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Summary

A collection of macroscopic particles with mainly re- “Matter and energy seem
pulsive inter-particle forces - like dry sand - is called granular in structure, and so
a granular medium. Systems like these can show does ‘life’; but not so mind.”
phenomena different from traditional solids, liquids Erwin Schrédinger, 1956

and gases such as (un)jamming, force chains and
non-linear pressure wave propagation.

Nesterenko [1] showed that a granular system can support non-linear pressure waves
and the same was later shown in simulation [2, 3] and experimentally [4]. The non-
linear behaviour is only predicted for sufficiently high wave amplitudes and sufficiently
small confining pressures leading to believe that in the limit of zero confining pressure
(which is approximately possible without gravity) all mechanical energy is transported
non-linearly (dubbed ‘sonic vacuum’ by Nesterenko).

The cause of this non-linear behaviour poses serious limitations on simplifications that
can be made to granular systems in order to study their behaviour. The aim of this work
is therefore to study this non-linear behaviour and the influence of such simplifications
and to provide a toolset for future study.

Firstly molecular dynamics simulations (using a newly developed software package)
have been used to find whether non-linear wave propagation can be witnessed using
simple force laws in one dimension. Using two different contact models (one linear and
one Hertzian (non-linear)) a non-linearity was witnessed, but with a power-law much
smaller than theoretically predicted. This suggests that the simulations run are over-
simplified and can not directly be used to study non-linear wave propagation.

Secondly a layer of stress birefringent disks and spheres was filmed at 40000 frames per
second to watch pressure waves travel through packings with different ratios of numbers
of spheres to disks. A % power-law relation was found between drop height (a measure
for wave amplitude) and propagation speed. No significant differences in the non-linear
behaviour was found for different mixtures of spheres and disks, justifying the use of
these mixtures in two dimensional wave propagation experiments.

Thirdly, within a larger and ongoing project, many data points have been gathered
using newly developed software tools that was used aboard a parabolic (zero gravity)
flight. The process of analysis (also using newly developed tools) and comparison to
data acquired on ground is progressing; preliminary results show a linear and non-linear
regime on ground, and possibly increasing sound speed with wave amplitude during Og.
During some parabolas a much more uniform (than in 1g) was achieved. The data proves
the effectiveness of the tools developed and new data shows how to further improve the
setup.
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Chapter o

Introduction

This report concerns itself with the propagation “If you watch the flowing
of mechanical waves in so-called granular media. sand, you might see time
Before diving into more depth a summary of this itself riding the granules.”
knowledge is warranted. Vera Nazarian, 2008

1.1. Granular Media

Different definitions exist for granular media. In any case a granular medium contains a
multitude of discrete particles. The medium describes the collection, the system, of these
particles [5]. An assumption generally made is that particles do not interact with each
other on the long range because the interparticle forces exist only where large particles
are in direct physical contact [6]. The existing definitions differ in exclusion of certain
systems based on the type of forces involved or the size of the particles.

In general repulsive forces must dominate over cohesive ones for a system to behave like
a granular system [7]. Materials are not (effectively) cohesive above a certain particle
size. As a general rule of thumb the particles must exceed a size of 1 [pum] so that
Brownian motion and cohesion are sufficiently small to be disregarded. The upper limit
of particle size (on earth) is often found in practical issues for it is increasingly difficult
to contain a system of particles as they grow larger. Some remarkable exceptions to this
rule are for instance ice shelves, the earth’s crust and planetary rings. The latter are
better defined as dilute granular media or granular gases [8].

The resulting collection of granular media is rather large, containing sand, cereals,
beads and others.

1.1.1. Importance

The widespread occurrence of these media has given rise to an ever growing interest
since 1900 as depicted in Figure 1.1. Scientific research on the subject of granulars
has developed a solid basis in journals like Granular Matter, Powder Technology and
Particuology. However more general journals like Nature, Science and Physical Review
Letters have also published plenty on the subject.

Swinney and Rericha noted in 2004 [10] that in the chemical industry the majority
of the products involved are granulars rather than liquids. It is therefore remarkable
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Figure 1.1.: Ngram of several granular related words groups depicting the relative
occurrence of these word groups to all other words in Google’s database of millions of
books [9]. A sharp rise in usage of these words can be seen from 1900 till 2008 (with
two drops in 1955 and 1985). Made using the Google’s Ngram service (that published
no data after 2008.)

that the understanding of these materials is still below that of solids and liquids and
the efficiency of processing them is considered below optimal [10]. In 1975 Vaisnys
and Pilbeam argued that all attempts to make a complete description of merely the
mechanical properties of granular media had so far failed [7]. The understanding of
granular media’s rich behaviour has since then much increased, but is certainly not yet
complete.

1.1.2. Properties

A prime example of a granular medium and its peculiar properties is sand. Sand can
be poured producing a flowing behaviour similar to pouring a liquid. However sand can
also be piled and resist forces like a solid. From sandcastle building at the beach one
may know that dry piles of sand have a limited slope. A slope above a certain angle
(called the angle of repose, 6,) will cause the sand grains to pour down the slope. This
behaviour can be seen in Figure 1.2.

Reynolds described in 1885 another phenomenon called dilatancy: the fact that a
granular medium must expand (under almost all circumstances) to flow or deform [12].
This can be noticed on the beach; when walking sand around one’s foot will dry out



(a) Below repose angle (b) Above repose angle

Figure 1.2.: left: A pile of mustard seeds with a slope just below the repose angle
showing no movement or falling/flowing seeds. right: The same pile inclined above the
repose angle so that a layer of seeds starts flowing (the blurry layer, due to a long shutter
time). Note that below this layer seeds are still non-moving. Both images were originally
published in [11].

as pressure on the sand by the foot increases. The deformation caused by this pressure
creates space for the water to flow into, leaving upper layer of the sand dry.

One may say that particles must make room for other particles to pass. The amount of
room to be made for movement to occur is related to the medium’s jamming point. The
jamming point is defined as the volume fraction - the ratio between particle and system
volume - ¢ at which the medium can no longer flow. Onoda and Liniger [13] showed
that without gravity (e.g. in space) the loosest random packing has a packing fraction of
¢ ~ 0.56 (named the RLP limit) for spheres by immersing them in liquids with varying
density. The densest possible packing for spheres is the close-packed hexagonal structure
with ¢ =~ 0.74 which is achieved by decreasing the average interparticle distance with a
factor of (0.74/ 0.56)% ~ 1.1 [14]. The jamming point ¢; should be somewhere between
these limits. In Nature, Luding [15] argued that the jamming point should however be
considered more of a variable than a fixed point as it may move as the system evolves.

The inhomogeneities in the distribution of particles and forces in granular packings
can cause other phenomena such as arching. This can best be compared to a building
style often used in churches where the use of a keystone allows to distribute the weight
of a roof along the walls to create an empty space below. The same principles apply
to sand piles where stress can be transferred from softer to stiffer parts of the packing
until a static configuration is formed. This configuration is, however, not typically in
isostatic limit [16] (the state to which the system would tend in the absence of friction).
Granular media in general show jamming behaviour, meaning that there are several non
equilibrium microstates (e.g. the exact particle positions) for a single set of macroscopic
parameters (e.g. packing fraction ¢). It is therefore unlikely that a description of
a granular medium using only one macroscopic parameter will ever be complete [17].
Which other parameters to use to create such a complete description is still a topic of
research.



The arching phenomenon gives rise to another counterintuitive example encountered
in a sand pile. One may expect that in a conical sand pile the pressure due to gravity on
the ground is highest directly below the apex, in the centre of the pile. The contrary is
however revealed in some experiments that show a local minimum (a dip) in the stress
pointing downwards right below the apex. This dip can not be explained by simple
isotropic elasticity theory, rendering it invalid in this case. There are other models that
can explain the dip, however it has become clear that the existence of a dip depends not
only on the sand grains themselves but also on the way the pile was prepared [18]. This
history dependence is ever present when dealing with granular media.

A liquid filled container (under gravity) will show a linear relation between pressure
and depth. In the case of a granular medium however, packed in a sufficiently high
container with rough walls, this is not the case. It can be shown that the friction of
the granules with the wall is already enough to carry the weight of the particles on top,
causing the pressure at the bottom of the container to be independent of the height of
it. This is called the Janssen effect [19].

A way of understanding why the preparation of a granular medium is important is
to realize that a collision between particles is highly dissipative. For glass particles the
coefficient of restitution can be around 0.81, meaning that at each collision nearly 20 [%]
of the energy is lost. For sands and dusts this coefficient can be even lower (around 0.6)
[20]. Because there are many collisions between many particles the system quickly loses
energy and settles in a static state.

Using stress birefringent materials the inhomogeneity of the force distributions can
be made visible as has been done to produce Figure 1.3. Forces clearly concentrate
themselves along chains that on first sight have a certain randomness to their orientation.
The influence of these force chains on macroscopic properties of the packing has been
studied though not yet fully understood [22, 23, 24]. It is however clear from research
by Zhang et al. [25] that force chains grow with system size until they reach a maximum
at which the average length of the chains remains constant irrespective of system size.
Statistical methods are then used to predict a probability that a particle is in a force
chain and to relate the coordination number z (the amount of other particles a particle
touches averaged over all particles) to the length of the chains. The coordination number
may then be used to relate to for instance the packing fraction [26].

Another difference between granular matter and traditional states of matter like nor-
mal solids, liquids and gases is the transmission of sound (a mechanical- or pressure
wave). Whereas in the former cases sound propagates without much distortions (such
as attenuation, dispersion and frequency filtering) through the medium the propagation
of sound in granular media is qualitatively different [11, 27].



Figure 1.3.: Force chains in a two dimensional (2D) granular packing made visible by
shining monochromatic polarized light through stress birefringent particles. The forces
start at a square punch (black box on top of image) and travel downwards and sideways
to the container walls. Brighter green shows larger stresses. This image was taken from
[21] with the authors approval.

1.2. (Sound) Waves

1.2.1. Linear (sound) waves

Sound waves (and many other waves) are governed by the wave equation, which was -
according to Weisstein [28] originally found by d’Alambert and later extended to a three
dimensional system by Euler. The equation is given by

1 0%

2 —_
Vw_628t2’

(1.1)
with V the Del operator defined by V = "% | eia%i in n dimensions, 1 the field governed
by the wave equation and ¢ the time. The symbol c is the propagation speed of the wave.
The propagation of sound waves, or more general, the propagation of mechanical waves
in granular media has been a subject of study. See for instance [29, 30, 31, 32] and
references therein for many more. One of the most obvious characteristics of these waves
is their propagation speed.

The propagation speed of a sound wave depends on the bulk and shear moduli K
and G respectively. In a linear isotropic elastic medium the propagation speed for shear
and compressional waves can be found following a conservation of energy argument as
discussed next.



Propagation speed of a compressional wave through an elastic medium

Assume a harmonic compressional wave travelling in the = direction:

w

uy = Acos (x - wt) (1.2)
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with u; the displacement in the x direction of a point of material, A the amplitude of the

wave and w angular its frequency. The energy in the wave has a kinetic and a potential

component that together must be constant. On a per unit volume basis they can be

evaluated as
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with s(x,t) = sin (ix — wt) and M the compressional modulus related to the bulk and

shear moduli K and G by M = K + %G. Note the structural similarity of Equation 1.3
to Fyin = %mv2 and Epot = %kuz known as expressions for kinetic and potential energy
respectively.

Following from Epot + Eyxin = constant Vz,t it can be concluded
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Propagation speed of a shear wave through an elastic medium

A similar argument can be made for the propagation speed of a shear wave by assuming
a shear wave travelling in the x direction described by:

uy = Acos <wzn - wt) . (1.5)

Cs

Its kinetic and potential energy components are then

2
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So that from o + Eyin = constant  Vx,t follows

1 1 w?
1
p+Gg:O (1.8)
G
2 =—. 1.9
; (1.9)

Power law relations

Chotiros and Isakson [32] explain that the moduli K and G are often assumed to be

_z(1-5)

K=2"F
127R

_21-8) 3
S, G="0 <sn n 2&) , (1.10)

with 3 the porosity, R the grain radius and .5, and S; the normal and tangential contact
stiffnesses. Note that this already assumes a Hertzian contact model developed in 1882
[33] as used extensively when describing the contact between grains.

Goddard [34] notes that assumption of the Hertzian model gives p o p% with p one
of the elastic moduli and p the confining pressure. Using only the power law relation

between ¢, s and the moduli gives ¢, ; ,u% o (p%> ? x p%.

Following this relation two interesting questions can be posed. If the propagation
speed is indeed related to the pressure via a power law what happens in a packing
with a pressure gradient? Such a pressure gradient can for instance be seen in liquids
contained in a column where the pressure is proportional to the depth, p = pgh. In
such a system waves propagating horizontally at greater depth would have a higher
propagating speed and therefore bend upwards much like a mirage [27].

From subsection 1.1.2 we know that granular media in general form an inhomogeneous
network, unlike a liquid, so that a wave propagating through the material must at least
be influenced by the force chains [35]. How exactly is another question.

The second question worth asking is what happens at the top of a column of a granular
medium where the confining pressure is near zero. The predicted propagation speed is
then also zero. Apparently it is not possible for linear waves to propagate through this
section of the medium.

Even more so, in a system without gravity it is theoretically possible to achieve a
confining pressure that is very close to zero inside the whole packing, describing a packing
where the particles barely touch but are not pressed together. It is these kind of systems
that a large part of this report concerns itself with i.e. systems that can only be studied
under micro gravity conditions.

1.2.2. Non-linear waves

Nesterenko [1] noted in 1984 that granular media can support non-linear waves. For
different situations he derived non-linear wave equations [36] that were later simplified

10



and used by Gomez et al. [2, 3] to describe shock waves in their simulation. One such
simplified equation is
R? 4R%*

?&ftmm — Ot +

(6271 . =0, (1.11)
with §(z,t) the strain field at position x and time ¢, R and m the radius and mass
of a particle respectively and e an interaction parameter (which depends on radii and
material properties). Subscripts are partial derivatives. In the above equation « is a
parameter that can change the behaviour of the equation. For a@ = 2 a linear wave
equation is retrieved.

Using an ansatz and minimal potential energy argument (omitted here for the sake
of brevity) Gomez et al. [2] end up at Equation 1.12 which we shall use as a starting

point for analysis [4]:

vs | 1 (8s/0) ! —2
c \/a —1 (05/00) —1 (1.12)

with “s the ratio between non-linear wave speed and linear wave speed and dg s the
compression before and after the wavefront respectively. Clearly

vg o 6711 (1.13)
with 6 = g—g and upon setting a = g to comply with the Hertzian contact potential [37]
Vs < 01 (1.14)

From the contact models described in Appendix E one finds a scaling law (in the case
of spherical particles)

§x F3 ocas, (1.15)

because the acceleration a is related to the force F' linearly via Newton’s second law.
Combining the above gives

o=

Vg X 61 x ai*s = q (1.16)

This power law has been found experimentally by van den Wildenberg [4] and is
described in the mockup Figure 1.4. As seen from the picture higher confining pressures
cause a bigger linear regime. It can therefore be argued that lower confining pressures
will give a smaller linear regime and it is believed that at zero confining pressure no
linear regime is possible (sonic vacuum) [38].

11



Mockup of sound speed versus wave amplitude
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Figure 1.4.: Mockup figure with the same shape as van den Wildenberg’s [4] but
with arbitrary units to roughly represent the shape. The lines were drawn with shape
y = (a+ x)% with a a constant signifying confining pressure. Note that for higher
confining pressures a larger linear regime (with unchanging sound speed) is witnessed.
At high wave amplitudes (high x) the linear term is small and only a power-law relation
remains. The transition between the two regimes moves to higher wave amplitudes with
higher confining pressure.

1.2.3. Necessity

Through the phenomenon of jamming in different (non-equilibrium) microstates granular
media may have different bulk properties for a single set of macroscopic parameters. The
properties will depend on the interparticle contacts that can in some cases be visualised
with stress-birefringent techniques such as has been done to create Figure 1.3. Other
techniques include x-ray tomography, MRI and fluorescent confocal microscopy. For
more info see the PhD thesis by Carpentier [39] (which lists many more techniques) and
references therein or articles on specific techniques [40, 41, 42]. Although useful in some
cases these techniques have some common limitations to their applicability.

It is believed that sound waves travel preferentially along force chains through the
respective particle contacts [27, 35]. Depending on these contacts the properties of
sound wave propagation differs. If one can describe the influence of the particle contacts
on the wave it becomes possible to use a wave as a probe for the current state of the
granular material. Defining the wave properties is therefore of fundamental interest.

12



1.2.4. Research goals

The goal of this work is to study non-linear wave propagation in granular media and
the influence of simplified models of granular media thereon so as to provide tools for
further study. To this cause three sub goals have been formulated, they are:

1. to find whether non-linear behaviour can be shown using a simple one dimensional
molecular dynamics simulation with Hertzian or linear contact models.

2. to find whether a mixture of stress birefringent disks and spheres can be used as
a sample in a two dimensional setup to create a simplified granular medium that
still shows non-linear behaviour.

3. to increase the efficiency of an existing parabolic flight setup for time of flight
measurements and prove its effectiveness with data gathered on ground and during
a parabolic flight campaign.

13



Chapter o
Methods

This chapter discusses the methods used in this re- “The sand doesn’t care if
port. The sections describe a simulation and two you're made of flesh or stone”
different experimental setups. Joaquin Lowe, 2016

2.1. Simulation

To investigate a simplified granular system a computer simulation has been made us-
ing the discrete element method (DEM) or discrete particle method (DPM) also called
molecular dynamics (MD). This is a widely used method in the simulation of granular
media [43]. The method has been very well described, see [44] and references therein,
so only a compendious view is given here.

Given the state information ((angular) velocity, position and orientation) of all par-
ticles in a system at a certain moment and all the forces and torques on them at that
moment, their movements over a finite small time interval can be approximated by sev-
eral integration methods [45, 46, 47, 48, 49], among which the most notable are methods
by Euler and Verlet and the Runge-Kutta and Gear-predictor methods. In essence all of
these methods can be used to solve Newton’s equations of motion. Integration algorithms
used in this report are more thoroughly discussed in subsection 2.1.2.

After the new state of particles is calculated using one of the numerical integration
methods the forces and torques on particles have to be computed again. Usually this is
done by assuming a very much simplified contact model [50]. Contact models used in
this report are more thoroughly discussed in subsection 2.1.3.

Software packages exist that implement the DEM; see, but do not limit yourself to,
[51, 52, 53, 54, 55, 56, 57]. Each of the packages has its own unique features that define
in which cases it is best applied. For the work in this thesis the author has developed
yet another package so as to gain not only a large insight in the program and the ability
to easily adapt it but also to gain experience from creating it.

This has resulted in a Python package tentatively called Pysim, described in subsec-
tion 2.1.1 below. The code is freely available and has a full HTML api documentation
in [58].

14



2.1.1. Overview of Pysim DEM software

Pysim makes full use of the easy development of object oriented procedures provided by
Python. It includes several classes that represent real-life entities such as particles and
walls. Furthermore there is a variety of more abstract classes providing easy to imagine
functionalities: a samplecell to hold all particles, an integrator to perform integration
and a timeseries writer to export data to a series of files.

All these classes are replaceable by other implementations similar functionality, making
Pysim very modular. This way the structure of the software can remain unchanged
when changing particles from for instance a two dimensional to a three dimensional
implementation.

The general flow of a typical Pysim program is depicted in Figure 2.1. In principle
the blocks describe a distinct functionality that is coherent: a block does not lose it’s
meaning when separated from the rest of the blocks. This way blocks with similar
functionality can be substituted for each other to create a program that does a different
simulation. E.g. switch an Euler integrator for a Verlet integrator to gain accuracy or
run the same simulation with a different set of material properties. The force calculation
and integration blocks are explained in more detail below.

As the simulation of granular systems concerns itself mainly with short range forces
many particles will not interact with each other instantaneously (because they are too
far apart). In a system where particles do not move around a lot (jammed system)
particle contacts may not even break and new particle contacts may not even be made.
To avoid unnecessary computations the current implementation of Pysim assumes that
once connections between particles are made during the initialization, they will not be
broken and no more connections are made!. Depending on the force law however non-
overlapping particles may still not interact with each other, so the amount of contacts
is therefore only an approximation made by the user.

Since the contact between two particles may be very complicated to describe (see
also Appendix E), and doing so accurately for all contacts may be time consuming, an
approximation is made. First off, the particles are assumed to be perfectly spherical.
This offers a wide range of contact models to be applied of which some are described in
subsection 2.1.3. Note that currently only compressive models (no cohesion) and without
friction (no rotation) are used!. For more complicated models involving these additional
features please see [50].

2.1.2. Integration

Currently two integration algorithms are implemented in Pysim. The first and simplest
being the Euler method, and the second being the velocity Verlet algorithm. If not
mentioned otherwise the velocity Verlet algorithm is used in simulations (because of it’s
increased accuracy).

!This is the current state of implementation, however care has been taken that any extension is easily
possible

15



Start of simulation

Initialization:
define walls
define initial conditions
set material properties
set simulation time

Output:
Increment time Write output
to file
Simulati q No Force calculation: Integration:
tliﬁu ‘:ml}ll 6(111,) Calculate all forces Update state using
¢ reached: using force laws integration algorithm

Yes

Stop

Figure 2.1.: Flowchart of a typical Pysim program. Note that all rectangular boxes can
be substituted by homemade classes performing the same function, without destroying
the flow of the program.

Consider Newton’s equations that describe motion

20 .
with F'; the force on particle ¢ at position r; and mass m;. At any point in time the force
on all particles is assumed known (since it is calculated by the contact models in another
block) so that also the acceleration of all particles is known a via Newton’s a; = F;/m;.
The same can be argued for rotational degrees of freedom but the explicit description is
omitted in this report for the sake of brevity.
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Euler

The Euler integration algorithm is easy to derive and implement, so it is feasible to use
as an algorithm during testing. There are however disadvantages considering accuracy
which is why more advanced methods are preferred, even in general.

If the position of a particle is known at a specific time, i.e. 7;(tp), and requested at a
later time, i.e. 7;(teng) the domain can be subdivided in (possibly equal) parts. Define
the size of such a part At, the timestep size.

Using a Taylor expansion around the point ¢ty one can find an approximation

8’” (to)

5 T O(A?). (2.2)

’I“Z'(to + At) = ’l"i(to) + At

The same argument can be made for the velocity, so that a single timestep, that can
be repeated over and over, forms

R S AN (2.3)

+1 Fy
n 3
CHARESR A EAt’ (2.4)
where the superscripts n and n + 1 denote information at the current timestep (with
known information) and the information at the next (unknown) timestep respectively.
Note that the O(At?) have been omitted, making a single timestep second order accu-
rate in timestep size. Because the whole domain has to be divided in (’)(Ait) timesteps,

the total accuracy of the Euler integration algorithm is said to be of the first order in
At.

Velocity Verlet

To derive the velocity Verlet algorithm split the second order differential equation of
motion into two first order differential equations

ari(t)
ot

— wilt) aglft) _F m(t) (2.5)

An expansion of both quantities around t + At gives

2

ri(t+ At) = ri(t) + Atw(t) + QAt -Fi(t) + O(AtY) (2.6)
_ ovi(t)  At? 0%v,(t) 3
vi(t + At) = vi(t) + At = + === 0 + O(AF), (2.7)
Using another Taylor expansion to find that
A2 0%vi(t) At [(Ovi(t+ At)  Ovy(t) 3
o o _2( o o )*OW) (28)
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it can be found that

vi(t + At) = v;(t) + 2At (Fi(t + At) + Fy(t)) + O(At3). (2.9)

i

The above can be formed into a repeatable procedure, with superscripts as above,

2
Pt =T Atol + A g (2.10)
7 7 (2 2 i 7 *
At
vt = o (FI'+ F7. (2.11)
(2

2.1.3. Contact models

To approximate the interaction force between two (assumed before) spherical particles i
and j the force is assumed to be only related to their overlap ;;. In general the overlap
depends on the particle positions r; ; and their radii R; ; as

dij = (Ri + Rj) — [Iri — rj]|. (2.12)

This is also depicted in Figure 2.2 in a one dimensional case for simplicity. The
definition is however vectorially defined in higher dimensions.

Figure 2.2.: Two particles in contact in a 1D system. The overlap d;; depends on the
particles positions 7; ; and their radii R; ;.

The contact models used in the simulations are described below. For clarity the
subscripts denoting particles are omitted.
Linear compressive particle and a wall

This section describes how a linear compressive particle interacts with a wall. The model
is linear because F'(§) o § and compressive because F' = 0 when § <=0

F(5) = {—kd‘n, for 0 > 0}.

0, otherwise
Additionally F'(§) = 0 when the particle is on the outside of the wall. This can be
calculated using the equations in Appendix D.

(2.13)
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Figure 2.3.: A particle at position r; and radius R; in contact with a wall at position
r; and outward pointing normal n; so that the overlap is 9.

Two linear compressive particles

This section describes the contact law between two particles if they only exert compres-
sive forces on each other via a linear law.

Each particle follows the equation of the linear oscillator F' = —k¢§ with |F| the mag-
nitude of exerted force at excitation § and k the spring constant. Equating the forces
for particle ¢ and j gives a relation for the magnitude of the mutual force, that must be
equal for both particles.

F,=Fj. (2.14)

Inserting a linear relation between the overlap § and the force for both particles (with &
a constant for stiffness)

Then define § = §; + J; to find
(6 — 8;)ks = ok, (2.16)
k. k;
5 = 6—2 §; =0—0 2.17
ki + kj J ki + k; ( )
kK

F = I 2.1

k; + kj ( 8)

The final relation for the force on particle i by particle 7 then becomes

—Fn;;, for 6 > 0}

F;;(0) = {0, otherwise (2.19)
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Two Hertzian spheres

The contact between two Hertzian spheres is described, see Appendix E, as

9 2

which can be rearranged to find

3 9
Fy =63
a <16RE*2

N——
|
N

(2.21)

(Note that Appendix E uses the symbol P to comply with literature, we will here use
Fp). Note that R is here the effective radius satisfying 1/R = 1/R; + 1/R; and E* the
effective modulus satisfying 1/E* = (1 — v2)/E; + (1 — VJQ)/E]

Following the same reasoning as before the force on particle ¢ is found by using the
normal

o B —FH’I’LZ'j, for 6 >0
Fi;(0) = {0, otherwise} ' (2.22)

Hertzian sphere and a wall

The case for compression of two spheres can be simplified in the case that a single
sphere is in contact with a wall, by making the second sphere of infinite radius and
infinite modulus so that

1/R=1/R; 1/E* = (1 —v})/E;. (2.23)
Otherwise the model remains unchanged.

Two Hertzian cylinders

From Appendix E see that

4
6= - F 2.24
mE*L ( )
so that
E*L
F=6" T (2.25)

using 1/R = 1/R; + 1/R; and 1/E* = (1 — v})/E; + (1 — 1/]2) L is the length of a
cylinder. Note that it is assumed that the cylinders are of the same length. In other
cases a different model can be used, see [33, 59, 60].

Following the same reasoning as before the force on particle ¢ is found by using the

normal

0, otherwise

Fii(0) = {—Fnij, for 6 > 0} . (2.26)
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Hertzian cylinder and a wall

This case differs only from the two Hertzian cylinders contact for R and E* which satisfy
in this case

1/R=1/R; 1/E* = (1 - v})/E;. (2.27)

Hertzian sphere and Hertzian cylinder

From Appendix E one can approximate the contact between a cylinder and a sphere
with

wln

5 =k (2Q) (M) . F3. (2.28)

Note here that k and —%% are related to full elliptical integral solutions of which

Puttock gives numerical approximations [61] and Q = 3 (1; Eiz + 1; gzz)

After rearrangement one finds

st 1\
F = 20 <Ri(_ Z)> . (2.29)

o =
Q.

e

2.2. On-ground experiments

To perform experiments on ground a sample cell was constructed capable of holding
a layer of particles. The system therefore is essentially two dimensional, whereas the
particles in it are three dimensional (spheres and/or cylinders). The sample cell is
shown in Figure 2.5 and part of a larger setup that includes a Phantom V711 high
speed camera and a shaker (LDS air cooled vibrator v721) with its appropriate driving
soft- and hardware as distributed by the manufacturer. The complete setup is shown in
Figure 2.4.

2.2.1. Setup overview

Light emitted by a light source (either daylight or a lamp or both) travels through a
circular polarizer (constructed out of a linear polarizer and a quarter wave plate) placed
between the sample cell and the light source. The circular polarizer (not visible in the
pictures) is placed very closely to the sample cell so (almost) no other light can enter
the sample cell.

To avoid unwanted fringes in the resulting image stress free perspex sheets have been
used as a containing material, along with aluminium for the load bearing parts. The
perspex has been freed of load by giving it a few fractions of a millimetre of play in
all directions. This way only phase changes caused by the sample will show up in the
resulting image.
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The camera is outfitted with a lens of 50 [mm] focal length and aperture & = 52 [mm]
and a # = 58 [mm)] circular polarizer in the opposite polarization direction of the first
one effectively creating a circular polariscope.

The polariscope maps the stress intensity of a stress birefringent material to intensity
of the light it lets pass. For a more detailed view of the polariscope and more information
on polarization in general please refer to Appendix C.

Figure 2.4.: The complete setup for on ground experiments. Visible are 1. The shaker
2. The sample cell 3. Shaker control unit, power supply and power amplifier /. High
speed camera.

2.2.2. The sample cell

To reduce friction between the cell walls and the sample the cell has been made slightly
larger (3.1 [mm]) than the intended sample diameter (3 [mm]). This extra space allows
the sample to move more freely but keeps the contacts between particles roughly in
plane. It is likely that friction between the cell and sample was hereby reduced but not
completely removed. The magnitude and effect of this friction have not been studied
thoroughly.

Instead we note that the frictional force between a particle and the wall is smaller
than the gravitational force on a particle, because the particles fall out of the sample
cell when hold upside down. The weight of the particles (ca. 13 [g]) is much smaller
than the weight of the top of the container (29.2 [g]) and the mass of the weight that is
dropped (44.0 [g]).

Frictional forces with the walls increase when the packing is compressed to the point
where particles no longer drop out of the cell. The packing is therefore relaxed (by
tapping) before every experiment until no strong force chains are visible.

22



Furthermore the driver and top plate for pressure application have been designed
slightly shorter than the sample cell width so as to allow frictionless (as far as possible)
motion between them.

(a) CAD rendering of the sample cell, (b) Picture of the sample cell
visible are 1. Moveable top plate to pro- in the setup, with the driver de-
vide pressure using weights 2. Connec- tached from the shaker for clarity
tor plates to connect the sample cell to of the picture. Visible are 6. Side
the non moving reference frame 3. Stress wall in contact with the particles
free perspex sheets 4. Moveable driver 7. Stress free perspex sheets 8.
5. Parts used for connecting the driver Reinforcements.

to the shaker.

Figure 2.5.: Two dimensional sample cell for stress birefringent experiments on ground.

2.2.3. Particles

Two types of particles were used for the experiment both consisting of stress birefringent
material produced by Vishay [62]. The first type are disks in varying diameter cut with
a waterjet from 3 [mm)] thick sheet with tradename PS-4.

The second type of particle are spheres that were hand made from PL-3 using the
procedures outlined in [63, 64]. The process mainly involves mixing the two raw com-
ponents for PL-3 (a resin and a hardener, the exact composition of which are kept trade
secret by the manufacturer) and using a pipette to create droplets of the desired size.
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The droplets are then dropped in a large cylinder filled with a liquid of similar but
lower density as the resin-hardener mixture so that the droplets fall slowly through the
liquid. Care is taken that the liquid and the resin-hardener mixture do not naturally mix
so that surface tension causes the droplets to become spherical. In our case the liquid
was silicon oil produced by the Silicon Profis under tradename Elbesil Ol AK 60.000 or
Elbesil Ol B 60.000 (which differ only in tradename, 60.000 is the kinematic viscosity in
%1076 [m2 / s] ) [65]. The droplets harden into PL-3 particles on their way down through
the oil. A picture of the cylinder with particles dropped in can be seen in Figure 2.6.

Figure 2.6.: Droplets in a cylinder of silicon oil during the hardening process into
particles. Note that some particles drop faster than others according to their size [64], but
the average drop speed is in the order of several centimeters per hour. The particles leave
traces of slimy-looking waste that contaminates the silicon oil. For repeated production
the silicon oil therefore has to be replaced (or cleaned).

The particles were then mechanically cleaned by hand using absorbing paper sheets
and their diameter was evaluated with the use of a caliber. Although the exact required
volume of a sphere can be calculated using V = 4/37R3, the particles still differ in size
mainly due to the inaccuracy of the pipette. Roughly 70% of the particles produced
were in the desired range (2.9 < # < 3 [mm]). Particles outside this size range are left
unused.
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Material ~Strain optical coeff. Elongation Young’s modulus Poisson’s ratio

K %) E [GPa] v
PS-4 0.009 > 40 0.004 0.500
PL-3 0.002 > 50 0.0014 0.42

Table 2.1.: Material properties of two materials distributed by Vishay.

2.3. Zero gravity experiments

To achieve a full 3D sample a granular medium near the jamming transition the sample
is taken aboard the Airbus A310 ZERO-G aircraft for parabolic flights. Below the setup
and procedures are explained.

2.3.1. Experimental setup

Hardware

(a) The rack with the door open and sam- (b) Overview of devices in the rack with 1.
ple cell taken out for clarity of the picture. Outside of double container 2. Sample cell
3. Motor driver 4. Motor 5. PicoLog data
logger 6. DC power supply 7. PicoScope
digital oscilloscope 8. Sensor pre-amplifiers.
Additional sensor amplifiers are not shown.

Figure 2.7.: Parabolic flight rack.

The rack used in the parabolic flight campaign is shown in Figure 2.7. The rack was
bolted to the floor of the airplane so that it was unable to move. A mini PC (not visible in
picture) was used to control the data acquisition modules. Most noticeable is the double
containment for the sample, so that beads can under no circumstances exit the setup.
Furthermore the sample cell is placed on a damper to overcome vibrations from the
plane and experimenters. The flight procedure is further explained in subsection 2.3.2.

Sensors (see below) are connected through the throughputs in the sample cell (see
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below) to sensor amplifiers. The sensors were then connected to data logging modules.
The piezo sensor and accelerometers are connected to a PicoScope 5000a series digital
oscilloscope sampling at 1 [MHz| a voltage range in 14 [bit]. The voltage range differs
from £10 [V] (maximum output of sensors and amplifiers) to £100 [mV] depending on
the signal strength. In general the largest range was used (since accuracy was not an
issue) unless this introduced too much noise for the automatic analysis software (see
below) to function properly. The pressure sensors were connected to a PicoLog 1000
series sampling at 12 [bit] a voltage range of 0 to 5 [V] at 10 [Hz].

(a) CAD drawing (line rendered) of the sample cell. Shown are: I. moveable (mobile) wall 2.
side wall #1 3. plunger fixation adapter 4. plunger 5. feed through (for wires) 6. front wall 7.
bottom (wall) 8. back wall 9. linear guide for mobile wall 10. linear guide for mobile wall 11.
external pressure (Py) control screw housing 12. external pressure control shaft 13. side wall #2

- 0

(b) The sample cell. On the right one can (c) The plunger (left) and hammer (right).
see the plunger (also in Figure 2.8¢) that the

hammer will hit. Furthermore three wires

are visible that are connected to three pres-

sure sensors.

Figure 2.8.: The sample cell with hammer.

The hammer was driven using a stepper motor and motor driver (SMCI33-2). The
motor driver was capable of remembering several movement profiles that were set using
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the mini PC pre-flight. Using a digital signal from the PicoLog the motor was triggered
to run a profile. The profile to run was selected by using several three point switches,
located near the keyboard for ease of access, acting as a binary counter (0 to 31).

The sensors, visible in Figure 2.9, were placed around the center of the packing at a
distance from each other. The distance was measured using a ruler at the same distance
from the camera as the sensors.

(a) Close-up of the ac- (b) Close-up of the piezo (c) Sensors placed in sample.
celerometer (Miniature Sensor.
DeltaTron 4508B series).

Figure 2.9.: Placement of the sensors in the sample cells. The ruler is only used to
measure the distance between the sensors, and the sensors are placed so that they do
not lie directly in the path of the wave and could shield each other.

Sample

The sample, or packing, consists of the sample cell filled with glass beads (so spherical
of shape) of 3 and 4 [mm]| diameter (to avoid crystallization) at a ratio so that their
volume is approximately equal. The particles were poured in from a plastic container
almost until the brim. The last particles were inserted by using a spoon. Afterwards
the packing was relaxed by tapping (and adding more particles if necessary) and by
cyclic compression by hand. Around 20 load cycles were performed to relax the packing,
inspired by [66, 67]. Not relaxing the packing causes very inconsistent results among
the first experiments as the packing is then in the process of relaxing.

2.3.2. Flight procedure

A single parabolic flight campaign (PFC) consisted out of 3 flight days. Every day had
one flight lasting approximately 3.5 [h]. The largest portion of this time is used for
take-off and landing and for flying to an otherwise much unused stretch of sky above the
ocean. During the flight there are 31 flight procedures resembling a parabolic shape, for
the sake of ease called parabolas from here on. The parabolas are divided in groups of 5,
except for the first group (6). After every group there is a break of either 5 or 8 minutes
of steady flight. A parabola itself lasts around 1 [min] but is appended with a period
of steady flight so that a parabola is only repeated every 3 [min]. A single parabola is
shown in Figure 2.10.
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During a parabola two different recordings of data were made. One in the microgravity
phase and one in the hypergravity phase after the parabola. In some cases additional
steady flight data was also logged. This way the influence of gravity could be directly
measured since the packing will, as assumed, change little in this short period of time.
The pilots callouts listed in Figure 2.10 were used as a countdown so the experimenters
know when to start or stop a measurement.

2.3.3. Data acquisition

Two hardware devices were used to acquire data. First the PicoScope 5000a digital oscil-
loscope for the accelerometer and piezoelectric data. It was set at a sampling frequency
of 1 [MHz]. Furthermore a PicoLog 1000 was used at a frequency of 10 [Hz] to capture
pressure data. Both were connected to the mini PC using a high speed USB connection.
The manufacturer supplied drivers were used to create a custom user interface to the
devices.

The custom built interface allowed to choose several settings for the oscilloscope. Most
importantly it was set to trigger on channel A (the channel for the first accelerometer).
Whenever the voltage surpassed a trigger value a sample was collected and a data file
created. The file contains 25000 samples, 5000 samples before and 20000 after the trigger
sample. The controlling software was written specifically for this purpose, however, is too
complicated to be explained here. Instead, a screenshot of it is provided in Figure 2.11
and the code is available including user documentation and API documentation upon
request at the author.

Every datafile is stored on hard drive. To quickly show the experimenter what is hap-
pening an automatic analysis tool has been written. It uses a peak detection algorithm
to make an estimate for the time of flight (the time it takes for the wave to travel from
the first to the second sensor). The experimenters were able to set the distance between
the sensors so that an estimate for the propagation speed was possible. This was plotted
on the vertical axis with the geometric mean of the peak heights on the horizontal axis.

To avoid overloading the processor with this rather extensive procedure it was made
possible to process only every N file. The code is available upon request with the
author including user documentation and API documentation.
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Figure 2.10.: Schematics showing a single parabola. Images from Novespace safety
instructions [68]. top: Schematic view of time passed during a single parabola. Note that
hypergravity phases are separated from the microgravity phase by a transition period
in which the magnitude of gravity quickly changes. Furthermore the aircraft velocity
and altitude are given at key points during the procedure to show how aggressive the
procedure is. bottom: Schematic view of the flight path during a single parabola where
the pilot’s callouts are given. The callouts are given at key points during the procedure
and can therefore be used as a countdown to the three different phases.
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Figure 2.11.: Screenshot of the controlling software during the parabolic flight.

left:

The interface to the capture devices, allowing to set all acquisition parameters during
operation. This part also provided the experimenters with feedback on whether sound
signals were captured. right: The automatic analysis interface that shows one of the
last datafiles gathered (top). Furthermore using the automatic analysis tool the current
dataset (parabola) is plotted in the middle figure. The bottom figure contains the last
10 [s] of pressure data for all pressure sensors. The green line shows the external pressure
and the other three lines show the pressure at different heights in the packing.
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Chapter o

Results

This chapter discusses experimental results and re- “To see a world in a grain of
sults from simulations conducted using the methods sand”
outlined in chapter 2. William Blake, 1789

3.1. Simulation

This one dimensional simulation was conducted using the Pysim package described above
(in section 2.1). As a model system a chain of particles is chosen, the first timestep of
which can be seen in Figure 3.1. The particles have a radius of 3.0 [mm]. A system of 100
particles is considered, with the particles separated by a distance d. This distance may
vary per particle pair and may very well be negative (simulating a compressed chain).
With an interparticle distance of d = 0.001 [mm] part of the simulation can be seen in
an animation'. The initial velocity was 10 [m/s] and timestep size 1 x 107> [s].

3.1.1. Linear contact model

A typical velocity profile is shown in Figure 3.2. The distance between the peaks, in
relation to the the distance between the particles, gives an expression for the propagation
speed of the wave. Note that this is not the only way to determine the propagation speed.
Different methods (not used here) exist that may lead to (slightly) different results. For
a disambiguation see [69].

The arrival times of the wave at each particle, defined as the first timestep a particle
starts moving in the positive z-direction, are plotted in Figure 3.3. The slope of the
lines increase for larger inter particle distance d meaning a longer time of flight between
particles. For d < 0 all lines collapse showing a system that is qualitatively different
from the case where d > 0. This is reflected from the different velocity profiles shown in
this case, depicted in Figure 3.4.

For cases where d > 0 a simple model can be made to predict the propagation speed
of the wave (S. Luding, personal communication):

_d+2R

c=2T20 (3.1)
te+ =

"https://kamphuisalex.stackstorage.com/index.php/s/ncynh7k940H5¢Dd
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Figure 3.1.: Simulation of a chain of particles. The particles have equal radii and they
are separated by a distance d. The red particle is given an initial velocity to the right
(positive z direction). The blue particles have an initial velocity identical to 0.

with vg the initial speed of the excited particle. The expression can be thought of as
follows; the propagation speed is the distance travelled per particle (so the distance from
a particle to the next and the diameter of that particle together) divided by the time
it takes to travel. This time is the sum of the contact time ¢. and the time it takes to
travel a distance d.

Following Luding [50] the contact time

te = —, (3.2)

with w = /2k/m (with m the mass and k the stiffness). We used the parameters in
Table 3.1 and the contact model in Appendix E for a cylinder-cylinder contact (which
is linear) to find that

o TE*L

~ 1963.5 [N/m] (3.3)
te =477 x 1074 [3]. (3.4)

Using this contact time in Equation 3.1 gives the theoretical fit in Figure 3.5. The
optimized fit gives a contact time of ¢. g = 2.37 x 107 [s].

3.1.2. Hertzian contact model

For an inter particle separation d > 0 the chain of Hertzian spheres (Figure 3.6) does
not behave qualitatively different from the chain of cylinders (Figure 3.5). For d < 0
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Velocity profiles of particles in a chain
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Figure 3.2.: Velocity profiles of several selected particles in a chain of particles, inter-
acting via a linear contact model. Note that every particle reacts the same way to the
disturbance (wave), just on a later time. The inter particle distance d is 0.001 [m].

however, the chain with spheres shows an increase in sound speed initially. This may
be attributed to the fact that under compression the sphere becomes stiffer (due to the
non-linearity in the contact law). The sound speed naturally moves faster through stiffer
particles.

When d decreases even more (in this case d < —0.0002 [m]) the sound speed starts
dropping again. This may be attributed, similar as in the Hertzian cylinder (linear) case,
to the reduced distance between particles. Reducing this distance means that between
two points in space there are more particle contacts (each slowing down the wave via
te).

The animation of this wave (not shown) tells us that the first excited particle is unable
to transfer all of its kinetic energy to the second particle (see also the velocity profile
in Figure 3.4). Instead it is partly reflected backwards. This leaves the propagating
wave front with less energy. Although not conclusively, this suggests that the amount of
energy in the wave may influence the propagation speed as suggested by Gomez [2, 3]
and shown experimentally by a group in Leiden [4].

3.1.3. Varying initial velocity

Another set of simulations was run using the parameters in Table 3.2, now varying
the initial velocity of the excited particle. The initial velocity is a measure for the
wave amplitude, and so one expects a faster wave following subsection 1.2.2. Note that
the timestep size used is 100 times smaller (% x 1077) to account for the faster moving
particles. It is possible to increase the initial velocity even more, but this requires an even
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Moment of wave arrival for particles in a chain
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Figure 3.3.: Wave arrival times for different inter particle separations. Note that the
slope increases for increasing inter particle separation d. This means the wave takes
longer to get to the next particle when the distance is longer. Furthermore the lines for
d < 0 collapse (with the line for d = 0) and have therefore been plotted with crosses on
only a few data points.

smaller timestep size and simulation of a reasonable system size becomes impractical.
The maximum initial velocity used here (10 [m/s]) should be more than enough to show
the behaviour from section 3.2.

The relation between initial velocity and wave propagation speed can be seen in Fig-
ure 3.7. For the two particle types (Hertzian spheres and Hertzian cylinders (linear))
the propagation speed increases with initial velocity. Note that the curves are (almost
everywhere) straight in the log-log plot. A powerlaw can therefore be fit. The yellow line
(linear contact) has a slope of 2.04 x 10~2 and the red linear similarly so. The relation
is therefore clearly not linear, nor constant or equal to the % power-law expected from
subsection 1.2.2.

A stronger increase in propagation speed can be seen at the last data point (where
initial velocity vo = 10 [m/s]). Even this increased slope is not sufficient to come close
to the % power-law. Furthermore the point looks ill-placed in relation to the others,
which hints towards a numerical error. A possible numerical error made in this case is a
too large timestep size for the high particle velocity. This could be confirmed by further
decreasing the timestep size in another simulation but as this is impractical for multiple
simulation and the conclusion would remain unchanged, a rerun is omitted here.
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Figure 3.4.: The same plot as Figure 3.2 but with interparticle distance d = —0.001 [m].
The velocity profile no longer shows a peak for every single particle, but an oscillation.
Not all momentum is therefore present in the wavefront.

Propagation speed c (m/s)

35

30

25

20

15 -

10 -

0

Propagation speed through a chain of particles

Simulation results  +
+ + Theoretical model
+ + Optimized fit (t. = 2.37e-4) ——

-0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001

Interparticle separation d (m)

Figure 3.5.: Propagation speed for different interparticle distance. For a positive inter-
particle distance simple theoretical expression (Equation 3.1, with ¢, = 4.77 x 1074 [s])
can be fit. Note that at d = 0 the propagation speed changes quickly.

35



Setting Symbol Value Unit

Number of particles N 100
Young’s modulus E 0.0014 x 10° [Pal
Poisson ratio v 0.4
Density P 800 [kg/m?]
Radius R 0.003 [m)]
Cylinder thickness h 0.003 [m]
Timestep size At 1 x107° [s]
Initial velocity Vo 1 [m/s]
Interparticle distance d varying [m]
Table 3.1.: Simulation settings
Propagation speed through a chain of particles
30
Simulation results ~ +
25t + . Optimized fit (t; = 4.1e-4) ——
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Figure 3.6.: The same figure as Figure 3.5 but with Hertzian spheres instead of disks.
The fit shows a contact time of 4.1 x 1074 [s], around a factor of 1.7 longer then Hertzian
cylinders with the same material parameters.

Setting Symbol  Value Unit
Number of particles N 20

Timestep size At 1 x1077 [s]
Initial velocity vo varying  [m/s]
Interparticle distance d —0.001 [m]

Table 3.2.: Simulation settings for varying initial speed. All settings are the same as
Table 3.1 unless mentioned here.
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Propagation speed through a chain of particles

Hertzian sphere ——
40 = Linear contact

30 -

25 |-

20 -

Propagation speed ¢ (m/s)

0.01 0.1 1 10

Initial velocity (m/s)

Figure 3.7.: Wave propagation speed in a simulation with different contact models
(linear and a Hertzian contact model) for different initial velocities. Both particle types
show an increase of speed with increasing initial speed.
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3.2. On-ground experiments

3.2.1. Slow excitation using shaker

Initially the shaker was used as a way of exciting the granular packing as described in
section 2.2. The shaker has however a maximum speed of 0.7 [m/s]. One can imagine
that a very slow increase in pressure does not cause a significant wave front to develop,
but is rather more like quasi-static loading. A high speed video? (recorded at a framerate
of ca. 43000 per second, but slowed down in the online video) shows that indeed the
packing shows quasi-static behaviour.

In the video the supposed wave is excited from the right and travels to the left. It is
however clear when one looks at the left side of the image brightness slowly increases
almost immediately (together with brightness on the right). There is no sign of a prop-
agating wave front.

When looking at screenshots (not shown) one may be fooled easily because as the force
chains propagate into the packing their intensity diminishes. On average the left parts
of the image are therefore less bright and need more pressure to show up in the video.
It may therefore appear as if a wave front is travelling anyway.

3.2.2. Typical results using a dropped weight

When instead of the shaker ran, a weight (mj in Table 3.4) is dropped (through a
cylinder for guidance) the impact velocity is much higher. With the time to drop

2h;
ti,drop = i (35)

from a height of h; and g the acceleration of gravity an estimation for the impact velocity
can be found (disregarding air drag)

Vj,end = 2ghz (36)

For a height of hy = 39.85 x 1072 [m] the estimated end velocity vyena = 2.80 [m/s].
Whereas the shaker could achieve a maximum of 0.7 [m/s].

The higher impact velocity shows a much easier to identify wave front travelling. A
typical result can be seen in a video online® or in the screenshots in Figure 3.8. Camera
settings in all experiments are those of Table 3.3 unless mentioned otherwise.

A cylinder set upright above the sample cell with several cutouts to insert a weight
provided a means to produce a repeatable experiment. The drop heights and masses of
the weights are listed in Table 3.4.

After every drop the packing is slightly more compressed than before as friction pre-
vents it from completely relaxing. To reinitialize the packing the top is taken off after
every experiment and the packing is shaken until areas of high stress have relaxed. The

Zhttps://kamphuisalex.stackstorage.com /index.php/s/fnrpswdwJtBcLRt
3https://kamphuisalex.stackstorage.com/index.php/s/yFdTvloluw3VKls
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(a) frame 48 (b) frame 68 (c¢) frame 100

Figure 3.8.: Screenshots from a 40000 [fps] video when the weight hits our granular
packing from a height of 39.85 [cm]. The three screenshots taken at different times
clearly show the pressure wave travelling downwards at a finite speed.

Setting Value Unit
Frame rate 40000 [fps]
Shutter time 8 ]
Resolution 256 x 512 [pixels]
Image depth 8 [bit]

Table 3.3.: High speed camera settings

packing then expands and the top plate is reinserted. This produces a clearly defined
packing at the start of every experiment (as inspired by personal communication with
X. Jia, 10 Feb. 2016).

The time of flight for the wave is analysed by picking two rectangular areas of pixels
with a height of 10 pixels across the complete width of the video frames. The intensity
of all pixels in this area is summed for every timestep. As the wave arrives one expects
a sharp increase in intensity in this area. This increase is shown in Figure 3.9.

It is very possible that after the arrival of the wave as apparent from the figure the
pressure increases even further as the driver still moves slowly inward. This is consistent
with existing work [70, 71].

The intensity of light that passes through a particle (in our circular polariscope) how-
ever saturates for increasing pressure (see subsection 3.2.5). It is therefore not feasible
to relate the intensity of light to pressure directly. Other techniques exist and are still
under development, see for instance [72, 73] but as they require high resolution images
are not used here.
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Parameter Symbol Value Unit

Drop height 1 ha 6.8 x 1072 [m]
Drop height 2 ha 14.8 x 1072 [m]
Drop height 3 hs 27.5x 1072 [m]
Drop height 4 hy 39.9 x 1072 [m]
Drop height 5 hs 51.9 x 1072 [m]
Drop height 6 he 65.0 x 1072 [m]
Drop height 7 h7 77.7x 1072 [m]
Drop height 8 hg 85.0 x 1072 [m]
Mass of top plate mg 29.2 g]
Mass of weight mi 44.0 g]
Mass of extra compression ma 280 g]

Table 3.4.: Values of drop heights and masses of weights.

3.2.3. Non-linear wave propagation

Using a packing consisting out of 23 [mm] spheres and #6 [mm] disks/cylinders (with
thickness/length 3 [mm]) several drops from different heights were filmed. The ratio of
spheres to disks was so that both take up about 50% of the system area.

Each video of a drop gives one single sound propagation speed for that drop height. For
every drop height the experiment was repeated 20 times and the averages and standard
deviations plotted in Figure 3.10.

To the datapoints a powerlaw was fitted with a slope of % in the double logarithmic
plot using SciPy. For references on fitting using SciPy see [74, 75, 76]. In a similar
experiment by van den Wildenberg [4] a similar power-law scaling was found.

Figure 3.11 shows average and binned data of velocity measurements for a single drop
height. Even with a relatively low amount of data points (35 in this case) the onset
of a Gaussian distribution is visible. The standard deviations shown in Figure 3.10 are
rather significant but the averages seem to be easily fitted by the power-law. This may
be explained that even though standard deviation in the data is ever present the average
is (almost) independent of the number of data points. Although not completely proven
the beginnings of the histogram in Figure 3.11 support this theory.

3.2.4. Particle type ratio differences

A similar experiment has been repeated with different packings consisting out of more
spheres. The ratio’s of spheres to disks 70/30 and 90/10 indicated in Figure 3.12 are
taken so that 70% or 90% of the sample cell surface area is taken up by the spheres.
All packings show a similar slope in Figure 3.12 and the quantitative difference between
the datapoints from one drop height is within error bars. Note that the soundspeed
recorded is a lot lower then in Figure 3.10 because of the different method of time of
flight determination. In this case the average arrival time was chosen as a measure for
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Figure 3.9.: Total intensity inside two areas of interest. Sharp increases (bordered with
vertical lines) show the arrival of the pressure wave. Note that after the wave arrives
pressure remains elevated but no longer increases.

arrival of the wave because as the ratio of spheres to disks increased the signal to noise
ratio became smaller and made determination of the arrival time more difficult.

3.2.5. Precompression

As mentioned before the intensity of light transmitted through a particle saturates for
higher pressures. To achieve an accurate measure for the pressure applied on a particle
the number of fringes seen becomes important. The number of fringes can be related to
the gradient of the intensity along a line pointing from particle center to contact [77,
78]. This technique requires a higher resolution because particle and contact positions
need to be determined (and the resolution needs to be sufficient to capture all fringes).

However as the load on a particle increases it’s fringe pattern does change leading to
the suggestion that the difference between two consecutive images is a (al be it rough)
measure for the pressure difference.

To investigate this possibility a wave was transmitted through a compressed packing.
The video of the raw images* shows the wave travelling, however it is difficult to de-
termine where the wave front is exactly at each frame. In the differential video® the
absolute difference between two absolute frames is shown, making it much more clear
how the wave travels. The same can be seen from the screenshots in Figure 3.13.

This technique (which was already used by Daniels [35]) is therefore promising for our
setup but is not further used for this report.

“https: //kamphuisalex.stackstorage.com/index.php/s/B616t5yLW1J9Dyy
Shttps://kamphuisalex.stackstorage.com/index.php/s/W0auwbnOMFI5Dfy
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Sound speed over impact strength
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Figure 3.10.: Measured sound propagation speed for different drop heights (impact
velocities). The datapoints are averaged over approximately 20 datapoints and the
errorbars show standard deviations. A power-law was fitted and plotted (see text).
Time of flight is based on the estimated arrival time of the wave (left lines of the pairs
in Figure 3.9).
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Figure 3.11.: 35 sound speed measurements binned to form a histogram. The height
of the columns is the relative frequency for points within the width of a column. Note
that roughly a Gaussian curve can be seen.
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Sound speed over impact strength
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Figure 3.12.: Sound speed versus impact strength for packings of different ratios of
particle types. The ratio is based on the amount of sample cell area taken up by that
species. Note that the sound shows a similar slope in all cases. Time of flight was deter-
mined using the average arrival time (centerpoint between the line pairs in Figure 3.9).
Power-law fit and error bars are not shown for clarity.
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(c) Difference image, frame |33 — 34| (d) Difference image, frame |45 — 46]

Figure 3.13.: Screenshots of a video showing a wave travelling through a precompressed
packing. Using the top images (raw) the location of the wave is much more difficult to
determine then using the bottom (differential) images.
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3.3. Zero gravity experiments

3.3.1. On ground preparation

Using the device described in section 2.3 a blow (using the motor and hammer) is given
to a granular packing. The blow then results in the propagation of a mechanical wave
through the packing. In Figure 3.14 a typical sensor response is shown for a single wave.
While filling the sample cell with particles the distance between the two sensors was
recorded and using their responses a time of flight can be calculated as the difference of
two arrival times. These two numbers combined give the propagation speed of the wave.

It is possible to define several points of interest on the sensor signal. The most obvious
is hereafter called ‘the peak’ and is defined as the point at which the first sine-like wave
has a peak and the peak’s value. From there two half-height points can be defined
traversing down from the peak, or other ratio’s to the peak height. Given that the
wave changes shape while propagating in an (for now) unknown manner the time of
flight may show different behaviour depending on its definition. One definition is the
difference between the arrival time of the peaks. Another would consist of the arrival
time of a half-height point or even 20% height point. The closer to the first arrival of
the wave one takes the point, the less influence by the shape-change of the wave but the
more influence by the noise in the sensor data. A balance therefore needs to be found.

From each sensor response two numbers are extracted that are later plotted as dots
in a graph like Figure 3.16. On the z-axis one finds a measure for the strength of the
wave by taking the geometric mean (since the magnitude of both can vary greatly) of
the peak heights

am = \/P1D2, (3.7)

with a,, a measure for the amplitude of the wave and p; 2 the height of the peaks
converted to the unit of acceleration ([m/s?]) using the sensor’s sensitivity.

In preparation of the in flight experiments tests have been performed to determine the
difference between actuation via a moving wall as explained in section 2.3 (the wall is
driven by the plunger listed there) or merely a plunger. The biggest difference is that
the plunger has a limited size and thus creates a wave that one can easily imagine to
spread to multiple directions, whereas actuation via a wall creates a plane wave (as far
as this is possible in a granular medium). The typical results in Figure 3.15 qualitatively
support this. In general the plunger actuated responses show additional small peaks and
a plateau in the rise of the first large peak (especially for the far sensor).

One interpretation of this effect is that actuation via the wall causes several force
chains to transmit a wave and the resulting signal is an average of the response through
all these force chains. This averages out some irregularities like the plateau and the
preceding small peak making it easier to describe the response. It was therefore decided
to use a moving wall as actuation method because future analysis may be easier on the
more smooth results.

Data acquired on ground, with the automatic hammer from section 2.3 replaced by a
manual hammer, has been plotted in Figure 3.16. No linear regime can be seen (only
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the non-linear regime with a slope of é is visible) here which may mean the confining
pressure was too low for these hammer strengths.

A higher confining pressure has been applied in Figure 3.17 that - possibly - shows a
linear regime. Although hinting towards a linear regime the low number of data points
at low wave amplitude is not yet convincing. The power-law fit however fits the data
nicely beyond a,, > 80 [m/s?.

3.3.2. In flight experiment
Pressure data

Figure 3.18 shows the pressure data during a single parabola. As supported by the data
it is difficult to determine what the packing will be like during a Og phase beforehand. In
the case of Figure 3.18 the pressure sensors inside the packing drop to (near) zero during
the no-gravity phase. For a packing to be well defined a non-zero pressure is desired
because a zero valued pressure could also mean no particles are in contact. Consequently
the pressure was gradually increased until a non zero value was measured during zero g
phases.

Figure 3.19 shows the same pressure data across several (5) other parabolas. It is
important to note that the pressure is now non-zero during the Og phases and so the
packing is considered well defined. It is however noteworthy that the pressure drops
gradually (from parabola to parabola) indicating a rearrangement of the packing nev-
ertheless. The rearrangement may be caused by repeated loading and unloading with
gravitational force, by the repeated hammering, the vibrations coming from the aircraft
or a combination thereof.

Number of data points

The amount of datapoints collected was limited by the Og time (around 22 [s] per
parabola) and the motor speed. The newly implemented software was (with limited
resources available at the mini-PC) able to capture 10 data sets like the one visualized
in Figure 3.21 per second (whereas existing software could only do 1 per second). The
motor could provide circa 3 pulses per second. This gives a total of almost 6000 data
points collected in Og in a three day parabolic flight campaign.

The pressure data shows - amongst others - Og phases where the pressure either drops
completely to zero, or remains very high (> 1 [V]). We have however achieved several
parabola’s with a near uniform packing (in terms of pressure). The pressure data for
one of such parabola’s has been given in Figure 3.20. During the Og phase in such a
parabola the pressure throughout the packing is nearly uniform as signified by the three
pressure values being very similar, whereas during the 1g phase the pressures are very
different.
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3.3.3. Acceleration data

Figure 3.21 shows a typical arrival signal for a wave collected in flight. The wave differs
from the signals seen on ground (see Figure 3.14b) in that both signals often show two
peaks. As the shape of the way may change during propagation through the packing
it makes sense to select the very first rise as an arrival time. Currently a user-defined
factor of the peak height has been used as a threshold for determining the arrival time.
Selecting a suitable factor is non-intuitive as it as of yet unclear whether the first or
second peak is most important (and what the difference between the two is).

Furthermore the added amount of noise from vibrations in the plane make it more
difficult to detect with very low amplitudes. To overcome this a Butterworth low-pass
filter [79] (with variable cut-off frequency) has been implemented.

A preliminary analysis has been performed on some of the data points that showed
a non-zero pressure. Such an analysis is visualized in Figure 3.22. Due to the change
in pressure from parabola to parabola as shown in Figure 3.19 it is difficult to draw
quantitative conclusions from a figure like Figure 3.22. The rise in sound speed may be
caused by higher confining pressure rather than the higher amplitude as witnessed on
ground.

As the analysis of the data gathered is still in progress results will be published, to-
gether with data from a second parabolic flight campaign and two drop tower campaigns,
elsewhere.

Displaced sensors

The change in packing (relaxation) indicated by this gradual pressure drop means that
also the embedded acceleration sensors may have been able to move. From inspection
after the flight (image not shown) it is clear that the sensors have remained in position
(preserving the inter sensor distance) but they have rotated especially in the horizontal
plane. Since the sensors are uni-axial this may cause a shift in perceived intensity of the
wave.

Another test on ground has been performed with artificially rotated sensors to simulate
the sensors having moved during zero gravity flights. The dataset shows nicely a linear
regime and a power law fit at increasing wave amplitude, with possibly a transition
region (between the two black lines) unused in the fitting.

The fact that the acceleration sensors have been moved artificially means that the
value of the wave amplitude is now ‘unreliable’, but remains unchanged for every data
point and thus can be used as index.
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Sensor response [V]
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(a) The sensor response over a relatively large window of time (25 [ms]) showing
clearly only noise in the beginning (up until ~ 5000 [us]), the arrival of the waves
at that point (sharp peaks in both signals) and fluctuating signal after the arrival
of the wave. This fluctuation may show signs of scattering and/or reflection but
is not analysed in this report.
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(b) Zoom in on the arrival of the wave for both sensors. The far sensor gives a
stronger response in sensor voltage, because it is more sensitive (~ 10 times more).
Note that the shape of the wave is roughly similar for both sensors. Also note that
after the first arrival peak a drop in sensor voltage occurs.

Figure 3.14.: A typical sensor response for an on-ground experiment.
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Difference between actuation using a wall and plunger
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Figure 3.15.: Two typical sensor responses for the far sensor, one for actuation with a
moving wall, and one for actuation with a plunger. Note how the signal for the plunger
shows an early small peak (around 5000 [us]) and a plateau in the rise of the large peak
(around 5220 [us]).
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Figure 3.16.: A collection of data acquired on ground using a manual hammer. The
sound speed shows a continuous increase across the entire data set, to which a %—power
law has been fitted.
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Sound speed over impact strength
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Figure 3.17.: Ground data from a manual hammering experiment with two fits. The
first fit is a 1 power-law fitted to the points where a,, > 80 [m/s?| as indicated by the
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black vertical line. The second fit is a horizontal line at the average sound speed of the

other points.
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Pressure data for a single parabola
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Figure 3.18.: Pressure data for a single parabola. Four sensors are shown of which pg
is outside the the packing and measures the pressure on the moving wall. The others are
inside the packing at different heights, p; being the lowest and ps the highest. Note how
from the pressure data it is clear what phase of flight one is in (steady, 2g or 0g). An
additional area is labelled ’1g waves’ because here experiments were conducted under
steady flight conditions. The same spiky response is also seen during Og when also
experiments were run. The units on the vertical axis (Volts) are linearly related to the
pressure measured via the sensitivity of the sensors which is yet to be determined.

o1



Pressure data several parabolas
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Figure 3.19.: Pressure data during 5 parabolas. Note how the pressure during the Og
phases drops gradually as indicated by the black line (drawn as visual aide). Data for
the pg sensor is not shown since this sensor was disabled during these parabolas to avoid
damage as a result of a high pressure.
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Figure 3.20.: Pressure data for a single parabola, where the pressure during the Og
phase did not drop to 0 [V]. Note that during the Og phase the pressure is much more
uniform throughout the packing than in the 1g phase before it.
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Typical wave arrival signal in Og
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Figure 3.21.: Typical arrival of a wave in Og. Note that the peak for both signals is
rather dubious as there is a local maximum in the rising slope. Furthermore the far
sensor appears to start with a drop rather than a rise in voltage around 5150 [us].

Sound speed over impact strength
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Figure 3.22.: Preliminary results from Og phases with non-zero pressure. Data points
are grouped in two distinct areas where the high wave amplitude points hint towards a
slightly higher sound speed.
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Sound speed over impact strength
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Figure 3.23.: On ground experiment with minimal confining pressure using the au-
tomated hammer and artificially displaced sensors (see text). Transparent red dots
shows original data that has been binned into blue stars. To the data points for which
am > 175 [m/s?] a  power-law has been fitted (yellow) as indicated by the rightmost
black line. The fitted line corresponds nicely to the binned data. The average velocity
for data points on the left of the leftmost black line is the linear regime (green line).

This leaves two binned data points unused in any fit.
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Chapter O

Discussion
This chapter discusses results presented before and “In every outthrust headland,
combines the insights gained. in every curving beach, in

every grain of sand there is
the story of the earth.”

Rachel Carson

4.1. Simulation

Using a simplified granular system a set of one di-
mensional simulations has been run to analyse non-
linear pressure wave propagation.

The formation of an unchanging propagating wave front can be seen clearly from the
velocity profiles in Figure 3.2. The propagation speed of these wave fronts has been
analysed for several confining pressures (related to the interparticle distance d) and
shows behaviour as expected. See for instance Figure 3.5 where a theoretical model
could nicely be fit to the simulation data.

The fit parameter - representing contact time t. - found, was approximately two times
smaller than the theoretically predicted contact time. Apparently particles interact
faster than the typical contact time, but since the numbers are in the same order of
magnitude and the qualitative behaviour is the same it can be argued the simulation
fulfils theoretical expectations.

The non-linear behaviour for larger wave strengths could however not be replicated,
not even with excitation speeds of several (10) meters per second. Both the linear
contact model and Hertzian contact model for spheres show a very small power law
relation between the wave propagation speed and initial excitation velocity vg. Although
the presence of this power-law clearly shows non-linear behaviour, it can in no way be
compared to the % power-law predicted. Gomez et al. [2, 3] have however shown
the expected behaviour in simulations, leaving one to wonder what the differences are
compared to our simulation presented in section 2.1. This question is also of physical
relevance, as it explores the root cause for the non-linear behaviour.

Possible causes for the (lack of predictable) observed behaviour may be found in the
excitation strength. Even if the initial inter particle overlap were converted to physical
pressure units, it is currently unkown where the crossover between linear and non-linear
behaviour happens. It is therefore possible that all simulations run are still within the
linear regime and non-linear behaviour should not have been expected to begin with.

95



Gomez et al.  [2] show via their mass balance (eq. 2) that the propagating wave
front must have a velocity much higher then the particles themselves. As our particles
are excited with a velocity that is in the same order of magnitude (10 [m/s]) as the
propagating front (= 20 [m/s]|) the non-linear regime should already have been reached.
Furthermore the material constants are similar to the materials used in section 2.2 where
non-linear behaviour is easily visible for much lower excitation speeds (=~ 2 [m/s]).

Perhaps the most striking difference between the simulations in literature and those
in this report is the presence of disorder in literature. Our system is not only one dimen-
sional (so only allowing for exactly one force chain and no particles outside that force
chain) but also monodisperse (all particles have the same properties). Initial positions
of particles were in all studied cases isotropic (the distance between particles was equal
for all particles within one simulation).

Literature (i.e. Nesterenko [1]) predicts non-linear waves already in a one dimensional
system that he solved analytically. Our simulation was unable to capture this behaviour
which is striking since the system is very similar. One of the biggest differences in
the methods used is the discretization of time in the case of the simulation. Molecular
dynamic simulations become more accurate for smaller timestep sizes, and so part of the
error may be attributed to a too large timestep.

The author however argues that the timestep size much smaller than the estimated
contact time (50 times smaller) should be small enough to capture at least qualitatively
the non-linear behaviour. This could be confirmed running simulations with smaller
timestep sizes and comparison to results in section 2.1. The absence of the predicted
non-linear sound propagation is therefore discussed more in section 4.4.

Another strong difference from the simulations performed by Gomez et al. [2] is the
method of actuation. In our simulation a single particle within the packing is given an
initial velocity so that it pushes against the others. This particle is the first particle of
the packing, being that it separates the outside wall from the rest of the packing. In
the case of Gomez a driver is used that moves forward with a constant velocity. Gomez
et al. then also notice that most of the deformation of the packing happens behind the
wave front which for us is not true.

The actuation method proposed by us is however rather close to the actuation in
section 2.2 and section 2.3 where also a mass strikes with an initial velocity and is
afterwards allowed to retract. There is a difference in ratio between particle and driver
mass in simulation (where the ratio is 1) and experiment (where the ratio is << 1) but
the momentum transferred should still be enough at high enough initial velocities.

This leaves the important observation that qualitative behaviour in the cases inves-
tigated does not change for the Hertzian sphere contact model and the linear contact
model as shown in Figure 3.7. Replacing the one with the other is therefore in at least
the one dimensional case reasonable.
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4.2. On-ground experiments

To find if a two dimensional setup with three dimensional particles can be used to study
non-linear wave propagation several wave fronts were visualized using stress birefringent
techniques and recorded using a high speed camera. Different mixtures of spheres and
disks have been used.

From Figure 3.10 an increasing sound speed can be seen with the expected % power-
law. No linear regime was witnessed, possibly due to the strong excitation. With the
current setup it is possible to excite less strong waves to find the linear regime.

Furthermore changing the ratio of spheres to disks does not qualitatively change the
results as shown by Figure 3.12 that shows nearly the same sound speed and slope for
all cases.

It is possible that the pressure waves travels faster through the spherical particles. In
that case increasing the amount of spheres in the packing does not result in a change of
sound speed, as witnessed in our experiment.

It has however already been argued that pressure waves travel preferentially along
force chains [27, 35] and from visual inspection of the packings disks are very clearly
part of force chains in some cases. If one would like to be more certain that disks do
not change the behaviour witnessed different experiments with a larger number of disks
could be run. The author expects similar results.

Upon changing the ratio of number of spheres to number of disks also the average
particle size has been changed. The average size of the particles can surely influence the
sound speed as it influences directly the amount of contacts a pressure wave must travel
through per unit length in the propagation direction.

The change in number of particles (and thus contacts) per unit length should however
not influence the expected power-law behaviour. It may cause an offset to the propa-
gation speed (which was not observed) but one expects the same non-linear behaviour
as was witnessed. Even more so, the different type of material (material properties of
disks and spheres differ slightly, see Table 2.1) may also cause a different prefactor in the
contact model, but this can only cause an offset to the sound speed found. Comparing
the non-linear behaviour of different packings is therefore still valid.

If one would like to do more research to confirm the above it is possible to repeat the
experiment with larger spheres and smaller disks, replace some of the spheres by disks,
using only disks or a combination of these.

Furthermore it can be concluded that with the observation of non-linear wave propa-
gation using the setup from section 2.2 additional research is very well possible. Upon
augmenting the sample cell with (piezo- or acceleration) sensors to gain frequency infor-
mation, making the sample larger to reduce boundary effects or suspending the particles
in a frictionless environment to reduce friction additional accuracy may be gained.
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4.3. Zero gravity experiments

To find possible points of improvement for the full three dimensional parabolic flight
setup data, gathered with newly developed software tools, was analysed.

The new software proved much more effective and efficient then existing software in
collecting data as it could, with the limited resources available, collect data points at a
frequency 10 times higher than the existing software. The slowest process in the data
collection chain is now no longer the software but the hammering mechanism (hardware).

During experimentation and analysis several problems have been identified, the prob-
lems and possible solutions are given below (section 4.3).

It may be argued that the accelerometers used are too big. Their surface area is several
particle diameters (in each linear dimension). It is therefore possible that the sensors
will not react much like the particles at all. The author argues that the larger surface
area of the sensor will act as an average across several moving particles and reduce the
number of measurements required to get a sense of bulk behaviour of the medium. Only
when looking for inhomogeneity in the wave propagation a smaller sensor to particle
diameter is needed.

As visible from the drop in pressure from parabola to parabola in Figure 3.19 it is
very likely that the packing is not relaxed in at least the first parabolas. This may
produce irreproducible results as the initial state of the packing varies from experiment
to experiment. This is a difficult to solve problem because Og times are very short. For
now the 22 [s] of Og time is all that is possible but the German Aerospace Center is
working towards a sounding rocket and International Space Station mission that will
allow for longer Og times (several minutes and up) and so a more relaxed packing.

Using the data gathered already several other interesting phenomena may be studied.
In principle it is possible to study attenuation, changing of the wave shape (broadening)
and frequency behaviour. For the latter additional piezoelectric sensors may be put into
the packing as they can be more accurate at small strain and high frequency.

Furthermore it is very well possible that the waves witnessed consist out of a linear
and a non-linear part that due to the difference in their propagation speed will separate.
A larger sample should make it easier to separate a ‘slow’ linear wave from jitter behind
the non-linear wave front given that the excitation is strong enough. Alternatively it
may be possible to reflect the wave on the boundaries of the sample cell to effectively
create a longer path.

From here on the data gathered will be matched to pressure data to account for change
in propagation speed as a result of confining pressure before combining the information
from several parabolas into one bigger plot like Figure 3.22. Assuming the results are
promising future work will aim towards scattering phenomena aboard rockets and In-
ternational Space Station.

Points of improvement

Even though the hammer system allows setting the hammer speed with a very high
resolution the resulting data points are found grouped around certain intensities (see for
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instance Figure 3.23). Ideally the experimenters would like a more continuous contin-
uous increase of hammer strengths to be able to track down the turning point between
linear and non-linear regimes. Furthermore the current hammer system is controlled by
feed-forward only, and this proved unstable during longer periods of experimentation
sometimes resulting in the loss of data points during scarce Og time. A hammer system
with feed-back control specifically designed to hit the sample cell at specified speed may
solve the problem. During the rest of the project such a solution will be sought.

As mention in section 3.3 the acceleration sensors have rotated (mainly in the horizon-
tal plane) making it impossible to compare wave amplitudes from one set of parabolas
to another. A possible solution would be to fix the sensors with wires to the sample cell
walls or to use tri-axial sensors.

Most time during the parabolic flight was spent achieving the desired well-defined (but
uniform) packing. As it was difficult to predict the state of the packing during a Og phase
beforehand multiple of such phases were used to find a sufficient confining pressure. The
confining pressure was controlled by the amount of particles in the sample cell and the
volume of the sample cell (by the moving wall). In granular media the relation between
volume and pressure is not straightforward and so it makes more sense to control the
pressure electrically. A linear actuator could control the moving wall getting feedback
from the pressure sensors inside the packing. This would remove the need of manually
changing the volume and greatly increase the number of useful datasets.

4.4. Combination

The main question raised when comparing the simulation to the two dimensional ground
experiment is that of the difference in sound speed. The simulation shows a speed
(around 20 [m/s]) much lower than the expected value (around 60 [m/s]). In compari-
son the on ground experiments show a speed much higher (at least 70 [m/s]) than the
expected (around 50 [m/s]).

This leads one to wonder where the difference in behaviour originates. The first
difference is the actuation method. In simulation a single particle is excited with a
velocity vg. This particle has a mass equal to all other particles whereas for the 2D
experiment the plunger has a much bigger mass (around 100 particles, but it excites
around 10 particles). This causes an increased per particle momentum.

It is possible that the lack of momentum in simulation causes a linear response rather
than a non-linear response as seen in the 2D ground experiment, account for a difference
in propagation speed.

Furthermore the contact models used in the simulation are most probably not suitable
for wave propagation in soft materials. The first reason being the large strains these
materials show and the second being the increased stiffness for higher frequencies. It may
therefore be argued that the simulation is actually much closer to the three dimensional
case where a propagation speed lower than expected is witnessed. Additional simulations
with parameters for glass could be run to confirm this theory.

The last difference is the presence of disorder in all systems but the simulation. The
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one dimensional nature of the simulations run can not account for complex behaviour
such as the formation and breaking of force chains that will surely attribute to non-linear
behaviour. Two dimensional simulations would therefore be more probable to show the
expected behaviour as shown by Gomez [2].
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Chapter O

Conclusion

This chapter concludes the work presented. The- “The more sand has escaped
ory and existing literature predict a % power-law from the hourglass of our life,
relation (non-linear regime) between wave propa- the clearer we should see
gation speed and wave amplitude (for sufficiently through it.”
large wave amplitude at sufficiently small confining Johann P.F. Richter, 1795

pressure only) and this phenomena has been stud-
ied using three different methods, amongst which a one dimensional simulation and two
experiments of increasing complexity.

5.1. Simulation

Using a one dimensional molecular dynamics simulation a pressure wave was transmitted
to a chain of particles. The particles interacted via a linear contact law or a Hertzian
spherical contact law.

In both situations an unchanging wave front was found propagating at a fixed speed.
For interpaticle distances larger than zero a theoretical model was fit predicting the
propagation speed.

Afterwards the initial velocity (with which the wave is excited) was increased, but non-
linear behaviour behaviour was not found to obey the % power-law predicted. Instead a
much smaller power-law 0.02 was found for both cases.

The cause for missing this specific behaviour may be found in the unjustifiable as-
sumption of the contact models used (Hertzian spheres and a linear model) because the
models will break down for soft particles. This is supported by the difference in magni-
tude of propagation speed in simulation which is much lower (20 [m/s]) than expected
(ca. 60 [m/s]).

Qualitatively the behaviour is much closer to the linear regime in the three dimensional
experiment with glass beads (which are much harder), because also here a slow down
of the sound speed (with regard to the expected sound speed in an isotropic elastic
medium) is witnessed, rather than a speed up.

Because also in the three dimensional experiment non-linear behaviour has been ob-
served the simulation should in principle be able to capture this. So far the author has
not succeeded in replicating this behaviour using the simulations presented. A stronger
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excitation or increased disorder may be necessary to show the predicted behaviour.

5.2. On-ground experiments

Using different ratios of stress birefringent disks and spheres in two dimensional packings
and a circular polariscope pressure waves have been filmed with a high speed camera.
The pressure waves were initiated by a dropping weight.

The pressure waves originate as a wave front at the top of the packing (on which the
weight is dropped). From there on they travel downward through the particles. The
propagation velocity was estimated by estimating an arrival time based on the sum of
all pixel intensities within an area of interest.

The propagation speed was plotted versus drop height on a log-log plot, showing an
undeniable increase that has rather large errorbars. The approximate shape of the errors
is Gaussian and so an average of the measurements were used to fit a power law with
the predicted % slope.

Changing the ratio of spheres to disks at three different drop heights does not di-
rectly show different behaviour. This supports the feasibility of using mixtures of stress
birefringent spheres and disks as a medium to study non-linear wave propagation.

No linear regime was witnessed, possibly due to the strong impact strengths of the
dropped weight. As dropping a smaller weight is trivial the author expects that finding
the linear regime is very well possible with this setup.

5.3. Zero gravity experiments

Within a larger and ongoing project software tools have been developed to capture and
analyse data from a three dimensional granular packing in parabolic flights.

A large number of data points has been collected on ground and during flight. Prelim-
inary analysis shows that excitation using a moving wall rather than a plunger is more
promising. Furthermore a non-linear regime has been witnessed on several occasions on
ground.

Manually displacing the sensors to simulate the sensors having moved during Og still
shows the expected behaviour, including both linear and non-linear behaviour to which
the oneSixth power-law could be fit.

Analysis of in flight data in general shows an increasing sound speed for higher wave
amplitudes, but a more careful analysis is necessary (and ongoing).

Judging from pressure data gathered a packing much more uniform (in Og) than in
1g has been achieved. The difficulty in achieving such a uniform packing is inherent
to granular media but can be easier by implementing automatic pressure control of
the sample cell (currently volume control is used). Additionally small changes to the
setup have been proposed (such as feed-back controlled hammering mechanism and fixed
accelerometers) to improve it.
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5.4. Outlook

For further research the following notes and advice is given.

5.4.1. General

The power-law behaviour witnessed above is only part of the complete behaviour of the
wave. To complete the picture additional insights are needed especially in the nature
of the transition (if it is a transition at all) between linear and non-liner regimes. The
speed of sound gives much more information on the packing if a precise description of
the transition exists.

Furthermore other changes to the wave as it propagates to the packing need to be
researched. One of the most obvious ones being attenuation. In this study no attention
was paid to attenuation but it’s existence is very clear. As the wave loses some of its
energy as it propagates it is very well possible it also loses speed (because amplitude and
velocity are related in the non-linear regime). Furthermore the attenuation will depend
heavily on the contact and material properties so properly modelling it increases the
effectivity of acoustically probing a granular packing.

Additionally the frequency specific behaviour of sound waves must be studied. Fre-
quency will influence the propagation speed and attenuation and is key to the change of
the shape of the wave as visible from our data (broadening).

On a more practical note it is necessary to settle on an accurate and above all unam-
biguous method of determining the arrival time of a pressure wave. As the wave changes
shape it is non-trivial to compare two different arrival points. Finding such a method
will rely also on frequency specific behaviour but will most likely have to be developed
in parallel.

If the propagation of plane waves is fully described a next step must be the sideways
scattering of a wave. As the origin of scattering is amongst others clearly the angle
between particle contacts and the direction of propagation understanding scattering will
provide information on the contact orientation.

Whereas compressional waves offer enough questions to study the behaviour above
shear wave may offer new insights. If their behaviour is different from compressional
wave it needs to be found why. If not, they offer an interesting platform as research. It
may for instance be possible to submerge a granular medium in a density matching fluid
so that effectively a microgravity environment is created. This does require a thorough
understanding of the contact properties of wet granular matter.

5.4.2. Simulation

Simulation offers many advantages over experiment and so investing in simulation as a
research tool is well worth the time.

To make the simulations described in this work useful in studying non-linear wave
propagation first of all the non-linear propagation needs to be found. In order to do so
one could increase the impact velocity or change the method of excitation.
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A more systematic approach will add complexity to the simulation gradually moving
towards a near-perfect description of a full three dimensional granular medium. As the
behaviour of the packing changes upon adding complexities, such as increased disorder,
more accurate contact models and higher dimensions, the influence of the last added
feature can be studied. In parallel it would be necessary to study the combination of
two or more of these features.

As demands on the simulation increase researchers must either develop the Pysim
package further or use a different simulation tool for the work. Pysim offers ease of use
for Python fans at the cost of a loss of execution speed and so may not be suitable for
more complicated simulations.

Furthermore the small power-law witnessed in this report needs to be explained. If
its grounds are physical this should be confirmed by experiment. Otherwise it’s cause is
numerical and therefore important for understanding and the development of Pysim or
other simulation packages.

5.4.3. On-ground experiments

As this report has shown a potential for two dimensional setups with three dimensional
stress birefringent particles further verification of the results is required.

It is crucial that more measurements are conducted to find if statistics offer a way
of reducing the error size and to extend the range of the conclusions. Other ratios of
spheres to disks may be used to study the properties of contacts and other size ratios
may be used to study the importance of grain size.

Furthermore it is of vital importance that the linear regime is found in experiment so
that the transition (if there is one) can be studied.

Methods to do so may involve a higher resolution in time (higher framerate for the
camera) and space (higher camera resolution) as well as a larger system to further
eliminate boundary conditions.

The two dimensional system really is the bridge between simulation and the full three
dimensional complex system and offers unique ways of retrieving information. Extended
experiments in two dimensions should for instance provide a validation or at least de-
scription of the contact of two particles during propagation of a wave, which may be
fit into a simulation. Furthermore deriving the velocity and acceleration from visual
position data allows to compare the two dimensional case to the three dimensional case
which should give a hint of the role of the third dimension.

5.4.4. Zero gravity experiments

To make better use of scarce Og time it is vital the experimental setup is improved.
Areas of immediate focus should be automatic pressure control, a feedback controlled
motor and fixed sensors. With the improved setup new data needs to be gathered. To
increase repeatability of the experiment the packing likely needs to be relaxed making
longer Og times vital.
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When a proper excitation method is implemented it is vital that the linear regime
is found in flight and relate the transition between linear and non-linear regime to the
confining pressure. Only then is it possible to systematically lower the confining pressure
and investigate the limiting case of near zero confining pressure.

With the existing data a more thorough analysis can be done when each data point is
related to a confining pressure at that point. Furthermore with the lack of an accurate
amplitude measurement it is vital that data from one parabola is compared to the 2g
and 1g phases near it because the sensors will probably have moved only little in this
short time.
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Appendix M

List of symbols

Roman alphabet

SEIER T e

Arbitrary constant

Acceleration of particle i

A measure for the amplitude of a wave (geometric mean of peak heights)
Amplitude of a wave

Propagation speed of a wave

Propagation speed of a compressional wave
propagation speed of a shear wave

Strain optic coefficient

Differential operator

Diameter of particle 4

Unit vector in the z; direction

Young’s modulus (elastic modulus)
Effictive modulus of elasticity

Young’s modulus for particle ¢

Kinetic energy

Potential energy

Force

Force on particle 4

Force on particle i (by particle j)

one unit of gravitational acceleration (~ 9.81 [m/s?])
Shear modulus

Height

Height ¢

Stiffness

Elastic (spring) constant of particle ¢

Bulk modulus

Length /height of a cylinder/disk

Mass

Mass of particle ¢

Compressional modulus
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n Timestep number

K Stress optical coefficient
n;; Unit normal vector pointing from 7; to r;
(0 Origin
D Confining pressure
Di Height of peak number %
3 1_’/% 1—192
Q 4 (ﬂ'El + wHo )
T Position of particle i
R Radius
R; Radius of particle ¢
Snt Normal and tangential stiffness
t Time
U Displacement /deformation
Uy Displacement in the x direction
v; Velocity of particle i
Vs Propagation speed of a wave front
|4 Volume
T Spacial coordinate in the first linear dimension (x;)
Y Spacial coordinate in the second linear dimension (x3)
T; Cartesian coordinate ¢
z Number of contacts for a particle
z Coordination number: average number of contacts per particle

Greek alphabet

Parameter to change the character of a wave equation

Porosity

0ij Overlap between particles i, j

d(z,t) Strain field value at x,t

05,0 Compression after and before a wave front

Timestep size

Interaction parameter (depends on geometry and material properties)
Angle of repose

Complete elliptic integral of the first type

One of the elastic moduli

Poisson’s ratio for particle 4

Density

Packing fraction (of volume or area, depending on dimensionality)
Jamming point, the packing fraction at which (un)jamming occurs
Field governed by wave equation

Angular frequency

= Q

ELLSDIITADO D
: ~
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Others

zero vector

Eccentricity

Complete elliptic integral of the second type

Partial differential operator

Nabla, or the Del operator, defined by V. =3"" | eia%i in n dimensions
Diameter

W qgqnR S O
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Appendix M
Diametric loading of disks

In this appendix disks under diametric loading are considered. A schematic can be seen
in Figure B.1.

Figure B.1.: Schematic image of a disk with radius R under diametric loading. Forces
are exerted at point A and B and cause a stress at point P which can be described in
polar coordinates in three different coordinate systems. The (z,y) system is Euclidian
and has its origin in point O. The other two system originate in points A and B and
are described by polar coordinates (¢4, r,) and (¢, 1) respectively.

B.1. Stress tensor

The stress distribution in a disk like this has been derived originally by Hertz [80] and
is later used by Procopio et al. [81] to compare to experimental results. The nonzero
elements of the stress tensor are (from Procopio)

2P <x2(R—y) L@fRty) 1 )

wt \ B b3 2R
_ 2P ((R-y’ (R+y)?’ 1
ow=-2%( 5 . %) (B1)
_ 2P (2(R—y)?*  z(R+y)
o= ()
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With L the thickness (or length) of the cylinder and 32 = (R—y)?+22, 55 = (R+y)*+2?

The matrix representation of stresstensor & then has two nonzero eigenvalues corre-
sponding to the two principal stresses. The third principal stress is identically zero since
our problem is two dimensional. The principal stresses can be determined analytically
but since their expressions are long writing them down here has no point. In stead a
numerical representation using Matlab can be seen in Figure B.2.

Another representation can be found in a PhD thesis by Howell that follows the deriva-
tion in Theory of Elasticity by Landau and Lifschitz [82, 59]. This derivation does not
assume small strain directly but still relies on Hooke’s law in which parameters like the
modulus of elasticity will change under extreme circumstances. The nonzero stresstensor
components given are

2P
O-Ta""a = - COS(¢G)
TTq
2P
Oryry, — _71'77’17 COS(¢b) (B'Q)
P
Oik = E(Sih

Since the stresstensors are contravariant a transformation can be found with the use of
the transformation rule

ox't dx'I
Alm
oxl Oxm

nj _

(B.3)

The first term of the complete tensor & can be found by the transformation of o, to
the (z,y) coordinate system:

Ox  Orgsin(¢q)

Ore = o, o
Ox Oz Oox Oz ox Ox 0 (B.4)
xrxr o 27
= Dra 0ra T T 2o 9T T 5o Da”
= sin(¢q) sin(gg)orur, -

This can be done for all terms to find the three separate stress tensors in the new
coordinate system,

— SaSa  CaS — SpSp  CpS — 1 0| P
o_a:|:aa aa:|o_rara o_b:|:bb bb:|0'r;,7"b c:|: :|7 (B5)

CaSa  CaCa CcpSy  CpCh 0 1| 7R

S

with sqp = sin(¢qp) = ;5 and cqp = cos(Pap) = yiR that can be freely added together.

The two descriptions dlffer only very slightly (a few percent) anywhere but close to the
singular points at A and B and give an image like Figure B.2.
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(a) (b)

Figure B.2.: Magnitude of the principal stresses in a particle with a radius and thickness

of 1 [mm] when a force of 10 [N] is applied. left: principal stress 1 (o7) right: principal
stress 3 (o3). Note that the second principal stress is identically zero.
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Appendix m

Birefringence and Retardation

C.1. Birefringence

The phenomenon of birefringence can be demonstrated relatively easily with the use of
a calcite (CaCOg3) crystal, for instance as in Figure C.1. The double letters as seen
through the crystal come from the fact that incident light in the crystal is randomly
polarized. One can then express this randomly polarized light as two perpendicularly
linearly polarized components. The components have a different refractive index n, the
material is birefractive, and propagate at a different speed.

This difference makes for the fact that the two perpendicularly polarized beams travel
in a somewhat different direction after refraction, showing the same letters twice.

The cause for birefringence differs for each material. In the case of crystals like calcite
the cause lies in the anisotropic structure of the crystal. Other materials show birefrin-
gence because they consist of multiple materials or because of (residual) stress. In all
cases however anisotropy is key.

Figure C.1.: A calcite crystal (Chemical formula CaCOs3) on a piece of paper so that
the letters below can be read through the crystal. Note that through the crystal the
letters appear double due to birefringence.

C.2. Retardation

The difference in propagation speed of light through a stress birefringent material can
be used to probe the material for the internal stress state. An overview has been given
by Howell in his PhD thesis [82] following a book by Durelli and Riley [83].
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C.2.1. Case 1: Two linear polarizers and a sample

The case depicted in Figure C.2 shows the simplest setup for our problem. Linearly
polarized light shines through the sample and a causes a phase shift that becomes mea-
surable after a second linear polarizer. The intensity of the exiting light I depends on the
phase shift a but also on the angle between the direction of polarization of the incoming
light and the principal stress axes of the sample, 6 in

I = Iysin?(26)sin 2 (%) , (C.1)

where Ij is the intensity of the income light. To avoid this #-dependence a slightly more
complicated but similar setup can be used.

Reference

Phase Shift

Figure C.2.: Two linear polarizers (the disks) show how an initial randomly polarized
light beam (left) becomes first linearly polarized before travelling through a birefringent
sample (middle, square plate). Afterwards the light beam can be decomposed in two
perpendicularly polarized components with a phase shift. The second linear polarizer,
shifted 90° to the first polarizer, effictively subtracting the two components. Two phase
shifted parts remain (right). Image from [84].

C.2.2. Case 2: Two circular polarizers and a sample

This setup using two circular polarizers can be seen in Figure C.3. An explanation of
exactly what happens has been given by Howell and by Durelli and Riley so is omitted
here. One should just note their final expression for the light intensity after the second
polarizer

I = Iysin? (g) , (C.2)

with I the intensity of the light after the device, Iy the incoming intensity and « the
phase shift or retardation. Note that this was also already described by Frocht [85].
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Quarterwave

Polarizer

Figure C.3.: Circularly polarized light, made by passing linearly polarized light through
a quarter wave plate, is passed through a sample (centre, square plate). The resultant
beam can be decomposed along the principal stress axes of the sample after which a
second quarter wave plate combines with the second linear polarizer to make a right
hand polarizer. This effectively subtracts the two components in the direction of the
last linear polarizer so that only the phase-shift remains. Image from [84].

C.3. The disk problem

Using the stress distribution from Appendix B and the formula’s above one needs only
the stress optic equation

R, = Ct(o1 — 02) (C.3)

with R; the retardation, C' the stress optic coefficient and o2 the principal stresses,
to create a model for the light intensity through a diametrically loaded disk (because
the phase shift « relates to Ry linearly: o = %, with A the wavelength of the light).
The model can then be fitted to experimental observations to find an expression for the
forces a material is subject to. This has been done many times, for instance in [86, 77,
78, 87].

Simple cases have long been researched, see e.g. Frocht (who gives many examples)
[85]. For more complicated systems however, consisting of several particles in a granular
system research is still ongoing (the interested reader should keep an eye open for the
not yet finished PhD thesis by Pitikaris from the DLR).
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Appendix M

Projections used in Pysim

Below are explained some equations used in the Pysim DEM package.

D.1. Geometry

Planes in the Pysim packages are defined by a point A which the plane touches and an
outward pointing unit normal n.

Call any other point (for instance the position of a particle) P. The projection of P
on the plane is then a new point called B. The situation is sketched in Figure D.1.

Figure D.1.: A plane defined by a point A and outward point normal n and a point
P, showing a line from point P to A and the projection B — P to find point B.

D.2. Vector pointing from point, normal to plane

The vector B — P is the projection of the vector A — P on the normal n, multiplied by
that vector and can be calculated using the dot product

B-P=[(A-P) n]n. (D.1)

Distance The distance between point P and B is the absolute value of the projected
length |[(A — P) - n|.
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Projection To find point B one can add the vector B — P to point P so that

B=[A-P) njn+B. (D.2)

Inside or outside A point is on the inside of a plane if a vector pointing towards the
plane has a positive projected length on the outward pointing normal

inside if: (A —P)-n >0 (D.3)
outside if: (A — P)-n <0. (D.4)

The case where the projection equals zero occurs only when the point is on the plane.
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Appendix o
Hertzian contact models

The contact between individual grains in a granular packing is potentially difficult to
describe. Due to asperities on the surface of a particle or inhomogeneities in shape or
material properties a multitude of different configurations are possible for as little as
two particles. In principle it is possible to model the interaction between two particles
quite accurately (for instance using a Finite Element Model (FEM)) if all the necessary
information (shape, material properties, pre-stress etc.) is known. In numerical simu-
lations of a many particle system however this is computationally too expensive and in
theoretical models this is too complicated. For this reason a two particle contact is often
described by relating the overlap § between two particles to the repulsive normal force
fr in molecular dynamics simulations (MD) or discrete element models (DEM) [44, 88].

Y

T

o T

Figure E.1.: 2D view of two particles 7, j with radius R; ; at r; ; in contact with overlap
ij-

A few assumptions can be made to arrive at a general description for the contact
between two particles.

o Particles are either spherical or cylindrical.

o Particles are smooth, only forces normal to the plane of contact are considered.

7



o Particles are made of isotropic material.
e The material reacts linearly elastic.
e The interaction stays within the limits of this regime.

Using these assumptions the figure in Figure E.1 can be made. If furthermore is
assumed that the contact surface is of the second order in shape a contact model known
as the Hertzian model can be constructed. This was first done by Hertz [33] and an
excellent rewrite of the derivation was made by Puttock and Thwaite [61] and Landau
and Lifshitz [59]. For this report the relevant conclusions are

Sphere-Sphere contact

5—( ) )3 p3 (E.1)
~ \16RE*? '

Cylinder-Cylinder contact

4
= - P E.2
0 nE*L (B2)
Sphere-Cylinder contact
3
s=x2Q)i [—2 ) P} (E.3)
Ry (—54)

The main source of non-linearity in the Hertzian contact models if found in the contact
area. For an increase in applied force the compression (or overlap) must increase further
deforming the objects pressed together. This deformation creates a contact area whose
shape depends on the geometry of the objects. For the contact between two spheres the
contact area is circular. A cylinder-cylinder contact is basically a rectangular contact so
the contact area increases linearly with the force which is reflected by the linear relation
between d and P. The case of a sphere and a cylinder compressed together is very similar
to two spheres pressed together with a correction for the elliptical shape of the contact
area in the prefactor.

Note that these relations are approximations, and only as accurate as their initial
assumptions, although their accuracy can be shown using for instance a FEM simulation
in certain cases [89)].

There is a qualitative difference between the relations for a sphere-sphere contact
and a cylinder-cylinder contact found in the power law relation. Many studies have
used spheres as a model granular media [11, 90, 91, 92, 30, 93] but when birefringent
techniques are applied mostly disks are used [35, 82, 86, 27]. To my knowledge only
the German Aerospace Center is currently able to use stress birefringent techniques in
three dimensions [94]. Packings with spheres or disks both show rich behaviour but
discussion is possible about whether disks copy the full complexity of the non-linear
contact shown by spheres. It may be argued that asperities on the surface of disks and
a slight misalignment of their central axes cause a non-linear interaction anyway. It is
unclear in what compression range this applies.
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E.1. Rewriting Puttock’s notation

Puttock gives relations between compression and force (using other symbols than below).
They can be rewritten as follows.

E.1.1. Sphere - Sphere

The expression for a contact between two spheres given by Puttock is
2 2 1
(Bm)z 2 (1—-vi 1-13\3 [ 1 1Y)3
2 7TE1 + 7TE2 D1 + D2 ( )
Upon moving integers out of the power law and noting that 7 is both multiplied and
divided by in equal powers one can write

2 1
112 (1—v 1-0v3\3 _» (1 1\3
§= 29373 - 1 2) Py —+ — E5
2 e < Tk + wFEo > ’ <D1+D2> ( )
1 2 1
9\3 1—v? 1—v2\3 D+ Dy\3 2
5= : ! 2) | =—=——=) -Ps. E.6
<8>(E1+E2><D1172) 3 (E5)
At which point the expression 1/E* = (1 — v3)/E; + (1 — v3)/ Es is substituted
9\5 [ 1\5 Dy + Dy\ 3
1 1 2 2
== - [=—1] .925(=="—"=2) .pPs3. E.
() (&) # (5n) 7 =)
Rewriting the diameters D; as a function of the radius R; gives
9NS [ 1 \3 (Ri+Ry\3
5o (2 (L) (Bt R o
<16) <E2> < R1Ry > ) (E8)
and finally with substitution of 1/R=1/R; + 1/R»
9 \3
2
0=|———] -Ps. E.9
<16RE*2) ’ (E-9)
E.1.2. Sphere - Cylinder
For a sphere and cylinder contact Puttock writes
1 1
2QP 2Qp\ 3 1de)\3
§ = : = (=) (== E.10
a ° “ ( A ) < e de) ’ ( )
which, upon substitution of a gives
1
1 3
5=« <—d£> - A5 . (2QP)5 . (E.11)
e de
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The force law can then be separated into a set of prefactors and the force P:

—k(2Q)} (1 df)) P (E.12)

w1 wH> ¢ de
can be found using the tables provided by Puttock [61].

5 )
where @) = % (1_”1 + 1 V2> and k and —19Z are geometry depended constants that

80



Bibliography

1]

[10]

[11]

V. F. Nesterenko. “Propagation of nonlinear compression pulses in granular media”.
In: Journal of Applied Mechanics and Technical Physics 24.5 (1983), pp. 733-743.
ISSN: 00218944. poI: 10.1007/BF00905892.

L. R. Gémez et al. “Shocks near jamming”. In: Physical Review Letters 108.5 (Feb.
2012), p. 058001. 1sSN: 00319007. DOI: 10.1103/PhysRevLett.108.058001. arXiv:
1108.5688.

L. R. Gémez, A. M. Turner, and V. Vitelli. “Uniform shock waves in disordered
granular matter”. In: Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics 86.4 (Oct. 2012), p. 041302. 18SN: 15393755. DOIL: 10.1103/PhysRevE.86.
041302. arXiv: 1208.0213.

S. van den Wildenberg, R. van Loo, and M. van Hecke. “Shock waves in weakly
compressed granular media.” In: Physical review letters 111.21 (Nov. 2013), p. 218003.
1SSN: 1079-7114. por: 10.1103/PhysRevLett.111.218003.

O. Mouraille. “Sound propagation in dry granular materials : discrete element
simulations, theory, and experiments”. PhD Thesis. University of Twente, Feb.
2009, p. 135. 1SBN: 9789036527897.

M. Tsukahara. “Jamming in Granular Media: Modeling of Experimental Data”.
Phd Thesis. Ecole Polytechnique Fédérale de Lausanne, 2009, p. 129. por: 10.
5075/epfl-thesis-4490.

J. R. Vaisnys and C. C. Pilbeam. “Mechanical Properties of Granular Media”. en.
In: Annual Review of Earth and Planetary Sciences 3.1 (May 1975), pp. 343-360.
1SSN: 0084-6597. DOI: 10.1146/annurev.ea.03.050175.002015.

T. Poschel and S. Luding. Granular gases. Ed. by T. Poéschel and S. Luding.
Vol. 564. Springer Science & Business Media, 2001, pp. 266-277. ISBN: 978-3-540-
44506-7.

J.-B. Michel et al. “Quantitative analysis of culture using millions of digitized
books.” en. In: Science (New York, N.Y.) 331.6014 (Jan. 2011), pp. 176-82. 1SSN:
1095-9203. por1: 10.1126/science.1199644. arXiv: NIHMS150003.

H. L. Swinney and E. C. Rericha. “Pattern formation and shocks in granular gases”.
In: Proceedings of The International School of Physics Enrico Fermi. Aug. 2004,
p- 34. arXiv: 0408252 [cond-mat].

H. M. Jaeger and S. R. Nagel. “Physics of the Granular State”. In: Science 255.5051
(1992), pp. 1523-1531. 13SN: 0036-8075. DOI: 10.1126/science.255.5051.1523.

81


http://dx.doi.org/10.1007/BF00905892
http://dx.doi.org/10.1103/PhysRevLett.108.058001
http://arxiv.org/abs/1108.5688
http://dx.doi.org/10.1103/PhysRevE.86.041302
http://dx.doi.org/10.1103/PhysRevE.86.041302
http://arxiv.org/abs/1208.0213
http://dx.doi.org/10.1103/PhysRevLett.111.218003
http://dx.doi.org/10.5075/epfl-thesis-4490
http://dx.doi.org/10.5075/epfl-thesis-4490
http://dx.doi.org/10.1146/annurev.ea.03.050175.002015
http://dx.doi.org/10.1126/science.1199644
http://arxiv.org/abs/NIHMS150003
http://arxiv.org/abs/0408252
http://dx.doi.org/10.1126/science.255.5051.1523

O. Reynolds. “LVII. On the dilatancy of media composed of rigid particles in
contact. With experimental illustrations”. en. In: Philosophical Magazine Series 5
20.127 (Dec. 1885), pp. 469-481. 1sSN: 1941-5982. DOI: 10.1080/14786448508627791.

G. Y. Onoda and E. G. Liniger. “Random loose packings of uniform spheres and
the dilatancy onset”. In: Physical Review Letters 64.22 (May 1990), pp. 2727-2730.
1SSN: 00319007. DOI: 10.1103/PhysRevLett.64.2727.

T. C. Hales. “Some algorithms arising in the proof of the Kepler conjecture”.
In: ANNALS OF MATHEMATICS 162.3 (2002), p. 14. 1sSN: 0003-486X. DOI:
10.4007/annals.2005.162.1065. arXiv: 0205209 [math].

S. Luding. “Granular matter: So much for the jamming point”. In: Nature Physics
12.6 (Feb. 2016), pp. 531-532. 1SSN: 1745-2473. DOIL: 10.1038/nphys3680.

R. L. Michalowski and N. Park. “Arching in Granular Soils”. eng. In: the First Jap-
ing - U.S. Workshop on Testing, Modeling, and Stmulation. ASCE, 2003, pp. 255—
268.

S. van den Wildenberg et al. “Soliton-like Shock Waves in Granular Materials”. In:
Condensed Matter in Paris. 2014.

S. Luding. “Granular Media Information Propagation”. In: Nature 435.7039 (May
2005), pp. 159-160. 18sN: 15393755. DOI: 10.1103/PhysRevE.73.035103.

H. A. Janssen. “Versuche uiber Getreidedruck in Silozellen”. In: Zeitschr. d. Vere-
ines Deutscher Ingenieure 39.35 (1895), pp. 1045-1049.

C. J. Reagle. “Technique for Measuring the Coefficient of Restitution for Micropar-
ticle Sand Impacts at High Temperature for Turbomachinery Applications”. PhD
thesis. Virginia Tech, Sept. 2012.

H. Chen et al. “Enhanced granular medium-based tube and hollow profile press
hardening”. In: CIRP Annals - Manufacturing Technology 65.1 (2016), pp. 273—
276. 1sSN: 00078506. DOI: 10.1016/j.cirp.2016.04.010.

O. Gendelman et al. “What Determines the Static Force Chains in Stressed Gran-
ular Media?” In: Physical Review Letters 116.7 (May 2016), p. 078001. ISSN:
10797114. po1: 10.1103/PhysRevLlett.116.078001. arXiv: 1505.06626.

A. A. Pena, H. J. Herrmann, and P. G. Lind. “Force chains in sheared granular
media of irregular particles™ In: AIP Conference Proceedings. Vol. 1145. 1. AIP,
June 2009, pp. 321-324. 1SBN: 9780735406827. DOI: 10.1063/1.3179924.

R. C. Hidalgo et al. Force chains in granular packings. 2004. DOI: 10.3254/978-
1-61499-011-6-153.

L. Zhang, Y. Wang, and J. Zhang. “Force-chain distributions in granular systems.”
In: Physical review. E, Statistical, nonlinear, and soft matter physics 89.1 (Jan.
2014), p. 012203. 18SN: 1550-2376. DOI: 10.1103/PhysRevE.89.012203.

C. Song, P. Wang, and H. A. Makse. “A phase diagram for jammed matter”.
In: Nature 453.7195 (May 2008), pp. 629-632. 1SSN: 0028-0836. pOI: 10. 1038/
nature06981.

82


http://dx.doi.org/10.1080/14786448508627791
http://dx.doi.org/10.1103/PhysRevLett.64.2727
http://dx.doi.org/10.4007/annals.2005.162.1065
http://arxiv.org/abs/0205209
http://dx.doi.org/10.1038/nphys3680
http://dx.doi.org/10.1103/PhysRevE.73.035103
http://dx.doi.org/10.1016/j.cirp.2016.04.010
http://dx.doi.org/10.1103/PhysRevLett.116.078001
http://arxiv.org/abs/1505.06626
http://dx.doi.org/10.1063/1.3179924
http://dx.doi.org/10.3254/978-1-61499-011-6-153
http://dx.doi.org/10.3254/978-1-61499-011-6-153
http://dx.doi.org/10.1103/PhysRevE.89.012203
http://dx.doi.org/10.1038/nature06981
http://dx.doi.org/10.1038/nature06981

C. H. Liu and S. R. Nagel. “Sound in sand”. In: Physical Review Letters 68.15 (Apr.
1992), pp. 2301-2304. 1ssN: 00319007. DOI: 10.1103/PhysRevLett.68.2301.

E. W. Weisstein. Wave Equation - 1-Dimensional - {http://tinyurl.com/wave-1d}.

X. Zeng, J. H. Agui, and M. Nakagawa. “Wave Velocities in Granular Materials
under Microgravity”. en. In: Journal of Aerospace Engineering 20.2 (Apr. 2007),
pp- 116-123. 1ssN: 0893-1321. DOI: 10.1061/ (ASCE) 0893-1321(2007)20:2(116).

M. Manjunath, A. P. Awasthi, and P. H. Geubelle. “Wave propagation in 2D
random granular media”. In: Physica D: Nonlinear Phenomena 266 (Jan. 2014),
pp. 42-48. 18SN: 01672789. DOI: 10.1016/3.physd.2013.10.004.

S. Job et al. “Nonlinear waves in dry and wet Hertzian granular chains”. In: Ultra-
sonics 48.6-7 (Nov. 2008), pp. 506-514. 1SsN: 0041624X. pOI: 10.1016/j.ultras.
2008.03.006.

N. P. Chotiros and M. J. Isakson. “Shear and compressional wave speeds in
Hertzian granular media.” In: The Journal of the Acoustical Society of America
129.6 (June 2011), pp. 3531-43. 1SSN: 1520-8524. DOI: 10.1121/1.3571421.

H. R. Hertz. “Uber die Beruhriing fester elastischer Korper”. In: Journal fur die
reine und angewandte Mathematik 92.156-171 (1882), pp. 156—171. 1sSN: 0028-0836.
DOI: 10.1038/055006£0.

J. D. Goddard. “Nonlinear Elasticity and Pressure-Dependent Wave Speeds in
Granular Media”. In: Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 430.1878 (July 1990), pp. 105-131. 1sSN: 1364-5021. DOI:
10.1098/rspa.1990.0083.

E. T. Owens and K. E. Daniels. “Sound propagation and force chains in granular
materials”. In: EPL (Europhysics Letters) 94.5 (June 2011), p. 54005. 1SSN: 0295-
5075. DOI: 10.1209/0295-5075/94/54005. arXiv: 1007.3908.

V. F. Nesterenko. “Nonlinear Impulses in Particulate Materials”. In: Dynamics of
Heterogeneous Materials. New York, NY: Springer New York, 2001, pp. 1-136. DOI:
10.1007/978-1-4757-3524-6{\_}1.

E. Somfai et al. “Elastic wave propagation in confined granular systems”. In:
Physical Review E 72.2 (Aug. 2005), p. 021301. 1SsN: 1539-3755. po1: 10.1103/
PhysRevE.72.021301.

V. F. Nesterenko. Dynamics of Heterogeneous Materials. New York, NY: Springer
New York, 2001. 1SBN: 978-1-4419-2926-6. DOT: 10.1007/978-1-4757-3524-6.

C. Carpentier. “Three-dimensional visualization of contact networks in granu-
lar material”. PhD Dissertation. Universiteit van Amsterdam, 2013, p. 188. ISBN:
9789461918550.

A. G. Athanassiadis et al. “X-ray tomography system to investigate granular ma-
terials during mechanical loading”. In: The Review of scientific instruments 85.8
(Aug. 2014), p. 083708. 1sSN: 10897623. DOI: 10.1063/1.4893555. arXiv: 1406.
2756.

83


http://dx.doi.org/10.1103/PhysRevLett.68.2301
http://dx.doi.org/10.1061/(ASCE)0893-1321(2007)20:2(116)
http://dx.doi.org/10.1016/j.physd.2013.10.004
http://dx.doi.org/10.1016/j.ultras.2008.03.006
http://dx.doi.org/10.1016/j.ultras.2008.03.006
http://dx.doi.org/10.1121/1.3571421
http://dx.doi.org/10.1038/055006f0
http://dx.doi.org/10.1098/rspa.1990.0083
http://dx.doi.org/10.1209/0295-5075/94/54005
http://arxiv.org/abs/1007.3908
http://dx.doi.org/10.1103/PhysRevE.72.021301
http://dx.doi.org/10.1103/PhysRevE.72.021301
http://dx.doi.org/10.1007/978-1-4757-3524-6
http://dx.doi.org/10.1063/1.4893555
http://arxiv.org/abs/1406.2756
http://arxiv.org/abs/1406.2756

[49]

X. Lee, W. Dass, and C. Manzione. Characterization of the Internal Microstruc-
tures of Granular Materials Using Computerized Tomography. 1993.

T. Kawaguchi. “MRI measurement of granular flows and fluid-particle flows”. In:
Advanced Powder Technology 21.3 (May 2010), pp. 235-241. 1ssN: 09218831. pOI:
10.1016/j.apt.2010.03.014.

H. Konietzky. “Numerical modelling in micromechanics via particle methods”. In:
(2003). Ed. by H. Konietzky, pp. 1-56.

S. Luding. “Introduction to discrete element methods: Basic of contact force models
and how to perform the micro-macro transition to continuum theory”. In: European
Journal of Environmental and Civil ... Md (May 2008), pp. 785-826. 1SSN: 1964-
8189. DOI: 10.3166/ejece.12.785-826

A. Clement et al. “Comparing Numerical Integration Methods”. In: NM Supercom-
puting Challenge (2008), p. 177.

G. J. Martyna, M. E. Tuckerman, and D. J. Tobias. “Molecular Physics : An
International Journal at the Interface Between Chemistry and Physics Explicit
reversible integrators for extended systems dynamics”. en. In: Molecular Physics

87.February 2015 (Apr. 1996), pp. 37-41. 1sSN: 0026-8976. DOI: 10.1080/00268979600100761.

H. Grubmidiller et al. “Generalized Verlet Algorithm for Efficient Molecular Dynam-
ics Simulations with Long-range Interactions”. en. In: Molecular Simulation 6.1-3
(Mar. 1991), pp. 121-142. 18sN: 0892-7022. DOI: 10.1080/08927029108022142.

R. Trobec and D. Janezic. “Comparison of Parallel Verlet and Implicit Runge-
Kutta Methods for Molecular Dynamics Integration” In: Journal of Chemical
Information and Modeling 35.1 (Jan. 1995), pp. 100-105. 1sSN: 1549-9596. DOI:
10.1021/¢ci100023a014.

M. J. Mikkola, M. Tuomala, and H. Sinisalo. “Comparison of numerical integra-
tion methods in the analysis of impulsively loaded elasto-plastic and viscoplastic
structures”. In: Computers and Structures 14.5-6 (Jan. 1981), pp. 469-478. ISSN:
00457949. DOT1: 10.1016/0045-7949(81)90067-5.

S. Luding. “Contact Models for Very Loose Granular Materials”. In: IUTAM Sym-
posium on Multiscale Problems in Multibody System Contacts. Vol. 1. Springer,
May 2007, pp. 135-150. 1SBN: 978-1-4020-5980-3. DOI: 10.1007/978-1-4020-
5981-0{\_}14.

S. Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynamics”. In:
Journal of Computational Physics 117.1 (Mar. 1995), pp. 1-19. 1ssN: 00219991.
DOI: 10.1006/jcph.1995.1039.

B. R. Brooks et al. “CHARMM: A program for macromolecular energy, minimiza-
tion, and dynamics calculations”. In: Journal of Computational Chemistry 4.2 (Jan.
1983), pp. 187-217. 1sSN: 0192-8651. DOI: 10.1002/jcc.540040211.

J. C. Phillips et al. Scalable molecular dynamics with NAMD. Dec. 2005. DOTI:
10.1002/jcc.20289. arXiv: NTHMS150003.

84


http://dx.doi.org/10.1016/j.apt.2010.03.014
http://dx.doi.org/10.3166/ejece.12.785-826
http://dx.doi.org/10.1080/00268979600100761
http://dx.doi.org/10.1080/08927029108022142
http://dx.doi.org/10.1021/ci00023a014
http://dx.doi.org/10.1016/0045-7949(81)90067-5
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1002/jcc.540040211
http://dx.doi.org/10.1002/jcc.20289
http://arxiv.org/abs/NIHMS150003

‘ot ot
<)

=

D. A. Case et al. The Amber biomolecular simulation programs. Dec. 2005. DOI:
10.1002/jcc.20290. arXiv: NTHMS150003.

S. Pronk et al. “GROMACS 4.5: A high-throughput and highly parallel open source
molecular simulation toolkit”. In: Bioinformatics 29.7 (Apr. 2013), pp. 845-854.
ISSN: 13674803. DOI: 10.1093/bioinformatics/btt055.

K. Bowers et al. “Scalable Algorithms for Molecular Dynamics Simulations on
Commodity Clusters”. In: ACM/IEEE SC 2006 Conference (SC’06). IEEE, Nov.
2006, pp. 43-43. 18BN: 0-7695-2700-0. DOI: 10.1109/SC.2006.54.

A. Thornton et al. “A review of recent work on the discrete particle method at the
University of Twente: an introduction to the open-source package MercuryDPM”.
In: DEMG6 - International Conference on DEMs. Colorado School of Mines, Apr.
2013, pp. 50-56. DOI: 10.1063/1.4812098.

A. ( A. C. Kamphuis. PySim MD simulation - {pysim.alexkamphuis.nl}. 2016.
L. D. Landau and E. M. Lifschitz. Theory of elasticity. 1959. 1sBN: 0-08-33917-4.

S. Roux. “Quasi-Static Contacts”. In: Physics of Dry Granular Media. Dordrecht:
Springer Netherlands, 1998, pp. 267-284. DOI: 10.1007/978-94-017 - 2653 -
5{\_}19.

M. J. Puttock and E. G. Thwaite. Elastic Compression of Spheres and Cylinders at
Point and Line Contact. Ed. by { Commonwealth Scientific and Industrial Research
Organization}. Vol. 25. 25. Melbourne, 1969, p. 64.

Vishay Company. Vishay corporate website - hitp://www.vishay.com/.

S. Frank-Richter, M. Sperl, and P. Yu. Producing spherical, stress-birefringent
particles, comprises introducing a single- or multi-component solidifying liquid into
a suspension liquid and removing the solidified particles from the forming slurry.
2011.

D. Weber. “Verfahren zur Optimierung Spannungsoptischer Analysen Dreidimen-
sionaler Granularer Systeme”. BSc. Thesis. Hochschule Bonn-Rhein-Sieg, 2015,
p- 70.

SilikonProfis. Silikon Profis corporate website - {http://www.silikon-profis.de/ELBESIL-
SILIKONOEL-B-60000-60000-cSt-500-g }.

S. Farhadi, A. Z. Zhu, and R. P. Behringer. “Stress Relaxation for Granular Mate-
rials near Jamming under Cyclic Compression”. In: Physical Review Letters 115.18
(Oct. 2015), p. 188001. 1ssN: 10797114. DOI: 10.1103/PhysRevLett.115.188001.
arXiv: arXiv:1309.7147v1.

J. H. Snoeijer et al. “Sheared force networks: anisotropies, yielding, and geometry.”
In: Physical review letters 96.9 (Mar. 2006), p. 098001. 1ssN: 0031-9007. DOI: 10.
1103/PhysRevLett.96.098001.

Novespace, DGA, and M. d. . D. R. Francaise. PFC safety instructions. 2016.

85


http://dx.doi.org/10.1002/jcc.20290
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1109/SC.2006.54
http://dx.doi.org/10.1063/1.4812098
http://dx.doi.org/10.1103/PhysRevLett.115.188001
http://arxiv.org/abs/arXiv:1309.7147v1
http://dx.doi.org/10.1103/PhysRevLett.96.098001
http://dx.doi.org/10.1103/PhysRevLett.96.098001

L. de Mol. “Wave Propagation in Granular Material: Theoretical and Numercical
Analyisis in Comparison to Experimental Data”. PhD thesis. Enschede: University
of Twente, 2013, p. 99.

S. van den Wildenberg, M. van Hecke, and X. Jia. “Evolution of granular packings
by nonlinear acoustic waves”. en. In: EPL (Europhysics Letters) 101.1 (Jan. 2013),
p. 14004. 1ssN: 0295-5075. DOI: 10.1209/0295-5075/101/14004.

X. Jia, T. Brunet, and J. Laurent. “Elastic weakening of a dense granular pack
by acoustic fluidization: Slipping, compaction, and aging”. In: Physical Review E -
Statistical, Nonlinear, and Soft Matter Physics 84.2 (Aug. 2011), p. 020301. 1SSN:
15393755. DOI: 10.1103/PhysRevE.84.020301.

T. H. Baek, M. S. Kim, and D. P. Hong. “Fringe analysis for photoelasticity us-
ing image processing techniques”. In: International Journal of Software Engineer-
ing and its Applications 8.4 (2014), pp. 91-102. 1SsN: 17389984. pOI: 10.14257/
ijseia.2014.8.4.11.

J. Y. H. Lawrence. “Analyzing photoelastic disks”. PhD thesis. Reed College, 2012,
p. 82.

J. Eric, O. Travis, and P. Pearu. SciPy : Open source scientific tools for Python.
2001.

K. J. Millman and M. Aivazis. Python for scientists and engineers. Mar. 2011. DOTI:
10.1109/MCSE.2011.36. arXiv: MCSE.2011.36 [D0OI:10.1109].

T. E. Oliphant. “Python for scientific computing”. In: Computing in Science and
Engineering 9.3 (2007), pp. 10-20. 1SSN: 15219615. DO1: 10.1109/MCSE. 2007 . 58.

T. S. Majmudar and R. P. Behringer. “Contact force measurements and stress-
induced anisotropy in granular materials.” In: Nature 435.7045 (June 2005), pp. 1079
1082. 18SN: 0028-0836. DOI: 10.1038/nature03805.

A. H. Clark, L. Kondic, and R. P. Behringer. “Particle scale dynamics in granular
impact”. In: Physical Review Letters 109.23 (Dec. 2012), p. 238302. 1sSN: 00319007.
DOI: 10.1103/PhysRevLett.109.238302. arXiv: arXiv:1208.5724v1.

Scipy.org. Scipy.signal.butter - http://tinyurl.com/scipy-butter.

H. Hertz and P. Lenard. Gesammelte Werke von Heinrich Hertz, Band 4. Ed. by
A. Meiner and J. A. Barth. Vol. 4. Leipzig, 1895.

A. T. Procopio, A. Zavaliangos, and J. C. Cunningham. “Analysis of the diametri-
cal compression test and the applicability to plastically deforming materials”. en.
In: Journal of Materials Science 38.17 (2003), pp. 3629-3639. 1SSN: 00222461. DOI:
10.1023/A:1025681432260.

D. W. Howell. “Stress distributions and fluctuations in static and quasi-static
granular systems”. In: Thesis (PhD). DUKE UNIVERSITY (1999).

A. J. Durelli and W. F. Riley. Introduction to photomechanics. Ed. by N. J. En-
glewood Cliffs. Prentice Hall, 1965, p. 402.

86


http://dx.doi.org/10.1209/0295-5075/101/14004
http://dx.doi.org/10.1103/PhysRevE.84.020301
http://dx.doi.org/10.14257/ijseia.2014.8.4.11
http://dx.doi.org/10.14257/ijseia.2014.8.4.11
http://dx.doi.org/10.1109/MCSE.2011.36
http://arxiv.org/abs/MCSE.2011.36
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1038/nature03805
http://dx.doi.org/10.1103/PhysRevLett.109.238302
http://arxiv.org/abs/arXiv:1208.5724v1
http://dx.doi.org/10.1023/A:1025681432260

[87]

[88]

[92]
[93]

[94]

Modlex3D. Optics Theories - hittp://support.moldex3d.com/r13/moldex3d/module-
introduction/standard-injection-molding/material /reference/optics-theories/. 2016.

M. M. Frocht. Photoelasticity (vol. I € II). New York: John Wiley & Sons, 1941,
p- 916. 1SBN: 978-0-08-012998-3.

T. S. Majmudar et al. “Jamming transition in granular systems”. In: Physical Re-
view Letters 98.5 (Feb. 2007), p. 058001. 1ssN: 00319007. poI: 10.1103/PhysRevLlett.
98.058001. arXiv: 0610645 [cond-mat].

A. H. Clark et al. “Nonlinear force propagation during granular impact”. In: Phys-
ical Review Letters 114.14 (Apr. 2015), p. 144502. 1ssN: 10797114. por: 10.1103/
PhysRevLett.114.144502. arXiv: 1408.1971.

H. G. Matuttis, S. Luding, and H. J. Herrmann. “Discrete element simulations of
dense packing and heaps made of spherical and non-spherical particles”. In: Powder
Technology 109.1-3 (1999), pp. 278-292. 1sSN: 0032-5910.

H. A. Khawaja and K. Parvez. “Validation of Normal and Frictional Contact Mod-
els of Spherical Bodies by Fem Analysis”. en. In: The International Journal of
Multiphysics (Aug. 2010). 1sSN: 17509548. DOI: 10.1260/1750-9548.4.2.175.

X. Jia, C. Caroli, and B. Velicky. “Ultrasound Propagation in Externally Stressed
Granular Media”. In: Physical Review Letters 82.9 (Mar. 1999), pp. 1863-1866.
1SSN: 0031-9007. DOI: 10.1103/PhysRevLett.82.1863.

A. Donev, S. Torquato, and F. H. Stillinger. “Pair correlation function character-
istics of nearly jammed disordered and ordered hard-sphere packings”. In: Physi-
cal Review E - Statistical, Nonlinear, and Soft Matter Physics 71.1 (Jan. 2005),
p- 011105. 18sN: 15393755. DOI: 10.1103/PhysRevE.71.011105. arXiv: 0408550
[cond-mat].

L. E. Silbert. “Jamming of frictional spheres and random loose packing”. en. In:
Soft Matter 6.13 (June 2010), p. 2918. 1SSN: 1744-683X. DOI: 10.1039/c001973a.

S. R. Hostler. “Wave propagation in granular materials”. PhD thesis. California
Institute of Technology, 2005, p. 111.

S. Frank-Richter. “Disordered Binary Granular Packings in Three Dimensions”.
Phd Thesis. Heinrich-Heine-Universitat Disseldorf, May 2014, p. 133.

87


http://dx.doi.org/10.1103/PhysRevLett.98.058001
http://dx.doi.org/10.1103/PhysRevLett.98.058001
http://arxiv.org/abs/0610645
http://dx.doi.org/10.1103/PhysRevLett.114.144502
http://dx.doi.org/10.1103/PhysRevLett.114.144502
http://arxiv.org/abs/1408.1971
http://dx.doi.org/10.1260/1750-9548.4.2.175
http://dx.doi.org/10.1103/PhysRevLett.82.1863
http://dx.doi.org/10.1103/PhysRevE.71.011105
http://arxiv.org/abs/0408550
http://arxiv.org/abs/0408550
http://dx.doi.org/10.1039/c001973a

	Introduction
	Methods
	Results
	Discussion
	Conclusion
	List of symbols
	Diametric loading of disks
	Birefringence and Retardation
	Projections used in Pysim
	Hertzian contact models
	Bibliography

