact
(c1 − 8) as an example for deriving the potential energy. Its normal unit

vector is n̂(c1−8) = [12 , 1
2
√

3
,
√

2
3 ], so the dyadic product (n̂(c1−8)n̂(c1−8)) is:

n̂(c1−8)n̂(c1−8) =









1
2

1
4
√

3
1
2

√

2
3

1
4
√

3
1
12

1√
18

1
2

√

2
3

1√
18

2
3









, (103)
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using equation (100), the potential energy density for this contact is

u =
1

2

(

klδ

Vc

)(

δ

l

)









(

1

4

)2

+

(

1

4
√

3

)2

+

(

1

2

√

2

3

)2




+

(

(

1

4
√

3

)2

+

(

1

12

)2

+

(

1√
18

)2
)

+





(

1

2

√

2

3

)2

+

(

1√
18

)2

+

(

2

3

)2








=

(

kδ2

2Vc

)(

1

4
+

1

12
+

2

3

)

=
kδ2

2Vc
.

(104)

There are six contacts of this type, so the result is multiplied by six:

u(c1−8→13) = 6 ∗ kδ2

2Vc
=

3kδ2

Vc
. (105)

3.6.3 Contact type 3

Finally, the potential energy for the third type of contact will be calculated.
Contact (c8 − 9) will be taken as an example. The normal unit vector for
this contact is n̂(c8−9) = [−1, 0, 0], giving for the dyadic product with itself:

n̂(c8−9)n̂(c8−9) =





1 0 0
0 0 0
0 0 0



 . (106)

The full length of the contact lies in the unit cell, but the contact is cut in
halves over the x − y plane, so only half of its volume is within a unit cell.
The overlap δ and the branch vector l remain the same as for a full contact,
but the stiffness constant k is two times smaller, giving for the stress and
strain tensor:

σ
(c8−9) =

1
2klδ

Vc
n̂(c8−9)n̂(c8−9) (107)

ǫ
(c8−9) =

δ

l
. (108)

The potential energy for this contact can immediately be written down, since
there is only one non-zero element in the dyadic product tensor of equation
(106):
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u(c8−9) =
1

2

(

kδ2

2Vc

)

(

12
)

=
kδ2

4Vc
.

(109)

Also for this type there are six contacts:

u(c8−9)→(c12−13) = 6 ∗ kδ2

4Vc

=
3kδ2

2Vc
.

(110)

3.6.4 Total potential energy of the unit cell

The total potential energy that one unit cell contains is the sum of the
potential energy of every contact of that cell, so the obtained results for the
three types of contacts can be summed up to give:

ucell = u(c1−2→7) + u(c1−8→13) + u(c8−9)→(c12−13)

=
3kδ2

2Vc
+

3kδ2

Vc
+

3kδ2

2Vc

(111)

ucell =
6kδ2

Vc
. (112)

In section 3.5 it was calculated that the volume of the unit cell is, expressed
as a function of the branch vector:

Vcell =
√

2 ∗ l3 . (113)

The potential energy density for an HCP is thus:

ucell =
6kδ2

√
2l3

=
3
√

2kδ2

l3
. (114)

This result can also be derived with the following reasoning: A perfect
periodic HCP has an average of six full contacts per particle. The unit
cell used here contains two spheres, so this should correspond to twelve full
contacts. Therefore, the potential energy density should equal twelve times
the potential energy of a full contact, divided by the volume of the unit cell:
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ucell =
12 ∗ 1

2kδ2

Vc

=
6kδ2

√
2l3

=
3
√

2kδ2

l3
.

(115)

This is indeed the same result as found in equation (114).

In this chapter, some properties of the HCP have been derived and expressed
as a function of single contact properties. These expressions will be used
to evaluate how accurately the properties of the HCP can be predicted
from DEM simulations. The following chapter will first give an introduction
to DEM and details on how the DEM simulations were performed will be
presented. After that, in chapter 5, the obtained properties of the HCP
from the DEM simulations will be given.
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4 Discrete Element Model simulations

This chapter deals with the Discrete Element Model (abbreviated as DEM)
simulations that were performed with the HCP. First, a general introduction
to DEM will be given. Next, the preparation of the HCP will be explained,
both for periodic and wall boundary conditions. Finally, methods will be de-
scribed to extract and process information from the simulation. The results
from the simulations will then be discussed in the next chapter.

4.1 Introduction to DEM

The Discrete Element Model (DEM) as applied to rocks and other granular
materials like sand was introduced by Cundall and Strack in a publication
in 1979 [4]. It was developed to model the mechanical behaviour of disks
and spheres. It is a numerical model, where the motion of all the particles is
determined for every time interval. The particles move independently from
one another and interact only at contact points. Since DEM simulations are
processor intensive, there is a limitation in the time duration of the simula-
tion and number of discrete particles in the system. Advances in processor
technology and software expand these limits continuously and the possibil-
ity of running simulations on distributed systems increase the capacity even
further.

A DEM simulations starts with a system of particles, with the initial
positions and initial linear (and angular) velocities of every particle specified.
Then the forces which act on each particle are computed for every time
interval from the data available using relevant physical laws. The most
important types of forces that can be modelled with DEM are recoil (when
particles collide), friction and gravity. Friction will not be considered in
the following. All these forces are added up to find the total force acting
on a particle. The new position and velocity is calculated with Newtons
equations of motion for every particle, over the duration of a time step:

mi
d2

dt2
~ri = ~fi , (116)

where mi is the mass of particle i, ~ri is its position vector and the total
force ~fi =

∑

c
~f c
i acting on it due to contacts with other particles or with

the walls. When the new positions and velocities have been calculated, the
force balances are set up again and the cycle is repeated.

4.1.1 Numerical time-step

It is very important to choose the right time step ∆tµD for the simulation.
When the time-step is much too large, the errors make the simulation irrele-
vant, typically leading to a dramatic increase of energy. When the time-step
is too small, either the simulation has to run too long, or the numerical
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accuracy of 16-bit numbers is not sufficient any more. A useful guideline is
to take a look at the contact time of a collision between two particles. To
accurately describe a collision, it must take around fourty to fifty time steps
to complete a collision, from the time of the first overlap to the time that
the particles overlap for the last time (more on the overlap of particles will
follow later in this section). The contact time of a collision is described by
the following relation:

tc =
π

ω
, with ω =

√

k

m12
− η2

0 , (117)

where k is the stiffness and ω is the eigenfrequency of the contact. The
rescaled damping coefficient is η0 = γ0/(2m12), with the reduced mass

m12 =
m1m2

m1 + m2
. (118)

When the simulated particles have a radius of 10−3 m, a density of 2000
kg/m2 and a stiffness constant k = 105 N/m, the contact time of a collision
is tc = 2.3∗10−5 seconds, so the time step of the simulation should be around
∆tµD = 4 ∗ 10−7 seconds. To put it in another way, it takes 2.5 million time
steps to simulate one second. Even with powerful processors, it may take
weeks or even months to make a one minute simulation of a system of say
40,000 particles.

4.1.2 Physical interpretation

In reality, particles deform when they collide. At the contact point, there
is a slight compression and the surfaces are flattened. The higher the im-
pact velocity of the particles, the more the particles are compressed and
deformed and this leads to a higher recoil force. However, it is too complex
to accurately describe the deformation of a particle during a collision with
DEM. This problem is solved by allowing the particles to overlap. As soon
as the particles start to overlap, a virtual spring is activated, that wants to
push (recoil) the particles away from each other (see figure 19). The greater
the overlap, the higher the repulsive force.

k

m

d

a b c

Figure 19: a) In reality, particles deform when they collide and at the contact
the surfaces flatten. b) In DEM, particles are allowed to overlap to model deforma-
tions. c) A collision is modelled with a spring (the repulsive force) and a dashpot
(damping).
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There are various contact models that can be used to relate the overlap to
the repulsive force. The most important ones are the linear contact model,
where frecoil ∝ δ, and the Hertz contact law, where frecoil ∝ δ3/2. The
former is typically applied as the most simple approach or when plastic
deformations must be modelled (in that case, the spring stiffness for loading
is different from the spring stiffness for unloading). The latter describes the
deformation behaviour of perfectly elastic spheres [6]. For the simulations
that were done for this project, the simplest linear contact model was used
in combination with a linear damping coefficient.

4.1.3 The compression tests

In some of the DEM simulations one wall is moved inwards, compressing the
packing. This movement is strain-controlled. This means that the position
of this wall is defined as a function of time t. The shape of this function is a
cosine and it is activated for a half period. After that half period, the wall
stops moving. The position of the wall (z(t)) is (see also figure 20):

z(t) = zf +
z0 − zf

2
(1 + cos ωt) for 0 ≤ ωt ≤ π (119)

where z0 is the initial wall position, zf is the final wall position and ω is the
rate of deformation (ω = 2πf).

z0

zf

z(t)

0 T/2 t

Figure 20: The position of the wall as a function of time t. After a half period,
the wall stops moving.

The shape of the function that describes the wall motion is arbitrary, as
long as it starts slowly and it stops gradually, in order to reduce shock and
inertia effects.

53



4.2 Preparation of the packing

In order to do a DEM simulation, a system of discrete particles must be
defined first. First the initial position of every particle has to be provided.
When the system contains only a couple of particles, the positions can be
determined manually, but for larger systems it is more efficient to make a
script that computes the initial positions. Since the performed simulations
for this project contain of the order of 103 spheres, a Fortran code was
written that calculates the initial coordinates of every particle in the system
(see appendix B). This code uses the following properties of the system:

• Sphere radius

• The overlap δ between spheres

• Sphere density

• The number of particles in the system

• Initial velocities; linear, in x-, y- and z-direction and angular, around
the x, y and z axis

and provides:

• The size of the packing, from the number of particles in the x-direction,
the number of rows (in the y-direction) and the number of layers (in
the z-direction)

• The position of the walls, which can be calculated from the sphere
radius, overlap and size of the packing.

The code is constructed in such a way that parameters can easily be
adjusted. If for example the sphere radius has to be changed, only one
number has to be redefined to calculate the new coordinates of the spheres
in the packing.
A DEM simulation can be done with two types of boundaries:

• Periodic boundaries

• Wall boundaries

In a system with periodic boundaries, the particles that travel through, for
example, the right side of the system, reappear on the left side. If the system
would contain one particle with a certain velocity v, the particle could travel
an infinitely long time and distance without ever hitting a boundary, but
instead jumping again and again from one side of the system to another.
With a periodic boundary system, it is possible to make a ‘perfect’ dense
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packing. Particles whose centers are at a virtual boundary at the edge of
the system, touch the particles that are at the other side of the system (as
it appears on the screen).

With a wall boundary simulation, on the other hand, the system contains
‘real’ walls. A single particle with a velocity v can only travel for a limited
time and distance before it hits a boundary and it bounces of. With a
wall boundary system, it is not possible to make a ‘perfect’ packing. If the
spheres in the bottom layer completely cover the bottom, then the spheres
at the boundaries in the second layer do not touch a wall and an empty
space is created between the spheres and the walls (see figure 21).

wall boundaries

periodic boundaries

Figure 21: Packings with wall and periodic boundaries. The additional empty
space near the walls is clearly visible in the system with walls. In the figure of the
periodic system, the equally colored pieces belong to the same sphere. Note that the
overlaps are exaggerated.

Since a perfect packing can be made with a small periodic boundary system,
it is possible to obtain properties of the packing that match with theoretical
predictions for a huge system, a cystal for example (with of the order of
1023 atoms). Every particle has the same (or similar) contact network (as
discussed in chapter 3; the contact network is not identical but similar for
spheres in A−layers with respect to spheres in B-layers). As a result, the
potential energy density and the elastic modulus tensor should also match
theoretical predictions. However, in ‘real life’, periodic boundaries do not
exist. If one wants to compare results from real experiments with simula-
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tions, it is preferred to use wall boundaries in the simulations. The system
size must be sufficiently large to minimize the effect of the walls.

In the following, it will be explained how the packings with periodic and
wall boundaries were created with the Fortran code.

4.2.1 Periodic boundaries

The HCP with periodic boundary conditions is created in several steps.
These steps consist of several loops. The fastest way to write a script for
the packing would be to create all the odd numbered rows of a layer in one
loop, followed by the even numbered rows in another loop and in the same
manner with the odd en even numbered layers. Although the HCP can
easily be made this way, it has the disadvantage that spheres are numbered
in a non-continuous way. The number sequence skips a row and a layer
every time. When it is desired to pick out a specific sphere in the system,
it is difficult to deduce it’s number. To solve this problem, one odd and one
even row is defined in one loop, so the number sequence is continuous. Also
one ‘A’- and one ‘B’-layer are made in one loop. For the periodic packing,
it is important to keep in mind that the spheres at the boundaries touch
the spheres at the other sides of the system. It is for instance not desirable
to make a packing where the top and bottom layers are both either ‘A’- or
either ‘B’-type, because the these layers are contiguous in the simulation.
For a perfect HCP, every layer must alternate in type. The used algorithm
in the Fortran script to create an HCP for a system with periodic boundary
conditions is given in Appendix B.1.

There is some freedom to choose the coordinates of the spheres in the
packing, as long as the first sphere near a boundary is no more than one
sphere radius away from the boundary. The position of the (virtual) walls
must be chosen such that spheres on opposite sites of the screen touch each
other. Figure 22 shows two layers of spheres and the position of the (virtual)
walls for the periodic boundary system.

The spacing between the centers of spheres in the x-direction is always
the length of the branch vector (2a − δ = l). In the packing made with
the Fortran code, the center of the first sphere of the first row of the first
layer is a half sphere radius away from the three nearest virtual boundaries
(left wall, front wall and bottom wall), as indicated in figure 22. The x-
coordinate px,odd of the ith sphere of a total of n spheres in the first row of
the first layer can be calculated with:

px,odd = (2a − δ)(i − 1) +
1

2
a for i = 1 . . . n . (120)

A sphere in the second row of the first layer lies exactly between two spheres
of the row below, so the x-coordinates spheres in this row can be described
by:
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½a
½a

Figure 22: A top view on two layers of spheres with radius a in a system with
periodic boundaries. The black-lined spheres form the bottom layer (layer ‘A’) and
the red-lined spheres form the next layer ‘B’.

px,even = (2a − δ)(i − 1) +
1

2
(2a − δ) +

1

2
a for i = 1 . . . n . (121)

For the second layer, the x-coordinates of the first and second rows are just
the reverse from coordinates of the the layer below. The spacing between
the centers of spheres in the y-direction is 1

2

√
3l. As was explained above,

there is a loop in the Fortran code that repeats after an odd and an even
numbered row have been defined. Therefore, the spacing between two rows
must be taken to calculate the y-coordinates. For the odd rows in the first
layer, this reads:

py,odd =
1

2

√
3(2a − δ)(j − 1) ∗ 2 +

1

2
a for j = 1 . . . p , (122)

where j is the number of odd/even row pairs in a layer, with a total of p pairs.
Of course the terms 1

2 and 2 cancel each other, but it is left in the equation
to keep it clear where the contributions come from. The y-coordinates of
the spheres in the even rows of the first layers are:

py,even =
1

2

√
3(2a−δ)(j−1)∗2+

1

2

√
3(2a−δ)+

1

2
a for j = 1 . . . p . (123)

For the second layer, the y coordinates are not just simply the reverse of the
coordinates of the first layer. With respect to the first layer, the second layer
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is shifted 1
2
√

3
(2a − δ) in the y-direction. Finally, the spacing between the

centers of spheres between neighbouring layers is
√

2
3 . The layers defined

in A/B-pairs. The z-coordinate pz,A of a sphere in the kth layer A, with a
total of q layer pairs, is:

pz,A =

√

2

3
(2a − δ)(k − 1) ∗ 2 +

1

2
a for k = 1 . . . q . (124)

For B-layers, the z-coordinates pz,B are:

pz,A =

√

2

3
(2a− δ)(k− 1) ∗ 2+

√

2

3
(2a− δ)+

1

2
a for k = 1 . . . q . (125)

In the Fortran code, one of the two equations for every coordinate direction
(x, y and z) is combined in one command line. Since there are two types of
rows (odd and even) and two types of layers (‘A’ and ‘B’), there are four
command lines needed to define the HCP. For instance, the line that defines
the position of the spheres in an odd row of an A− layer, contains equations
(120), (122) and (124).

The position of the walls also has to be defined in the script. For the left,
front and bottom walls, the x, y and z coordinates respectively are simply
zero. The x-coordinate of the right wall can be determined by imaginarily
extending the first row of the first layer with one sphere (this sphere could
be seen as the first sphere of the layer), the position of the right wall is then
a half sphere radius on the left of the center of this sphere. The x-coordinate
px,ima of this imaginary sphere would be

px,ima = (2a − b)n +
1

2
a , (126)

so subtracting 1
2a simply gives for the rigth wall position prightwall:

prightwall = (2a − b)n . (127)

Following the same procedure, the postitions of the back and top wall are

pbackwall =
1

2
(2a − b)p ∗ 2 , (128)

and

ptopwall =

√

2

3
(2a − δ)q ∗ 2 . (129)

Finally, the number of spheres that the packing contains must be pro-
vided by the Fortran script. Since every row runs from 1 to n spheres, every
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layer has p row pairs and there are q pairs of A/B layers, the number of
spheres NHCP is:

NHCP = 4 ∗ n ∗ p ∗ q . (130)

An HCP with periodic boundaries made with this code must have a
minimum size. It is not allowed for a sphere to have two contact points with
a neighbouring sphere, because the software tools that process information
from the simulation cannot handle this. Such a contact could happen when
a row contains only 2 spheres; there is the obvious contact, but there would
also be a contact with the part of the sphere that goes through the boundary
and appears on the other side, as is shown in figure 23.

Figure 23: With periodic boundaries, a row with only two spheres would have two
contact points between the same two spheres, while no sphere is allowed to contact
another sphere more than once.

The minimum number of spheres in one row is thus three. For the same
reason, the minimum number of row pairs is two and for the A/B layer pairs
it is also 2. Therefore, the smallest HCP that can be used for simulations
with DEM contains 4 ∗ 3 ∗ 2 ∗ 2 = 48 spheres.

4.2.2 Wall boundaries

The Fortran code that defines an HCP with wall boundary conditions has a
similar structure to the code for periodic boundaries. However, there are a
couple of important differences:

• There is no freedom to choose the position within a certain range; they
always have a fixed position from the walls which is determined by the
sphere radius and the desired overlap.

• In the ‘A’-layers, the odd rows have one sphere more than the even
rows. In the ‘B’-layers, it is the other way around.

• Layer ‘B’ has one row less than layer ‘A’. As a result, an additional
command line is needed to define the last row of ‘B’-layers

• As a result of the above two mentioned differences, the calculation of
the number of spheres in the packing is less straightforward.
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The used algorithm to define the positions of the spheres for a wall boundary
simulation is given in Appendix B.2. A top view on two layers of an HCP
with wall boundary conditions is given in figure 24.

a-d

a-d

Figure 24: A top view on two layers of an HCP with wall boundary conditions.
The black spheres form the bottom layer and the red spheres the layer above. The
relatively large empty spaces near the walls are clearly visible.

The spacings between spheres in x-, y- and z-direction are the same as for
an HCP with periodic boundaries. For the odd and even rows in ‘A’-layers,
the x-coordinate of the ith sphere in a row with n (for odd rows) or n − 1
(for even rows) reads:

px,odd = (2a − δ)(i − 1) + a − δ for i = 1 . . . n (131)

px,even = (2a− δ)(n− 1) +
1

2
(2a− δ) + a− δ for i = 1 . . . n− 1 . (132)

The x-coordinates of the spheres in the odd and even rows in ‘B’-layers are
the reverse of as for the coordinates of odd and even rows in ‘A’-layers. The
y-coordinate for the jth sphere in an odd row in an ‘A’ layer is:

py,odd =
1

2

√
3(2a − δ)(j − 1) ∗ 2 + a − δ for j = 1 . . . p (133)

and for the even rows of an ‘A’-layer:

py,even =
1

2

√
3(2a−δ)(j−1)∗2+

1

2

√
3(2a−δ)+a−δ for j = 1 . . . p . (134)
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Layer ‘B’ is shifted 1
2
√

3
(2a− δ) in the y-direction with respect to layer ‘A’.

However, this layer has one row less, so the loop is repeated for j = 1, p− 1.
The last row of a ‘B’-layer must be defined with a separate command line.
This last row is an odd row. The y-coordinate for the spheres in this row is:

py,last =
1

2

√
3(2a − δ)(p − 1) ∗ 2 +

1

2
√

3
(2a − δ) + a − δ . (135)

Finally, the z-coordinates for spheres in ‘A’- and ‘B’-layers are respectively:

pz,A =

√

2

3
(2a − δ)(k − 1) ∗ 2 + a − δ for k = 1 . . . q (136)

and

pz,B =

√

2

3
(2a− δ)(k− 1) ∗ 2+

√

2

3
(2a− δ)+ a− δ for k = 1 . . . q . (137)

Next, the positions of the walls have to be defined in the Fortran script.
Again, the coordinates of the left, front and bottom walls are set to zero.
The coordinates of the right, back and top walls become, respectively:

prightwall = (2a − δ)(n − 1) + 2a − 2δ (138)

pbackwall =
1

2

√
3(2a − δ)(p − 1) ∗ 2 +

1

2

√
3(2a − δ) + 2a − 2δ (139)

ptopwall =

√

2

3
(2a − δ)(q − 1) ∗ 2 +

√

2

3
(2a − δ) + 2a − 2δ . (140)

Finally, the number of spheres that the HCP contains must be specified
in the Fortran script. This is a bit less straightforward for a packing with
wall boundaries, because the number of spheres is different for odd and even
rows and for ‘A’- and ‘B’-layers. In an ‘A’-layer, the odd rows have n spheres
and the even rows n− 1. An odd/even pair has thus 2n− 1 spheres. There
are p of such pairs, so an ‘A’-layer contains (2n−1)∗p spheres. An odd/even
pair in a ‘B’-layer also contains 2n − 1 spheres, but there are p − 1 of such
pairs. The last row has an additional number of n−1 spheres, so a ‘B’-layer
contains (2n− 1) ∗ (p− 1) + n− 1 spheres. Summing this up to the number
of spheres in an ‘A’-layer and multiplying this for a q number of A/B layer
pairs gives for the total number of spheres in the packing:
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NHCP = ((2n − 1) ∗ p + (2n − 1) ∗ (p − 1) + n − 1) ∗ q

= (4np − 2p − n) ∗ q .
(141)

It must be noted that when the same values for n, p and q are used for peri-
odic and wall boundary simulations, the respective packings have a different
number of spheres. This is due to the fact that about half of the rows in
an HCP for wall boundary conditions have one sphere less than the other
rows, while with periodic boundaries, the packing has the same number of
spheres in every row (and layer). The volume fraction of an HCP in a wall
boundary simulation depends on the size of the packing. A small packing
has a lower volume fraction than a larger packing. The relation between the
volume fraction and the size of the packing is analyzed in section 5.2.1.

4.3 The simulations

This section describes the simulations that were performed for both periodic
and wall boundary conditions. The aim of the simulations is to assess how
well DEM models the behaviour and characteristics of an HCP. Since the
packing properties could be derived from theory (see chapter 3), the reli-
ability of the results from DEM simulations can be evaluated. The most
important properties are:

• The contact network of a static packing.

• The potential energy density of a static packing.

• The elastic modulus tensor (EMT) of a static packing.

• The EMT obtained from uniaxial compression tests.

However, obtaining the properties of an HCP is not the main reason
why the DEM simulations are performed. A more interesting question is to
examine how well a small part of the assembly represents the characteristics
of the total packing. Especially for packings in simulations with wall bound-
ary conditions it is desired to know if reliable results can be obtained from
a small part of the packing. As was explained before, for a small packing,
the wall-effects have a significant influence on the properties of the packing.
However, it could still be possible to obtain properties of the packing that
match predictions from theory and from simulations with periodic boundary
conditions, by taking so to speak ‘samples’ from the packing (more on this
will be discussed in the next part).

In a DEM-simulation, there are several parameters that can be varied.
Going through all possible types of combinations to determine their effect on
the results would be a very time consuming if not impossible task, since the
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simulations can take between 1 and 15 hours (the time is strongly related
to the size of the packing, but also on the available processor speed for the
user). The parameters that were not varied are:

• The sphere radius

• The initial overlap between spheres

• The density of the spheres

• The gravitational acceleration; this was set to zero in all simulations

• The background damping factor

• The period of the sine function that describes the wall movement

• The friction constant; the spheres are always frictionless

The adjustment of the above mentioned parameters would certainly give
quantitatively different result, but these variations are not of interest for
this thesis. This does not mean that the parameters were chosen randomly.
For the ratio between the overlap and the sphere radius a small value was
taken (the overlap is 103 smaller than the sphere radius). Since only small
deformations were examined, the dynamics of the packing are more obvious
when the overlaps are small as well. The reason why the deformations were
kept small is to be sure that the stress-strain relation is in the linear regime
and the generalized Hooke’s law can be applied. For small deformations,
the system behaves elastically, while for large deformations a real material
would permanently deform (plastic deformation). In a DEM simulation,
large deformations would lead to the breaking of contacts and the subsequent
rearrangement of the contact network, which is not desired.

The parameters that were varied in the performed DEM simulations are:

• The size of the packing. This was done in two ways:

– By extending the packing in only one direction, by adjusting only
either n, p or q

– By extending the packing in all three directions, by adjusting all
n, p and q.

• The amplitude of the sine function that describes the wall movement.

• The spring stiffness k.

The influence of the size of the packing on its characteristics is especially
of interest for simulations with wall boundary conditions, since the effect of
the walls is expected to diminish as the packing size increases.
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4.4 Tools for extracting results

4.4.1 Basic tools

During a simulation, after a certain number of time steps information about
the system is written into files. Some quantities that describe the packing
can directly be obtained from these files, like the contact network of an
arbitrary sphere in the packing, while other properties have to be post-
processed from the stored information. The most basic information is stored
in the so-called ‘ene’, ‘c3d ’ and ‘fstat ’ files. The c3d -files contain information
about the positions and velocities of all the spheres in the packing at a
certain time. With this information, the simulation can be visualized with
the software tool ‘xballs’. The ene-files contain information about (a.o.) the
total potential and kinetic energies of the system and the position of the
walls as a time-series. The fstat finally contains information about all the
contacts.

4.4.2 Advanced tools

For the data-acquisition and averaging of more intricate characteristics of
the simulated system, the so-called TAV -tool was developed. With this tool,
advanced properties can be derived for a complete packing, but also for a
specific part of the system. One can for instance divide the packing in 27
(= 3 × 3 × 3) cells and extract information from only one of these cells. In
this way, a cell can be selected that is in the center of the packing, were the
spheres are less influenced by wall effects. This is especially an interesting
feature for simulations with wall boundary conditions.

An important characteristic of a packing is its volume fraction (or den-
sity). When this property must be determined for a specific part of the
system, it cannot be provided directly by the basic data files, but it must
be computed. The problem is to correctly determine the volume of the part
of a sphere that lies in the cell. For a large cell, a reasonable estimate of
the volume fraction can be made by completely including the volumes of
the spheres whose centers lie in the cell and completely excluding the ones
whose centers fall outside. However, for smaller cells, the error made by
this method becomes significant. A more sophisticated method is to take
the branch vector between two spheres, divide it in a certain number of
fractions and determine which fractions are inside or outside the cell. A dif-
ferent contribution to the volume fraction can be assigned to every fraction
to account for the non-linear change in volume (non-linear mass distribu-
tion) along the branch vector length. Other properties that are provided by
the TAV -program for the entire system or only one specific cell are, among
others, the elastic modulus tensor and the number of spheres and contacts.

Since these properties cannot be determined directly and have to be
estimated, a more accurate prediction can be made by estimating these
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properties for different small ‘samples’ of the packing and calculating the
average of the individual results. This sampling was done by dividing a
packing in 27 equal cells by making 2 divisions in all the x-, y- and z-
directions, and shifting this cell diagonally through the packing, as is shown
in figure 25.

Figure 25: The so called moving average: The average cell is shifted from the
bottom-left-front part (the red box) to the top-right-back part (blue box) of the packing
in e.g. ten steps. The light blue lines project the corners of the boxes onto the walls
of the system.

The reason to make a diagonal shift of the cell and not, for instance, a shift
only in the x-direction is because in the last case, only samples from the
same layers would be taken. If an error in the estimation of the volume
fraction would be caused in the top or bottom area of the cell, it would
be repeated for every sample. For a diagonal shift, the composition of the
different sample cells is more diversified and there is a higher probability that
the individual errors cancel each other (partially) out during averaging. As
long as one shift is not exactly in the range of a (multiple of the) sphere
radius or layer width, a more reliable approximation can presumably be
achieved. The more samples are taken, the more reliable the results become.
However, it is also time-consuming, because the positions of the boundaries
of the subcell have to be calculated for every step and have to be specified
with sufficient accuracy in the TAV-program. It is shown in section 5.2.1
that eleven samples are sufficient to get a reasonable estimate.
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5 Results

5.1 Introduction

In this chapter the results from the DEM simulations are presented. In
the first part, the properties of the HCP that were theoretically derived in
chapter 3 will now be determined from DEM simulations. In the second
part, three strain definitions that are valid for 3D granular assemblies will
be tested for the HCP, combining the theoretical knowledge with data from
simulations.

5.2 Properties of the HCP

5.2.1 The volume fraction (density)

In this paragraph, the density of HCP’s in systems with wall and periodic
boundary conditions will be determined from DEM simulations.

Packing with wall boundaries

To determine the effect of the size of an HCP on its volume fraction in a
system with wall boundary conditions, the packings described in table 6
were created.

Table 6: Dimensions of the packing

n p q #N

4 2 2 48

6 3 3 180

8 4 4 448

10 5 5 900

12 6 6 1584

14 7 7 2548

16 8 8 3840

20 10 10 7600

26 13 13 16900

30 15 15 26100

34 17 17 38148

The packing was increased in size by extending in all three dimensions every
time, keeping the shape close to cubic. It is clear from the table that the
number of spheres (#N) increases rapidly per step. The volume fractions of
the packings were obtained from the ene-files. Figure 26 shows the volume
fraction of the HCP against the number of spheres in the packing.
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Figure 26: The volume fraction against the number of spheres in the packing.

The plot in figure 26 indicates that the volume fraction will approach a
maximum density asymptotically that is significantly lower than the density
of a ‘perfect’ HCP. In order to determine this maximum, a relation between
the number of spheres and the volume fraction must be found. Figure 27
shows that multiplying the volume fraction with the number of spheres yields
a straight line when it is set against the number of spheres.
The function of the trendline presented in figure 27 can be rewritten as a
function of the density by dividing both sides by the number of spheres:

ηHCP =
0.712N − 80.112

N
. (142)

From equation (142) follows that when the number of spheres in the packing
goes to infinity, the volume fraction ηHCP approaches 0.712, which is signifi-
cantly lower than the volume fraction of a perfect packing (ηHCP = 0.7405).
This indicates that the effect of the walls cannot be nullified by making the
packing infinately large. Therefore, it seems that it will always be necessary
to divide a packing in a system with wall boundary conditions in smaller
cells and derive the packing properties from this cell. However, as a side
remark it must be mentioned that such a conclusion may not be drawn
by extrapolating the derived trend line, even though the fit seems to be
perfect. It could very well be that the density will still increase when the
system gets larger than 40,000 spheres, but that cannot be verified by the
DEM simulation, because it is not able to handle more spheres.
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Figure 27: Plotting the packing density times the number of spheres (#N) against
the number of spheres yields a straight line. The function of the line is given in the
box in the plot area. The R2 is 1, indicating that the fit is perfect.

Since the method used above does not lead to an answer to the question
of what the volume fraction of an infinitely large HCP in a wall boundary
system is, a second approach was used to answer this question. In the
Fortran code, there are three command lines that calculate the positions of
the right, back and top walls of the system (the positions of the other three
walls are all zero), see equations (138)-(140). With these equations, the
volume of the system can be calculated. Furthermore, there is a command
line that calculates the number of spheres in the packing, using equation
(141). Knowing that the volume of a single sphere is 4

3πa3, the total volume
of spheres is simply this volume times the total number of spheres in the
packing. Dividing this volume by the total volume of the system gives then
the volume fraction of the packing. In this way, the size of the packing has
virtually no restrictions and therefore the volume fraction of an infinitely
large HCP can now be calculated. This results in a volume fraction of
ηHCP = 0.7415, which is within 0.15% agreement with the theoretically
derived volume fraction.

It can be concluded that a ‘perfect’ HCP could be created in a wall
boundary system, but due to the restraints of the current processor technol-
ogy, the DEM simulation is not yet capable of handling a system that is so
large that the wall effects hardly effect the properties of a granular packing.
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Moving-average method

The volume fraction in the center of a packing can be estimated using the
so-called ‘moving-average’-method (see section 4.4.2). The volume fraction
is averaged over several sub-volumes of the packing, to account for the error
made in the estimation of the volume fractions of individual sub-volumes.
This method is tested on an HCP of 1584 spheres (n = 12, p = 6, q = 6) in a
wall boundary system. The overall volume fraction is 0.657, but away from
the walls, inside the packing, the density should correspond to the density
of a ‘perfect’ HCP, i.e. a volume fraction of 0.7405. Over all three axes, the
packing is cut through two times, so 27 (3×3×3) equally sized sub-volumes
are obtained. The one sub-cell in the middle is selected to determine its
volume fraction. This cell is shifted eleven times and for each position, the
volume fraction of this cell is retrieved. This test is repeated four times; each
time, the center sub-cell is moved in a different direction. These directions
are straight in the x-, y- and z-directions and diagonally, as visuallized in
figure 25. The results are summarized in table 7 below.

Table 7: Volume fraction of the center sub-cell obtained with the moving-average
method. The error given in the last row is the deviation of the average volume
fraction from that of a ‘perfect’ HCP, i.e. a density of 0.7405.

Shift direction

shift no. x-axis y-axis z-axis diagonally

1 0.745 0.760 0.760 0.758

2 0.745 0.759 0.741 0.724

3 0.724 0.724 0.746 0.728

4 0.745 0.767 0.748 0.737

5 0.745 0.764 0.740 0.728

6 0.761 0.761 0.761 0.761

7 0.745 0.758 0.740 0.722

8 0.745 0.771 0.748 0.744

9 0.745 0.765 0.746 0.733

10 0.745 0.771 0.741 0.736

11 0.745 0.761 0.758 0.742

average 0.747 0.763 0.748 0.738

error 0.83% 3.05% 1.05% 0.39%

These results show that with especially the diagonal shift, a fairly good
approximation of the actual volume fraction can be obtained. The deviation
here is only 0.39%, which is significantly better than the average obtained
for the other shift directions. The column with the results for the shift in the
x-direction clearly shows that systematically the same error is made. This is
probably due to the fact that the sub-cell is only shifted along the the same
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layers and rows, while with the diagonal shift, samples are taken from both
different layers and rows, preventing that the same error is systematically
made for every shift.

Packing with periodic boundaries

The influence of the size of the packing on its volume fraction was also
analyzed for a system with periodic boundaries. Like was done with the
wall boundary tests, a number of packings was made with the properties
listed in table 8 below.

Table 8: Dimensions of the packing

n p q #N

4 2 2 64

6 3 3 216

8 4 4 512

10 5 5 1000

12 6 6 1728

14 7 7 2744

16 8 8 4096

Comparing tables 6 and 8 clearly shows that a packing with in a system with
periodic boundaries contains more spheres than a packing created with the
same values for the parameters n, p and q in a system with wall boundaries.
This already suggests that the volume fraction of the periodic packing will
be higher. The volume fractions obtained from the ene-files confirm this
presumption, as can be seen in figure 28.
The volume fraction of an HCP in a system with periodic boundaries is
independent of the size of the packing. Every sphere has the same number
of contacts with the same (or similar) orientations. The volume fraction
found with the DEM simulation is ηHCP = 0.7451, which is slightly higher
than the theoretically derived value of 0.7405 (see chapter 3.5). This can
be explained by the fact that in the theoretical derivation, the effect of the
overlap on the volumes of the unit cell and the spheres was neglected. In the
simulation, the spheres are slightly pressed together, densifying the packing.
The error made with neglecting the overlap in the theoretical derivation of
the density is 0.62%, which seems to justify the simplification.

5.2.2 The contact network

To verify if a created packing for a DEM simulation is indeed an HCP, it is
useful to check the contact network of an arbitrary sphere in the packing.
The fstat-files contain this information for every sphere in the packing.
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Figure 28: The volume fraction of an HCP in a periodic boundary system is
0.7451 and independent of the size of the packing.

Packing with wall boundaries

An HCP created with the Fortran code for a system with wall boundary
conditions is not completely stable under the initial configuration of the
sphere positions. The relatively large empty spaces between the spheres
near the walls (as was shown in figure 21) cause an uneven force distribution
and as a result, the sum over all forces acting on a particle does not equal
zero initially. This problem can be solved by allowing the system to ‘relax’;
this means that the DEM simulation is run while no external forces are
acting on the system, until all the spheres are in equilibrium and the total
kinetic energy of the system is zero. In the simulations a linear dashpot
constant of 4 ∗ 10−2 is used to bring the system to rest. When the system
is stable, the actual compression tests can be started. Table 9 shows the
contact network of a randomly selected sphere (no. 422) in a wall boundary
packing consisting of 900 spheres. The normal vectors presented in this table
correspond very well to the theoretically derived contact network given in
equation (66), so the relaxation hardly affects the contact network.

Although relaxation of the system does not lead to a significant change
in the contact network, it does affect the overlap length δ between contacting
spheres. The overlap lengths of the twelve contacts of sphere no. 422 are
given on the left-hand side of table 10. It clearly shows that the overlaps
are much smaller that the initially specified value of 10−6 in the Fortran
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Table 9: Contact network of sphere no. 422 in a wall boundary packing of 900
spheres after relaxation, as presented in the fstat-file. (for clarity; 1

2

√
3 ≈ 0.866,

√

2
3 ≈ 0.816, 1

2
√

3
≈ 0.289, 1

√

3
≈ 0.577)

Contact n̂1 n̂2 n̂3

423 422 1 5.9355783e-07 3.713674833e-07

432 422 0.4999894385 0.866031501371 -4.545007359e-06

431 422 -0.499982059478 0.866035761489 -4.776842608e-06

421 422 -1 -1.864954276e-14 -1.88927976e-13

412 422 -0.499977008765 -0.866038677373 8.436414479e-07

413 422 0.499971940373 -0.866041603411 9.810536115e-07

517 422 0.500021114204 0.28875070633 0.816456927795

516 422 -0.500021786139 0.288749573175 0.816456917037

507 422 -3.639945637e-06 -0.577387117121 0.81647052425

337 422 0.500023529091 0.28873288195 -0.816461752464

336 422 -0.500023247653 0.288731989869 -0.816462240298

327 422 -3.048540530e-06 -0.577393459563 -0.816466039003

code. Moreover, there is much difference in the overlap length from contact
to contact, while initially, they were all the same. The average overlap is
now 6.32 ∗ 10−7, which is a decrease of 36.8%. The sphere overlaps after
relaxation were also determined for a bigger HCP, containing 3840 spheres.
The results are given on the right-hand side of table 10. There is still a
large spread from overlap to overlap, but the average has now increased to
7.85 ∗ 10−7, which is a decrease of 21.5% from the initial overlap length of
10−6 before relaxation. This shows that the size of the packing must still be
increased significantly to suppress the wall effects.

Packing with periodic boundaries

Also for a 1000 sphere periodic packing a sphere is randomly selected to
determine its contact network; in this case it is sphere no. 445. This sphere
has contacts with spheres 335, 344, 345 (the layer below sphere 445), 434,
435, 444, 446, 454, 455 (in the same layer) and 535, 544, 545 (the layer
above). The entries of each normal unit vector are given in table 11. It
shows that the contact network of sphere no. 445 corresponds to the contact
in equation (66), which was positioned in a layer arbitrarily labelled ‘A’. A
sphere in the layer above sphere no. 445, for instance sphere no. 545, must
have the same contact network as the the sphere described in equation (67).
The difference between the spheres in the different layers is that the sign of
the y-components of the seventh to twelth normal unit vectors is flipped.
Table 12 shows that this is indeed the case.
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Table 10: The left table shows the length of the overlaps of the contacts between
sphere no. 422 and its neighbours. This packing consisted of 900 spheres. The
right table shows the overlaps of the contacts between sphere no. 1466 and its
neighbours. This packing consisted of 3840 spheres. For both packings, the overlaps
were determined after relaxation and both systems had wall boundary conditions.

Contact overlap

423 422 6.137 ∗ 10−7

432 422 5.196 ∗ 10−7

431 422 5.335 ∗ 10−7

421 422 6.103 ∗ 10−7

412 422 5.119 ∗ 10−7

413 422 5.196 ∗ 10−7

517 422 7.035 ∗ 10−7

516 422 7.035 ∗ 10−7

507 422 7.288 ∗ 10−7

337 422 7.093 ∗ 10−7

336 422 7.098 ∗ 10−7

327 422 7.167 ∗ 10−7

Contact overlap

1467 1466 7.114 ∗ 10−7

1482 1466 7.515 ∗ 10−7

1481 1466 7.447 ∗ 10−7

1465 1466 7.120 ∗ 10−7

1450 1466 1.036 ∗ 10−6

1451 1466 1.026 ∗ 10−6

1714 1466 8.770 ∗ 10−7

1713 1466 8.785 ∗ 10−7

1698 1466 4.637 ∗ 10−7

1234 1466 8.877 ∗ 10−7

1233 1466 8.823 ∗ 10−7

1218 1466 4.491 ∗ 10−7

5.2.3 The kinetic and potential energy

Packing with wall boundaries

As explained before, an HCP created for a wall boundary system is initially
not stable and a relaxation time is needed to bring the system to rest. Figure
29 shows the decay of the kinetic energy during such a relaxation period.
The kinetic energy drops about 20 orders in magnitude to a stable value of
the order of 10−25.

Due to the relaxation, the potential energy decreases as well. From figure
30 it follows that the initial total potential energy of the system (containing
900 spheres) is 2.5 ∗ 10−4 and drops to a stable value of 1.9 ∗ 10−4, which is
a decrease of 23.5%.

Packing with periodic boundaries

An HCP in a periodic boundary system created with the Fortran code should
be kinetically stable when external are acting on the system. When running
a simulation were the (virtual) walls are not moving and the initial velocity
of all the spheres is zero, the total kinetic energy should remain zero as well
and the potential energy should remain a constant (non-zero) value. Figure
31 shows the kinetic energy against time of a periodic HCP (N = 216, n = 6,
p = 3 and q = 6). The kinetic energy is of the order of 10−27. The noise
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Table 11: Contact network of sphere no. 445, as presented in the fstat-file. (for

clarity; 1
2

√
3 ≈ 0.866,

√

2
3 ≈ 0.816, 1

2
√

3
≈ 0.289, 1

√

3
≈ 0.577)

Contact pair n̂1 n̂2 n̂3

446 445 1 -0 -0

455 445 0.500000000001 0.866025403784 -0

454 445 -0.500000000001 0.866025403784 -0

444 445 -1 0 0

434 445 -0.499999999999 -0.866025403785 -0

435 445 0.499999999999 -0.866025403785 -0

545 445 0.500000000001 0.288675134596 0.816496580927

544 445 -0.500000000001 0.288675134596 0.816496580927

535 445 -0 -0.577350269192 0.816496580926

345 445 0.499999999999 0.288675134595 -0.816496580928

344 445 -0.499999999999 0.288675134595 -0.816496580928

335 445 0 -0.577350269189 -0.816496580928

in the plot is caused by the numerical errors that are made by the DEM
simulation. Comparing this energy with the potential energy of the static
packing (see figure 32), it can be said that the kinetic energy is indeed zero.
The potential energy is constant at 6.48 ∗ 10−5, which is of the order of 1022

higher.
The potential energy of the static packing determined from the DEM

simulation should correspond with the derived theoretical model in chapter
3.6. The potential energy in figure 32 is an absolute value, so it must first
be converted to a potential energy density by dividing it by the volume of
the packing. The volume can be derived from the position of the virtual
walls given in the c3d -files. These positions are:

prightwall = 0.0128

pbackwall = 0.0111

ptopwall = 0.0104

Knowing that the positions of the other three walls are zero for their respec-
tive orientations, the volume of the system is:

VHCP = 0.0128 ∗ 0.0111 ∗ 0.0104 = 1.49 ∗ 10−6 . (143)

The potential energy density (udensity) is the absolute potential energy of
the system (uabs) divided by VHCP :
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Table 12: Contact network of sphere no. 545, as presented in the fstat-file. (for

clarity; 1
2

√
3 ≈ 0.866,

√

2
3 ≈ 0.816, 1

2
√

3
≈ 0.289, 1

√

3
≈ 0.577)

Contact pair n̂1 n̂2 n̂3

546 545 1 -0 -0

556 545 0.499999999995 0.866025403787 -0

555 545 -0.499999999995 0.866025403787 -0

544 545 -1 0 0

535 545 -0.499999999999 -0.866025403785 -0

536 545 0.499999999999 -0.866025403785 -0

646 545 0.500000000005 -0.288675134598 0.816496580924

645 545 -0.500000000005 -0.288675134598 0.816496580924

655 545 -0 0.577350269193 0.816496580925

446 545 0.500000000001 -0.288675134596 -0.816496580927

445 545 -0.500000000001 -0.288675134596 -0.816496580927

455 545 0 0.577350269189 -0.816496580928

udensity =
uabs

VHCP

=
6.48 ∗ 10−5

1.49 ∗ 10−6
≈ 43.35 .

(144)

In section 3.6 the following expression for the potential energy density for a
unit cell of an HCP was derived:

ucell =
3
√

2kδ2

l3
, (145)

where l equals 2a − δ. Filling in the same values as were specified for the
simulation (k = 105, δ = 10−6 and a = 1.07 ∗ 10−3) gives

ucell =
3
√

2 ∗ 105 ∗
(

10−6
)2

(2 ∗ 1.07 ∗ 10−3 − 10−6)3
≈ 43.35 , (146)

which is in agreement with the potential energy density found with the
simulation.

5.2.4 The elastic modulus tensor

The Elastic Modulus Tensor (EMT) described in section 3.3 can also be
obtained from DEM simulations. There are two ways to retrieve this infor-
mation:
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Figure 29: The kinetic energy decreases until the system with wall boundaries is
in equilibrium. There are no external forces acting on the system at this point.
Number of spheres is 900, linear damping constant is 4 ∗ 10−2.

1. Using the contact network from a static snapshot of the simulation as
a basis, similar to the method used in section 3.3.

2. Determining the slope of the stress against strain graph, obtained from
several snapshots.

Packing with wall boundaries

For both methods, the EMT for a packing in a periodic boundary system
was obtained from the same simulation and will be described below. The
specified conditions for the simulation are summarized in table 13.

The EMT from a static snapshot

The EMT obtained from a static snapshot can be obtained from the TAV -
file. The provided values are calculated with an expression similar to equa-
tion (74):

Cαβγδ =
N

V

(

l2

4

)

nc
αnc

βnc
γnc

δ . (147)
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Figure 30: The decrease in the total potential energy of the wall boundary sys-
tem during relaxation. The drop is about 23.5%. Number of spheres: 900, linear
damping constant: 4 ∗ 10−2.

This expression is only valid for a packing where the EMT is equal for every
individual sphere. The summations in equation (74) are replaced by N , the
number of spheres in the packing. The stiffness constant k is not included in
this expression and the value provided in the TAV -file must therefore still
be multiplied by k. Because of that, changing the stiffness constant has no
effect on the values of the EMT provided by the TAV -file. The obtained
tensor C∗

αβγδ is (‘*’ is used to indicate that this tensor is divided by k):

C∗
αβγδ =

















329.15 100.62 100.62 3.03 0 0
318.26 79.70 −3.23 0 0

342.23 −0.40 0 0
79.70 0 0

77.16 3.03
100.62

















. (148)

For the conditions specified in table 13, the volume of the packing is V =
7.21 ∗ 10−6 and the branch vector l is 2a − δ = 2 ∗ 1.07 ∗ 10−3 − 1 ∗ 10−6 =
2.139 ∗ 10−3. Rewriting equation (147) to

nc
αnc

βnc
γnc

δ = C∗
αβγδ

4V

Nl2
(149)

results in the following matrix:
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Figure 31: The kinetic energy of the HCP packing as a function of time when there
are no external forces acting on the system and the initial velocity of the spheres
is zero. The noise is caused by the numerical errors. (k = 105, a = 1.07 ∗ 10−3,
δ = 10−6)

nc
αnc

βnc
γnc

δ =

















2.304 0.704 0.540 0.021 0 0
2.228 0.558 −0.023 0 0

2.396 −0.003 0 0
0.558 0 0

0.540 0.021
0.704

















. (150)

The entries of this matrix deviate significantly from the theoretically derived
entries shown in equation (79) in section 3.3. The results can be improved
by correcting for the volume fraction of the packing, which is 0.6408. A
‘perfect’ HCP has a density of 0.7405, so the entries in equation (150) are
multiplied by 0.7405/0.6408 = 1.155, which results in:

nc
αnc

βnc
γnc

δ =

















2.662 0.814 0.624 0.025 0 0
2.574 0.645 −0.026 0 0

2.768 −0.003 0 0
0.645 0 0

0.624 0.025
0.814

















, (151)
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Figure 32: The potential energy of the HCP packing as a function of time when
there are no external forces acting on the system. (k = 105, a = 1.07 ∗ 10−3,
δ = 10−6)

which is a better approximation of the theoretically derived values in
equation (79).

The EMT from a static snapshot obtained from sub-volumes

The EMT from a single snapshot was also determined by looking at smaller
sub-volumes of the same packing. Over all three axes, the packing was cut
through two or more (up to 8) times, creating equally sized and shaped
pieces of the HCP. One of these cells, located in the center of the packing,
was selected every time and from this cell, the EMT was determined. Since
the spheres in these cells in the center of the packing don’t ‘feel’ any walls, it
is an interesting question whether or not this improves the approximation of
the EMT of an ‘ideal’ packing. From the selected sub-volumes, the volume
fraction, number of spheres, the volume and the entries of the EMT were
determined. Table 14 gives an overview of the obtained results.
From this table it can be concluded that the estimations made of the EMT
of an HCP from sub-cells have hardly improved. The density is generally
overestimated (the density of a perfect HCP is 0.7405) and n3333 is in a
number of cases smaller than n1111 and n2222, while it should be larger.
The maximum deviations between the predicted and theoretically derived
values of the single sphere EMT are quite large as well. For cell divisions
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Table 13: Specified parameters in the DEM simulation

Parameter Specified value

Geometrical characteristics

boundary conditions wall

n 10

p 5

q 5

number of spheres 900

sphere radius 1.07 ∗ 10−3

overlap 10−6

Material characteristics

normal stiffness 105

linear dashpot constant 4 ∗ 10−2

sphere density 2000

friction coefficient 0

Other conditions

gravity 0

amplitude moving wall 10−5

period moving wall 0.1

of 6 per axis and higher, the results can be considered as irrelevant. It is,
for example, predicted that number of spheres in a sub-cell obtained with 7
divisions per axis is smaller than for 8 divisions per axis, which is of course
not true.

It must be noted that the density correction was not performed here,
because in practice, the ‘real’ density in the center of the packing is not
known. However, the moving-average method could then be applied to
obtain a better estimation of this density.

The EMT from several snapshots

With this method, the entries of the EMT were obtained from three different
simulations. In the first one, only the right wall was moved inwards, in
the second the back wall and in the third the top wall. With each single
simulation, three components of the EMT could be obtained. With the
simulation where the right wall was moved, the first three entries in the first
column of the EMT were found. The simulation with the compression in
the y-direction provided the first three entries of the second column and the
simulation with the compression in the z-direction the first three entries of
the third column. With the conditions specified in table 13, the obtained
EMT is:
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Table 14: Properties of the center sub-cell for several numbers of divisions in
all the x-, y- and z-directions. The columns niiii show the first three diagonal
elements of the average EMT of one contact (comparable to equation (150); the
density correction is not included). The last column shows the maximum deviation
between the obtained values of the entries of the EMT (for a single sphere) and the
theoretically derived values.

div. dens. N Vcell n1111 n2222 n3333 % dev.

0 0.641 900 7.21 ∗ 10−6 2.30 2.23 2.40 19.0%

2 0.819 42.6 2.67 ∗ 10−7 2.69 2.60 2.49 7.1%

3 0.756 16.6 1.13 ∗ 10−7 2.61 2.88 2.31 19.4%

4 0.767 8.61 5.77 ∗ 10−8 2.35 2.44 2.81 −14.2%

5 0.758 4.93 3.34 ∗ 10−8 2.52 2.80 2.41 10.9%

6 0.823 3.37 2.10 ∗ 10−8 3.11 2.68 2.20 23.5%

7 0.570 1.56 1.41 ∗ 10−8 2.13 2.45 2.93 −22.8%

8 1.072 2.06 9.89 ∗ 10−9 3.77 2.75 1.82 −50.7%

Cαβγδ =

















4.457 ∗ 107 1.048 ∗ 107 0.857 ∗ 107 − − −
1.051 ∗ 107 3.968 ∗ 107 0.835 ∗ 107 − − −
0.857 ∗ 107 0.848 ∗ 107 5.512 ∗ 107 − − −

− − − − − −
− − − − − −
− − − − − −

















. (152)

These values look quite different from the results obtained from a static
snapshot, given in equation(148). This stems from the fact that not the
same conversion term is valid to go from the matrix formed by nc

αnc
βnc

γnc
δ to

the EMT Cαβγδ. In the first place, the stiffness constant k is now included
in the prefactor. Moreover, the full branch vector, from one sphere center
to the other, is taken instead of half of the branch vector, from the sphere
center to the contact point. Due to the square term, the contribution of the
branch vector becomes four times higher. With these considerations, there
is still a factor two difference, which can be explained by the knowledge that
for the values of the entries in equation (150) it was already accounted for
the fact that the contributions of all the contacts are counted twice 2. So to
trace back the matrix nc

αnc
βnc

γnc
δ from the results given in equation (148),

the following expression has to be used:

nc
αnc

βnc
γnc

δ = Cαβγδ
2V

Nl2
. (153)

2One sphere has twelve contacts, but each contact is shared with two spheres. Dividing
the total number of spheres in a (periodic boundary) packing by the total number of
spheres yields an average of six contacts per sphere.
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However, since the wall effects make the system highly non-ideal, the result
do not resemble the EMT obtained from a static snapshot:

nc
αnc

βnc
γnc

δ =

















1.555 0.366 0.299 − − −
0.367 1.385 0.291 − − −
0.299 0.296 1.923 − − −
− − − − − −
− − − − − −
− − − − − −

















. (154)

The wall effects can be reduced by increasing the size of the packing. There-
fore, the EMT determined from several snapshots was also determined for
an HCP consisting of 3840 spheres. This resulted in the following matrix:

nc
αnc

βnc
γnc

δ =

















1.792 0.486 0.385 − − −
0.486 1.639 0.374 − − −
0.384 0.375 2.139 − − −
− − − − − −
− − − − − −
− − − − − −

















. (155)

This is an improvement with respect to the results of the previous 900 sphere
packing, but still the deviations from the theoretically derived values are
very large. It is expected that it is possible to obtain sufficiently accurate
predictions for the EMT of a system with wall boundary conditions by this
method, but then the system should contain of the order of 50,000 spheres
or more. However, such a large system cannot be handled yet by the DEM
simulation. Therefore, obtaining the EMT for a wall boundary system from
several snapshots of DEM simulations is not a suitable method, because the
results are not reliable.

Packing with periodic boundaries

For both methods, the EMT for a packing in a periodic boundary system
was obtained from the same simulation and will be described below. The
specified conditions for the simulation are summarized in table 15.

The EMT from a static snapshot

With the periodic packing and system conditions described in table 15 the
obtained EMT C∗

αβγδ from a static snapshot is (‘*’ is used to indicate that
this tensor is divided by k):

82



Table 15: Specified parameters in the DEM simulation

Parameter Specified value

Geometrical characteristics

boundary conditions periodic

n 10

p 5

q 5

number of spheres 1000

sphere radius 1.07 ∗ 10−3

overlap 10−6

Material characteristics

normal stiffness 105

linear dashpot constant 4 ∗ 10−2

sphere density 2000

friction coefficient 0

Other conditions

gravity 0

amplitude moving wall 10−5

period moving wall 0.1

C∗
αβγδ =

















411.15 136.25 109.76 0 0 0
409.06 109.86 0 0 0

439.45 0 0 0
109.86 0 0

109.76 0
136.25

















. (156)

The volume of this specific packing is V = 6.942∗10−6 and the branch vector
l is 2a− δ = 2 ∗ 1.07 ∗ 10−3 − 1 ∗ 10−6 = 2.139 ∗ 10−3. Again, after rewriting
equation (147) to equation (149), the following matrix is obtained:

nc
αnc

βnc
γnc

δ = C∗
αβγδ

4V

Nl2
, (157)

which results in the following matrix:

nc
αnc

βnc
γnc

δ =

















2.495 0.827 0.666 0 0 0
2.483 0.667 0 0 0

2.667 0 0 0
0.6667 0 0

0.666 0
0.827

















. (158)
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The entries of this matrix correspond quite well with the theoretically de-
rived entries given in the matrix in equation (79) in section 3.3. The maxi-
mum deviation between the entries is 0.77%, which is acceptable.

The EMT from several snapshots

To determine the EMT from several snapshots for a periodic boundary pack-
ing, the HCP and system conditions described in table 15 were used again.
Similar to the approach used with the wall boundary system, three compres-
sion tests were performed; one for every x-, y and z-direction. The obtained
entries are shown in the following matrix:

Cαβγδ =

















7.986 ∗ 107 3.041 ∗ 107 2.213 ∗ 107 − − −
3.040 ∗ 107 7.982 ∗ 107 2.213 ∗ 107 − − −
2.212 ∗ 107 2.211 ∗ 107 8.811 ∗ 107 − − −

− − − − − −
− − − − − −
− − − − − −

















. (159)

Also here, equation (153) can be used to determine the EMT for a single
sphere. This results in the following matrix:

nc
αnc

βnc
γnc

δ =

















2.4157 0.9199 0.6695 − − −
0.9197 2.4147 0.6695 − − −
0.6691 0.6689 2.6654 − − −

− − − − − −
− − − − − −
− − − − − −

















. (160)

Comparing this results with the theoretically derived entries given in the
matrix in equation (79) in section 3.3 shows that these results are accept-
able, as opposed to the EMT obtained from several snapshots of the DEM
simulations with wall boundary systems:

















3.37% −10.38% −0.42% − − −
−10.37% 3.41% −0.42% − − −
−0.36% −0.34% 0.05% − − −

− − − − − −
− − − − − −
− − − − − −

















. (161)

The first two diagonal entries deviate around 3.4%, which is not really good
but still acceptable. The deviations of the entries in the third column and
third row are much smaller, but for the C1122 and C2211 components it is
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too high. Deriving the components of the EMT by constructing the stress
against strain graph from several snapshots is therefore only useful if a rough
approximation is sufficient.
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5.3 The strain tensor for an HCP

In this section, some strain definitions that were described in chapter 2 will
be tested on an HCP by combining theoretically derived properties with
results from DEM simulations. As was explained in chapter 2, three of
the discussed strain definitions were claimed to be valid for 3D granular
assemblies, namely:

1. Bagi’s strain definition, based on an equivalent continuum (see section
2.2.1).

2. The best-fit strain based on particle translations (see section 2.3.1).

3. Satake’s strain definition (see section 2.4).

With the obtained results it can be evaluated which of the definitions is the
most accurate and reliable under the conditions used in the DEM simula-
tions.

5.3.1 Bagi’s strain definition

In short, Bagi’s approach to define a strain tensor for a granular assembly
consists of the following steps:

• Construction of a material cell system, using an algorithm that is
strongly related to the Voronoi and Dirichlet tessellation methods.

• Construction of a space cell system, using the Delaunay triangulation
method.

• Defining the complementary area vectors for all the edges of the space
cell system.

• Determining the relative displacement of neighbouring nodes.

• Calculating the strain tensor from the results of the previous two steps.

These steps will be worked out in detail for an HCP, using knowledge from
both theory and simulations.

Construction of the material cell system

Bagi generalized the Voronoi and the Dirichlet tessellation methods to be
able to define cells in systems with grains of arbitrary shape. However,
the assembly discussed here consists of equi-sized spheres and therefore all
three methods lead to the same system of cells. Moreover, since an HCP is
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a regularly structured packing, all the material cells have the same shape;
only their orientations are different from layer to layer, as will be shown
later.

The faces of the material cells are collections of points in the system
were the distance between the two closest spheres is equal. Since an HCP
has only ‘real’ contacts (thus no virtual contacts), the contact point between
two spheres lies in the plane of a face of the material cell. The edges of the
cells are collections of points where the distance between the three closest
spheres is equal. Finally, the corners of the cells are points in the system
where the distance between the four (sometimes even more) closest spheres
is equal. It is this last property that will be used to construct the material
cells, using a schematic representation of an arbitrary sphere in an ‘A’-layer
with its twelve contacts (see figure 33).
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Figure 33: The material cell for an arbitrary sphere in an ‘A’-layer. The black
dots indicate the positions of the corners of the cell above the plane of the layer, the
red dots are the positions where edges of the cell intersect the plane and the blue
dots indicate the positions of the cell corners below the plane. The sphere centers
are numbered from 1 to 13 and the corners of the material cell are labelled from A

to N.

Corner A in figure 33 lies in the center of the tetrahedron formed by spheres
1, 2, 3 and 8. The corners B, E, F, I, J, M and N can also be found by
determining the centers of tetrahedrons. Corner K is the center of the plane
formed by spheres 3, 4, 8 and 9. The corners C, D, G, H and L are also
the centers of similar planes. The red dots indicate the positions where the
the edges of the material cell intersects the horizontal plane formed by the
spheres in the same layer as center sphere 1. The red dot between corners
A and B for example is the center of the triangle formed by spheres 1, 2
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and 3.
The material cell for an arbitrary sphere in a ‘B’-layer has the same shape

as the material cell of an ‘A’-layer sphere, only its orientation is different; it
is rotated 180◦ around the z-axis. The two types of material cells are shown
in figure 34 below.

A B

Figure 34: The left picture shows the material cell for a sphere in an ‘A’-layer
and the right picture for a sphere in a ‘B’-layer.

Linking the material cells together will completely fill the space in an HCP
system. It shows that the material cells of two contacting spheres share a
common face. The complete material cell system for the thirteen spheres
of figure 33 is shown in figure 35. To improve the visibility, the layers are
separated from each other and black dotted lines are added to indicate some
positions where corners of cells fall together.

Construction of the space cell system

The constructed material cell system forms the basis for the construction
of the space cell system. When two material cells share a common face,
the centers of the corresponding spheres are connected with a straight line.
This simply gives back the contact network of the HCP. However, not all
the formed space cells are tetrahedrons yet. For the coming steps, it is
required that the space is completely triangularized. This can be done in
the following way: Imagine that for instance sphere 9 in figure 33 would be
slightly shifted to the left and sphere 3 to the right, then the shape of the
respective material cells, and the cells around it, would also slightly change.
This may result in a common face of the cells of spheres 4 and 8. The sphere
centers can then be connected by a straight line, even though the spheres
are not in contact. In this way, the system can completely be triangularized.
The result is shown in figure 36.
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Figure 35: The material cell system formed by thirteen spheres. The black cell
in the center corresponds to sphere one in figure 33. To improve the visibility, the
layers are separated from each other and black dotted lines are added to indicate
some positions where corners of cells fall together.

The complementary area vector

For every edge of the space cell system, the complementary area vector given
with equation (20) must be determined. The calculations needed to obtain
this vector will be worked out in detail for one edge. For the remaining edges,
only the results will be given. The selected edge is the edge formed by the
line connecting the centers of spheres 1 and 8 in figure 36; the corresponding
complementary area vector is d1−8

i . The following steps have to be performed
in order to calculate this vector:

• Find all the space cells that contain the 1-8 edge and label them t1, t2
· · · tT , where T is the number of cells that contain this edge.
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Figure 36: The space cell system for an HCP. The solid lines correspond to ‘real’
contacts and the dashed lines correspond to ‘virtual’ contacts obtained by slightly
shifting some spheres.

• For every face of every cell t, assign a vector b
k(t)
i , where k is the

number of the node that is not contained in the respective face. The
direction of the vector is perpendicular to the face, pointing outwards
and its magnitude equals the area of the face.

• From vector b
k(t)
i , vector a

k(t)
i is calculated, using equation (16).

• Calculate the complementary vector for edge 1-8 with equation (20).

For the 1-8 edge, six space cells can be found that contain this edge. These
cells are given in table 16 below.

Table 16: The space cells that contain the 1-8 edge. The numbering used in figure
36 is adopted here.

Cell number t Corresponding spheres

1 1-2-3-8

2 1-8-9-10

3 1-2-8-14

4 1-8-10-14

5 1-4-8-9

6 1-3-4-8

The next step is the assignment of the b
k(t)
i vectors to each face of each

cell. Actually, to determine the complementary area vector for the 1-8 edge,
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only the vectors b
1(t)
i and b

8(t)
i are needed. However, the other two vectors of

each cell will also be calculated, because they will be needed anyway when
the complementary area vectors for the other edges are calculated. Again,

one cell will be taken as an example to calculate the b
k(t)
i vectors; in this

case cell 4 of table 16, formed by lines connecting the centers of spheres 1,
8, 10 and 14 of figure 36. This cell with the corresponding vectors is shown
in figure 37.

1

8

10 14

b8(4)

b14(4)

b1(4)

b10(4)

Figure 37: Space cell no. 4 with the corresponding b
k(4)
i

vectors.

The direction of vector b
1(4)
i can directly be found, using the knowledge

that spheres 8, 10 and 14 have the same z-coordinate. The vector perpendic-
ular to this plane points in the positive z-direction, since sphere 1 lies below

the plane. The unit vector corresponding to b
1(4)
i is thus [0, 0, 1]. Since the

face is an equilateral triangle with sides that have the branch length l, its

area A8−10−14 equals 1
4

√
3l2. Vector b

1(4)
i can therefore be written as:

b
1(4)
i =

1

4

√
3l2





0
0
1



 . (162)

The other three b
k(4)
i vectors require a bit more work to derive. In general,

when two vectors are perpendicular, the inner product between these two
vectors equals zero. So if a vector is perpendicular to a plane, then this
vectors is perpendicular to every vector that lies in this plane. Since two
non-parallel vectors define a plane, the direction of these two vectors provides
enough information to construct a vector that is perpendicular to this plane.

Vector b
8(4)
i must be perpendicular to the 1-10-14 plane, thus also to all

the vectors that lie in this plane. Let’s take the vector that connects the
centers of spheres 1 and 14, and the vector that connects the centers of

spheres 10 and 14 to construct b
8(4)
i . The (relative) position of sphere 1 is

[0, 0, 0], of sphere 10 is [0,− 1√
3
,
√

2
3 ] and the (relative) position of sphere 14

is [1,− 1√
3
,
√

2
3 ]. The vector connecting spheres 1 and 14 (l14−1

i ) is thus:
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l14−1
i =







1
− 1√

3
√

2
3






−





0
0
0



 =







1
− 1√

3
√

2
3






(163)

and the vector l14−10
i is:

l14−10
i =







1
− 1√

3
√

2
3






−







0
− 1√

3
√

2
3






=





1
0
0



 . (164)

The inner product between vectors b
8(4)
i and l14−1

i and between b
8(4)
i and

l14−10
i must be zero. This can be written in the following way:

(

l14−1
1 l14−1

2 l14−1
3

l14−10
1 l14−10

2 l14−10
3

)

·







b
8(4)
1

b
8(4)
2

b
8(4)
3






=

(

0
0

)

. (165)

Filling in the known values for the branch vectors in an augmented matrix

and row-sweeping it to an echelon matrix gives a solution for the b
8(4)
i vector,

where one entry is free to chose:

(

1 − 1√
3

√

2
3 0

1 0 0 0

)

→





1 − 1√
3

√

2
3 0

0 1√
3

−
√

2
3 0





→
(

1 − 1√
3

√

2
3 0

0 1 −
√

2 0

)

.

The last matrix tells that

b
8(4)
1 − 1√

3
b
8(4)
2 +

√

2

3
b
8(4)
3 = 0

and

b
8(4)
2 −

√
2b

8(4)
3 = 0 .

If b
8(4)
3 is set to 1, then it follows from the above two equalities that b

8(4)
2 =√

2 and b
8(4)
1 = 0, so for now, b

8(4)
i = [0,

√
2, 1]. The third component,

representing the z-direction is now positive, pointing upwards. However,
looking at figure 37 reveals that it must point downwards, so its direction
must be reversed. Moreover, the vector must be normalized and then be
multiplied by the area of the corresponding plane. The magnitude of the

vector is currently
√

(
√

2)2 + 12 =
√

3, so the vector must be divided by a
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factor
√

3. The area of the plane is A1−10−14 = 1
2 l2. Vector b

8(4)
i therefore

becomes:

b
8(4)
i =

1

2
l2







0

−
√

2
3

− 1√
3






. (166)

Using the same method as described above, the vectors b
10(4)
i and b

14(4)
i can

be calculated; this results in:

b
10(4)
i =

1

2
l2







1√
2

1√
6

− 1√
3






(167)

and

b
14(4)
i =

1

4

√
3l2







−
√

2
3

1
3

√
2

1
3






. (168)

It can be verified that the sum of the above four b
k(4)
i vectors yields zero.

Next, the a
k(4)
i vectors for the same cell must be determined, using equa-

tion (16):

a
k(4)
i = − 1

D
b
k(4)
i ,

where D is the dimension of the system, in this case 3D. This simply gives
the following four vectors:

a
1(4)
i = − 1

4
√

3
l2





0
0
1



 a
8(4)
i = −1

6
l2







0

−
√

2
3

− 1√
3







a
10(4)
i = −1

6
l2







1√
2

1√
6

− 1√
3






a

14(4)
i = − 1

4
√

3
l2







−
√

2
3

1
3

√
2

1
3






.

To calculate the complementary area vector for the 1-8 edge, only the

vectors a
1(t)
i and a

8(t)
i from every space cell that contain this edge are needed.

The above performed calculations must also be performed for the other five

space cells mentioned in table 16 to obtain the respective a
1(t)
i and a

8(t)
i

vectors. The results are summarized in table 17 below.
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Table 17: The a
k(t)
i

vectors corresponding to the 1-8 edge. the superscript k refers
to the node of the space cell t that is not included in the face where the vector is
perpendicular to.

cell number vector prefactor a
k(t)
1 a

k(t)
2 a

k(t)
3

1
a

1(1)
i − 1

4
√

3
l2

√

2
3

1
3

√
2 1

3

a
8(1)
i − 1

4
√

3
l2 0 0 −1

2
a

1(2)
i − 1

4
√

3
l2 0 0 1

a
8(2)
i − 1

4
√

3
l2 −

√

2
3 −1

3

√
2 −1

3

3
a

1(3)
i − 1

4
√

3
l2

√

2
3

1
3

√
2 1

3

a
8(3)
i −1

6 l2 0 −
√

2
3 − 1√

3

4
a

1(4)
i − 1

4
√

3
l2 0 0 1

a
8(4)
i −1

6 l2 0 −
√

2
3 − 1√

3

5
a

1(5)
i −1

6 l2 0
√

2
3

1√
3

a
8(5)
i − 1

4
√

3
l2 −

√

2
3 −1

3

√
2 −1

3

6
a

1(6)
i −1

6 l2 0
√

2
3

1√
3

a
8(6)
i − 1

4
√

3
l2 0 0 −1

Finally, equation (20) can be applied to calculate the complementary area
vector for the 1-8 edge:

d18
i =

1

3 + 1

6
∑

t=1

(

a
1(t)
i − a

8(t)
i

)

. (169)

With the values specified in table 17, the solution is:

d18
i =

1

4
l2







−1
3

√
2

−
√

2
3

− 2√
3






(170)

The complementary area vector must be calculated for every edge in the
space cell system. However, an HCP has a regular structure and therefore
the space cells are regular as well, limiting the number of differently oriented
edges. Looking at the space cell system given in figure 36 shows that the 6-
10 edge has the same orientation and the same types of space cells (also with
the same relative positions) that contain this edge as the 1-8 edge. It can
easiliy be verified that the complementary area vectors corresponding to the
two edges are identical. In total, the space cell system of an HCP contains
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fourteen different types of edges, so for every type, the complementary area
vector must be calculated one time. The results are presented in table 18
below.

Table 18: The complementary area vectors for an HCP. The left side shows the
exact values for the entries and the right side gives the numerical values. The values
here are all divided by l2, so they are independent of the size of the spheres.

exact value numerical value

vector dmn
1 dmn

2 dmn
3 dmn

1 dmn
2 dmn

3

d1−2
j − 1

2
√

2
− 1

6
√

6
0 −0.35355 −0.06804 0

d1−3
j − 1

6
√

2
− 1

2
√

6
0 −0.11785 −0.20412 0

d1−4
j

1
6
√

2
− 5

6
√

6
0 0.11785 −0.34021 0

d1−8
j − 1

6
√

2
− 1

2
√

6
− 1

2
√

3
−0.11785 −0.20412 −0.28868

d1−9
j

1
6
√

2
− 1

6
√

6
− 1

3
√

3
0.11785 −0.06804 −0.19245

d1−10
j

1
6
√

2
1

2
√

6
− 1

2
√

3
0.11785 0.20412 −0.28868

d1−14
j − 1

6
√

2
1

6
√

6
− 1

6
√

3
−0.11785 0.06804 −0.09623

d10−14
j − 1

2
√

2
− 1

6
√

6
0 −0.35355 −0.06804 0

d8−10
j

1
6
√

2
1

2
√

6
0 0.11785 0.20412 0

d9−10
j − 1

8
√

2
17

24
√

6
− 1

16
√

3
−0.08839 0.28918 −0.03608

d1−11
j − 1

6
√

2
− 1

2
√

6
1

2
√

3
−0.11785 −0.20412 0.28868

d1−12
j

1
6
√

2
− 1

6
√

6
1

3
√

3
0.11785 −0.06804 0.19245

d1−13
j

1
6
√

2
1

2
√

6
1

2
√

3
0.11785 0.20412 0.28868

d1−15
j − 1

6
√

2
1

6
√

6
1

6
√

3
−0.11785 0.06804 0.09623

The relative displacement of neighbouring nodes

A DEM simulation with the conditions specified in table 15 was run for a
duration of t = 0.2. Only the right wall was moved inwards over a dis-
tance 10−5 (in the negative x-direction). The initial and final positions of
selected spheres were extracted from the simulation, so the displacement
of these spheres could be determined. The relative displacement of neigh-
bouring nodes can then be calculated by subtracting the displacement of
the individual nodes (or spheres). The selected spheres in the packing of
the simulation where chosen in such a way that their relative orientations
corresponded to the contact network shown in figure 36. It was verified that
the position of the sphere corresponding to sphere 1 in figure 36 was in an
‘A’-layer. Furthermore, a sphere in the center of the packing was selected
as the center sphere to be sure that none of the neighbouring spheres would
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be across the boundary of the packing. The results are summarized in table
19 below.

Table 19: The relative displacement of neighbouring nodes.

vector no. spheres sim. ∆umn
1 ∆umn

2 ∆umn
3

∆u1−2
i 445 − 446 1.00 ∗ 10−6 0.00 0.00

∆u1−3
i 445 − 455 5.00 ∗ 10−7 1.73 ∗ 10−18 0.00

∆u1−4
i 445 − 454 −5.00 ∗ 10−7 1.73 ∗ 10−18 0.00

∆u1−8
i 445 − 545 5.00 ∗ 10−7 −2.90 ∗ 10−7 0.00

∆u1−9
i 445 − 454 −5.00 ∗ 10−7 −2.90 ∗ 10−7 0.00

∆u1−10
i 445 − 535 0.00 −2.90 ∗ 10−7 0.00

∆u1−14
i 445 − 436 1.00 ∗ 10−6 −2.90 ∗ 10−7 0.00

∆u10−14
i 535 − 536 1.00 ∗ 10−6 0.00 0.00

∆u8−10
i 545 − 535 −5.00 ∗ 10−7 −1.00 ∗ 10−14 0.00

∆u9−10
i 544 − 535 5.00 ∗ 10−7 −1.00 ∗ 10−14 0.00

∆u1−11
i 445 − 345 5.00 ∗ 10−7 −2.90 ∗ 10−7 −10−14

∆u1−12
i 445 − 344 −5.00 ∗ 10−7 −2.90 ∗ 10−7 −10−14

∆u1−13
i 445 − 335 0.00 −2.90 ∗ 10−7 −10−14

∆u1−15
i 445 − 336 1.00 ∗ 10−6 −2.90 ∗ 10−7 −10−14

The strain tensor

With the calculated complementary area vectors and the relative displace-
ments of the corresponding nodes, the average displacement gradient tensor
can be determined using equation (21), which read:

ēij =
1

V

∑

m<n

∆umn
i dmn

j .

The edges used in tables 18 and 19 form a representative elementary volume
of an HCP. This unit consists of twelve space cells. Copying this unit in all
the x-, y- and z-directions creates the entire space cell system of an HCP.
Just like with the periodic boundary system, a ‘perfect’ space cell system
can be formed if it is treated like a periodic system; the redundant edges
at one side of a boundary compensates the missing edges at the boundary
on the opposite side of the system. In other words, the sum in equation
(21) only has to run over the fourteen edges of one space cell unit and
that result only has to be divided by the volume of that unit. For an
HCP system that consists of one thousand of such units, the sum must be
repeated a thousand time for every edge, but the volume of the system is
a thousand times larger as well, cancelling out the effect of multiple units.
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It must be mentioned that it is checked that the relative translation of
two neighbouring nodes is independent of their positions in the packing in
the case of the periodic boundary systems; all the contact pairs that have
the same branch vector and are located in similar layers, have the same
corresponding complementary area vector and relative displacement. This
means that it is justified to use the results in tables 18 and 19 for similar
contact pairs.

The volume of one representative elementary unit of space cells can be
calculated by summing up the volumes of the individual space cells of which
it consists. From figure 36 it can be concluded that there are only two differ-
ent shapes of space cells; a perfect tetrahedron and a distorted tetrahedron.
The distorted tetrahedron shown in figure 37 has actually the same base
and height as a perfect tetrahedron, like cell t = 1 in table 16, so the all the
space cells (t) have the same volume Vt:

Vt =
1

12

√
2l3

=
1

12

√
2 ∗ 0.0021393 = 1.153 ∗ 10−9 .

(171)

The volume of the representative elementary unit (Vreu) is this thus twelve
times Vt:

Vreu =
√

2l3

=
√

2 ∗ 0.0021393 = 1.384 ∗ 10−8 .
(172)

With this volume, the complementary area vectors of table 18 and the rel-
ative displacement vectors of table 19, the following average displacement
tensor is found:

ēij =





−4.626 ∗ 10−4 −8.435 ∗ 10−6 −5.964 ∗ 10−6

−9.740 ∗ 10−14 −3.431 ∗ 10−12 1.193 ∗ 10−13

0.000 0.000 −2.863 ∗ 10−12



 . (173)

The strain tensor ǫij is the symmetric part of the average displacement
gradient tensor:

ǫij =
1

2
(ēij + ēji) . (174)

This results in the following strain tensor:

ǫij =





−4.626 ∗ 10−4 −4.217 ∗ 10−6 −2.982 ∗ 10−6

−4.217 ∗ 10−6 −3.431 ∗ 10−12 5.965 ∗ 10−14

−2.982 ∗ 10−6 5.965 ∗ 10−14 −2.863 ∗ 10−12



 . (175)
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The first entry, ǫ11, is the strain in x-direction. Multiplying this value
with the initial length of the packing (the distance between the left and right
boundary, which is 0.02139) gives:

−4.626 ∗ 10−4 ∗ 0.02139 = −9.896 ∗ 10−6 ,

which is almost within 1% agreement with the actual macroscopic strain
of the system in the x-direction; ǫ11 = 10−5. The strains in the y- and z-
directions (ǫ22 and ǫ33, respectively) are eight orders of magnitude smaller
than ǫ11, so it can safely be said that these strains are negligible. Only
ǫ12 and ǫ13 (and the symmetric counterparts) are not completely negligible.
They are around a factor hundred times smaller than ǫ11, while they should
be completely zero. Still, it can be said that the result obtained with Bagi’s
method is in fairly good agreement with the expected strain tensor.

5.3.2 The best-fit strain based on particle translations

The best-fit strain based on particle translation can be obtained in the fol-
lowing way:

• Take the initial positions of the spheres from the simulation. If the
average initial position of all spheres is non-zero, then xp

i is the initial
position of sphere p minus the average position.

• Determine the displacement of every sphere from the simulation. If
the average over all dispacements is non-zero, then up

i is the difference
between the displacement of sphere p and the average displacement of
all spheres.

• Solve equation (32) three times; for i = 1, 2, 3. Each solution gives one
row of the tensor αij .

• Calculate the strain tensor ǫij from αij .

The procedure will be worked out in more detail for an HCP.

Relative initial positions

For this method, information from the same DEM simulation with the same
packing was used as for Bagi’s method. In this case, 48 spheres, approxi-
mately located in the center of the packing, were selected. This ‘subpacking’
consists of four layers of each four rows, which in turn contain three spheres
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each. For these 48 spheres, the average initial position was calculated, which
resulted in:

x̄p
i =





0.011764
0.007327
0.008394



 . (176)

For every sphere, this average is subtracted, resulting in the relative initial
position vectors for every sphere. The average of these positions is in the
order of 10−18, which is as good as zero.

Relative displacements

The displacement of a sphere is simply the difference between the final and
initial positions of that sphere. For each of the 48 spheres, this displacement
was determined and the average was calculated, which gave:

ūp
i =





−6.8813 ∗ 10−7

5.4050 ∗ 10−12

3.3500 ∗ 10−12



 (177)

Again, for every sphere this average is subtracted from their respective dis-
placement vectors, giving the relative displacement vector up

i . The average
of all relative displacements is also (close to) zero now.

The deformation gradient tensor

The next step is to solve the following system of equations three times; for
i = 1, 2, 3:















∑

(p) xp
1x

p
1

∑

(p) xp
2x

p
1

∑

(p) xp
3x

p
1

∑

(p) xp
1x

p
2

∑

(p) xp
2x

p
2

∑

(p) xp
3x

p
2

∑

(p) xp
1x

p
3

∑

(p) xp
2x

p
3

∑

(p) xp
3x

p
3















·













α1i

α2i

α3i













=















∑

(p) up
i x

p
1

∑

(p) up
i x

p
2

∑

(p) up
i x

p
3















. (178)

All the relative initial positions and relative displacements are known, so
each sum in equation (178) can easiliy be calculated. For i = 1, the following
augmented matrix must be solved in order to obtain αj1:
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



2.288 ∗ 10−4 −1.268 ∗ 10−4 −1.268 ∗ 10−5 −1.084 ∗ 10−7

−1.268 ∗ 10−4 2.105 ∗ 10−4 −1.294 ∗ 10−5 5.886 ∗ 10−8

2.241 ∗ 10−5 −1.294 ∗ 10−5 1.830 ∗ 10−4 −1.226 ∗ 10−8



 .

(179)
In the following steps, this augmented matrix will sweeped to a reduced
echelon matrix. First, every entry is divided by the first entry of the row it
is in:





1 −5.543 ∗ 10−1 9.798 ∗ 10−2 −4.739 ∗ 10−4

1 −1.660 1.021 ∗ 10−1 −4.642 ∗ 10−4

1 −5.774 ∗ 10−1 8.165 −5.469 ∗ 10−4



 . (180)

Next, the first entries of the second and third row are made zero by sub-
tracting the first row:





1 −5.543 ∗ 10−1 9.798 ∗ 10−2 −4.739 ∗ 10−4

0 −1.106 4.082 ∗ 10−3 9.662 ∗ 10−6

0 −2.309 ∗ 10−2 8.067 −7.306 ∗ 10−5



 . (181)

The entries of the second and third row are divided by the first non-zero
entry of that row:





1 −5.543 ∗ 10−1 9.798 ∗ 10−2 −4.739 ∗ 10−4

0 1 −3.692 ∗ 10−3 −8.739 ∗ 10−6

0 1 −3.493 ∗ 102 3.164 ∗ 10−3



 . (182)

The second row is subtracted from the third row:





1 −5.543 ∗ 10−1 9.798 ∗ 10−2 −4.739 ∗ 10−4

0 1 −3.692 ∗ 10−3 −8.739 ∗ 10−6

0 0 −3.493 ∗ 102 3.172 ∗ 10−3



 . (183)

The entries of the third row are divided by the first non-zero entry of that
row. This gives an echelon matrix:





1 −5.543 ∗ 10−1 9.798 ∗ 10−2 −4.739 ∗ 10−4

0 1 −3.692 ∗ 10−3 −8.739 ∗ 10−6

0 0 1 −9.082 ∗ 10−6



 . (184)

In the coming steps, the matrix is sweeped to a reduced echelon matrix.
First, the third entries of the first and second row are made zero by adding
or subtracting the right fraction of the third row:

100







1 −5.543 ∗ 10−1 0 −4.730 ∗ 10−4

0 1 0 −8.772 ∗ 10−6

0 0 1 −9.082 ∗ 10−6



 . (185)

Finally, the second entry of the first row is made zero by adding −5.543∗10−1

times the second row to the first row:





1 0 0 −4.778 ∗ 10−4

0 1 0 −8.772 ∗ 10−6

0 0 1 −9.082 ∗ 10−6



 . (186)

The solution for αj1 can directly be read off from the reduced echelon matrix:

αj1 =





−4.778 ∗ 10−4

−8.772 ∗ 10−6

−9.082 ∗ 10−6



 (187)

The same procedure as described above is followed to find αj2 and αj3.
Combining the obtained three vectors gives the deformation gradient tensor
αij :

αij =





−4.778 ∗ 10−4 −8.772 ∗ 10−6 −9.082 ∗ 10−6

−1.288 ∗ 10−5 4.957 ∗ 10−7 −3.155 ∗ 10−5

6.672 ∗ 10−13 −2.568 ∗ 10−14 1.022 ∗ 10−11



 . (188)

The symmetric part of αij is the average strain tensor ǫij for the system
of spheres:

ǫij =
1

2
(αij + αji) . (189)

This results in:

ǫij =





−4.778 ∗ 10−4 −1.083 ∗ 10−5 −4.541 ∗ 10−6

−1.083 ∗ 10−5 4.957 ∗ 10−7 −1.577 ∗ 10−5

−4.541 ∗ 10−6 −1.577 ∗ 10−5 1.022 ∗ 10−11



 . (190)

As explained in the previous section, ǫ11 is the strain in the x-direction.
Multiplying this value with the initial length of the packing (the distance
between the left and right boundary, which is 0.02139) gives:

−4.778 ∗ 10−4 ∗ 0.02139 = −1.022 ∗ 10−5 ,

which deviates around 2% from the actual displacement of the right wall,
10−5. The ǫ22 entry and the non-diagonal elements are relatively high,

101



because they should be negligible compared to ǫ11. Therefore, this result
can be regarded as a rough approximation of the true macroscopic strain
tensor. A better result can presumably be obtained when all the spheres of
the packing are included in the calculations, but this is too time-consuming
to do manually.

5.3.3 Satake’s strain definition

The procedure that Satake follows to determine the strain tensor can be
summarized as follows:

• The Dirichlet tessellation of the system of spheres.

• Construction of the Delaunay network from the Dirichlet tessellation.

• Calculating the Dirichlet centers from the Delaunay network. These
centers should correspond to the corners of the Dirichlet cells.

• Calculating the dual branch vector for every contact pair, using equa-
tion (49).

• Calculating the volume of the contact region with equation (51).

• Determining the relative displacement of contacting spheres.

• Calculating the strain tensor with equation (56).

These steps will be worked out in detail below.

Dirichlet tessellation of the system

As mentioned before, an HCP is a packing of mono-sized spheres and there-
fore, the Voronoi and Dirichlet tessellation methods and Bagi’s method to
define material cells give the same result. The Dirichlet cells were already
shown in figures 33 and 34 of the previous section (in Bagi’s case the same
cells were thus called ‘material cells’).

The Delaunay network

The Delaunay network is obtained by connecting the centers of spheres
whose corresponding Dirichlet cells share a common face. Again, the prob-
lem arises that not all the Delaunay cells (simplexes) are (distorted) tetra-
hedrons. In order to determine the Dirichlet centers with Satake’s equations
(see section 2.4), it is required that the entire system is completely trian-
gularized. However, if the same method of shifting some spheres is used,
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as Bagi did, the Dirichlet centers of the additionally formed cells do not
correspond to corners of the Dirichlet cells. Satake does not discuss the sit-
uation that not all simplexes are tetrahedrons yet. Therefore, the Delaunay
network is left as it is now and the Dirichlet centers that are not the centers
of tetrahedrons will be determined improvisionally, using the geometrical
knowledge of the configuration of an HCP. The used Delaunay network is
shown in figure 38 below. Contrarily to Bagi’s space cell system in figure
36, there is a big cell formed by the lines connecting spheres 1, 2, 7, 8, 10
and 14. The Dirichlet center of this simplex is the intersection of the two
lines connecting the centers of spheres 1-14 and 2-10.

1
2

34

5

6 7

89

10

11

12

13

A

B

C

D

Figure 38: The Delaunay network for an HCP. The blue lines indicate the contact
volume of contact 1-2. The blue area is Sc for this contact; it is one of the faces of
the Dirichlet cell.

The Dirichlet centers

For the simplexes that have the shape of a tetrahedron, the corresponding
Dirichlet centers can be calculated using equations (46) and (47). An exam-
ple will be given for the Dirichlet center of the simplex formed by the sphere
centers 1, 2, 3 and 8 shown in figure 38.

The center of sphere 1 is chosen as the origin of the coordinate system.
The radius ri of every sphere i is 1.07∗10−3. The spheres have the following
positions ii:
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i1 =





0
0
0



 i2 =





l
0
0



 i3 =





1
2 l

1
2

√
3l

0



 i8 =







1
2 l
1

2
√

3
l

√

2
3 l






.

Using equation (46), the factor ci can be calculated. The b vectors in equa-
tion (47) are the same vectors that Bagi used, so these vectors do not have
to be calculated again. The values for ci and bi

i for the 1-2-3-8 tetrahedron
are summarized in table 20 below:

Table 20: The scalars ci and bi

i
vectors for the tetrahedron 1-2-3-8 in figure 38.

sphere no. ci bi
1 bi

2 bi
3

1 5.725 ∗ 10−7 1√
8
l2 1

2
√

6
l2 1

4
√

3
l2

2 −1.715 ∗ 10−6 − 1√
8
l2 1

2
√

6
l2 1

4
√

3
l2

3 −1.715 ∗ 10−6 0 1√
6
l2 1

4
√

3
l2

8 −1.715 ∗ 10−6 0 0
√

3
4 l2

The volume V of the tetrahedron is 1
12

√
2l3. With these specified values,

Dirichlet center becomes:

DA
i =







1
2 l
1

2
√

3
l

1
2
√

6






(191)

The positions of the Dirichlet centers B, E, F, I, J, M and N can also be
calculated with this method. The other corner positions have to be deter-
mined in another way. As mentioned earlier, corner (or Dirichlet center) C
is the point where the lines 1-14 and 2-14 intersect. It easiliy follows that
the x-coordinate is halfway between sphere centers 1 and 2; the y- and z-
coordinates are both half of the y- and z-coordinates of the position of the
center of sphere 10:

DC
i =







1
2 l

− 1
2
√

3
l

1√
6
l






(192)

The positions of the Dirichlet centers D, G, H, K and L in figure 33 can
be found in a similar way. The positions of all the Dirichlet centers are
summarized in table 21.
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Table 21: The positions of the Dirichlet centers (corners of the material cells)
shown in figure 33. The entries are divided by l2.

Dirichlet center Di
1 Di

2 Di
3

A 1
2

1
2
√

3
1

2
√

6

B 1
2

1
2
√

3
− 1

2
√

6

C 1
2 − 1

2
√

3
1√
6

D 1
2 − 1

2
√

3
− 1√

6

E 0 − 1√
3

1
2
√

6

F 0 − 1√
3

− 1
2
√

6

G −1
2 − 1

2
√

3
1√
6

H −1
2 − 1

2
√

3
− 1√

6

I −1
2

1
2
√

3
1

2
√

6

J −1
2

1
2
√

3
− 1

2
√

6

K 0 1√
3

1√
6

L 0 1√
3

− 1√
6

M 0 0
√

3
8

N 0 0 −
√

3
8

The dual branch vectors

For every edge of the Delaunay network, the dual branch vector must be cal-
culated. As was the case with the complementary area vectors with Bagi’s
method, only a limited number of dual branch vector have to be determined.
All other edges are comparable to one of these edges. For the Delaunay net-
work shown in figure 38, there are twelve different types of edges, so to each
of these types a dual branch vector must be assigned. As an example, the
calculations will be demonstrated for the dual branch vector corresponding
to the contact between spheres 1 and 2 in figure 38.

The dual branch vector h1−2
i can be calculated with:

h1−2
i = S1−2n1−2

i , (193)

where S1−2 is the area of the common face shared by the Dirichlet cells
corresponding to spheres 1 and 2. The corners of this face are the corners
A, B, C and D in table 21. The dimensions of the face are given in figure
39.
To determine its surface area, the trapezoid can be divided in a rectangle
and two right-angled triangles. The area of the rectangle is
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Figure 39: Face ABCD and its dimensions corresponding to the 1-2 contact.

1

6
∗ 1√

3
=

1√
18

and the area of the two triangles together is

2

2
√

6
∗ 1√

3
=

1

2
√

18
.

The surface area of the face is thus

S1−2 =
1√
18

l2 +
1

2
√

18
l2

=
1√
8
l2 .

The outward normal unit vector corresponding to contact 1-2, n1−2
i , is

simply the normalized branch vector of that contact:

n1−2
i =

l1−2
i

|l1−2
i |

(194)

This vector was already given in equation (66) in section 3.2.1 and reads:

n1−2
i =





−1
0
0



 (195)

Since the relative displacements of the spheres will be determined as the
displacement of sphere 1 minus sphere 2, the branch vector is also defined
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here as the difference of the initial positions of sphere 1 minus sphere 2,
which explains the minus sign for n1−2

1 in equation (195). The dual branch
vector h1−2

i yields:

h1−2
i =

1

2
√

2
l2





−1
0
0



 =





− 1
2
√

2

0
0



 l2 (196)

To determine the other eleven dual branch vectors, similar calculations
have to be performed. The normal vectors given in equation (66) can be
used here, only their signs have to be flipped. The surface areas of the other
eleven faces of the Dirichlet cell have not been calculated yet. However, due
to the regularity of the polyhedron, there are only three different types of
faces:

• The trapezoid face; this type occurs six times.

• The square face; this type occurs four times.

• The diamond face; this type occurs two times.

Only the areas of the square and diamond faces still have to be determined.
One of such square faces is formed by corners ACKM (see figure 33). The

length of all sides is
√

3
8 l2, so its surface area simply is 3

8 l2. For the diamond

face, it can be verified that its area is 1
2
√

2
l2. The results for the dual brach

vectors corresponding to the twelve contact types are summarized in table
22 below.

Volume of the contact region

The volume of the contact region was expressed with equation (51), which
read:

V mn =
1

3
lmn
i hmn

i .

The contact volume for the 1-2 contact is indicated in figure 38 by the
blue-lined octahedron. For this contact, the volume becomes:

V 1−2 =
1

3
l1−2
i h1−2

i

=
1

3
∗ 1

2
√

2
l3

=
1

6
√

2
l3 .

(197)
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Table 22: The dual branch vectors for the twelve contact types. The entries are
divided by l2. The second column gives the shape of the face corresponding to the
respective contact; ‘t’ = trapezoid, ‘s’ = square and ‘d’ = diamond.

exact value numerical value

vector face hmn
1 hmn

2 hmn
3 hmn

1 hmn
2 hmn

3

h1−2
i t − 1

2
√

2
0 0 −0.3536 0 0

h1−3
i t − 1

4
√

2
−

√
3

4
√

2
0 −0.1768 −0.3062 0

h1−4
i t 1

4
√

2
−

√
3

4
√

2
0 0.1768 −0.3062 0

h1−8
i s − 3

16 −
√

3
16 −

√
3

4
√

2
−0.1875 −0.1083 −0.3062

h1−9
i s 3

16 −
√

3
16 −

√
3

4
√

2
0.1875 −0.1083 −0.3062

h1−10
i d 0

√
1

2
√

6
− 1

2
√

3
0 0.2041 −0.2887

h10−14
i t − 1

2
√

2
0 0 −0.3536 0 0

h8−10
i t 1

4
√

2

√
3

4
√

2
0 0.1768 0.3062 0

h9−10
i t − 1

4
√

2

√
3

4
√

2
0 −0.1768 0.3062 0

h1−11
i s − 3

16 −
√

3
16

√
3

4
√

2
−0.1875 −0.1083 0.3062

h1−12
i s 3

16 −
√

3
16

√
3

4
√

2
0.1875 −0.1083 0.3062

h1−13
i d 0

√
1

2
√

6
1

2
√

3
0 0.2041 0.2887

The same contact volume is found for the other contacts, except for V 1−8,
V 1−9, V 1−11 and V 1−12, in these cases the volume is 1

8 l3.

The relative displacement of contacting spheres

The results from the same simulation as with the previous two methods
were used to obtain values for the relative displacements of the contacting
spheres. The characteristics of the simulation are shown in table 15. The
same spheres as with Bagi’s method were used to determine the relative
displacements of the contacting spheres. These results are shown in table
19. Only the relative displacements u1−14

i and u1−15
i are not used in this

case.
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The strain tensor

The strain tensor related to one contact pair can be calculated with equation
(54):

ǫc =
1

3Vc
hcuc .

The twelve edges of the Delaunay network used in this section form a rep-
resentative elementary unit. This unit can be copied in the x-, y- and z-
direction to create a complete and ‘perfect’ HCP system. Also here it holds
that the redundant edges at one side of the boundary compensate for the
missing edges at the opposite side. The overall strain tensor for a granular
assembly, as suggested by Satake, is:

ǫ =
1

V

∑

hcuc =
1

V

∑

3Vcǫc.

For an HCP, the sum runs over the twelve representative edges of the De-
launay network and the volume V is the sum of the twelve contact volumes
connected to every contact, which is:

V =

(

8 ∗ 1

6
√

2
+ 4 ∗ 1

8

)

∗ 0.0021393 = 1.412 ∗ 10−8 . (198)

Using the dual branch vectors from table 22 and the corresponding rela-
tive displacement vectors from table 19, the strain tensor for the granular
assembly becomes, using equation (56):

ǫij =





−4.652 ∗ 10−4 0.000 0.000
4.659 ∗ 10−16 2.323 ∗ 10−6 4.012 ∗ 10−14

0.000 0.000 −2.920 ∗ 10−12



 . (199)

Satake did not take the symmetric part of this tensor to define the strain
tensor; instead he called this instant result the overall strain tensor for the
granular assembly. Multiplying ǫ11 with the length of the packing in the
x-direction, 0.02139, gives:

−4.652 ∗ 10−4 ∗ 0.02139 = −9.950 ∗ 10−6 ,

which is within 0.5% agreement with the actual displacement of the corre-
sponding wall, which is 10−5. The ǫ22 entry is a factor 200 smaller than
ǫ11, while the entry should be zero. All the non-diagonal elements are (close
to) zero, so it this result gives a fairly accurate appoximation of the actual
macroscopic strain in the system.

109



5.3.4 Overview of results

The strain tensor was determined for two packings for both wall and periodic
boundary systems, using all three methods described in this chapter. All
packings were compressed in all the x-, y- and z-directions in separate sim-
ulations, so only one wall was moved at a time. The results are summarized
in table 23 below. The first two packings are in periodic boundary systems
and have 1000 (n = 10, p = 5, q = 5) and 2744 (n = 14, p = 7, q = 7)
spheres, respectively. The last two packings are in wall boundary systems
and have 900 (n = 10, p = 5, q = 5) and 3840 (n = 16, p = 8, q = 8)
spheres, respectively. The deviations refer to the deviations between the
values of the diagonal elements and the ‘real’ strain in that direction. This
table only shows these deviations for the diagonal entries of the correspond-
ing directions of compression; if the compression was in the y-direction, the
deviation of the ǫ22-entry of the strain tensor is shown. In all packings, the
strain is determined from a group of spheres located in the centers of the
packings.

Table 23: Overview of the performance of the three strain definitions for 3D
granular assemblies. The desciption in the left column means: boundary condi-
tion (P=periodic, W=Wall) number of spheres direction of compression. The
deviations refer to the deviations between the values of the diagonal elements of the
strain tensor and the ‘real’ strain in the direction indicated in the first column.

Error in strain estimation

description HCP Bagi Best-fit Satake

P 1000 x 1.04% −2.21% 0.50%

P 1000 y 3.12% −0.11% 0.99%

P 1000 z 0.00% 0.00% −1.98%

P 2744 x 1.04% 0.00% −0.50%

P 2744 y 3.13% −0.11% 0.99%

P 2744 z 0.00% 0.00% −1.98%

W 900 x 35.48% 34.57% 35.63%

W 900 y 41.96% 41.47% 40.38%

W 900 z 19.09% 19.22% 17.39%

W 3840 x 23.04% 22.23% 22.68%

W 3840 y 31.72% 26.05% 30.20%

W 3840 z 13.77% 13.77% 12.08%

This table shows that the strain for an HCP in a periodic boundary system
is fairly accurately predicted by all three strain definitions. The size of the
packing does not seem to have a significant influence on the results. The
errors made in the prediction of the strain of packings in the wall boundary
systems are very large, up to 42%. The results clearly show that the pre-
dictions are better for the packing of 3840 spheres. This can be explained
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by the fact that wall-effects become less significant as the size of the pack-
ing increases. However, the large errors for the wall boundary systems are
not solely due to the size of the packing. Like was done for the periodic
boundary packings, only the relative displacements for a couple of spheres
were determined and the relative displacements between similarly oriented
contacting spheres were assumed equal. This may be true in the case of pe-
riodic boundary systems, but for wall boundary systems the validity of this
assumption is doubtful. However, determining the orientations, and relative
displacements of all contacts in the packing is far too time-consuming to do
manually, so up to this point such an assumption is necessary to predict the
strain. It is expected that the accuracy of the predictions of the strain tensor
will improve significantly when the strain definitions are implemented in the
processing tools of the DEM simulation, because the relative displacements
can then be determined for all contacting pairs of spheres individually.
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6 Conclusions and discussion

The first aim of this thesis was to judge the accuracy of the estimations of
properties of 3D granular assemblies that were determined from DEM simu-
lations. The effect of the walls on these properties was evaluated and meth-
ods to diminish these effects were tested. The second aim was to determine
the strain tensor for 3D granular packings that were uniaxially compressed
in DEM simulations, using three different strain definitions. To accomplish
these goals, a structured packing was created for the DEM simulations; the
Hexagonal Close Packing. The properties of a structured packing are known
and can ‘easily’ be derived theoretically. The obtained properties from the
simulations can then be compared to these theoretically derived properties.
For two of the three strain definitions (Bagi’s and Satake’s definitions), the
knowledge of the structure of the granular assembly forms the basis of the
derivation of the respective strain tensors, so also here, the use of a struc-
tured packing is helpful.

In the following, the most important conclusions that can be drawn from
the obtained results in this research will be presented and discussed. These
conclusions and discussions will then lead to the recommendations given in
the next chapter.

6.1 The properties of the HCP

6.1.1 The volume fraction

First, the volume fraction of a ‘perfect’ HCP was theoretically derived with
the aid of a unit cell. It was shown that the volume fraction is 0.7405 and
independent of the size of the spheres in the packing. For the HCP in the
periodic boundary packing a density of 0.7451 was found for all packing
sizes. This value is slightly higher due to the small overlap allowed between
the spheres (δ/a ≈ 10−3).

In wall boundary systems, the volume fraction of the HCP is strongly
related to the size of the packing. As the size increases, the volume fraction
comes closer to the ‘perfect’ density of ηHCP = 0.7405. By linearization of
the graph relating the volume fraction against the number of spheres, it was
predicted that the volume fraction of an HCP in a wall boundary system
will approach 0.712, but this prediction is doubtful, even though the R2 of
the trend line was 1. A second approach, which used the equations that
determine the wall positions and the number of spheres, indeed showed that
the volume fraction of an infinitely large HCP in a wall boundary system
approaches the volume fraction of a ‘perfect’ HCP.

The moving-average method is a suitable method to cancel out the wall-
effects, such that the volume fraction of an ideal HCP is approximated. In
order to get a random structure inside the averaging volume, a smaller sub-
cell was moved diagonally through the packing in eleven steps, while the
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volume fraction within that cell was estimated at every step. This method
was tested on a packing that originally had a volume fraction that deviated
11.3% from the ideal density. After averaging the eleven volume fractions,
this deviation was reduced to 0.39%.

6.1.2 The contact network

With the theoretical derivation of the contact network of the spheres in an
HCP it was shown that this configuration alternates every layer. The differ-
ences only showed up in the sign of the y-components of the branch vectors
(and the corresponding normal unit vectors) of the contacting spheres that
where positioned in neighbouring layers. This result was also found in both
the wall boundary and periodic boundary systems.

Furthermore, it can be concluded that the relaxation of an HCP in a
wall boundary system does not lead to a significant change in the contact
network, but the overlap between spheres are greatly affected. An initially
isotropic overlap distribution changes into an anisotropic overlap distribu-
tion and the average overlap length is significantly reduced. These effects
can be diminished by increasing the size of the system, but in order to be
able to neglect these effects, the packing should be much larger than the
maximum system size that the DEM simulation can handle.

6.1.3 Kinetic and potential energy

First, the potential energy density of an HCP was theoretically derived,
relating it to the stiffness constant, overlap length and the branch length
of the contacts. For this derivation, the same unit cell was used as for the
derivation of the volume fraction. In the DEM simulation with an HCP in
a periodic boundary system, the same potential energy density was found
as was theoretically predicted. For the wall boundary system the potential
energy density could not be compared with a theoretical prediction, due to
the anisotropic and inhomogeneous overlap distribution after relaxation.

6.1.4 The elastic modulus tensor

The theoretically derived elastic modulus tensor for the HCP showed that
there is an anisotropy in the elastic behaviour with respect to direction
of compression; the C3333 component is larger than the C1111 and C2222

components. Moreover it can be concluded that in a ‘perfect’ packing the
contribution of every sphere to the EMT is the same, regardless of the layer
that the sphere is in.

With the DEM simulations the EMT for both the wall and periodic
boundary systems was determined in two different ways. With the first
method, the information obtained from a static snapshot was used to con-
struct the EMT. In the case of the periodic packing, the results agreed within
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an accuracy of 0.8% with the theoretically derived entries of the EMT. This
deviation is probably caused by the slightly higher volume fraction of the
system in the simulation, compared to the theoretical volume fraction. For
the wall boundary systems, these deviations are larger due to non-crystal
structure near the walls. For an HCP consisting of 900 spheres, the max-
imum deviation of the entries obtained from a static full-system snapshot
was 15.5%. After correcting for the deviation between the volume fraction of
the entire packing in the wall boundary system and the density of a perfect
packing, the maximum deviation could be reduced to 6.5%. Furthermore, it
can be concluded that estimating the EMT from sub-cells of a packing does
not lead to better results. The best way to estimate the EMT from a static
snapshot of a granular packing in a wall boundary system is to determine
the EMT for the entire packing and correct for it by a factor that is obtained
by dividing the overall density of the packing by the average density in the
center of the packing that it determined with the moving-average method.

With the second method, the EMT was obtained from several snapshots
of the simulation. For a periodic boundary system, the entries of the EMT
were estimated within an accuracy of 10.5%, with respect to the theoreti-
cally derived values. In the case of packings in wall boundary systems, the
predictions are very inaccurate. Therefore it is not recommended to apply
this method to such systems. The deviations get smaller as the size of the
packing increases, but even simulations with the largest packings that can
be handled will probably still not lead to reliable predictions of the EMT.

6.2 The strain tensor for an HCP

Based on the literature survey described in chapter 2, three strain definitions
were tested for their ability to describe the macroscopic strain tensor that
relates the compression of the packing to its initial length. These strain def-
initions use the microscopic properties of 3D (or 2D) granular packings and
the (relative) displacements of individual spheres to obtain the macroscopic
strain tensor.

The first strain definition that was tested in this thesis was Bagi’s strain
definition based on equivalent continua. This method is rather complicated
and time-consuming. It involves the construction of material and space cells,
the assignment of complementary area vectors, the relative translations must
be determined and finally the strain tensor must be calculated.

The best-fit strain based on particle translations, on the other hand, is a
very straightforward and fast method. The initial and final positions of the
spheres already provide enough information to calculate the strain tensor.

The last strain definition that was tested, the Satake strain, is also a very
time-consuming method. Like Bagi’s method, it involves the construction of
sub-spaces, the assignment of vectors (in this case the dual branch vector and
the relative displacement vectors) and finally the calculation of the strain
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tensor.
Comparing the results presented in table 23 shows that the differences

in the obtained macroscopic strain tensors are rather small. For the peri-
odic boundary systems, all three methods give reliable predictions; within a
maximum deviation of 3.2% from the actual strain. For the wall boundary
systems, all three strain definitions result in large deviations, but they are
all within the same range. The most important reason for these deviations
is that only information from a couple of spheres was used to calculate the
strain tensors and in the case of wall boundary systems, this information
is not representative for the behaviour of the entire packing. It is expected
that the results will improve when information of much more spheres is used
in the calculations, but this is too time-consuming to do by hand. The im-
plementation of these strain definitions in the DEM simulation processing
software will make it possible to use information from all the spheres in the
packing, which will presumably lead to better results.

115



7 Recommendations

Based on the research that was done for this thesis, some recommendations
will be given for possible future research.

In the DEM simulations performed during this project a structured reg-
ular mono-dispersed frictionless packing was used, in order to be able to
compare its properties with theoretically derived properties. Since good
agreement was obtained between the properties of this packing in periodic
boundary systems and theory, these properties can be also be determined
for more complex packings in periodic boundary systems with DEM simu-
lations. Possible adjustments are:

• Randomization of the packing.

• Use different spring stiffnesses for differently oriented contacts.

• Creating a poly-dispersed (random) packing.

The above mentioned adjustments can also be introduced for wall boundary
systems, but due to the wall-effects additional efforts are needed to retrieve
useful information:

• For determining the volume fraction inside the packing, it is recom-
mended to use the moving-average method, by (diagonally) shifting a
sub-cell through the packing. With the implementation of this method
in the DEM program, the number of shifts can easily be increased so
more accurate results can be obtained.

• For retrieving the elastic modulus tensor, it is recommended to deter-
mine it from a single snapshot for the entire system first (so not for
a sub-volume) and multiply this result with a correction factor. This
correction factor is the volume fraction in the center of the packing
divided by the volume fraction of the complete packing. The overall
density can directly be retrieved from the output files and the density
inside the packing can be estimated with the moving-average method.
The EMT obtained from the slopes of the stress-strain graphs is not
reliable enough, since the system size is too small. When processor
technology significantly improves in the future it may be possible to do
DEM simulations with sufficiently large packings such that the EMT
can also determined with this method. However, in ‘real’ experiments
the EMT is obtained from the slope of the stress-strain graph, so in
that sense it is still valuable to use this method in the simulations as
well.

The long-term goal is to be able to determine the local average of the prop-
erties of the packing in a rather small volume.
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The elaboration of the strain definitions for 3D granular assemblies ap-
plied to the HCP showed that all three methods performed approximately
equally well under the applied conditions in the DEM simulations. How-
ever, the best-fit method is by far the fastest and simplest method, so its
implementation in the DEM program will be much easier than Bagi’s and
Satake’s strain definitions. However, these definitions were only tested on
a structured frictionless packing and more research must be done to test
the reliability of their predictions of the strain tensor using simulations with
more complex packings.

117



References

[1] Bagi, K. (1993), On the definition of stress and strain in granular as-
semblies through the relation between micro- and macro-level character-
istics, Powders and Grains 93, ed. C. Thornton, Balkema, 117-121.

[2] Bagi, K. (1996), Stress and strain in granular assemblies, Mechanics of
Materials, 22, 165-177.

[3] Cambou, B., Chaze, M., Dedecker, F. (2000), Change of scale in granu-
lar materials, European Journal of Mechanics - A/Solids 19, 999-1014.

[4] Cundall, P.A., Strack, O.D.L. (1979), A discrete numerical model for
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Appendices

A Derivation of u for one contact

In this part, the derivation of the energy density correlation will be worked
out. The energy density u will be expressed as a function of the contact vol-
ume Vc, the spring stiffness in normal, k and the overlap in normal direction
δ. The starting point of this derivation is equation (200):

1

2

(

σ
T : ǫ

sym
)

= u , (200)

where σT is the transposed stress tensor and ǫsym is the symmetric part of
the strain tensor. The double dot product of two tensors is equal to the first
invariant (i.e. the trace) of their dot product and is denoted by the colon
(:) between the two tensor symbols:

1

2

(

σ
T : ǫ

sym
)

=
1

2

(

tr(σT · ǫsym)
)

. (201)

The transpose of a matrix of any dimension is obtained by putting the
initial row elements in columns and vice versa. The initial stress tensor and
its transposed form from equation (201) are given in equations (202a) and
(202b) below:

σ =

[

σ11 σ12

σ21 σ22

]

(202a)

σ
T =

[

σ11 σ21

σ12 σ22

]

. (202b)

The symmetric strain tensor is

ǫ
sym =

[

ǫsym
11 ǫsym

12

ǫsym
21 ǫsym

22

]

. (203)

The dot product of the transposed stress and the strain tensor becomes

σ
T · ǫsym =

[

σ11 σ21

σ12 σ22

]

·
[

ǫsym
11 ǫsym

12

ǫsym
21 ǫsym

22

]

(204a)

σ
T · ǫsym =





σ11ǫ
sym
11 + σ21ǫ

sym
21 σ11ǫ

sym
12 + σ21ǫ

sym
22

σ12ǫ
sym
11 + σ22ǫ

sym
21 σ12ǫ

sym
12 + σ22ǫ

sym
22



 . (204b)

The trace of the product (σT · ǫsym) is obtained by the summation of the
diagonal elements of the product tensor:

A



1

2

(

tr(σT · ǫsym)
)

=
1

2
(σ11ǫ

sym
11 + σ21ǫ

sym
21 + σ12ǫ

sym
12 + σ22ǫ

sym
22 ) = u .

(205)
The symmetric strain tensor is the sum of the original strain tensor and its
transpose, divided by two:

ǫ
sym =

1

2
(ǫ + ǫ

T ) (206a)

[

ǫsym
11 ǫsym

12

ǫsym
21 ǫsym

22

]

=
1

2

( [

ǫ11 ǫ12
ǫ21 ǫ22

]

+

[

ǫ11 ǫ21
ǫ12 ǫ22

])

(206b)

[

ǫsym
11 ǫsym

12

ǫsym
21 ǫsym

22

]

=

[

ǫ11
1
2(ǫ12 + ǫ21)

1
2(ǫ21 + ǫ12) ǫ22

]

. (206c)

From equation (206c), the following equalities can be deduced:

ǫsym
11 = ǫ11 (206d)

ǫsym
12 =

1

2
(ǫ12 + ǫ21) (206e)

ǫsym
21 =

1

2
(ǫ21 + ǫ12) (206f)

ǫsym
22 = ǫ22 . (206g)

Not surprisingly, the elements ǫsym
12 and ǫsym

21 are equal, as follows from
equations (206e) and (206f):

ǫsym
12 = ǫsym

21 . (206h)

Substitution of the equations (206d) to (206g) into equation (205) gives:

u =
1

2

(

σ11ǫ11 +
1

2
σ21 (ǫ21 + ǫ12) +

1

2
σ12 (ǫ12 + ǫ21) + σ22ǫ22

)

. (207)

When only deformations in the normal direction are considered, the strain
tensor can be written as

ǫ =
δ

l
n̂n̂ (208a)

[

ǫ11 ǫ12
ǫ21 ǫ22

]

=
δ

l

[

n̂1

n̂2

]

[

n̂1 n̂2

]

, (208b)
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where l is the distance between the centre points of the two spheres and n̂
is the unit vector in the normal direction. The dyadic product between the
two unit vectors in normal direction results in a tensor:

n̂n̂ =

[

n̂1

n̂2

]

[

n̂1 n̂2

]

=

[

n̂1n̂1 n̂1n̂2

n̂2n̂1 n̂2n̂2

]

. (208c)

The entries of the strain tensor can therefore be written as

ǫ11 =
δ

l
n̂1n̂1 (209a)

ǫ12 =
δ

l
n̂1n̂2 (209b)

ǫ21 =
δ

l
n̂2n̂1 (209c)

ǫ22 =
δ

l
n̂2n̂2 . (209d)

The overlap in normal direction is defined as

δ = l − 2an̂ (210a)

[

δ1

δ2

]

=

[

l1
l2

]

− 2a

[

n̂1

n̂2

]

, (210b)

where a is the radius of the sphere. The unit vector in normal direction
is defined as the ratio between the branch vector and its magnitude. The
branch vector is defined as

l = r1 − r2 (211a)

[

l1
l2

]

=

[

(r1)1
(r1)2

]

−
[

(r2)1
(r2)2

]

. (211b)

The magnitude of the branch vector is

l = |l| =
√

l21 + l22 . (212)

The unit vector in normal direction is

n̂ =
l

l
(213a)

[

n̂1

n̂2

]

=
1

l

[

l1
l2

]

. (213b)
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Equation (213b) can be rewritten as

[

l1
l2

]

= l

[

n̂1

n̂2

]

. (213c)

Substitution of equation (213c) into equation (210b) results in

[

δ1

δ2

]

= l

[

n̂1

n̂2

]

− 2a

[

n̂1

n̂2

]

= (l − 2a)

[

n̂1

n̂2

]

. (214a)

Rewriting equation (214a) gives

[

n̂1

n̂2

]

=
1

l − 2a

[

δ1

δ2

]

. (214b)

The term (l − 2a) corresponds to the magnitude of δ. Replacing the term
for δ gives

[

n̂1

n̂2

]

=
1

δ

[

δ1

δ2

]

. (214c)

Therefore, the entries of n̂ become

n̂1 =
δ1

δ
(214d)

n̂2 =
δ2

δ
. (214e)

Substitution of equations (214d) and (214e) into equations (209a–209d) re-
sults in

ǫ11 =
δ

l

δ1

δ

δ1

δ
=

δ2
1

lδ
(215a)

ǫ12 =
δ

l

δ1

δ

δ2

δ
=

δ1δ2

lδ
(215b)

ǫ21 =
δ

l

δ2

δ

δ1

δ
=

δ2δ1

lδ
(215c)

ǫ22 =
δ

l

δ2

δ

δ2

δ
=

δ2
2

lδ
. (215d)

The stress tensor is, when only the contributions on normal direction are
considered

σ =
klδ

Vc
n̂n̂ (216a)

[

σ11 σ12

σ21 σ22

]

=
klδ

Vc

[

n̂1n̂1 n̂1n̂2

n̂2n̂1 n̂2n̂2

]

. (216b)

D



Again using equations (214d) and (214e), the entries of the stress tensor can
be written as

σ11 =
klδ

Vc
n̂1n̂1 =

klδ

Vc

δ1

δ

δ1

δ
=

klδ2
1

Vcδ
(217a)

σ12 =
klδ

Vc
n̂1n̂2 =

klδ

Vc

δ1

δ

δ2

δ
=

klδ1δ2

Vcδ
(217b)

σ21 =
klδ

Vc
n̂2n̂1 =

klδ

Vc

δ2

δ

δ1

δ
=

klδ2δ1

Vcδ
(217c)

σ22 =
klδ

Vc
n̂2n̂2 =

klδ

Vc

δ2

δ

δ2

δ
=

klδ2
2

Vcδ
. (217d)

Substitution of equations (217a) and (215a) into the term (σ11ǫ11) of equa-
tion (207) gives

σ11ǫ11 =
klδ2

1

Vcδ

δ2
1

lδ
=

kδ4
1

Vcδ2
. (218a)

Substitution of equations (217c), (215b) and (215c) into the term 1
2σ21(ǫ21+

ǫ12) of equation (207) gives

1

2
σ21(ǫ21 + ǫ12) =

1

2

klδ1δ2

Vcδ

(

δ1δ2

lδ
+

δ1δ2

lδ

)

1

2
σ21(ǫ21 + ǫ12) =

1

2

klδ1δ2

Vcδ
2
δ1δ2

lδ
=

kδ2
1δ

2
2

Vcδ
. (218b)

Substitution of equations (217b), (215b) and (215c) into the term 1
2σ12(ǫ12+

ǫ21) of equation (207) gives

1

2
σ12(ǫ12 + ǫ21) =

1

2

klδ1δ2

Vcδ

(

δ1δ2

lδ
+

δ1δ2

lδ

)

1

2
σ12(ǫ12 + ǫ21) =

1

2

klδ1δ2

Vcδ
2
δ1δ2

lδ
=

kδ2
1δ

2
2

Vcδ
. (218c)

Finally, substituting equations (217d) and (215d) into the term (σ22ǫ22) of
equation (207) gives:

σ22ǫ22 =
klδ2

2

Vcδ

δ2
2

lδ
=

kδ4
2

Vcδ2
. (218d)

Replacing all the terms of equation (207) by equations (218a–218d) gives
for the energy density
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u =
1

2

(

kδ4
1

Vcδ2
+

kδ2
1δ

2
2

Vcδ2
+

kδ2
1δ

2
2

Vcδ2
+

kδ4
2

Vcδ2

)

. (219a)

This equation can be rewritten as

u =
k

2Vcδ2

(

δ4
1 + 2δ2

1δ
2
2 + δ4

2

)

. (219b)

The term between the brackets can be rewritten to give

u =
k

2Vcδ2

(

δ2
1 + δ2

2

)2
. (219c)

By looking at the physical interpretation of the symbols δ1 and δ2 it can be
deduced that the term (δ2

1 + δ2
2) in equation (219c) can be replaced by δ2,

by applying pyhtagoras’ theorem: δ2 = δ2
1 + δ2

2 , see also figure (40).

d1

d2

d

Figure 40: The overlap in the normal and tangential direction, δ1 and δ2, respec-
tively, define the magnitude of the overlap δ by applying Pythagoras’ theorem.

With this simplification, the energy density becomes

u =
k

2Vcδ2

(

δ2
)2

. (220)

Finally, equation (220) can be simplified to give the desired energy density
relation:

u =
kδ2

2Vc
(221)

F



B Algorithms for defining an HCP in Fortran

B.1 Periodic boundaries

The algorithm for creating the Hexagonal Close Packing (HCP) with peri-
odic boundaries with Fortran Code.

1- do k = 1, q

2- do j = 1, p

3- do i = 1, n

4- place a sphere in an odd row of an ‘A’ layer

5- enddo return to line 3 until i = n

6- do i = 1, n

7- place a sphere in an even row of an ‘A’ layer

8- enddo return to line 6 until i = n

9- enddo return to line 2 until j = p

10- do j = 1, p

11- do i = 1, n

12- place a sphere in an odd row of a ‘B’ layer

13- enddo return to line 11 until i = n

14- do i = 1, n

15- place a sphere in an even row of a ‘B’ layer

16- enddo return to line 14 until i = n

17- enddo return to line 10 until j = p

18- enddo return to line 1 until k = q

n = number of spheres in one row (in the x-direction)
p = number of odd/even row pairs
q = number of A/B layer pairs
i = the ith sphere in a row of n spheres
j = the jth odd/even row pair of p row pairs
k = the kth A/B layer pair of q layer pairs
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B.2 Wall boundaries

The algorithm for creating the Hexagonal Close Packing (HCP) with wall
boundaries with Fortran Code.

1- do k = 1, q

2- do j = 1, p

3- do i = 1, n

4- place a sphere in an odd row of an ‘A’ layer

5- enddo return to line 3 until i = n

6- do i = 1, n − 1

7- place a sphere in an even row of an ‘A’ layer

8- enddo return to line 6 until i = n − 1

9- enddo return to line 2 until j = p

10- do j = 1, p − 1

11- do i = 1, n − 1

12- place a sphere in an odd row of a ‘B’ layer

13- enddo return to line 11 until i = n − 1

14- do i = 1, n

15- place a sphere in an even row of a ‘B’ layer

16- enddo return to line 14 until i = n

17- enddo return to line 10 until j = p − 1

18- do i = 1, n − 1

19- place a sphere in the final row of a ‘B’ layer

20- enddo return to line 18 until i = n − 1

21- enddo return to line 1 until k = q

n = number of spheres in one row (in the x-direction)
p = number of odd/even row pairs
q = number of A/B layer pairs
i = the ith sphere in a row of n spheres
j = the jth odd/even row pair of p row pairs
k = the kth A/B layer pair of q layer pairs
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