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Summary

Granular materials have a multiphase behaviour as they can behave like solids, fluids or gases. They ap-
pear in many industrial applications such as food processing or pharmaceutics and also in geotechnical
and -physical phenomena like avalanches. This study considers a test-problem where a granular jet
impinges on an inclined plane resulting in a hydraulic shock enclosing a region of thin fast-flowing flow.
Such an impingement has been studied extensively with experiments and finite volume methods. How-
ever, the applied model lacks the full details of the three-dimensional flow near, e.g. the impingement
zone due to the assumption that the flow satisfies the depth-averaged granular shallow flow equations
in all regions. The discrete particle method (DPM) is able to provide the fully three-dimensional details
for the flow in all regions which is the reason for choosing this method. The simulations are performed
with an open source DPM solver, Mercury, which is developed within the Multi Scale Mechanics group
and modified to capture the problem. This method simulates the movement of individual particles over
many time-steps, where the movement of the particles changes due to collisions with other particles
or objects. The three-dimensional discrete results are interactively examined with an OpenGL based
software package, VMD, which has been extended and adapted for the analysis of DPM. The discrete
results are also coarse grained to obtain continuous fields for all regions including those where the earlier
finite volume results, which are based on the granular shallow flow equations, could not reproduce the
experimental observations.

Visual observations of the discrete results, for the set of parameters used, indicate that the flow
differs from earlier experimental work in the strength of the hydraulic jump and the down-slope velocity
of the flow outside the enclosed region. These differences are closer investigated with the coarse graining
method which is subjected to a sensibility study and checked for compatibility with continuity. Analysis
on the influence of system parameters like the falling height and inclination angle are consistent with
some of the earlier work. However, discrepancies in the shape of the enclosed region are encountered
and the height-velocity graphs confirm the weakness of the hydraulic jump, due to insufficient mass
flux in the system, which is limited by CPU-power. Furthermore, on the theoretical side, dimensionless
numbers such as the Knudsen number are calculated to validate the assumptions made in the derivation
of the granular shallow flow equations and another example of such dimensionless number is the Froude
number which is necessary for the characterisation of the dilute enclosed region.

Irrespective of the stated differences, DPM is able to model such a complex flow on a detailed level.
Nevertheless, for a higher mass flux, the computational time has to be reduced by parallelisation to
describe the flow behaviour in the interesting high mass flux regime. Profiling of the applied solver and a
preliminary study on the application of the OpenMP method on the existing open source solver showed
that this parallelisation method on its own will not result in a significant speed-up. A combination of
MPI and OpenMP parallelisation is therefore advised.

i





Preface

‘Kapot maken is ook maken’ is a Dutch saying which can be roughly translated in ‘Destroying is just
another method of creating’. My love for this saying resulted in the construction of a trebuchet in the
last and biggest practical project within my secondary school. It is a medieval tool of war based on
acceleration of a projectile due to a falling mass. This project enthused me for the bachelor Mechanical
Engineering at the University of Twente. The diploma of this education came three years later and
my interest in numerical studies has grown significantly in those years. Choosing the Multi Scale
Mechanics group was based on my broad interest in both multidisciplinary applied mathematics and
numerical methods which are needed to solve discrete particle simulations.

This thesis is part of my masterprogrammeMechanical Engineering within the University of Twente
and contains a numerical study involving 1, 000, 000 particles. Both the mathematics and the numer-
ical approach merge in the problem and it is close to topics in information technology. During the
nine months project, Thomas Weinhart supervised the project, pointing out interesting phenomena
or numerical methods. Furthermore, he spend a lot of time in reading and improving the thesis for
which I’d like to thank him. Other persons involved are Anthony Thornton and Stefan Luding on the
scientific part of the study and Tessa Jansen and Dinant Krijgsman as my room-mates. Furthermore,
I’d like to thank any other person involved in my educational career which made it possible to combine
work and study within the University of Twente.

Rudi H. A. Fransen, March 2, 2012
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Nomenclature

S. Description Units
B Body forces [ kgm s−2]
D Funnel diameter [m]
D Number of dimensions [−]
Fr Froude number [−]
H Typical flow depth [m]
Hf Falling height [m]
Ii Inertia of particle i [ kgm2]
Kn Knudsen number [−]
L Length of the plate [m]
N Number of particles [−]
P Momentum [ kgm−2 s−1]
‖U‖ Macroscopic speed [m s−1]
V Control volume [m3]
W Width of the plate [m]
X the length of the x domain [m]
Y the length of the y domain [m]
Z the length of the z domain [m]
W Coarse graining function [m−D]
b Basal coordinate [m]
bij Branch vector [m]
c Location of the contact point [m]
d Particle’s diameter [m]
e Coefficient of restitution [−]
f Force [ kgm s−2]
g Gravitational constant [m s−2]
h Height of the flow [m]
k Linear stiffness coefficient [ kg s−2]

Table 1: Latin symbols (1)
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viii CONTENTS

S. Description Units
mi Mass of particle i [ kg]
nz Number of particles along funnel side [−]
n Unit normal vector [−]
p Pressure [ kgm−1 s−1]
ri Position of particle i [ m]
s Surface coordinate [m]
t Time [ s]
tc Collision time [ s]
ti Torque acting on particle i [ kgm2 s−2]
u Velocity component in x direction [m s−1]
u Velocity [m s−1]
v Velocity component in y direction [m s−1]
w Velocity component in z direction [m s−1]
w Coarse graining width [m]
x Coordinate along the plate [m]
x0 Lower limit of the x domain [m]
x1 High limit of the x domain [m]
y Coordinate over the width of the plate [m]
y0 Lower limit of the y domain [m]
y1 High limit of the y domain [m]
z Coordinate perpendicular to the plate [m]
z0 Lower limit of the z domain [m]
z1 High limit of the z domain [m]

Table 2: Latin symbols (2)

S. Description Units
∆ Length of the normal vector [m]
α Funnel angle [−]
γ Linear dissipation coefficient [ kg s−1]
δ Basal angle of friction [−]
δi Dirac delta function for particle i [−]
δij Overlap between particle i and j [ m]
ε Ratio of the typical flow height and plate length [−]
ζ Inclination angle [−]
η Effective viscosity [ s−1]
θ Rotational angle [−]
λ Mean free path [m]
µc Friction coefficient [−]
ν Volume fraction [−]
ρ Density [ kgm−3]
σ Stress [ kgm−1 s−2]
τ Shear stress [ kgm−1 s−2]
φ Internal angle of friction [−]
ϕ Typical volume fraction [−]
ω Frequency [ s−1]
∆t Measurable time increment [ s]
∂V Surface of the control volume [m2]

Table 3: Greek and other symbols



Chapter 1

Introduction

Granular materials have a multiphase behaviour as they can behave like solids, fluids or gases. A
good example is sand: one can walk on the beach (as on a solid) compressing many grains at a
time but the wind can also lift up several grains, forming a cloud. Therefore, different boundary
conditions or loadings require different approaches in solving the given problem or phenomenon. Other
examples exist in industrial applications such as grains within a silo. These grains are able to exert big
stresses perpendicular to the wall due to force-chains whereas a fluid is only able to exert a hydrostatic
pressure. Describing a flow of grains is phenomenological different from the flow of typical fluids due
to, for instance, the presence of friction and existing continuum models need modifications to capture
these flows. Many experiments and simulations are performed on granular materials to understand
their behaviour in all kinds of phases and some examples are shown in [2, 6, 11–13,17, 19, 21, 30].

In general, there are two approaches in the simulation of flowing granular materials. People either
use the finite volume method which is based on the granular shallow flow equations to obtain two-
dimensional results or the discrete particle method (DPM) which solves the flow particle-wise, providing
fully three-dimensional details of the flow. The former has the advantage that it significantly faster
than the latter due to the assumptions made. However, a closure relation for the friction in the system
is needed, it only produces two-dimensional output and boundary conditions must be stated yielding a
decrease of the output’s accuracy. Using a time-depended three-dimensional inflow, such as a funnel,
is therefore not possible and estimated models are used to fit those conditions. The discrete particle
method, on the other hand, is very computational expensive due to the particle-wise solution method,
i.e. Newton’s equations of motion need to be solved with a very small time-step to produce accurate
results. However, the method has the big advantage that the three-dimensional flow is simulated with
all of its details included allowing for a detailed investigation of these complex three-dimensional flows.

This study considers a test-problem where a granular jet impinges on an inclined plane resulting
in a hydraulic shock enclosing a region of thin fast-flowing flow, see figure 1.1. Such a jet is formed
by millions of particles and the problem can thus be considered as a very computational expensive
problem from a DPM point of view. The problem was first studied in 1914, when Lord Rayleigh [18]
investigated an inviscid fluid impinging perpendicular on a horizontal plane, generating a thin, circular
region of rapid radial flow which is surrounded by a static hydraulic shock. Hereafter, many others
extended this problem in several ways from which the investigated fluid properties like viscosity [28] or
surface tension [3] are examples. Replacement of the fluid by a granular material [2] or the replacement
of the horizontal plane by an inclined plane [17] are other examples. On the theoretical side, models are
developed providing an analytic solution for these flows [1, 4, 10, 25]. Particle based methods are also
developed to obtain a fully three-dimensional discrete set of results [20,21,26]. Furthermore, statistical
methods [8, 30] are developed to compare the discrete results to the analytical models.

The granular jet impinging on an inclined plane has experimentally been observed by Johnson and
Gray [17] and these observations are verified in the same work with the finite volume method [29] based
on the closure relations proposed by Pouliquen and Forterre [24] for shallow granular flow. However,
the applied model lacks the full details of the three-dimensional flow near, e.g. the impingement zone
due to the assumption that the flow satisfies the depth-averaged granular shallow flow equations in all
regions. Important details of the flow thus still missing and the discrete particle method [21] is applied
to this problem, resolving the missing details. This method simulates the movement of individual
particles over many time-steps, where the movement of the particles changes due to collisions with
other particles or objects. The resulting flow allows for steady states in which 1) static, 2) sub- and

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Experimental setup [17]

3) supercritical flow can be observed in different parts of the domain which is shown in figure 1.1.
This figure shows the setup of the problem as used by Johnson and Gray for their experiments. The
occurrence of different flow regimes is, among other parameters, dependent on the height of the funnel,
Hf , from which the granular medium is released and the angle, ζ, at which the plane is inclined. For
large drop heights or angles, a teardrop-shaped shock is formed while lower values result in a blunted
shock. Mass flow is controlled by setting the diameter of the funnel, D. Note that the results of the
DPM simulations performed will significantly depend on the mass flow used but that it is limited by
the available CPU power. The main scientific research question is stated as: Up to which level of
detail is DPM capable of simulating a granular jet impinging on an inclined plane, confirming both the
experiments as well the finite volume results from Johnson and Gray [17]? Answering this question
will be done by answering the following set of sub-questions:

• Does the flow profile within the impingement zone as found with the DPM model satisfy the
assumptions made in the granular shallow layer equations?

• Is the DPM method capable of capturing a phenomenon similar to the hydraulic shock observed
in the original work?

• Can both typical solutions, found in the experiments and finite volume results, for the enclosed
region be found with the DPM method?
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• Is the DPM method capable of describing the fully three-dimensional flow at the down-slope edge
of the enclosed region?

• Can the computational time of the DPM method as used in the open source software Mercury [26]
significantly be reduced by applying the OpenMP parallelisation method?

Answering the listed questions requires analysing the mathematical foundation containing the Dis-
crete Particle Method, the derivation of the granular shallow flow equations and the statistical method
as shown in chapter 2. The simulation setup as it is used in the DPM simulations is shown in chapter
3 which is followed by a description of the visualisation method in chapter 4. This method is based
on an OpenGL engine, VMD [16], which is modified to represent DPM simulations in a fully three-
dimensional environment, allowing for detailed inspections of the three-dimensional flow. The outcome
of the simulations is shown in chapter 5 where all aspects of the flow are discussed for multiple setups.
The fifth research question is addressed by a preliminary study on the OpenMP parallelisation method
as shown in chapter 6. All findings are concluded and discussed in chapter 7 which concludes this
thesis.
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Chapter 2

Theoretical background

The first topic described in this chapter is the Discrete Particle Method (§2.1) explaining the numerical
model which predicts the movement of the particles by solving Newton’s second law. Secondly, a
detailed derivation of the depth-averaged shallow granular flow equations (§2.2) is given, explaining
the continuum approach to the problem. Thereafter, a coarse-graining method (§2.3) is worked out
which is applied on the discrete results to find a continuous solution. The section concludes with a
dimensional analysis (§2.4), identifying relevant dimensionless groups.

2.1 Discrete Particle Method

The Discrete Particle Method (DPM) is used to simulate the movement of individual particles or
atoms. It is assumed that a particle’s trajectory may only change due to external forces acting on this
particle. The movement due to these forces can be described by Newton’s equation of motion for the
translational and rotational degrees of freedom [21],

mi
d2

dt2
ri = mir̈i = f

i
, and Ii

d2

dt2
θi = Iiθ̈i = ti, (2.1)

with the massmi of particle i, its position ri and the total force f
i
for the translational set of equations.

The rotational set of equations make use of the particle’s moment of inertia Ii, its rotational position
θi and the total torque ti. Note that underlined variables indicate D dimensional vectors in space.
The forces and torques acting on particle i are described in §2.1.1. The total set of equations form a
set of coupled ordinary differential equations which can be time integrated numerically as described in
§2.1.2.

2.1.1 Contact model

This section gives a detailed description of the applied force model. The force model in a DPM simu-
lation can cover long range interactions like electrostatic, Lennard-Jones or Van der Walls interactions
for nano-scale DPM simulations, or contact forces in grain simulations. Body forces such as gravity,
external magnetic fields or drag forces can also be included. The problem at hand considers sand where
particle interactions can be described by a short range force model and such a model is implemented in
Mercury [26], a DPM simulation tool developed by the Multi Scale Mechanics group of the University
of Twente. The linear spring-dasphot interaction model [7] is such a short range force model where
binary particle collisions are modelled by an elastice and dissipative force. This section starts with a
detailed description of the normal component of this model. The analytical solution of this component
is used to derive a collision time and restitution coefficient which are typical DPM parameters. The
model is extended by modelling forces acting in tangential direction which requires the solving of New-
ton’s equations of motion for both the translational and rotational degrees of freedom of the particles.
Figure 2.1 shows two particles (i, j) interacting by the proposed interaction model in which the springs
and dasphots are clearly visible and a general split of the forces,

f
ij
= fn

ij
+ f t

ij
, (2.2)

5
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Figure 2.1: The contact forces for a particle-particle collision involving normal and tangential springs
and dashpots.

is allowed by superposition. The total forces acting on particle i can be described as,

f
i
= B +

Nm∑

j=1

f
ij
, (2.3)

where B are body forces like gravity. The rotational degrees of freedom can be calculated by solving
the second equation in (2.1) with the use of,

ti =

Nm∑

j=1

bij × f
ij
. (2.4)

Next, the particle-particle contact model is described in normal direction.

Spring-dashpot interaction model in normal direction

The standard spring-dashpot interaction model [21,30] assumes that the particles are soft and spherical.
Furthermore, it is assumed that particle pairs in contact have a single contact point cij . The properties

of particle i are its diameter di, mass mi, position ri(t) and angular velocity θ̇i(t). Each pair of
particles has a relative distance rij = ri − rj , a unit normal vector nij = rij/

∥∥rij
∥∥ and an overlap

δij = (di + dj)/2 −
∥∥rij

∥∥ if the particles are in contact. These definitions make use of the Euclidian
norm which is denoted by ‖A‖ and the definition of the overlap is used to derive,

δ̇ij =
dδij
dt

= − d

dt

∥∥rij
∥∥ = − d

dt

√
rij · rij = −

rij · rij
‖rij‖

= −ṙij · nij . (2.5)

δ̈ij =
dδ̇ij
dt

= −r̈ij · nij , (2.6)

where the Greek subscript α denote the α direction in space on which Einstein’s summation convention
is applied. The normal component of the forces, fn

ij in a one-dimensional system consisting of two
particles can be stated as,

fn
ij = −knδij − γnδ̇ij , if δij ≥ 0 (2.7)

with the linear spring constant kn, linear damping coefficient γn in normal direction. Newton’s third
law (fn

ij = −fn
ji) is applied while substituting (2.7) into (2.1) for both particles,

mir̈i = −kδij − γδ̇ij , (2.8)

mj r̈j = kδij + γδ̇ij . (2.9)

Introducing an equivalent mass meq = mimj/(mi + mj) and subtracting mi×(2.9) from mj×(2.8)
yields,

mimj r̈i −mimj r̈j = (mi +mj)(−kδij − γδ̇ij),

meq δ̈ij = −kδij − γδ̇ij ,

δ̈ij + 2ηδ̇ij + ω2
0δij = 0, (2.10)
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which is the equation of motion for a damped harmonic oscillator [19, 22] with natural frequency
(ω0 =

√
k/meq ) and effective viscosity (η = γ/2meq).

Analytical solution

Equation 2.10 can be solved analytically with the standard solution [22],

δ(t) = A exp (st), δ̇(t) = sA exp (st), δ̈(t) = s2A exp (st). (2.11)

Substitution of (2.11) into (2.10) yields the characteristic equation,

s2 + 2ηs+ ω2
0 = 0, (2.12)

with the solution,

s1,2 = −η ±
√
η2 − ω2

0 , (2.13)

so that the solution of the equation of motion is,

δ(t) = A1 exp

((
−η +

√
η2 − ω2

0

)
t

)
+A2 exp

((
−η −

√
η2 − ω2

0

)
t

)
. (2.14)

This equation can be simplified with the use of ω′ =
√
(η2 − ω2

0) = iω where ω =
√
ω2
0 − η2 and

assuming η < ω0. Substitution yields,

δ(t) = (A1 exp (iωt) +A2 exp (−iωt)) exp (−ηt). (2.15)

The constants A1 and A2 can be found by using the initial conditions δ(0) = 0 and δ̇(0) = u0 meaning
that the contact starts at t = 0 with no overlap and that the initial overlap velocity is equal to u0.
Applying the first initial condition yields,

δ(0) = A1 +A2 = 0, A1 = −A2 = A, (2.16)

which allows the simplification of (2.15) when Euler’s formula is used,

δ(t) = A (exp (iωt)− exp (iωt)) exp (−ηt) = 2iA exp (−ηt) sin (ωt) = A′ exp (−ηt) sin (ωt), (2.17)

where A′ can be found by using the second initial condition,

δ̇(t) = ωA′ exp (−ηt) cos (ωt)− ηA′ exp (−ηt) sin (ωt), (2.18)

δ̇(0) = ωA′ = u0, A′ =
u0

ω
. (2.19)

The solution for the equation of motion can then be written as,

δ(t) =
u0

ω
exp (−ηt) sin (ωt). (2.20)

Spring-dashpot interaction model in tangential direction

The tangential part of the interaction is also based on the assumption that the contact force is described
by linear elastic and dissipative contributions,

f t

ij
= ktδtij + γtṙtij , (2.21)

with the linear tangential stiffness kt and dissipation coefficient γt. The overlap in tangential direction
is given by the implicit relation [30],

δtij
dt

= ṙtij −
(δtij · ṙtij)nij

rij
, (2.22)

and the relative tangential velocity at the contact point ṙtij is given by [30],

ṙtij = ṙij − ṙij · nij − θ̇i × bij + θ̇j × bji, (2.23)
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Figure 2.2: Schematic overview for a particle-wall collision.

with bij the branch vector which is given by bij = −((di − δnij)/2)nij for poly-disperse systems and
reduces to bij = −rij/2 for mono-disperse systems. This branch vector originates in the centre of mass
of a particle, its length is the distance up to the contact point and it is orientated towards this contact
point. Note that tangential forces in particle simulations should represent the particle roughness in
experiments. For rough particles, the model for the tangential forces as shown in (2.21) should be
able to model stick-slip behaviour. Particles will slip on each others surfaces when the ratio between
tangential and normal forces due to this contact is bigger than the friction coefficient µc,

‖f t

ij
‖ ≤ µc‖fn

ij
‖. (2.24)

Wall interactions

Walls can be built from fixed particles, a flat (planar) wall or a combination of the two. Fixed particles
are particles with an infinite mass and therefore, they cannot be moved. These particles cause a normal
overlap as explained in the previous section. A planar wall has the same contact properties as a fixed
particle and an example is shown in figure 2.2. The wall can thus exert both normal and tangential
forces and it is given by all points r which satisfy,

r · n = p, (2.25)

where n is the outward unit normal of the wall and p the position of the wall. The overlap resulting
from a collision with particle i located at ri and the wall is then calculated by,

δi = (ri · n− p)− di
2

if δi ≤ 0. (2.26)

Conclusion

The movement of the particles can now be calculated by solving (2.3) and (2.4) in which the normal and
tangential force contributions are calculated by (2.7) and (2.21) respectively. Furthermore, a collision
time (2.36) and restitution coefficient (2.37) are derived and are used as input parameters in the DPM
solver.

2.1.2 Time integration

Time integration of the equations of motion can be performed by several numerical schemes such as the
Forward Euler, Verlet or Runge-Kutta schemes. The choice of a scheme is based on the needed accuracy
and availability of calculation time. The Forward Euler scheme is not symplectic and hence energy
is not conserved, while the Runge-Kutta assumes that the force model is a smooth function of the
particle’s degrees of freedom. The time integration method is therefore chosen to be the second order
accurate and symplectic Velocity Verlet method which is a variant of the normal Verlet method with
the advantage that the velocities are calculated as well. These velocities are needed in the calculation
of the dissipative forces, influencing the acceleration of the particles. The scheme can be constructed
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with use of Taylor expansions for position and rotational angle at t+∆t up to the second order of ∆t,
where it is only shown for the position here,

r(t+∆t) = r(t) + ṙ(t)∆t+
1

2
r̈(t)∆t2 +O(∆t3), (2.27)

A second Taylor expansion is needed for the velocity at t = t+ 1/2∆t,

ṙ(t+
1

2
∆t) = ṙ(t) +

1

2
r̈(t)∆t+O(∆t2), (2.28)

where the substitution of (2.28) into (2.27) lead to,

r(t+∆t) = r(t) + ṙ(t+
1

2
∆t)∆t+O(∆t3), (2.29)

A more complex scheme is used for the accelerations of the particles by using four additional Taylor
expansions for the velocities,

ṙ(t+∆t) = ṙ(t) + r̈(t)∆t+O(∆t2), (2.30)

ṙ(t) = ṙ(t+∆t)− r̈(t+∆t)∆t+O(∆t2), (2.31)

(2.32)

which can be pairwise subtracted and divided by two to get,

ṙ(t+∆t) = ṙ(t) +
r̈(t) + r̈(t+∆t)

2
∆t+O(∆t2), (2.33)

in which (2.28) can be substituted,

ṙ(t+∆t) = ṙ(t+
1

2
∆t) +

1

2
r̈(t+∆t)∆t+O(∆t2), (2.34)

Mercury [26] applies this time integration method for the position of the particles by first calculating
(2.28) while neglecting higher order terms. This computation is followed by (2.29) and the accelerations
of the particles are calculated as described in §2.1.1. Equation (2.34) is thereafter executed, closing
the cycle.

Collision time and restitution coefficient

The time integration method makes use of a discretized time scale based on a time step ∆t. This
method needs to cover all movements and interactions in the system. A sensible choice for the time-
step is therefore based on analytical solution found in (2.20) which describes the overlap as a function
of time for a one-dimensional collinear collision. It can be found by solving (2.20) for δ(tc) = 0 with
tc 6= 0, thus,

tc = π/ω. (2.35)

Pseudocode 1 Time integration

Require: Initial positions
Begin

for t = t0 → tmax do
ṙ = ṙ + 1

2 r̈∆t

θ̇ = θ̇ + 1
2 θ̈∆t

r = r + ṙ∆t
θ = θ + θ̇∆t
r̈← Force routine
θ̈ ← Force routine
ṙ = ṙ + 1

2 r̈∆t

θ̇ = θ̇ + 1
2 θ̈∆t

t = t+∆t
end for

End
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Extension to other types of collisions and dimensions result in slower collisions from which enduring
collisions are an example. Capturing the full details of the movement of the particle during the collision
is then ensured by a time-step of,

∆t =
tc
50

, (2.36)

which is used in the time integration method described in §2.1.2. The restitution coefficient, which
is used to characterize the granular material, can also be determined by the equations of motion of
the 1D collinear collision. This coefficient is given by the ratio of the relative velocity of the particles
before and after collision [19],

en =
δ̇ij(tc)

δ̇ij(0)
=

u0 exp (−ηtc)
u0

= exp (−ηtc), (2.37)

and describes the momentum loss due to one collision.

2.2 Derivation of shallow granular flow equations

This section shows the derivation of shallow granular flow equations, starting from an arbitrary finite
volume, also known as the control volume. The changes in some quantity F (t) are considered resulting
in Reynolds transport theorem (§2.2.1), which is used to derive Cauchy’s equations for mass (§2.2.2)
and momentum (§2.2.3). From this point on, further assumptions (§2.2.4) are made resulting in a set
of partial differential equations which are subject to several boundary conditions (§2.2.5). Both, the
set of partial differential equations and the boundary conditions are scaled (§2.2.6) and depth averaged
(§2.2.7) resulting in the depth-averaged shallow granular flow equations. The resulting set of equations
consist of several variables which need a mathematical description before the system of equations can
be solved. These descriptions are the so-called closure relations and shown in §2.2.8. The section
concludes with the jump conditions (§2.2.9) which are needed in order to solve discontinuities in the
system.

2.2.1 Reynolds transport theorem

Consider the control volume as shown in figure 2.3, showing an arbitrary finite volume, V (t), which
is part of a certain flow in a cartesian coordinate system, {x, y, z}. This flow is bounded by a fixed
base, b(x, y, t), for example an inclined plate and a free surface, s(x, y, t). Underlined variables in this
figure indicate vectors in three-dimensional space {x, y, z} e.g. the velocity at which the volume is
moving is stated as u = {u, v, w}. Furthermore, u∂V (x, t), denotes the velocity of the boundary and is
a function of place and time. The volume is enclosed by the boundary S(x) and has an outward unit
normal vector perpendicular to this boundary which is denoted as n. The cartesian coordinate system
is chosen such that the x direction is aligned with and the z direction aligned perpendicular to the base
of the system allowing for a curve-linear coordinate system along the base of the plate. The gravity
vector makes an angle ζ with the z axis and it is perpendicular to the y axis. It is assumed that the
flow can be considered as a continuum, which implies that the Knudsen number must satisfy equation
(2.38) with λ as the distance travelled by a particle in-between two collisions and L is a typical length
scale of the system such as the funnel diameter,

Kn =
λ

L
≪ 1, (2.38)

Consider F (t) being the total amount of some quantity f(x, t) within the control volume

F (t) =

∫∫∫

V

f(x, t)dV, (2.39)

having [F ] as units. It is assumed that this quantity f and its time derivative (∂f/∂t) are continuous
within the control volume. The quantity is allowed to change over time due to three effects:

1. Volumetric sinks or sources, Sf , in the control volume
[
Fm−3s−1

]
;

2. Phenomena acting at the surface, ∂V , resulting in a flux vector, Jf ,

over this boundary
[
Fm−2/s−1

]
;
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Figure 2.3: The control volume, V (t), enclosed by S(x) [15]

3. Inflow of the quantity through the boundary, ∂V , of the volume.

Therefore, the total amount of f(x, t+∆t) can be written as,

F (t+∆t) = F (t) +

t+∆t∫

t

[∫∫∫

V

Sf dV −
∫∫

∂V

Jf · n dS −
∫∫

∂V

f(x, t′) [u− u∂V ] · n dS

]
dt′, (2.40)

and rewritten in the general form of a difference quotient (left hand side) and the mean value theorem
(right hand side):

F (t+∆t)− F (t)

∆t
=

1

∆t

t+∆t∫

t

[∫∫∫

V

Sf dV −
∫∫

∂V

Jf · n dS −
∫∫

∂V

f(x, t′) [u− u∂V ] · n dS

]
dt′,

(2.41)
where the mean value theorem is stated as,

1

∆t

t+∆t∫

t

f (x, t′) dt′ = f (x, t+ γ∆t) with 0 ≤ γ ≤ 1. (2.42)

Taking the limit of ∆t → 0, inserting equation (2.39) and bringing the inflow term to the left hand
side results in Reynolds transport theorem under the assumption that the integrands are integrable
and stating,

∂

∂t

∫∫∫

V

f(x, t) dV +

∫∫

∂V

f(x, t) [u− u∂V ] · n dS =

∫∫∫

V

Sf dV −
∫∫

∂V

Jf · n dS. (2.43)

2.2.2 Conservation of mass

Conservation of mass is achieved by setting f(x, t) to ρ(x, t) in equation (2.43) and assuming that there
are no volumetric sources of mass in V nor diffusion of mass across ∂V . This implies that both Sf and
Jf are equal to zero and that the units of the equation are kgs−1, resulting in

∂

∂t

∫∫∫

V

ρ dV +

∫∫

∂V

ρ [u− u∂V ] · n dS = 0. (2.44)
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Analysis of the resulting equation (2.44) is done with the use of Leibniz’s rule (2.45) and the Gauss’ Di-
vergence theorem (2.46) under the assumption that the general quantity, A, is replaced by an integrable
continuous function with continuous time derivative within the control volume.

∂

∂t

∫∫∫

V

A dV =

∫∫∫

V

∂A

∂t
dV +

∫∫

∂V

Au∂V · n dS, (2.45)
∫∫

∂V

A · n dS =

∫∫∫

V

∇ ·A dV. (2.46)

Applying Leibniz’s rule to the first term of eq. (2.44) yields,

∂

∂t

∫∫∫

V

ρ dV =

∫∫∫

V

∂ρ

∂t
dV +

∫∫

∂V

ρu∂V · n dS. (2.47)

Canceling out the moving of the boundary in the surface integral in eq. (2.44), resulting in,
∫∫∫

V

∂ρ

∂t
dV +

∫∫

∂V

ρu · n dS = 0. (2.48)

Applying Gauss’ Divergence theorem (2.46) to the surface integral in (2.48) yields,
∫∫

∂V

ρu · n dS =

∫∫∫

V

∇ · ρu dV. (2.49)

Allowing the gathering of both terms in one integral,
∫∫∫

V

∂ρ

∂t
+∇ · ρu dV = 0. (2.50)

Note that the control volume, V , was chosen arbitrarily. This implies that the integral can only be
zero if the integrand itself is zero for any point in the volume, and thus stating,

∂ρ

∂t
+∇ · ρu = 0. (2.51)

This formulation is only valid of each term in (2.51) exists. Use the definition of the material derivative,

D

Dt
() ≡ ∂

∂t
() + u · ∇(), (2.52)

to get Cauchy’s equation (eq. (2.53)) for mass,

∂ρ

∂t
+∇ · ρu =

∂ρ

∂t
+ ρ∇ · u+ u · ∇ρ,

=
Dρ

Dt
+ ρ (∇ · u) ,

Dρ

Dt
+ ρ (∇ · u) = 0. (2.53)

2.2.3 Conservation of momentum

Conservation of momentum is derived by replacing f in equation (2.43) with the momentum vector
ρu,

∂

∂t

∫∫∫

V

ρu dV +

∫∫

∂V

ρu [u− u∂V ] · n dS =

∫∫∫

V

Sf dV −
∫∫

∂V

Jf · n dS, (2.54)

where the units of this equation are Newton. Therefore, the right hand side terms should represent
volumetric and surface forces yielding,

∂

∂t

∫∫∫

V

ρu dV +

∫∫

∂V

ρu [u− u∂V ] · n dS =

∫∫∫

V

ρB dV +

∫∫

∂V

σ · n dS, (2.55)

in which B is an acceleration vector and σ the symmetric stress tensor consisting of a hydrostatic and
a deviatoric part. Applying Leibniz’s rule (2.45) on the first in (2.55) term yields,

∂

∂t

∫∫∫

V

ρu dV =

∫∫∫

V

∂ (ρu)

∂t
dV +

∫∫

∂V

ρu u∂V · n dS, (2.56)
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cancelling out the moving of the boundary in the second term of eq. (2.55). Applying Gauss’s Diver-
gence theorem (2.46) to both of the surface integrals in (2.55),

∫∫

∂V

ρu u · n dS =

∫∫∫

V

∇ · (ρu u) dV, (2.57)
∫∫

∂V

σ · n dS =

∫∫∫

V

∇ · σ dV, (2.58)

allows the gathering of all left hand side terms in one integral and all right hand side terms in one
integral, resulting in the weak formulation of conservation of momentum:

∫∫∫

V

∂ (ρu)

∂t
+∇ · (ρu u) dV =

∫∫∫

V

ρB +∇ · σ dV. (2.59)

Note that an arbitrarily control volume, V , was chosen, implying that the integral can only be zero if
the integrand itself is zero for any point in the volume and therefore resulting in,

∂ (ρu)

∂t
+∇ · (ρu u) = ρB +∇ · σ, (2.60)

which is only valid if each individual term exist. This equation can be expanded, with the use of the
product rule, in,

∂ (ρu)

∂t
+ u ∇ · (ρu) + ρu · ∇ u = ρB +∇ · σ, (2.61)

and, with the use of the definition of the material derivative (2.52), combined to,

D (ρu)

Dt
+ ρu · ∇ u = ρB +∇ · σ. (2.62)

Cauchy’s equation for mass (2.53) multiplied with u,

u
Dρ

Dt
= −ρu ∇ · u, (2.63)

is used to reduce equation (2.62) and yields Cauchy’s equations for momentum (2.64),

ρ
Du

Dt
= ρB +∇ · σ. (2.64)

2.2.4 Further assumptions

With Cauchy’s equations for mass (2.53) and momentum (2.64) at hand, further assumptions can
be made to obtain a simpler set of equations for the volume described in figure 2.3. Therefore, the
fluidized granular material is assumed to be incompressible (2.65) and homogeneous (2.66) resulting in
a constant density ρ,

Dρ

Dt
= 0, (2.65)

∇ρ = 0. (2.66)

Furthermore, the only body force acting is assumed to be gravity allowing the writing of B as,

B = (g sin ζ, 0,−g cos ζ)T , (2.67)

in which g is the gravitational constant and ζ as defined in figure 2.3. As stated in section 2.2.3, the
stress tensor is symmetric and consists of a hydrostatic and deviatoric part and is therefore of the form,

σ = −pI + σ
Dev

, (2.68)

in which p is the hydrostatic pressure, I the identity matrix and σ
Dev

has six individual compon-
ents: σxx, σyy, σzz, σxy, σxz and σyz resulting from the conservation of angular momentum. The
incompressible assumption reduces Cauchy’s equation for mass to,

Dρ

Dt
+ ρ (∇ · u) = ρ (∇ · u) , (2.69)
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which is equivalent with,

∇ · u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.70)

Note that the vector notation changed to term-wise notation. Applying this notation change to
Cauchy’s equations for momentum yields,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρg sin ζ +

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
− ∂p

∂x
,

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
− ∂p

∂y
, (2.71)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −ρg cos ζ + ∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
− ∂p

∂z
.

These equations can be rewritten with the use equation (2.70) and the chain rule to,

ρ

(
∂u

∂t
+

∂u2

∂x
+

∂

∂y
(uv) +

∂

∂z
(uw)

)
= ρg sin ζ +

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
− ∂p

∂x
,

ρ

(
∂v

∂t
+

∂

∂x
(uv) +

∂v2

∂y
+

∂

∂z
(vw)

)
=

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
− ∂p

∂y
, (2.72)

ρ

(
∂w

∂t
+

∂

∂x
(uw) +

∂

∂y
(vw) +

∂w2

∂z

)
= −ρg cos ζ + ∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
− ∂p

∂z
.

2.2.5 Boundary conditions

As described in section 2.2.1, the flow is bounded by free and basal surfaces. These surfaces must
satisfy z − s(x, y, t) = 0 and b(x, y, t) − z = 0 in which the coordinate z is the height of the flow,
perpendicular to the base. The boundaries are assumed to be impermeable. Therefore, the kinematic
boundary conditions most hold at those surfaces,

D(s− z)

Dt
=

∂s

∂t
+ us ∂s

∂x
+ vs

∂s

∂y
− ws = 0, (2.73)

D(b − z)

Dt
=

∂b

∂t
+ ub ∂b

∂x
+ vb

∂b

∂y
− wb = 0, (2.74)

in which the superscripts denote evaluation at the respective surface. The outward unit normals, ns

and nb, are defined as,

ns ≡ ns∗

∆s
with ns∗ =

{
− ∂s

∂x
,−∂s

∂y
, 1

}
and ∆s ≡ ‖ns∗‖ , (2.75)

nb ≡ nb∗

∆b
with nb∗ =

{
∂b

∂x
,

∂b

∂y
,−1

}
and ∆b ≡

∥∥nb∗∥∥ . (2.76)

Applying a traction-free condition at the free surface and assuming a Coulomb friction model for the
basal surface implies,

σsns = 0, (2.77)

σbnb = tb, (2.78)

in which the traction at the bottom, tb, can be decomposed in a tangential and normal part,

tb = tbt + tbn, (2.79)

where the tangential part satisfies Coulomb friction law and the normal part acts in opposite direction
with respect to the basal normal, nb, yielding,

tbt = −µ ‖tn‖
u

‖u‖ , (2.80)

tbn = −nb
∥∥tbn
∥∥ . (2.81)
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Substitution of (2.81) into (2.79) and taking the dot product between the resulting equation and the
basal normal yields,

−nbtb = −nb
[
tbt − nb

∥∥tbn
∥∥
]
,

−nbtb =
∥∥tbn
∥∥ , (2.82)

allowing the writing of, ∥∥tbn
∥∥ = −nb ·

(
σbnb

)
. (2.83)

Combining equations (2.78)-(2.81) and (2.83) results in the traction boundary condition at the basal
surface,

σbnb =
(
nb · σbnb

)(
µ

ub

‖ub‖ + nb

)
. (2.84)

2.2.6 Dimensionless form

The obtained conservation equations (2.70), (2.72) and the boundary conditions (2.73), (2.74), (2.77)
and (2.84) are scaled with the use of the gravitational constant, g, and the flow depth, H , length, L,
and density, ρ. This allows the writing of a dimensionless aspect ratio ε = H/L assuming H ≪ L and
thus simplification of the equations. The rescaling of the variables is done with the following set of
equations,

{x, y, z} = L{x̂, ŷ, εẑ}, p = ρgHp̂,

{u, v, w} =
√
gL {û, v̂, εŵ}, {σxy, σxz, σyz} = εγρgH{σ̂xy, σ̂xz, σ̂yz}, (2.85)

t =
√
L/g t̂, {σxx, σyy, σzz} = ρgH{σ̂xx, σ̂yy, σ̂zz},

following the scalings as proposed in Bokhove and Thornton [1] extended in three dimensions with the
use of the scalings in Gray et. al. [12]. Variables with a hat denote dimensionless variables and γ is a
scaling factor in the range (0, 1). Applying this set of dimensionless forms to equation (2.70) yields,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
=

√
gL

L

(
∂û

∂x̂
+

∂v̂

∂ŷ

)
+

ε
√
gL

H

∂ŵ

∂ẑ

=

√
gL

L

(
∂û

∂x̂
+

∂v̂

∂ŷ
+

∂ŵ

∂ẑ

)

=
∂û

∂x̂
+

∂v̂

∂ŷ
+

∂ŵ

∂ẑ
= 0. (2.86)

Following the same analogy to achieve the dimensionless form of the conservation of momentum results,
after division by ρg, in,

∂û

∂t̂
+

∂û2

∂x̂
+

∂

∂ŷ
(ûv̂) +

∂

∂ẑ
(ûŵ) = sin ζ + ε

∂σ̂xx

∂x̂
+ εγ+1 ∂σ̂xy

∂ŷ
+ εγ

∂σ̂xz

∂ẑ
− ε

∂p̂

∂x̂
,

∂v̂

∂t̂
+

∂

∂x̂
(ûv̂) +

∂v̂2

∂ŷ
+

∂

∂ẑ
(v̂ŵ) = εγ+1∂σ̂xy

∂x̂
+ ε

∂σ̂yy

∂ŷ
+ εγ

∂σ̂yz

∂ẑ
− ε

∂p̂

∂ŷ
,(2.87)

ε

(
∂ŵ

∂t̂
+

∂

∂x̂
(ûŵ) +

∂

∂ŷ
(v̂ŵ) +

∂ŵ2

∂ẑ

)
= − cos ζ + εγ+1∂σ̂xz

∂x̂
+ εγ+1∂σ̂yz

∂ŷ
+

∂σ̂zz

∂ẑ
− ∂p̂

∂ẑ
.

Applying the scaling for the free, s, and basal, b, surface coordinates,

s(x, y, t) = Hŝ(x̂, ŷ, t̂), b(x, y, t) = Hb̂(x̂, ŷ, t̂), (2.88)

rewriting the outward normal vectors,

n̂s =
n̂s∗

∆̂s
with n̂s∗ =

{
−ε ∂ŝ

∂x̂
,−ε∂ŝ

∂ŷ
, 1

}
and ∆̂s = ‖n̂s∗‖ , (2.89)

n̂b =
n̂b∗

∆̂b
with n̂b∗ =

{
ε
∂b̂

∂x̂
, ε

∂b̂

∂ŷ
,−1

}
and ∆̂b =

∥∥∥n̂b∗
∥∥∥ , (2.90)
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defining the dimensionless stress tensor,

σ̂ =



σ̂xx − p̂ εγ σ̂xy εγ σ̂xz

εγ σ̂xy σ̂yy − p̂ εγ σ̂yz

εγ σ̂xz εγ σ̂yz σ̂zz − p̂


 (2.91)

and the dimensionless friction term in equation (2.84),

µ
ub

‖ub‖ = µ
ûb

∥∥∥ûb
∥∥∥
, (2.92)

allows the scaling of the boundary conditions. The free surface conditions then becomes (2.73), (2.77),

D(s− z)

Dt
=

∂ŝ

∂t̂
+ ûs ∂ŝ

∂x̂
+ v̂s

∂ŝ

∂ŷ
− ŵs = 0, (2.93)

−ε (σ̂s
xx − p̂s)

∂ŝ

∂x̂
− εγ+1σ̂s

xy

∂ŝ

∂ŷ
+ εγ σ̂s

xz = 0,

−εγ+1σ̂s
xy

∂ŝ

∂x̂
− ε

(
σ̂s
yy − p̂s

) ∂ŝ
∂ŷ

+ εγ σ̂s
yz = 0, (2.94)

−εγ+1σ̂s
xz

∂ŝ

∂x̂
− εγ+1σ̂s

yz

∂ŝ

∂ŷ
+ σ̂s

zz − p̂s = 0,

and the basal conditions (2.74), (2.84),

D(b− z)

Dt
=

∂b̂

∂t̂
+ ûb ∂b̂

∂x̂
+ v̂b

∂b̂

∂ŷ
− ŵb = 0, (2.95)

ε
(
σ̂b
xx − p̂b

) ∂b̂
∂x̂

+ εγ+1σ̂b
xy

∂b̂

∂ŷ
− εγ σ̂b

xz =
(
n̂b · σ̂b n̂b

)

∆̂bµ

ûb

∥∥∥ûb
∥∥∥

+ ε
∂b̂

∂x̂


 ,

εγ+1σ̂b
xy

∂b̂

∂x̂
+ ε

(
σ̂b
yy − p̂b

) ∂b̂
∂ŷ
− εγ σ̂b

yz =
(
n̂b · σ̂b n̂b

)

∆̂bµ

v̂b∥∥∥ûb
∥∥∥

+ ε
∂b̂

∂ŷ


 , (2.96)

εγ+1σ̂b
xz

∂b̂

∂x̂
+ εγ+1σ̂b

yz

∂b̂

∂ŷ
−
(
σ̂b
zz − p̂b

)
=
(
n̂b · σ̂b n̂b

)

∆̂bµ

εŵb

∥∥∥ûb
∥∥∥
− 1


 .

2.2.7 Depth-averaged modelling

The spatial coordinate perpendicular to the base, z, is integrated out of the non-dimensional mass
(2.86) and momentum equations (2.87) when these are depth-averaged. To do so, a depth-averaged
variable, f , is defined as,

f =
1

h

∫ s

b

f(z) dz with h = s− b. (2.97)

Note that the hats are omitted from this point on. Furthermore, the general form of Leibniz rule is
needed in the depth-averaging of the mass and momentum equations and is given by (2.98). It requires
that both f and its derivative in α are continuous on the interval [a(α), b(α)],

∂

∂α

∫ b(α)

a(α)

f(z, α) dz =
∂b(α)

∂α
f(b(α), α) − ∂a(α)

∂α
f(a(α), α) +

∫ b(α)

a(α)

∂f(z, α)

∂α
dz, (2.98)

It defines the differential of an integral when the boundaries, a and b, as well as the function, f , depend
on the same variable α. Term wise integration over the dimensionless depth, z, of the dimensionless
mass equation, applying Leibniz rule to the first two integrals, using the dimensionless kinematic
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boundary conditions (2.93), (2.95) and introduction of the, on equation (2.97) based, depth-averaged
variables u and v yields,

∫ s

b

∂u

∂x
+

∂v

∂y
+

∂w

∂z
dz =

∫ s

b

∂u

∂x
dz +

∫ s

b

∂v

∂y
dz +

∫ s

b

∂w

∂z
dz

=
∂

∂x

∫ s

b

u dz − ∂s

∂x
us +

∂b

∂x
ub +

∂

∂y

∫ s

b

v dz − ∂s

∂y
vs +

∂b

∂y
vb + ws − wb

=
∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (2.99)

which is the depth-averaged mass equation. Depth-averaging the momentum equations is done in a
similar way resulting in,

∂

∂t
(hu) +

∂

∂x

(
hu2

)
+

∂

∂y
(huv)−

[
u

(
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
− w

)]s

b

=

h sin ζ + ε
∂

∂x
(h (σxx − p)) + εγ+1 ∂

∂y
(hσxy)−

[
ε
∂z

∂x
(σxx − p) + εγ+1 ∂z

∂y
σxy − εγσxz

]s

b

, (2.100)

for the momentum equation in x direction, and,

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y

(
hv2
)
−
[
v

(
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
− w

)]s

b

=

εγ+1 ∂

∂x
(hσxy) + ε

∂

∂y
(h (σyy − p))−

[
εγ+1 ∂z

∂x
σxy + ε

∂z

∂y
(σyy − p)− εγσyz

]s

b

, (2.101)

for the momentum equation in y direction. Substitution of the kinematic boundary conditions in the
first square bracketed term and the traction boundary conditions in the last square bracketed term of
equations (2.100) yields,

∂

∂t
(hu) +

∂

∂x

(
hu2

)
+

∂

∂y
(hu v) =

h sin ζ + ε
∂

∂x
(h (σxx − p)) + εγ+1 ∂

∂y
(hσxy) +

(
nb · σb nb

)(
µ∆b ub

‖ub‖ + ε
∂b

∂x

)
, (2.102)

for the x direction and equivalent substitutions in the y direction lead to,

∂

∂t
(hv) +

∂

∂x
(hu v) +

∂

∂y

(
hv2
)
=

εγ+1 ∂

∂x
(hσxy) + ε

∂

∂y
(h (σyy − p)) +

(
nb · σb nb

)(
µ∆b vb

‖ub‖ + ε
∂b

∂y

)
. (2.103)

The fact that the length of a granular flow if often much bigger then the height is not exploited at
this point. This means that the fraction ε ≪ 1 and therefore, terms of order greater that ε may be
neglected. Reducing (2.102), (2.103) is allowed when µ = O(εγ) is stated allowing the reduction of
nb · σ nb to only the leading order terms. Consider therefore,

σb nb =





ε ∂b
∂x

(
σb
xx − pb

)
+ εγ+1 ∂b

∂yσ
b
xy − εγσb

xz

εγ+1 ∂b
∂xσ

b
xy + ε ∂b

∂y

(
σb
yy − pb

)
− εγσb

yz

εγ+1 ∂b
∂xσ

b
xz + εγ+1 ∂b

∂yσ
b
yz −

(
σb
zz − pb

)





, (2.104)

and also,
nb · σb nb = σb

zz − pb +O
(
εγ+1

)
. (2.105)

in which an expression for σb
zz−pb is still needed. This expression can be found by neglecting the O(ε)

terms in the momentum equation in z direction,

∂

∂z
(σzz − p) = cos ζ +O(ε), (2.106)
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and integration over depth,
∫ s

b

∂

∂z
(σzz − p) dz =

∫ s

b

cos ζ +O(ε) dz, (2.107)

(σs
zz − ps)−

(
σb
zz − pb

)
= (s− b) cos ζ +O(ε). (2.108)

Note that the leading order term in the dimensionless traction condition at the free surface in z direction
(2.94) is equal to (σs

zz − ps), implying that this term is equal to 0. Furthermore the definition of h
(2.97) is implemented in (2.108), leading to,

σb
zz − pb = −h cos ζ +O(ε). (2.109)

Furthermore, the basal length of the outward normal vector, ∆b, is given by,

∆b =

√√√√1 + ε2

((
∂b

∂x

)2

+

(
∂b

∂y

)2
)

(2.110)

and can be expanded with a Taylor series in,

∆b ≈ 1 +
1

2
ε2

((
∂b

∂x

)2

+

(
∂b

∂y

)2
)

+O
(
ε4
)

(2.111)

= 1 +O
(
ε2
)
. (2.112)

Combining (2.105) with (2.109) and implementation in (2.102) and (2.103) while taking (2.112) into
account and neglecting terms of order εγ+1 and higher, yields,

∂

∂t
(hu) +

∂

∂x

(
hu2

)
+

∂

∂y
(hu v) =

h sin ζ + ε
∂

∂x
(h (σxx − p))− h cos ζ

(
µ

ub

‖ub‖ + ε
∂b

∂x

)
+O

(
εγ+1

)
, (2.113)

∂

∂t
(hv) +

∂

∂x
(hu v) +

∂

∂y

(
hv2
)
=

ε
∂

∂y
(h (σyy − p))− h cos ζ

(
µ

vb

‖ub‖ + ε
∂b

∂y

)
+O

(
εγ+1

)
. (2.114)

The equations above can be further simplified by using the Boussinesq assumption [13] which states
that the tangential velocity components are independent of the depth in a first order approximation,

u = ub +O
(
εγ+1

)
, v = vb +O

(
εγ+1

)
. (2.115)

Furthermore, plug flow is assumed allowing for the factorization of the squared averages,

u2 = u2 +O
(
εγ+1

)
, v2 = v2 +O

(
εγ+1

)
,

∥∥ub
∥∥ =

√
u2 + v2 +O

(
εγ+1

)
= ‖u‖ . (2.116)

The momentum equations can then be further simplified into,

∂

∂t
(hu) +

∂

∂x

(
hu2

)
+

∂

∂y
(hu v) =

h sin ζ + ε
∂

∂x
(h (σxx − p))− h cos ζ

(
µ

u

‖u‖ + ε
∂b

∂x

)
+O

(
εγ+1

)
, (2.117)

∂

∂t
(hv) +

∂

∂x
(hu v) +

∂

∂y

(
hv2
)
=

ε
∂

∂y
(h (σyy − p))− h cos ζ

(
µ

v

‖u‖ + ε
∂b

∂y

)
+O

(
εγ+1

)
. (2.118)

No assumptions are made on the stresses nor on the friction in the system. Solving the set of equations
is thus still impossible. Therefore, closure relations are sought.
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2.2.8 Closure relations

As stated in §2.2.7 the system of equations is still not closed; there are more unknown variables then
there are equations. This section will provide constitutive relations for the friction coefficient and the
stresses closing the system of equations.

Friction coefficient

The basal friction coefficient µ, which relates the normal and tangential forces on a particle is first used
in the definition of the tangential traction (2.80). It is based on the assumption that a Coulomb friction
law is present and thus implies that it is constant and equal to µ = tan δ where δ is the basal angle of
friction. Experiments show that this assumption is not valid on rough beds or high inclination angles.
Pouliquen [23] stated an empirical friction law which was characterized by two angles. The first is the
angle at which the material comes to rest, δ1 and a second at which the material starts to accelerate,
δ2. The limit of δ1 → δ2 results in steady flow which is equal to the original Coulomb friction law.
The software used, Mercury, is not able to handle this Pouliquen friction law and therefore Coulombs
model is used resulting in a friction coefficient of 0.5.

Earth pressure coefficient

Closure relations for the stresses, linking σxx and σyy to σzz together. This topic is still subject of
current research [10] and, in general, there are two common routes to solve the problem. The first route
follows the original Savage and Hutter paper [25], where the Mohr-Coulomb assumption made in (2.80)
is extended to determine a so-called earth pressure coefficient K. It was assumed that the material
behaves as a Mohr-Coulomb material at yield, implying that the stresses in normal and tangential
directions in each plane are related with a Mohr-Coulomb yield criterion,

τ = σ tanφ, (2.119)

where φ is the internal angle of friction. This allows the construction of a Mohr’s circle for plane stress
situations. The earth pressure coefficient relates the limiting normal stresses in x and z directions for
a two dimensional system in a linear way; K = σxx/σzz. This coefficient can be related to the stresses
with the use of the Mohr circle. Hence [1, 10],

K =
2∓ 2

√
1− cos2 φ

cos2 δ
cos2 φ

− 1, (2.120)

with δ the basal angle of friction. The two options (∓) refer to respectively the active and passive
stress states the material can behave. The former implies that the whole material forming a heap and
the latter implies that the bulk material is flowing down the plate. This approach in closing the stress
relation makes rigorous assumptions, resulting in a rather complex but still inaccurate definition for the
earth pressure coefficient K. Extension for a fully three dimensional granular system is also performed
even lowering the accuracy of this coefficient. On the other hand, a simpler model is assumed in the
second route. The flowing granular material is then assumed to behave like an inviscid fluid, implying
K = 1 [1,10]. It is known that this assumption also not holds but Weinhart et. al. [30] showed that the
value for the earth pressure coefficient is approximately 1 with a small dependence on the inclination
angle. Therefore, the closure relation for the pressures will be taken according to the second route,
resulting in,

σxx = σyy = σzz . (2.121)

Equations (2.117) and (2.118) can then be simplified with the use of (2.109). To do so, (2.109) is
depth-averaged resulting in,

σzz − p =

∫ s

b

−h cos ζ +O(ε) dz = −h2

2
cos ζ +O(ε), (2.122)

hence,

σxx − p = σyy − p = σzz − p = −h2

2
cos ζ +O(ε). (2.123)
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Figure 2.4: The control volume separated in two volumes V1 and V2 by a moving surface of discontinuity.
[15]

Substitution of (2.123) into (2.117) and (2.118) while omitting the bars and higher order terms in ε
yields a closed system of equations,

∂

∂t
(hu) +

∂

∂x

(
hu2

)
+

∂

∂y
(huv) = h sin ζ − ε cos ζ

∂

∂x

(
h2

2

)
− h cos ζ

(
µ

u

‖u‖ + ε
∂b

∂x

)
, (2.124)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y

(
hv2
)
= −ε cos ζ ∂

∂y

(
h2

2

)
− h cos ζ

(
µ

v

‖u‖ + ε
∂b

∂y

)
. (2.125)

2.2.9 Jump conditions

The system of equations given by (2.99), (2.124) and (2.125) are based on the assumption that the
flow is continuous and differentiable on the whole domain. At a hydraulic jump, these conditions are
not met since it can be considered as an area of discontinuity. Nevertheless, jump conditions can be
derived from the original set of equations. Figure 2.4 shows a fixed control volume with a moving
surface of discontinuity. The integral form of the continuity equation (2.44) for the two parts of the
volume is given by,

∂

∂t

∫∫∫

V1

ρ dV1 +

∫∫

∂V1

ρu · n dS +

∫∫

S−
d

ρ(u− ud) · nd dS +

∂

∂t

∫∫∫

V2

ρ dV2 +

∫∫

∂V2

ρu · n dS −
∫∫

S+
d

ρ(u− ud) · nd dS = 0, (2.126)

where the last term in both lines represent the change of ρu due to the movement of the surface of
discontinuity. The S−

d and S+
d represent both sides of the surface and the equation can be reduced to,

∫∫

Sd

Jρ(u− ud) · ndK dS = 0, (2.127)

after subtraction of the continuity equation for V1 + V2 and introduction of the jump brackets. Note
that Sd can be an arbitrary part of this surface of discontinuity. Therefore, the integrand itself should
be equal to zero on Sd,

Jρ(u − ud) · ndK = 0. (2.128)
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This equation can simplified under the assumption that the density is constant. Furthermore the
velocity can be made dimensionless with the equations introduced in (2.85) and the equation can be
depth-averaged. Hence,

Jh(u− ud) · ndK = 0. (2.129)

Similarly, the jump condition for the momentum equations is derived as,

Jhu(u − ud) · ndK + J1/2εh2 cos (ζ)Knd = 0. (2.130)
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2.3 Statistics

Coupling of the discontinuous solution method described in §2.1 and the continuous approach described
in §2.2 is done with the use of statistical mechanics. This section starts with the basic idea behind
this coupling method (§2.3.1). Thereafter, it is shown that the definitions stated in this section satisfy
both the continuity equation (§2.3.2) and conservation of momentum (§2.3.3).

2.3.1 Basic idea

Molecular dynamics simulations are based on individual particles and its properties, whereas continuum
simulations like Finite Volume simulations consider for example finite volumes which can be combined
to get the continuous solution. Averaging the particle properties over time and/or space is a way to
translate the discrete results into the continuous domain. This process is also known as coarse-graining
or smoothing of the discrete results. The coarse-graining will be applied on density, momentum and
velocity results from the DPM simulation. These coarse-grained properties can be combined to satisfy
continuity and conservation of momentum. The simplest way to compute those averages is by linking
them to the centre of mass of each particle. A continuous mass density function is the first of these
three quantities which is described in this section. To do so, a singular microscopic mass density [8]
function at the position of the centre of mass of the particle r and time t can then be defined as,

ρmic(r, t) ≡
Nm∑

i=1

miδi(r). (2.131)

which is equal to the sum over all moving particles i of the particle’s mass mi multiplied with a Dirac
delta function located in the centre of mass of particle i, δi(r) = δ (r − ri(t)). The total number of
moving particles is indicated by Nm and fixed particles do not contribute to this density function. This
microscopic mass density is singular due to the use of a Dirac delta function and a non-singular mass
density in terms of a smooth distribution is therefore needed. This smooth distribution is chosen to be
a Gaussian distribution in D dimensions and is given by [30],

W (r − ri(t)) =
1

(
√
2π w)D

exp

(
− |r − ri(t)|2

2w2

)
. (2.132)

This distribution has a variance w2 and it is differentiable on RD. A non-singular definition of the mass
density can be stated with the use of a convolution integral which is, in the general 1D case, given by,

(f ⊗ g)(r) ≡
∫ ∞

−∞
f(r′)g(r − r′) dr′, (2.133)

and after replacement of one of the functions with a Dirac delta function located at ri(t) yields,

(δi ⊗ g)(r) =

∫ ∞

−∞
δi(r

′)g(r − r′) dr′, (2.134)

from which the solution can be found using integration by parts, which is in general given by,

∫ b

a

∂f

∂x
g dx = (fg)

∣∣∣∣
b

a

−
∫ b

a

f
∂g

∂x
dx, (2.135)

where f is replaced by the primitive of the Dirac delta function and g is maintained as an arbitrary
function located at r − r′,

f = P(δi(r′)) ≡ Hi(r
′), g = g(r − r′). (2.136)

The Hi(r
′) is the Heaviside function which is a step function with amplitude 1 and it is located at

r′ = ri(t). The derivative of the Heaviside function is the Dirac delta function by definition. Therefore,
the convolution integral (2.134) can be rewritten as

∫ ∞

−∞
δi(r

′)g(r − r′)dr′ = lim
z→∞

(
g(r − r′)Hi(r

′)

)∣∣∣∣
z

−z

−
∫ ∞

−∞

∂g(r − r′)
∂r′

Hi(r
′) dr′,

= lim
z→∞

g(r − z)−
∫ ∞

ri(t)

∂g(r − r′)
∂r′

dr′,

= g(r − ri(t)). (2.137)
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Figure 2.5: Mass density functions in 1D

A similar analogy for the D dimensional case, indicated by the bars, holds [8] stating that,
∫

δi(r
′)g(r − r′)dr′ = g(r − ri(t)). (2.138)

Knowing this, a smooth mass density can be defined as the combination of the microscopic mass density
(2.131) and the Gaussian distribution (2.132) with the use of a convolution integral,

ρ(r, t) ≡
∫

ρmic (r, t)W(r − r′)dr′ =
∫ Nm∑

i=1

(miδi(r))W(r − r′)dr′. (2.139)

Note that the order of summation and integration may be interchanged due to fact that the summation
is coordinate independent and that the remaining term can replaced by (2.137). This results in a
non-singular definition of the density function. Figure 2.5 shows both the singular microscopic and
non-singular mass density functions for two identical and stationary particles in a one dimensional
system.

ρ(r, t) =

Nm∑

i=1

mi

∫ ∞

−∞
δi(r

′)W(r − r′)dr′ =
Nm∑

i=1

miW (r − ri(t)). (2.140)

Three continuous and non-singular quantities are needed to describe the complete discrete results in
a continuous manner. The mass density function given by (2.140) is the first of the three. Similar to
this function, a coarse grained momentum density, Pα(r, t), can be defined as,

Pα(r, t) ≡
Nm∑

i=1

miuiαW (r − ri(t)). (2.141)

where uiα denotes the particles velocity in each cartesian direction α. The last of the three quantities
is the macroscopic velocity U(r, t). This velocity is a continuous field showing a weighted average of
velocities and it is defined as [8, 30],

Uα(r, t) ≡
Pα(r, t)

ρ(r, t)
. (2.142)

The three macroscopic quantities as described in (2.140), (2.141) and (2.142) of a one dimensional
system consisting of two identical particles with opposite velocities performing a purely collinear elastic
collision are shown in figure 2.6 and 2.7. The figures show the same system at different times: t0 is
the initial situation, t1 is a time during collision, t2 is at the maximum overlap in the collision and t3
is the moment that the particles reach their initial position again. The particles having a radius of
0.2 are initially located at 0.2 and 0.8 and the Gaussian width w is set to 0.1 in figure 2.6 and 0.025
in figure 2.7. Furthermore, the particles have the same mass of 1, stiffness of 60 and velocities ±0.9.
All numbers listed above are purely illustrative and non-dimensional. The macroscopic velocity can be
considered as a weighted average of the particle velocities causing a jump with a finite gradient in this
quantity. This jump will be steeper for distributions which are less wide [14], which can be seen when
comparing figure 2.6 to figure 2.7. A steeper jump is also present when the particles are further away,
this is clearly visible from the sub figures within either of the two figures.
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Figure 2.6: Macroscopic mass, momentum and velocity functions for a 1D system with two identical
particles having opposite velocities for four different times and a Gaussian width of w = 0.1.
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Figure 2.7: Macroscopic mass, momentum and velocity functions for a 1D system with two identical
particles having opposite velocities for four different times and a Gaussian width of w = 0.025.
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2.3.2 Continuity

Continuity (2.51) should be satisfied by the smooth functions shown in (2.140) and (2.141). This can
be shown by differentiating (2.140) to time and (2.141) to rα. This differentiation makes use of,

∂W (r − ri(t))

∂rα
=

∂W (h)

∂rα
=

∂W (h)

∂hβ

∂hβ

∂rα
=

∂W (h)

∂hα
, (2.143)

where Einstein’s summation convention is applied to Greek subscripts (α, β) which denote the spatial
components of the complete argument h = r − ri(t). Furthermore,

∂W (r − ri(t))

∂t
=

∂(rα − riα(t))

∂t

∂W(r − ri(t))

∂hα
= −uiα

∂W(r − ri(t))

∂rα
, (2.144)

is allowed where h = r − ri(t) and (2.143) is used in the last step. Differentiating (2.140) with respect
to time yields,

∂ρ(r, t)

∂t
=

∂

∂t

Nm∑

i=1

miW(r − ri(t)) =

Nm∑

i=1

mi
∂

∂t
W(r − ri(t)), (2.145)

where interchanging the differential and summation operators is allowed by the sum rule of differenti-
ation. The derivative of (2.141) with respect to space yields,

∂Pα(r, t)

∂rα
=

∂

∂rα

Nm∑

i=1

miuiαW(r − ri(t)) =

Nm∑

i=1

miuiα
∂

∂rα
W(r − ri(t)). (2.146)

With these two derivatives at hand and using (2.144), the continuity equation (2.51) can be stated as,

∂ρ(r, t)

∂t
= −∂Pα(r, t)

∂rα
, (2.147)

conservation of mass therefore holds for the statistical averaged DPM results.

2.3.3 Conservation of momentum

The macroscopic functions for density (2.140), momentum (2.141) and velocity (2.142) should con-
serve momentum (2.61) to match the continuous solution. This can be shown by differentiating the
momentum density function (2.141) with respect to time,

∂Pα(r, t)

∂t
=

∂

∂t

Nm∑

i=1

miuiαW (r − ri(t)),

=

Nm∑

i=1

miaiαW (r − ri(t))

︸ ︷︷ ︸
Aα

+

Nm∑

i=1

miuiα
∂

∂t
W (r − ri(t))

︸ ︷︷ ︸
Bα

, (2.148)

where aiα is the acceleration of particle i in α direction. Due to the complexity of both terms, Aα and
Bα, these will be discussed individually. Applying Newton’s second law to Aα yields,

Aα =

Nm∑

i=1

miaiαW (r − ri(t)) =

Nm∑

i=1

fiαW (r − ri(t)), (2.149)

where fiα is the force acting on particle i in α direction. This force can be written as the the summation
of all forces acting on particle i and can be split in three types of forces. The first type is due to pairs
of moving particles fijα where j denotes the second moving particle in the pair. The second sum of
forces is based on particle pairs built with one fixed and one moving particle fw

ikα where k denotes the
fixed particle and the last force is the gravitational body force,

fiα =

Nm∑

j=1

fijα +

Nf+Nw∑

k=1

fw
ikα +migα. (2.150)



26 CHAPTER 2. THEORETICAL BACKGROUND

Note that there is no force when the particle is compared with itself; fiiα ≡ 0 and that Nf is the total
number of fixed particles. The interactions between moving particles and smooth walls is also included
in the middle term with Nw denoting the total number of walls. Implementing (2.150) into (2.149)
yields,

Aα =

Nm∑

i=1

Nm∑

j=1

fijαWi +

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαWi +

Nm∑

i=1

migαWi, (2.151)

where the sum is split over the different contributions on the total force on particle i and where the
notationWi =W(r−ri(t)) is used. Furthermore, the last term can be simplified to ρgα with the use of
(2.140). Swapping indices in the first term in (2.151) and applying Newton’s third law (fijα = −fjiα)
yields,

Aα =

Nm∑

j=1

Nm∑

i=1

fjiαWj +

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαWi + ρgα,

= −
Nm∑

i=1

Nm∑

j=1

fijαWi +

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαWi + ρgα. (2.152)

Adding (2.151) and (2.152) while dividing by 2 results in,

Aα =
1

2

Nm∑

i=1

Nm∑

j=1

fijα(Wi −Wj) +

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαWi + ρgα. (2.153)

From (2.61) one needs to identify a stress tensor in order to achieve a consistent notation of the
conservation of momentum. Therefore, a divergence operator (the ‘∇·’ in (2.61)) is needed within Aα.
This operator can be implemented in Aα by introducing a linear integration method for the two coarse
graining functions Wj and Wi in Aα,

Wi −Wj = −
∫ 1

0

∂

∂s
W(r − ri + srij) ds, (2.154)

with rij = ri−rj and time dependencies omitted. The divergence is found when the chain rule, similar
to (2.143), is applied to (2.154),

Wi −Wj = −rijβ
∂

∂rβ

∫ 1

0

W(r − ri + srij) ds. (2.155)

Note that the divergence is independent of s and can thus be moved in front of the integral. Substitution
of (2.155) into (2.153) yields,

Aα = −1

2

N∑

i=1

N∑

j=1

fijαrijβ
∂

∂rβ

∫ 1

0

W(r − ri + srij) ds+

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαWi + ρgα, (2.156)

where first term represents the contact stresses for pairs of moving particles due to the presence of the
divergence. The middle term can be identified as being the interaction force density IFD [31] which is
constructed in such a way that it satisfies Newton’s third law. This IFD is positioned at the centre of
mass of the moving particles due to Wi which is not the physical location of the boundary. Therefore,
the IFD is moved to the contact points cikα, with the use of rcik = r − cik. Hence,

Wik −Wi = rcikβ
∂

∂rβ

∫ 1

0

W(r − ri + srcik) ds, (2.157)

with Wik =W(r− cik). This movement operator introduces a divergence operator on the interactions
between fixed and moving particles resulting in a contribution to the stress tensor. Rewriting this
movement and substitution in the middle term of (2.153) yields,

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαWi =

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikα

(
Wik − rcikβ

∂

∂rβ

∫ 1

0

W(r − ri + srcik) ds

)
,

=

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαWik −

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαr

c
ikβ

∂

∂rβ

∫ 1

0

W(r − ri + srcik)ds. (2.158)
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from which the IFD is identified as being,

tα =

Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαWik. (2.159)

Aα can then be stated as,

Aα = −1

2

Nm∑

i=1

Nm∑

j=1

fijαrijβ
∂

∂rβ

∫ 1

0

W(r − ri + srij) ds+ ρgα

−
Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαr

c
ikβ

∂

∂rβ

∫ 1

0

W(r − ri + srcik)ds+ tα. (2.160)

In order to identify the second term in the conservation of momentum (2.61), the expression for
Bα needs to be rewritten. Equation (2.144) is therefore substituted into Bα and (2.146) allows the
interchanging of the summation and differentiation operators. Hence,

Bα =

Nm∑

i=1

miuiα
∂

∂t
Wi = −

Nm∑

i=1

miuiαuiβ
∂Wi

∂rβ
= − ∂

∂rβ

Nm∑

i=1

miuiαuiβWi, (2.161)

where the product of the momentum and velocity is present but it is stated in terms of the particle
velocities. The second term in (2.61) is based on the macroscopic velocity U(r, t). Therefore, a
fluctuation velocity [8] is introduced and it relates the velocity of a particle i with the macroscopic
velocity (2.142),

u′
i ≡ ui − U(r, t). (2.162)

Coarse graining this quantity should make it vanish since it only exist in the discrete notation. This
can be proofed by applying the coarse graining function on this velocity fluctuation. Note that the
macroscopic velocity is independent of the particle and can thus be moved in front of the sum,

Nm∑

i=1

miu
′
iWi =

Nm∑

i=1

mi (ui − U)Wi,

=

Nm∑

i=1

miuiWi − U

Nm∑

i=1

miWi,

= P − ρU = 0. (2.163)

Applying the velocity fluctuation to (2.161) yields,

Bα = − ∂

∂rβ

[
Nm∑

i=1

mi(u
′
iα + Uα)(u

′
iβ + Uβ)Wi

]
, (2.164)

where the brackets can be worked out with the fact that the macroscopic velocity is particle independent
and can thus be moved in front of the sum,

Bα = − ∂

∂rβ

[
UαUβ

Nm∑

i=1

miWi + 2Uα

Nm∑

i=1

miu
′
iβWi +

N∑

i=1

miu
′
iαu

′
iβWi

]
. (2.165)

The middle term is equal to zero, see (2.163), and (2.140) used to simplify the first term in order to get
the final expression for Bα. This expression covers the second term in the conservation of momentum
(2.61) and introduces another stress term,

Bα = −∂ (ρUαUβ)

∂rβ
− ∂

∂rβ

N∑

i=1

miu
′
iαu

′
iβWi. (2.166)

With the rewritten versions of Aα and Bα at hand, equation (2.148) can be written as,

∂Pα

∂t
+

∂ (ρUαUβ)

∂rβ
= −1

2

N∑

i=1

N∑

j=1

fijαrijβ
∂

∂rβ

∫ 1

0

W(r − ri + srij) ds+ ρgα

−
Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαr

c
ikβ

∂

∂rβ

∫ 1

0

W(r − ri + srcik)ds+ tα −
∂

∂rβ

N∑

i=1

miu
′
iαu

′
iβWi. (2.167)
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Combining all right hand side terms with a divergence operator allows the identification of the stress
tensor σαβ [8, 14, 30, 31].

σαβ = −1

2

N∑

i=1

N∑

j=1

fijαrijβ

∫ 1

0

W(r − ri + srij) ds

−
Nm∑

i=1

Nf+Nw∑

k=1

fw
ikαr

c
ikβ

∫ 1

0

W(r − ri + srcik)ds−
N∑

i=1

miu
′
iαu

′
iβWi. (2.168)

Note that conservation of momentum is still satisfied when an arbitrary function with a divergence of
zero is added to this stress term. Therefore, it is not an unique definition of stress, see Wajnryb et.
al. [27] and the references therein. Due to the fact that the stress tensor is only used to check the
conservation of mass, and thus only is used with a divergence operator applied to it, it can still be used.
The former term in (2.168) represents the contact stress between two moving particles, the middle term
the contact stress due to particle-boundary interactions and the latter the streaming stress [4] which is
also known as kinetic stress. This streaming stress is associated with the transportation of momentum.
Two extreme cases in a system without boundaries and/or fixed particles can be identified; the stresses
in a very dense system of particles are dominated by the contact stresses since the velocity fluctuations
are expected to be very small. On the other hand, the contribution of contact stresses in very dilute
systems will be very small due the small number of contacts in these systems. The streaming stress
will then be dominant due to the high velocity fluctuations. Identifying the stresses as (2.168) allows
the rewriting of (2.167) into,

∂Pα

∂t
+

∂ (ρUαUβ)

∂rβ
=

∂σαβ

∂rβ
+ ρgα + tα (2.169)

which represents conservation of momentum as shown in (2.61) and implies that the momentum, while
travelling with the flow, may change due to body forces and stresses. Note that this expression differs
from (2.61) due to the presence of the interaction force density term. The momentum in the same
1D example as shown previously will only change due to the contact stresses between the two moving
particles and the streaming stress since there are no boundaries nor gravitational body forces present.
Where the streaming stresses can be solved in a straight forward manner, the contact stresses need
more attention. The contact stresses are analytically solved with the use of the one-dimensional coarse
graining function which is equivalent to the one given in (2.132),

Wi =
1

w
√
2π

exp

(−(r − ri)
2

2w2

)
, (2.170)

and the definition of an error function,

erf(z) ≡ 2√
π

∫ z

0

exp
(
−x2

)
dx, (2.171)

which allows the writing of

erf(b)− erf(a) =
2√
π

∫ b

a

exp
(
−x2

)
dx, (2.172)

and can be applied to the integral within the contact stress if it is stated that,

x =
r − ri + srij

w
√
2

, ds =
w
√
2

ri − rj
dx,

a = x(s = 0) =
r − ri

w
√
2
, b = x(s = 1) =

r − rj

w
√
2
. (2.173)

Hence,
∫ 1

0

W(r − ri + srij) ds =
1

w
√
2π

∫ 1

0

exp

(−(r − ri + srij)
2

2w2

)
ds,

=
1

w
√
2π

∫ b

a

exp

(−(r − ri + srij)
2

2w2

)
w
√
2

ri − rj
dx,

=
1

2(ri − rj)

(
erf

(
r − rj

w
√
2

)
− erf

(
r − ri

w
√
2

))
.
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The stresses for the systems corresponding to figures 2.6 and 2.7 are shown in figure 2.8 (w = 0.1)
and 2.9 (w = 0.025) respectively. Sub figures (a) show the initial setup where the two particles are
far from each other, resulting in zero contact stress (there is no contact) and very small streaming
stresses. The coarse graining functions for the system with wide distributions cause a fluctuation
velocity with respect to the weighted average of particle velocities resulting in a streaming stress, even
if the particles are not in contact. All the other subsequent sub figures of figure 2.9 show a streaming
stress of approximately zero with an absolute maximum of 2.33 · 10−5. These small values are due to
the steepness of the coarse graining functions involved. The wider distributions cause a higher absolute
maximum streaming stress of 1.46. A slightly further evolved time step, which corresponds to figure
2.6(b), is shown in 2.8(b) where the particles are in contact but still moving. Therefore, both contact
and streaming stresses are present. The third sub figure, (c), corresponds to figure 2.6(c) and shows
the system at maximum overlap. The particles do not have any velocity and therefore the contribution
of the streaming stress is exactly zero. Furthermore, the overlap is maximum, resulting in an absolute
maximum contact stress of −8.92 for the wide distribution and −9.86 for the narrow distribution. The
last sub figure shows the system after collision where the particles are back in their initial positions.
When the contact stresses between the individual sub figures within figures 2.8 and 2.9 are compared,
one can see that the latter result in a steeper increase of this stresses. The stresses are distributed over
the contact path between the two particles [14]. This means that wide Gaussian distributions cause
a smooth transition in the contact stress. Narrow distributions result in a stress plateau due to the
steepness of the individual error functions contributing to the contact stresses.

2.4 Dimensional analysis

Scientific problems like the problem at hand, see §3.1 for an overview, are usually described by a
set of dimensionless numbers. These numbers have the advantage that they are scalable and can be
used to determine the characteristics of the system. Interesting dimensionless numbers are sought with
Buckingham’s π theorem in §2.4.1 whereafter the relevant dimensionless numbers are described in more
detail §2.4.2 - §2.4.4.

2.4.1 Buckingham’s π theorem

Buckingham’s π theorem states that D dimensionless groups can be formed based on the number of
fundamental units U and V variables [32] for any problem,

D = V −U. (2.174)

These groups can be found by defining all the independent variables and their corresponding units.
Table 2.4.1 shows the 20 variables with 3 unique units, detailed explanations and typical values for
the variables listed are shown in chapter 3. Buckingham’s π theorem indicates that 17 independent
dimensionless groups can be found. Therefore, typical scaling factors should be chosen for all of the
unique units. The particle’s diameter d is chosen for the length scale,

√
h/g , for the time scale and

ρd3 for the weight scale. The progress of making the dimensionless groups starts with a first guess in

S. Description Units S. Description Units
d Particle’s diameter [m] h Flow height [m]
ρ Density [ kgm−3] u Velocity [m s−1]

tc Collision time [ s] θ̇ Rotational velocity [ s−1]
en Coefficient of restitution [−] λ Mean free path [m]
µc Friction coefficient [−] L Length of the plate [m]
kt Tangential stiffness [ kg s−2] W Width of the plate [m]
γt Tangential dissipation coefficient [m s−1] H Typical flow height [m]
g Gravitational constant [m s−2] ζ Inclination angle [−]
D Funnel diameter [m] α Funnel angle [−]
Hf Falling height [m] nz # particles along funnel side [−]

Table 2.1: Independent variables in the system with their corresponding symbols, descriptions and
units
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Figure 2.8: Streaming, contact and total stresses for a 1D system with two identical particles having
opposite velocities for four different times and a Gaussian width of w = 0.1
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Figure 2.9: Streaming, contact and total stresses for a 1D system with two identical particles having
opposite velocities for four different times and a Gaussian width of w = 0.025.
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which all units are cancelled with the three quantities described above. This results in the following
list of dimensionless groups,

tc√
h/g

, en, µc,
kth

gρd3
,
γt
√
h/g

ρd3
,
D

d
,
Hf

d
,
h

d
,
u
√
h/g

d
,
λ

d
, θ̇
√
h/g ,

L

d
,
W

d
,
H

d
, ζ, α, nz . (2.175)

These groups are independent dimensionless groups which may be combined to form known dimen-
sionless numbers like the Froude’s number. Three of those groups are relevant for the problem at hand
are discussed in the upcoming sections.

2.4.2 Dimensionless height

Several simplifications in the derivation of the granular shallow flow equations are based on the as-
sumption that the ratio of the typical height of the flow and the length of the plate is small. This ratio
is given by,

ε =
H

d
/
d

L
=

H

L
. (2.176)

It is calculated for the system in §5.6 to validate the assumption.

2.4.3 Froude number

The Froude number describes the ratio of the flow velocity and the gravitational wave velocity. When
this number is smaller than 1, Fr < 1, the flow is called ‘sub-critical’ meaning that information in
the flow may propagate in the up-stream direction. Froude numbers bigger then 1, Fr > 1, are called
‘super-critical’ and information cannot propagate in up-stream direction. The speed of the flow ‖U‖
and the gravitational wave velocity

√
gh are used in the calculation of the Froude number. The number

can be constructed with use of the dimensionless groups listed in (2.175),

Fr =
u
√
h/g

d
/
h

d
=

u√
gh

, (2.177)

which is the Froude number for any flow. Extension in terms of a granular flow over an inclined plane
is done by taking the ratio of the dimensionless velocity and the dimensionless reduced gravitational
wave velocity εh cos (ζ) [17].

Fr =
u√

εh cos (ζ)
. (2.178)

The Froude number is used in the characterisation of the kinetic region and the rest of the flow, see
§5.5 where the number is calculated for the system.

2.4.4 Knudsen number

The derivation of the granular shallow flow equations starts with the assumption that the flow is a
continuum. This assumption can be validated with the Knudsen number which describes the ratio of
the mean free path λ and the characteristic length scale in the system. Since this number represents
the chance of a collision in the flow, the characteristic length is chosen to be typical flow height H .
The mean free path, which is needed for the Knudsen number, is calculated from the Enskog collision
rate [20],

λ = tE/u, (2.179)

where tE is the Enskog collision rate and u is the down-slope fluctuation velocity of the particles. The
mean free path can then be written as,

λ =

√
π d

2DDνgD(ν)
, (2.180)

in which D is the number of dimensions in the system, ν the volume fraction of particles and gD(ν)
the height of the first peek in a normalized radial distribution function which is given by [20],

g3(ν) =
1− ν

2

(1− ν)3
, (2.181)
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for a three dimensional system and ν is calculated by,

ν =

Nm∑

i

viWi. (2.182)

The Knudsen number can be constructed from the list of dimensionless groups (2.175),

Kn =
λ

d

d

H
=

λ

H
, (2.183)

and typical values for this number are shown in §5.4.



Chapter 3

Simulation setup

This chapter describes how the physical problem is translated in a simulation. Therefore, an overview
of the problem is described in §3.1. The outcome of the DPM simulation depends on the particle
properties and boundary conditions which are described in §3.2, followed by a description of the funnel
(§3.3) and the bottom plate (§3.4). The method used to remove particles from the system (§3.5)
concludes the section.

3.1 Overview

The problem at hand considers a granular jet, originating from a funnel, which impinges on an inclined
plane. All aspects of the setup are discussed while following the flow, see from figure 3.1. Note that the
cartesian coordinate system is chosen with the x coordinate over the length of the plate. The domain
is then bounded by x0 ≤ x ≤ x1, y0 ≤ y ≤ y1 and z0 ≤ z ≤ z1 where the typical values of the limits
are shown in table 3.1 and based on experience from preliminary simulations. The table also gives the
limits for other system parameters like the falling height Hf , the funnel diameter D and the inclination
angle ζ which originate from Johnson and Gray [17].

3.2 Particle properties

The particles have many properties in order to approach the used sand in the experiments closely.
Some of these properties follow straight-forward from the work performed by Johnson and Gray [17]
of which the particle diameter is a good example. Other properties are based on experience or work
performed by others. Table 3.2 shows a detailed list of the particle properties.

3.3 Funnel properties

The granular jet produced in the experiments provided a steady outflow. Achieving a similar jet is
done by adding a funnel to the system. The top part of this funnel is randomly filled with particles and,
due to the collisions in this funnel, a dense and stable jet is formed. Such a funnel is created with the
use of fixed particles which are placed in circles at a certain height and at the inclination angle of the
plate. The orientation of the resulting outflow is then parallel with the orientation of the gravitational

S. Low limit High limit Motivation
x −0.021m 0.250m Empirical
y 0.000m 0.150m Empirical
z 0.000m 0.069m Empirical
Hf 0.050m 0.075m Johnson and Gray [17]
D 0.015m 0.015m Johnson and Gray [17]
ζ 23.0◦ 29.0◦ Johnson and Gray [17]

Table 3.1: System parameters and corresponding values
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Figure 3.1: Overview of the problem [17]

body force. The funnel outlet diameter D and the falling height Hf originate from the work presented
by Johnson and Gray [17] and are listed in table 3.1. Figure 3.2(a) shows a cross section of the funnel
and the other parameters which define the funnel. These parameters are the funnel origin O, i.e. the
location of the funnel in x and y directions of the plate, the growth angle a and the number of particles
along the side of the funnel nz. The origin is always located in the middle of the y domain and in
the beginning of the x domain. The growth angle is set to 60◦ and nz is set to 25 resulting in enough
collisions to provide the required dense and stable flow.

3.4 Bottom plate

There are multiple options for the creation of the bottom plate. It is possible to use a planar wall as
described in §2.1.1 or fixed particles. The second option is needed when a rough plate is required. In
the case of a granular jet impinging on a plate such a roughness is required and fixed particles are thus
created at z = 0m. These particles can be ordered in a grid or placed randomly, where the gridlike

S. Description Value Units Motivation
d Particle’s diameter 0.006 [m] Johnson and Gray [17]
µc Friction coefficient 0.5 [−] See §2.2.8
ρ Density 1442 [ kgm−3] Boudet et.al [2]
tc Collision time 4× 10−4 [ s] A.R. Thornton
en Coefficient of restitution 0.6 [−] T. Weinhart
kt/kn Ratio of tangential and normal stiffness 2/7 [−] Weinhart et.al [30]
γt/γn Ratio of tangential and normal dissipation 2/7 [−] T. Weinhart

Table 3.2: Particle properties showing the symbol, description, value, units and motivation
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Figure 3.2: Cross section of the funnel and top view of the bottom plate.

placed particles stimulate the flow directions over the grid. Random placed particles are chosen for
this reason, preventing preferred flow directions. A top view of the resulting bottom plate is shown in
figure 3.2(b) where the particles in this plate have the same size as the flowing particles. Furthermore,
a planar wall is placed below the fixed particles to prevent particles falling through.

3.5 Particle removal

Computational time can be significantly reduced when particles which have left the plate are removed.
Therefore, particles flowing out of the x and y domain are deleted. It is thus assumed that no particles
leave the system through the edges of the z domain.
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Chapter 4

Visualisation

The DPM simulation results in a set of data containing all the positions and velocities for all particles at
all saved time-steps. Visualisation of this data is performed with the OpenGL engine Visual Molecular
Dynamics (VMD) as developed by Humphrey et. al. [16]. This tool is specialised in the visualisation
of molecules, proteins and other related objects. An implementation to show DPM results with this
software is developed within this thesis and the functionality of the code is therefore briefly discussed
in this chapter. This implementation allows for a detailed and fully three-dimensional inspection of the
DPM results and it is written as a script in the Tool Command Language (TCL): DPM.tcl. Launching
the programme with the right input variables is performed with a second script, dovmd which is a bash
script. Note that both scripts come with Mercury and are located in the scripts directory (sc/). This
chapter starts with a general overview of the output produced by the DPM solver, Mercury [26] (§4.1)
which is followed by the explanation of the launch script (§4.2) and the pseudocode for DPM.tcl (§4.3).

4.1 Output

The output generated by Mercury [26] contains multiple files, this section briefly describes the purposes
and formats of the files. The main output is split into a .data file (§4.1.1) containing the particle
positions and velocities and a .fstat file (§4.1.2) containing the force information. Other output files
are the .restart file (§4.1.3) and the .ene file (§4.1.4). Note that all files are output by Mercury on
default, but not all are needed in the visualisation.

4.1.1 Data file

The .data file contains all the information regarding the particle positions and velocities. It is a file
in the format of 1 header and N lines per written time-step where N is the total number of particles
in the system. The headers describe the current number of particles, the current simulation time and
the domain. A header for a system with N particles at time t and the typical domain x0 ≤ x ≤ x1,
y0 ≤ y ≤ y1 and z0 ≤ z ≤ z1 looks like: N t x0 y0 z0 x1 y1 z1. Lines regarding particle information
consist of particle specific information, leading to x y z u v w d/2 tx ty tz wx wy wz containing
positions, velocities, radius and angular positions and velocities. This file is loaded into the visualisation
software to position all the particles on all written time-steps in the system.

4.1.2 Fstat file

The .fstat file contains all collisional information in the format of a header followed by a number of
lines containing the collision information. This number of lines is equal to the number of collisions in
the system where each particle-particle collision is written once per particle and particle-wall collisions
once. The header looks like,

# 0 0

# x0 y0 z0 x1 y1 z1

# dmin/2 dmax/2 0 0 0 0

where the current time is written in the first line of the header. The last line contains the minimum and
maximum radii appearing in the system and there are several zeros added additionally which do not
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have a function. The rest of the lines look like: t i j c d ts fn ft un ut containing the current
time t, the involved particles i and j the location of the contact c, the overlap δ, the length of the
tangential spring ts, the force in normal direction ‖fn‖, the remaining force in tangential direction

‖f t‖ = ‖f − fn‖ and the normal n and tangential t unit vectors.

4.1.3 Restart file

The .restart file saves information of the last written time-step containing system information such
as the orientation of the gravity vector or the location of the walls. The location of the particles and
additional properties like the inverse mass and inverse inertia values are also given in this file. The
file can therefore be used to restart a simulation from that point on. The visualisation method uses
this file to determine the number of fixed particles in the system by searching for all particles with an
infinite mass. It also reads the information about the walls which is used to visualise them.

4.1.4 Ene file

The .ene file stores the energy information at each time-step for the whole system. It therefore consist
of the current time, the potential energy, the kinetic energy, the rotational energy, the gravitational
energy and the position of the centre of mass in the system.

4.2 Launch script

The launch script is a bash script in which VMD is launched with the default ‘execute a script’ (-e)
and the ‘read arguments’ (-args) options allowed, see pseudocode 2. The DPM.tcl script is added
to the execute option and the file-name and other input arguments, listed in table 4.3.1, to the input
arguments option.

Pseudocode 2 Launch script

Require: ProblemName, InputArguments
Execute: vmd -e sc/DPM.tcl -args ProblemName InputArguments

4.3 Visualisation script

Loading the discrete data into VMD is done in several stages. The first step reads the input arguments
(§4.3.1) which is followed by the gathering of other parameters from the .restart file (§4.3.2). After
this step, VMD is prepared for the loading of DPM results (§4.3.3)by creating files which VMD can
load on default. The data from the .data file is then loaded (§4.3.4) to reposition all particles at all
loaded time-steps and some visualisation scripts for the particles (§4.3.5) and walls (§4.3.6) conclude
the loading process.

4.3.1 Read arguments

The input arguments which were given by the -args flag in the dovmd script are checked with a simple
if statement. Possible input arguments and their values are shown in table 4.3.1. Note that each
variable has a default value which is not visible to the user.

4.3.2 Gather parameters

With the input arguments and problem-name at hand, it is possible to open the restart file and gather
more parameters. Pseudocode 3 shows the procedure followed for this part of the code.

4.3.3 Prepare VMD

VMD should be prepared for the loading of DPM results. Therefore, a ‘molecule’ is created based
on the PSF file generated by pseudocode 3. Frames are then added with use of the PDB file, see
pseudocode 4. After this step, the ‘molecule’ has Nmax atoms located in the origin, i.e. (0, 0, 0), for all
visualised time-steps where Nmax is the maximum number of particles in the system.
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Argument Possible values
-Fstart Select the start frame v. Value should be: v or end-v with v ∈ N.
-Fend Select the last frame v. Value should be: v or end-v with v ∈ N.
-IA Provide initial angle v of simulation. Value should be: 0.00 < v < 360.00.
-WAIT Provide animation delay v. Value should be: v ∈ R > 0.
-DEBUG Load DPM.tcl in debug mode providing more output.
-NOINFO Load DPM.tcl with as less information as possible.
-NEWRESTART Create restart file based on the last information in time-step. Only works for

mono-disperse systems.

Table 4.1: Possible input arguments and their values.

Pseudocode 3 Get input

Require: RestartFile
Open: RestartFile
Save: All time related and wall information, the current number of particles including the current
number of fixed particles, inclination angle.
Create: ‘Protein Structure File’ (PSF) and ‘Protein Data Bank’ (PDB) files containing the current
number of particles in the origin and stating that no molecular structure exist.

Pseudocode 4 Prepare VMD

Require: PSF and PDB files, ProblemName, Fstart, Fend
Open: PSF file
Add: PDB file to the created ‘molecule’ for Fend−Fstart frames.

4.3.4 Load data

All the information from the .data file is passed into VMD with this function, see pseudocode 5. The
function moves all particles according to the .data file. Note that this data is accessible in VMD by
the atomselect command which is explained in the VMD user’s guide [16].

Pseudocode 5 Read data
Require: DataFile, Fstart, Fend
Open: DataFile
Read and set: fixed particle information and set it for all frames.
Read and set: moving particle information per frame.

4.3.5 Show particles

The particle representations, as one can find in the “VMD>Graphics>Representations” menu, are
split in one for fixed and one for moving particles. The VMD particle variable user is used to separate
moving (user≥ 0), fixed (user−1) and unused particles (user−2) from one-another. Moving particles
are default coloured by speed, fixed particles are black and unused particles are hidden and located in
the origin. The same menu allows the user to reduce the number of particles shown by adding logical
expressions to the selection text. It is also possible to change the colouring method or render quality.

4.3.6 Show walls

The DPM.tcl script is also able to draw (finite) walls. Intersection points of the domain are calculated
based on the normals and positions in the .restart file and used to draw multiple triangles per wall.
By default all walls are hidden but, when the “VMD OpenGL Display” is active, they can be shown
by pressing the w key.
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Chapter 5

Results

The analysis of the output of the simulation based on the set of parameters shown in chapter 3 which
ran for five days containing 500, 000 particles simulating several seconds is shown in this chapter. The
chapter starts with the discussion of the discrete results §5.1 which are compared to the original work by
Johnson and Gray [17]. These discrete results are averaged in multiple directions by the coarse graining
method as described in §2.3. The influence of the coarse graining width is discussed in §5.2 whereafter
the method is applied. A steady state exist in the system, see §5.3, which allows for noise reduction
by time averaging of the results. This is followed by the validation of the continuum assumption with
use of the Knudsen number in §5.4. The enclosed region is identified by the Froude number (§5.5)
whereafter the height of the flow is considered (§5.6). Combination of these two sections yield the
characterisation of the enclosed region in §5.7. Note that the simulations up to this point are based on
a simulation with inclination angle 26.7◦ and effective falling height of 5 cm which are equivalent with
the published set of initial values in the original work. Simulations with different inclination angles
and falling heights form a parameter study §5.8. This parameter study is even further extended to a
highly kinetic flow which is discussed in §5.9.

5.1 Discrete results

Mercury [26] is used to apply the Discrete Particle Method onto the problem at hand. It is shown
in chapter 3 that the inflow of particles is controlled by a set of fixed particles forming a truncated
cone and thus a funnel. This section starts with the analysis of the particle flow through this funnel
(§5.1.1) followed by the impingement of the resulting jet on the plane (§5.1.2). A complete overview
of the discrete results is given in §5.1.3 which is followed by a more detailed look at the hydraulic
jumps in §5.1.4. All the figures are in orthographic projection which is a form of parallel projection to
represent three-dimensional results in two dimensions. The domain of the problem is limited by the
values shown in table 3.1 with the x coordinate increasing in down-slope direction of the plate, the y
coordinate increasing over the width of the plate and the z coordinate increasing in the perpendicular
distance to the plate.

5.1.1 Funnel

The funnel is used to create a dense jet of particles originating from the falling height. A dense outflow is
created when particles have several collisions before the end of the funnel is reached. Figure 5.1 shows
a 7mm deep cross sectional view of the funnel at four different times during the simulation in two
colouring methods. These times represent the times in which the first particles are created (t = 0.03 s),
the first particles are leaving the funnel (t = 0.06 s), a non-dense flow is leaving the funnel (t = 0.12 s)
and the final dense flow is established after t = 0.21 s. One can see that the initial set of particles falls
through the funnel without enough collisions with the funnel and other particles. Therefore, the initial
outflow, shown in sub figures (c) and (g), is faster than the steady dense flow shown in sub figures (d)
and (h). Additionally, the flow is fully formed by the initial set of particles. The dense flow is a mixture
of particles where the particles which are created initially form the outside and the particles which are
created in a later stage form the inside of the jet. This phenomenon is caused by the collisions in the
lower regions of the funnel. These colliding particles decrease both the inflow speed and the effective
inflow area which result in the dense and stable outflow with a velocity of approximately 0.30m/ s.

41



42 CHAPTER 5. RESULTS

This velocity increases to approximately 1m/ s when it reaches the impingement zone due to the falling
height of 5 cm. Such a velocity is equivalent with the jet velocity described by Johnson and Gray [17]
and is in good agreement with the velocity estimated by conservation of energy.

5.1.2 Impingement

The dense flow originating from the funnel which is discussed in §5.1.1 should result in a relatively
smooth transition in the direction of the flow at the impingement zone. Figure 5.2 shows a 5mm
deep cross section of this zone where the x direction is truncated at x = 0.01m and x = 0.05m, the
y direction at y = 0.075m and y = 0.080m and the z direction at z = 0.02m. The centre of the
impingement region can be seen from (d) as being x = 0.03m. From sub figures (a) and (b) one can
see that the initial, non-dense flow causes a lot of particles to bounce off the plate, forming a sparse
cloud. The smooth transition from the direction of the jet, which is the gravity direction, into the
direction of the plate establishes as soon as the jet is dense enough. The impingement zone grows in
the up-stream direction for approximately two seconds while the down-stream flow becomes steady
directly. A proposed flow profile near the impingement region is shown in figure 5.3(a). This profile
originates from Johnson and Gray [17] and it shows that the thickness of the flow in both up- and
down-slope directions is dependent of the jet thickness. Furthermore, a neutral line shows the line
where the particles collide perpendicular with the plate yielding a stagnation point. A corresponding
figure based on the numerical results is shown in figure 5.3(b) where the particles are coloured based
on their down-slope velocity. The stagnation point is the point where the neutral line coincide with
the plate is also visible in the DPM results. It is caused by vertical pressure which is quickly build
up above this point and the resulting flow after the stagnation point is radial. The flow through the
impingement zone for the highly kinetic jet is coarse grained in §5.9.7 where lines of typical flow paths
are added to validate the proposed model.

5.1.3 Plate flow

The flow after impingement forms a hydraulic jump in the down-slope direction of the plate. This can be
clearly seen from figure 5.4 where the system is represented in a orthographic projection perpendicular
to the plate resulting in a so-called ‘top view’ and the particles are coloured based on their speed.
These figures show the system at six times with an interval of 0.6 s. Sub-figure (a) shows a small
hydraulic jump with an open end in the down-slope direction of the flow. A slightly further evolved
solution is shown in sub-figure (b) where the flow has grown in the both the down-slope and over the
width of the plate. This region is formed by the existence of a hydraulic jump which is created in the
up-slope direction of the impingement zone and a zoomed view is shown in figure 5.5. This jump then
propagates in the down-slope direction while closing the region. An enclosed region can be identified
after t = 1.82 s and the shape of the region does not change when time evolves. Therefore, it is expected
that the flow near this region is in a steady state from this point on. One can also see that the flow
further down the plate is not in steady state; the flow still widens. The characteristics of the enclosed
region are discussed based on the coarse grained results in which it is more distinguishable and shown
in §5.7.

5.1.4 Hydraulic jump

The flow in the enclosed region is discharged into a zone of lower velocity yielding the abrupt conversion
of kinetic energy into potential energy. Theoretically, this conversion yields a sudden raise in the height
of the flow which is known as a hydraulic shock. Finite volume methods can calculate these shocks
while DPM cannot simulate infinite gradients. A hydraulic jump is therefore sought which has a finite
gradient at the location of this discharging. Figure 5.6 shows 1mm deep cross sectional views at
four different times of the plate located at x = 0.04m. This location corresponds with a slice of the
place which is located 1 cm in down-slope direction of the impingement location. Moving particles
are coloured by their speed and the fixed particles are hidden. The figures show the establishment of
such a jump with respect to time. Initially, see sub-figure (a), several airborne particles flow over the
plate and eventually land (b) to form the base of the slow moving flow. From this point on, the fast
flowing region then discharges into the slower flow allowing the hydraulic jump to grow in both width
and height. The jump stops growing after t = 0.97 s for this location on the plate. One can see that
the jump is not as steep as it is predicted by the finite volume results from which a typical example
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Figure 5.1: Cross sectional views of the flow through the funnel for 0.075m < y < 0.082m. Fixed
particles forming the funnel are coloured black and the moving particles are coloured based on speed in
(a)-(d) increasing from ‖U‖ = 0m/ s (blue) to ‖U‖ ≤ 0.25m/ s (red). The moving particles in figures
(e)-(h) are coloured by moment of creation where blue particles correspond to t = 0.00 s and red to
t = 0.21 s.
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Figure 5.2: Cross sectional view of the impingement zone at four times for 0.075m < y < 0.080m.
Fixed particles are coloured black while moving particles are coloured by speed where red corresponds
to a speed of 2m/ s, green to a speed of 1m/ s and blue to a speed of 0m/ s.
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(a) Proposed flow profile for the impingement region
by Johnson and Gray [17]. The dashed line indicate
the location of the stagnation point.
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(b) Cross sectional view of the impingement zone at
t = 2.97 s where the blue particles correspond to u ≤
−0.05m/ s and the red ones to u ≥ 0.05m/ s. Green
particles correspond thus to u = 0m/ s.

Figure 5.3: Flow profiles for the impingement region.
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Figure 5.4: The top view of the numerical outcome of the flow over the plate at six different times
where blue particles correspond to ‖U‖ = 0m/ s and red particles to ‖U‖ = 1m/ s.
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is shown in figure 5.7. This figure shows the height of the flow for a similar cross section. Further
analyses, based on the coarse grained results, is needed to confirm the difference in the strength of the
jump and is shown in §5.6.

5.1.5 Conclusion

Section 5.1.1 showed that the funnel is being filled such that the outflow is a dense and stable flow which
is required in order to mimic the experiments. It is not likely that the less dense initial outflow has
an influence on the simulation results in a later stage. The inspection of the flow at the impingement
zone confirmed this hypothesis since the resulting shape of the flow is equivalent with the, by Johnson
and Gray, proposed flow profile near the impingement zone. The transition caused a hydraulic jump
which is the base for the final flow profile over the whole plate. Section 5.1.3 showed the flow over the
plate where an enclosed region of thin fast-flowing flow is formed causing a hydraulic jump (§5.1.4).
The encountered jump differs from the finite volume results in the strength of the jump. Comparable
coarse grained results for the hydraulic jump are shown and further discussed in §5.6.

5.2 Coarse graining parameters

Applying the statistical method as described in §2.3 is only as accurate as the coarse graining width
w. The influence of individual particles in a sparse cloud of particles is bigger when this width is small
since individual particles then have a high contribution to the averaged solution. On the other hand,
other phenomena with steep gradients are smoothed out when this width is chosen to big. In order
to achieve the right accuracy, a sensibility study is performed on the statistical method resulting in
a coarse graining width which is used in the rest of the thesis. This study shows three cases for the
coarse graining width w = 0.00500m, 0.00250m and 0.00125m which correspond to w = 8.33d, 4.17d
and 2.08d respectively. The typical volume fraction ϕ is determined in §5.2.1 which is needed in the
calculation of the height of the flow. The two sections thereafter consider this height h (§5.2.2) and
the macroscopic speed ‖U‖ (§5.2.3). A conclusion is drawn on the coarse graining width is drawn in
§5.2.4.

5.2.1 Typical volume fraction

The incompressible assumption made in §2.2.4 should hold in the steady uniform flow which is formed
outside the enclosed region. This assumption implies that the height of the flow h can be characterised
by introducing a typical volume fraction ϕ based on the length of the z−domain Z,

h = Zν/ϕ, (5.1)

where ν is the depth-averaged volume fraction which is computed by depth-averaging the volume
fraction ν,

ν =

Nm∑

i

viWi, (5.2)

where vi is the volume of particle i. From (2.122) it is known that,

σ̂zz − p̂ = − ĥ2

2
cos ζ +O(ε), (5.3)

should hold for the dimensionless system of equations. Note that dimensionless variables are indicated
with a hat. However, the statistics are performed on the non-dimensionless results and an equivalent
relation is found by back-substitution of the scale relations proposed (2.85) into (5.3) where H is
replaced by Z. Furthermore, the first order error term is neglected, hence,

σzz − p

ρgZ
= − (h/Z)2

2
cos ζ. (5.4)

The density used in this equation is the bulk density which is computed by ρ = ρpϕ, i.e. it is assumed
that the steady uniform flow has a constant density. A relation for the typical volume fraction is found
by substituting (5.1) into (5.4). The notation for variables with dimensions is omitted, yielding,

ϕ =
−ρpgν2Z cos (ζ)

2(σzz − p)
. (5.5)
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Figure 5.5: Zoomed top view of the enclosed region in which the moving particles are coloured by speed
where blue particles correspond to a speed ‖U‖ = 0m/ s and red particles to ‖U‖ = 1m/ s. Fixed
particles are hidden.
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Figure 5.6: Cross sectional views from x = 0.040m up to x = 0.041m for the hydraulic jump in the
system. Blue particles correspond to ‖U‖ = 0m/ s and red particles to ‖U‖ = 1m/ s. Fixed particles
are hidden.

Figure 5.7: Cross sectional view of a typical height solution from the finite volume results in the original
work [17].
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Figure 5.8: Contour plot of the typical volume fraction where the funnel is neglected and the coarse
grained function is evaluated each 0.001m in both x and y directions. The average value of the typical
volume fraction is calculated by the values in the boxed area where the box is given by 0.10m ≤ x ≤
0.15m, 0.05m ≤ y ≤ 0.10m.

This typical volume fraction is, due to the density assumption, only valid in regions of steady uniform
flow [30]. Figure 5.2.1 shows a high resolution graph in which the typical volume fraction for a part
of the domain is shown. The value is approximately constant in the black boxed area while it is not
in the highly kinetic area. The average value of the typical volume fraction within the boxed area is
0.516 which is in agreement with values found in Weinhart et al. [30] for thin steady uniform flows.
This value is therefore used in the calculation of the height of the flow.

5.2.2 Height

The height is defined as the height of the flow perpendicular to the plate and it can be calculated, see
Eq. (5.1), under the assumption that the typical volume fraction ϕ in each cell is constant as explained
in §5.2.1. Such a cell is fully determined by the size of the problem and the number of evaluated points
in this system. Coarse grained flow heights at t = 2.97 s for the three coarse graining widths are shown
in figures (a), (c) and (e) within figure 5.9. The small red region in the left side of the graph is due to
the influence of the funnel. Further down the plate the enclosed region of thin flow can be identified
and a steady avalanche is formed after this enclosed region. The coarse graining width has an influence
on the visible gradients near the boundaries of the enclosed region which can be seen when the figures
belonging to w = 0.0025m and w = 0.0050m are compared. The lowest value of the height in the
enclosed region is also dependent on this coarse graining function.

5.2.3 Speed

The coarse grained velocity U is calculated by the ratio of the coarse grained momentum and the coarse
grained density, see (2.142). A macroscopic speed, where fluctuations of the velocity component in z
direction are neglected, is then defined as,

‖U‖ =
√
U2
x + U2

y , (5.6)

and figures (b), (d) and (f) within figure 5.9 show the speed at t = 2.97 s. One can see that the
influence of the coarse graining width within the enclosed region is negligible when w ≤ 0.0025. The
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(a) Contour plot of the height, w = 0.00125m

x [m]

y 
[m

]

 

 

0 0.05 0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 m/s

0.1 m/s

0.2 m/s

0.3 m/s

0.4 m/s

(b) Contour plot of the speed, w = 0.00125m
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(c) Contour plot of the height, w = 0.025m
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(d) Contour plot of the speed, w = 0.025m
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(e) Contour plot of the height, w = 0.05m
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(f) Contour plot of the speed, w = 0.05m

Figure 5.9: Typical coarse grained results for the projected and scaled height and velocity where the
coarse grained values are evaluated with a grid spacing of 0.01m in both x and y directions.

down stream results do not significantly change under the influence of the coarse graining width which
is due to the many particles in that region. However, airborne particles have a high speed and are the
only particles in several regions of the flow. This can be seen by the several high velocity regions on
the sides of the plate and their influence localises with a smaller w.

5.2.4 Conclusion

The typical volume fraction of 0.516 is calculated in §5.2.1 and showed good agreements with predictions
in Weinhart et al. [30]. The value is used in the calculation of the coarse grained height and speed of
the flow. From the first of these, one could conclude that a coarse graining width of w ≤ 0.0025m is
small enough to capture all the details of the height of the flow. The graphs of the speed confirmed
this conclusion, especially when the influence of w within the enclosed region is considered. The few
airborne particles causing the high speed peaks in the speed graphs can be neglected since they are
not considered to be part of the flow. A coarse graining width of w = 0.0025m is therefore chosen in
further analysis of the results.
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5.3 Steady state

The flow down the plate should form a steady state as it is implied in Johnson and Gray [17]. This
section starts with the definition and general idea of a steady state §5.3.1. Thereafter, the growth of
the number of particles in the system with respect to time is investigated in §5.3.2. A time-averaged
solution for the height h and macroscopic velocity u are then compared to the solution at t = 2.97s
(§5.3.3).

5.3.1 Definition of steady state

A steady state for some quantity Q is achieved when the change of this quantity with respect to time
is zero, or mathematically,

∂Q
∂t

= 0. (5.7)

Such a steady state normally arises after a transient state in which the problem is initialised. The
problem at hand has such a transient state and from figure 5.4 it is estimated that solutions near the
enclosed region stabilise around t = 2s and that the flow further down the plate does not reach a steady
state for the time it is simulated. This time will be taken in §5.3.3 where a time-averaged solution is
compared to the solution at the last time step.

5.3.2 Number of particles

The total number of moving particles in the system is a quantity which should become steady implying
that accumulation of particles should not happen. The widening of the flow, which can be seen from
figure 5.4, indicate that accumulation takes place in several parts of the system after three seconds
of simulation. A sub-domain, which stops after the kinetic regime, is therefore considered in the
calculation of the mass flow. This sub-domain ranges over the full width of the plate and up to
x ≤ 0.15m in the length of the plate. In general, the mass flow should satisfy,

Ṅacc = Ṅin − Ṅout, (5.8)

where the number of inserted particles until time t, Ṅin(t) should be equal to the outflow Ṅout(t) and
accumulation Ṅacc(t) of particles. The rate of accumulation of particles should be zero in a steady state
system. This yields that the inflow rate should be equal to the outflow of particles in the sub-domain
from which the inflow can be derived from the total number of particles in the system which is shown in
figure 5.10(a). One can see that the initial influence of a non-dense flow through the funnel is negligible
and that a linear growth of particles is thereafter established. The linear growth rate is equal to 95, 500
particles per second for the funnel with a diameter of 0.015m which can be seen from the first plateau
in figure 5.10(b) where the time derivative of figure 5.10(a) is shown. This time derivative can also be
interpreted as the accumulation of particles and the drop in this curve is due to the outflow of particles
over the edges of the domain in x and y direction. The remaining value of the curve at t = 3 s confirms
that a steady state in the whole domain does not exist. Note that the mass flow in experiments is
given by a scaling law [2],

Q =
0.29πρp

√
g D5/2

mp
, (5.9)

yielding a inflow of approximately 700, 000 particles per second for the same conditions. The number
of particles flowing through cross sectional areas over the length and width of the plate per unit time
is given by,

Ṅx
out(x) =

∫ y1

y0

∫ z1

z0

Px

mp
dy dz, (5.10)

Ṅy
out(y) =

∫ x1

x0

∫ z1

z0

Py

mp
dx dz, (5.11)

using the momentum P in the respective flow direction and mp as the mass of a single particle. Figures
5.10(c) and 5.10(d) show the particle flow per second at t = 2.97s where the outflow of particles is
calculated for area’s over the width and length of the plate respectively. The first figure shows that the
particles are moving in ±y direction depending on their y coordinate with respect the the y coordinate
of the impingement zone which is yimp = 0.075m. It also shows that the outflow of particles through
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Figure 5.10: Time dependency of the number of particles and the flow of particles over the boundaries
in which dashed lines show the 0 line.

the domain edges, y = 0.00m and y = 0.15m, is negligible. On the other hand, figure 5.10(d) shows
the flow of particle in the x domain where the outflow of particles through x = 0.15m is calculated by
taking the average flow in the range of 0.05m ≤ x ≤ 0.15m which corresponds to the steady uniform
flow discussed in §5.1. This yields an outflow of approximately 96, 500 which overestimates the inflow
by 1% which is acceptable. Further analyses of the possible steady state within the sub-domain is
shown in 5.3.3 where the resulting flow is compared with the time averaged flow.

5.3.3 Time averaged statistics

A second check is based on time averaging of the coarse grained results in which the results at t = 2.97 s
are compared the time averaged results of the last second in the simulation. Figures (a) and (c) within
figure 5.11 show top views of the sub-domain in which the height and velocity are plotted at t = 2.97 s.
The coarse graining width used to produce these graphs is w = 0.0025m and and one can distinguish
the kinetic regime by the low height and high velocity values. Figures (b) and (d) show similar graphs
but now based on the time-averaged solution. Even though the height graphs ((a) and (b)) are very
similar, significant differences can be identified when the velocity graphs ((c) and (d)) are compared.
These differences are due to the airborne particles which have a high influence on the time-averaged
statistics. The deviation of the final solution with respect to the time-averaged solution is then given
by,

hE =
|ht=2.97 − havg|

havg
∗ 100%, ‖U‖E =

|‖U‖t=2.97 − ‖U‖avg|
‖U‖avg

∗ 100%, (5.12)



5.3. STEADY STATE 51

x [m]

y 
[m

]

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 mm

1 mm

2 mm

3 mm

(a) Height of the flow at t = 2.97 s

x [m]

y 
[m

]

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 mm

1 mm

2 mm

3 mm

(b) Time-averaged height of the flow

x [m]

y 
[m

]

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 m/s

0.1 m/s

0.2 m/s

0.3 m/s

0.4 m/s

(c) Speed of the flow at t = 2.97 s

x [m]

y 
[m

]

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 m/s

0.1 m/s

0.2 m/s

0.3 m/s

0.4 m/s

(d) Time-averaged speed of the flow

x [m]

y 
[m

]

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 %

5 %

10 %

15 %

20 %

(e) Relative difference for (a), (b)

x [m]

y 
[m

]

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 %

5 %

10 %

15 %

20 %

(f) Relative difference for (c), (d)

Figure 5.11: Coarse grained height and speed contour plots for the sub-domain in which cells with less
than 10 particles are neglected in (e) and (f). The values are evaluated with a grid spacing of 0.01m
in both x and y direction.



52 CHAPTER 5. RESULTS
y 

[m
]

x [m]

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.04

0.06

0.08

0.1

0.12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Kundsen number where the colour indicate the value
of the Knusen number.

y 
[m

]

x [m]

 

 

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0

0.5

1

1.5

2

(b) Froude number where the colour indicates the value of
the Froude number and the black line shows Fr = 1.

Figure 5.12: Top view of the Knudsen and Froude numbers in the flow for the sub-domain. The
functions are evaluated on a x, y grid with a uniform spacing of 0.001m.

and the corresponding values are shown in figures (e) and (f) within figure 5.11. Note that cells with
less then 10 particles are neglected in the calculation of the differences where this number is calculated
for mono-disperse systems by,

Ncell =
vcell

vparticle
ν =

6

πd3
X

nx

Y

ny

Z

nz

Nm∑

i=1

viWi, (5.13)

in which nx, ny and nz denote the number of cells in the respective direction, X , Y and Z the length
of the corresponding domain edges and vi the volume of particle i. One can see from the figures that
the error in the enclosed region is lower then 10% for both graphs and that differences bigger then 20%
occur on the boundary of flow. The former confirms the hypothesis that the enclosed region reaches a
steady state within two seconds of simulation where the latter indicates that the flow is still widening.

5.3.4 Conclusion

This section discussed the definition of a steady state, the growth of the number of particles with respect
to time and a comparison of the final solutions for height and speed with respect to a time-averaged
solution. Even though the presence of accumulation of particles in the system it is concluded that a
sub-domain exist in which the inflow of particles is balanced by the outflow of particles. Moreover,
time-averaged solution strengthens the hypothesis that the enclosed region reaches a steady state.
However, the flow within the sub-domain is still widening implying that the slower regions are not in
a steady state yet. The results from this section allows the usage of time-averaged and coarse grained
results for the enclosed region, causing a reduction of time dependent noise in the dense regions of the
flow.

5.4 Knudsen number

The derivation of the granular shallow flow equations is based on the assumption a continuum is con-
sidered. The Knudsen number, as given in (2.38) and (2.183), is a measure to validate this assumption.
It is defined as the ratio on the mean free path of a particle, which is the distance in-between two
collisions, and the typical length scale, i.e., the maximum distance a particle may travel. The number
should satisfy the condition Kn≪ 1 for continuous collisional flows and the results for the sub-domain
are shown in figure 5.12(a). The figure clearly identifies that the flow in the whole domain can be
considered as a continuum since it satisfies the stated condition in all regions containing a significant
amount of particles.
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(a) Contour plot of the Froude number for the sub-
domain. The black line shows Fr = 1 and stream lines
based on the velocity fields in x and y directions are plot-
ted on top in white. The values are evaluated on a uniform
x, y grid with a spacing of 0.001m

(b) Blunted shock as predicted by the finite volume results
[17] where the shading indicates the enclosed region of
super-critical flow, the grey lines streamlines and the thick
black line the location of the jump

Figure 5.13: Comparison of DPM and finite volume results yielding a blunted shock.

5.5 Froude number

The Froude number is defined as the ratio of the flow velocity over the gravitational wave velocity as
shown in (2.178). Therefore, it can be seen as a measure to distinguish ‘sub-’ from ‘super’-critical flow
where the former corresponds to Fr < 1 and the latter to Fr > 1. The number identifies regions in
which any kind of information can propagate in up-stream direction, i.e. the gravitational wave velocity
is bigger than the flow velocity which is necessary for the formation of hydraulic jumps. The enclosed
region is identified with a line corresponding to Fr = 1 since it is completely surrounded by a hydraulic
jump. This jump identifies the places where the type of the flow changes from super- to sub-critical
or visa versa. Figure 5.12(b) shows the top view of the sub-domain where the colour corresponds with
the Froude number. Furthermore, the level at which the number is equal to unity is shown by a black
line indicating the separation of the different types of flow. White area’s correspond to regions without
particles and there are numerical artefacts present in area’s with low density. Another figure, where
typical particle paths originating near the impingement zone are added to the top view of the Froude
number, is shown in figure 5.13(a). One can see that the enclosed region is similar to the blunted shock
as predicted by the finite volume results, see figure 5.13(b) and that the flow direction is radial within
the enclosed region. Even though the three-dimensional trench, which is seen in the experiments and
finite volume results, is absent in the down-stream end of the enclosed region, similarities with the finite
volume results can be seen in the direction of the flow at this location. The particle paths through the
middle of the blunted shock are parallel where the others show a diverging behaviour similar to the
streamlines shown in figure 5.13(b).

5.6 Flow Height

One of the important characteristics of the flow is its height since this quantity is directly related to
the strength of the hydraulic jump. Section 5.1.4 showed cross sections of the flow 1 cm in down-slope
direction after the impingement zone in which the jump was visible but not as strong as predicted by
Johnson and Gray, see figure 5.7. Top views of the height are shown in figure 5.9 where they were
used to determine the coarse graining width. This section shows a top view of the height within the
sub-domain in §5.6.1 and cross sectional views in §5.6.2 to determine the characteristics of the hydraulic
jump. Conclusions are drawn in §5.6.3.

5.6.1 Top view

Figure 5.14(a) shows a top view of the sub domain in which the enclosed region is clearly visible. The
resulting shape of the region differ from the one found by the finite volume results in the sharpness of
the closing end of the region. The finite volume results predicted a so-called teardrop shock for the set



54 CHAPTER 5. RESULTS

y 
[m

]

x [m]

 

 

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 mm

1 mm

2 mm

3 mm

4 mm

(a) Top view of the height of the flow for the sub-
domain where height is shown by colour and the boxed
area is used to calculate the average height of the flow
in that area.

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.5

1

1.5

2

2.5

3

3.5

h 
[m

m
]

y [m]

 

 

0.07
0.065
0.06
0.055
0.05
0.045
0.04

(b) Cross sectional views of the height of the flow over
the width of the plate in the range 0.04m ≤ x ≤ 0.07m

Figure 5.14: Height figures

of parameters used which was confirmed by the experiments but not by the DPM results. Nevertheless,
a hydraulic jump can be seen which is closer investigated in §5.6.2 where cross sections of the flow in the
enclosed region are shown. The figure also shows that the average height of the flow inside the enclosed
region is 1.95mm with a minimum of 0.86mm at x = 0.0595m, y = 0.075m. The height outside the
enclosed region settles to a value of 3.52mm on average in the boxed area. Corresponding values for
the original work are estimated as 1mm within the enclosed region and 14mm in the steady flow. The
DPM results calculate the height within the enclosed region too high while it is underestimated in the
steady flow. Both cases are caused by a lack of mass flow which result in a slower, and therefore less
high, flow inside the enclosed region and less particles in the steady flow.

5.6.2 Cross sectional views

The strength of the hydraulic jump can be derived from the rate at which the height increases at the
edge of the super-critical region. Figure 5.14(b) shows graphs where the height is plotted over the
width of the plate at multiple x locations. From this figure, it can be concluded that the jump closest
to the impingement zone (red line) is stronger and reaches a higher value then jumps further away
from this zone. Nevertheless, the height of the flow for those lines starts at a lower value, increasing
up to 3mm. On average, the strength of the jump is calculated as the gradient of h with respect to y
yielding a strength of 200mm/m within 0.04m ≤ x ≤ 0.07m.

5.6.3 Conclusion

This section showed the height of the flow in top and cross sectional views. Discrepancies with the
original work are encountered in the height within the enclosed region which is, for the DPM results,
to high and after the jump where the DPM results are to low. This is due to the lack of mass flow
causing the particles inside the enclosed region to move slower and reducing the amount of particles
after the jump. Both of these causes result in a lower and less strong jump which was confirmed by
the cross sectional views.

5.7 Characteristics of the enclosed region

The enclosed region is characterised by the length of this region in down-slope direction and the
maximum width of the region. This section gives a definition for this length in §5.7.1 and calculates
the maximum width in §5.7.2. A conclusion is drawn in §5.7.3 where the results are compared to the
results found in the original work.
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5.7.1 Length of the enclosed region

The length of the enclosed region is defined as the distance from the stagnation point found in §5.1.2
up to the lowest point in the region [17]. The stagnation point is located at x = 0.03m and the lowest
point of the region was found in §5.6 as x = 0.0595m which yields a length of 0.03m. The teardrop
shock, which was encountered for an inclination angle of 26.7◦ in the original work, showed a length of
0.26m while the length of the blunted shocks, which were found at lower angles in the original work,
ranged from 0.04m up to 0.10m. The DPM results show the most similarities with the blunted type
of shock and the results are therefore compared with this type of result. The length of the enclosed
region as found by the coarse-grained DPM results does not differ much from the lengths found in the
original work. Nevertheless, the type of the shock is different which, again, indicates that the mass
flow as used by the DPM solver is to small since it lacks kinetic energy in the enclosed region.

5.7.2 Width of the enclosed region

The maximum width of the enclosed region in the coarse-grained DPM results is measured by the
maximum distance in-between the two jumps as shown in figure 5.14(b), yielding a width of 0.036m.
The original work showed the enclosed region by the solid black line in figure 5.13(b) and the maximum
width is measured as 0.06m at a down-slope distance of 0.05m from the impingement point. The results
found with the DPM method yield a much smaller width of the enclosed region indicating that the
gravitational energy with respect to the kinetic energy in the radial from is much bigger. A higher
mass flux should increase the maximum width of the region and it can thus be concluded that the flow
lacks mass flow.

5.7.3 Conclusion

The enclosed region is smaller and less wide than the regions found in the original work. Both of these
parameters indicate that the mass flow in the system is too small since an increase in this mass flow
should yield a longer and wider enclosed region.

5.8 Parameter study

The previous sections considered the DPM results for an inclination angle of 26.7◦ and a falling height
of 0.05m which corresponded to the teardrop simulations performed in the original work. This section
shows two other angles, 23.0◦ and 29.0◦ in §5.8.2 which were chosen according to the limits of the
steady results shown in the original work. Furthermore, an extension in falling height is introduced in
§5.8.2 by raising it to 0.075m resulting in a jet velocity of 1.21m/ s. Conclusions are drawn based on
these extensions in §5.8.3

5.8.1 Inclination angle

The influence of the inclination angle on the DPM results is investigated with the use of the resulting
height profiles and the Froude numbers in the system. The enclosed region can be characterised with
these fields as seen in §5.7. Figure 5.15 shows the height in millimetres and Froude number in the flow
for three inclination angles, ζ = 23.0, 26.7 and 29.0◦ respectively, from which it is clear that higher
inclination angles cause a bigger enclosed region. The typical volume fraction for the lowest angle is
0.516 and 0.461 for the highest angle. The length of the regions is equal to 0.01m, 0.03m and 0.05m
respectively where the last is in the range as found by the original work. The minimum heights of the
regions are 1.42mm, 0.86mm and 0.68mm respectively, confirming the hypothesis that a less energetic
mass flux causes a higher flow within the enclosed region. The width of the regions varies from 0.027m
for the lowest and up to 0.045m for the highest angle which are both below the measured values in the
original work. The figures also show that a higher inclination angle does not directly result in a less
blunted shape.
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Figure 5.15: Height of the flow in millimetres and Froude numer for three inclination angles and a
falling height of 0.05m. The fields are evaluated uniformly in x and y directions each 0.001m.
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Figure 5.16: Characterisation results for a falling height of 7.5 cm and an inclination angle of ζ = 26.7◦.
The fields are evaluated uniformly in x and y directions each 0.001m.

5.8.2 Falling height

Another system parameter having a significant influence on the results is the falling height since it raises
the potential energy of the jet. This potential energy is converted into kinetic energy by conservation
of energy yielding a higher jet velocity,

ujet =
√
2Hfg . (5.14)

Figure 5.16 shows the height (a) and Froude number (b) for a falling height of 7.5 cm corresponding to a
jet velocity of 1.21m/ s. The typical volume fraction (5.5) is based on the region x > 0.14m, 0.05m ≤
y ≤ 0.10m yielding a value of 0.50. These figures are compared with figures 5.14(a) and 5.12(b)
respectively to find the differences in the characteristics of the enclosed region. The lowest point in
the enclosed region is located at x = 0.091m yielding a length of 0.06m for this region. Even though
such a length is bigger than the length of the simulation with a falling height of 0.05m and the same
inclination angle of 26.7◦, it is still smaller than the lengths found in the original work. The Froude
number shows that the shape is less blunted than those found in §5.8.1 which is due to the higher
kinetic energy in the jet. Nevertheless, it is still classified as a blunted shock.

5.8.3 Conclusions

Even though the higher inclination angle and falling height increase the kinetic energy in the system,
a teardrop shaped enclosed region is not found. Nevertheless, steady states were formed and the shape
became less blunted. Therefore, a simulation with a much higher falling height is investigated in §5.9.
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5.9 Highly kinetic flow

A simulation with much bigger falling height simulating heavier particles is started to investigate a
highly kinetic jet where the setup parameters are shown in §5.9.1. This simulation ran for 55 days
in which 1, 000, 000 particles over three seconds are simulated yielding a solution which cannot be
classified as a steady state, i.e. the shape of the flow changes with time. Nevertheless, these results
look promising and are thus discussed in this section. The mass flow in this system is discussed in
§5.9.2, followed by the discrete results for the plate flow (§5.9.3) and the hydraulic jump (§5.9.4).
These results are coarse grained to obtain the Froude number (§5.9.5) and the height (§5.9.6) of the
flow allowing for the characterisation of the enclosed region. A coarse grained view on the impingement
zone is shown in §5.9.7 and conclusions are drawn based on the gathered results in §5.9.8. Note that
the simulation was performed in the early stages of the thesis in which several particle properties were
unknown and computational errors still existed.

5.9.1 Setup parameters

As stated, the simulation at hand differs from the work presented in chapter 5 in both particle and
system properties. This section lists the particle properties in table 5.1 and the system properties in
5.2. The differences in the particle properties yield heavier and stiffer particles with a higher friction
coefficient. The system parameters create a bigger funnel which is located at a higher height. These
differences yield more potential energy in the funnel and thus more kinetic energy over the plate.

5.9.2 Mass flow

The bigger funnel outlet diameter and high falling height yield a higher mass flux which can be seen
from figure 5.17(a) where the accumulation of particles in the system is shown against time. Due to
the size of the domain, which is much bigger than the original domain shown in chapter 3, no outflow
of particles takes place and all particles thus stay in the system. It can therefore be concluded that the
system is not at steady state and time averaging of results is thus not allowed. Figure 5.17(b) shows
the accumulation rate of particles from which one can see that the average accumulation rate after
initialisation of the problem is equal to 215, 000 particles per second. This number is much bigger then
the accumulation rate of the steady results which was 95, 000 particles per second but still significantly
smaller than the experimental particle rate of 700, 000 particles per second.

5.9.3 Plate flow

The higher potential energy, due to the high falling height Hf , yield higher kinetic energy in the flow
over the plate which can be clearly seen from figure 5.18 where the flow over the plate is shown at
intervals of 0.5 s with the visualisation method described in chapter 4. The hypothesis that a steady
state is not yet fully reached is confirmed by this visual inspection since the enclosed region is reducing
in size while the avalanche further down the plate grows in time. Even though a steady state is not
observed, the shape of the enclosed region can be considered a teardrop shape which will be confirmed
with the coarse grained results in §5.9.5. Both length and width of the super-critical flow-region are
much bigger than those shown in figure 5.4.

S. Description Value Units
d Particle’s diameter 0.006 [m]
µc Friction coefficient 0.8 [−]
ρ Density 2400 [ kgm−3]
tc Collision time 2.5× 10−4 [ s]
en Coefficient of restitution 0.6 [−]
kt/kn Ratio of tangential and normal stiffness 2/7 [−]
γt/γn Ratio of tangential and normal dissipation 1 [−]

Table 5.1: Particle properties
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S. Description Value Units
ζ Inclination angle 25.4 [◦]
L Length of the plate 0.60 [m]
W Width of the plate 0.25 [m]
Hf Falling height 0.43 [m]
D Funnel diameter 0.017 [m]
nz Number of particles along the side of the funnel 50 [−]
a Growth angle 60.0 [◦]

Table 5.2: System properties

5.9.4 Critical transition

The finite volume results predicted a shock at the location at which the flow changes from super- to
sub-critical, but such a steep gradient was not found in neither of the cases studied in the previous
sections. Figure 5.19 shows similar cross sections as shown in figure 5.6. These sub-figures within figure
5.19 show a much steeper and clear transition than those in figure 5.6 and are further analysed after
coarse graining of the results in §5.9.6.

5.9.5 Froude number

Coarse graining of the discrete set of results presented in the previous sections is performed to obtain
the Froude number. The coarse graining domain is limited to obtain a high resolution solution from
which the Froude number is shown in figure 5.20(b) in which a typical volume fraction of 0.516 is used.
The figure shows a black line corresponding to Fr = 1 which is the transition of super- to sub-critical
flow. Furthermore, white lines following typical particle paths originating from the impingement zone
are added to visualize the flow direction. A near radial flow near the impingement zone is observed
which is in agreement with the observations made by Johnson and Gray. Furthermore, the shape of the
enclosed region is identified as a teardrop shape which is bigger than those found earlier. The stagnation
point is determined in §5.9.7 and located at x = −0.095m and one can see that the sub-critical flow is
more energetic than those in the steady state solutions.

5.9.6 Height of the flow

The height of the flow is shown in figure 5.20(a) and one can see that the sub-critical flow is slightly
thicker than the steady state flows which had a maximum height of approximately 4mm. The average
height in the sub-critical flow is 4.8mm and within the super-critical flow 0.65mm which is equivalent
with values found in the original work. The minimum height in the enclosed region is 0.17mm located
at x = 0.026m yielding a length of 0.12m for the enclosed region. Such a length is equivalent with the
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Figure 5.18: The top view of the numerical outcome of the flow over the plate at six different times
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Figure 5.19: Cross sectional views from x = −0.066m up to x = −0.065m for the hydraulic jump in
the system. Blue particles correspond to ‖U‖ = 0m/ s and red particles to ‖U‖ = 3.14m/ s. Fixed
particles are hidden.
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Figure 5.20: Characterisation results for a falling height of 43.0 cm and an inclination angle of ζ = 25.4◦

at t = 2.97 s. The fields are evaluated each 0.001m in both x and y directions.

length of the region in the experimental results [17] where a blunted shock was observed. Note that
the simulation at hand did not reach a steady state yet which causes the enclosed area to shrink. The
observed teardrop shape result may thus change when the simulation evolves further in time. Figure
5.21 shows cross sections similar to those shown in figure 5.14 and the strength of the hydraulic jump is
calculated as 350mm/m which is much more than those observed in the steady state solutions which
had a strength of 200mm/m.

5.9.7 Impingement

Coarse grained results in the (x, z) plane are calculated for the highly kinetic simulation to obtain
more insight in the flow through the impingement zone. Figure 5.3(a) showed the flow profile through
the impingement zone as proposed by Johnson and Gray [17]. The coarse grained density is shown
as a contour plot in figure 5.22 where white streamlines are added to visualise the flow profile. The
figure shows the x, z plane which is located at y = 0.125m. The stagnation point is identified with the
streamline flowing perpendicular into the bottom wall and is located at x = −0.095m. The high density
region in up-slope direction is caused by the small flow of particles going into that direction which can
be seen from the single particle path flowing in that direction. This phenomenon is equivalent with
experimental observations. Based on this graph, it can be concluded that the flow profile in DPM
simulations matches the proposed profile in the original work.
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Figure 5.22: The flow through the impingement zone for the jet originating from Hf = 0.43m and an
inclination angle of ζ = 25.4◦ at t = 2.97 s. The density of the flow is shown by the contour plot which
is generated in the (x, z) plane located at y = 0.125m having a uniform spacing of 0.001m. Typical
flow paths are added in white.

5.9.8 Conclusions

Even though the absence of a steady state, the highly kinetic flow is analysed. This analysis showed a
teardrop shaped enclosed region which had a length which is comparable to the experimental results.
However, the region will shrink and its shape may change with the shrinkage. The hydraulic jump
separating the super- from the sub-critical is stronger than the one observed in the steady state solution.
Nevertheless, the jump is still weaker than those observed in experiments and finite volume results.
The increased mass flow, combined with the significant increase in falling height emphasises that the
DPM method is capable of modelling the problem. A full phase diagram as shown in Johnson and
Gray [17] can be found since both types of the enclosed region are now found with the DPM method.
However, it is strongly advised to parallelise the current code to reduce the computational time which
is discussed in the next chapter.



Chapter 6

Parallelisation

The results chapter showed that the mass flow should be increased significantly to obtain more realistic
results but that it the solver is limited by computational time. Decreasing this time can be done by
parallelisation of the code, allowing multiple processors to work on one problem. This chapter therefore
identifies the sections of the code where most of the computational time is spend in §6.1 and this profile
is used to perform a preliminary study on the possibilities of applying the OpenMP [5] parallelisation
method on the code (§6.2).

6.1 Profiler

Investigating the computational time spent on certain functions within a code provides insight in the
bottlenecks of such a code. Profiling is a tool to determine the computational time spent in each
routine and gprof [9] is a tool which can be used to profile C++ codes. The resulting profile does
not include the time spent on reading and writing nor the time used to swap memory. Where memory
swapping is changing of the data which is instantaneously available for a processor. The total time
used reported by the profiler is thus not equal to the wall-clock time which is the time in seconds
needed for the execution of the programme. The profiler is applied to the computation of 25, 000 time-
steps in the steady state solution which is shown in §5.1-§5.7 and 375, 000 time-steps in the unsteady
highly kinetic simulation shown in §5.9. While the main functions within the code are the same for
both problems, there are differences in the specific functions which are used in the initialisation of
the problem. The parameters for the contact detection method are optimised for the steady-state
solution which reduce the computational time and thus influences the profile output. Figure 6.1
shows the computing time spent in individual functions for both simulations and one can see that
the functions containing differences are not listed which is due to the fact that these are only used
in initialisation of the problem. As expected, most of the computational time is spent by calculating
particle-particle collisions in the compute_internal_forces routine. In both cases, two other functions
are also computationally expensive; CheckCell and CheckObjAgainstGrid which are both functions
used by the contact detection method. Time integration before and after the force computation also
contributes significantly to the computational time. Parallelising these functions is thus advised since
they consume most of the computational time, where it can lead to a speedup of maximal,

η =
1

(1− P ) + P/S
, (6.1)

according to Amdahl’s law where the maximum speedup η depends on the parallelised proportion P
of the code which can get a speedup of S. This law assumes that the computational effort does not
increase with parallelisation, i.e. the overhead due to parallelising is equal to the overhead present in
the same sequential code. The profiles as shown in figure 6.1 show that the most expensive functions
accumulate up to 88% in the steady flow simulations and up to 76% in the unsteady flow. If it is
assumed that the speedup S scales linearly with the number of processors used, speedups ranging from
4.1 for the unsteady flow and up to 8.5 for the steady flow if an infinite amount of processors is used,
i.e. lims→∞ P/S = 0.
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MD::compute_internal_forces (31.51%)
HGRID_3D::CheckCell (24.9%)
HGRID_3D::CheckObjAgainstGrid (16.73%)
CTangentialSprings::select_particle (7.1%)
MD::do_integration_before_force_computation (4.19%)
MD::do_integration_after_force_computation (3.75%)
HGRID_3D::UpdateParticleInHGrid (2.96%)
MD::compute_all_forces (2.45%)
Vec3D::operator/ (1.64%)
HGRID_base::HGRID_actions_before_time_step (1.05%)
MD::compute_external_forces (0.76%)
Other functions (2.96%)

(a) Computational profile of the code for the steady flow
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MD::compute_internal_forces (25.87%)
HGRID_3D::CheckObjAgainstGrid (25.83%)
HGRID_3D::CheckCell (9.52%)
MD::do_integration_before_force_computation (8.25%)
MD::do_integration_after_force_computation (6.14%)
HGRID_3D::UpdateParticleInHGrid (5.18%)
MD::solve (4.15%)
CWall::get_distance_and_normal (2.7%)
MD::compute_walls (2.53%)
GNU  (2.3%)
MD::compute_external_forces (2.26%)
HGRID_base::HGRID_actions_before_time_step (1.9%)
Vec3D::operator/ (1.15%)
MD::Check_and_Duplicate_Periodic_Particle (1.01%)
Other functions (1.21%)

(b) Computational profile of the code for the unsteady high kinetic flow

Figure 6.1: Computational profiles for two simulations executed with Mercury where the value of
the bin is the self-time, i.e. the time a function uses without calling other functions. Listed are the
functions with the highest contributions and an ‘Others’ bin is added visualise the remaining part
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Figure 6.2: Flowchart of a parallelised code with two parallel regions.

6.2 OpenMP

The OpenMP parallelisation method is an ‘easy to apply’ parallelisation method and it is chosen for
that reason. It stands for ‘Open Multi-Processing’ and it is a parallelisation method which can be
applied on platforms which share memory, like multicore computers. The method can be applied to,
for instance, C++ code where it is interpreted at the compilation of the code. Simple pragma’s indicate
locations at which the code should be compiled with OpenMP standards. Therefore, a -fopenmp flag
should be added to the compiler, such as gcc, and it is important to optimise memory handling
within OpenMP parallelised codes. This section briefly explains the method in §6.2.1 and discusses
the parallelisation possibilities for the expensive functions in the source code of Mercury [26] (§6.2.2).

6.2.1 Introduction into OpenMP

Sequential codes execute a code in a single thread, where a thread is a single processor having access
to the shared memory. The required computational time is fully dependent on the computational
power available within that thread. Parallelised codes use multiple threads allowing for a maximum
speedup which depends on the size of the parallelised regions according to Amdahl’s law (6.1), which
is limited by the efficiency of parallelisation and the computational power in each thread. OpenMP is
an implementation of multithreading and a code can thus be split in several parts which are executed
parallel. A master thread is then pointed out in which the sequential parts, such as initialisation of
parameters, of the code are executed. Figure 6.2 shows an example of a parallelised code with two
parallel regions in which the first region is executed by three and the second by two threads. The
red line within this figure indicates the work performed by the master thread. The other threads
are indicated as ‘slave’ threads and the master thread decides the task they should perform. All the
threads require read and write access to the data used and produced by other threads and the method
is therefore limited to systems which share memory, i.e. multicore systems. Computational clusters
with several nodes can thus not be used in OpenMP parallelisation due to the fact that the memory
in these clusters is typically not shared over the processors.

The ‘parallel’ pragma

Parallelising a code with the OpenMP method uses ‘parallel’ pragma’s which are directives to specify
machine- or operating-specific computer features. These pragma’s are interpreted in the compiling step
of a C++ code and determine the parallel regions of a code. The coded box below shows an example
in which a print command is parallelised and executed by the number of threads used, i.e. the word
‘Hello’ is printed twice if the code is executed on a dual-core machine. Due to the possibility of an
unbalanced load distribution among the used threads it is also possible that ‘HeHllelloo’ is produced
as output. The parallel execution of a script is thus neither chronological nor lexicographic by default.

#pragma omp parallel

{

printf("Hello");

}
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For loops

Typical regions of code which should be parallelised are for loops since these regions repeat a certain
calculation many times. The computational expensive functions stated in §6.1 loop over all, or a
selection of, particles in the system, causing a significant portion of computational time. A for loop
can be parallelised with the ‘parallel’ pragma explained above where a specific pragma for the for loop
is added at the location of the loop,

#pragma omp parallel

{

#pragma omp for

for (int i=0; i<10; ++i) printf(" %d",i);

}

where the loop is thus executed by multiple threads and the output may not necessary be in order, i.e.
the output can be 0576123894.

Critical regions

Sections of code where the order of execution matters are called critical regions. Time integration
is such a section for DPM simulations since all previous variables are needed before the integration
can take place, see the algorithm shown in 1. Furthermore, write actions can also not be parallelised
since the order of the output is very important. The critical directive ensures that such a region
is executed by a single thread which guarantees the order of the output but yields a slowdown in the
execution of the code, i.e. the overhead of a critical region is higher than the overhead of the sequential
code itself.

Performance issues

The performance of a parallelised code strongly depends on the memory handling. The efficiency of
this memory handling depends on the order of accessing data in a problem. A processor reads blocks
of memory in stead of single lines. For instance, the data of all particles with an index less then 10 are
copied in the memory when the data of particle 1 is required by the code. It thus overwrites existing
data in the memory if that is necessary. Accessing particles 2 to 10 can then be done without a swap
of memory. Lexicographic looping cause low memory swapping time since it loops index-wise over the
data, i.e. from particle i to i+1, and is thus relative efficient. The size of the block depends on the size
of the memory available and may differ for different processors. The performance of parallelised code
thus depends on the hardware used. Overhead caused by parallelisation can be reduced significantly
when this memory handling is performed perfectly, yielding speedups which are more than linear [5].

6.2.2 Parallelising Mercury

Section §6.1 showed that the major computational expensive functions check the location of the
particles, calculate the forces in particle-particle collisions and perform the time integration. These
routines are in general for loops and it should be possible to parallelise those. However, as pointed out
in §6.2.1 memory handling is very important in the performance of a OpenMP based parallelisation
of the code. Lexicographic looping is not possible due to the contact detection method which searches
for particles inside closed boxes in the system. The encountered particles are not necessary ordered by
index (lexicographical) and memory swapping therefore expected. No significant speedup can thus be
achieved when the current version of Mercury is parallelised with the OpenMP parallelisation method.
Therefore, it is advised to use combination of the OpenMP and the Message Passing Interface methods
in a spatially distributed system. The system can then be parallelised with domain decomposition
allowing for a significant speedup of the code. On the other hand, applying a so-called Morton order-
ing on the particles lead to a possible application of OpenMP on Mercury. This ordering sorts the
particles based on their ‘z-value’ which is a one-dimensional representation of any multidimensional
point. The value is a mixture of the binary representations of the coordinates in any dimension and
allows for easy one-dimensional sorting algorithms. Applying the Morton algorithm together with a
simple tree-sort algorithm yields a ordered list of particles which can be looped lexicographical, i.e.
the index of a particle is now based on its z-value. OpenMP applied to this sorted system is thus
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beneficial since the computational cost of memory swapping is significantly reduced. These hypotheses
are not further investigated within the scope of this thesis.
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Chapter 7

Conclusion and discussion

Real sized problems, such as a granular jet impinging on an inclined plane, are normally solved via
continuum models such as the granular shallow layer equations. These models reduce the degrees of
freedom in the flow to two variables, flow height and velocity resulting in a two dimensional solution.
In contrast, the discrete particle method (DPM) does not need the granular shallow layer equations
nor the assumptions made in these equations and simulates the whole flow particle-wise, yielding a
fully three-dimensional solution. In this thesis, the application of the DPM method on big problems
is investigated. The studied problem involved up to 1, 000, 000 particles which are simulated over
500, 000 time-steps to answer the main research question: Up to which level of detail is DPM capable
of simulating a granular jet impinging on an inclined plane, confirming both the experiments as well
the finite volume results from Johnson and Gray [17]? The original work of Johnson and Gray [17]
considered the same problem where both experiments and the finite volume method were used to obtain
steady state solutions. In this research, similar results were found confirming the hypothesis that DPM
is capable of simulating such a complex flow. Two types of simulations, steady state and highly kinetic
ones, are used in the further analysis on the details of the flow. These simulations are used to answer
the five sub-questions which are discussed in the upcoming paragraphs.

The first sub-question was listed as: Does the flow profile within the impingement zone as found with
the DPM model satisfy the assumptions made in the granular shallow layer equations? A vertical cross
section along the flow of the highly kinetic data is used in answering this question. The cross section
showed typical particle paths through the centre of the jet near the impingement zone. A stagnation
point was found, equivalent to the one proposed by Johnson and Gray. Moreover, the remaining part
of the profile satisfied the same model. The discrete particle method provided the missing insight in
this three-dimensional flow and it is thus proven that the method is capable of resolving unknown
solutions.

“Is the DPM method capable of capturing a phenomenon similar to the hydraulic shock observed in
the original work?”, is the second sub-question listed. Both types of simulations are used in answering
this question. The steady state low mass-flux solution showed a weak transition where the flow within
the super-critical region discharged in the sub-critical flow zone. This results in a high mass-flux
relative smooth raise in the height of the flow. A stronger transition was found in the highly kinetic
solution. Even though the mass flow is currently limited to a fraction of the original mass flow due to
limits in the computational power, similarities were found. Moreover, the missing three-dimensional
insight in these jump regions is provided by the applied DPM method.

A third aspect in the research was: Can both typical solutions, found in the experiments and finite
volume results, for the enclosed region be found with the DPM method? The original work showed two
distinct types of solutions to the impingement problem. One with a blunted shape enclosed region
of highly kinetic flow and another which they called the teardrop shape. A parameter study on the
inclination angle of the plate and the falling height of the jet were mapped in the original work. The
DPM simulations showed both types from which the blunted shape region was found in all steady state
solutions. A teardrop shape solution was found in the highly kinetic simulation, which approached a
steady state. Extension of the found solutions into the full parameter space is not performed within
this research due to not knowing the exact material properties, such as the friction coefficient. Little
effort on increasing the computational efficiency will allow for the full mapping of the parameter space
and a more detailed study on the material properties.

Investigating the fully three-dimensional flow at the down-slope end of the enclosed region was the
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fourth research aspect. A steady and uniform flow was found in the DPM simulations confirming the
low kinetic regimes in this flow. Furthermore, stationary particles on the boundary of the flow were also
found which confirmed experimental observations. However, the complex three-dimensional flow at the
point where the enclosed region ends was not found due to the lack of mass flux. This drawback can
easily be overcome when the computational efficiency is increased as discussed in the next paragraph.

The fifth sub-question was listed as: Can the computational time of the DPM method as used in
the open source software Mercury [26] significantly be reduced by applying the OpenMP parallelisation
method? It focusses on the increase of computational power for the DPM method. The DPM solver
used, Mercury, is an open source DPM solver which is developed by the Multi Scale Mechanics group
within the University of Twente. This solver, as it is applied on the granular jet, is profiled to obtain
insight in the distribution of computational power while simulating a big problem. The force calculation
in particle-particle collisions, the contact detection algorithm and the time-integration scheme are
identified as the computational bottlenecks. The OpenMP parallelisation method is analysed and good
performance with this method is achieved when it is applied to systems which are solved chronological
or lexicographical. The contact detection algorithm causes a non-chronological nor lexicographical
looping and yield therefore a very high computational overhead. It is therefore not expected that
application of the OpenMP method on the current code yields a significant speedup. Application of
a domain-decomposed parallelisation algorithm with non-shared memory is advised to overcome this
overhead. On the other hand, significant speedup can be achieved by mapping the three-dimensional
particle locations in a one-dimensional space with use of Morton sorting. This allows for lexicographical
looping over the particles since their index then corresponds to the position on the Morton curve. Issues
of memory swapping are significantly reduced and it is expected that near-linear speedups with the
OpenMP algorithm can be found.

Additionally, a fully three-dimensional and interactive visualisation method is developed within this
research. The method uses an existing OpenGL rendering engine which is specialised in the visualisation
of Molecular Dynamics, VMD. This software is modified to represent the DPM results with all of its
details. Furthermore, cross sectional views can easily be generated and investigated allowing for a fully
three-dimensional inspection of the results. The method is also capable of visualising objects such as
(finite) walls or automatic rotation which can be used in simulations of e.g. rotating drums.

With all sub-questions answered, it is possible to answer the main research question. The sim-
ulations performed within this research showed significant similarities to the observations made in
experiments and the finite volume method. Moreover, three-dimensional flow is analysed near the im-
pingement zone, confirming the proposed flow model in the original work. With both typical solutions
at hand it is also expected that the a parameter space can easily be found with DPM. Such a parameter
space can then be compared to the original work. Increasing computational efficiency by applying a
parallelisation method using domain-decomposition and/or the application of a Morton curve advised.
Detailed studies on both, material and system, parameters can then easily be performed.
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