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Abstract

In this thesis wave propagation in granular material is investigated theoretically and nu-

merically with the final goal to simulate experiments on ultrasonic wave propagation in a

triaxial cell filled with glass beads in order to get better insight in the material behaviour.

Studying wave propagation can answer fundamental questions concerning the material,

since material moduli can be derived from wave properties. With numerical analyses not

only a cheaper and easier way to realize parameter studies is chosen, but it has also the

added value of offering information on the micro structure of the system, which is not

possible in real physical experiments. The numerical algorithm on which all the simula-

tions are based is the Discrete Element Method.

This work focuses on studying different numerical methods to calculate the wave velocity

of a pressure wave and the compressional modulus of the material. A propagating wave

is simulated to calculate the wave velocity once directly and once to obtain the dispersion

relation by a Fourier analysis, which also gives information about the wave velocity. The

compressional modulus is evaluated in another simulation that is based on the stress-

strain relation of the material.

First regular granular systems (a 2D cubic, a 2D hexagonal, a 3D cubic and a 3D body

centered cubic lattice) are analysed and the results from the numerical simulations com-

pared to analytical solutions. From the comparison of the results, one can conclude that

the chosen methods are reliable.

Later the investigations are concentrated on disordered granular systems, that resemble

the physical experiments. The final results of these analyses cover a wide range of values

with high deviations. The experimental results lie in this range. For future work an

improvement of the presented methods is expected by slight modifications to reduce the

deviations, which will make it possible to match the experiments better. The proposed

improvements vary from creating a bigger sample for the simulations to a more careful

analysis of the simulation’s results.





Notations

Granular Material

ν Poisson’s ratio

Φ porosity

Ψ volume fraction

ρ particle’s density

ρbulk material’s density

σ stress

ε strain

E Young’s modulus

e void ratio

M compressional modulus

Simulation

∆t time step interval

∆ particle overlap

γ damping coefficient

∆ relative displacement vector

ϑ damping ratio

m particle mass



C stiffness tensor

F generalised force vector

f force vector

M generalised mass matrix

n contact normal

Sc contact stiffness matrix

c stiffness coefficient

Ekin kinetic energy

lb branch vector

NT number of time steps

r particle radius

T total simulation time

tc collision time

u potential energy density

V Volume

ẍ acceleration vector

ẋ velocity vector

x position vector

Waves

λ wave length

ω angular frequency

Û amplitude of generalised displacement vector

k wave vector

U generalised displacement vector



f frequency

G shear modulus

k wave number

ts travel time

vP P-wave velocity

vS S-Wave velocity

vgroup group velocity

vphase phase velocity

Mathematics

· scalar product/ matrix product

∇ nabla operator

⊗ dyadic product
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Chapter 1

Introduction

This short introduction gives a motivation on why wave propagation in granular material

is studied. It then outlines the content and goal of this thesis, followed by an overview of

how the thesis is structured.

1.1 Motivation

Granular materials can be understood as an assembly of particles. They are omnipresent

in nature and various technological applications. You can for example think of soils, snow,

salt or different kinds of powders as a granular material. Reasons for studying and under-

standing these materials are to predict their behaviour in order to improve or influence

them later. Possible investigation fields could for example be the study of avalanches or

erosion, but also the transportation of sand or other materials in industrial environments.

How waves propagate in granular materials is a fundamental question. It can give infor-

mation about the material behaviour and help to determine material properties.
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1.2 Thesis goal and overview

The goal of this thesis is the study of wave propagation in granular materials. For a better

initial understanding waves in regular ordered systems are analysed first. Two different

types of lattices in 2D and two in 3D are taken into account. Then a random system is

created and waves are excited in this sample.

Different analytical and numerical analysis methods are used. Table 1.1 gives an overview

over all the used analysis methods used in this thesis. The analytical methods can only

Lattices Random

analytical Principle of virtual displacement

Dispersion relation

numerical Hooke’s law

Wave

Dispersion relation by Fourier transform

Table 1.1: Analysis methods

be used in the ordered systems, whereas the numerical methods apply for both, ordered

and random configurations.

With the validation of the analysis methods on the regular systems, the random system is

created for a numerical comparison to experimental results on wave propagation from the

laboratories of the Ruhr-University Bochum. Trying to model the experimental set-up,

the simulation’s aim is to gain further insight in the material behaviour in general and

especially during wave propagation.

The simulations for the regular systems and all the post-processing applications are pro-

grammed in MATLAB. For the random system a version of a code called TRUBAL from

the Aston University in Birmingham (1994) is used.

The thesis starts with chapter 2 by introducing the main properties of granular material

and the Discrete Element Method (DEM), which is the algorithm used in the simula-

tions. The chapter is completed by outlining the main theoretical basics on waves. The
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five analysis methods (cf. tab. 1.1) are the topic in chapter 3. Chapter 4 deals with the

regular systems. Every analysis method is treated separately. Attention is drawn to the

exact adoption of the methods for the lattices. The results are presented and compared in

the end. The disordered system is dealt with in chapter 5. A short section on the experi-

ments is followed by a section on the creation of the random system. The three remaining

analysis methods for the random systems are then analysed in depth and evaluated in the

end. The thesis finishes in chapter 6 with a conclusion and recommendations for future

work.





Chapter 2

Fundamentals on granular material

and wave propagation

This chapter serves as a theoretical introduction to granular material and wave propa-

gation. After the main properties of granular material are named, the Discrete Element

Method is explained. This is the numerical method which all the simulations are based

on. Then the wave properties, that are of further use, are shortly depicted.

2.1 Granular Material

Granular materials are large conglomerations of discrete macroscopic particles (cf. [12]).

The particle systems consist of particles with diameters larger than one micron (cf. [10]).

Common examples for these materials are sand, different kinds of powders, but also

avalanches can be investigated in the field of granular matter. The study of these mate-

rials is important for different applications, such as mining, agriculture and construction.

Geological processes, such as erosion, need to be understood better. Granular materials

are also ubiquitous in the food industry.
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As granular material has lot of different characteristics and properties, only the properties

for the further understanding of this thesis are introduced. One important characteristic

is the material’s density. On the one hand the particles have their density ρ and on the

other hand the material has a density, that is referred to as bulk density ρbulk. The bulk

density is closely related the volume fraction ψ, the porosity φ and the void ratio e. The

volume fraction describes the fraction of particle volume, whereas the porosity describes

the fraction of void volume in the material. The void ratio is the void volume related to

the particle volume. The three properties are computed by

ψ =
Vparticles

V
, φ =

Vvoids

V
, e =

Vvoid

Vparticles
. (2.1)

These three quantities describe the same physical property in a different way and can be

related to each other in the following way:

φ = 1− ψ and φ =
e

1 + e
. (2.2)

With the volume fraction and the particle’s density the bulk density can be obtained by

ρbulk = ψ ρ . (2.3)

Granular materials are described on a micro-level by looking at single particles and their

contacts. Thus the number of contacts is a valuable characteristic. The coordination

number Z is defined as the average number of contacts per particle.

Additional information about the material can be requested by the number of rattlers. A

rattler is a particle that is not in contact with other particles. Here contact is defined by

two particles touching accompanied by the transmission of forces on each other.

As for every material a stress-strain relation can be captured in a constitutive equation.

The general form of Hooke’s law

εij =
1 + ν

E
σij −

ν

E
δijσkk (2.4)
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σij =
E

1 + ν

(

εij +
ν

1− 2ν
δijεkk

)

(2.5)

is a constitutive equation for isotropic materials (cf. [26]), where ν is the Poisson’s ratio

and E the Young’s modulus.

Different material parameters are defined to cover the material’s behaviour. In this thesis

the difference between the Young’s modulus E and the compressional modulusM needs to

be clarified. The Young’s modulus E is related to a stress-strain-relation with stress-free

boundaries, whereas the compressional modulus M is calculated by setting the strains

on the boundaries to zero. A compression in e3-direction means for the calculation of E,

that σ11 = σ22 = 0 and equation (2.4) for i = j = 3 is simplified to

σ33 = Eε33 . (2.6)

The stress-free boundaries allow a dilation of the material in the other two directions e11

and e22. The relation between strain in the direction of compression and strain in the

transversal direction is defined as the Poisson’s ratio (cf. [24]):

ν = −ε11
ε33

= −ε22
ε33

. (2.7)

The same compression with the boundary conditions ε11 = ε22 = 0 for the calculation of

M leads with equation (2.5) to

σ33 =
1− ν

(1 + ν)(1− 2ν)
Eε33 . (2.8)

Based on this relation the compressional modulus is defined as

M =
1− ν

(1 + ν)(1− 2ν)
E . (2.9)
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2.2 Discrete Element Method

The discrete element method (DEM) is a numerical algorithm used for the description

of granular material behaviour. It is a method closely related to molecular dynamics

(MD), but specially adapted to simulate the motion of macroscopic particles (cf. [11]).

Based on Newton’s equation of motion, the goal of a DEM-simulation is to describe the

time-dependent positions and velocities of each single particle in a particle assembly, i.e.

granular material.

A DEM-algorithm mainly consists of calculating all the forces acting on one particle and

integrating the equations of motion to get the new positions and velocities per particle for

the next time step. Alongside external forces on the material, the contact forces between

particles play an important part in the force calculation procedure. Particle contacts are

searched efficiently and their according contact forces determined.

Particles can be of diverse shapes. For simplicity disks are taken into account for the 2D

case and spheres for the 3D case.

Each contact, that is found in one of the contact searching algorithms, is then regarded

separately. One contact of particle i and particle j is illustrated in figure 2.1.

xi

xj

ri

rj

lb

∆

e1

e2

e3

Figure 2.1: Schematic of two particles in contact
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The particle’s center of mass is given by the position vector x and the particles radius is

r. A geometrically important quantity is the branch vector

lb = xi − xj , (2.10)

which is pointing on particle i from particle j. The contact normal direction nij is given

by the normalized branch vector

nij =
lb

|lb|
. (2.11)

For each two particles in contact the contact force is calculated. This can be done using

various contact models, where the most common models are a linear model or a Hertzian

contact model. In the linear case, particle interaction is modelled with a linear spring and

dashpot. For a linear spring the force is calculated by the spring’s stiffness coefficient c

and the change in length of the spring. Translating this to particles the change of length

is the particle overlap

∆ = lb − (ri + rj)nij . (2.12)

The dashpot contributes with the viscous damping coefficient γ and the relative velocity

∆̇ to the dissipative part of the force. The force from particle j on particle i is thus

defined as

fij = c∆nij + γ ∆̇nij . (2.13)

With the sum of all the forces on particle i excited by all the contacts CP from particles

j,

fi =

CP
∑

j=1

fij , (2.14)

the acceleration at the current time step n is evaluated,

ẍ
(n)
i =

f
(n)
i

m
. (2.15)
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An appropriate integration scheme can now return the requested positions x and velocities

ẋ at the next time step. The Verlet-integration scheme for example states

x(n+1) = 2x(n) − x(n−1) +∆t ẍ(n) (2.16)

ẋn =
1

2∆t

(

x(n+1) − x(n−1)
)

. (2.17)

To help estimating the parameters accurately, like the damping coefficient γ or the time

step interval ∆t, the collision of two particles is examined. This is resembled by two

masses connected with a spring and a dashpot (cf. fig. 2.2), which are described by

mẍ + γẋ+ cx = 0 . (2.18)

An analytical solution for this problem is known and examined thoroughly in various

m k γ

Figure 2.2: Schematic of two particles modelled as a damped oscillator

literature sources, e.g. [15]. The behaviour can be classified by defining a damping ratio

ϑ =
γ

2
√
cm

. (2.19)

For ϑ < 1 damped vibration can be observed, while for ϑ ≥ 1 the system is over-damped

and does not oscillate. In the last case the motion is also referred to as aperiodic. Since for

the DEM-simulation our system is required to show a damping behaviour, the damping

ratio should be chosen according to the first case. This gives a limiting value for the

damping coefficient:

γ < 2
√
cm . (2.20)

The time step interval ∆t must be smaller than the collision time tc, e.g.
1
50
tc. The

collision time is the time, in which two particles are in collision, or the time it takes for
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the spring to get from its equilibrium length back to it. This equals half a period of full

vibration and is expressed in (2.21).

tc = π

√

m

c
(2.21)

Note that the collision time here is derived from the analytical solution of a simpler mass-

spring system, not a mass-spring-dashpot system as described earlier. This was thought

to be a convenient choice since tc should give an upper limiting value for the time step

interval and the period of a full vibration for a damped system is always larger than that

of an undamped system.

To use a DEM-simulation sensible, not just these parameters have to be specified, but also

initial and boundary conditions need to be set. Therefore information about the initial

properties of the particles, i.e. radii, positions and velocities, is required. As boundary

conditions one can restrict movement of some particles in a given direction or apply forces

on them. A special type of boundary conditions are the periodic boundary condition. If

you imagine a periodic box around the particles assembly, all the particles leaving the

box at one side enter at the other side. So for example contacts between particles at

the bottom of the system and the top of the system exist using this type of boundary

conditions. They are used to simulate a particle assembly that represents a real system

with much more particles in the periodic direction than actually needed in the simulation.

This presented simple DEM model can be extended further for different applications. In

the case of particles with a rough surface for example friction forces have to be considered,

too. In this case in addition to the spring in normal direction, springs in tangential

direction are modelled for the frictional forces. A particle cannot be seen as a central

force system any more. Thus the particle rotation gives one extra degree of freedom in

2D and three extra degrees of freedom in 3D. Other extensions or adaptations could also

be the consideration of cohesive material behaviour.
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2.3 Wave properties

A wave can be defined as the periodic propagation of a disturbance or oscillation through

a medium (cf. [6]). It is primarily characterized by its frequency f , which is the repetition

of oscillations per unit of time. Instead of the frequency f , often the angular frequency ω

is used with the following relation:

ω = 2π f . (2.22)

According to the frequencies, waves have different properties and are categorized. Waves

with high frequencies are for example x-rays or light waves. Microwaves already do not

have such high frequencies and sound waves even have comparably low frequencies at a

range of 104 − 1010 Hz. The waves in this thesis can be assigned to the ultrasonic range.

Apart from its frequencies the wavelength, the wave speed, the wave number, the wave

vector and the propagation direction play an important role in describing waves.

The wavelength λ is the distance of a full oscillation period of the wave. Since the inverse

of the frequency equals the time it takes the wave to perform one complete oscillation,

the velocity of one phase, i.e. the phase velocity, can be computed by

vphase = fλ . (2.23)

Defining the wave number

k =
2π

λ
(2.24)

and combining equations (2.22) and (2.23) another expression for the phase velocity states

vphase =
ω

k
. (2.25)

The phase velocity is used for non-dispersive media. Dispersion is the variation of phase

velocity with frequency. If dispersion occurs it makes sense to look at the velocity the
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envelope of the wave, i.e. the group velocity (cf. [3]), which is defined as

vgroup =
∂ω

∂k
(2.26)

In non-dispersive media the group velocity equals the phase velocity. From now on, if

the word wave velocity or wave speed is used, this refers to the group velocity. Generally

the velocity can also be evaluated by looking at the time it takes for a signal to travel a

certain length.

Regarding the propagation direction two main types of waves can be distinguished. If

the propagation direction corresponds to the direction of oscillation, the wave is called

longitudinal. Is the propagation direction perpendicular to the oscillation direction, the

wave is called transverse. Longitudinal waves are also referred to as P-waves (pressure

or compressional waves), whereas transverse waves are also called S-waves (shear waves).

The propagation direction is mathematically captured in the wave vector k. The wave

vector’s magnitude equals the wave number k.

The wave speed differs with the material the wave is travelling through. Knowing the

speed of sound, one can calculate material properties, like the Young’s modulus E, the

compressional modulus M and the shear modulus G:

G = ρbulkv
2
S (2.27)

E = ρbulkv
2
P or M = ρbulkv

2
P (2.28)

Here vP is the speed of sound of a P-wave, vS the speed of sound of a S-wave and ρbulk

the system’s density. The relation in equation (2.28) is valid for E or for M depending

on the system. According to [23] ρbulkv
2
P gives E in a bar and M in a system where the

transversal length is larger than the length, in which the wave propagates. the systems in

this thesis can be sorted to the last case. In a the post-processing steps of the simulations

the compressional modulus M is calculated, not the Young’s modulus E.

Mathematically wave motion, i.e. the displacement U at a certain time t and point x in
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the material, is captured in the wave equation

∂2U (x, t)

∂t2
= v2∇2 (U (x, t)) . (2.29)

This equation can be solved analytically and its solution is called the harmonic wave

solution, which reads

U (x, t) = Û · exp [i (ωt− k · x)] , (2.30)

where Û is a vector that contains the amplitudes of displacement.

While working with waves, it can be useful to look at the time domain and the frequency

domain. To switch between these different domains, mathematically the Fourier transform

or the inverse Fourier transform is performed to go for example from the amplitude as

a function of time to the intensity of the signal as a function of frequency. The Fourier

transform is explained more thoroughly in chapter 3.5.



Chapter 3

Analysis methods

This chapter describes the five analysis methods used to get information about the wave

speeds and material properties. The methods Principle of virtual displacement and

Hooke’s law directly lead to the calculation of the compressional modulus, whereas the

methods Dispersion relation, Wave propagation and Fourier transform give infor-

mation about the wave in the medium. With the obtained wave speed the compressional

modulus can be computed. All five methods are applied on the regular systems in chapter

4 and three of them on the disordered systems in chapter 5.

3.1 Principle of virtual displacement

With the principle of virtual displacement the stiffness matrix for regular systems in 2D

and 3D is derived. This derivation is extracted from [16]. Here the rotational degrees of

freedom are neglected to model a frictionless system.

Regarding two particles i and j in contact and starting from the definition of particle

overlap in normal direction,

∆ = lb − (ri + rj)nij , (3.1)
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a strain tensor ε with the change in length, which is the overlap, related to initial length

can be defined:

ε =
∆

|lb|
n⊗ n (3.2)

From the potential energy density u for one particle, with V as the volume of a unit cell,

u =
1

2V

(

c∆2
)

, (3.3)

the stress tensor σ and finally the stiffness tensor C can be calculated, according to (3.4).

σαβ =
∂u

∂εαβ
, Cαβγφ =

∂σαβ

∂εφγ
(3.4)

Applying Hamilton’s principle of variation subjecting the system to a small deformation,

thus varying the branch vector or overlap δlb = δ∆n, an expression for a single contact

stiffness matrix is gained.

Cαβγφ =
|lb|2
V

(c nαnβnγnφ) (3.5)

This single contact stiffness matrix needs to be generalised. Therefore the averaging

formula,

Q = 〈Q〉 = 1

V

∑

p∈V

V pQp , (3.6)

is used, where Q is any quantity that can be averaged over all particles p in an averaging

Volume V . The relation for the stiffness tensor results in

Cαβγφ =
1

V

∑

p∈V

(

c

C
∑

c=1

|lb|2
2
nc
αn

c
βn

c
γn

c
φ

)

. (3.7)

The sum regards one particle and each particle that is in contact with it. As volume the

volume of a unit cell is to be chosen.
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3.2 Dispersion relation

Dispersion describes a situation in which the phase velocity varies with frequency [6].

Regarding the definition given in equation (2.26) for the wave velocity as a function of

the angular frequency and the wave number, the wave velocity for a certain wave length

should equal the slope of a k − ω-plot at the corresponding value of k. Investigating the

dispersion relation of a material thus means finding a relation between the wave number

and the angular frequency. From that relation the wave velocity can be derived and it

can be differentiated whether the material behaves dispersive. If the relation is linear, the

velocity does not change with the frequency, and the material is non-dispersive. Otherwise

it is.

The dispersion relation for regular granular material is derived in [14]. The idea is to insert

the harmonic wave solution in the DEM-Ansatz and solve it for the angular frequency ω

with varying wave number k. Due to the periodicity of lattices in all directions only one

particle and the ones in contact with it need to be regarded. The equation of motion for

one particle p according to Newton’s second law states

Mp · Üp =
∑

q

Fpq (3.8)

M is the mass matrix and U the generalized displacement vector. The force vector Fpq

contains the sum of all contact forces on particle p. One contact force is calculated

according to a linear spring model (f = cδ). Here it is expressed by the matrix product

of a contact stiffness matrix Sc and a relative displacement vector ∆c.

M · Ü =
∑

c

Sc ·∆c (3.9)

All the vectors (U, Fpq and ∆c) and matrices (M and Sc ) differ with the number of

degrees of freedom. The degrees of freedom change with the dimension (2D or 3D) and

whether rotational particle motion is taken into account or not.
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In the simplest case without a rotational degree of freedom the mass matrix is

M = mI , (3.10)

where I is the second order identity matrix for the 2D case and the third order identity

matrix for the 3D case. The contact stiffness matrix reads

Sc = cnc ⊗ nc (3.11)

and the relative displacement vector between particles q and p states

∆c = uq − up . (3.12)

The displacements of each particle u are obtained by inserting the particles’ positions

into the harmonic wave solution (2.30). As position x for particle p a general value xp is

used, whereas the particles’ q positions are dependent on that position with

xq = xp + 2rn . (3.13)

Combining equations (2.30), (3.13) and (3.12), the displacement vector becomes

∆c = Û exp [i (ωt− k · xp)] (ξ − 1) with ξ = exp (−irk · n) (3.14)

Going back to the equation of motion, this results into the following eigenvalue problem:

(

K̄− ω2M
)

Û = 0 , (3.15)

with

K̄ =
∑

Sc (ξ − 1) . (3.16)
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Solving it for a wave vector k in vertical direction with changing magnitude, k − ω-plots

can be obtained to analyse the dispersion relation.

Attention must be paid to the choice of wave numbers. The minimal and maximal wave-

lengths are restricted by the number of particles and their sizes. Figure 3.1 shows the

minimal and maximal wave length for a chain of particles. If the particles are arranged

differently, e.g. a non cubic lattice is chosen, the minimal and maximal wavelength need

to be adapted to that special case. Hence it only makes sense to look at the dispersion

λmin λmax

Figure 3.1: schematic to illustrate the minimal and maximal wavelengths

relation from a minimal wave number (maximal wave length) to a maximal wave number

(minimal wavelength). The interval with which the subsequent wave numbers are deter-

mined, should be kmin

2
.

3.3 Hooke’s Law

One way to determine compressional modulus of a granular material by DEM-simulation

is based on Hooke’s law. To be able to use Hooke’s law correctly, the initial and boundary

conditions have to be chosen properly: All the bottom particles’ movement is restricted

in horizontal direction, while all the top particles are subjected to a force in that same

direction (cf. fig. 3.2). Periodic boundary conditions in horizontal direction are chosen

to eliminate the influence of the system’s size on the result.

The simulation time should be chosen such that the system is relaxed in the end, which

means that the total kinetic energy of the system is dissipated.

In a post-processing step the compressional modulusM is computed. The periodic bound-
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F

l

e1

e2
e3

Figure 3.2: schematic of the boundary conditions for Hooke’s law simulation

ary conditions resemble boundary conditions with the transversal strains set to zero. As

described in chapter 2.1 the following equation is solved, if these boundary conditions

apply to the system,

σ33 =M ε33 . (3.17)

The stress σ33 is the total force related to the area and the strain ε33 is the change in

length related to the initial length (cf. (3.18)).

σ33 =
F

A
, ε33 =

∆l

l
(3.18)

Combining these expression the formula for the compressional modulus reads

M =
F l

A∆l
(3.19)

Here the system’s length l is known, F is known as the sum of all the applied forces on

the top particles, the area A can be computed and the change in length is obtained from

the results of the DEM-simulation.
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3.4 Wave propagation

A way to determine the compressional modulus of a granular material by DEM-simulation

is based on the calculation of the wave velocity. A P-wave, that propagates through the

system, is simulated. To achieve this, the boundary and initial conditions are chosen as

follows: The bottom particles’ movement is restricted in horizontal direction, while all

the particles in the second row get an initial velocity ẋ(0) in vertical direction (cf. fig.

3.3). In horizontal direction the boundary conditions are periodic.

ẋ(0)

e1

e2
e3

Figure 3.3: schematic of the boundary and initial conditions fot the wave propagation

simulation

The simulation time should be chosen such that the excitation reaches the particles in

the top layer.

The DEM-simulation results are used in a post-processing step to determine the wave

speed. A good indication to measure the wave velocity needs to be established. This is

discussed in chapter 4.
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3.5 Fourier transform

The Fourier transform is a mathematical method to describe a function, that is given

in time domain, in the frequency domain. The displacement or velocity as a function of

time can be transformed to the signal’s amplitude as a function of frequency. It gives

information on how strong the signal is at a certain frequency. The general idea of the

Fourier transform is that every function can be expressed as a Fourier series, meaning

a sum of the trigonometric functions, where every summand contains frequencies and a

coefficient that serves as weighting factor. Using this basic concept the Fourier transform

F of a function g(t) is defined as

F {g(t)} =

∫ +∞

−∞
g(t) exp (−i2πft) , (3.20)

as stated in [5]. Here g(t) is a continuous function. In most of the times however con-

tinuous functions are not available and one has to work with discrete values. In this case

the discrete Fourier transform is used. According to the MATLAB function fft (cf. [2])

following formula is used for the discrete Fourier transform

Xk =
N
∑

j=1

xn exp

(

−i2πk − 1

N
(j − 1)

)

(3.21)

The abbreviation fft stands for fast Fourier transform and means that the according

algorithm is used. The results Xk are complex numbers. The absolute values of these

complex numbers give the amplitudes, that are of interest.

In the case of a wave propagating through a granular material sample, every particle has

a different amplitude for every time step. The amplitude is thus dependent on time and

particle position. MATLAB offers a function fft2, that executes a fast Fourier transform

for values that are dependent on two different parameters. The results, which are in

the form of a matrix, can be visualized in a 3D plot. Scaling the output axes correctly,

the initial axis of time transforms to an axis of frequency and the initial axis of particle



3.5. Fourier transform 23

position transforms to an axis of wave number. The remaining axis gives the amplitude

and thus the intensity of the signal. Choosing a convenient colour-code, that corresponds

to the amplitudes, and looking in the frequency-/wave number-plane of the plot, the

dispersion relation should be visible. At a certain position, for a certain time step, some

frequencies are dominant. After the Fourier transform, the intensities of all the frequencies

over the wave numbers are known. The frequencies with the highest amplitudes are the

most dominant frequencies during wave propagation. They form the highest peaks in the

plot and build a line that equals the dispersion relation.





Chapter 4

Regular Systems

This chapter starts by presenting the investigated lattices with all their properties. Af-

ter shortly describing the adoption of all the previously explained analysis methods (cf.

chapter 2) for these lattices, the results are given. The methods are evaluated critically

and compared, in order to have a validated basis for the following investigation of random

systems.

4.1 Lattices

A lattice, i.e. a crystalline structure, is characterized by periodicity on the microscopic

level (cf. [4]). This means that the particles are arranged regularly in all directions. There

are different ways to describe the geometrical properties of the periodic arrangements. In

[18] the particle arrangement is for example described by point vectors. These are vectors

from one particle to all the particles that are in contact with this chosen particle. Due to

the regularity these vectors are the same independent from the chosen particle. Another

way to describe a lattice is by defining a unit cell, which is a volume of space that can

be translated in the directions of the point vectors without overlapping itself or leaving
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voids (cf. [4]). There is no unique way to define a unit cell, although its volume is always

the same regardless of its definition.

Two 2D and two 3D lattices are investigated. As 2D lattices a cubic and a hexagonal

packing are chosen. Figure 4.1 shows a few particles to illustrate, how they are ordered.

(a) Cubic

e1

e2

(c) Hexagonal

Figure 4.1: 2D Lattices

As 3D lattices a simple cubic packing and body centred cubic packing are chosen (cf. fig.

4.2).

(a) Cubic

e1

e2
e3

(c) BCC

Figure 4.2: 3D Lattices

Additionally to the illustrations, the lattice structures are defined in table 4.1 by their

points vectors. The point vectors correspond to the branch vectors lb. The branch vector

has already been introduced in chapter 2.2.

Lattices do by definition not change the particle order under normal conditions. This

means that they are characterized by a constant coordination number Z and a constant

volume fraction ψ. The volume fraction can easily be calculated by dividing the particles’
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Table 4.1: branch vectors lb

area or volume, that fill the unit cell, by the total area (2D) or volume (3D) of a unit

cell. The lattice properties coordination number Z, volume fraction Ψ and the system’s

density ρbulk are listed in table 4.2.

Z ψ ρbulk [ kg
m3 ]

2D Cubic 4 1
4
π 1570.80

2D Haxagonal 6 1
2
√
3
π 1813.80

3D Cubic 6 1
6
π 1047.20

3D BCC 8
√
3
8
π 1360.35

Table 4.2: lattice properties

For the simulations the size of the lattices needs to be defined. Therefore the number of

particles np in each direction can be set. All the lattices have 200 particles in wave prop-

agation direction e2 (2D) or e3 (3D). The 2D lattices have three particles in horizontal

direction e1. The 3D lattices have four particles in the two horizontal direction e1 and e2.

Since the particle order is not changed during simulation, the contacts are defined be-

forehand. Every contact is represented by a linear spring (wave propagation) or a linear

spring-dashpot (Hooke’s law). The lattices are simulated frictionless. Thus, tangential

stiffness is not taken into account. The degrees of freedom are restricted to translational

motion and do not regard rotational motion. The lattices are modelled as a mass-spring

or mass-spring-dashpot system for the DEM simulation.

The particle and contact parameters used for the simulations are chosen in agreement

with [19] and listed in table 4.3.
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2D lattices 3D lattices

r [m] 0.001

ρ [ kg
m3 ] 2000

k [kg
s2
] 105

γ [m
s2
] 45 1.8

m [kg] 6.3 10−3 8.38 10−6

Table 4.3: lattice parameters

4.2 Principle of virtual displacement

The formula for the calculation of the stiffness matrix (cf. (4.1)) was derived and explained

in chapter 3.1 and can now be applied on all the chosen lattices.

Cαβγφ =
1

V

∑

p∈V

(

c

C
∑

c=1

|lb|2
2
nc
αn

c
βn

c
γn

c
φ

)

(4.1)

Since the other methods only compute the compressional modulusM , only the component

that resembles this modulus is needed. According to the choice of coordinate system the

component is C3333. So a calculation of the total stiffness matrix C is not necessary.

Intermediate results and final results of the computation for the compressional moduli M

are presented in table 4.4.

∑C

c=1 n
c
1n

c
1n

c
1n

c
1 |lb| V M

2D Cubic 2 2 r (2 r)2 100.00 kPa

2D Hexagonal 9
4

2 r
√
3
2
(2 r)2 129.9 kPa

3D Cubic 2 2 r (2 r)3 50.00 MPa

3D BCC 8
9

2 r 4
√
3 r3 25.66 MPa

Table 4.4: calculation of the compressional modulus M

Note that a unit cell is regarded. This means that only one particle with its contacts is

taken into account. The sum over all the contacts is thus a sum from c = 1 until the

coordination number Z. The volume V is the volume of the unit cell.
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With

vP =

√

M

ρbulk
(4.2)

the wave velocity is also calculated for comparison with the other methods. The results

are listed in table 4.5.

vP [m
s
] M

2D Cubic 7.98 100.00 kPA

2D Hexagonal 8.46 129.90 kPA

3D Cubic 218.51 50.00 MPa

3D BCC 137.34 25.66 MPa

Table 4.5: Principle of virtual displacement - Results

4.3 Dispersion relation

According to the derivation in chapter 3.2, where the harmonic wave solution was inserted

in the DEM ansatz, the dispersion relation can be analysed by solving the following

eigenvalue problem:
(

K̄− ω2M
)

Û = 0 . (4.3)

The matrix K̄ is obtained by a summation over all contacts, where the stiffness of each

contact enters and also the wave vector k. Equation (4.3) is solved for several different

wave numbers k to get the dispersion curve ω(k). The variation of k is limited by a min-

imal and maximal wavelength λ (cf. chapter 3.2). These wavelengths differ per lattice.

Table 4.6 gives an overview over these minimal and maximal values, with npe3 as the

number of particles in the direction of wave excitation and propagation.

The eigenvalues obtained from (4.3) correspond to the angular frequency ω, whereas the

eigenvector Û gives information about the direction of oscillation, which is used to iden-

tify the type of wave, e.g. a P-wave or a S-wave.

Each degree of freedom gives an eigensystem, i.e. a pair of eigenvalue and eigenvector.
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λmin λmax kmin kmax

2D Cubic 4r (npe3 − 1)2r π
(npe3−1)r

π
2r

2D Hexagonal 2
√
3r (npe3 − 1)

√
3r 2π

(npe3−1)
√
3r

π√
3r

3D Cubic 4r (npe3 − 1)2r π
(npe3−1)r

π
2r

3D BCC 4√
3

(npe3 − 1) 2√
3
r

√
3π

(npe3−1)r

√
3π
2r

3D FCC 4√
2
r (npe3 − 1) 2√

2
r

√
2π

(npe3−1)r

√
2π
2r

Table 4.6: Minimal and maximal wave length and wave numbers

Plotting the eigenvalues ω versus the wave number k leads to plots with various branches.

The number of branches corresponds to the degree of freedom, which is two for the 2D

lattices and three for the 3D lattices since only translational motion is taken into account.

Figure 4.3 shows the dispersion relation in the form of a ω-k-plot for the 2D lattices.
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(a) Cubic lattice
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(b) Hexagonal lattice

Figure 4.3: 2D dispersion relation

Two branches can be distinguished for the cubic as well as for the hexagonal lattice. The

eigenvectors allow to associate the upper branch with a P-Wave and the lower branch

with a S-Wave for both lattices.

For the cubic lattice (cf. fig 4.3 (a)) the frequencies, that are assigned to a S-wave, are

constant zero. This is to be expected with an excitation in vertical direction. Without

friction the particles slide alongside each other and no oscillation except for the one in

vertical direction is excited. The 2D cubic lattice reduces in its behaviour to a 1D chain.
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However, for the hexagonal lattice (cf. fig 4.3 (b)) oscillations in the transverse direction

can be observed additionally to the longitudinal oscillations of the P-wave. Due to the

structure an excitation in vertical direction, also evokes oscillations in other directions.

The frequencies increase linearly at small wave numbers, which mean large wave lengths.

The results for the two different 3D lattices are displayed in figure 4.3.
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(a) 3D Cubic
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(b) 3D BCC

Figure 4.4: 3D dispersion relation

Since there are three degrees of freedom, three different angular frequency-lines are ex-

pected to be distinguishable. However, for the cubic lattice two of the computed eigen-

values are identical and for the BCC lattice all three eigenvalues have the same values.

That is why only two branches can be distinguished in the ω-k-plots for the cubic lattice

and only one can be detected for the BCC lattice.

The cubic lattice (cf. fig 4.4 (a)) shows symmetric behaviour in the two horizontal direc-

tions under excitation in vertical direction. Thus the motion in the translational degree of

freedom in e1 and e2 should be the same. Indeed the particles oscillate in both directions

e1 and e2 with an angular frequency of zero. The branch with the zero angular frequen-

cies can be assigned once to a S-wave in the one vertical direction and once in the other

vertical direction. The branch, that is different from zero, is assigned by its eigenvectors

to a P-wave. The 3D cubic lattice also reduces to a 1D chain for the same reasons as for

the 2D lattice. The dispersion relation for the 2D and 3D lattices are qualitatively exactly
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the same. Quantitatively there is just a difference, because the 2D and 3D particles vary

in their masses.

The BCC lattice (cf. fig 4.4 (b)) shows symmetric behaviour in all three directions under

wave excitation in e3 direction. The particles are ordered in such a way that the collision

with other particles arouse the same oscillations in the two vertical as well as in the hor-

izontal direction. Thus the branch that can be assigned to the P-wave is the same as the

two branches that are assigned to a S-wave in e1 and a S-wave in e2 direction.

One consistency check for the correctness of the general computation is done by the the-

oretical computation of the maximal angular frequency ωmax according to equation (4.4).

ωmax =
2π

tc
(4.4)

The maximal angular frequency is determined for the cubic lattices only, because for these

lattices tc can be evaluated in the way described in 2.2. The values agree with the ones

obtained by the dispersion relation.

As final results the slope at the maximal wavelength or the minimal wave number of the

branch, that stands for the P-wave, gives the P-wave velocity vP . With this velocity the

material parameter M is computed as introduced in chapter 2.3.

The results can be extracted from table 4.7.

vP [m
s
] M

2D Cubic 7.98 99.96 kPa

2D Hexagonal 8.46 129.85 kPa

3D Cubic 218.47 49.98 MPa

3D BCC 145.64 28.87 MPa

Table 4.7: Dispersion relation - Results
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4.4 Hooke’s law

The first method, that uses the DEM-method as basis, is the calculation of the compres-

sional modulusM by Hooke’s law. The simulations are conducted as described in chapter

3.3.

The final formula for the computation of M from chapter 3.3,

M =
F l

A∆l
, (4.5)

needs to be adapted to the 2D and the 3D lattices. In the 2D case the area A reduces

to the system’s length in horizontal direction, le1 + 2r. In the 3D case the area A is the

square that that is formed by all the particles in the e1-e2-plane. This is calculated by

the product of lengths in these two directions

A = (le1 + 2r) (le2 + 2r) . (4.6)

Twice the radius is added to le1 and le1 , because the lengths are measured from the

particles center and the overlapping particles on the boundaries need to be taken into

account, too.

The length l is the length in the direction of wave propagation le3 . The length in wave

propagation direction is measured from the bottom particle’s position to the top particle’s

position. With the change in length ∆l extracted from the simulation results the values

listed in table 4.8 are obtained for the compressional modulus M . For comparison to the

other methods the wave velocities are calculated by equation (4.2) and also listed in the

table.
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vP [m
s
] M

2D Cubic 7.98 100.00 kPA

2D Hexagonal 8.47 130.09 kPA

3D Cubic 217.79 49.67 MPa

3D BCC 150.92 30.98 MPa

Table 4.8: Hooke’s law - Results

4.5 Wave propagation

The second method, that uses the DEM-method as basis, is the calculation of the wave

velocity vP and the compressional modulus M by wave propagation. This method is

investigated more thoroughly than the other methods, because it allows for a diversity of

choices and assumptions.

The simulations are conducted as described in chapter 3.3.

The amplitude of the travelling wave should not influence the wave propagation. To be

sure of this, the excitation velocity ẋ(0) is varied from 10−3 − 10 m
s
and the resulting

wave speeds are compared. Changing the initial velocity in this range has no noticeable

influence on the wave speed of the cubic lattices. For the hexagonal and BCC lattice the

wave speeds start to alter from an initial velocity ẋ(0) ≥ 10−1 m
s
. For this reason the

following sections take only the results obtained with ẋ = 0.01m
s
into account.

As output the position vector x and the velocity vector ẋ for each particle and for every

10th time step is written to a text file. These information can for example be used to

determine the kinetic energy per time step n and particle i,

E
(n)
kin,(i) =

1

2
m ẋ

(n)
(i) · ẋ(n)

(i) , (4.7)

or the amplitude per time step n and particle i,

Û
(n)
(i) = x

(n)
(i) − x

(0)
(i) . (4.8)
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Figure 4.5 shows representatively the kinetic energy (cf. fig. 4.5(a)) and the amplitude

(cf. fig. 4.5(b)) of one particle per layer plotted over time and initial particle position

x
(0)
3(i) for the 2D cubic lattice.

(a) Kinetic energy (b) Amplitude

Figure 4.5: Kintetic energy and amplitude over time and particle position of a propagating
wave of the 2D cubic lattice

The travelling wave can be observed: The first particle in e3-direction is excited and has

the highest initial kinetic energy or amplitude. It then transfers its motion to the next

particles and the wave travels in excitation direction. So in time more and more particles

farther away from the excitation source start to oscillate as soon as the wave reaches their

position.

For the computation of the wave velocity the kinetic energy or the amplitude is used as an

indication. The general idea is to look at the first peak in time of the kinetic energy or the

amplitude in wave-direction of a chosen particle p and compare it to the corresponding

peak of a reference particle pref. The peak is chosen as a measurement for the time,

at which the wave has fully reached the particle for the first time. Dividing the initial

distance of the two chosen particles by the difference in these two arrival times ts, gives

the P-wave speed vP (cf. eq. (4.9)).

vP =
ts,(p) − ts,(pref)

x
(0)
1,(p) − x

(0)
1,(pref)

(4.9)
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Intuitively one would choose the largest distance, i.e. a particle in the top layer with an

excitation particle as reference. However, it is also considered that two particles some-

where between the bottom and top particle can be chosen. This has the advantage that

probable influences from boundaries are limited, but the disadvantage that the assump-

tion of a plane wave must be valid. Both methods are investigated with the kinetic energy

and the amplitude. The method which considers a particle in the last layer and an excited

particle as reference particle is labelled as method (1), while the method which considers

two particles in between is referred to as method (2).

Exemplary, the kinetic energy and amplitudes in wave propagation direction for the cho-

sen particles are shown in figure 4.6 for the 2D cubic lattice, which equals the 1D chain.

The peaks are labelled with a red star (*).

Apart from the first peak, which is the reason for looking at these graphs, the magnitudes

of the kinetic energies and amplitudes can be studied. The magnitudes of the excited par-

ticle are much higher than the magnitudes of the other particles. Then the magnitudes

reduce the farther away the particle is from the source. The energy from one particle is

not completely transferred to the next particle at once but distributed step by step over

the whole lattice. The magnitudes of the particles in the last layer however increase again.

This could be due to the boundary condition. Their movement in vertical direction is not

restricted by boundaries and there are no particles above them which could limit this free

movement.

These plots are looked at for all the four different lattices and the speed of sound com-

puted according to equation (4.9). The results are listed in table 4.9.

vP [m
s
]

method Ekin (1) Ekin (2) Û (1) Û (2)

2D Cubic 7.92 7.97 7.85 7.91

2D Hexagonal 8.40 8.45 8.33 8.40

3D Cubic 216.97 218.41 214.98 217.05

3D BCC 144.70 145.63 143.35 144.59

Table 4.9: P-wave velocities calculated for the different methods
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Figure 4.6: Kinetic energy and amplitudes of different particles of the 2D cubic lattice

For all the lattices the results of the different methods vary slightly, but in an acceptable

range. Method (1) gives slower wave speeds than method (2) and looking at the ampli-

tude instead of the kinetic energy also results in slightly slower wave speeds. Figure 4.7

shows the arrival times for the kinetic energy- and amplitude-peaks in dependence of the

layer, where the corresponding particle is situated. Again the 2D cubic lattice is chosen

representatively for all the other lattices, which show the same behaviour qualitatively.

If the lines were completely linear, their slope would equal the wave speed. The line, which

represents the amplitude, has a lower slope and thus leads to slower wave speeds. This is
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Figure 4.7: Arrival times for kinetic energy and amplitude method

in compliance with the numerical values in table 4.9. Another point, that can be noticed

in the figure, is that the peak in kinetic energy is reached before the peak in amplitude. If

a particle is excited by an initial velocity, its velocity is maximal directly in the beginning

and then reduces, while the amplitude shows the opposite behaviour. This can also be

explained by the conservation of energy. The velocity is the basis for the kinetic energy

and the amplitude, which is the change in length of the springs in the DEM-simulation,

the basis for the potential energy. In a conservative system, the sum of these two energies

must be constant. An increase in the kinetic energy, must be accompanied by a decrease

in potential energy and vice versa.

The reason for the difference in resulting wave speed between the kinetic energy and the

amplitude, could lie in the changing excitation of movement of the particles during wave

propagation. While the first particles are excited by an initial velocity, the other particles

are excited by collisions with already oscillating particles. The oscillation changes its

intensity, velocity and amplitude over time and is different for particles in different lay-

ers. The farther away the particles are from the excitation source, the earlier the kinetic

energy reaches its maximum in comparison to the peak in amplitude.

Apart from the wave speed, the behaviour during wave propagation can be looked at with

these simulations. The velocity vector is not combined in the kinetic energy, which is

one scalar value, but each component is looked at separately. In the same way not only
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the amplitude in wave propagation direction can be looked at, but each component is

regarded. Since for the final results method (1) with the kinetic energy is chosen, the

further demonstrations are restricted to the velocities of an excited particle and a particle

in the last layer. Figures 4.8 and 4.9 show the velocity vector components of an excitation

particle (green line) and a particle in the last layer (blue line) over time.
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Figure 4.8: Velocity components of the 2D lattices

The oscillation in excitation direction of the excited particle can nicely be observed. The

particle in the last layer starts oscillating some time later as soon as the wave has reached

its position.

A P-wave is excited and oscillations in wave propagation direction e1 expected. For the

cubic lattices the velocity ẋ1 oscillates around zero. The particles move back and forward.

In the other directions the velocities ẋ2 and ẋ3 for the 3D lattices are zero. There really

are only oscillations in e1-direction. This means that a clean P-wave propagates through

the cubic lattices. This was already found out by looking at the dispersion relation (cf.

chapter 3.2).

For the hexagonal lattice and the BCC lattice however, the velocities ẋ2 (and ẋ3) show

values different from zero. Their magnitude is around 10−7− 10−8 times smaller than the

magnitudes of ẋ1. Exciting a P-wave also arouses small oscillations of the particles in the

transversal directions. They are so small that they could be numerical or referred to as
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ẋ 2

[m
/
s]

(b) 3D BCC

Figure 4.9: Velocity components of the 3D lattices

noise.

Although four different methods were used to calculate the wave speed and found to be

consistent, only one method will be chosen to calculate the wave speed in a random sys-

tem. Method (2), which means calculating the wave speed by looking at two particles

somewhere in the lattice, is not suitable for random systems. In a random system the

results are very much dependent on which particles are chosen. In contrary to the lattices,

it also is not clear which effects occur in the system during wave propagation. Choosing

an excitation particle as reference particle, reduces these insecurities and is expected to

give better statistics. Another reason for choosing method (1) is, that it is considered to

be closer to the experimental way of measuring the wave speeds. These aspects will be

discussed later in chapter 5. Comparing the wave speeds obtained from method (1) for

the kinetic energy and the amplitude in displacement to the results of the other analysis

methods, the values for the kinetic energy are found to show the smallest deviation. So

method (1) with the kinetic energy is chosen as the method for further use.

The wave speeds of the chosen method are listed in table and the compressional modulus
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is added.

vP [m
s
] M

2D Cubic 7.92 98.61 kPa

2D Hexagonal 8.40 128.09 kPa

3D Cubic 216.97 49.30 MPa

3D BCC 144.70 28.48 MPa

Table 4.10: Wave propagation - Results

4.6 Fourier transform

The Fourier transform is an alternative way to evaluate the dispersion relation. It re-

quires the results of the wave propagation simulation. The displacement or velocity in

wave propagation direction can be used, sorted by time step and lattice layer. The results

shown in this chapter are obtained with the displacements.

After the Fourier transform (cf. chapter 3.5), one gets the amplitude in velocity or dis-

placement in dependency on the wave number k and the angular frequency ω. To get the

correct values the k and ω - axes need to be scaled. The wave number axis should have an

interval of ∆k = kmin from one value to the next, while the interval on the frequency axis

is ∆ω = 2π
T
. The minimal wave number was already introduced for the different lattices

in table 4.6. T is the total simulation time, which is either given or can be computed by

the output time step interval and the number of time steps, via T = ∆toutputNT

Figures 4.10 and 4.11 show the results of the Fourier transform. The peaks form a line

which matches the P-wave branch from the analytical calculation of the dispersion rela-

tion. This is a confirmation that the wave propagation simulation can be trusted. The

wave propagation results lead to a comparable spectrum of the dispersion relation as the

analytical calculation. The methods are consistent with each other. Only the P-wave

branch is obtained. This is for once, because just the amplitudes in wave propagation di-

rection were processed in the transform. Another reason is, that, if an S-wave propagates
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(a) Cubic Lattice (b) Hexagonal Lattice

Figure 4.10: Fourier transform of the 2D lattices

(a) Cubic Lattice (b) BCC Lattice

Figure 4.11: Fourier transform of the 3D lattices

in the system their amplitudes after the Fourier transform would be negligible small. The

interpretation of the dispersion relation is already given in a previous chapter (cf. chapter

3.2).

Similarly to the analytical calculation of the dispersion relation, the wave speed can be

obtained by calculating the slope in the linear regime. The green stars (*) in figures 4.10

and 4.11 show the chosen peaks, that are used for a linear fit. For every lattice 12 peaks

where chosen. Less data points gave results that were deviating more. The obtained wave
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speeds vP and the corresponding compressional moduli M can be found in table 4.11.

vPs [m
s
] M

2D Cubic 7.60 90.82 kPa

2D Hexagonal 8.33 125.83 kPa

3D Cubic 218.61 50.05 MPa

3D BCC 144.58 28.44 MPa

Table 4.11: Fourier transform - Results

4.7 Comparison

Finally an overview over all the analysis methods is given. The results of the five methods,

Virtual displacement, Dispersion relation, Hooke’s law, Wave propagation and

Fourier transform are listed in table 4.12.

For all lattices the agreement between the different methods is quite good. The Fourier

transform gives for almost all the lattices values with the highest deviations from the

other methods. This is probably due to the resolution which should be reduced to get

exacter values. The method is still found to be important as it takes the Wave propaga-

tion simulation’s results as input. So seeing a consistency between Fourier transform

and the Dispersion relation confirms that the simulation is conducted correctly.

The Wave propagation is however influenced by different factors and there are different

possibilities to excite a wave and extract the wave speed. The behaviour during wave

propagation is studied for the regular systems and needs to be studied for the random

systems in a similar way.

Due to the agreement in results and the separate investigation of all the analysis meth-

ods, all of them can be evaluated an appropriate way to get information about the wave

velocity and the compressional modulus.
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Method vP [m
s
] M

2D Cubic Virtual displacement 7.98 100.00 kPa

Dispersion 7.98 99.96 kPa

Hooke 7.98 100.00 kPa

Wave 7.92 98.61 kPa

Fourier 7.60 90.82 kPa

2D Hexagonal Virtual displacement 8.46 129.90 kPa

Dispersion 8.46 129.90 kPa

Hooke 8.47 130.09 kPa

Wave 8.40 128.09 kPa

Fourier 8.33 125.83 kPa

3D Cubic Virtual displacement 218.51 50.00 MPa

Dispersion 218.47 49.98 MPa

Hooke 217.79 49.67 MPa

Wave 216.97 49.30 MPa

Fourier 218.61 50.05 kPa

3D BCC Virtual displacement 137.34 25.66 MPa

Dispersion 145.64 28.87 MPa

Hooke 150.92 30.98 MPa

Wave 144.70 28.48 MPa

Fourier 144.58 28.44 kPa

Table 4.12: Overview over all methods
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Disordered System

This chapter deals with wave propagation and properties in randomly structured granular

material. The DEM method is used to simulate previously conducted experiment with a

polydisperse system of glass beads in a triaxial cell subjected to ultrasonic waves.

First the experimental setup and results are described in short. Then a way to model the

experimental initial state numerically is proposed. With this initial state three analysis

methods, which were thoroughly investigated in chapter 4, are presented and applied:

Wave Propagation, Hooke’s law and the Fourier transform. Finally the results of

these three methods are compared with each other and to the experimental results.

5.1 Experiments

The experiments on wave propagation in a triaxial cell (cf. fig. 5.1) were conducted in

the laboratories of the Ruhr-University Bochum by Emmerich (cf. [8]) and extended by

Krause (cf. [13]). Glass beads from the manufacturer Mühlmeier GmbH (cf. tab. 5.1)

are held together in a cylindrical geometry by a latex membrane. The pressure on the

sample can be controlled hydraulically and is held constant. Waves are excited by an
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ultrasonic transducer at one end of the sample and received on the other side. The time

it takes for the wave to travel through the system is measured. Additional measurements

are performed to gain information on the material, e.g. the volume fraction.

Figure 5.1: Triaxial cell, Ruhr-University Bochum, [8]

property value

producer Mühlmeier GmbH & Co.KG

name Minibeads (glass beads)

shape round

density ρ 2500 kg
m3

Young’s modulus E 59 GPa

Radii r 0.40-0.50 mm

Table 5.1: Glass bead properties, [20]

The properties of the experimental setup are summarized in table 5.2. They serve as a
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basis for the numerical simulation.

property value

axial length la 109 - 117 mm

radial length lr 100 mm

pressure p 1.95 - 2.00 bar

volume fraction ψ 0.6267 - 0.6382

Table 5.2: Experiments: initial state

With different initial states, the travel time of the ultrasonic waves through the sample

is measured and related to the travel distance, i.e the axial length of the setup. The

resulting wave speeds vary from 672− 746m
s
for the initial state values from table 5.2.

5.2 Simulations with TRUBAL

The code used to simulate the disordered system is called TRUBAL (cf. [7]), a fortran

code from the Aston University in Birmingham (1994). It is extended and changed over

the years. To the last version of V.Magnanimo special features for wave propagation are

added during this work. The DEM algorithm in TRUBAL is based on a Hertzian contact

model, which is non-linear. Friction between particles is also implemented in contrast

to the DEM code used for the regular systems. In agreement with the source code and

various papers, that are based on simulations conducted in TRUBAL (cf. [25]), the forces

in normal (fn) and tangential (ft) direction are calculated by

fn =
2

3

4G

1− ν
r

1

2∆
2

3 , ft =
8G

2− ν
(r∆)

1

2 (∆s) . (5.1)

Here r is the particle radius and ∆ the normal overlap as defined in chapter 2.2. G and ν

are the shear modulus and the Poisson’s ratio of the particle material, respectively. The

variable s is defined, such that the relative shear displacement between the two particles

centers is 2s (cf. [25]).
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The time step interval used for the simulations in TRUBAL is calculated inside the code

and is dependent on the minimum particle mass and the maximum of the normal stiffness

NO and the shear stiffness SH ,

∆t =
mmin

max (NO, SH)
. (5.2)

A fraction of ∆t is used. The value for this fraction is defined and changed during the

simulation process.

For numerical reasons TRUBAL does not work with the SI-units. The scaling factors,

that are needed to obtain from one TRUBAL unit the units in terms of SI-units are listed

in table 5.3.

property scaling factor SI-unit

length 10−5 m

mass 10−12 kg

time
√
10−17 s

Table 5.3: Simulation parameters

The simulation parameters are given in table 5.4 in the units TRUBAL uses and takes as

input values.

property trubal value

particle radius r 40-50

particle density ρ 2.5

shear modulus G 2.46

Poisson’s ratio ν 0.2

normal stiffness NO 12.29

shear stiffness SH 10.93

Table 5.4: Simulation parameters

The particle’s densities and radii are matched with the experimental properties. The

Poisson’s ratio for the glass beads is not given by the manufacturer and is chosen to be

0.2 out of empirical reasons. With the relation between shear modulus G, Poisson’s ratio
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ν and the given Young’s modulus E (cf. [24]),

G =
E

2 (1 + ν)
, (5.3)

G is roughly estimated. The normal and tangential stiffness are just used for the calcu-

lation of the time step and not of further interest.

5.3 Initial state

For the numerical description of the experimental setup a system of 2000 randomly posi-

tioned particles is created. So only a part of the complete cell is modelled, which seemed

to be sufficient to obtain reliable results and information about the system. An elongated

rectangle is created to simulate the experimental setup’s center. Periodic boundary con-

ditions in all directions are chosen. The initial state copies the experimental pressure,

volume fraction and glass bead properties. Polydispersity is realized by choosing parti-

cles with three different radii, r1 = 0.4 mm, r2 = 0.45 mm and r3 = 0.5 mm. They are

distributed equally, which means that 667 particles have the radius r1 and r3 and 666

particles the radius r2.

The code TRUBAL provides a method to place particles in a prescribed box randomly.

Initially the particles do not touch each other and there are thus no contact forces between

them. One can then compress the box until the desired volume fraction and pressure.

This is done within two steps. After a first compression until the volume fraction is almost

reached, the system is relaxed and then compressed again accompanied by controlling the

pressure. Relaxing means letting the energy dissipate out of the system. This results in

a pressure of zero. The pressure p is the mean over the stresses in all three directions

p =
1

3
(σ11 + σ22 + σ33) (5.4)
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For an isotropic stress state p = σ11 = σ22 = σ33. The total stress in TRUBAL is

calculated by averaging the dyadic product of contact forces f and the branch vector lb

over all the contacts c and particles p in the total volume V ,

σ =
1

V

∑

p∈V

Cp
∑

c

f c ⊗ lpc , (5.5)

where CP is the number of contacts per particle.

The method of stress control works by correcting the strain to get closer to the requested

stress. The strain correction is limited by an absolute maximum value. The process of

compression, relaxation and another compression to reach the requested volume fraction

and pressure is conducted frictionless. The friction is set to zero to get the particles closer

together more easily. As soon as the volume fraction and pressure is reached friction

is switched on with a value of µ = 0.3 and the system is relaxed, while the pressure is

controlled.

The evolution of volume fraction, pressure, coordination number and number of rattlers

is monitored during the initial state creation and the plots shown in figure 5.2.

In all plots the two compression steps can be detected. The pressure, the coordination

number and the volume fraction increase during compression, whereas the number of

rattlers decreases. During the first relaxation an intermediate equilibrium is reached.

After the second compression the volume fraction and the pressure rise to the desired

values. All the parameters converge at the final relaxation. An equilibrated state is

obtained.

For further investigations and better statistics two more initial states are created altering

only the random positions of the particles in the beginning of the initial state creation.

An overview over the most important properties of these three initial states can be found

in table 5.5. Figure 5.3 shows the initial state of sample (1). The different colors stand

for the different radii of the particles (r1 = green, r2 = blue, r3 = black). Note that the

length of the sample is just a fraction of 0.28 of the experimental sample’s length.
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Figure 5.2: Initial state creation, Sample (1)

Sample (1) Sample (2) Sample (3)

length in e1 le3 mm 6.23 6.23 6.23

length in e2 le2 mm 6.23 6.22 6.22

length in e3 le1 mm 32.37 32.40 32.36

pressure p bar 2.01 2.00 2.01

volume fraction ψ 0.622 0.623 0.624

coordination number Z 5.380 5.258 5.293

fraction of rattlers 0.050 0.058 0.06

Table 5.5: Simulation: initial states
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Figure 5.3: Initial state

5.4 Hooke’s law

In the TRUBAL code a subroutine, called Probe, is implemented, which is comparable

to the method Hooke’s law used for the regular system (cf. chapter 3.3). The Probe

command applies a small strain rate on all the particles in a required direction. The

strain rates in the other directions are set to zero. Choosing the direction of applied

strain rate in e33-direction, this equals the computation of the compressional modulus M ,

as explained in 2.1. With the command one needs to specify the number of time steps

for which the strain is applied. The resulting strain ∆ε and the change in stress ∆σ is

measured after relaxation of the system. The relation of change in stress and strain in
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the same direction gives the compressional modulus M ,

M =
∆σ33
∆ε33

. (5.6)

Since the system is in an isotropic stress state, the values for M in all three direction,

e1, e2 and e3 should be the same. The compressional modulus is calculated for different

number of time steps, at which the strain rate is applied. This number of time steps

should not be chosen too high (≤ 30). The mean of the results are summarized in table

5.6, while the total results can be found in appendix A.1.

vP [m
s
] M [MPa]

Sample (1) 529.87 ± 1.38 436.77 ± 2.28

Sample (2) 524.44 ± 1.67 428.41 ± 2.73

Sample (3) 526.50 ± 0.82 432.45 ± 1.35

mean 526.94 ± 2.09 432.54 ± 4.06

Table 5.6: Hooke’s law - Results

5.5 Wave propagation

In a similar way as for the regular system a simulation of a wave propagating through the

system is conducted.

Since in a random system the particle layers are not as well defined as in a regular system,

the first question is how to excite a wave. One idea is to excite a wave by point excitation,

as thoroughly worked on in [21]. In this case just one particle is excited. Another idea,

which is more similar to the excitation method in the regular systems, is to excite all

the particles in a bin of two times the maximal particle radius. Because the system’s

boundary conditions are periodic in all directions, it is thought to be convenient to excite

the waves at half the system’s length. In this way two waves are propagating, one in

e3-direction and one against this direction. Only the part of the system, where the wave
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travels in excitation direction is taken into account. To produce more data and regard the

full system once initial velocities in positive and once in negative e3-direction are used for

wave excitation. As output for the wave analysis the position vector, the displacement

vector and the velocity vector for every particle for every time step is requested. Other

information, e.g. the pressure or the coordination number, are also available during the

computation and can be requested as output, if needed.

The single particle excitation was not regarded a good method to obtain the P-wave

speed. It is not clear which excitation particle to chose and which particles for the anal-

ysis of the travel time. The results do not give satisfying statistics comparing different

particles. Another point is that no plane waves are excited. The magnitude of the veloc-

ities in wave excitation direction and in the shear directions cannot not be distinguished

well. Furthermore, it was difficult to find the correct peak in the kinetic energy. The main

reason for choosing a layer excitation however is the better similarity to the experiments.

The ultrasonic transducer does not just excite a point, but a complete range of particles.

In [21], the particle excitation is also chosen, because it is more similar to the experiments,

that are supposed to be simulated.

For the layer excitation the magnitude of the excitation velocity is determined in the

same way as for the regular systems. The velocity v0 = 3.16 10−11m
s
is found to be small

enough. How the wave propagates through the system, is visualized in figure 5.4, where

the kinetic energy is plotted over time and initial particle position.

At the excitation layer around 0.015 mm from the sample’s bottom, the peaks in kinetic

energy are highest at the starting time, which is the time of excitation. They then reduce

over time in this layer. Looking from this initial layer to the positions farther away from

the source as time goes by the kinetic energy increases from zero to oscillating values.

The wave has reached these parts. In comparison to the regular systems more fluctua-

tions can be detected, but still a wave propagating over time from the excitation layer till

the sample’s end is visible.
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Figure 5.4: Kinetic energy over time and particle position of a downward propagating
wave

Another way to look at the propagating wave is by looking at the single components of

the velocity vector. The velocities for an excitation particle (cf. fig 5.5(a)), a particle

close to the excitation layer (cf. fig 5.5(b)) and the velocities for a particle at the end

of the sample (cf. fig. 5.5(c)) are plotted in figure 5.5. Note the different scaling of the

velocity-axes, which is needed because of the different magnitudes of the values that are

plotted.

In comparison to the regular systems, it is remarkable that the magnitudes of the veloc-

ities in wave propagation direction do not differ from the magnitudes of the other two

velocity components. Due to the randomly sorted particles they excite oscillations in all

directions with a similar intensity. Although the oscillations in wave propagation direction

are not dominant in magnitude, they are the first ones to be noticed. So the first peak

in kinetic energy over time is mainly influenced by the this velocity component. Apart

from some small numerical influences one can also observe that the oscillations start in

the excitation layer, while the velocities in the other layers are zero and start moving later

in time as soon as the wave reaches this part of the system.

The wave speed can now be analysed by looking at the travel time ts, which is the time,

at which the first peak in kinetic energy occurs, for various single particles and their dis-

tance to the excitation source. To analyse the downward wave, particles with more than
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ẋ 2
[m

/
s]

(c) Particle farther away

Figure 5.5: Velocity components
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five contacts in the sample height of 0.5
6
le3 ,

1
6
le3 ,

1.5
6
le3 and 2

6
le3 are picked. The upward

wave is analysed by particles with more than five contacts in the height of 4
6
le3 ,

4.5
6
le3 ,

5
6
le3

and 5.5
6
le3 . Figure 5.6 shows a schematic of the system with the upward and downward

wave and the heights at which the particles are evaluated. The distance to the excitation

excitation layer
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Figure 5.6: schematic of sample for wave propagation

source, which is the travel length ltravel of the wave until it reaches the investigated particle

p, is initially defined as

ltravel =

∣

∣

∣

∣

x
(p)
3 − 1

2
le3

∣

∣

∣

∣

. (5.7)

So the middle of the excitation layer with a thickness of 2 rmax is taken. Other possibilities

would be to choose the boundaries of the layer as reference height. The choice of the

correct travel length is discussed later.

The wave velocity is calculated with all the picked particles, which are about four to eight

per layer,according to equation (5.8).

vP =
ltravel

ts
(5.8)

This is done for all the three created initial states with the results of the upward and

downward wave propagation simulation. The results per particle can be found in ap-
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pendix A.2. The data for the wave speeds is averaged in the different heights at which the

particles are picked. Figure 5.7 shows the mean in wave speed and the deviation separated

for each sample. The vertical line is positioned at half the system’s length and indicates
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Figure 5.7: Statistics on the P-wave velocity per layer for all the samples

the wave excitation layer. The mean values vary from 623.12m
s
to 836.23m

s
for the down-

ward wave and from 411.41m
s
to 878.74m

s
for the upward wave. The deviations closer

to the excitation layer are bigger than at the farthest end of the sample for both waves.

One reason for this could be that the wave is formed better after some time. Another

reason lies in the method itself. The error due to the distance ltravel is higher closer to the

excitation layer. It is also more difficult to specify the first peak in kinetic energy closer to

the source. While most of the kinetic energy versus time plots for the particles far away

from the source looked like figure 5.8(b), the plots for the particles close to the source

are represented in figure 5.8(a). Note the different scaling of the kinetic energy axis. The

first peak in kinetic energy in 5.8(a) is evaluated at t = 0.53 10−5 s, while the second peak

at t = 0.72 10−5 s would give values closer to the mean. Thus it is not clear whether the

first peak is actually the correct peak to be chosen or whether the first bigger peak gives
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Figure 5.8: Kinetic energy over time for one particle for the upward wave of Sample (1)

better values. For particles farther away from the source, this problem vanishes. Almost

all the plots are as clean as 5.8(b). A reason for this could be the frequency filtering phe-

nomenon, that is stated in [17]. It is shown that the higher the polydispersity the more

pronounced the filtering of frequencies get. The higher frequencies are trapped near the

source and are not transmitted very far through the sample. Hence, the signal, measured

in the form of kinetic energy, contains more frequencies near the excitation layer and is

thus not very smooth. This effect can for example be reduced by exciting the wave in a

different way with a better control of the frequency. A so called Ricker-wavelet, which

is also supported in MATLAB (cf. [1]) and is characterized by one dominant frequency,

could be possible solution. It is already used for the numerical simulation of waves in [9].

However, here different numerical algorithms are used to describe wave propagation.

An idea to eliminate the insecurity about the distance ltravel is realized by plotting the

position in e3-direction of the picked particles versus the corresponding travel times ts.

The slope of a linear fitting curve gives the wave velocity. Figure 5.9 shows these as-

pects for the upward and downward wave. The fitting curves are created for each sample

separately and once for the complete set of data (cf. tab. 5.7) The results of the linear

fitting are in general lower than the first results, which indicates that the travel length

is initially chosen to big. It would thus be more appropriate to chose the boundaries of
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Figure 5.9: Statistics: travel time

vP [m
s
] M [MPa]

upward wave downward wave upward wave downward wave

Sample (1) 321.38 664.01 160.68 685.90

Sample (2) 441.10 592.60 303.07 547.01

Sample (3) 550.69 557.46 473.11 484.82

mean 393.84 592.04 298.48 569.61

Table 5.7: Wave velocities and compressional modulus after linear fitting

the excitation layer as reference height. For the downward wave this height would be at

1
2
le1 − rmax and for the upward wave at 1

2
le1 + rmax. The averages of the wave speeds are

summarized in table 5.8 and the compressional moduli added. Although the results of

the linear fitting are still in general lower, the wave velocities with the corrected travel

length are show a better agreement than the ones with the initially chosen travel length.
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vP [m
s
] M [MPa]

upward wave downward wave upward wave downward wave

Sample (1) 571.14± 162.74 642.28± 49.15 546.36± 320.42 645.32± 95.79

Sample (2) 678.34± 106.50 666.56± 96.48 733.44± 224.83 705.93± 204.49

Sample (3) 669.97± 85.37 629.44± 79.34 711.14± 199.02 627.56± 171.76

mean 642.37± 127.00 645.22± 78.41 667.67± 258.05 658.02± 166.20

Table 5.8: Wave velocities and compressional modulus with corrected travel length

5.6 Fourier transform

A Fourier transform with the wave propagation simulation’s results is conducted with the

intention to gain information about the dispersion relation of the random configuration

and thus the wave velocities. For the this transform the velocities in wave propagation

direction e3 are used as input. The velocities are chosen instead of the amplitude, because

they gave smoother spectra. The amount of data can be varied and should give the same

results. One could omit some data on time steps or data on particles. The data that is

evaluated here, covers all the time steps and the particles in the upper half of the sample

for the upward wave and in the lower half of the sample for the downward wave. They

are sorted in a matrix by e3-position in the columns and by time step in the rows.

The axes are scaled similarly as for the regular systems. The frequency axis is analogously

scaled by ∆ω = 2π
T

and the wave number axis by ∆k = kmin, with kmin = 2π
L
. The total

simulation time T is not dependent on the real simulation time, but on the data that

is used as input. The same holds for the length L, which is the maximal distance in

e3-direction between all the used particles for the transform.

For random systems one does not expect to see curves as for the regular systems. Figure

5.10 shows representatively a ω-k-plot for the upward wave (cf. fig 5.10(a)) and of the

downward wave (cf. fig 5.10(b)) of Sample (1).

The first thing that can be noticed is the resolution. The distances from one point to the

next one on the k axis equals ∆k, which has a value of around 388 m−1. The step on the

ω-axis is ∆ω with 113 · 106 Hz.
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(a) upward wave (b) downward wave

Figure 5.10: Fourier transform Sample (1)

Figure 5.10(a) is chosen as an example which can be interpreted well. Overall the peaks

do not follow a nice line but are completely smeared out. However for small wave numbers

in the low frequency range, three higher peaks can be detected, which are aligned linearly.

This is exactly the part, at which the slope gives the wave speed. With the coordinates

of those peaks, the wave speed is computed.

Figure 5.10(b) is chosen as an example which cannot be interpreted well. Higher peaks

in the lower frequency range cannot directly be identified. It is thus not well-defined how

to calculate the wave speed.

The plots from in figure 5.10 can also be regarded from a different view-angle. This is

shown in figure 5.11. The alternative view-angle makes it possible to have a better look

at the peaks. The three peaks for the upward wave, that could already be identified in

the 2D view, can now be visualized as well. They are marked with a green star (*). They

are higher than all the other peaks in the plot and small of shape. There is no doubt in

picking these peaks. For the downward wave there is one high peak. This peak is broader

of shape. It is not clear which peaks in the surrounding area should be picked. Another

point is that due to the relatively low resolution the actual highest point is probably not

captured, because it could lie between two neighbouring points, thus differ between ±∆k

and ±∆ω.



5.6. Fourier transform 63

(a) upward wave

(b) downward wave

Figure 5.11: Fourier transform Sample (1) different view angle

The wave speeds are calculated for different possible choices of points for all the three

samples for the upward and the downward wave. The results are given in appendix A.3
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in dependency on the evaluated number of points. Only for the upward wave of sample

(1) and the downward wave of sample (3) there is no doubt which peaks to pick. The

wave speeds results in 583.15m
s
(upward, sample (1)) and 581.71m

s
(downward, sample (3))

with a compressional modulus of 529.01 MPa and 527.92 MPa, respectively. For the other

samples the wave speeds vary from 291.84m
s
to 132.49m

s
with a compressional modulus

from 132.49 MPa to 1196.7 MPa. Every sample and wave gives for a certain choice of

points a wave speed around 580m
s
. The small differences in these values are due to the

slightly different scaling. ∆k differs for each sample, because the length of each sample

is not determined to be completely equal. This means that exactly the same points are

picked, which however results in a slight difference in wave speeds due to ∆k.

The Fourier transform is expected to give better results by improving the resolution. This

can be done by increasing the input data. One possibility to increase the input data is by

running the simulation longer, which means a bigger total simulation time T and thus a

smaller ∆ω. Another way is by creating a longer sample with more particles. This results

in a longer L and thus a smaller ∆k.

5.7 Comparison

Hooke’s law, wave propagation and the Fourier transform are three different anal-

ysis methods which still should give the same material properties. Their orders of mag-

nitude match, but their values differ from each other.

In contrast to the regular systems, where the Wave propagation method gave one re-

sult for each chosen method, the random system gives different results depending on the

excitation layer and the chosen particles. In average these results are expected to give the

wave speed of the sample. To obtain a reliable value different random samples need to

be created and a lot of particles evaluated. The more data the better the statistics. Still

there are some insecurities in averaging and especially in choosing the reference point

from which the travel length is measured. The simulation itself is quick and unprob-
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lematic, whereas the post-processing is a lot of work. The Fourier transform as as

a post-processing method to analyse the wave speed, is a faster method. However the

results deviate in about the same amount. Hooke’s law gives the most consistent values.

The experimentally obtained wave speeds lie approximately in the range of all the applied

numerical methods.

All the three analysis methods serve as a good basis for future work, but need to be

improved to obtain more consistent results. Different propositions for improvement have

already been given in the according chapters and are again summarized in chapter 6.

Then the simulation parameters, which are roughly estimated initially, can be matched

better to the experimental setup.





Chapter 6

Conclusion and Outlook

This last chapter summarizes what has been investigated in this thesis and what is ob-

served during the analysis. The main points in how the results are obtained are empha-

sized. The results are then and evaluated. Open questions are posed. Ideas and answers

to these questions are given in the section Recommendations, stimulating possible future

research on the subject.

6.1 Summary

In this thesis, the P-wave velocity and the compressional modulus are calculated by five

different analysis methods for regular systems and by three different methods for a random

system. Two of the methods are analytical. The numerical methods are based on the

Discrete Element Method (DEM).
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6.1.1 Regular Systems

As regular systems, four lattices are chosen: A simple cubic lattice and a hexagonally

packed lattice in 2D and a simple cubic and a body-centred cubic (BCC) in 3D. They

are frictionless and described by a linear contact model. The lattices are modelled as a

simple mass-spring or mass-spring-dashpot system and code is realized during this thesis

in MATLAB.

The five methods, that are used to calculate the wave velocity and the compressional

modulus are the following:

Principle of virtual displacement

In this method the compressional modulus is directly calculated. A formula for the

stiffness matrix is derived by the principle of virtual displacement.

Dispersion relation

The dispersion relation can be analysed by solving an eigenvalue problem that is

obtained by combining the harmonic wave solution and wit Newton’s equation of

motion. It gives the angular frequency in dependency on the wave number. The

slope at small wave numbers equals the wave velocity.

Hooke’s Law

A DEM simulation is conducted with boundary and initial conditions, that allow to

use the force-displacement relation for the calculation of the compressional modulus.

Wave propagation

A propagating wave is modelled in a DEM simulation. The wave is excited by

an initial velocity for all the particles in a bottom layer. The initial velocity is

chosen small enough to exclude the influence from this initial velocity on the wave

propagation behaviour. As a result of this simulation, the kinetic energy over time

is analysed to get information about the travel time and calculate with the travel

distance the wave velocity.
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Fourier transform

The results of the wave propagation simulations are analysed by a Fourier transform,

which gives the dispersion relation and allows to calculate the wave velocity in the

same way as mentioned above.

The results give one result for the wave velocity and the compressional modulus, which

can easily be reproduced. The following important points can be observed:

• a good agreement in the results between all the methods for all the different lattices

• the Fourier transform produces the same graphs as obtained by the Dispersion

relation

The evaluation of all the methods and especially the comparison of the three methods,

that are based on simulations, with the analytical methods, confirm that each one of the

methods is reliable. The study of the regular systems can thus serve as a validated basis

for the disordered system.

6.1.2 Disordered system

The disordered system models experiments on ultrasonic wave propagation in a triaxial

cell filled with glass bead, which are conducted in the Ruhr-University Bochum. For the

DEM simulations the particle properties are chosen according the glass beads used in

experiments. The system is frictional and described by a Hertzian contact model. The

code used for the simulations is a Fortran code called TRUBAL. An initial packing of

2000 particles with three different radii is created, which represents an inner column of

approximately one forth of the experimental setup’s height.

Three of the analysis methods, that are used for the regular systems, can also be used for

the disordered structure:
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Hooke’s law

TRUBAL provides a command that applies a strain rate on all the particles and

measures the increment in stress. With the linear stress-strain relation the com-

pressional modulus is calculated.

Wave propagation

A propagating wave is simulated in a DEM simulation. For the wave excitation

an initial velocity of all the particles in a bin of two times the maximum particle

radius is chosen. In the same way as for the regular systems, the initial velocity is

chosen small enough to exclude the influence from this initial velocity on the wave

propagation behaviour. The kinetic energy over time is evaluated to analyse the

travel time and thus obtain the wave speed.

Fourier transform

The results of the wave propagation simulation are used as input for the Fourier

transform. The transform is not expected to give the dispersion relation as nicely as

for the regular systems, but still give information that can be used for the calculation

of the wave velocity.

In contrast to the regular systems, the results for the random system are scattered and

dependent on various different factors. They have to be analysed in a way, that requires

a big amount of data to get meaningful statistics for the results. Therefore three different

states are created with the same properties, but different random initial particle positions.

They also show a different behaviour in the results:

• Hooke’s law produces results with the smallest deviation in comparison to the

other methods

• the results from the Fourier transform vary widely with high deviations

• the results for the Wave propagation vary widely with high deviations
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• the experimental results lie in the upper range of the results obtained by the other

methods

The questions that arouse during the analysis of the random system concern mainly the

post processing step of the Wave propagation simulation, which is the main focus in

this thesis.

• which constraints should be fulfilled for a particle to analyse?

• which reference height is the right one to choose for the calculation of the travel

length?

• is the first peak in kinetic energy a good way to determine the travel time?

In this work all the particles in four different heights with more than five contacts are

chosen to be analysed. In the same way as for the regular system the first peak in kinetic

energy of one particle plotted over time is chosen as an indication for the travel time. The

travel distance to calculate the wave speed is decided to be the distance from the chosen

particle to the upper boundary of the excitation layer.

6.2 Recommendations

Some ideas, that might help answer the previously posed questions are given. These can

be understood as recommendations for future work.

The initial choice of analysing only the particles with more than five contacts can be

improved. Geometrically it makes more sense to look where the contacts are. For each

particle, the neighbouring particles should be distributed in such a way, that the grant the

mechanical stability of the particle. This is for example realized if the contact points form

a tetrahedron. It is also well known, that in granular material the load, that is applied
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at the boundaries is transmitted throughout the bulk following the paths designed by

so-called force chains. They are for example defined in [22]. Similarly, it is assumed that

waves tend to propagate preferably along these force chains. The motion is transferred

faster and better along such chains. Therefore it would make sense to chose particles in

such a chain. If the average of contact forces per particle is the higher than the total

average of all contact forces, it is assumed that the particle is situated in a force chain.

This could be checked, before analysing the chosen particle.

The question about the correct travel length, is investigated in this thesis. One way not

having to determine this travel length is by calculating the slope of a linear fit of a travel

time versus particle position plot. This method could be improved by increasing the

statistics. Another way to reduce the influence of the error in the choice of travel length

is creating a longer system. The longer the system, the lower the error in the chosen

length.

A way to determine the travel time is investigated for the regular lattices. The peak in

kinetic energy is found to be a good method for the regular systems. It is also preferred

to choosing the amplitude in displacement for example. Before one would come up with a

completely different method, this method can still be improved. As described in chapter

5.5, it is not always clear to pick the right peak. The kinetic energy plots of the particles

farther away from the source happen to be cleaner and their analysis easier. This could

also be the reason for the lower deviations in the wave speeds calculated with particles

farther away from the excitation layer. So if kinetic energy can in general be influenced to

give smoother results, the general deviations in wave velocities are expected to decrease.

It could be that the plots of the kinetic energy of particles near the excitation source are

more difficult to interpret, because the frequencies are trapped near the source and only

the low frequencies are transmitted. So the excitation of a wave, where the frequencies

are controlled better, is considered to be a solution to this problem. The frequency of

the wave can for example be controlled by using a Ricker-wavelet, as already proposed

in chapter 5.5. It could be a good method for the purpose of smoothing out the kinetic

energies.
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Finally the Fourier transform is actually expected to give better results. A better

algorithm must be developed for choosing the right peaks (cf. chapter 5.6). The main

problem of the Fourier method is however thought to be the low resolution, which is not

small enough to detect the the peaks correctly. With a higher resolution the evaluation of

the peaks is expected to be easier. But more importantly, the neighbouring values come

closer together, which should reduce the high deviations. This resolution can be improved

by adding more data. A longer sample, with longer simulation times can be the solution.

After all the methods are improved in the ways just proposed or by ideas, which have

not been considered yet, the parameters need to be matched with the experiments in a

better way. The friction coefficient or the Poisson’s ratio still depend on an initial guess

based on empirical knowledge. In this context, it makes however also sense to think about

possible error sources in the experimental setup or the experimental data evaluation.

Generally all the methods cannot only be adapted to the calculation of the compressional

modulus, but in the same way the S-wave velocity and the shear modulus can be analysed

and used to validate the chosen methods. This is another challenge for future work.

Additionally it was also found interesting to study the dependence of the wave speeds

measured at different heights of the sample on the magnitude of the excitation velocity.

6.3 Final remarks

Concludingly one can state that five useful methods are developed and validated for

the analysis of the P-wave velocity and the compressional modulus in regular granular

structures. Three of them can be used for random systems. An improvement of these

three methods is required to simulate experiments reliably and get better information and

understanding on wave propagation in granular material. The simulation allows to get

information about the internal structure of the material, which is not accessible in the

experiments. Once the moduli between the experiments and the numerical analysis are

matched, the system can be described more fully. The simulations can then also serve as
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a faster and much cheaper method for parameter studies.



Appendix A

Random Configuration

A.1 Hooke’s law results

NT M11 [MPa] M22 [MPa] M33 [MPa] G [MPa]

10 434.59 437.12 437.12 184.71

15 435.7 439.29 439.29 183.37

18 436.18 438.94 438.94 183.56

20 433.15 438.74 438.74 184.94

22 432.36 439.54 439.54 184.45

24 434.27 437.73 437.73 184.84

26 432.96 436.57 436.57 184.99

28 433.15 438.25 438.25 184.89

30 433.55 437.19 437.19 185.44

mean 433.9918± 1.2974 438.152± 1.0535 438.152± 1.0535 184.576 ± 0.68332

Table A.1: Probe - Sample (1)
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NT M11[MPa] M22 [MPa] M33 [MPa] G [MPa]

10 431.67 427.8 427.8 178.08

15 434.41 425.59 425.59 179.81

18 431.94 426.91 426.91 180

20 430.78 428.31 428.31 180.81

22 432.45 426.82 426.82 180.58

24 432.65 426.34 426.34 180.74

26 431.83 425.53 425.53 180.31

28 430.48 426.42 426.42 180.24

30 431.22 426.08 426.08 180.7

mean 431.9391± 1.1698 426.6429± 0.9384 426.6429± 0.9384 180.1395 ± 0.84692

Table A.2: Probe - Sample (2)

NT M11[MPa] M22[MPa] M33 [MPa] G [MPa]

10 435.51 433.43 433.43 181.07

15 434.16 430.48 430.48 180.53

18 434.19 433.38 433.38 180.98

20 433.03 432.76 432.76 181.38

22 432.62 430.6 430.6 180.92

24 432.05 431.18 431.18 180.91

26 433.58 432.16 432.16 181.31

28 433.55 432.71 432.71 181.31

30 432.91 430.59 430.59 181.61

mean 433.5125± 1.0247 431.9224± 1.2212 431.9224± 1.2212 181.1141 ± 0.32417

Table A.3: Probe - Sample (3)
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A.2 Wave propagation results

x1 x2 x3 ts vP vP,cor

4
6
le3 0.0033066 0.0030751 0.021492 6.3508e-006 839.24 767.75

0.002474 0.0018795 0.021463 5.2431e-006 1010.9 924.41

0.0056561 0.0030108 0.021472 7.3846e-006 718.93 657.56

0.0017695 0.00078752 0.021471 5.6123e-006 945.87 865.03

MEAN x̄3 = 0.021475 v̄P = 878.735± 127.896

v̄P,cor = 803.6867± 116.8811

4.5
6
le3 0.0058547 0.0027258 0.024259 1.2702e-005 637.46 601.7

0.00082842 0.0057284 0.024303 1.0855e-005 749.92 708.13

0.0020854 0.001886 0.024262 1.6246e-005 498.55 470.63

0.003689 0.005853 0.024199 1.4695e-005 546.88 516.01

0.0029096 0.0049997 0.024161 1.3957e-005 573.06 540.57

MEAN x̄3 = 0.024237 v̄P = 601.174± 97.0978

v̄P,cor = 567.4097± 91.7988

5
6
le3 0.0050584 0.0060619 0.026939 2.6363e-005 408.79 391.56

0.0045842 0.0022084 0.027004 2.6289e-005 412.41 395.14

0.00052406 0.00047235 0.026926 2.88e-005 373.72 357.98

0.0014241 0.0052303 0.026915 2.4443e-005 439.88 421.34

0.0044399 0.0012681 0.02692 2.5477e-005 422.24 404.44

MEAN x̄3 = 0.026941 v̄P = 411.408± 24.2705

v̄P,cor = 394.0913± 23.2434

5.5
6
le3 0.0041459 0.00060038 0.029561 2.304e-005 581.52 561.84

0.0036766 0.0037106 0.029648 2.3335e-005 577.89 558.47

0.0027817 0.0036621 0.029703 2.2966e-005 589.59 569.83

0.00024578 0.0015698 0.029663 2.2966e-005 587.84 568.09

MEAN x̄3 = 0.029644 v̄P = 584.21± 5.4559

v̄P,cor = 564.5579± 5.3173

Table A.4: Upward wave - Sample (1)
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x1 x2 x3 ts vP vP,cor

2
6
le3 0.0058002 0.0061212 0.010716 7.68e-006 709.23 638.05

0.0018606 0.0057239 0.010819 8.4923e-006 629.23 564.89

0.00052163 0.00023474 0.010676 7.4585e-006 735.6 662.36

0.0057396 0.0050774 0.010677 7.7539e-006 707.49 637

MEAN x̄3 = 0.010722 v̄P = 695.3875± 45.9418

v̄P,cor = 625.5723± 42.1184

1.5
6
le3 0.0043939 0.0012096 0.0081578 1.0338e-005 774.27 721.45

0.0027645 0.0026547 0.0081297 1.2849e-005 625.16 582.65

0.0037533 0.0056095 0.00812 1.44e-005 558.51 520.57

0.0036212 0.0020968 0.0080177 1.2258e-005 664.42 619.88

0.00075255 0.00062613 0.0080348 1.3292e-005 611.46 570.37

0.0046216 0.00034852 0.0080021 1.248e-005 653.88 610.1

0.0011798 0.0042955 0.0081783 1.056e-005 756.08 704.35

MEAN x̄3 = 0.0080915 v̄P = 663.3971± 77.6052

v̄P,cor = 618.4831± 72.1496

1
6
le3 0.0044888 0.0047524 0.0054236 1.4991e-005 716.37 679.91

0.0025635 0.0038695 0.0053718 1.5065e-005 716.3 680.01

0.0012382 0.0023901 0.0053874 1.5803e-005 681.84 647.27

0.0060436 0.0041331 0.0052987 1.5729e-005 690.68 655.95

0.0051953 0.0054811 0.0053865 1.536e-005 701.56 666

0.00089336 0.00077302 0.0054772 1.4252e-005 749.73 711.41

0.0058516 0.0016394 0.0054206 1.5803e-005 679.73 645.17

MEAN x̄3 = 0.0053951 v̄P = 705.1729± 24.6623

v̄P,cor = 669.3893± 23.2997

0.5
6
le3 0.0024327 0.0032281 0.0026813 2.0086e-005 671.17 643.98

0.00264 0.0022556 0.0026628 1.9643e-005 687.25 659.44

0.0020039 0.001438 0.0026452 2.0012e-005 675.45 648.16

0.0024773 0.0053741 0.0026794 1.9569e-005 689 661.09

MEAN x̄3 = 0.0026672 v̄P = 680.7175± 8.7593

v̄P,cor = 653.1661± 8.3987

Table A.5: Downward wave - Sample (1)
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x1 x2 x3 ts vP vP,cor

4
6
le3 0.0054096 0.0022245 0.021528 6.6462e-006 801.84 727.03

0.0014182 0.0037758 0.021562 6.1292e-006 874.96 793.9

0.0044731 0.001852 0.021544 6.5723e-006 813.25 737.64

MEAN x̄3 = 0.021545 v̄P = 830.0167± 39.338

v̄P,cor = 752.8593± 35.9399

4.5
6
le3 0.0055493 0.00068404 0.024357 9.6e-006 849.74 798.02

0.00076155 0.0019464 0.024306 1.0486e-005 773.08 725.73

0.0044771 0.0048582 0.024325 1.0634e-005 764.14 717.42

0.00080453 0.0038646 0.02438 9.6e-006 852.2 800.42

MEAN x̄3 = 0.024342 v̄P = 809.79± 47.701

v̄P,cor = 760.3957± 44.9679

5
6
le3 0.0034546 0.0014434 0.026932 1.344e-005 798.57 761.61

0.0055185 0.0057593 0.026933 1.2185e-005 880.96 840.13

0.0045579 0.0047423 0.027002 1.7502e-005 617.27 588.85

0.0024937 0.0021042 0.026979 1.344e-005 802.06 765.1

MEAN x̄3 = 0.026961 v̄P = 774.715± 111.6449

v̄P,cor = 738.9224± 106.4048

5.5
6
le3 0.0023902 0.0020255 0.029618 2.2818e-005 588.09 566.31

0.0047406 0.0022192 0.029708 2.2671e-005 595.87 573.95

0.0012653 0.0039918 0.02974 2.3557e-005 574.84 553.72

0.0034316 0.0033072 0.029724 2.3409e-005 577.76 556.54

0.0058417 0.00012106 0.029641 2.4074e-005 558.37 537.72

0.0037747 0.0013483 0.029777 2.2818e-005 595.02 573.28

0.0053644 0.0015635 0.029654 2.1858e-005 615.53 592.83

MEAN x̄3 = 0.029695 v̄P = 586.4971± 18.2998

v̄P,cor = 564.9049± 17.6433

Table A.6: Upward wave - Sample (2)
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x1 x2 x3 ts vP vP,cor

2
6
le3 0.0048772 0.0025972 0.01073 8.8615e-006 617.15 560.4

0.0032127 0.0039673 0.010754 6.0554e-006 899.25 816.13

0.0059667 0.0013324 0.010771 6.1292e-006 885.63 803.53

MEAN x̄3 = 0.010752 v̄P = 800.6767± 159.0846

v̄P,cor = 726.6878± 144.1457

1.5
6
le3 0.0060887 0.0036171 0.0081632 1.3145e-005 611.34 573.05

0.0014846 0.0043011 0.0081891 1.0117e-005 791.74 742.01

0.0043033 0.00082699 0.0081518 1.2997e-005 619.17 580.46

0.0024581 0.004352 0.0081089 1.2111e-005 668.01 626.46

0.0042012 0.0061549 0.0081402 1.1963e-005 673.64 631.6

0.0034087 0.00089244 0.0081098 1.5951e-005 507.14 475.59

0.00090444 0.00090236 0.0080532 1.2554e-005 648.87 608.79

0.00062787 0.0057434 0.0080371 1.2997e-005 627.99 589.28

MEAN x̄3 = 0.0081192 v̄P = 643.4875± 79.259

v̄P,cor = 603.4064± 74.2095

1
6
le3 0.0025265 0.0039345 0.0054675 1.2923e-005 830.42 791.5

0.0037005 0.0039111 0.0053843 1.2185e-005 887.57 846.26

0.0049569 0.004296 0.0053804 1.3071e-005 827.7 789.2

1.6876e-006 0.0049657 0.0054019 1.5286e-005 706.34 673.43

0.0003966 0.0057777 0.0054039 1.6542e-005 652.61 622.18

0.0055873 0.0014581 0.0054273 1.7871e-005 602.76 574.6

MEAN x̄3 = 0.0054109 v̄P = 751.2333± 113.5708

v̄P,cor = 716.1949± 108.2895

0.5
6
le3 0.0019392 0.0015544 0.0027469 1.9495e-005 690.01 664.23

0.0057418 0.0011654 0.0026026 2.0751e-005 655.23 630.98

0.0052117 0.0049124 0.0026994 2.0898e-005 645.96 621.91

0.0026263 0.0039615 0.002644 1.8609e-005 728.4 701.38

0.0033483 0.0045145 0.002618 1.7945e-005 756.83 728.78

0.0018067 0.0041781 0.0026078 1.9274e-005 705.16 679.06

MEAN x̄3 = 0.0026531 v̄P = 696.9317± 42.499

v̄P,cor = 671.0555± 40.9504

Table A.7: Downward wave - Sample (2)
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x1 x2 x3 ts vP vP,cor

4
6
le3 0.0024416 0.0027209 0.021515 8.1231e-006 657.18 595.77

0.00081993 0.0026618 0.021557 6.3508e-006 847.17 768.64

0.0016158 0.0031818 0.021559 7.0892e-006 759.17 688.86

0.00018789 0.00020821 0.02166 7.5323e-006 727.87 661.75

MEAN x̄3 = 0.021573 v̄P = 747.8475± 78.7673

v̄P,cor = 678.7571± 71.549

4.5
6
le3 0.00057629 0.0041317 0.024193 1.1151e-005 718.9 674.15

0.0061672 0.0031806 0.024331 1.2997e-005 627.39 589.02

0.00055031 0.0013798 0.024335 1.0338e-005 789.08 740.91

0.0053027 0.004744 0.024364 8.1231e-006 1007.9 946.5

0.0051867 0.0034291 0.024193 1.1963e-005 670.03 628.4

0.0030762 0.0059077 0.024185 9.2308e-006 867.49 813.53

0.0054987 0.0056237 0.024284 9.8954e-006 819.23 768.89

MEAN x̄3 = 0.024269 v̄P = 785.7171± 129.1653

v̄P,cor = 737.3423± 121.3945

5
6
le3 0.00030581 0.0036017 0.027056 1.6246e-005 669.62 638.96

0.0030531 0.0019905 0.027019 1.6615e-005 652.51 622.54

0.00012998 0.0045705 0.026959 1.6542e-005 651.82 621.66

0.0046634 0.0017799 0.026986 1.6394e-005 659.32 628.92

MEAN x̄3 = 0.027005 v̄P = 658.3175± 8.2603

v̄P,cor = 628.0191± 7.9773

5.5
6
le3 0.0026847 0.00050291 0.029754 2.0308e-005 668.57 644.01

0.0029416 0.0055611 0.029695 2.0972e-005 644.55 620.8

0.002076 0.0038824 0.029564 2.0825e-005 642.84 618.9

0.0057697 0.0013104 0.029578 2.1342e-005 627.92 604.56

0.0040335 0.00069492 0.02969 1.9569e-005 690.5 665.06

0.0036379 0.004915 0.029719 2.1489e-005 630.17 606.98

0.0011603 0.0040957 0.029721 2.0455e-005 662.11 637.77

0.00041773 0.0010841 0.029644 2.0825e-005 646.69 622.74

MEAN x̄3 = 0.029671 v̄P = 651.6688± 20.9835

v̄P,cor = 627.6013± 20.2733

Table A.8: Upward wave - Sample (3)
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x1 x2 x3 ts vP vP,cor

2
6
le3 0.00035306 0.0054536 0.010849 8.2708e-006 644.2 583.56

0.0050077 0.0030972 0.010863 5.2431e-006 1013.5 917.87

0.0057348 0.0036011 0.01071 6.4246e-006 850.98 772.89

MEAN x̄3 = 0.010807 v̄P = 836.2267± 185.0915

v̄P,cor = 758.1069± 167.6465

1.5
6
le3 8.3093e-005 0.0014782 0.0080006 1.2775e-005 640.02 600.77

0.0009802 0.0059158 0.0081742 1.2406e-005 645.08 604.65

0.0047478 0.0010427 0.0081808 1.1815e-005 676.77 634.34

0.0028919 0.0016711 0.0079902 1.1963e-005 684.35 642.42

0.0028637 0.0048291 0.0081307 1.4178e-005 567.51 532.15

0.00045032 0.0037085 0.0081719 1.7649e-005 453.57 425.16

0.0037509 0.0010946 0.0081142 1.2111e-005 665.77 624.33

0.0011545 0.0032339 0.0081378 1.2332e-005 651.89 611.23

MEAN x̄3 = 0.0081125 v̄P = 623.12± 77.3505

v̄P,cor = 584.382± 72.6456

1
6
le3 0.0059928 0.0012453 0.0053781 1.6763e-005 644.21 614.29

0.0018985 0.001872 0.0053312 1.6394e-005 661.58 630.98

0.0053518 0.0029809 0.0054529 1.6025e-005 669.23 637.92

0.0032512 0.0049767 0.0054881 1.632e-005 654.96 624.23

0.00090423 0.0051629 0.0053473 1.5803e-005 685.3 653.56

0.0039869 0.0026502 0.0054682 1.6468e-005 650.3 619.83

0.0036333 0.0035111 0.0053105 1.6911e-005 642.59 612.91

0.0041313 0.0046336 0.0054678 1.6615e-005 644.54 614.37

0.00071206 0.0013923 0.0054581 1.5951e-005 672 640.55

0.0010457 0.0021667 0.0053677 1.632e-005 662.34 631.61

0.0046108 0.0053379 0.0054896 1.632e-005 654.87 624.14

MEAN x̄3 = 0.0054145 v̄P = 658.3564± 13.3596

v̄P,cor = 627.6705± 12.7556

0.5
6
le3 0.00095597 0.005244 0.00278 2.1046e-005 636.56 612.73

0.0034429 0.0024236 0.0027072 2.0677e-005 651.44 627.18

0.0032652 0.0053406 0.002602 2.1563e-005 629.55 606.29

0.0010373 0.0023944 0.0027626 2.0898e-005 641.89 617.9

0.0026102 0.0020935 0.0027086 2.0382e-005 660.82 636.19

MEAN x̄3 = 0.0027121 v̄P = 644.052± 12.3173

v̄P,cor = 620.0604± 11.8214

Table A.9: Downward wave - Sample (3)
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A.3 Fourier transform results

upward wave

number of points vP [m
s
] M [MPa]

3 583.15 529.01

downward wave

number of points vP [m
s
] M [MPa]

2 291.84 132.49

2 583.68 529.97

2 583.68 529.97

2 875.51 1192.4

4 371.43 214.62

4 583.68 529.97

5 396.07 244.03

Table A.10: Fourier transform - Sample (1)

upward wave

number of points vP [m
s
] M [MPa]

3 438.77 299.88

3 292.51 133.28

4 497.27 385.17

4 468.02 341.19

7 468.02 341.19

downward wave

number of points vP [m
s
] M [MPa]

2 292.17 132.96

2 584.33 531.85

2 584.33 531.85

2 876.50 1196.7

4 584.33 531.85

Table A.11: Fourier transform - Sample (2)

upward wave

number of points vP [m
s
] M [MPa]

2 292.11 133.12

2 438.17 299.53

2 584.23 532.50

3 438.17 299.53

4 438.17 299.53

5 438.17 299.53

5 563.37 495.14

6 549.86 471.69

downward wave

number of points vP [m
s
] M [MPa]

5 581.71 527.92

Table A.12: Fourier transform - Sample (3)
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tion). Springer, 2006th edition. ISBN 3211296999.


	Introduction
	Motivation
	Thesis goal and overview

	Fundamentals on granular material and wave propagation
	Granular Material
	Discrete Element Method
	Wave properties

	Analysis methods
	Principle of virtual displacement
	Dispersion relation
	Hooke's Law
	Wave propagation
	Fourier transform

	Regular Systems
	Lattices
	Principle of virtual displacement
	Dispersion relation
	Hooke's law
	Wave propagation
	Fourier transform
	Comparison

	Disordered System
	Experiments
	Simulations with TRUBAL
	Initial state
	Hooke's law
	Wave propagation
	Fourier transform
	Comparison

	Conclusion and Outlook
	Summary
	Regular Systems
	Disordered system

	Recommendations
	Final remarks

	Random Configuration
	Hooke's law results
	Wave propagation results
	Fourier transform results


