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Abstract
Wave and transport phenomena through porous media are of great impor-

tance in science and industrial applications, because they involve the interaction
of various physical mechanisms and can provide useful informations of the struc-
ture of the porous medium. Despite the extensive application in modern industry
and comprehensive research, transport and wave propagation through porous ma-
terials are not fully understood.
This work focuses on the investigations of hydraulical and acoustical properties
of sintered glass bead systems, which serve as replacement for rock samples. In
contrast to common rock samples the hydraulical and acoustical properties of
the sintered glass bead samples can be selectively influenced by the selection of
certain glass beads and sintering treatments. Moreover, their high gray-scale con-
trast to the pore space, in addition to the relatively simple pore structure favors
their use in scientific research and image analysis.
The research goal is to understand the essential physical phenomena and mecha-
nisms, which determine the transport and wave behavior in fluid-saturated porous
sintered glass bead systems. For this purpose, a multi-purpose measuring cell
is developed, which enables, besides stationary and dynamic permeability mea-
surements, also to perform ultrasound experiments, while the produced porous
sintered samples can be saturated with different fluids. The steady-state and
oscillatory flow processes through sintered glass bead packings, are investigated,
in order to determine both, the stationary and frequency-dependent hydraulic
properties. For the ultrasound experiments the porous sintered samples are ei-
ther saturated with Newtonian fluids, like water or silicone oil, or with magneto-
rheological fluids (MRF), which is a suspension of micron-sized, magnetizable
particles in a silicone-oil-based carrying fluid. The wave propagation in MRF-
saturated porous sintered samples is studied at different magnetization strengths.
The ultrasound experiments are performed according to the transmission method
and analyzed using the spectral ratio technique. The ultrasound experiments
reveal nicely the dispersive nature of the fluid-saturated sintered granular ma-
terials and show strong frequency filtering as the dispersion properties of the
detected waves are highly influenced by the pore fluid. The experimental studies
of transport and waves are complemented by extensive research on the morphol-
ogy by using XRCT-based images of the produced samples. A special focus lies
on the elaborate µXRCT data processing of the produced samples. The pro-
posed frameworks for µXRCT analysis can be used for arbitrary porous media.
The binarized and differently-sized voxel data are incorporated in Lattice Boltz-
mann simulations to determine the local permeabilities numerically and finally
are compared with experimental effective permeabilities. The numerical perme-
abilities are correlated with averaged microscopic features, such as pore throats.



Samenvatting
Golf- en transportfenomenen in poreuze media zijn van zeer groot belang in de

wetenschap en voor industriële applicaties, omdat er zich verscheidende fysische
mechanismes afspelen en ze nuttige informatie over de structuur van het poreuze
media kunnen geven. Ondanks de vele toepassingen in de moderne industrie en
uitgebreid onderzoek zijn de mechanismes achter golf- en transportfenomenen
nog niet helemaal begrepen.
Dit werk focust zich op het onderzoeken van hydraulische en akoestische eigen-
schappen van systemen van gesinterde glazen bolletjes, welke als vervanging di-
enen van rotsmonsters. In tegenstelling tot standaard rotsmonsters zijn de hy-
draulische en akoestische eigenschappen van de gesinterde glazen bolletjes selec-
tief te beinvloeden door de materiaalkeuze en het type sinterbehandeling. Boven-
dien zijn deze systemen practischer in wetenschappelijk onderzoek en beeldanal-
yses door hoog contrast in grijstinten tussen de glazen bolletjes en de poriÃńn
waardoor de porie structuur zeer duidelijk zichtbaar is. Ook is de poriestructuur
van systemen met bolletjes eenvoudiger.
Het onderzoeksdoel is het begrijpen van de essentiële fysische fenomenen en mech-
anismes die het transport- en golfgedrag beïnvloeden in systemen van vloeistof-
verzadigde poreuze media van gesinterde glazen bolletjes. Om dit te bereiken is
een meetcel ontworpen waarmee, naast stationaire en dynamische permeabiliteits-
metingen, het ook mogelijks is om experimenten met ultrageluid uit te voeren en
bovendien kunnen de systemen met verschillende type vloeistof worden verzadigd.
De constante-toestand en niet-constante vloeiprocessen door verschillende stapelin-
gen van gesinterde glazen bolletjes is onderzocht om te bepalen wat de stationaire
en frequentie-afhankelijke hydraulische eigenschappen zijn. Voor de ultrageluid
experimenten zijn de poreus gesinterde monsters gesatureerd met of een Newto-
niaanse vloeistof zoals water of siloconen olie, of magnetorheologische vloeistoffen
(MRF), waarbij de laatste een suspensie is van magnetische deeltjes ter grote van
een micron in een op siliconen gebaseerde olie als drager vloeistof. De voortplant-
ing van golven in poreus gesinterede monsters, gesatureerd met MRF vloeistoffen,
is onderzocht bij verschillende sterktes van het magnetisch veld. De ultrageluid
experimenten zijn uitgevoerd volgens de transmissie methode en geanalyseerd met
de spectrale verhouding techniek. De ultrageluid experimenten laten aardig het
verspreide gedrag van vloeistof-gesatureerd gesinterde granulaire materials zien
en laten sterkte frequentie filtering zien als de verspreidingseigenschappen van de
waargenomen golven sterk beïnvloed worden door de vloeistof in de poriën. De
experimentele studie van transport en golven zijn aangevuld door uitgebreid on-
derzoek naar de morfologie met behulp van Röntgenstraling-computer-tomografie
(XRCT) beelden van de geproduceerde monsters. Er is special focus gelegd op
de uitgebreide micro-Röntgenstraling-computer-tomografie (µXRCT) data ver-



werking van de gemaakte monsters. De voorgestelde methode voor de µXRCT
analyse kan worden gebruikt voor arbitrair gevormde poreuze media. De gebina-
riseerde grijstintbeelden en voxel data, van verschillende grote, zijn toegevoegd
aan Lattice Boltzman simulaties om de lokale permeabiliteit numeriek te meten.
Deze waardes zijn vergeleken met de effectieve experimentele permeabiliteiten.
De numeriek gemeten permeabiliteiten zijn gecorreleerd met gemiddelde micro-
scopische kenmerken zoals de kleinste radius van een porie kanaal.
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CHAPTER 1

Introduction

1.1 Motivation

The term “granular matter” is the general name for materials consisting of grain-
like materials, which are acting collectively as an ensemble. They are present in
many industrial applications as well as in our daily life, for instance in pharma-
ceutics or food products like tablets or nuts, cf. Figure 1.1. In general, particle
systems with particle sizes larger than 1 µm are considered, in which the Brown-
ian motion (thermal agitation) of the particles can be neglected. The grains can
exhibit a solid-like or fluid-like behavior, whereby the description of these states
and their co-existence is very controversial. In this thesis we consider static, solid
porous materials, in which the grain ensemble can be considered as a porous rock
model. The particles are held together by solid bridges formed due to sintering.
Compared to common rock samples, the homogeneity of the pore space and shape,
in addition to the chemical stability and inertness of the sintered glass bead pack-
ings are important properties, which promote and facilitate their application in
many cases. Moreover, important bulk parameters, such as the porosity, the tor-
tuosity of the pore channels, the stiffness of the solid frame, as well as the glass
particle sizes can be adjusted by the selection of certain glass bead sizes and
special sintering treatments. Another important characteristic of sintered glass
bead systems is the good gray-scale contrast between the pore space and the one-
component solid frame, which certainly simplifies X-ray based image techniques
and data processing.
The porous matrix consisting of sintered glass beads can now be saturated with
different pore fluids. Besides the saturation with Newtonian fluids, such as sili-
cone oil and water, non-Newtonian suspensions with magnetizable micron-sized
particles suspended in a silicone oil-based carrying fluid are used to fill the pore
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space of the porous sintered system.
In general, fluid-filled porous media are ubiquitous in many natural and industrial
systems. Examples of natural fluid-filled porous media and corresponding pro-
cesses are the water storage in soil or the oil, gas and water flow through porous
petroleum reservoirs. Furthermore, the characterization of biological porous ma-
terials through the use of ultrasound, such as the clinical assessment of the bone
status for the diagnosis of osteoporosis, which is a skeletal disease, is important
for medical applications [107]. In this specific case the porous bone matrix is
filled with bone marrow. Examples for industrial applications and corresponding
processes are the water and gas management in fuel cells or the water and solu-
tion movement in building materials [16].

While the fluid-saturated porous sintered glass bead packings are major sub-
ject of this thesis, their transport and acoustical wave properties are the physical
phenomena to be studied in this work. Both properties are highly affected by the
micro- and macroscopic features of the sintered system. In addition, the acousti-
cal properties of the sintered porous bead package is highly affected by the pore
fluid, which saturates the pore space of the sintered sample. For instance, the
wave speed and the attenuation in sintered glass bead packings strongly depends
on the physical parameters of the used saturation fluid and its interaction with
the solid matrix. Understanding the above-mentioned transport and wave prop-
agation phenomena in sintered glass bead systems, experimental and numerical
studies, and modeling them at different scales especially as a necessity of the
spatial heterogeneity, are the subject of this thesis.
The key parameter in the research of porous media, describing the transport
capacity of a porous medium, is besides the porosity the intrinsic permeability,
which depends only on the geometric characteristics of the porous medium. It is a
measure of the ability of the porous medium to transmit fluid mass. We consider
not only experimentally and numerically the intrinsic permeabilities of porous
sintered glass bead systems from stationary steady-state flow processes, but also
their frequency dependence, when an oscillatory fluid movement is induced.
Starting from the generation of simple continuous low-frequency waves (f <
1000 Hz) for the study of the frequency dependence of the dynamic permeabil-
ity, our wave propagation investigations are extended towards short-time, high-
frequency broadband ultrasound signals in the range from approximately 100 kHz
to 5 MHz. The term “ultrasonic” applied to sound refers to anything above the
frequencies of audible sound at the limit for human hearing that is approximately
at 20 kHz.
In general, waves can be encountered directly and have a widespread application
in our daily life. We can distinguish between waves that we directly perceive as
waves, like the waves in the ocean or the vibration during earthquakes, and waves
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that we perceive without recognizing them as such, like the light we see or the
sound we hear. In fact waves have applications in almost every field of everyday
life, from wireless communication to radio waves, from the music of a guitar to
lasers etc.. Waves are involved in almost every aspect of our daily life. They
can appear in a variety of forms, for instance as longitudinal, transversal or rota-
tional waves, surface or body waves etc.. Moreover, they can propagate in various
media, such as mechanical waves, or do not need a carrying medium, such as elec-
tromagnetic waves. We often distinguish between monochromatic waves, which
propagate with a particular frequency and wavelength, such as laser light, and
polychromatic waves, which contain more than one wavelength and frequency,
for example sunlight.
Consequently, the wide range of applications of wave propagation, due to their
special and influenceable properties, involves almost all natural science and en-
gineering disciplines. Wave propagation is central for various engineering disci-
plines, especially in geophysics and petroleum engineering, and major applications
include the transmission, reflection and stimulation through to non-destructive
inspection of components. In this respect, the interpretation and prediction of
wave propagation is crucial. The experimental study of wave propagation through
fluid-saturated sintered glass bead systems, where the determining parameters
can be selectively changed, serve to understand the relevant physical processes
and to develop appropriate physical models.

The combination of the system of fluid-saturated porous sintered glass bead sam-
ples with the propagation of ultrasound yields a versatile research area and opens
up new interesting application possibilities.

The characterization of porous media by means of wave propagation, for instance
through ultrasound, is very important and has a long history [14, 85, 96, 98, 100,
106, 144, 167, 176, 186, 189]. Fundamental contributions for the understanding
of wave propagation in fluid-saturated porous media were made during the last
century [2, 24, 25, 57, 61, 94, 105, 189, 194]. However, the wave propagation
in porous media saturated with complex fluids, like magneto-rheological fluids,
which change their flow behavior when a magnetic field is applied, has been barely
investigated and can open new application fields, for instance in petroleum in-
dustry.

Moreover, the complex structure of porous materials can be challenging, because
detailed information of their structure is often missing and if available, there is
often a lack of appropriate data processing tools.
In recent years significant improvements in imaging techniques and computational
performance enabled more comprehensive and precise studies of the structure of
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Figure 1.1: Examples of granular and porous media (from left to right and top
to bottom): corn grains, hazelnuts, foam for household, rock, rice grains, stevia
powder, aluminium foam, pharmaceutical tablets, sandy beach, soil.

porous materials. More detailed information on structural properties, which de-
termine the transport and wave propagation phenomena, has become available.
This study utilizes the advantages of XRCT-imaging to characterize the structure
of the sintered glass bead packings at different length scales and to understand the
pore fluid transport and wave propagation in such sintered granular systems. The
relatively simple and repeatable pore structure of the sintered glass bead pack-
ings, in addition to the high contrast between the pore space and solid matrix
significantly simplifies the image processing and thus increases the understanding
of pore fluid transport or wave propagation phenomena in porous media. The
XRCT images are embedded in a massively parallel Lattice Boltzmann (LB) simu-
lation framework to determine the intrinsic permeabilities of the investigated ran-
domly distributed system of sintered glass particles [75, 118, 119, 128, 129, 170].
The benefits of understanding the frequency-dependent fluid transport and wave
propagation is not only of scientific interest, but also serves to develop purposeful
designs in engineering and help to interpret environmental events and processes.
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1.2 Outline
The present thesis deals with the hydraulical and the acoustical properties of
porous sintered glass bead packings. It aims to

• Understand the relevant processes in transport and wave propagation
phenomena in sintered glass bead systems. Specific questions are: Which
parameters in sintered granular systems have the strongest impact on the
permeability? What is the origin of scattering and frequency-dependent
attenuation in ultrasound experiments? How are the dispersion and filtering
properties affected by the microstructure of sintered specimens?, What is
the frequency response for permeability and for the dispersion quantities?
etc..

• Compare numerically and experimentally determined intrinsic permeabil-
ities as result of sintering, giving rise to specific questions as: How do
different up- and downscaling processes influence not only the permeabil-
ity but also the porosity? How do the permeability change with varying
frequency, when oscillatory fluid flow is induced?, etc..

• Predict the transport and wave behavior, which involves open issues as:
How do the pore fluid influence the wave propagation in sintered glass bead
systems? Which parameter in fluid-saturated sintered granular systems
support the observation of the slow P2-wave in ultrasound experiments? Is
Kozeny-Carman sufficient to predict the permeability in sintered glass bead
systems?, etc..

• Interpret and integrate the observations from permeability and ultrasound
experiments and answer open questions: How do the generation of an exter-
nal magnetic field influence the wave propagation in MRF-saturated porous
media? Which factors are decisive for the occurrence of scattering phenom-
ena in ultrasound experiments and why? How is scattering related to the
microstructure of sintered sample?, etc..

The structure of the thesis is related to the research line and results from
publications (submitted and in preparation). Consequently, each chapter is self-
contained and the benefit of this for the reader is only slightly off-set by some
overlap of the content. Although different topics are treated, some research meth-
ods and theoretical background often are the same, which lead to some more
overlap of content.
As denoted in Figure 1.2, sintered glass bead packings are the major focus of our
investigations. Each chapter is implemented in a logical order, where different
topics are treated by appropriate methods with respect to the involved physical
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Figure 1.2: Topics of study of sintered glass bead packings treated in this study
presented in the form of a life cycle, which explain the six chapters.

processes. As can be seen in Figure 1.2, the entire work can intellectually be di-
vided in nine parts. In addition to this introduction chapter, the final conclusion
and the appendix at the end of this thesis, six chapters constitute the core of this
work. Depending on the thematic focus each chapter consists of a specific moti-
vation or introduction, respectively, followed by theoretical background, methods
and procedures, results, discussion and conclusion.

• The second chapter which follows this first introductory chapter and brings
various topics together and relates the hydraulical properties of the porous
sintered packings to the sintering procedure, via morphological characteris-
tics from µCT data. A special focus lies on the µCT data processing. Pos-
sible ways are presented to extract informations and determine features of
sintered granular systems from µCT data, which affect not only the intrinsic
permeability, but also the acoustical properties. Differently sized binarized
µCT data are used to determine the numerical permeabilities. Those are
compared with experimental results and complemented by a comprehensive
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RVE analysis for permeability and porosity.

• In the third chapter the hydraulical properties of the sintered samples are
tested for their frequency dependence. The dynamic Darcy cell is presented,
where the oscillatory fluid movement through the samples is investigated.
The so-called pore pressure oscillation method is introduced and applied to
the produced highly permeable sintered samples in order to determine the
frequency-dependence not only of the permeability, but also of the storage
capacity and diffusivity.

• The fourth chapter deals with the acoustical properties of different porous
sintered samples, saturated with water. Focus is on the coherent wave part,
which arrives at the leading edge of received signals and shows wavelength
greater than the bead diameter (λ > dp). The spectral ratio technique is
introduced and used to determine the dispersion properties of the sintered
samples with different microstructures. The ultrasound measurements are
compared with the classical biphase Biot-theory. µCT scans are again used
to extract important parameters determining the wave propagation in fluid-
saturated sintered glass bead systems and used as input for the Biot theory.

• In the following fifth chapter the incoherent wave part of the received ul-
trasound signals is considered. This often consists of (multiple-) scattered
waves with wavelengths smaller than the particle sizes (λ < dp). The diffu-
sive wave propagation is introduced and used to describe and understand
the scattering phenomena in fluid-saturated porous sintered glass bead sam-
ples.

• The sixth chapter specifically addresses the detection and evidence of the
slow P2-wave in fluid-saturated porous sintered glass bead packings. For
this purpose ultrasound measurements with different pore fluids are per-
formed and compared with each other. The Biot theory is used to identify
the detected waves. The difficulties associated with the detection of slow
P2-waves in fluid-saturated in sintered glass bead packings are highlighted
and discussed.

• The seventh chapter constitutes the investigation of wave propagation of
porous sintered samples, saturated with magneto-rheological fluids (MRF).
The wave propagation of MRF-saturated sintered samples are investigated
at different magnetic strengths and compared with measurements where
no magnetic field is applied. The dispersion properties are determined at
different magnetic strengths.
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Figure 1.3: Different experimental stages with increasing complexity processed
in this study.

• In the eighth chapter the previous chapters are finally reviewed and sum-
marized in a wider, more general framework. A preview for further com-
plementary work and for future research is proposed.

The experimental investigations constitute an important foundation of this
work. Figure 1.3 gives an overview of the experimental investigations carried out
in this study. It shows simplified sketches of experimental set-ups at different
stages, whereby the complexity of the investigated system and the used methods
is increasing from left to right in the direction of the arrow. As can be seen
in Figure 1.3 the experimental part of this work can be divided in two sections,
namely the hydraulical and the acoustical part. The hydraulical part is described
by the first two stages and includes the stationary and oscillatory fluid movement
through the sintered samples. The acoustical part is represented by the third
stage to last stage, whereby different systems and topics are examined using the
transmission method.



CHAPTER 2

Hydraulic Properties of
Porous Sintered Glass Bead

Systems

This article, with the original title “Hydraulical properties porous sintered glass
bead systems” by Ibrahim Güven, Stefan Frijters, Jens Harting, Stefan Luding
and Holger Steeb, has been submitted to the Granular Matter Journal [69].

In this paper, porous sintered glass bead packings are studied, using X-ray Com-
puted Tomography (XRCT) images at 16 µm voxel resolution, to obtain not only
the porosity field, but also other properties like tortuosity, particle sizes, pore
throat, particle sphericity, specific surface area and the permeability. The influ-
ence of the sintering procedure and the original particle size distributions on the
microstructure, and thus on the hydraulical properties, is analyzed in detail. The
XRCT data are visualized and studied by advanced image filtering and analysis
algorithms on to the extracted sub-systems (cubes of different sizes) to deter-
mine the correlations between the microstructure and the measured macroscopic
hydraulic parameters. Since accurate permeability measurements are not sim-
ple, special focus lies on the experimental set up and procedure, for which a new
innovative multi-purpose cell based on a modular concept is presented. Further-
more, segmented voxel-based images (defining the microstructure) are used for
3D (three-dimensional) lattice Boltzmann simulations to directly compute some
of the properties in the creeping flow regime. A very good agreement between ex-
perimental and numerical porosity and permeability could be achieved, validating
the numerical model and results. Porosity and permeability gradients along the
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sample height could be related to gravity acting during sintering. Furthermore,
porosity increases in the outer zones of the samples due to the different contact ge-
ometry between the beads and the confining cylinder wall during sintering (which
is replaced by a membrane during permeability testing to close these pores at the
surface of the sample).
The influence of different filters on the gray scale distributions and the impact of
the segmentation procedure on porosity and permeability is systematically stud-
ied. The complex relationships and dependencies between numerical determined
permeabilities and hydraulical influence parameters are investigated carefully. In
accordance to the well-known Kozeny-Carman model, a similar trend for local
permeability values in dependance on porosity and particle diameter is obtained.
From the µXRCT analysis two distinct peaks in pore throat distributions could
be identified, which can be clearly assigned to typical pore throat areas occurring
in slightly polydisperse granular systems. Moreover, a linear dependency between
average pore throat diameter and porosity as well as between permeability and
pore throat diameter is reported. Furthermore, almost identical mean values for
porosity and permeability are found from conventional Representative Volume
Element (RVE) analysis. For sintered granular systems, the empirical constant
in the classical Kozeny-Carman model is determined to be 131, while a value of
180 is expected for perfect mono-disperse sphere packings.

2.1 Introduction
Numerical and experimental investigations of fluid flow in porous and granular
media are of crucial importance in many research areas, such as the recovery of
hydrocarbons from oil reservoirs [35, 81], ground water flow [17] or gas diffusion
in fuel cells [82]. In spite of extensive scientific research, there are still many
open questions namely which and how macroscopic transport factors other than
porosity affect the fluid flow in a porous medium with a given microstructure
[53, 60, 82, 118, 175]. An experimentally and numerically determinable param-
eter of porous materials is the intrinsic permeability which is highly sensitive to
the underlying microstructure. The effective intrinsic permeability depends only
on the pore structure of the medium, that is independent of the properties of the
fluid. Therefore, a comparison with numerical determined permeability values
based on Micro-X-Ray-Computer-Tomographic (µXRCT) images can increase
the understanding of the effects of microstructure on the intrinsic permeabil-
ity [75–77]. The typical workflow of µXRCT-based permeability investigations
comprises

1. the µXRCT-scanning and reconstruction of the porous material;
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2. the filtering and segmentation of the image data;

3. the implementation of image data in numerical simulations;

4. validation of numerical calculations with experimental data;

5. finding new correlations between microstructure and macroscopic properties
by combining the previous steps and insights.

The presented workflow clearly demonstrates that a numerical simulation based
on real data sets and the correlation between microscopic and macroscopic prop-
erties can only be as good as the preceding filtering and segmentation procedure
[86, 159]. Therefore, a special focus lies on this topic. Possible ways are presented
how to filter, segment and finally extract essential features of a porous material,
which determine the intrinsic permeability.
In this work we investigate, both experimentally and numerically, the intrin-
sic permeability of artificial produced samples composed of sintered glass beads
showing different particle diameters, porosities and degree of polydispersity. In
contrast to common rock samples, like e.g. dolomite, sintered glass bead sam-
ples are characterized by their chemical stability and inertness, in addition to
their relatively simple pore structure. Nevertheless, the pore structure, and thus
the intrinsic hydraulical permeability can be influenced by the selection of cer-
tain glass beads and special sintering treatments compared to rock samples, like
Fontainebleau sandstone. Another crucial advantage of sintered glass bead sam-
ples, in contrast to most rock samples, is the improved gray-scale contrast be-
tween the pore space and the solid phase, which considerably simplifies the image
segmentation process and thus ensures a better comparability of experimentally
and numerically determined permeability values. The filtering and segmentation
procedure of sintered glass bead packings is further simplified by single phase
composition of the solid matrix. In this respect, sintered glass bead samples can
serve as replacement material for soil and rock specimen to provide a benchmark
in permeability calculations.
The present paper focuses on the hydraulical properties of porous sintered glass
bead systems. The influence of the sintering process on the microstructure, and
thus on the permeability of the sintered samples are analyzed in detail by us-
ing appropriate XRCT data analysis and visualization methods (AVIZO Fire
8.0.1 and 9.0). In chapter 2 the well-known Darcy’s law is introduced to de-
fine the intrinsic permeability of porous materials in general. Furthermore, the
semi-empirical Kozeny-Carman equation, which is often used to determine the
intrinsic permeability of granular systems, is presented and discussed in terms of
microstructural parameters. In chapter 3 the Lattice Boltzmann (LB) method
and the numerical set-up, which is used to determine the local intrinsic permeabil-
ities of the extracted data sets, is described briefly. For a better understanding



12 CHAPTER 2. STATIONARY HYADRAULIC PROPERTIES

of the underlying microstructure, the sintering procedure is described in section
4.1. For validation of numerical data based on discretized µXRCT/voxel data
sets of the produced sintered glass bead samples, the experimental setup and pro-
cedure of permeability measurements are described in section 4.2. The developed
multi-purpose measuring cell is proposed in section 4.3. Chapter 5 focuses on
the elaborate processing of µXRCT scans, whereby possible ways are introduced,
how to filter, segment and extract essential features, which highly influences the
hydraulical properties of porous sintered granular systems. Chapter 6 starts with
presentations and discussion of results obtained from numerical and experimen-
tal porosity and permeability measurements. In addition, the results from RVE
analysis for porosity and permeability and the peripheral porosity development of
the samples are depicted and discussed in section 6.1. Moreover, the numerically
determined local permeability values are qualitatively and quantitatively com-
pared with the theoretical predictions according to the Kozeny-Carman model.
Based on the Kozeny-Carman model further influence of parameters of hydrauli-
cal characteristics of sintered glass bead packings, like tortuosity, sphericity, spe-
cific surface area, particle sizes and pore throat distributions are visualized and
analyzed by means of µXRCT data from section 6.2 to 6.4. The study of hydrauli-
cal properties of porous sintered granular packings is concluded in section 2.7.

2.2 Theory
Darcy’s law is the most commonly used empirical relationship for calculation of
the pressure drop across a homogeneous, isotropic and non-deformable porous
medium [195, 196]. It states that, at the macroscopic level and in the creeping
flow regime, the measured pressure drop ∆p/l per length applied to a porous
medium, and the fluid flux per area Qz/A have a linear relationship given by

Qz

A
= − ks

z

µfR

=i� �� ��
∆p

l
− ρfRg

�
, (2.1)

where µfR, A and l are dynamic viscosity of the fluid, cross-sectional area and
length of the sample [78]. The proportionality constant ks

z describes the intrinsic
permeability of the porous medium in flow direction z, which strongly depends
on the porosity and the microstructure (e.g particle shape, tortuosity and con-
nectivity of pore channels). The term ρfR g represents the gravity force-density,
driving the fluid flow. The expression given in brackets is often referred to as the
hydraulic gradient i.
The semi-empirical approach of Kozeny-Carman is one of the most well-known
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theories, which relates macroscopic parameters, like the intrinsic permeability, to
microstructural parameters, like particle arrangement, shape and orientation or
tortuosity (flow path) [51, 165, 196]. For granular media, the Kozeny-Carman
permeability reads

ks
z = 1

2
φ3

0
(1 − φ0)2

�
1
α

�2 �
1

Sv

�2
, (2.2)

where Sv and α are the volume-based specific surface area and tortuosity of
the fluid path. The porosity of the sample is denoted as φ0. For monodisperse
granular media consisting of particles with diameter dp the intrinsic permeability
is given by

ks
z = 1

180
φ3

0
(1 − φ0)2 d2

p. (2.3)

Since in most investigated cases the granular medium consists of non-uniform
spheres, Carrier et al. [41] have introduced an effective diameter dr which can be
reliably determined on basis of the particle size distribution in accordance with

dr = 100
�

fi/d̄i

, (2.4)

where fi is the fraction of particles between two sieve sizes and d̄i corresponds to
the geometrical average particle size between the minimum and maximum sieve
size (dmin,i, dmax,i)

d̄i =
�

dmin,i · dmax,i. (2.5)

For monodisperse granular media the median diameter d50 is commonly used as
effective diameter due to the little variation in grain size. The median diameter
is the value of the particle diameter at 50 % in the cumulative distribution. In
the case of a nearly symmetric particle size distribution, the median diameter is
often replaced by the arithmetic mean value.
Several approaches have been introduced in recent years to describe the tortuosity
(fluid path) in Equation (2.2) through porous media [51, 165, 175]. According to
Berryman [21] for instance, the tortuosity can be estimated from the porosity by

α = 1 − r (1 − 1/φ0), (2.6)

with r = 1/2 as shape factor for spheres. A different approach for the determina-
tion of the geometrical tortuosity is from the centroids of two-dimensional slices
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obtained from µXRCT scans as

α =
�N

i di

H
, (2.7)

where H = z(n) − z(0) represents the distance between two slices. The sum of
all images

�N
i di describes the total path length through the centroids of areas

of each slice (cf. Figure 2.13, top left), and di represents the distance between
the centroids of area determined from two adjacent 2-dim slices.

2.3 The lattice Boltzmann method
For the determination of the numerical intrinsic permeabilities of the extracted
differently sized subsets of glass beads the lattice Boltzmann method is used.
We follow the procedure to measure permeabilities as described in Narvaez et
al. [129, 130] and Frijters et al. [58, 59]. The LB method itself has proven to
be very successful for modeling fluid flow in porous media [115]. It enables a
straightforward implementation of complex boundary conditions and is suitable
for use in parallel computation due to the high degree of locality of the algorithm.
For the LB simulations the Boltzmann equation

∂

∂t
f(x, c, t) + c · ∇f(x, c, t) = Ω(f(x, c, t)) (2.8)

in discretized form is solved to simulate creeping fluid flow through porous me-
dia. Equation (2.8) describes the evolution of a single-particle probability density
f(x, c, t), whereby x ∈ R3 is the position vector, c ∈ R3 is the velocity vector,
t∈ R is the time and Ω(f(x, c, t)) is the collision operator describing binary colli-
sions between particles. The time discretization is performed by using a time step
∆t, whereas for the lattice velocities a finite set of vectors ci with i = 1...19 lattice
points is applied. The position vector x is discretized by using a three-dimensional
structured cubic lattice with a lattice constant ∆x. For the permeability calcula-
tions the simulation parameters are chosen in accordance to Narvaez et al. [129]
and Frijters et al. [58, 59]. As in those publications the well-known D3Q19 lat-
tice for velocities, providing adequate accuracy at moderate computational cost
is applied [148]. For the collision matrix Ω in Equation (2.8) a standard two re-
laxation time (TRT) model is used, c.f. Ref. [49, 129]. Narvaez et al. [129, 130]
have shown that relaxation times of τ =1 and τbulk =0.84 provide useful results
for permeability calculations.
The porous sample is positioned between two fluid chambers which serve as in-
and output to avoid artifacts, cf. Figure 2.4 (left). The on-site boundary condi-
tion introduced by Zou and He [200] and later extended to three dimensions and
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nineteen velocities (D3Q19) by Hecht et al. [79] is applied to generate a gradient
in flow direction (z-direction) by defining the fluid densities at the in- and outlet
of the system,

ρfR(z = 1) = 1 + ∆ρfR, (2.9)
ρfR(z = nz) = 1 − ∆ρfR, (2.10)

whereby nz indicates the total number of lattice nodes in flow direction and ∆ρfR

the difference of the fluid density between in- and outlet. To ensure creeping flow
with low Reynolds numbers the density difference is chosen in the order of 10−4

in lattice units. Furthermore, the computational domain is surrounded by walls
in x- and y-directions to prevent flow over boundaries orthogonal to the pressure
gradient. The pressure gradient in flow direction z reads then as

(∇p)z = p(z = nz) − p(z = 1)
nz

= 2 ∆ρfR

3 nz
. (2.11)

The intrinsic permeability ks
z in flow direction z can be expressed in terms of the

lattice Boltzmann relaxation time as

ks
z = 2 τ − 1

6
3 Qz nz

2 ∆ρfR (nz ny) , (2.12)

whereby A = nz ny represents the cross-sectional area of the extracted subset, nz

the sample length and Qz the volume flux in z-direction. The system has reached
steady state when the mass flux and the permeability are constant over the
geometry [58, 129]. For the determination of the permeability of the differently
sized samples in flow direction z the permeabilities are averaged over the lattice
surfaces in flow direction z.

2.4 Experiments

2.4.1 Sintering
In this study various types of glass with different chemical compositions and
characteristic particle diameters are used for sintering, see Table 2.1. Depending
on the composition, the deformation temperature of the used glass particles varied
between 575 and 680 ◦C. The used glass beads (Muehlmeier GmbH & Co. KG)
showed different particle sizes and degree of polydispersity, cf. Table 2.1. The
specific density of the sintered glass beads lies at 2.5 g/cm3.
It is attempted to generate cylindrical samples and at the same time to ensure
the smallest possible deformation of the beads during the sintering process, see
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also Ref. [71]. Since the used glass beads showed an almost ideal spherical shape
before sintering, the non-sphericity determined from the µXRCT analysis can be
used to quantify the deformation degree of the beads as result of sintering. The
sphericity describes how spherical an object is and is defined as the ratio of the
surface area of a sphere with the same volume as the given particle to the surface
area of the particle itself:

ψs = π
1
3 (6 Vp) 2

3

Ap
, (2.13)

where Vp and Ap describe the (voxel-based) volume and surface area of the given
particle. The sphericity of an ideal sphere is 1, whereas for non-spherical parti-
cles, the sphericity is ψs < 1, such that 1 − ψs quantifies the non-sphericity.
The produced cylindrical samples have bulk diameters of 30 and 50 mm, and the
lengths of the specimens are 50 mm. Figure 2.1 (left) shows the experimental sin-
tering set-up for the glass beads. The sintering of the glass beads is performed in
a tubular furnace with heat power of 0.7 kW and a nominal target temperature
of 1000◦ C under atmospheric conditions. The induction furnace is equipped
with three programmable temperature controllers (type West 5010) regulating
the inner temperature at three different furnace zones. The temperature progres-
sion within the furnace is monitored continually at five different places during
the sintering process using thermocouples (type K), see Figure 2.1 (left). The
measured temperature curves are depicted in Figure 2.1 (right). The glass beads
are filled in a quartz glass cylinder (with inner diameters of approximately 30
and 50 mm) and completely enclosed with graphite paper. The melting temper-
ature of the quartz glass cylinder is around 1713 ◦C and thus certainly higher
than the deformation temperature of the glass beads (≈ 690◦ C). The graphite
paper prevents an adhesion or sticking between the beads and the cylinder. The
glass beads are manually shaken prior to sintering to reach the closest glass bead
packing. The samples are subsequently loaded from the top with different masses
ranging between 100 and 300 g corresponding to pressures of 1.39 kN/m2 and
4.16 kN/m2 for samples with 30 mm diameter or 0.50 kN/m2 and 1.50 kN/m2 for
samples with 50 mm diameter, respectively. As can be seen in Figure 2.1 (right)
the glass beads are heated up with a constant temperature rate of 300◦C per hour
until the required sintering temperature of 695◦ C is reached. Holding the beads
at this temperature for approximately 2.5 hours, the specimen is finally cooled
down in an uncontrolled manner by switching off the furnace, cf. temperature
curve at position 3 in Figure 2.1 (right). Since the prepared samples are placed
centrally in the furnace, only the temperature curve at position 3 is of major
relevance. The preprogrammed target temperature of 695◦ C in the outer zones
(position 1 and 5) is not reached due to large heat losses at the top and bottom
of the furnace whereas the target temperature at positions 2 and 4 is reached,
but delayed by approximately 1-2 hours.



2.4. EXPERIMENTS 17

Table 2.1: Material parameters and characteristic particle diameters of the in-
vestigated glass beads.

Material de-
scription

Diameter[1] D10[2] D50[2] D90[2] D[4,3][2] D[3,2][2]

[mm] [µm] [µm] [µm] [µm] [µm]

Minibeads[A] 0.4-0.6 388 519 696 532 505
0.6-0.8 507 683 916 702 666

Minibeads[B] 0.8-1.0 646 883 1222 915 862
1.0-1.2 766 1045 1415 1073 1016

Glass Beads
Q1[C]

1.5-2.0 857 1190 1581 1209 1143

2.0-2.5 - - - - -
“Diamond”
Pearls[D]

3.0 (± 0.2) - - - - -

Chemical Composition [wt%]:
[A]: 70-74 SiO2, 10-15 Na2O, 7-11 CaO, 3-5 MgO, 0.5-2 Al2O3
[B]: 60-70 SiO2, 12-18 Na2O, 15-20 CaO, 1-4 MgO, 1-5 Al2O3, 1.4 MgO, <0.1
Fe2O3
[C]: 72.3 SiO2, 14.3 Na2O, 7.5 CaO, 1.4 MgO, 2.4 Al2O3, 1.4 MgO, <0.1 Fe2O3
[D]: 61-67 SiO2, 10-18 Na2O, 5-10 CaO, 0.5-3 MgO, 3-8 Al2O3, 0.5-3 MgO, 1-5
B2O3
[1] manufacturer information, [2] obtained from laser granulometry measurement
(for description of the characteristic diameters see Ref. [9, 10])

Depending on the chemical composition, bead diameter, dead loads of the used
masses and sintering duration, the initial heights of the untreated specimens
shrink by 1 to 5 mm. After sintering the samples are cut by a diamond disc to
the desired length of 50 mm.

2.4.2 Permeability measurement set-up
Technical requirements on precise hydraulical measurements are very high [29,
50, 52]. Therefore, an elaborate setup is built for the stationary permeability
measurements, to guarantee proper comparability between numerical and ex-
perimental permeabilities, see Figure 2.2 (left). To minimize the content of air
bubbles and to guarantee for reproducible experimental results, use is made of
filtered and de-aired water. For this purpose, the water is mechanically filtered
in various filter stages until reaching a degassing tank, where the filtered water
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Figure 2.1: Experimental arrangement for sintering (left) and measured temper-
ature curves at five different furnace zones (right).

is de-aired.
The measuring cell including the hose connections are rinsed with carbon dioxide
before the cell is flooded with filtered and de-aired water. The carbon dioxide
easily dissolves in water. In this way, the content of air bubbles in the cell is
minimized and an optimal water saturation of the sample is achieved.
The stationary permeability experiments are performed by controlling the volu-
metrical flux through the pressure regulator of the degassing tank. During the
permeability measurements, the volume flux is stepwise increased by increasing
the inertial pressure of the degassing tank through a pressure regulator, cf. and
Figure 2.3 (left). The pressure regulator ensures that the atmospheric pressure in
the degassing tank remains constant. In this manner, different measuring ranges
for fluid flux and pressure difference are driven to determine the intrinsic perme-
ability of the produced sintered specimens, see Figure 2.3. The measured values
for pressure difference and fluid flux are continuously recorded (digital data ac-
quisition, sampling rate 0.5 Hz) during each measurement and subsequently sent
to a computer. Depending on the porosity and glass bead diameter of the sin-
tered specimens, different fluid fluxes ranging between 30 and 245 ml/min. are
observed. With these volume flows pressure differences up to 35 mbar can be
generated. For each measurement the water temperature is measured and found
to be in the narrow range of 20◦ C< T <22◦.
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Figure 2.2: Experimental set up for stationary permeability experiments (left)
and detailed construction drawing of the multi-task measuring cell in mode for
permeability measurements (right).
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Figure 2.3: Stepwise increase of flow rate Qz and differential pressure ∆p caused
by viscous fluid flow through the sintered glass beads sample in dependence of
measuring time t.
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2.4.3 Measuring Cell
The developed measuring cell has been designed according to a modular concept
in order to use it in various applications. Figure 2.2 (right) shows an illustration
of the measuring cell in operating mode for stationary permeability measure-
ments.
It consists of an inner and outer cylinder. The inner cylinder is made of an acrylic
glass (PMMA) and produced in various sizes, whereas the outer cylinder is made
of aluminium (AlCu4PbMgMn alloy) to stabilize the measuring cell. As can be
seen from Figure 2.2 (right), the sintered sample is positioned at the center of
the cell and pneumatically fixed by a specially developed specimen holder coated
with a 1mm-thick latex membrane. During flow measurements a static air pres-
sure on the latex membrane is applied which fixes the specimen in the current
position and prevents a surrounding fluid flow. At the same time, the latex mem-
brane ensures a hermetically sealing off the measuring cell to the outside. The
pressure difference, mainly resulting from the viscous friction of the fluid passing
through the porous sintered sample, can be taken via the upper and lower pres-
sure port and measured by a high-precision differential pressure transducer (type
FDW2JA, ALTHEN, Germany) capturing differential pressures up to 35 mbar
(with an accuracy of 0.25 %).

2.5 µXRCT data processing
µXRCT data processing is a crucial step towards understanding of fluid flow
through complex morphologies like sintered glass beads. It is a important tool
for visualization and quantification of parameters, such as porosity, tortuosity
or pore throats, determining the hydraulical conductivity of a porous medium
[145, 190, 191]. The correct procedure of the µXRCT-data including an adequate
filtering and thresholding method is essential for a proper comparison between
experimental and numerical determined permeabilities [86, 197].
The XRCT device used for imaging of the sintered samples is a ’nanotom 180’ de-
vice provided by the petrophysics laboratory at the Leibniz Institute for Applied
Geophysics in Hannover, Germany. The device is equipped with a special water-
cooled nanofocus X-ray tube with a maximum 180 kV and 15 W. The minimal
focus size is about 0.6 µm, which results in a detail detectability of 0.2 µm [75].
The measurement parameters for the investigated scans are 107 kV and 200 µA.
XRCT images at 900 angles on 360◦ are performed with an integration time of
10 x 0.1 seconds per angle. The initial voxel resolution of the XRCT scans is 16
µm and remained constant during the whole µXRCT data processing.
Figure 2.4 (right) shows the main image processing steps. Starting from raw data,
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Figure 2.4: (Left) Computational domain in LB simulations consisting of a porous
glass bead sample and the two fluid chambers denoted as in-and output. The
fluid is accelerated upwards in the acceleration zone at bottom. (Right) Process
flow chart used for extracting influence parameters and quantities determining
the hydraulical properties of the sintered glass bead samples from CT-data.

the image file is filtered in several stages until the desired gray scale distribution
is reached. For better visualization of the filter effect, Figure 2.5 demonstrates
exemplarily the filtering procedure on the basis of slices applied onto the original
raw data with the corresponding gray-scale value distribution. For the sake of
clarity, during filtering the image is interpreted and processed as a 3-dim volume
, and the gray-values of each voxel are numbers of decimals obtained from 16-bit
binary representation of the gray level. In the initial state (state A), the gray-
scale distribution of the raw data show two peaks which can be clearly attributed
to the pore space and the glass beads. Starting from the original raw data a sim-
ple logical operator with the so-called “arithmetic” module is applied to remove
bright spots from the image file. These bright spots highlighted by a red circle in
state A are caused by density fluctuations and chemical impurities of the beads
and can be clearly assigned to greater gray-scale values. In the first filtering step,
the gray values belonging to these bright spots are lowered artificially by setting a
defined maximum threshold for gray-scale values. As highlighted in the example,
a maximum threshold of 26818 is used, cf. Figure 2.5 B).
Since the gray-scale values belonging to the glass beads and pore space overlap
due to their wide distributions, the segmentation procedure becomes difficult.
Therefore, in the second step of the filtering procedure the so-called “delineate”
filter is applied to enhance the edges of the glass beads and to adjust the contrast
between the pore space and the glass beads. Local changes in intensity of gray-
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scale values constitute a common issue during segmentation. The “delineate”
filter, which is based on a phase contrast method, can detect sharp transitions
between different phases to finally enhance and contrast the edge of an object to
be segmented. As a result, the gray-scale distributions between the glass beads
and the pore space are clearly separated from each other (state C), which sim-
plifies the further separation of the glass beads from the pore space.
In the last step, the “median” filter is applied to denoise and smooth the image
data. This filter uses morphological operators to set the gray-scale value of a voxel
to the median for a defined neighborhood [157]. The gray-scale value distribution
from state C is changed only slightly compared to the distribution in state D. Be-
cause of the high data quality, which comprises also the high gray-scale contrast
between pore space and solid matrix, there is no need to use the so-called “non-
local means” filter, which is commonly used to denoise image data especially at
the edge of an object to be segmented [32, 33, 86]. The algorithm of this filter
compares the neighborhood of a voxel in a given search window with neighbors of
the current voxel. A weight is determined from the similarity between the neigh-
bors, with which the values of the voxel value in the search window will influence
the new value of the current voxel. The final weight result by applying a Gaussian
kernel to the similarity values [32, 33]. In accordance with the process flow chart
shown in Figure 2.4 (right), the filtered gray-scale image data is thresholded to
generate a binary map. The threshold is selected manually for each sample in a
way that the solid glass beads are assigned to values of unity and the pore space
voxels are set to zero. For the determination of porosity and visualization of the
pore space the binarized image data is inverted. In the following step, the module
“axis connectivity” is used to create a binary image containing all path linking
planes. Subsequently, the so-called centroid path tortuosity module is applied
to the inverted and binarized image data to determine the geometrical tortu-
osity, cf. Figure 2.13. This module allows the computation of the tortuosity of
a path according to Equation (2.7) which is formed by the centroids of each plane.

Particle size distribution

For the determination of the particle size distribution, the segmented glass beads
are separated using a high-level combination of watershed, distance transform
and numerical reconstruction algorithms. After separation, the segmented beads
are numerated with the “labeling” module. In this module, each voxel of the
same object is assigned to the same value, and each object gets a different value.
Based on the labeled system a quantitative analysis is performed to determine
specific parameters, like surface area, volume or volume-equivalent diameter of
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Figure 2.5: Illustration of the applied multistage filtering process using slice
images with 1024 x 1024 pixels: A.) Untreated raw µCT scan data B.) after
removing bright spots, C.) after applying the “delineate” filter D.) after applying
the “median” filter. The corresponding gray value distributions of the images
after each filter step are shown below in the respective panels. The vertical axis
is logarithmic and gives the probability of occurrence of the gray values, while
the horizontal axis represents the gray value of a voxel.
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Table 2.2: Comparison of characteristic parameters from particle number distri-
butions gained from µm-CT and laser granulometry.

Unit 256 voxel

cube

512 voxel

cube

1024 voxel

cube

Initial

cuboid

Laser

granulom-

etry

Number of

particles N
[ - ] 705 5,144 39,290 78,375 -

Arithmetic

mean value

�dp�

[µm] 383.33 499.59 499.59 499.59 464.88

Standard

deviation

σdp

[µm] 216.74 286.06 286.06 286.06 326.78

each particle object. The particle diameter dp is computed by

dp = 3

�
6 Vp

π
, (2.14)

where Vp is the voxel-based volume of the particle. As a result, Figure 2.6 shows
(from state A to C) the volume rendered sample in the form of a cuboid with
the dimensions 1024 x 1024 x 2048 voxel3 in the raw, and the segmented and la-
beled state. In the labeled state different colors are used to distinguish optically
between the identified glass particles. It should be stated, that the coloring of
the particles occurs randomly. After a certain number of beads the coloring is
repeated and the same colors are assigned again to different identified objects.
The initial cuboid shown in Figure 2.6 contains more than 78,000 particles with
diameters ranging mostly between 0.4 and 0.6 mm. The corresponding particle
number distributions of the initial cuboid and different sized subsets taken from
the initial cuboid are depicted in Figure 2.6 (D). For all investigated subsets a
monomodal distribution with maximum around 500 µm occurs, which confirms
the representativeness of the investigated subsets, except for the smallest one.
For comparison, the particle number distribution obtained from laser granulome-
try measurement (Mastersizer 2000, Malvern Instruments Ltd.) before sintering
the glass beads shows a broader distribution of the particle diameters compared
to the distributions gained from the µXRCT data. The characteristic particle di-
ameters obtained by laser granulometry measurements of all investigated samples
are summarized in Table 2.1, and the arithmetic mean values and the standard
deviations of the particle number distributions shown in Figure 2.6 (D) are given
in Table 2.2.
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Pore throat determination

A decisive factor, which determines the intrinsic permeability in granular porous
systems is the pore throat area. Micro tomographic imaging techniques enable
to localize, visualize and quantify such determining areas.
Therefore, Figure 2.7 (top) illustrates exemplarily the main image processing
steps for determination of pore throats using a 256 voxel-sided cube showing
glass bead diameters between 2.0 and 2.5 mm. Starting from the filtered grayscale
image the glass beads are binarized by using the tool of interactive thresholding.
Hereby each voxel is assigned to a value of one (solid) or zero (void) by defining a
threshold grayscale value as described in the previous section 2.5. In the following
step the segmented glass beads are inverted to determine the pore space of the
cube. After inversion the segmented pore space are separated in various pore
voids by using the tool of “binseparate”. This module computes the watershed
lines of a binary image. In the separation process voxels with at least one common
edge are considered as connected and the separation takes place at the narrowest
places of the pore space. In the next step, the separated pore space is deducted
from the untreated pore space, in order to determine the split planes, which also
represent the pore throat areas. After labeling typical pore throat areas formed
by three or four particles result, see Figure 2.7 (bottom). From the computed
pore throat areas an equivalent pore throat diameter

dpt =
�

4 Apt

π
(2.15)

is determined, whereby Apt represents the pore throat area.

2.6 Results and discussion

In this section the results of the determining parameters of the intrinsic perme-
ability, described in previous sections, obtained from µXRCT analysis and LB
simulations are presented successively, discussed and compared with experimen-
tal results. Moreover, the dependency of the intrinsic permeability on different
parameters and on the localizations and sizes of the investigated subsets are an-
alyzed qualitatively and quantitatively.
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Figure 2.6: Volume rendering of the 3D initial cuboid with the dimensions
1024 x 1024 x 2048 voxel3, whereby the voxel resolution is 16 µm. The illus-
tration on top-left shows the initial cuboid before segmentation in the raw state
A. State B represent the binarized 3D image after segmentation and state C
shows the separated and labeled system used for determination of the particle
number distribution. In panel D., the resulting particle number distributions of
differently sized subsets taken from different positions of the entire scanned region
in comparison with measurement data obtained from laser granulometry are pre-
sented. The initial cuboid contains 78,375 particles, while the other distributions
are based on less particles as given in the inset.
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Figure 2.7: (Top) Illustration of main image processing steps for visualization
and quantification of pore throat areas in AVIZO 8.0.1. (Bottom) Resulting
pore throat areas in a slightly polydisperse sintered glass bead packing and the
principle for determining equivalent pore throat diameter is shown below.
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Figure 2.8: Local distribution of numerically determined porosity and perme-
ability values of subsets with edge lengths of 256 voxels within the initial cuboid
with dimensions of 1024 x 1024 x 2048 voxel3. The conventional representative
volume element (RVE) analysis for porosity and permeability are shown below.
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Figure 2.9: (Left) Local intrinsic permeabilities of different subsets showing par-
ticle diameter between 0.4 and 0.6 mm as a function of porosity. (Right) Normal-
ized permeabilities of differently sized subsets (with maximum edge lengths of �
- 256 voxel, � - 512 voxel, � - 1024 voxel, � - 2048 voxel) from LB simulations
and predicted values according to Kozeny-Carman in dependence of their poros-
ity values. The blue curve represents the best fit, whereby the Kozeny-Carman
constant c1 is used as the only fitting parameter.
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Figure 2.10: Numerically and experimentally determined porosity (left) and per-
meability (right) for sintered glass bead samples from different particle diameters.
The experimentally determined permeability results represent the average value
of five to eight independent measurements with the error bar representing the
standard deviation of the measurements. The numerical results are obtained
from subsets of 1024 voxel-sided cubes. The largest deviation between numeri-
cal and experimental permeabilities is observed for the glass bead sample with
diameter 3.0 mm. In this case, the representativeness of the investigated subset
is not sufficient.
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Figure 2.11: (Left) Filter velocity Qz/A as a function of pressure drop ∆p/l
normalized by the real fluid viscosity µfR. The permeability measurements are
repeated 8 times for the sintered glass bead with diameters between 0.4 and
0.8 mm. The almost linear relationship between the filter velocity and the nor-
malized pressure drop confirms the applicability of Darcy’s law and the stability of
the experimental setup in a broader range of pressure gradients. (Right)Intrinsic
permeability in dependence of test duration t. The intrinsic permeabilities of
the different measurements show an almost constant behavior in dependence on
the test duration for different volume fluxes. The small fluctuations are caused
by uncertainties of the measuring equipment. For the sake of clarity, only each
150th measuring point in both figures is plotted.
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2.6.1 Porosity and Permeability

Figure 2.8 illustrates the numerical results of porosity and permeability values
of extracted subsets with edge lengths of 256 voxel in each spatial direction ob-
tained from µXRCT analysis of the sintered sample with bead diameters ranging
between 0.4 and 0.6 mm. In total, 4 x 4 x 8 = 128 cubes are investigated
in terms of porosity and intrinsic permeability. After evaluating the porosity
and permeability values of the extracted subsets, the cubes with edge lengths
of 256 voxels are arranged in compliance with their spatial coordinates within
the initial cuboid depicted in Figure 2.6. For both, the porosity and permeabil-
ity, a clear gradient with sample height can be observed. The permeability and
porosity decrease with increasing depth due to the gravitational forces acting
on the beads during sintering. The porosities vary only between 0.32 and 0.39,
whereas the permeability fluctuations within the initial cuboid are considerably
higher (1.29x10−10 −2.75x10−10 m2,), cf. Figure 2.8. In comparison, the effective
porosity of the cylindrical specimen is experimentally determined from the bulk
and bead densities by

φ0 = 1 − ρs

ρsR
= 37.72 %, (2.16)

whereby the ρs and ρsR represent the bulk density and the effective true density
of the beads, which the sintered sample is composed of. The experimentally de-
termined effective porosity value lies within the porosity range determined from
the segmentation of 256 voxel-sided cubes. The differences between experimen-
tally determined porosities and voxel-based local porosities result especially from
the spatial porosity gradient across sample height z. Since the phase-contrast
between the porous skeleton composed of sintered glass beads and pore space is
high, the influence of the segmentation procedure on the voxel-based porosity is
assessed to be negligibly small. The permeability values at the top of the initial
cuboid are more than twice greater than the permeabilities in the lower regions
of the initial cuboid. The higher permeability fluctuations are confirmed in the
conventional RVE analysis as shown in Figure 2.8 (bottom). The illustrations in
Figure 2.8 (bottom) show the RVE analysis for porosity and permeability of dif-
ferently sized subsets taken from the initial cuboid. Due to the varying degrees of
fluctuations of porosity and permeability, the relative standard deviations related
to the arithmetic mean value seem to be a sensible quantity to investigate the ef-
fect of the size of RVE edges. The percentage values in Figure 2.8 (bottom) show
the relative standard deviations relative to the arithmetic mean values of the per-
meabilities being considerably higher than those of the porosities. For example,
the standard deviation of porosity for cubes with edge length 256 voxel is only
about 5 %, while the standard deviation of permeability is significantly higher at
17.77 %. This indicates that the permeability in general is more sensitive to the



32 CHAPTER 2. STATIONARY HYADRAULIC PROPERTIES

size of the representative volume element than the porosity. Furthermore, the
findings from the RVE analysis confirm that the mean values for porosity and
permeability are (almost) identical to that of the initial cuboid with dimensions
of 1024 x 1024 x 2048 voxel3. A consequence of this result is that, either a few
calculations of smaller sided cubes with low costs and computation time require-
ments can be performed or one cost intensive calculation on the initial cuboid
with approximately 78,300 particles can be carried out.

Figure 2.9 (left) shows the permeabilities of the subsets as function of their porosi-
ties, for three different theoretical estimates, increasing according to Kozeny-
Carman 1. Figure 2.9 (right) shows the intrinsic permeabilities normalized by
the square of the mean particle diameter, confirming the non-linearly increasing
trend of the intrinsic permeability with increasing porosity. The colored data
points in Figure 2.9 (left) represent the predictions according to the Kozeny-
Carman model, c.f. Equation (2.3), whereby the arithmetic (red), harmonic
(blue) and effective (black) diameter according to Equation (2.4) from the par-
ticle size distribution are used as representative values to predict the permeabil-
ities of the differently sized subsets. The permeabilities determined from the
lattice Boltzmann simulations (open data points) and the predictions according
to Kozeny-Carman using the arithmetic mean diameter show a similar increasing
trend, whereby the numerically determined permeabilities are higher by a factor
of approximately 1.3. The permeability predictions according to Kozeny-Carman
using the harmonic or effective diameter according to Equation (2.4) (blue and
black data points) show stronger fluctuations and clearly underestimate the nu-
merically determined permeabilities. Fitting the predicted permeability values
depicted in red into numerical results by using the empirical constant c1 as fit
parameter, yields a value of 131, see Figure 2.9 (right). This constant contains
and reflects the effect of the microstructure (particle shape, tortuosity) as a result
of the sintering process on the intrinsic permeability of the glass bead samples.

Besides the porosity analysis on differently sized cubes extracted from different
regions of the entire scanned region, subvolumes in the form of tubes with varying
mean cross-section diameters are segmented to investigate the porosity distribu-
tion across the cross-section of the cylindrical sintered samples, cf. Figure 2.12
(state C). To guarantee the investigation of meaningful representative volume
elements, the pipe thickness is chosen as 3 mm, which is equivalent to 187.5 vox-
els. Figure 2.12 (D.) shows the resulting porosity distribution in dependence on
the mean pipe cross-section radius of the investigated specimens showing differ-
ent glass bead diameters and degree of polydispersity. Starting from the center
of the investigated samples, the porosities remain relatively constant up to a

1with second and third power of porosity
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Figure 2.12: Cross section view of sintered specimen with glass bead diameter
between 0.4 and 0.6 mm: A.) Raw data, B.) after filtering C.) after segmentation
of tubes with different mean radii, and D.) porosity in dependence on the mean
radial distance of the pipe cross-section from the center for different specimens
featuring different glass bead diameters and degrees of polydispersity.
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mean cross-section radii of 11.5 mm and then increase to higher porosities for
the largest investigated pipes in the external area of the produced samples. In
these outer zones a clear increase of the porosity values for investigated samples
can be seen due to the different contact between beads and cylinder wall during
the sintering procedure and the gaps remaining between particles and walls. The
clear porosity increase on the edges of the sintered samples is a consequence of
the sintering procedure caused mainly by the presents of the walls.

Figure 2.11 summarizes the experimental results from permeability measurements
for a sintered sample with bulk diameter of 30 mm showing glass bead diameter
between 0.4 and 0.6 mm. The measurements are repeated eight times in order
to attain mean reliable results and understand the variation and reproducibility.
The almost linear relationship between the filter velocity Qz/A, and the pressure
drop ∆p/l, depicted in Figure 2.11 (left), and the nearly constant values of the
effective intrinsic permeability ks

z over the test duration t, shown in Figure 2.11
(right), confirm the applicability of Darcy’s law (2.1) and that the permeability
measurements have taken place in the laminar Darcy regime. The measurement
of water flow and pressure difference is captured with a sample frequency of
0.5 Hz. For the sake of clarity, only each 150th measuring point is plotted in
both figures. The intrinsic permeability of each measurement is determined from
the slope of the linear regression lines, cf. Figure 2.11 (right). For the sintered
sample with bead diameters ranging between 0.4 and 0.6 mm, a mean effective
permeability of ks

z = 9.87x10−11 ± ∆1.65x10−11 m2 is determined.

The bar diagrams in Figure 2.10 show a direct comparison between experi-
mentally and numerically determined porosities and permeabilities of the investi-
gated samples with different glass bead diameters and degrees of polydispersity.
The numerical porosity and permeability results, represented by black bars, are
obtained from 1024 voxel-sided cubes taken from the center part of the entire
scanned regions of the samples and used in LB simulations. The effective per-
meability results obtained from laboratory experiments, represented by white
bars, are averaged values from 5 (or 8) independent permeability measurements,
whereby 10 to 15 different measuring ranges for volume fluxes and pressure dif-
ferences are run during each measurement, cf. Figure 2.3. While the porosity
values show a good agreement, the permeability results show much larger non-
systematic deviations. It should be noticed that small deviations in porosity and
particle size can lead to significant deviations in permeabilities due their exponen-
tial influence, see Equation (2.3). Furthermore, it can be seen from Figure 2.10
(right) that the error bars in experimental permeability determinations are small
compared to their averaged values, which indicates high reliability, repeatability
and robustness of the used experimental permeability setup.
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Moreover, the good agreement between voxel-based local and experimental de-
termined global porosity values of the investigated different sintered samples in
Figure 2.10 (left) proves the correctness of the filtering and segmentation pro-
cedure despite the underlying porosity gradient across the sample height. A
proper filtering and segmentation procedure is surely essential for subsequent
permeability simulations. Incorrect porosity determination during segmentation
procedure can lead to substantial errors in permeability calculations, see Equa-
tion (2.3). In this context sintered glass bead samples as simple replacement
material for natural sandstones are suitable to set a benchmark for permeability
calculations. Taking into account the porosity and permeability gradients with
the sample height, the deviations between experimental and numerical results
is insignificant. The maximum deviation factor of 2.4 that is obtained for glass
bead diameters of 3.0 mm due to low representativity of the investigated subset
is quite reasonable.
From the RVE analysis, we have come to the important conclusion that the aver-
age value for porosity and permeability of smaller sided cubes is (almost) identical
to results obtained from the initial cuboid, cf. Figure 2.8. We have found out
that the averaged values for permeability are almost equal independent from the
size of the investigated subsets.
Furthermore, it became clear that a proper porosity determination from XRCT
images is essential for numerical permeability calculations. A systematic error,
for instance, during the filtering and segmentation procedure, can contribute to
changes in porosity and morphology of the porous matrix, and therefore cause
exponential errors in permeability calculations. If we are able to correct system-
atic errors during image processing, we obtain accurate permeability values and
the trend in permeability is reproduced correctly, cf. Figure 2.9.

2.6.2 Tortuosity
Figure 2.13 (right) shows the distribution of the so-called Centroid Path Tortuos-
ity within the initial cuboid according to Equation (2.7) determined from 2-dim
slices of the XRCT data, see also Figure 2.13 (left) and Equation (2.7). It should
be noted that tortuosity used in this study is a purely geometrical quantity,
which is independent from the Re number. The problem of multiple definitions
for tortuosity, which resulted in different findings, especially in the research field
of poroacoustics, is reported in [47]. In contrast to the spatial porosity and per-
meability distributions, the (geometrical) tortuosity shows no significant vertical
gradient with the sample height. The geometrical tortuosity ranges from 1.28
to 1.72 within the initial cuboid. Carman himself has estimated the hydraulic
tortuosity of non-sintered glass beads at Thydr =

√
2 by injecting a dye into the

sample [40, 51]. The tortuosity value determined by Carman lies therefore within
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the tortuosity range determined from 2-dim slices of 256 voxel-sided cubes.
Low values of tortuosity indicating less winded fluid paths are especially located
at the top and bottom of the cuboid. Low tortuosity values in upper regions
are caused by low porosity values, whereas low tortuosity values in deeper layers
results from the higher connectivity of the pore channels. It might be quite pos-
sible that higher densification of the sample in deeper layers due to gravitational
effects has lead to an increase of the coordination number of the glass particles
positioned in lower regions, and simultaneously to an higher connectivity of pore
channels. The higher mean coordination of the 256 voxel-sided cubes located at
the bottom of the initial cuboid also reduces the tortuosity of the investigated
cubes, since there is an increase in the number of available pathways from each
glass beads to its neighbors. The increase in the number of available pathways
has increased the possibility of connections which are closer to a straight path
between two points. Similar observations were recently made in the investigation
of the geometrical tortuosity in sphere and ellipsoid packings by Stenzel et al.
[174]. It can be assumed that the determined tortuosity values depend besides
porosity also from the mean coordination number of the investigated subsets.
However, the (geometrical) tortuosity is not decisive for the numerical intrinsic
permeabilities of the investigated subsets, rather, they are determined by the
sizes pore spaces, pore throats and porosities, cf. subsection 2.6.1 Porosity and
Permeability and subsection 2.6.4 Pore throats. The independence of the intrin-
sic permeability from the geometrical tortuosity is also confirmed in Figure 2.14
(right). In addition to the permeability, there is also no correlation between poros-
ity and geometrical tortuosity, see Figure 2.14 (left). It can be noticed, that the
computed tortuosities obtained from the µXRCT data analysis are overestimated
by theoretical predictions according to Berryman [21, 193], cf. Equation (2.6).
It can be clearly seen that the Berryman model is not sufficient to describe the
tortuosity in sintered glass beads packages. For a more sophisticated model, the
sintering effects and the associated increase of the pore channel connectivity due
to densification of the green body have to be taken into account.

2.6.3 Sphericity and specific surface area
Figure 2.15 (top left) illustrates the spatial local distribution of mean sphericity,
defined in Equation (2.13) and obtained from particles in 256 voxel-sided cubes
within the initial cuboid. It can be seen that smaller sphericity values indicating
larger deformations can be found in deeper layers due to the gravitational effects.
Figure 2.15 (bottom left) shows the sphericity distribution after sintering within
the initial cuboid containing approximately 78,300 particles. Most of the particles
show sphericity around 0.96. The sphericity values near 1 and the relative high
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Figure 2.13: Method of determining the so-called centroid path tortuosity from
binarized 2D slices of the CT image (left). Distribution of tortuosity within the
initial cuboid with the dimensions of 1024 x 1024 x 2200 voxel3. The geometrical
tortuosities are determined from cubes with dimensions 256 voxels in each spatial
direction and assigned according to their spatial coordinates (left).
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porosity around 35% indicate that the microstructure of the produced samples is
predominantly formed in the first and intermediate sintering stage where point
contacts between the glass beads dominate.
Moreover, the distribution of the relative standard deviation of the specific volume-
based surface area related to the minimum specific surface obtained from the
equivalent particle diameter shows a peak at only 3.7%, cf. Figure 2.15 (bottom
right). These factors indicate that the sintered glass beads have not lost much of
their original spherical shape and the sphere-based Kozeny-Carman equation can
be applied to predict the intrinsic permeability of the sintered glass bead packing.
Sphericity values ψs <0.9 and relative standard deviations of the specific surface
area Sv − Sv,min/Sv,min >8% can be clearly assigned to glass beads which are
positioned in the outer regions of the initial cuboid.
The mean specific surface area gained from 256 voxel-sided cubes decreases from
top to bottom like the intrinsic permeability, cf. Kozeny-Carman Equation (2.2)
and Figure 2.15 (top right). The lower values of the mean specific surface in
deeper layers is caused by the higher densification of the sample due to gravita-
tional effects. The porosity decrease towards deeper layers and the decrease of
the specific surface area lead to lower permeabilities in deeper regions.

2.6.4 Pore throats
In addition to porosity, specific volume-based surface area, sphericity and par-
ticle size, the intrinsic permeability in sintered glass samples is also affected by
pore throats [175]. The strong influence of pore throats in simple pore systems,
consisting of cylinder pores, on the intrinsic permeability can be derived ana-
lytically, cf. Ref. [116]. Numerous statistical models for determination of pore
throat distribution from particle size distributions of granular packings exist, cf.
Ref. [90, 158, 178]. However, the applied models are often inaccurate to deter-
mine the constriction size distribution. In addition, the direct link to the intrinsic
permeability is missing. Furthermore, the influence of the sintering process re-
mains unconsidered. In such cases, the µXRCT analysis provide an efficient tool
for visualization and quantification of pore throat areas and to investigate their
impact on the intrinsic permeability [177]. Therefore, this section presents a sim-
ple methodology for the determination of the pore throat areas from µXRCT
data. Moreover, the correlations between the mean pore throat diameter �dpt�,
the porosity φ0 and the numerical determined intrinsic permeabilities are inves-
tigated in detail.

Figure 2.16 (left) illustrates the local distribution of mean pore throat diameter
from 256 voxel-sided cubes within the cuboid. The normalized pore throat distri-
bution gained from the initial cuboid in Figure 2.16 (right) depicted in red shows
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Figure 2.15: Local distribution of numerical determined mean sphericity and
specific surface values of subsets with edge lengths of 256 voxels within the initial
cube. Distributions for sphericity and relative standard deviation of specific
surface related to the minimum specific surface obtained from equivalent particle
diameter are shown below (red curves). The corresponding cumulative curves are
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Figure 2.16: Local spatial distribution of mean pore throat diameter values of
subsets with edge lengths of 256 voxels within the initial cuboid (left). Frequency
distribution for equivalent mean pore throat diameter �dpt� (red curve) and the
corresponding cumulative curve (green curve) (right).

two distinct peaks which can be clearly assigned to pore throat areas formed by
either three or four particles. The larger peak at smaller diameters results from
pore throat areas which are formed by three particles whereas the smaller peak
at larger diameters is due to four-particle-constellations. The probability of oc-
currence of pore throats formed by three particles is certainly higher compared
to pore throat areas resulting from four-particle-constellations. Downscaling to
smaller volume elements (up to 256 voxel-sided cubes) showed qualitatively the
same pore throat distributions. Depending on the degree of polydispersity of the
investigated sample (cf. Table 2.1) and the sintering durations the pore throat
distributions showed different width of the peaks. In accordance with local distri-
butions for porosity and permeability, the equivalent mean pore throat diameter
also shows a spatial gradient along the sample height z, see Figure 2.16 (left),
decreasing from top to bottom about 14 % due to compaction in deeper layers.

The correlation of the permeability, the porosity and the mean pore throat di-
ameter is plotted in Figure 2.17, displaying the porosities φ0 (left) and the nor-
malized intrinsic permeabilities ks

z/�dp�2 (right) of differently sized subsets taken
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Figure 2.17: Porosity (left) and dimensionless permeability (right) in dependence
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Both, the porosity φ0 and normalized intrinsic permeability ks
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dependency on the normalized mean pore throat diameter �dpt�/�dp�.

from the initial cuboid in dependence on their normalized mean pore throat diam-
eters �dpt�/�dp�. For both, the porosity and the normalized permeability a clear
linear dependency on the normalized mean pore throat diameter �dpt�/�dp� can
be seen, with correlation coefficients of the fits of 0.9378 and 0.9675, respectively.
The higher mean pore throat diameters correlating with the higher porosity and
the higher permeability values are located at the top of the investigated cuboid
and decrease towards deeper layers.

2.7 Conclusion
In summary, we have demonstrated that for a comprehensive evaluation of hy-
draulic properties of sintered glass beads a holistic consideration of the material
properties porosity, tortuosity, sphericity, specific surface and pore throats is re-
quired. In this respect, the non-destructive X-ray Computed Tomography is an
efficient tool, which enables the visualization and quantification of internal (mi-
crostructural) parameters including the (voxel-based) morphometry of the porous
sample. The way µXRCT data are processed is crucial. In this study, different
ways have been introduced in order to identify the essential control parameters
for the hydraulical properties of the sintered glass bead systems. The presented
framework can in future be used to evaluate also the hydraulical characteristics
of other kinds of porous media.

The main findings of this study can be summarized as:
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• The intrinsic permeability in sintered granular packings depends not only
on the porosity, but also correlates with the equivalent pore throat mean
diameter.

• The pore throat distributions in slightly polydisperse packings show two
distinct peaks arising from typical three- or four-particle constellations.

• In the given narrow porosity and permeability range, a linear dependency
of the permeability with the equivalent pore throat diameter is observed.

• The quantitative comparison between experimental and numerical perme-
ability values requires a proper filtering and segmentation procedure, and
then leads to good agreement.

For the examined sintered glass bead samples a clear spatial gradient of micro-
scopic porosity, permeability and mean pore throat diameter along the sample
height could be detected as a result of gravitational compaction during sintering.
Local RVE analysis has revealed that the averaged values for porosity and intrin-
sic permeability of smaller sided cubes are (almost) identical to results of larger
subsets obtained from the cuboid. A consequence of this result is that, we can
either perform many cost effective and time-saving computations on small sub-
sets, which are less representative, or compute one cost and time intensive large
subset, which is more representative. For the calculations of effective quantities
new strategies can be developed on the basis of results gained from the RVE
analysis.
From the RVE data, the porosity development across the radial direction was an-
alyzed. A slight increase of porosity at peripheral outer zones could be identified
due to the contacts of the beads with the cylinder wall during sintering. Rota-
tional sintering under pressure-controlled gas atmosphere may eventually lead to
more homogeneous samples avoiding spatial gradients of porosity and permeabil-
ity. Substantial effort is required to produce homogenous samples. In commercial
available sintered samples so-called “raining devices” are used to avoid the sedi-
mentation of the beads. The beads are filled in a copper cylinder and shaked for
consolidation and finally saturated with water. The green compact is sintered
under fixed stress and homogenous temperature distribution within the furnace.
Note that in this case only the center part of the samples is homogenous, which
shows that the production of homogenous samples is in general very challenging.
From the experimental point of view, the presence of air bubbles in the mea-
suring cell poses a big challenge, which can highly affect the measurement of
pressure differences, and thus of the intrinsic permeability. Taking into account
these difficulties, a comparison between numerical and experimental determined
intrinsic permeability values gives us the possibility to better understand the
system. Eventually, we have achieved qualitatively and quantitatively a good
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agreement between experiment, microstructural analysis and numerical simula-
tions.
We have demonstrated through 3-dim LB simulations that a proper filtering and
segmentation procedure during µXRCT analysis is essential for porosity deter-
minations and to obtain accurate permeability results. We have found that an
almost linear correlation between both intrinsic permeability and porosity with
the pore throat equivalent diameter can be observed if systematic errors dur-
ing filtering and segmentation are avoided. Our numerical and experimental
permeabilities are in general agreement with permeability predictions according
Kozeny-Carman, although the validity of the Kozeny-Carman equation is limited
to monodisperse and non-sintered granular packings. In contrast to c1 = 180 for
idealized sphere packings, a value of c1 = 131 for the empirical constant, which
takes into account microstructural effects resulting from the sintering treatment
of the polydisperse glass bead packing, could be determined by fitting the pre-
dicted permeability values to numerical results from LB simulations. Moreover,
sphericity values around 0.95 confirm the low deformation during sintering and
thus, the glass beads have not lost much of their original shape.
We have made the observation that the numerical determined local permeabili-
ties are mainly influenced by pore throats and local porosity values and less by
mean specific surface, tortuosity and mean sphericity.

In this study XRCT structural and permeability analysis have been performed
for several slightly polydisperse sintered glass bead samples with different pri-
mary particle average diameters. The observed micro-macro relations scale with
the average diameters of the rather large particles. Further work is needed to
extend the study towards systems with smaller particles, higher polydispersity
or systems with longer sintering duration time and thus lower porosity. It has
to be seen if the presented approach for the processing of the XRCT data and
the resulting main findings, for instance the linear dependency of the intrinsic
permeability with the pore throats, can be also found in those systems, and in
natural porous materials like sandstone.
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CHAPTER 3

Oscillatory Fluid Flow
through Artificially

Produced Porous Media

An experimental program for so-called pore pressure oscillation test is described
and experimental results for the hydraulic response of fluid-saturated artificial
samples consisting of sintered glass bead packages and synthetic samples consist-
ing of capillary tubes is presented. Frequency-dependent amplitude ratios and
phase differences of the pressure signals are analyzed in order to determine the
frequency-dependent hydraulic properties, such as the dynamic permeability, stor-
age capacity and diffusivity of the produced samples. We show that the pore pres-
sure oscillation test, which is commonly used for “tight” rocks, can be applied
to high-permeable artificially produced samples with permeabilities in the order of
10−13-10−9 m2. The advantages and disadvantages of the pore oscillation method
are shown and discussed.

3.1 Introduction
The hydro-mechanical response of a fully fluid-saturated porous medium to an
oscillatory pressure change is determined by two major factors, namely perme-
ability and storage capacity [150, 168, 169]. While the permeability is a measure
of the ability of the porous sample to pass a fluid, when a pressure gradient be-
tween the ends of sample is applied, the storage capacity is a measure of the fluid
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storage by relating the change in fluid volume and pore pressure present in the
pore space [103, 151, 168]. The storage capacity depends on the hydro-mechanical
response of the fluid-filled porous medium. Both parameters are highly influenced
by the underlying micro- and macrostructure of the porous material. Different
commonly used standard techniques and models for permeability determinations
(e.g. the constant pressure difference method, cf. Figure 3.1), which partially rely
on the measurement of the volumetrical flux and simplifications, are often lim-
ited by certain parameter ranges and accuracy [55, 56, 168]. In this connection,
the applicability of the standard techniques is additionally limited by technical
restrictions of the measuring devices. Problems relating the measuring of the
volumetrical flux of low-permeable rocks [31, 113, 168] or measuring the static
pressure difference of high-permeable materials are reported elsewhere [168].
In this case, the so called pore pressure oscillation method, which is based on
the analysis of sinusoidal pressure signals positioned at the up- and downstream
reservoir of the sample is more than an effective alternative tool to determine
the hydraulic properties of a porous material. An important advantage of the
pore oscillation method is that the pressure development in pore space can be
selectively influenced in terms of amplitude and frequency. In this sense, the pore
oscillation method takes into account the frequency dependence of the measured
hydraulic parameters, wheres the constant pressure method or transient pulse de-
cay tests are insensitive to any frequency dependance of the measured hydraulic
parameters [55].
For comparison Figure 3.1 illustrates simplified sketches of the commonly used
constant pressure difference method for permeability determination (A.) and the
pressure oscillation method (B.). For the pressure oscillation method, a controlled
and fixed-frequency oscillation with a fixed pressure amplitude in the upstream
reservoir is used, which finally results in decayed and phase-shifted pressure oscil-
lation in downstream reservoir after propagating through the porous sample. The
amplitude ratio and the phase difference between the pressure signals of the up-
and downstream reservoir provide information about the hydraulical properties
of the porous sample [102]. In this study, we demonstrate that the pore oscil-
lation method can be applied successfully on high-permeable artificial samples
with macroscopic global permeability values in the order of 10−13-10−9 m2 and
macroscopic porosity values ranging between 0.01 % and 36.79 %. Besides the
investigations of sintered glass bead samples with different glass bead diameters,
synthetic samples with simple pore geometry consisting connected capillary tubes
in series or parallel are tested in pore pressure oscillation tests. The hydraulic
properties of the investigated samples are analyzed in a wide frequency range
between 0.01 and 1000 Hz. In addition to frequency sweeps, amplitude sweeps
tests are performed, in order to assess the influence of non-linearity effects on the
performed pore oscillation tests. Furthermore, different set-up configurations,
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A.) B.)

Figure 3.1: Sketch of different experimental set ups for permeability determi-
nation with corresponding pressure curves: A.) Constant pressure difference
method, B.) Pressure oscillation method.

like the influence of different water levels in the downstream reservoir or sev-
eral valve positions in the downstream reservoir on the pore pressure oscillation
test are shown and discussed. In chapter 3.2 the theoretical and mathematical
framework for dynamic permeability measurements are presented and the dy-
namic permeabilities of the investigated samples are determined according to
the well-known Johnson-Koplik-Dashen-model (JKD model) [95] and discussed.
Moreover, the pressure-diffusion equation for different cases (static, dynamic,
time and frequency domain) is presented and discussed in terms of hydraulic
parameters. In the following chapter 6.3 the experimental set-up for the pore
pressure oscillation is described. Moreover, the experimental results of the inves-
tigated samples are presented and discussed. The final chapter 5.4 contains the
conclusion regarding the application of the pore pressure oscillation method on
high-permeable porous media.

3.2 Theoretical background

3.2.1 Governing set of equations and JKD model
The concept of dynamic behavior of permeability in porous media has already
been described by Biot [24, 25, 27], when he formulated the field equations,
which describe the acoustic wave propagation in fully-saturated poro-elastic me-
dia. Based on Biot’s formulation of the momentum balance of the fluid, which
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is described in terms of primary displacement of the solid and fluid phase, we
obtain according to [172]

ρ12 üs + ρ22 üf − b0 F (u̇s − u̇f ) = Q grad div us + R grad div uf , (3.1)

whereby ρ12 and ρ22 describe the densities of the inertial terms, b0 and F the
damping and correction factor, which characterizes the transition from viscous
dominated flow regime to inertial dominated flow regime. In Equation (3.1) the
elastic coefficients of the bulk medium are introduced by Q and R and the fluid
and solid displacements as us and uf . However, for the introduction of the basic
concept of dynamic permeability in biphasic mixtures, we assume a rigid porous
medium with us = vs = 0, which simplifies Equation (3.1) to

ρ22 üf + b0 F u̇f = R grad div uf (3.2)

Inserting the constitutive relation for the pore pressure

div uf = p0 − p

Kf
(3.3)

and the elastic Biot coefficient

R = φ2 Kf

φ0
with φ0 = φ and mass coefficient ρ22 = α φ0 ρfR (3.4)

leads finally to
α φ0 ρfR

ẇf + b0 F wf = −φ0 grad p, (3.5)

whereby the seepage velocity is introduced as wf = vf − vs = vf . Furthermore,
it is assumed that the effective porosity φ corresponds to initial porosity φ0 due
to assumption of a rigid porous medium. The tortuosity of the pore channels is
described by α. Equation (3.5) demonstrates that the original field Equation (3.1)
is constrained to a purely hydraulical problem.
For the transformation of the time-dependent hydraulic problem to the frequency
domain an harmonic approach for fluid pressure and velocity is used

p(x, ω) = p̂(x, ω) exp(−i ω t) and wf = ŵf (x, ω) exp(−i ω t), (3.6)

with frequency- and location-dependent amplitudes p̂(x, ω) and ŵf (x, ω). Insert-
ing the harmonic approaches for fluid pressure and displacement in Equation (3.6)
and the initial damping factor

b0 = ηfRφ2
0

ks
z

(3.7)
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in Equation (3.5), leads finally to a frequency-dependent solution for the pressure
gradient

− grad p̂ = ηfRφ0
ks

z(ω) ŵf = ηfR

ks
z(ω) q̂ =

�
ηfR φ0

ks
z

F (ω) − i ω α ρfR

�
ŵf (3.8)

with q̂ = Q̂/A as specific volumetric flux normalized to the cross sectional area
of the porous sample and ρfRand ηfR as real density and viscosity of the pore
fluid. In Equation (3.8), the frequency-dependent permeability in flow direction
z is introduced as

kz(ω) = ks
z

F (ω) − i ω α ρfR ks
z

ηfR φ0

(3.9)

Inserting the critical frequency

ωcrit = ηfRφ0
α ρfR ks

z

(3.10)

and the frequency-dependent viscous correction factor as

F (ω) =
�

1 + 0.5 i M
ω

ωcrit
(3.11)

in Equation (3.9), the normalized dynamic permeability can be formulated as

kz(ω)
ks

z

=
��

1 + 0.5 i M
ω

ωcrit
+ i

ω

ωcrit

�−1
, (3.12)

whereby M represents the shape factor of the pores and can be related to hy-
draulic and microstructural parameters as follows

M = 8 α ks
z

φ0Λ2 . (3.13)

In Equation (3.13) Λ is defined as the pore volume to pore surface ratio and
ks

z is the intrinsic permeability of the porous medium. α, ks
z and Λ are inde-

pendently measurable parameters. The shape factor is usually taken as M ≈ 1
[100, 166, 172]. Equation (3.12) is known as the Johnson-Koplik-Dashen model
(JKD model) [95] and is often used to model the dynamic behavior of perme-
ability in porous media. It can be stated out consequently that the dynamic
permeability depends only on four parameters α, ks

z, Λ and φ0, which are well
defined for any porous medium [95]. The critical frequency ωcrit, formulated
in Equation 3.10 separates the viscous-dominated flow regime from the inertial-
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dominated flow regime, which leads to a decrease of the dynamic permeability
kz(ω).

It should be noticed, that the JKD-model in Equation (3.12) takes the classi-
cal form of Darcy’s law for ω → 0 and approaches zero for ω → ∞.

lim
ω→0

F = 1, lim
ω→∞

F = ∞, lim
ω→0

ks
z(ω) = ks

z, lim
ω→∞

ks
z(ω) = 0, (3.14)

According to Johnson et al. [95] the dynamic permeability of a simple porous
sample consisting of a tube with a radius rt and length L, whose axes form an
angle θ with the direction of the applied pressure gradient can be formulated
exactly as followed

kz(ω) = φ0 ηfR

i ω ρfR

�
2 J1(K rt)

Krt J0(K rt)
− 1

�
cos θ, (3.15)

whereby the J0 and J1 are first-type Bessel functions of zero and first order. K is
the shear wave vector and can be expressed in terms of the frequency-dependent
viscous skin depth δ

K = 1 + i

δ
with δ =

�
2 ηfR

ωρfR
(3.16)

as the frequency-dependent viscous skin depth, which approaches zero for ω → ∞.
The corresponding volumetric flow rate through the tube with a length L, which
is imposed on sinusoidally varying pressure drop reads as

Q̂ = π r2
t

i ωρfR

�
2 J1(Krt)

Krt
− 1

�
grad p

L
. (3.17)

The general parameters for the specific case of tube-shaped pores are given by

α = 1
cos θ

, ks
z = 1

8 φ0 r2
t cos θ, Λ = rt. (3.18)

For tube-shaped pore channels with different radii connected in parallel or in
series the general effective parameters for the JKD model [95] are formulated as

ks
z = 1

8φ0
�r4

t �
�r2

t � , α = 1.0 Λ = �r2
t �

�rt�
, M = �r4

t � �rt�2

�r2
t �3 and (3.19)
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Table 3.1: Input parameters for the investigated porous sintered glass bead sam-
ples.

Parameter Unit S1 S2 S3 S4 S5

Particle diameter dp [mm] 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2 3.0
Intr. permeability [A]

k
s
z

[m2] 1.96E-10 4.66E-10 3.19E-10 6.82E-10 1.26E-9

Effect. porosity [B]
φ0 [%] 35.11 36.79 29.48 32.32 22.31

Shape factor M [ - ] 1 1 1 1 1
Tortuosity [C]

α [ - ] 1.46 1.47 1.51 1.56 1.86
Crit. frequency [C]

fc [Hz] 195.14 88.78 97.50 48.42 15.10
[A]: Determined from classical Darcy experiments.
[B]: Determined from bulk density of the produced samples
[C]: Obtained from 1024(x)X1024(y)X2048(z) cuboids extracted from µCT data

ks
z = 1

8
φ0

�r2
t � �r−4

t �
, α = �r2

t � �r−2
t � Λ = �r−2

t �
�r−3

t �
, M = �r−3

t �2

�r−4
t � �r−2

t �
.

(3.20)
The input parameters for the investigated sintered samples and for the syn-
thetic samples consisting of tube-like pore channels used for prediction of the
frequency-dependent permeabilities according to the JKD model are summarized
in Table 3.1 and 3.2.

From Equation (3.12) it can be seen, that the dynamic permeability is complex-
valued. Figures 3.2 and 3.3 show the absolute values (A.), the phases (B.), the
real (C.) and the imaginary part (D.) of the dynamic permeability for the in-
vestigated sintered and synthetic samples, whereby standard values for water as
saturation fluid is used. It can be seen, that the inertial effects appears earlier at
lower frequencies with increasing frequency-dependent intrinsic permeability ks

z.
Figure 3.3 illustrates also that the critical frequency decreases with increasing
diameter of the pore channel. The imaginary part of the dynamic permeabilities,
illustrated in Figures 3.2 (D.) and 3.3 (D.), show distinct peaks at approximately
the critical frequencies, which characterizes the transition from a viscous domi-
nated flow regime to a inertial dominated flow regime.
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Table 3.2: Input parameters for the investigated artificially produced samples
consisting of capillary tubes.

Parameter Unit D1 D2 D3S[A] D4P[A]

Mean tube diameter
dt,mean

[mm] 0.50 0.75 0.625 0.625

Maximum tube diame-
ter dt,max

[mm] 0.50 0.75 0.75 0.75

Minimum tube diame-
ter dt,min

[mm] 0.50 0.75 0.50 0.50

Intr. permeability k
s
z [m2] 7.8125E-13 3.9551E-12 1.3048E-12 4.7363E-12

Effect. porosity [B]
φ0 [%] 1.00E-2 2.55E-2 1.2625E-2 3.25E-2

Shape factor M [ - ] 1 1 0.9715 1
Tortuosity [C]

α [ - ] 1 1 1.1736 1
Crit. frequency [C]

fc [Hz] 20.37 9.05 16.89 10.92
[A]: Series connection of two capillary tubes with different radii of 0.5 and 0.75 mm.
[B]: Parallel connection of two capillary tubes with different radii of 0.5 and 0.75 mm.
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Figure 3.2: Theoretical prediction of the dynamic permeabilities of the investi-
gated sintered samples: A.) Absolute value B.) Phase C.) Real part D.) Imaginary
part.
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Charlaix et al. [44] and Sheng et al. [164] have experimentally investigated
the dynamic permeability in fused and crushed glass beads and sedimentary rocks
and could confirm the prediction of the dynamic permeability according to the
JKD-model. Smeulders et al. [166] and Schoemaker et al. [160, 161] could
confirm the same observations on sand grains and samples consisting of capillary
tubes.
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Figure 3.3: Theoretical prediction of the dynamic permeabilities of the investi-
gated synthetic samples: A.) Absolute value B.) Phase C.) Real part D.) Imagi-
nary part.

However, Equation (3.12) is not sufficient to be used in dynamic permeability or
in so-called pore pressure oscillation experiments, since the dynamic permeability
cannot be directly measured in the experiments. It is determined from the mea-
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sured time-dependent pressures of the up- and downstream reservoir. Therefore,
a determination equation for the dynamic permeability is required, which takes
the measured frequency-dependent pressures at the down- and upstream reser-
voir into account, in addition to the geometrical and initial value problem present
in the experimental set-up. Furthermore, the JKD model does not provide in-
formation, which configuration of the set-up parameters, such as the water level,
valve position or amplitude level for the generation of sinusoidal waves is suit-
able to determine the frequency-dependent hydraulical parameters of the porous
medium. Therefore, the following sections deal with the derivation of adequate
expressions for the dynamic permeability and further frequency-dependent hy-
draulical parameters such as the storage capacity or the diffusivity, which can be
used in harmonic experiments by measuring the pressure signals in the up- and
downstream reservoir.

3.2.2 Derivation of determination equation for the dynamic
permeability in harmonic experiments

Schoemaker et al. [160, 161] has investigated the frequency-dependent perme-
ability and electro-kinetic coupling coefficient in synthetic samples consisting of
capillary tubes and derivated for the comparison of experimental data with the
JKD-model an expression for the dynamic permeability on the basis of the well-
known Darcy’s law

ks
z = φ0 vp

pA−pE

Lp
ηfR

, (3.21)

where Lp is the sample length and vp the averaged fluid velocity in the pore
channels. pE and pA are the pressures at the in- and outlet of the sample. It has
been attempt to formulate an expression for dynamic permeability in dependence
on the measured pressures p1 and p2, cf. Figure 3.7 (B.). Note, that in his
work [160, 161] the measuring cell has been filled up to a certain level, so that
the distance between pressure transducer in the downstream reservoir and water
surface is given by Lw, see Figure 3.7 (B.). For the derivation of the frequency-
dependent permeability, the fluid is assumed to be incompressible and the volume
and viscous forces are neglected, so that the mass- and momentum balances
within the experimental zone, illustrated in Figure 3.7 (B.) can be formulated as

vi Ai = const. and ρfRüf + grad p/Li = 0, (3.22)

where the index i refer to the control area between two stations within the con-
sidered experimental zone and Ai the flowed cross-sectional area. Using the
harmonic approaches for fluid displacement and pressure, formulated in Equa-
tion (3.6), a frequency-dependent expression for the permeability can be formu-
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lated as

kz(ω) = 1
iω

LpδA

Lw

ηfR

ρfR

�
1 + δA

Ls
(z1 + z2) − P̂ us(z, ω)

P̂ ds(z, ω)

�−1

, (3.23)

where δA = (Ap − At)/Ap describes the reduction of the cross-section due to the
presence of the pressure transducer in the downstream reservoir. P̂ us(z, ω) and
P̂ ds(z, ω) refer to the complex-valued measured pressures at up- and downstream
reservoir. Note, that for the derivation of the frequency-dependent permeability,
the fluid flow is assumed to be one-dimensional (v = vi ez) and that the fluid
pressure at the water surface is completely decayed (p3 = 0). In accordance with
[161] the mass and momentum balances were only considered in flow direction
z. For a detailed derivation of Equation (3.23), we refer to [161]. For the de-
termination of the convergence behavior of the Equation (3.23) for ω → 0 and
ω → ∞, it should be taken into account that the measured pressure P̂ us(z, ω)
and P̂ ds(z, ω) are also highly frequency-dependent.
Equation (3.23) has been tested for different set-up configurations, such as the
valve position in the downstream reservoir and different water levels. Figure 3.4
shows exemplary the measured dynamic permeability for the sintered sample S1,
whereby different parameters are tested during the experiments. In the first mea-
surement series, represented by red points, the measuring cell is filled completely
with water and the valve of the downstream reservoir is closed, whereas in the
second measurement series, the measuring cell is filled up to certain water level
and the valve of the downstream reservoir is opened. It can be seen in Figure 3.4
that in both cases the dynamic permeability of the sintered sample decreases due
to inertial effects. It is worth mentioning that the absolute of the dynamic per-
meabilities at lower frequencies (f < 1 Hz) are found to be significantly greater
(by factor of 104) than the measured stationary permeability values.
Moreover, it is found out that the signal to noise ratio of the received pressure
signals considerably increases, when the cell is completely filled with distilled
water and closed. Therefore, excitation signals with smaller amplitudes can be
used to generate monochromatic waves and non-linearity effects in the pressure
field can be avoided. Moreover, the system remains stable (no fluctuation of the
water level) especially at very low and high frequencies due to excitation of the
membrane with smaller amplitudes. Therefore, the next section deals with pore
pressure oscillation tests, whereby the measuring cell including the porous sam-
ple is filled completely with distilled water without any air pockets and closed
towards the outside.



56 CHAPTER 3. DYMAMIC HYDRAULICAL EXPERIMENTS

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-6

10
-4

10
-2

10
0

Frequency f [Hz]N
o
rm

a
liz

e
d
 d

yn
. 

p
e
rm

e
a
b
ili

ty
 |
k z(f

)|
/k

z,
m

a
x [

 -
 ]

 

 

Cell completely filled - valve closed
Cell partially filled - valve opened

Figure 3.4: Normalized measured dynamic permeabilities for the sintered sample
S1 at different experimental configurations.
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Figure 3.5: Flow chart for the determination of frequency-dependent hydraulical
parameters from pore pressure oscillation method.

3.2.3 Pressure pore oscillation method and case study
In the so-called pore pressure oscillation method, which are usually applied for
low-permeable rocks, where the flow rates are to small to be measured and con-
trolled [19, 20, 102], the amplitude ratio and the phase difference between the
upstream and downstream reservoir pressures is used to calculate both the per-
meability and diffusivity. In the following sections, we describe and discuss the
mathematical framework of the pore pressure oscillation tests. Moreover, the
corresponding equations are derived and discussed for different cases (static or
dynamic case, time or frequency domain). Figure 3.5 illustrates the basic pro-
cedure for the determination of the frequency-dependent hydraulical parameters
from the so-called pore pressure oscillation method by means of a flow chart. By
considering the balance of mass of the pore fluid (with ρfR = const.)

∂t(ρfR) + ρfR
0 div wf = 0 (3.24)

and assuming a linear barotropic fluid (p(ρfR), i.e. p ∝ ρfR) with

∂t(ρfR) = ρfR
0

Kf
∂t(p) and ρfR = ρfR

0 + ρfR
0

Kf
p (3.25)
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we obtain a pressure velocity formulation for the balance of mass

∂t(p) + Kf div wf = 0. (3.26)

1D quasi static case - time domain

Under 1-dim. quasi-static state and creeping flow in direction z, where inertial
effects φ0ρfR

0 ẇf and the frequency-dependent correction function F (ω) can be ne-
glected, we obtain the well-known diffusion equation by inserting Equation (3.5)
in Equation (3.26)

∂t(p) − D ∂zz(p) = 0, (3.27)

whereby D represents the real-valued diffusion coefficient and can be related to
hydraulic and rock parameters as followed

D = ks
z Kf

φ0 ηfR
= ks

z

ηfR sc
=

π L2
p ηf

ζ
, (3.28)

As can be seen from Equation (3.28), the diffusion coefficient quantifies the ratio
between the transport represented by ks

z and storage capacity represented by sc of
the porous medium [169]. Besides hydraulical problems, the diffusion coefficient is
a characteristic parameter in acoustical wave propagation, which highly influences
the propagation of the so-called slow Biot wave [24, 25, 27, 104, 147, 169]. In
the low-frequency regime, when the diffusion coefficient is high, the slow wave
becomes a diffusive character cannot propagate, whereas in the high-frequency
regime the diffusion coefficient and the intrinsic permeability decreases, and the
relative motion between the solid and fluid required for slow wave propagation is
not more impeded by viscous drags [87].
In accordance with Kranz et al. [102], we formulated the boundary conditions at
the upstream and downstream reservoir for the pressure oscillation experiment
as followed

p(z, t) = P (z, ω) exp(i ω t), ∀ z on Γus
D and (3.29)

∂t(p) +
�
φ0 D A

V ds

�
∂z(p) = 0, ∀z on Γds

R . (3.30)

In Equation (3.29) the Dirichlet boundary condition at the upstream reservoir
and in Equation (3.30), a so-called Robin boundary condition at the downstream
reservoir are introduced. The sample cross section is given by A, while the
volume of the downstream reservoir is represented by V ds. For further physical
interpretation, the Robin BC in the downstream reservoir in Equation (3.30) can
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be written in a pressure-volume flux formulation as follows

∂t(p) +
�

φ0 Kf A

V ds

�
wf = 0, ∀z on Γds

R . (3.31)

Equation (3.31) illustrates clearly the effect of the downstream volume on the
accuracy of permeability determination from the pressure oscillation method. If
a volumetrically fuid flux with Q = wf A is entering the downstream reservoir in
the time period ∆t, a change of the fluid volume (∆V ds = Q ∆t) and subsequently
a change of the pressure in the downstream reservoir is observed according to the
state of the fluid described in Equation (3.25):

∆V ds

V ds
Kf = ∆p. (3.32)

Equation (3.32) clearly demonstrates that a high pressure signal is observed in
the downstream reservoir, if the downstream volume V ds is low and the bulk
modulus of the pore fluid Kf is high. An increase of the downstream reservoir
results in a decrease of the signal-to-noise ratio of the pressure in the downstream
reservoir. From the experimental point of view, the signal-to-noise ratio in the
downstream reservoir becomes important especially at high frequencies when the
energy dissipation of the wave propagated through the porous sample is very
high.
Equation (3.26) is analytically solved using the boundary conditions formulated
in Equations (3.29) and (3.30) by several authors in the past [102, 169]. For a
detailed derivation of the time domain solution of the 1-dim static case, we refer
to [19, 102, 169].
Kranz et al. [102] has first introduced dimensionless parameters, in order to
determine the permeability and diffusivity from the measured amplitude ratios
and phase difference of the measured pressure signals. In this respect, he has
also proposed a graphical map to determine the permeability and diffusivity.
According to [169] the steady-state amplitude ratios and phase difference between
the pressure signals in the up- and downstream reservoir reads

Ar =
�

| cosh
�

(1 + i)

�
ζ

η

�
+ 1 + i√

ζ η
sinh

�
(1 + i)

�
ζ

η

��−1

(3.33)

∆θ = arg




�

cosh
�

(1 + i)

�
ζ

η

�
+ 1 + i√

ζη
sinh

�
(1 + i)

�
ζ

η

��−1

 , (3.34)
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where the dimensionless storage and transport parameters are given by

ζ = A Lp

sds
c

sc and η = A

π ηfR Lp sds
c f

ks
z (3.35)

Here, f and Lp represent the oscillation frequency and sample length. sds
c is the

storage capacity of the downstream reservoir, which can be expressed as followed:

sds
c = V ds

Kf
. (3.36)

For the used experimental set up the storage capacity of the downstream reservoir
is determined at sds

c = 6.25 x 10−14 m3/Pa with κf = 1/Kf = 4.58 x 10−10 Pa−1

as the compressibility of water.

1-dim dynamic case - time domain

In the dynamic case we are not able to reduce the hydro-mechanical problem to
a single diffusion equation as discussed in the previous section. The problem is
coupled in the variables P = {wf , p} and reads

∂t(wf ) + Kf

D ρfR
0

wf + 1
ρfR

0
∂z(p) = 0

∂t(p) + Kf ∂z(wf ) = 0.

(3.37)

The solution of Equations in (3.37) can only be obtained by solving the coupled
set of partial differential equations. The boundary conditions are the ones already
formulated in Equations (3.29) and (3.30).

1-dim quasi-static case - frequency domain

The diffusion equation in (3.27) is transformed to the frequency space by applying
the harmonic ansatz for fluid pressure p and seepage velocity wf in Equation (3.6)

p̂ + D̂ ∂zz(p̂) = 0 with D̂ = i ks
z Kf

ω φ0 ηfR
(3.38)

Equation (3.38) is Helmholtz equation with a complex-valued diffusion coefficient
whose real part is zero. It should be noticed that Darcy’s law can be formulated
w.r.t the frequency-transformed quantities

ŵf = 1
ηfRφ0

ks
z,0 ∂z(p̂). (3.39)
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The boundary conditions of the Helmholtz equation in (3.38) are given by

p = ¯̂p ∀ z on Γus
D and (3.40)

i ω p̂ +
�

φ0 D
A

V ds

�
∂z(p̂) = 0, ∀z on Γds

R . (3.41)

1-dim dynamic case - frequency domain

For the derivation of the frequency-dependent dynamic equation for the perme-
ability the balance of momentum in Equation (3.5) is again transformed to the
frequency domain using the harmonic approach for fluid pressure and velocity in
Equation (3.6)

i ω ρfR
0 ŵf − ηfR φ0

ks
z,0

ŵf + ∂z (p̂) = 0 (3.42)

Equation (3.42) can be reformulated as a dynamic Darcy equation, which only
depends on the introduced pressure amplitudes and seepage velocity

ŵf = 1
ηfR φ0

�
ηfR φ0 ks

z,0

ηfR φ0 − i ω ρfR
0 ks

z,0

�
∂z (p̂) := 1

ηfR φ0
[kz(ω)] ∂z (p̂). (3.43)

In contrast to Equation (3.39), the coefficient in Equation (3.43) is frequency-
dependent and complex-valued. Inserting Equations (3.43) into the frequency-
transformed mass balance from Equation (3.37) yields

i ω p̂ + Kf ∂zŵf = 0 or p̂ − i
Kf

ω
∂zŵf = 0. (3.44)

Inserting Equation (3.43) in (3.44) finally yields

p̂ + i
Kf ks

z(ω)
ω ηfR φ0

∂zz p̂ = 0. (3.45)

Multiplication Equation (3.45) with the complex conjugate yields the following
expression for the for the dynamic and frequency-dependent permeability intro-
duced in Equation (3.43)

ks
z(ω) =

(ηfR φ0)2 ks
z,0

(ηfR φ0)2 (ω ρfR
0 ks

z,0)2
� �� �

Re[ks
z(ω)]

+i
ω ηfR φ0 ρfR (ks

z,0)2)
(ηfR φ0)2 + (ω ρfR

0 ks
z,0)2

� �� �
Im[ks

z(ω)]

. (3.46)
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Introducing the frequency-dependent dimensionless permeability and dimension-
less frequency as

k̄s
z(ω̄) = ks

z(ω)
ks

z,0
and ω̄ = ω

ωcrit
(3.47)

and inserting the dynamic permeability expression of Equation (3.46) into (3.47)
yields

k̄s
z(ω̄) = ks

z

ks
z,0

= 1
1 + ω̄2 + i

ω̄

1 + ω̄2 (3.48)

with
Re[k̄s

z] = 1
1 + ω̄2 and Im[k̄s

z] = ω̄

1 + ω̄2 (3.49)

and

tan(θ) = 1
Q

= Im[k̄s
z]

Re[k̄s
z]

= ω̄ and |k̄s
z| = 1

1 + ω̄2

�
1 + ω̄2, (3.50)

whereby 1/Q and θ represents the specific attenuation and phase difference of
the dynamic permeability. Note that the dimensionless quantities k̄s

z and ω̄ are
linked to physical quantities through characteristic quantities, like the real-valued
intrinsic permeability ks

z and the critical frequency ωcrit shown in Equation (3.10).
In accordance with the well-known JKD model the following limits result for the
dimensionless permeability in the frequency domain

lim
ω→0

Re[k̄s
z] = 1 and lim

ω→∞
Re[k̄s

z] = 0,

lim
ω→0

Im[k̄s
z] = 0 and lim

ω→∞
Im[k̄s

z] = 1,

lim
ω→0

tan(θ) = 0 and lim
ω→∞

tan(θ) = ∞,

lim
ω→0

|k̄s
z| = 1 and lim

ω→∞
|k̄s

z| = 0.

(3.51)

3.3 Experiments

In this section the experimental set-up is presented and the signal processing of
the received pressure-time-signals for the determination of the amplitude ratio
and phase differences is described in detail. Moreover, the frequency-dependent
hydraulical parameters are determined for specific samples and compared with
stationary permeabilities obtained from classical Darcy experiments.
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3.3.1 Experimental rig
As can be seen in Figure 3.6 D.), the dynamic Darcy cell is transparent and fixed
on a specially developed table. Prior to the harmonic experiments, the dynamic
Darcy cell including the porous sample is evacuated and subsequently filled with
carbon dioxide. In the next step the cell is completely flooded with distilled water
without any air pockets. The carbon dioxide easily dissolves in the water and an
optimal saturation of the sample is guaranteed.
An oscillatory fluid flow is induced by means of an shaker (Vibration exciter
Brüel & Kjaer, model 4809), which drives an piston rod, cf. Figure 3.6 (C., D.).
The oscillatory movement of the rod is transferred to a latex membrane equipped
with plate made of plastic, which finally generates an oscillatory fluid flow in the
measuring cell, cf. Figure 3.6 (A., D.). In this manner continuous monochromatic
sinusoidal waves could be generated. The height of the piston rod is chosen so
that the membrane is only subjected to pressure at any time and position of the
piston rod.
The shaker is driven by an arbitrary function generator (Agilent, 33500B series,
30 MHz-waveform generator), which is connected to a power amplifier (Brüel &
Kjaer, model 2706 or 2718), see Figure 3.7 (A). The pressure drop across the
porous sample is measured by using piezo-electric transient pressure transducers
(PCB 112A22). The first transducer is installed in the lower chamber laterally
just before the porous sample, whereas the second transducer is located in the
center field of the upper chamber. The received pressure signals are amplified
by using a measuring amplifier (HBM, model QuantumX MX410) and finally
displayed and stored on a computer.

3.3.2 Time signals and amplitude spectra
For the excitation of the latex membrane, continuous sinus signal with different
frequencies ranging from 0.1 Hz to 1000 Hz are used. Depending on the frequency
of the wave and the signal to noise ratio of the received pressure signals, the
amplitude of the generated wave ranged between 1 and 6 V. It is important that
the oscillation amplitude is small and chosen to be only a small fraction of the
ambient pore pressure to avoid poroelastic and fluid compressibility changes.
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A.) B.)

C.) D.)

E.)

Figure 3.6: Photographs of latex membrane without (A.) and with (B.) a plastic
plate, which serves to increase the stiffness of the latex membrane. Photographs
from the bottom view of the test table and of the mounted latex membrane
inclusive front plate of the upstream reservoir are shown in C.) and D.). The
Dynamic Darcy Cell (DDC) with shaker, generating monochromatic waves up
to 5 kHz is illustrated in E.).



3.3. EXPERIMENTS 65

A.) B.)

Figure 3.7: Experimental arrangement for dynamic permeability measurements
(A.) and sketch of measuring cell for derivation of determination equation of
dynamic permeability at partial saturation of measuring cell (B.).

As can be seen, in pressure-time-signals of the Figures 3.8, 3.9, 3.10, 3.11,
3.12, 3.20, 3.21, 3.22, 3.23, the received time signals of the pressure transducers
consists of three components [55]:

1. the true useful AC component from the forced sinusoidal cycling of the
latex membrane

2. true pressure signal from temperature effects during cycling

3. electrical noise (DC component) caused by temperature effects on the elec-
tronic components, background noise etc.

It should be noticed that the water temperature has changed slightly around
0.5 ◦C, so that the pressure component caused by temperature effects are as-
sessed to be negligible small. Since our investigation concerns the determination
of the dynamic behavior of the hydraulic properties of the porous samples, the
DC component of the received pressure signals are set to zero before calculat-
ing the amplitude spectra of the pressure time signals. However, it should be
noticed that the amplitude ratios show only marginal changes in the order of
10−4, while the phase differences remained unaffected, when the DC components
of the received pressure signals are set to zero, because the pressure offsets (DC
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component) showed magnitudes much smaller than the alternating pressure com-
ponents (AC component).
Because the signal of interest lies at a specific frequency use is made of the
Discrete Fast Fourier Transformation (DFFT) as a tool for the determination
of the amplitude ratios and phase differences between the pressure signals lo-
cated at the up- and downstream reservoirs. Depending on the frequency of the
generated wave, different time windows for the pressure signals are recorded, in
order to obtain sufficient cycles during each measurement. A time window of 40
seconds is chosen for low-frequency waves (f ≤ 0.5 Hz), whereby for higher fre-
quency waves (f > 0.5 Hz) a time window of 20 seconds is sufficient to record an
adequate number of cycles. In contrast to low-permeable tight rock samples, the
steady-state conditions of the pressure history is reached within few milliseconds.
The whole time range of the received pressure signals are windowed before the
computation of the FFT by using a so-called “tukey" window.
Figure 3.8 and 3.9 show exemplary the recorded pressure time signals and the
corresponding amplitude spectra for the water-saturated sample S1 at 0.95 Hz,
whereby different water levels and configurations of the latex membrane (without
and with a piston plate) are tested. For comparison, the Figure 3.8 and 3.9 show
additionally the electrical input signals, which are used for the sinusoidal cycling
of the latex membrane. Figure 3.8 shows the results when the measuring cell was
filled with distilled water up to a certain level and no piston plate is used for the
latex membrane, cf. Figure 3.6 B.). The comparison of the amplitude spectra
of the pressure signals and the electrical input signals clearly demonstrates that
the amplitude spectra of the pressure signals indicate additional several distinct
peaks, which occur in a distance of f = N fe, whereby fe corresponds to the
oscillation frequency of the latex membrane. As denoted in Figure 3.8 B.) the
peaks occuring at frequencies f = N fe can be clearly assigned to higher mode
oscillation of the latex membrane caused by non-linearity effects. The resulting
pressure signals in Figure 3.8 A.) are a superposition of several harmonic waves
with different frequencies. However, the non-linearity effects are locally limited
within the membrane. The pressure field in the measuring cell, and thus the
hydraulical properties of investigated samples, are not affected by non-linearity
effects, see section subsection 3.3.5 Amplitude sweep tests.
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Figure 3.8: Pressure-time signals of the sintered sample S1 at 0.95 Hz obtained
from piezo-resistive transducers positioned at the up- and downstream reservoir
(A.) with corresponding amplitude spectra (B.). Excitation signal for the latex
membrane (C.) with corresponding amplitude spectrum (D.). The measuring
cell is not completely flooded with distilled water and no piston plate shown in
Figure3.6 (B.) is used to increase the stiffness of the latex membrane.

In order to minimize or completely prevent the higher mode oscillations of the
latex membrane, the stiffness of the membrane has been artificially increased by
using a piston plate, cf. Figure 3.6 A.). As a results Figure 3.9 illustrates the
time signals and amplitude spectra of the pressure and electrical input signal,
when the measuring cell including the porous sample S1 is completely flooded
with distilled water and a piston plate is used to generate monochromatic waves.
The pressure-time signals at the down- and upstream reservoir show clean sinu-
soidal shapes, and the amplitude spectra exhibit only one distinct peak at the
excitation frequency of 0.95 Hz. The higher mode oscillation of the membrane
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are highly attenuated or have disappeared completely, see Figure 3.9 A.) and
B.). Besides the avoiding of the higher mode oscillation of the membrane a clear
signal enhancement is reached due to fully saturation of the measuring cell, es-
pecially for the pressure signal in the downstream reservoir, although the latex
membrane has been oscillated with a certainly smaller amplitude. In this way,
high signal-to-noise ratios even for extremely high frequencies (f =80-1000 Hz)
could be achieved. Moreover, the resonance behavior of the experimental test rig,
which especially occurred at frequencies greater than 80 Hz can be improved, due
to smaller oscillation amplitude used for the latex membrane. The excitation of
the latex membrane is not taken place point-like through the application of the
piston plate, but instead the cross-sectional area is stirred uniformly.

In order to demonstrate that the pressure signals do not only depend on the ex-
citation method or water level, but also on the frequency of the generated wave,
Figure 3.10 shows the pressure and excitation signals of the sintered sample S1
at 37.87 Hz. It is obvious that the the absolute amplitude values and the phase
difference between the pressure signals have changed with increasing frequency
compared to the measurement at 0.95 Hz. The phase difference between the pres-
sure signals leads to a noticeable time shift of the pressure signals, cf. Figure 3.10
A.).

Figures 3.11 and 3.12 illustrate the raw pressure time-signals with the corre-
sponding amplitude spectra of further sintered sample S4 and S5 at two specific
frequencies of 0.95 and 37.87 Hz. The differences of pressure-time signals and
the amplitude spectra between the investigated samples, but also between the
different frequencies in terms of amplitude ratios and phase difference are clearly
visible. A closer consideration of the amplitude spectra, depicted in Figures 3.10,
3.11 and 3.12, reveal the occurrence of so-called side lobes around the peak of
interest. The side lobes are not of physical origin, but result from windowing and
often referred as leakage effect. The windowing of sinusoidal wave forms causes
the FFT to develop non zero-values around the frequency of interest. The leakage
effect can be minimized by suitable choice of window functions and parameters
[34].
However, the side lobes caused by leakage effect differ considerably from the main
peak at the excitation frequency of interest and the peaks resulting from higher
mode oscillations of the latex membrane in magnitude and shape. It should be
noticed, that the different window functions and parameter have no impact on
the amplitude ratios and phase differences between the pressure signals, while
remaining consistent during signal data processing.
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Figure 3.9: Pressure-time signals of the sintered sample S1 0.95 Hz obtained
from piezo-resistive transducers positioned at the up- and downstream reservoir
(A.) with corresponding amplitude spectra (B.). Excitation signal for the latex
membrane (C.) with corresponding amplitude spectrum (D.). The measuring cell
is completely flooded with distilled water and a piston plate shown in Figure 3.6
(A.) is used to increase the stiffness of the latex membrane.

Figures 3.20, 3.21, 3.22 and 3.23 (in the appendix) illustrate the raw pressure time
signals and amplitude spectra of the investigated synthetic samples, consisting
of tube-like pore channels at two specific frequencies. It can be also observed
that the pressure signals and amplitude spectra show a noticeable frequency and
sample dependence. While the differences in the magnitude of the amplitudes
between the pressure signals in the up- and downstream reservoir are very pro-
nounced, the phase differences are very small, independently of the frequency of
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Figure 3.10: Pressure-time signals of the sintered sample S1 at 37.87 Hz obtained
from piezo-resistive transducers positioned at the up- and downstream reservoir
(A.) with corresponding amplitude spectra (B.). Excitation signal for the latex
membrane (C.) with corresponding amplitude spectrum (D.). The measuring cell
is completely flooded with distilled water and a piston plate shown in Figure3.6
(A.) is used to increase the stiffness of the latex membrane.
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Figure 3.11: Pressure-time signals of the sintered sample S4 at 0.95 (A.) and
37.87 Hz (B.) with corresponding amplitude spectra (B. and D.).
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Figure 3.12: Pressure-time signals of the sintered sample S5 at 0.95 (A.) and
37.87 Hz (B.) with corresponding amplitude spectra (B. and D.).



3.3. EXPERIMENTS 73

the wave. In comparison to the sintered samples, the phase differences between
the signals of the synthetic samples are considerably smaller for a wide frequency
range up to 100 Hz. Moreover, it can be seen that the amplitude ratio between
the down- and upstream reservoir for all synthetic samples decreases apparently
with increasing frequency.
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3.3.3 Frequency-dependent amplitude ratio and phase dif-
ference

The frequency-dependent amplitude ratio and phase difference between the pres-
sure signals are determined from the amplitude spectrum of the signals in the
frequency domain. The phase differences are computed from the cross power
spectrum GP 1,P 2(f) of the pressure signals in the up- and downstream reservoir
as follows:

GP 1,P 2(f) = P ds(f) P̄ us(f)) (3.52)

whereby P ds(f) is the complex-valued pressure amplitude of the downstream
reservoir and P̄ us(f) the complex-conjugated amplitude values of the upstream
reservoir determined from FFT. The phase difference can be derived from the
complex ratio of the cross power spectrum GP 1,P 2(f)

∆φ(f) := φus(f) − φus(f) = arctan(GP 1,P 2(f)). (3.53)

However, it should be noticed the arcus tangens function only provides values
between −π and +π, which is often referred as wrapped phase difference. For a
continuous phase difference spectrum, the phase difference jumps at 2π modulo
are determined adequately by adding or subtracting multiples of 2π to the prin-
cipal values [107]. The corrected continuous phase difference is often referred as
the unwrapped phase difference

∆φ(f)u = ∆φ(f) ± 2k̄π, (3.54)

where k̄ is an integer. As an example of corrected phase difference jumps, Fig-
ure 3.13 shows the wrapped and unwrapped phase difference of sample S5, where
the discontinuity at approximately f ≈52 Hz is removed.

The Figure 3.14 illustrates the frequency-dependent amplitude ratios and phase
difference of the investigated synthetic and sintered samples in a wide frequency
range of 0.1 - 1000 Hz. In all cases examined, the resonance behavior of the ex-
perimental rig becomes obvious at frequencies grater than approximately 80 Hz,
where phase difference and amplitude ratio exhibit strong fluctuations. In the res-
onance regime of the investigated synthetic and sintered samples, the amplitude
ratios in the resonance are partially clearly greater than one, which means that
the pressure in the downstream reservoir is grater than in the upstream reservoir.
However, it should be noticed that the pressure transducer is locally installed pe-
ripheral just before sample for technical reasons and that it might be possible that
inertial effects in the peripheral zones have additionally influenced the pressure
development in the upstream reservoir, especially at frequencies above 80 Hz.
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Figure 3.13: Illustration of frequency-dependent phase difference through the
example of the sintered sample S5: A.) Original phase difference B.) Corrected
phase difference. After unwrapping the phase jumps for frequencies greater than
52 Hz are eliminated.

Figure 3.15 shows the phase difference up to a frequency of approximately 100 Hz,
where resonance effects are assessed to be negligible small. It can be seen that
the phase difference and amplitude ratios of the sintered samples decrease with
increasing frequency up to 80 Hz.

3.3.4 Frequency-dependent permeabilities, diffusion coeffi-
cient and storage capacity

The frequency-dependent hydraulical parameters are determined from a grid
search for the values of ζ and η consistent with the measured amplitude ratio
and phase difference of the pressure signals in the up- and downstream reservoir.
Figure 3.16 shows exemplary an extract of the graphical solution of the 1-dim.
diffusion equation presented in Equation (3.27) for the sintered sample S1 (A.)
and the synthetic sample D2 (B.), whereby the isolines represent different values
of the dimensionless parameters ζ and η determined from Equations in (3.35).
In the the vicinity of the bounds, the dimensionless storage capacity ζ are close
to each other for decreasing phase shift [169]. Furthermore, it is obvious that
the bounds approach each other for decreasing phase shift and form a tail of the
solution space.
The data points in Figure 3.16 (A.-B.) refer to the measured attenuation and
phase shift of the pressure signals. It can be seen that the data points are often
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Figure 3.14: Development of frequency-dependent phase difference and ampli-
tude ration of the synthetic (A. - B.) and sintered sample (C. - D.) within the
investigated frequency range of 0.1 till 1000 Hz.
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Figure 3.15: Development of frequency-dependent phase difference and amplitude
ration of the synthetic (A. - B.) and sintered sample (C. - D.)within the frequency
range of 0.2 till 80 Hz, where resonance effects are negligible small.
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Figure 3.16: Graphical representation of the analytical solution of the 1-dim
diffusion equation for oscillatory flow through an isotropic porous sample in the
dimensionless domain of amplitude ratio Ar versus phase shift ∆φ for: A.) the
sintered sample S1 and B.) the synthetic sample D2 consisting of one capillary
tube with a diameter 0.75 mm.

not in the solution domain, which can cause deviations in the determination of
of the hydraulical parameters.

Figure 3.17 shows the determined hydraulical parameters (for instance the per-
meability, the storage capacity and the diffusion ceofficient) for a wide frequency
range from 0.1 Hz to 1000 Hz of the investigated samples. It can be seen the
hydraulical parameters show jumps at certain frequencies due to numerical in-
stabilities. Note, that the frequency-dependent inertial effects, which dominantly
occur at high frequencies, are not considered in the solution of the diffusion
equation, shown in 3.2.3. For a proper determination of the frequency-dependent
hydraulical parameters, the coupled set of partial differential equations, presented
in subsubsection 3.2.3 1-dim quasi-static case - frequency domain - subsubsec-
tion 3.2.3 1-dim dynamic case - frequency domain have to be solved.

Table 3.3 and 3.4 summarize the results for selective frequencies, where the iner-
tial effects are assessed to be small and a good agreement between low-frequency
permeabilities obtained from pore oscillation tests and intrinsic permeabilities
gained from classical Darcy experiments or analytically derivated permeabilities
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Figure 3.17: Intrinsic permeabilities (A.-B.), storage capacity (C.-D.) and diffu-
sion coefficient (E.-F.) of the investigated synthetic samples and sintered samples
as function of the oscillation frequency. The left panel illustrates the results for
the synthetic samples and the right panel for the sintered samples.
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Table 3.3: Comparison of results obtained from analytical solutions and pore
pressure oscillation experiments at a specific frequencies.

Parameter Unit D1 D2 D3S D4P

Intr. permeability[A] ks
z [m2] 7.81E-13 3.9551E-12 1.3048E-12 4.7363E-12

Effect. porosity[B] φ0 [%] 1.00E-02 2.55E-02 1.2625E-02 3.25E-02

3.79 Hz

Intr. permeability[C] ks
z [m2] 6.58E-14 2.08E-13 4.49E-13 9.84E-13

Storage capacity [C] sc [Pa−1] 2.04E-14 5.31E-09 2.69E-08 3.14E-08

Diffusion coefficient [C] D [mm2] 3.72E-03 4.51E-08 1.64E-08 4.02E-08

Storage parameter [C] ξ [ - ] 3.20E-08 8.34E00 49.31E00 42.31E00

Transport parameter [C] η [ - ] 3.97E00 12.64E00 27.23E00 59.74E00

7.57 Hz

Intr. permeability[C] ks
z [m2] 1.56E-13 1.11E-13 1.18E-11 2.11E-11

Storage capacity [C] sc [Pa−1] 2.04E-14 2.04E-14 3.40E-07 7.57E-07

Diffusion coefficient [C] D [mm2] 8.82E-03 6.28E-03 3.40E-08 5.71E-08

Storage parameter [C] ξ [ - ] 3.20E-05 3.20E-05 534.30E00 666.90E00

Transport parameter [C] η [ - ] 4.75E00 3.38E00 359.10E00 604.20E00

[A]: Analytical solution under the assumption of a Poiseuille flow.
[B]: Determined from the geometry of the tube-like pore channel and total volume of the

sample.
[C]: Determined from pore pressure oscillation tests.

under the assumption of an Poiseuille flow exist. The results of the pore oscilla-
tions test are determined from data points, which are within the solution domain
shown in Figure 3.16.
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Table 3.4: Comparison of results obtained from analytical solutions and pore
pressure oscillation experiments at a specific frequencies.

Parameter Unit S1 S2 S3 S4 S5

Particle diameter dp [mm] 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2 3.0

Intr. permeability [A] ks
z [m2] 7.72E-11 5.38E-10 5.99E-10 4.58E-10 3.95E-10

Effect. porosity [B] φ0 [%] 35.11 36.79 29.48 32.32 22.31

30.30 Hz

Intr. permeability[C] ks
z [m2] 2.81E-11 7.08E-11 3.86E-11 1.95E-11 1.48E-11

Storage capacity [C] sc [Pa−1] 4.99E-07 2.55E-07 2.23E-07 3.65E-08 2.47E-07

Diffusion coefficient [C] D [mm2] 6.47E-08 3.19E-07 1.99E-07 6.15E-07 6.90E-08

Apparent porosity [C] φa [ - ] 1.90E-03 5.57E-04 4.88E-04 7.98E-05 5.40E-04

Storage parameter [C] ξ [ - ] 784.70 400.80 351.00 57.38 338.20

Transport parameter [C] η [ - ] 213.40 537.80 293.20 148.30 112.60

52.07 Hz

Intr. permeability[C] ks
z [m2] 3.30E-11 7.35E-11 3.80E-11 4.36E-11 8.13E-12

Storage capacity [C] sc [Pa−1] 3.00E-07 2.00E-07 2.52E-07 7.51E-08 5.80E-07

Diffusion coefficient [C] D [mm2] 1.27E-07 4.24E-07 1.74E-07 6.67E-07 1.61E-08

Apparent porosity [C] φa [ - ] 6.55E-04 4.36E-04 5.55E-04 1.64E-07 1.27E-03

Storage parameter [C] ξ [ - ] 407.80 313.80 395.30 118.10 911.80

Transport parameter [C] η [ - ] 148.60 324.90 167.90 196.10 35.90

94.67 Hz

Intr. permeability[C] ks
z [m2] 3.92E-12 1.31E-10 7.97E-11 4.43E-11 6.36E-12

Storage capacity [C] sc [Pa−1] 1.73E-13 5.08E-07 4.48E-04 9.04E-08 2.55E-07

Diffusion coefficient [C] D [mm2] 2.64E-04 2.96E-07 2.04E-07 5.64E-07 2.86E-08

Apparent porosity [C] φa [ - ] 3.78E-10 1.11E-03 9.81E-04 1.98E-04 5.58E-04

Storage parameter [C] ξ [ - ] 2.72E-04 799.20 705.30 142.10 401.20

Transport parameter [C] η [ - ] 9.63E-01 318.50 193.70 107.70 15.45

[A]: Obtained from classical Darcy experiments.
[B]: Determined from bulk density of the produced samples.
[C]: Obtained from pore pressure oscillation tests.

Figure 3.18 shows a direct comparison of the permeabilities determined from
pore pressure oscillation tests and classical Darcy experiments by means of bar
diagrams. The corresponding oscillation frequency is given by the first numbers
in the brackets on the top of the bars. The second number refers to the different
glass bead parameter or to the tube diameter of the pore channels. Note, that
the determined permeabilities result from different measuring and analysis meth-
ods, but nevertheless the permeabilities obtained from pore pressure oscillation
tests at specific frequencies are in the same order of magnitude compared to the
permeabilities from classical Darcy experiments. On the one hand, it must be
ensured, that the data points for the measured attenuation and phase shift of the
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Figure 3.18: Comparison of permeabilities determined from the pore pressure os-
cillation test and classical Darcy experiments (or analaytical determined perme-
ability values) for: A.) synthetic samples consisting of capillary and B.) sintered
glass bead samples.

pressure signals are within the solution domain of the 1-dim. diffusion equation,
on the other hand a proper frequency have to be chosen to avoid inertial effects,
which highly affect the intrinsic permeability.

3.3.5 Amplitude sweep tests
In addition to the frequency sweeps, amplitude sweep tests have been performed
formed to assess the effect of excitation amplitude on the pressure development
in the up- and downstream reservoir. The excitation signal is used for the os-
cillation of the latex membrane or piston plate, respectively. Figure 3.19 shows
the amplitude ratio (A.,C.) and phase difference (C.,D) as a function of the exci-
tation signal at specific frequencies. Figure 3.19 (A.,B.) demonstrate the results
obtained from measurements, when the measuring cell is completely filled with
water, whereas Figure 3.19 (C.,D.) presents the results, when the measuring cell
is filled with distilled water up to certain water level. In this specific case, the
distance between the water surface and upper pressure transducer in the down-
stream reservoir has been chosen at 37.5 mm. In both investigated cases, it can
be seen that the amplitude ratio and phase difference remain almost constant
in dependence on the excitation amplitude, which indicates that non linearity
effects in the pressure field within the measuring cell are negligible small, and
only occur in the latex membrane in the form of higher mode oscillations. The
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amplitude ratios in Figure 3.19 (C.) are smaller compared to the results shown in
Figure 3.19 (C.) due to signal damping in the downstream reservoir. It should be
noticed, that the signal-to-noise ratio decreases strongly, especially of the pressure
transducer in the downstream reservoir, when the measuring cell is only filled up
to certain height. At very low and high frequencies, the useful signal go under
into noise, which considerably makes the signal analysis difficult. To overcome
these problems, excitation signals with higher amplitudes has to be used. In this
case the system becomes unstable due to changes in water level, and the pressure
values do not fluctuate around a constant value.

3.4 Conclusion
In summary, we have demonstrated that the pore pressure oscillation method can
be applied to high-permeable artificially produced samples with permeabilities in
the order 10−13 − 10−9 m2 consisting of sintered glass beads or capillary tubes.
A good agreement between permeabilities determined from the pore pressure os-
cillation tests and permeabilities obtained from classical Darcy experiments or
analytical determined permeabilities could be achieved. It should be taken into
account, that the compared permeabilities are determined from different mea-
suring and analysis methods. Nevertheless, the compared permeabilities are in
same order of magnitude, although the permeability change due to inertial losses
in the solution 1-dim diffusion Equation (3.27) are not taken into account. Fu-
ture work should therefore include the inertial effects in the calculation of the
permeability from the pore pressure oscillation experiments in both time and
frequency domain. The future challenge will be to propose a proper solution for
the coupled hydro-mechanical problems formulated in subsubsection 3.2.3 1-dim
quasi-static case - frequency domain, subsubsection 3.2.3 1-dim dynamic case -
time domain and subsubsection 3.2.3 1-dim dynamic case - frequency domain,
which takes besides the inertial effects, also the measured amplitude ratios and
phase differences of the pressure signals in the up- and downstream reservoir into
account. However, the selection of an appropriate frequency for the determina-
tion of the intrinsic permeability is still a challenge, and can differ from sample
to sample. In many cases, the measured amplitude ratios and phase differences
are beyond the solution domain of the 1-dim diffusion equation, which can lead
to considerable deviations in the results. In this respect, the use of different pore
fluids with higher viscosities, such as silicone oil, can help not only to change
the amplitude ratios or phase differences but also to produce a frequency shift
of the inertial dominated flow regime towards higher frequencies. Opposed these
advantages, the high compressibility of the silicone oil can lead to further mea-
suring uncertainties. Moreover, from a technical point of view the reduction of
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Figure 3.19: Amplitude sweep tests of sintered sample S1 at different set up
configurations. The measuring cell has been either filled completely filled with
distilled water (A.-B.) or up to a certain water level (C.-D.). Amplitude ra-
tio (A.,C.) and phase differences (C.,D.) as a function of the amplitude of the
excitation signal which is used for oscillation of the latex membrane.
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the downstream reservoir can improve the measuring accuracy of pore pressure
oscillation method as indicated in Equation (3.32). In amplitude sweep tests, we
have demonstrated that the measured amplitude ratio and phase differences are
independent from the excitation amplitudes used to oscillate the latex membrane
and non-linearity effects in pressure field are negligible.
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Figure 3.21: Pressure-time signals of the sintered sample D2 at 0.95 (A.) and
37.87 Hz (B.) with corresponding amplitude spectra (B. and D.).
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Figure 3.20: Pressure-time signals of the sintered sample D1 at 0.95 (A.) and
37.87 Hz (B.) with corresponding amplitude spectra (B. and D.).
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Figure 3.22: Pressure-time signals of the synthetic sample D3 (in series connected
tubes) at 0.95 (A.) and 37.87 Hz (B.) with corresponding amplitude spectra (B.
and D.).
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Figure 3.23: Pressure-time signals of the synthetic sample D4 (in parallel con-
nected tubes) at 0.95 (A.) and 37.87 Hz (B.) with corresponding amplitude spec-
tra (B. and D.).
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CHAPTER 4

Wave Propagation in
Sintered Porous Glass Bead

Systems: Low-Frequency
range

In this paper, we present an experimental and theoretical study of ultrasonic wave
propagation in water-saturated artificial porous samples composed of sintered glass
beads. In ultrasound experiments, the transmission method is used to determine
frequency-dependent properties of the samples. Here, we focus mainly on the co-
herent deterministic pulse, which describes the macroscopic properties and arrives
at the leading edge of the received signal. Different excitation signals, such as a
Ricker wavelet, square wave impulse or sinus-burst signal at different frequencies
are tested. The dispersion properties, like phase velocity cP h, specific attenua-
tion 1/Q, normalized attenuation α̂, and power spectra or spectrograms of the
investigated samples are analyzed for the different excitation signals. Essential
structural parameters, such as porosity and tortuosity, which highly influence the
acoustical wave propagation in sintered glass bead samples are determined from
µXRCT analysis. Depending on the sintering treatment, the investigated sintered
samples showed different tortuosity and porosity values. Besides the determina-
tion of macroscopic properties, the different microstructures at the contact-level
of the beads, such as the neck formation of the particles as a result of the sin-
tering procedure are analyzed qualitatively and quantitatively in detail. The neck
formation highly influences the macroscopic stiffness of the solid skeleton, and
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thus the acoustical characteristics of the samples.
Furthermore, dry ultrasound and permeability experiments are performed to deter-
mine the elastic and hydraulic properties of the sintered glass beads. The measured
intrinsic permeability and determined elastic modulus as well as the voxel-based
tortuosity and porosity values are used as input parameters in the approved Biot-
theory to predict the frequency-dependent phase velocity, (specific) attenuation,
and Time Of Flight (TOF) of the different wave types. The analytical predic-
tions are compared with ultrasonic experiments and a good agreement between
the predicted and measured wave velocities of the fast P1-wave is found for the
different samples, when the velocities are determined in the time domain. In con-
trast to this, the predicted and measured specific and normalized attenuations of
the coherent pulses differ qualitatively and quantitatively considerably from each
other.

4.1 Introduction
The investigation of acoustic wave propagation in fluid-filled porous media is of
great interest in many research fields, such as gas or oil explorations in porous
rock formations or it can be used in medical applications, for the early diagnosis
of osteoporosis. It is a skeletal disease, and connected to loss of bone density
as well as changes of the bone structure, whereby the bone matrix is filled with
bone mark. The propagating acoustic wave is very sensitive to the micro- and
macroscopic features of the fluid-filled porous bulk medium, and thus for instance,
can be used to monitor the bone status [84, 132, 172, 185] or to explore gas or
oil deposits in deep rock layers [149, 153, 176].
The acoustic wave properties are further strongly affected by internal physical
interactions between the solid skeleton and the pore fluid [153, 173]. The well-
known Biot [24, 25] theory has become to be the most common model to describe
the acoustical wave propagation in fluid-saturated porous media. Biot [24, 25]
predicts two compressional waves as a result of coupling and decoupling processes
between the solid frame and the pore fluid, in addition to the propagation of a
shear wave. Depending on the frequency of the propagating wave, the coupling
between the fluid and solid, which is responsible for the propagating of the fast P1-
wave, is either mainly caused by viscous shear forces of the pore fluid or by inertial
effects, often referred as added mass effects, which result from the tortuous pore
channels [87, 88]. The relative motion between both constituents required for the
propagation of the slow Biot-wave is ensured in the high-frequency regime, when
the frequency-dependent viscous skin depth δ, formulated in Equation (3.16) is
smaller than characteristic pore radius rpore. Figure 4.1 (A.) illustrates the valid
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A.) B.)

Figure 4.1: Valid frequency range (A.) of Biot‘s theory according to Hughes et al.
[87] and simplified illustration of wave modes, which are predicted in the classical
bi-phase Biot theory (B.) [140].

frequency range for the Biot theory. However, the Biot theory, which is based
on a macroscopic approach, is limited to wavelengths, which are much greater
than characteristic pore or particle diameter (λ � dp), respectively [87]. For λ
comparable to several dp, where spatial inhomogeneities on a microscopic-level
within a propagating porous medium introduce scattering effects, the Biot-theory
fails. The propagating (multiple-) scattered waves have a diffusive character, and
are therefore often described by diffusion models [92, 135–137, 139, 152].

Another major disadvantage of the Biot theory is that the model requires various
input parameters for the prediction of the phase velocities and specific atten-
uations of the different wave types [167]. In this case, µXRCT analysis is an
efficient tool, which provides the determination of further essential macro- and
microscopic influence parameters and thus can make an important contribution
to understand the wave propagation in fluid-saturated media.
Successful application of Biot’s theory to cancellous [84, 88, 172, 192] or tra-
becular [184] bone saturated with water or bone marrow or to water-saturated
polyurethane [28] and aluminium foams [70, 91, 154], sedimentary rocks [176] or
sands [30] is reported elsewhere. However, in most cases only the fast P1-wave
could be detected from broadband ultrasound experiments. The slow P2-wave is
highly damped or superimposed by (multiple-) scattered waves.
In this paper, we present experimental ultrasound results on water-saturated sin-
tered glass bead samples, which show high permeabilities (in the order of 10−11-
10−9 m2) and open pore structure, and their successful comparison to theoretical
predictions according to Biot’s theory. Compared with natural rock samples,
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the artificially produced sintered glass beads samples are characterized by their
simple and repeatable pore geometry. Moreover, the acoustical properties, like in-
trinsic permeability and tortuosity, which determine the low- and high-frequency
coupling between pore fluid and skeleton frame, is influenced by the choice of
glass bead sizes and sintering treatments. In this way, different sintered glass
bead samples were produced and the Biot theory can be checked for it’s range of
validity for different structures. An additional advantage of sintered glass bead
samples is the high gray-scale contrast to the pore space, which makes the use of
contrast media superfluous and well simplifies the segmentation procedure during
µXRCT analysis, cf. [69]. Moreover, the relatively simple structure of the skele-
ton frame helps to extract and determine the microscopic inter-particle contact
areas, which significantly influences the propagation of high-frequency incoherent
part consisting of (multiple-)scattered waves.
In this work, we focus on the coherent part of the received ultrasound signals,
which corresponds to the fast P1-wave, arising from the mechanical coupling
between the fluid and solid phase due to inertial effects. The slow Biot-wave
caused by the relative motion is highly damped and/or can be superimposed by
(multiple-) scattered ultrasound waves, and thus will be studied in detail else-
where.
In section 4.2 the Biot theory is introduced and section 4.3 deals with the ap-
plication of the Biot theory on different sintered samples. For the application of
Biot‘s theory the input parameters for the sintered samples are determined from
XRCT analysis, dry ultrasound and stationary permeability experiments. In sec-
tion 7.3 the immersion ultrasound broadband experiments are presented. Here,
the experimental procedure and is described and the Spectral Ratio Technique
(SRT) is introduced. The theoretical and experimental results are presented and
discussed in section 4.5. The study is concluded in the final section 4.6.

4.2 Biot theory
In this section essential features of Biot’s model [24, 25] are briefly introduced.
Furthermore, the field equations, which describe the acoustical wave propagation
in fully-saturated porous media, are set up, and the influencing parameters are
discussed. Based on the field equations, the dispersion relations for the propaga-
tion of longitudinal and transversal waves are derived using an harmonic approach
for waves, and finally discussed in terms of their low- and high-frequency limits.

4.2.1 Field equations
The Biot theory is a macroscopic approach [101] to describe wave propagation in
fluid-saturated porous media. Macroscopic parameters, like the bulk and shear
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moduli of the skeletal frame (K and G), are expressed in terms of the properties
of the constituents, of which the skeleton is made of (Ks, Es, Gs) and microstruc-
ture of the bulk fabric, for example tortuosity (α) of the pore channels.
An essential factor of Biot’s theory is the prediction of two types of compressional
waves, which are known as fast (P1) and slow (P2) wave. The P2-wave is also
referred as slow Biot-wave [172].
The fast P1-wave arises from the coupling between the solid and fluid phase,
when both constituents move in phase. In contrast to this, the slow P2-wave
results from the out-of-phase movement of both constituents. Depending on the
frequency of the fast P1-wave, the coupling between the fluid and solid phase
arises from different physical mechanisms, cf. Figure 4.1 (A.).
The low-frequency regime is defined as the case, when the frequency of the fast
P1-wave is lower than the critical frequency (ω < ωcrit)

ωcrit = ηfR φ0
α ρfR ks

z

, (4.1)

Poiseuille flow through micro channel occurs, and the locking between both con-
stituents arises mainly from the fluid viscosity, which leads to the propagation
of a fast P1-wave [24, 25, 87, 104, 172]. In Equation (4.1) ηfR and ρfR describe
the real effective dynamic viscosity and density of the pore fluid, whereas φ0, ks

z

and α represent the initial porosity, intrinsic permeability (in z-direction) and
tortuosity of the porous material in a certain Representative Volume Element
(RVE). The out-of-phase movement, required for the propagation of the slow Biot
wave, cannot be realized in the low-frequency regime. Therefore, the slow P2-
wave cannot propagate in the low-frequency regime and has a diffusive character
(ω < ωcrit) [24, 25, 87, 172].
In the high-frequency regime (ω > ωcrit), the viscous coupling mechanism is
dominated by inertial effects, which locks the fluid and solid phase together, as
necessary for fast P1-wave propagation. Furthermore, the relative motion be-
tween the fluid and solid is not more affected by viscous drag forces, so that
the slow P2-wave can propagate [24, 25, 87, 172]. For the characterization of
the transition between the low- and high-frequency regime, Biot [24, 25] has in-
troduced a frequency-dependent complex-valued viscous correction factor F (ω).
According to [95, 104, 172], the correction factor can be formulated as

F (ω) =
�

1 + 1
2 i M ω/ωcrit , (4.2)

whereby M describes the shape factor of the grains and is usually taken as M ≈ 1
[101]. The factor F (ω) is defined as the ratio between the frequency-dependent
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and stationary damping factor [101]

F (ω) = b(ω)
b0

, (4.3)

whereby according to Smeulders [2] the stationary damping factor is denoted as

b0 = ηfR φ0
ks

z

(4.4)

According to Steeb [172] the field equations describing the wave propagation in
fully-saturated porous media are formulated by

N div grad us + (A + N) grad div us + Q grad div uf = ρ11 üs + ρ12 üf

+ b0 F (u̇s − u̇f ), (4.5)
Q grad div us + R grad div uf = ρ12 üs + ρ22 üf

− b0 F (u̇s − u̇f ). (4.6)

In Equations (4.5) and (4.6) the inertial forces, which are important in the high
frequency regime (ω � ωcrit), are expressed by ρ12 üα with α = s, f for the solid
and fluid phases, respectively. ρ11, ρ12 and ρ11 are densities, which describe the
added mass effects as a result of the tortuous pore structure [172]. The densities,
which take the interaction between the fluid and solid phase into account, can
be expressed in terms of real densities of constituents (ρfR, ρsR), tortuosity and
porosity by

ρ11 = (1 − φ0) ρsR − ρ12, (4.7)
ρ22 = α φ0 ρfR, (4.8)
ρ12 = (1 − α) φ0 ρfR. (4.9)

ρ12 is the inertial drag that the solid exerts on the fluid and vice versa. ρ11
represents the effective density of the solid moving through the fluid and ρ22
describes the opposite case [106].
A,N ,Q and R are generalized elastic parameters and can be linked to measurable
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quantities via the so-called “Gedankenexperimente” by

P = (1 − φ0) (1 − φ0 − K/Ks) Ks + φKsK/Kf

1 − φ0 − K/Ks + φ0Ks/Kf
+ 4

3 G, (4.10)

Q = (1 − φ0 − K/Ks) φ0Ks

1 − φ0 − K/Ks + φ0Ks/Kf
, (4.11)

R = φ2
0Ks

1 − φ0 − K/Ks + φ0 Ks/Kf
, (4.12)

A = P − 2N, (4.13)
N = G, (4.14)

where Ks is the intrinsic bulk modulus of the grains, which the solid skeleton
is made of and Kf is the bulk modulus of the pore fluid, (cf. Biot, Willis and
Gassmann [26, 61]). K and G are the bulk and shear modulus of the solid frame.
The denominators of the generalized elastic parameters Q, R in the first term of
P can be summarized to an effective porosity as follows

φE = φ0 + Kf

Ks

�
1 − φ0 − K

Ks

�
, (4.15)

where φ0 the initial porosity, cf. [24, 25, 101, 172]. Under the assumption that
the compressibility of solid skeleton and pore fluid are much higher, compared to
the one of the grains (K/Ks � 1, Kf /Ks � 1), it follows that φE = φ0, and
the elastic parameters A, Q and R are simplified to

A = 1 − φ0
φ0

Kf + K − 2
3 G, (4.16)

Q = Kf (1 − φ0), (4.17)
R = φ0 Kf . (4.18)

Assuming a harmonic approach for waves and with the use of the so-called
Helmholtz decomposition with potentials, according to Refs. [101, 105, 167, 172],
the field Equations (4.5) and (4.6) are separated into a transversal and longitu-
dinal mode and transformed into the frequency domain. In the transversal case
the displacement of the medium is perpendicular to the direction of the wave
propagation, whereas in the case of the longitudinal mode the displacement of
the medium is parallel to the propagation direction, cf. Figure 4.1 (B.). The
following sections consider the dispersion relations for both wave types.
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4.2.2 Transversal mode

For transversal wave modes the eigenvalue formulation can be written in accor-
dance with [172] in the form

AS Ψ̂ = k2
S BS Ψ̂ (4.19)

with Ψ̂ =
�
ψ̂s ψ̂f

�T
and

AS =
�
ρ̂11 ρ̂12
ρ̂12 ρ̂22

�
ω2 and BS =

�
N 0
0 0

�
. (4.20)

Ψ̂ represents the potential vector for transversal waves. AS and BS are the
inertia and stiffness matrices, whereby frequency-dependent densities

ρ̂12 = ρ12 + i b0 F/ω, (4.21)
ρ̂11 = ρ11 − i b0 F/ω, (4.22)
ρ̂22 = ρ22 − i b0 F/ω, (4.23)

are introduced. The corresponding dispersion relation in the transversal case is
a linear equation for ζS = k2

S and reads

ζS(ω) = ρ̂11 ρ̂22 − ρ̂2
12

N ρ̂22
. (4.24)

In the transversal case the dispersion relation shows one physical solution for
the frequency-dependent wave number kS(ω). The frequency-dependent phase
velocity cS , attenuation αS and specific attenuation 1/QS of the shear wave can
be computed using the linear dispersion relation (4.24) as follows

cS := ω���Re
��

ζ(ω)
����

, αS :=
���Im

��
ζ(ω)

���� ,
1

QS
:=

2
���Im

��
ζ(ω)

����
���Re

��
ζ(ω)

����
.

(4.25)

4.2.3 Longitudinal mode

In the case of compressional wave propagation, the eigenvalue problem can for-
mulated as

AP Φ̂ = k2
P BP Φ̂ (4.26)
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with Φ̂ =
�
φ̂s φ̂f

�T
as the potential vector for longitudinal waves and

AS =
�
ρ̂11 ρ̂12
ρ̂21 ρ̂22

�
ω2 and BP =

�
P Q
Q R

�
, (4.27)

where AP and BP represent the inertia and stiffness matrices in case of longitudi-
nal wave mode. The corresponding dispersion relation for ζP = k2

P is a quadratic
equation and can be written as

�
P R − Q2�

ζ2 − [P ρ̂22 + R ρ̂11 − 2 Q ρ̂12] ζ + [ρ̂11 ρ̂22 − ρ̂12 ρ̂12] = 0, (4.28)

where
∆ = P ρ̂22 + R ρ̂11 − 2Q ρ̂12. (4.29)

Equation (4.28) provides two physical solutions for the complex frequency-dependent
wave number kP (ω). Therefore, we obtain two compressional waves, which are
known as the fast P1- and the slow P2-wave. The solution for the square of the
complex wave number reads

ζP (ω) = ∆ ±
�

∆2 − 4 (P R − Q2) (ρ̂11 ρ̂22 − ρ̂12 ρ̂12)
2 (P R − Q2) . (4.30)

In analogy to the transversal case the phase velocities, attenuation and the specific
attenuation of the fast and slow P-wave can be determined by

cP 1,P 2 := ω���Re
��

ζP 1,P 2(ω)
����

, αP 1,P 2 :=
����Im

��
ζP 1,P 2(ω)

����� ,

1
QP 1,P 2

:=
2

���Im
��

ζP 1,P 2(ω)
����

���Re
��

ζP 1,P 2(ω)
����

. (4.31)

4.2.4 Low- and high-frequency limits

For low-frequencies, ω → 0, the slow P2-wave vanishes, so that only the fast P1
and shear wave appear. Moreover, the phase velocity becomes independent of
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the frequency and can be written in accordance with [105] as

lim
ω→0

cs(ω) := cGW,S =

�
G

(1 − φ0) ρsR + φ0 ρfR
, (4.32)

lim
ω→0

cP 1(ω) := cGW,P 1 =

�
Ks + 4

3 µs + Kf /φ0
ρs + ρf

. (4.33)

The low-frequency limit of wave propagation in two-phase systems is described
by Gassmann and Wood [61, 105]. Therefore, Equations (4.32) and (4.33) are
often named as Gassmann-Wood (GW ) limit.
At very high frequencies (ω → ∞), when coupling of fluid and solid is mainly
caused by inertial effects due to tortuosity of pore channels, the phase velocity
becomes also frequency-independent. For α → 1 the fluid decouples completely
from the solid matrix. According to [121] the high-frequency velocities are given
by

cP 1,P 2 =

��
∆1 ± [∆2

1 − 4 (ρ11 ρ22 − ρ2
12) (PR − Q2)]1/2

2 (ρ11 ρ22 − ρ2
12)

�
, (4.34)

cS =

�
G

ρb − φ0 ρfR α−1 , (4.35)

where
∆1 = P ρ22 + R ρ11 − 2Q ρ12 (4.36)

and
ρb = (1 − φ0)ρsR + φ0ρfR, (4.37)

which describes the effective density of the bulk medium.

4.3 Experimental methods - Application to sin-
tered glass beads

In this section the experimental ultrasound measurements according to the trans-
mission method is presented. Furthermore, the Spectral Ratio Technique (SRT)
is introduced, which is used in common ultrasound experiments to characterize
the dispersion behavior of the investigated samples. For a better understanding of
the frequency-dependent wave propagation the investigated samples are described
on different length-scales qualitatively and quantitatively using µXRCT scans.
Microscopic and macroscopic influencing parameters are determined, which are
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used as input parameters for the Biot model.

4.3.1 Specimen
In this study, three cylindrical sintered glass bead samples with bulk diameters
and sample length of 50 mm are used, see Figure 4.2. The ultrasonic measure-
ments are performed in filtered and de-aired water at room temperature. The
water temperature is measured for each experiment and ranged around 22±0.3◦C.

A.) B.) C.)

Figure 4.2: Photographs of investigated sintered glass bead samples with different
particle diameters: A.) dp = 0.4 - 0.6 mm B.) dp = 1.0 - 1.2 mm C.) dp = 3.0 mm

Porosity, tortuosity and permeability

Essential material and structural parameters determining the acoustical proper-
ties, such as porosity and tortuosity, are examined from µXRCT scans of the sin-
tered glass bead packages, and finally used as input parameters in Biot’s theory.
For the determination of porosity and tortuosity values, representative volume
elements with edge lengths of 1024 voxels in x- and y-direction and 2048 voxels
in z-direction are extracted and analyzed. Figure 4.3 (left) shows exemplary a
volume-rendered cuboid after segmentation and labeling procedure for the sin-
tered glass bead sample showing particle diameters between 1.0 and 1.2 mm. The
RVEs for the investigated samples are selected such that, on the one hand, they
contain as many particles as possible, and on the other hand, they are far away
from the outer zones of the entire scanned region. In this way, the impact of
the outer zones on the porosity and tortuosity can be minimized. The (geomet-
rical) tortuosity is determined from the centroids of two-dimensional projections
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gained from the µXRCT scans. The permeability of the samples is determined
by stationary permeability experiments and verified with Lattice Boltzmann sim-
ulations. A detailed description of the morphology, hydraulic and tortuosity de-
termination properties is also described in [54, 69].
The corresponding pore space, depicted in Figure 4.3 (right), exhibits a typical
open-pore foam structure indicating that the microstructure is mainly formed in
early and intermediate sintering stages where the neck radius between the parti-
cles is not too strongly developed, so that the pore spaces remain interconnected.

A.) B.)

Figure 4.3: Extracted volume-rendered cuboid with the dimensions 1024 x 1024 x
2048 voxels of sintered porous sample showing particle diameters between 1.0 and
1.2 mm (A.). The illustration shows the investigated cuboid after segmentation
and labeling procedure. The voxel resolution is 16 µm. The entire scanned region
is demonstrated through the 2D slice. The corresponding pore space shows a
typical foam structure (B.).

Sinter neck and elastic parameters of the solid skeleton

Figure 4.4 shows two binarized glass particles for dp= 1.0-1.2 mm and dp=3.0 mm
with the corresponding contact areas resulted from the neck formation (depicted
in beige) obtained from µXRCT analysis. This also confirms optically the low
deformation of the particles. The particles have not lost their original spherical
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shape after sintering. The optical impressions on the particles of the contact
areas are clearly visible.
As it can be seen in Figure 4.4 A.), an equivalent neck diameter dnk is examined,
in order to quantify the degree of sintering. The main image processing steps
for visualization and quantification of the contact areas between the particles are
depicted in Figure 4.4 B.). Note that for the determination of the contact areas
the “bin separate” module was used, which is a fast implementation of the so-
called watershed separation method. It is not very accurate, but for the sintered
glass beads sufficient. Figure 4.5 shows the determined equivalent neck diameter
distribution of the investigated samples. In all investigated cases, a monomodal
distribution occurs. It can be seen, that the sample with particle diameters of
3.0 mm exhibits larger values for the neck diameter compared to the samples
showing particle diameters of dp=0.4-0.6 mm and dp=1.0-1.2 mm. In the case
of the sample with dp=3.0 mm, the arithmetic mean value of the neck diameter
is about �dnk�=1092 µm, while the samples with dp=0.4-0.6 mm and dp=1.0-
1.2 mm show arithmetic mean values of �dnk�=196 µm and �dnk�=378 µm. The
reason for this, is that, the 3mm-sample is in total sintered 1.5 hours longer than
the other samples. The longer sintering treatment of the sample with dp =3.0 mm
is also reflected in the porosity values, cf. Table 4.1.
The determined inter-particle contact areas on micro-scale influence the macro-
scopic properties significantly, such as the stiffness of the solid matrix.

The time signals obtained from dry ultrasound measurements confirm this, cf.
Figure 4.6. For the determination of elastic properties of skeleton frames com-
posed of sintered glass beads, ultrasound measurements in dry conditions are
performed using contact transducers of Panametrics with central frequencies of
100 kHz (type V 1001). For this purpose, the investigated samples are pneu-
matically fixed 2 between two transducers, and sounded briefly with square wave
impulses showing time durations of 10 µs. Figure 4.6 A.-C.) shows the time sig-
nals of the investigated samples with the corresponding normalized power spectra
(D.) obtained from the coherent parts of the received time signals by applying a
window in the time domain. One can see from the time signals, that the coherent
P1-wave in the case of the sample with dp=3.0 mm, obviously arrives earlier than
the samples with dp=0.4-0.6 mm and dp=1.0-1.2 mm due to the longer sintering
duration, and thus lower porosity values. The E-modules of the solid skeleton
varies greatly depending on sinter degree, particle size and neck formation. The
elastic parameters are listed in Table 4.1. The normalized power spectra of the
investigated samples, illustrated in Figure 4.6 D.), show peaks between 80 and

2with 0.05 bar
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Figure 4.4: A.) Visualization of interparticle contact surfaces and neck formation
through the examples of glass beads with particle diameters of dp=1.0-1.2 mm and
dp=3.0 mm after the sintering procedure. After idealization of the interparticle
contact areas an equivalent neck diameter dnk is determined. B.) Illustration
of the main image processing steps for visualization and quantification of inter-
particle contact surfaces, which are mainly responsible for the elastic parameters
of the solid skeleton composed of sintered glass beads. Note the different scales
between Figures (A.) and (B.).
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Figure 4.5: Equivalent neck diameter dnk distribution and corresponding cumu-
lative curves of the investigated samples showing different particle diameter: A.)
dp=0.4-0.6 mm B.) dp=1.0-1.2 mm C.) dp=3.0 mm.
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110 kHz, which indicates that the square wave impulses of low-frequency con-
tent (around 100 kHz) could easily pass through samples without being distorted
much and filtered from the samples.

Pore shape and volume

The macroscopic acoustical low- and high-frequency coupling parameters, like
the intrinsic permeability and tortuosity are highly influenced by the pore shape
in micro-scale [71]. Figure 4.7 A.) illustrates the pore spaces between the beads
on the basis of the samples with dp=1.0-1.2 mm and dp=3.0 mm as a result of the
sintering procedure obtained from µXRCT analysis. Both samples, depicted in
Figure 4.7 A.), show funnel-shaped pore spaces with distinct pore throats, which
highly influence the tortuosity and intrinsic permeability in sintered granular
systems. The influence of pore throats on the hydraulical properties in sintered
porous glass bead systems is reported extensively in [69].

For the quantitative determination of pore sizes of the investigated samples,
the pore space is separated and labeled according to Figure 4.7 B.). The resulting
pore volume distributions of the investigated samples are shown in Figure 4.8.
The pore volume distributions show that the mean pore volume values �Vpore�
increase with increasing particle diameter �dp� of the investigated samples despite
the fact that the porosity of the 3.0 mm-sample is much lower, cf. Table 4.1.
However, the pores are larger and the total number of labeled pore spaces within
the investigated cuboid in the case of the 3mm-sample is much lower compared
to the other samples.

The elastic, hydraulical and structural parameters for solid and fluid used as
input parameters in Biot’s model are summarized in Table 4.1.

4.4 Experiments

4.4.1 Ultrasonic methods
The experimental setups used for ultrasound measurements in water are illus-
trated in Figure 4.9. As it can be seen from the illustrations in Figure 4.9, two
different configurations are used during ultrasound experiments.
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Figure 4.6: Time signals of different samples obtained from dry measurements
(A.) dp=0.4-0.6 mm, B.) dp=1.0-1.2 mm, C.) dp=3.0 mm) and corresponding
normalized power spectra (D.) obtained from the coherent part of the time signals
by FFT. The piezo-electric acoustic transmitter is pulsed at the central frequency
of 100 kHz using square wave impulser of Panametrics NDT (model 5077 PR).
For the comutation of the FFT time windows with approxiamtely 10 to 12 µs are
used. The samples are directly excited using contact broadband transducers of
Panametrics NDT (type V1011).
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Figure 4.7: A.) Visualization of funnel-shaped pore spaces with distinct pore
throats through the examples of glass beads showing particle diameters of dp=1.0
- 1.2 mm and dp=3.0 mm after sintering procedure. The pore throats highly
influence the coupling between the fluid and solid. B.) Illustration of main image
processing steps for visualization and quantification of pore spaces as a result of
sintering.
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Figure 4.8: Pore volume Vpore distribution and corresponding cumulative curves
of the investigated samples showing different particle diameter: A.) dp=0.4-
0.6 mm B.) dp=1.0-1.2 mm C.) dp=3.0 mm



108 CHAPTER 4. COHERENT WAVE PART

Table 4.1: Physical parameters of sintered glass beads and water used in Biot
model.

Parameter Unit Sample 1 Sample 2 Sample 3

Glass bead diameter[A]
dp [mm] 0.4-0.6 1.0-1.2 3.0

Density of beads[A]
ρs [g/cm3] 2.5 2.5 2.5

Poisson ratio of beads[A]
νs [ - ] 0.23 0.23 0.23

E-modulus of beads[A]
Es [GPa] 59.0 59.0 59.0

Sinter duration[B]
tsd [h] 4.5 5.0 6.0

Number of particles[C]
n [ - ] 87, 899 8, 816 1, 234

Tortuosity factor[C]
α [ - ] 1.46 1.54 1.86

Porosity[C]
φ [%] 37.82 32.53 20.04

Permeability[D]
k

s
z [m2] 9.16 x 10−11 9.52 x 10−10 9.67 x 10−10

Time Of Flight[E]
T OFfr [µs] 23.52 20.57 13.51

E-modulus of solid frame[E]

Efr

[GPa] 7.0 10.0 27.3

K-modulus of solid frame Kfr [GPa] 6.9 9.8 59.0
Rollover frequency ωr [1/s] 283 222 112

Temperature of fluid T
f [◦C] 22

Density of fluid ρ
fR [g/cm3] 1

K-modulus of fluid K
f [GPa] 2.2

[A]: Manufacturer information
[B]: The sinter durations refer to the time period between switching on and off the
furnace
[C]: Obtained from 1024 x 1024 x 2048 cuboids extracted from µXRCT data
[D]: Measured averaged values from 5 or 8 independent permeability experiments
[E]: Determined by dry ultrasound measurement
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Figure 4.9: Experimental arrangements according to the transmission method,
whereby the square wave pulser of Olympus (model 5077PR) is used as pulser
and pre-amplifier (left) or simply as pre-amplifier (right).

In configuration 1, depicted in Figure 4.9 (left), a Panametrics 5077PR pulser/
receiver (Olympus) is used to stimulate the ultrasound transducers. Since no
further devices are used in this configuration, the system becomes more robust
and less prone to errors. A further advantage of this configuration is the ab-
sence of so-called side loops in the received signals due to sudden excitation of
piezo-electric transducers with high energy, which considerably simplifies the de-
termination of TOF of the received signals. Side loops in received time signals
especially occur, when the sound wave propagates through a complex porous
medium, such as sintered glass beads, cf. Figure 4.10.

In Figure 4.10 the received time signals of the same water-saturated sample
with dp=1.0-1.2 mm at different excitation signals are depicted. In the case of
sinusoidal excitation the received time signal shows a side loop at the leading
edge, while in the case of square wave excitation the side loop disappears. The
deviation from the baseline occurs abruptly in a clear manner, which significantly
facilitate the determination of the TOF.
In configuration 2, shown in Figure 4.9 (right), the piezo-electric transmitter is
excited using an arbitrary function generator (Tektronix model AFG 3101). This
configuration enables the selective and different stimulation of the broadband
transducers with desired functions at specific frequencies.

For the excitation, either a sinus burst signal with 1 and 10 cycles or a Ricker
wavelet with 1 cycle, also known as Mexican hat due to it’s shape, are used (see
Figure 4.11).

The main advantage of sinusoidal signal is that the major frequency of the gen-
erated wave can be uniquely adjusted compared to a Ricker wavelet. However,
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sinus-burst-signal (right) according to configuration 2 in Figure 4.9. The central
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the sinusoidal signal is not as smooth in the domain as the Ricker wavelet and
thus contains “parasitic” frequencies. The Ricker wavelet is a relatively simple
seismic model wavelet, since it is the second derivative of a Gaussian function.
It is often used to approximate seismic spectra [63]. The main advantage of the
Ricker wavelet lies in a broader frequency spectrum compared to a sinusoidal
wave with the same duration. A Ricker wavelet with a duration time of 1 µs
exhibits a frequency spectrum up to 5 MHz, while the frequency spectrum of a
sinusoidal wave with the same duration is limited to 2 MHz, cf. Figure 4.11.
One can imagine that a Ricker wavelet with a broader frequency spectrum than
a sinus-wave travelling through the fluid-saturated sintered, porous glass bead
sample would be more sensitive and capture more detail and thus have a better
resolution. Furthermore, Figure 4.11 demonstrates that the frequency spectrum
of the polychromatic sinusoidal signal with 1 cycle becomes significantly narrower
and the peak significantly increases, when the cycle number is increased to 10.
In this way, the frequency of the generated wave is defined more clearly but in
ultrasound experiments short-time signals are preferred due to their localization
in space and time. The energy of the wave signal, which is represented by the
integral of the amplitude spectra, remains constant, when the cycle number is
increased.

4.4.2 Experimental procedure
The samples are examined in a newly developed multi-purpose measuring cell,
using two pairs of immersion broadband transducers (Panametrics type V303-
SU, V306-SU, Olympus, Panametrics-NDT) with central frequencies of either 1
or 2.25 MHz. Figure 4.12 shows the multi-purpose measuring cell in the mode
for ultrasound measurements.

Figure 4.12: Simplified sketch of the measuring cell with length specifications
used for ultrasound measurements.
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The cylindrical specimen is pneumatically fixed by a custom made specimen
holder. The cover and base are equipped with immersion broadband transducers.
A detailed description of the used multipurpose measuring cell is described in
[69]. The two 0.5-inch-diameter transducers are mounted in cover and base of
the measuring cell, which ensures the plan-parallel alignment of the transmitter
and receiver and thus a proper ultrasonic sounding of the porous sample. The
distance between the two transducers is fixed at 196 mm. The distance between
the transducers and the porous sample is fixed at ls = 73 mm. In this way, the
sample is not exposed to the near field of the transmitter. The arrival time of
the back reflected signal can be precisely determined from the distance of the
receiver to the sample and the measured speed of sound in water.
The measuring cell including the porous sample is rinsed with carbon dioxide
prior to the saturation with de-aired and filtered water and the actual ultrasound
experiments. In this way, the content of air bubbles in the measuring cell could
be minimized and an optimal saturation of the porous sample with water could
be achieved.
The received time signals are digitized using an oscilloscope (ZTec 4441 model)
showing a vertical resolution of 14 bit and are finally displayed and stored on
computer via LAN-connection. A fast Fourier transformation (FFT) is performed
to determine the power spectrum of the transmitted signal.

4.4.3 Spectral Ratio Technique (SRT)
For the determination of (frequency-dependent) velocity and attenuation effects
of the water-saturated sample according to SRT, the amplitude spectrum is com-
pared to the spectrum of the reference measurement in water without placing
a porous sample between the transducers, cf. Figure 4.13 A.-B.). On basis of
Figure 4.13 A.), the bulk-velocity in the time domain within the porous samples
can be computed as

c = 1
1

cref
+ ∆T OF

l

, (4.38)

whereby cref is the speed of sound in water and l the sample length of the inves-
tigated sintered porous sample. The speed of sound in water is examined from
the TOF at approximately 1485 m/s using the experimental arrangement shown
in Figure 4.9 (left). ∆TOF = TOF − TOFref is the time difference between the
sample and water pulses.
However, the transmitted ultrasound wave changes its shape and frequency con-
tent especially while propagating through a sintered glass bead sample, the time
difference is difficult to determine in the time domain. Therefore the phase spec-
trum method is used [91, 152] instead of the determination in the time domain.
Here, the velocity is determined in the frequency domain after applying a FFT
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to the sample and water impulses. In this method, the time difference can be
expressed through the phase difference as

∆TOF (ω) = ∆φ(ω)
ω

, (4.39)

with ∆φ = φ − φref and ω = 2πf as the angular frequency. The phase difference
results from the imaginary and real parts of the amplitude spectra obtained from
the signals after FFT as follows

φ = arctan
�

Im[A(ω)]
Re[A(ω)]

�
φref = arctan

�
Im[Aref(ω)]
Re[Aref(ω)]

�
. (4.40)

However, the arctan-function provides only phase values within a range of −π/2
and +π/2, termed as wrapped phase. For a continuous phase the spectrum is
unwrapped into its true form by adding or subtracting multiples of 2π to the
principal value until the phase jumps induced by modulo of 2π are removed
[107, 131]. The so-called unwrapped phase can be defined as

φu(ω) = φ(ω) ± 2k̄π, (4.41)

where k̄ is an integer. Substitution of Equation (4.40) and Equation (4.41) in
Equation (4.38) leads to the frequency-dependent phase velocity

c(ω) = 1
1

cref
+ ∆φu

ω l

. (4.42)

Equalizing the Equations (4.25), (4.31) and (4.38) for the elimination of the
velocities and resolving for TOF results in frequency-dependent arrival times

TOFP 1,P 2(ω) = TOFref − l

cref
+

l
���Re[

�
ζP 1,P 2(ω)]

���
ω

, (4.43)

TOFS(ω) = TOFref + l

�
1

cref
+ Re[

�
ζS(ω)]
ω

�
(4.44)

for the different wave types. Equations (4.43) and (4.44) link the time domain
with the frequency domain and can be used to predict the arrival times and fre-
quency content of the different wave types using the solid and fluid properties
listed in Table 4.1. Using Equations (6.6) and (4.44) has the advantage that the
TOF can be directly determined from ultrasound measurements and compared
with predicted values, in order to identify the detected waves. The apparent
frequency-dependent attenuation, that describes the signal loss within the dis-
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Figure 4.13: Illustration of principles of Spectral Ratio Technique (SRT): A.)
Substitution principle through the use of sintered glass beads B.) Examples of
received ultrasound signals recorded in reference medium, such as water (black
line) and through water-saturated sintered glass bead sample (red line). C.)
Amplitude spectra from the reference signal (black line) and of of the signal
transmitted through the water-saturated sample (red line). From the spectral
ratio of both signals, the frequency-dependent specific attenuation and phase
velocities can be determined.
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persive sample, can be directly determined from the amplitude spectra ratio of
sample and water measurement and is defined on a logarithmic scale as

α(f) = α̂(f) l = ln |Aref(f)|
|A(f)| , (4.45)

where α̂ is the normalized attenuation per sample length l. For a better compar-
ison between the samples with different length, the normalized attenuation α̂ are
often used. The specific attenuation 1/Q can be estimated from the slope of the
apparent attenuation α. Taking into account the definitions in Equations (4.25)
and (4.31), the specific attenuation 1/Q can be alternatively expressed in terms
of the attenuation α̂(f) and phase velocity c(f) [125] as

1
Q

= α̂(f) c(f)
π f

. (4.46)

4.5 Results and discussion
In this section, we first demonstrate the theoretical predictions according to Biot’s
theory using parameters for the solid and fluid according to Table 4.1. In the
following section, the results from the ultrasound experiments are presented, de-
scribed and analyzed in terms of time signals, TOFs, attenuation, phase velocities,
amplitude spectra and spectrograms.

4.5.1 Theoretical investigations
Figure 4.14 shows the theoretically predicted curves for the frequency-dependent
Time Of Flights (A. - C.) and specific attenuations (D. - F.) of the different wave
types obtained from dispersion relations described in section 4.2.2 and 4.2.3.
The frequency-dependent TOFs are determined according to Equations (4.43)
and (4.44) using the solid and fluid parameters in Table 4.1. The vertical red
lines denote the critical frequency from Equation (4.1), which separates low- and
high-frequency regimes described in section 4.2. Depending on the properties
of the solid skeleton, such as tortuosity, porosity or intrinsic permeability, the
determined critical frequencies of the investigated samples in water range only
between 112 and 222 Hz, which confirm that the performed ultrasound experi-
ments have taken place in the high-frequency regime, where theoretically both
fast and slow p-wave can propagate.

The gray-shaded areas in Figure 4.14 A.-F.) represent the frequency regime of
the coherent parts of the detected signals, where dispersion effects can be ex-
cluded. The predicted frequency-dependent TOFs of the different wave types are
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Figure 4.14: Illustration of the frequency-dependent TOFs and specific attenua-
tions of the different waves for the investigated water-saturated sintered samples:
The left panel shows the frequency-dependent TOFs (A., C., E.) and the right
panel the specific attenuations (B., D., F.) of the different waves. The theoreti-
cal predicted curves are determined from dispersion relations formulated in Biot
theory using the physical parameters in Table 4.1.
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inversely proportional to their velocities and remain constant in the relevant fre-
quency range of the detected coherent pulse (gray-shaded area) independently of
the wave type and investigated sample. The difference in the arrival times of the
fast P1- and shear-wave between the investigated samples are very large, whereas
the theoretically predicted arrival times of slow P2-wave of the investigated sam-
ples do not differ considerably from each other in the high-frequency regime. In
the high-frequency regime the TOFs for the slow P2-wave of the investigated
samples range between 145 and 147 µs. For ω → ∞, the TOFs of the different
samples converge to a final value and remain constant in their high-frequency
limits.
The specific attenuations Q−1, also known as inverse quality factor, of the fast
P1- and the shear-wave show distinct peaks around the critical frequencies of
the investigated samples. The decoupling process between the two constituents
induces a viscous relative movement of fluid and solid, which results in a mo-
mentum loss for the P1-wave at the critical frequency. This damping mechanism
caused by viscous drags is known as the Biot-like damping [24, 25, 105]. For
decreasing porosities of the investigated samples, the specific attenuation results
in a shift of the Q−1 peaks to higher frequencies. The specific attenuation of
the slow P2-wave equals two in the low-frequency because it is not propagating
due to strong viscous coupling. With increasing frequency, when inertia effects
become dominant and the fluid starts to decouple, the specific attenuation of the
slow Biot-wave decreases strongly [105]. The decoupling of fluid and solid phases
and thus the transitions to the high-frequency regime tends to occur earlier for
the sample with particle diameters of 3.0 mm, i.e. at lower frequencies, due to
the higher permeability of the sample.

4.5.2 Experimental observations
Time Signals

For the performed ultrasound experiments a time period of 500 µs is recorded and
finally analyzed. Figures 4.15 A.) to C.) illustrate exemplary the time signals of
the investigated samples and the reference measurement in water (D.), whereby a
10-cycle-sinus-burst-signal with frequency of 0.9 MHz is used as excitation signal.
As denoted in Figure 4.15, one can see that the received signals consist basically
of a coherent deterministic pulse and an incoherent part composed of (multiple-
) scattered waves. The intensity of multiply-scattered waves is increasing (in
relation to the intensity of coherent impulse) with increasing particle diameter
of the glass beads, whereas the amplitude of the coherent pulse decreases. In
the case of the sintered glass bead packing with particle diameters of 3.0 mm,
the intensity of the coherent deterministic pulse is lower than the intensity of
the incoherent part caused by scattering effects compared to the samples with
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smaller diameters.

In order to demonstrate that the received signals not only depend on the sample
but also on the frequency of the excitation signals, Figure 4.16 illustrates the
temporal signal of the water-saturated sintered porous sample showing particle
diameters between 1.0 and 1.2 mm at two different frequencies. In the case of the
time signal, depicted in Figure 4.16 (A.) the piezo-electric acoustic transmitter
is excited with a 10-cycle-sinus-burst-signal at frequency of 0.2 MHz, whereas in
the case of the time signal, shown in Figure 4.16 (B.) the dominant frequency of
the generated wave is at 1.0 MHz.
The transmitted temporal signal basically consists of a primary low-frequency
coherent pulse, which arrives at the leading edge and is characterized by large
amplitudes and a high-frequency incoherent part mainly composed of (multiply-)
scattered and reflected waves. However, the incoherent part of the generated high-
frequency wave with 1.0 MHz shows speckle-like scattered waves, which are highly
sensitive to the underlying microstructure and caused by the inhomogeneous
distribution of the contact network and the force chains of the glass beads [92,
137, 139], whereas the incoherent part of the low-frequency wave (at 0.2 MHz) is
more of macroscopic nature.
In the following we focus on the coherent deterministic pulse, which arrives at
certain earlier times. We will confirm that the coherent part, which describes the
macroscopic properties of the saturated porous bulk medium, is well-described
by the established Biot theory.
So far, it is noticeable, that the low-frequency wave of 0.2 MHz, composed of
10 sinus cycles, is able to easily pass through the sintered porous sample without
capturing the complex structure, whereas the coherent pulse of the high-frequency
wave with 1.0 MHz arrives completely distorted. The comparison of the power
spectra of the coherent part of the low- and high-frequency wave in the following
section confirms the distortion of the high-frequency wave, cf. Figure 4.17 (C.).

Windowing and amplitude spectra

In order to separate the coherent part from the remaining part of the raw sig-
nal, temporal windows are used. As an example for the windowing procedure
Figure 4.17 (A.-B) shows the received untreated raw time signal (black line) and
the windowed time signal (red line) after applying a so-called “Tukey”-window
on the coherent pulse. The “Tukey”-window can be regarded as tapered cosine
window [34]. Note that the input parameter was chosen at αTukey=0.1 in order
to reduce the occurrence of side lobes, which are caused by the so-called leakage
effect and thus not of physical nature. αTukey=0 corresponds to a rectangular
window and αTukey=1 to a “Hann”-window [34].
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Figure 4.15: Received time signals through water-saturated samples with differ-
ent glass bead diameters and in water: A.) dp=0.4-0.6 mm B.) dp=1.0-1.2 mm
C.) dp=3.0 mm D.) reference measurement in water. In each measurement, the
acoustic transmitter is excited with a 10-cycle-sinus-burst signal at 0.9 MHz. The
inset at stage D.) shows a zoom of the reference signal in water consisting of 10
sinus cycles.



120 CHAPTER 4. COHERENT WAVE PART

0 100 200 300 400 500
-400

-300

-200

-100

0

100

200

300

400

Time [µs]

V
o
lta

g
e
 [

m
V

]

Coherent deterministic pulse

reflected wave

0.2 MHz

Incoherent "macroscopic" waves

0 100 200 300 400 500
-4

-3

-2

-1

0

1

2

3

4

Time [µs]

V
o
lta

g
e
 [

m
V

]

Coherent deterministic pulse

Incoherent 
(multiple-) scattered waves 

1.0 MHz

A.) B.)

Figure 4.16: Received transmission signals through a water-saturated sintered
sample showing glass bead diameters between 1.0 and 1.2 mm. The piezo-electric
acoustic transmitter is excited with a 10-cycle-sinus-burst signal at different fre-
quencies of 0.2 MHz (A.) and 1.0 MHz (B.).

The acoustic transmitter has been excited with a 10-cycle-sinus-burst-signal at
two specific frequencies of 0.2 and 1.0 MHz. One can clearly see, that the high-
frequency incoherent part is composed of scattered and reflected waves, which
arrive certainly later than the coherent pulse, are set to zero after windowing.
In the following evaluation of the ultrasound signals only the coherent parts are
considered for a Discrete Fast Fourier Transformation (DFFT). It must be no-
ticed, that the temporal window widths for the fast Fourier transformation of the
coherent deterministic pulse are chosen in accordance with the time periods of
coherent pulses, cf. Figure 4.17.

The normalized power spectra of the generated low-frequency wave at 0.2 MHz
obtained from reference and sample measurement, illustrated in black and red
in Figure 4.17 (C.), show peaks around 0.2 MHz, whereas the higher-frequency
components of the reference signal (f > 0.2 MHz) are filtered out by the porous
sample. This indicates that the low-frequency part of the wave could easily
pass through the sample without capturing the complex morphological struc-
ture of the sintered sample and thus without being distorted. In contrast, the
peaks of the generated high-frequency wave with 1.0 MHz, transmitted through
the water-saturated sample, (depicted in blue in Figure 4.17 (C.)), is shifted to
lower frequencies compared to the reference measurement in water which indi-
cates that the generated high-frequency wave arrives completely distorted after
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Figure 4.17: Received and windowed time signals of the generated low- (A.) and
high-frequency (B.) wave for the sintered sample with dp=1.0-1.2 mm (shown
in Figures 4.16 (A.) and (B.)). The power spectra of the coherent parts of the
received signals with the corresponding reference measurement in water are shown
in C.). A so-called “Tukey”-window is used to separate the coherent part of the
signal from the remaining part.
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passing through the sintered glass bead samples. The sample acts as a low-pass
filter, which allows the low-frequency parts of the signals to pass through the
sample and filters out high-frequency components of the broadband signal. De-
pending on particle diameter, degree of polydispersity and sintering treatment,
the natural cut-off frequency of sintered samples can differ. Figures 4.25 and
4.26 (in the appendix) show the raw and windowed signals with the correspond-
ing power spectra for different excitation signals. In general, the cut-off frequency
decreases with increasing polydispersity, particle diameter and sintering duration
of the sample. Mouraille et al. [126, 127] and Lawney et al. [108, 109] have
investigated the sound propagation in mono- and weakly polydisperse packings
numerically with DEM simulations and demonstrated the low-pass filtering effect
in granular packings, getting stronger with increasing disorder. In this study sim-
ilar low-pass filtering behavior has been found in water-saturated sintered glass
bead samples, where the cut-off frequency increased with increasing particle di-
ameter and sinter degree.
In order to demonstrate the low-pass filter effect of the investigated sintered
samples, Figure 4.18 shows the normalized power spectra, where different input
signals at 1 MHz are used. From Figure 4.18 (A.) one observes that the largest
peaks of the power spectra are shifted to lower frequencies with increasing parti-
cle diameter, when the transmitter is excited with a 1-cycle-sinus-burst-signal at
1 MHz. The sintered sample with particle diameter of 3 mm (and lower poros-
ity due to longer sintering duration) shows, independently of the used excitation
signal, the smallest cut-off frequency, and hence the largest filter effect. The fre-
quency and time shift of the coherent parts of the sample signals, in relation to
the reference signal in water, are also observed in the spectrograms, where the
received signals for 1-cycle-sinus-burst input signal are processed. The spectro-
grams are calculated from the short-time-Fourier transform by segmenting the
coherent part of the signals into short time periods and estimating the spectrum
over sliding windows. Figure 4.19 illustrates the Power, respectively as function
of time and frequency. The broader frequency spectrum and time period of the
reference signal in water, shown in Figure 4.19 (D.), becomes significantly di-
minished and narrower and the peak is shifted to lower frequencies and earlier
arrival times, when a porous sintered glass bead sample is positioned between the
transducers. Both frequency and time-shift of the peak, for the porous sample
with dp =3.0 mm, are higher compared to the other two samples, due to the
higher stiffness of the porous skeleton and larger particle diameters.

TOF determination

In Figure 4.20 (A.-C) the time signals for 0.1 MHz input are depicted. The
piezo-electric transmitter is stimulated briefly with a square wave impulse using
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Figure 4.18: Normalized power spectra of the investigated samples at different
high-frequency (1.0 MHz) excitation signals: A.) 1-cycle-sinus-burst B.) 10-cycle-
sinus-burst C.) 1-cycle-Ricker-wavelet. For comparison, the corresponding nor-
malized power spectrum obtained from reference measurments in water is also
shown. The arrow indicate the increasing particle diameter dp for the peaks.
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A.) B.)

C.) D.)

Figure 4.19: Spectrograms of the different samples and reference measurement,
whereby the piezo-electric transmitter is excited with sinus-burst-signal at 1 MHz:
A.) 0.4 - 0.6 mm, B.) 1.0 - 1.2 mm, C.) 3.0 mm, and the D.) reference measurement
(water). Note the different vertical range of for each spectrogram.
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Table 4.2: Experimental and theoretical determined TOFs and SOSs (Speed Of
Sound) of fast P1-wave of investigated sintered samples.

Parameter Unit Sample 1 Sample 2 Sample 3

Particle diameter dp [mm] 0.4-0.6 1.0-1.2 3
Time Of Flight[A] TOFexp [µs] 116.5 114.8 109.3
Time difference [A] ∆TOFexp [µs] -15.8 -17.5 -23.0
Time Of Flight[B] TOFtheory [µs] 115.5 113.7 109.2
Speed Of Sound[B] ctheory [m/s] 2594 2878 4046
Speed Of Sound[A] cexp [m/s] 2784 3075 4646

[A]: Experimentally determined Time Of Flights (TOFexp), Time Of Flight
differences (∆TOFexp) related to the reference measurement to water and sound
velocities (cexp) of fast P1-wave obtained from time domain.
[B]: Estimated Time of Flights (TOFtheory) and sound velocities of fast P1-wave
according to Biot’s theory.

the experimental arrangement in Figure 4.9 A.). The power spectra of the coher-
ent parts of the received signals are presented in Figure 4.20 D.). The comparison
of theoretically and experimentally determined TOFs shows that the detected co-
herent impulse is the fast P1-wave, which arises from the coupling between the
fluid and solid due to inertial effects, cf. Table 4.2. The signals obtained from
the sample with particle diameters of 3.0 mm arrives earlier then the signals ob-
tained from samples with bead diameters of 0.6-0.8 mm and 1.0-1.2 mm due to
higher stiffness of the solid skeleton as a result of longer sintering duration. More-
over, the higher tortuosity of the pore channels of the 3.0mm-sample ensures a
stronger coupling between solid and fluid phase, which results in a shorter arrival
time (109.3 µs) of the fast P1-wave.

Phase velocity, attenuation and quality factor

In Figure 4.21, a comparison between experimentally and analytically determined
sound velocities in dependence on the excitation frequency is shown, whereby the
acoustic transmitter is excited with input signals. The phase velocities refer to
the fast P1-wave of the investigated samples, which arise from the coupling of
the fluid and solid phase due to inertial effects. The experimentally determined
phase velocities are investigated in a frequency range from 0.1 to 5.0 MHz, and
determined from the TOFs of the received signals in the time domain according
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Figure 4.20: Received time signals through water-saturated samples with different
glass bead diameters (using the experimental arrangement depicted in Figure 4.9
A.)): A.) dp=0.4-0.6 mm B.) dp=1.0-1.2 mm C.) dp=3.0 mm. Figure D.) shows
the peak-normalized Power Spectra of the coherent elastic parts. In each mea-
surement, the acoustic transmitter is briefly stimulated with a square wave pulse
with duration of 10µs.
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Figure 4.21: Comparison of experimentally and theoretically determined phase
velocities for the fast p-wave of all investigated samples as function of frequency.
The acoustic transmitter is excited with sinus-burst-signals: A.) of 1 cycle B.) of
10 cycles.

to Equation (4.38). For the calculations of the bulk velocities of the investigated
samples, the TOF in water is determined at 132.5 µs. The theoretical curves
from the Biot theory, represented by solid lines, describe well the experimen-
tally determined velocities. All velocities remain almost constant in the plotted
frequency range, which indicates that no dispersion effects are observed in the
investigated frequency range.

Uncertainties of the measured velocities arise especially in the determination of
the TOF, when the signal-to-noise ratio decreases and the deviation of the base-
line is ambiguous. To overcome this problem, the phase velocities of the detected
waves can be alternatively determined from the spectral ratio according to Equa-
tions (4.38) and (4.40). Figure 4.22 shows the phase velocities cP 1, the specific
attenuation 1/QP 1 and the length-normalized attenuation α̂ in a frequency range
from 0.1 to 0.7 MHz, which corresponds approximately to the frequency spec-
trum of the analyzed coherent P1-wave. The frequency-dependent parameters
are determined from the spectral ratio of the measurements in water only and
with the sample . For the sake of clarity, only every 50th point of the spectrum
is illustrated.

The phase velocities fluctuate around the reference velocity determined from
water measurement and are certainly lower than the velocities determined in
the time domain, cf. Figure 4.21. For all investigated samples, the specific at-
tenuations 1/QP 1, depicted in Figure 4.22 (B.), first shows a decreasing trend,
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Figure 4.22: Phase velocities cP 1, normalized attenuation α̂ and specific attenu-
ation 1/QP 1 of the fast P1-wave of the investigated samples, whereby the piezo-
electric transmitter is excited with a 1-cycle-sinus-burst-signal at 1 MHz.
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Figure 4.23: Phase velocities of the investigated samples, whereby the piezo-
electric transmitter is excited differently with major frequency of 1 MHz: A.)
1-cycle-sinus-burst B.) 10-cycle-sinus-burst C.) 1-cycle-Ricker-wavelet. Different
symbols correspond to different diameters, while the solid lines give the reference
velocity in water.

and finally remain almost constant up to 0.7 MHz. The normalized attenua-
tions α̂ of the fast P1-wave, illustrated in Figure 4.22 (C.), decrease from 0.1 to
0.2 MHz, and then continuously increase from approximately 0.4 to 0.7 MHz.
The frequency-dependent attenuation of the sintered sample with dp = 3.0 mm
is greater in the range from 0.4 to 0.7 MHz, compared to the other samples.
This indicates the higher attenuation properties of the longer sintered sample
in this frequency range. However, the sample with the smallest beads shows
higher attenuation properties for lower frequencies (f<0.4 MHz), cf. Figure 4.22
(B.-C.).
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A.) B.)

C.)

Figure 4.24: Normalized frequency-dependent attenuation αP 1 of the coherent
fast P1-wave of the investigated samples at different excitation signals: A.) 1-
cycle-sinus-burst signal B.) 10-cycle-sinus-burst signal C.) 1-cycle-Ricker wavelet.

In order to demonstrate, that the frequency-dependent parameters highly de-
pend on the input signal, used to excite the acoustic piezo-electric transmitter,
Figures 4.23 and 4.24 show the phase velocities and attenuation at different in-
put signals. Figure 4.23 shows, that the fluctuations of the phase velocities cP 1
differ, when different input signals are used. Similar observations can be made
for the normalized attenuations α̂, cf. Figure 4.24. The gray shaded area shows
the approximate frequency range of the analyzed coherent wave. The normalized
attenuations in Figure 4.24 (A.-C.) show a clearly increasing trend with an in-
creasing frequency. The slope of the attenuations provide information about the
signal quality. The signal quality, often referred as quality factor QP 1, increases
with increasing slope of the normalized attenuations α̂.
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4.6 Conclusion
In summary, we have demonstrated that the Biot-theory can be successfully ap-
plied to water-saturated sintered samples with different macro- and microscopic
features. For the proper prediction of the dispersion properties and TOFs of
the investigated samples, several system parameters are required for which X-
ray Computer Tomographic images are used. For all investigated samples, the
fast P1-wave could be detected and verified with Biot’s theory, while the slow
P2-wave is highly damped or superimposed with (multiple-) scattered waves 3 as
will be discussed in chapter 5. We have demonstrated that the (low-frequency)
coherent part of the detected wave is well described by the fast P1-wave in Biot’s
theory, while the (high-frequency) incoherent part has a diffusive character. A
good agreement between experimentally and analytically determined TOFs and
phase velocities of the fast P1-waves could be achieved.
It has been found out that high-frequency component of the ultrasonic broad-
band signal is filtered out or converted to (multiple-) scattered waves by the
porous sintered glass bead samples. With regard to the coherent wave part, the
porous sintered samples act as lowpass filter, which allow the low-frequency com-
ponent of the broadband signal to pass through the sample and filter out the
high-frequency component. Longer sintered samples with larger glass particles
show stronger filter properties with lower cut-off frequencies than weakly sintered
samples with smaller particles. A decrease of the cut-off frequency with increas-
ing glass bead diameter and sinter duration could be proved. Compared to the
reference measurement in water, a clear frequency- and time-shift of the peaks
to lower frequencies in the power spectra and spectrograms could be detected for
the investigated samples.
The dispersion parameters, phase velocity cP h, specific attenuation 1/Q and nor-
malized attenuation α̂ have been investigated in a broader frequency range for
different excitation signals. They are not only dependent on the investigated
samples, but also on the excitation signals used to stimulate the piezo-electric
acoustic transmitter, for instance in the relevant frequency range of the coherent
pulse a clear increase of the normalized attenuation with increasing frequency was
determined. The increase of the frequency-dependent attenuation is dependent
on the electrical input signal used to excite the transmitter.
Furthermore, the received signals strongly depend on the frequency of the gener-
ated wave, especially with regard to the stronger presence of (multiple-) scattered
waves. The amplitude of the coherent wave decreases with increasing frequency
of the generated wave, while the amplitudes of the (multiple-) scattered waves
are increasing. The proportion, which is converted to (multiple-) scattered waves,
increases with increasing frequency of the generated wave.

3especially for the sintered samples with dp =1.0-1.2 mm and dp =3.0 mm
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Figure 4.25: Received time signals of the generated low- (A.) and high-frequency
(B.) wave with corresponding power spectra of the windowed signal. The piezo-
electric transmitter is excited with a 1-cycle-sinus burst signal. The power spectra
of the coherent parts of received signals with the corresponding reference mea-
surement in water are shown in C.). A so-called Tukey-Win is used to separate
the coherent part of the signal from the remaining part.
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Figure 4.26: Received time signals of the generated low- (A.) and high-frequency
(B.) wave. The piezo-electric transmitter is excited with a 1-cycle-Ricker-wavelet.
The power spectra of the coherent parts of received signals with the corresponding
reference measurement in water are shown in C.). A so-called Tukey-Win is used
to separate the coherent part of the signal from the remainig part.



CHAPTER 5

Wave Propagation in
Sintered Porous Glass Bead

Systems: High-Frequency
range

In this study, incoherent transport of ultrasound waves in a water-saturated sin-
tered glass bead packing is investigated experimentally. The spectral energy den-
sity associated with speckle-like (multiple-) scattered high-frequency waves is ex-
plained by diffusive processes. In accordance with classical predictions a diffusion
coefficient of D=0.38 m2/s and a quality factor of Q=105 could be determined
from the diffusion approximation of the time-dependent intensity curve to the en-
semble averaged data obtained from the ultrasound experiments. In this way, we
demonstrate that the energy dissipation of (multiple-) scattered waves in water-
saturated sintered glass bead systems are quantitatively and qualitatively well de-
scribed by a diffusion model.

5.1 Introduction
Fluid-saturated sintered glass bead packings are strongly heterogeneous and mul-
tiscale and -phase systems. The heterogeneities due the random distribution of
the glass beads in the solid matrix can lead to strong scattering of ultrasound
waves at wavelengths in the order of the glass beads (λ ≈ dp). The scattering of
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ultrasonic waves is further enhanced through micro cracks resulting from rapid
cooling processes during sintering. Therefore, the use of relatively high-frequency
ultrasound waves (in the MHz range) can provide useful information about the
microstructure of strongly disordered inhomogeneous materials.
Previous investigations showed that the diffusion approximation can be success-
fully applied to the wave propagation under the conditions of strong multiple
scattering in randomly distributed dry and wet glass bead packings [92]. Grif-
fiths et al. [68] used diffusive ultrasound to investigate non-consolidated granular
materials in different saturation gases and determined the frequency-dependent
diffusion parameters. However, in their investigations the scattering medium was
directly excited using contact transducers.
In this study, the diffusive ultrasound experiments are extended towards fluid-
saturated sintered glass bead systems, whereby water is used as coupling medium
and pore fluid. The applicability of the diffusion model, in which the wave inter-
ference is completely ignored, is tested on the incoherent wave part of the received
ultrasound signal. Using the diffusion approach we determine the diffusion coef-
ficient and quality factor in one disordered fluid-saturated sample consisting of
sintered glass beads and water.
In section 6.3 the experimental procedure and set-up for the performed ultrasound
experiments is briefly described. In section 5.3 the diffusive wave transport of
ultrasound is introduced and approximated to the results obtained from the mea-
surement of a water-saturated sample with glass bead sizes around 1.1 mm. The
observations and results are finally concluded in section 5.4.

5.2 Experiments
The experimental set up is a classical configuration to carry out immersion ul-
trasound measurements according to the transmission technique. Two immersion
broadband transducers with central frequencies of 1 MHz (Olympus, Panametrics
NDT, V303-SU) are placed at the front and back of the porous sintered sample.
The immersion transducers are not in direct contact with the investigated sam-
ple. The distance between the transducers and the porous sample is fixed at
approximately 73±0.4 mm. The ultrasound experiments are performed in a spe-
cially developed measuring cell made of acrylic glass. Prior to the ultrasound
experiments, the measuring cell, including the porous sample, is rinsed out with
carbon dioxide and filled with de-aired and filtered water, in order to achieve an
optimal saturation of the sample. A detailed description of the measuring cell is
described in [69]. A 10-cycle sinus burst excitation at a frequency of 0.9 MHz is
applied to the P-wave source transducer (Tektronix model AFG 3101). The nar-
row band excitation corresponds to the product of the acoustic wave number and
bead diameter k dp = ω dp/cP 1 ≈ 2.2 with cP 1 = 2872.5 m/s as the bulk velocity
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and dp=1.1 mm as the glass particle diameter forming the solid frame. In these
high frequency ranges, a strong ultrasound scattering of the investigated medium
is expected, where the wavelength of the ultrasound is only about λ = 3.2 mm
and thus in the order of the particle diameter dp. The received time signal is
displayed and digitized on a 300 MHz-storage oscilloscope (ZTec 4441, maximum
sample rate 800 MS/s, vertical resolution 14 bit).
Figure 5.1 (A.) shows the typical received time signal of a water-saturated sintered
glass bed sample with bead diameters between 1.0 and 1.2 mm. The investigated
cylindrical sample (with diameter and length 50 mm) has an open pore structure
and a porosity of 31.87 %. The time signal is basically composed of a coher-
ent pulse arriving at the leading edge and an incoherent part mainly composed of
speckle-like multiple-scattered waves, which are highly sensitive to the underlying
microstructure of the investigated sample. For the diffusion approximation, only
the incoherent wave part is considered. The dominant energy component of the
transmitted wave is at a high frequency, which has a multiply scattered behavior
approaching a diffusive regime [92, 162, 163]. In the diffusive regime the shear
waves dominate the scattered wave field [80, 92]. Using temporal windows for the
calculations of the power spectra of the coherent and incoherent parts reveal that
the frequency content of the coherent wave part is considerably lower than that of
the incoherent part, cf. Figure 5.1 (C.). However, from the comparison between
the power spectra of the total received signal and the incoherent part, a clear
visible difference between both spectra appears, cf. Figure 5.1 (C.). The spec-
trum of the coherent pulse does not coincide with the low-frequency part of the
total power spectrum. The incoherent part contains also a low-frequency wave
part, which for instance results from the back reflection of the sample or from the
occurrence of the so-called slow P2-wave [24, 25]. These waves commonly have
the same frequency content as the coherent pulse [91]. Therefore, for an optimal
separation of the high-frequency incoherent part from the remaining part of the
received time signal, a highpass filter is applied to the raw signal. Figure 5.1
(B.) shows the highpass-filtered time signal, whereby the cut-off frequency has
been chosen at 0.7 MHz at which the low-frequency coherent pulse at the leading
edge disappears. The corresponding power spectra of the highpass-filtered signal
is shown in Figure 5.1 (D.). It can be clearly seen that the low-frequency part
(f < 0.65 MHz) is filtered out.

5.3 Diffusive wave propagation
From the time signal, depicted in Figure 5.1 (A.), we can see that most of the
energy transport through the water-saturated sintered glass bead sample is caused
by scattered waves occurring in the incoherent wave part of the received time
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Figure 5.1: Received time signal in raw state (A.) and after highpass filtering (B.).
The cut-off frequency is chosen at 0.7 MHz. The corresponding power spectra
of the raw signal (C.) and of the highpass-filtered high-frequency incoherent part
are shown below.

signals. Although it is challenging to describe the multiple scattering of classical
waves, significant progress has been achieved through the use of the diffusive wave
approximation [46, 135, 138, 186, 188]. In the diffusive modelling of multiple-
scattered waves the averaged wave intensity is treated as random walk process.
The phase information is not considered and the wave propagation is described
by a single diffusion coefficient as

D = 1
3 ce l∗, (5.1)

where l∗ represents the average transport free path, which describes the mean
distance the ultrasound wave travels before its propagation direction is random-
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ized by scattering “event” [92]. ce is the averaged ballistic velocity, at which the
energy of the scattered waves is transported through the porous sample-water
system.
The diffusion method is based on the assumption that the spectral energy density
of the scattered ultrasonic wave field is well described by a diffusion equation. The
diffusive wave field is temporally and spatially incoherent with the incident wave
and the field variables are assumed to be random [48]. According to [48, 187]
the diffusion equation that describes the time evolution of the spectral energy
density �U(z, t, f)� of an ultrasonic wave field can be formulated as

∂�U(z, t, f)�
∂t

= D ∆�U(z, t, f)� − σ �U(z, t, f)� + P (z, t, f)
�

z ∈ B, (5.2)

where P (z, t, f) is the spectral energy density source term (forcing condition) and
σ(f) the dissipation rate. B describes the elastic isotropic body of the scattering
medium. The frequency-dependent diffusion coefficient D(f) is very sensitive to
the microstructure, but is assumed to be independent from the direction. Fast
spatial variations in amplitude and phase, which are typical for a diffusive wave
field, converge to zero when they are ensemble averaged over various configura-
tions [48, 137, 180]. This property of waves is known as phase cancellation. It
should be noticed that the energy in the coherent wave part is transferred to the
incoherent wave part consisting of (multiple-) scattered waves with increasing
frequency. No energy is lost in scattering and scattering has no contribution to
the dissipation rate σ [48]. A higher diffusion coefficient D results in faster diffu-
sion of energy transported in the multiple scattered waves, whereas an increasing
scattering probability is associated with slowing down of the diffusive process and
decreasing the diffusion coefficient. As highlighted by [136], the energy density
measured on the same axis as the source at the distance z = l can be approxi-
mated by a 1D solution to plane waves at various frequencies in the scattering
sample. Under the assumption that the cell walls are perfectly reflecting at z = 0
and z = l, Jia et al. [92] has proposed a simple solution for the time-dependent
intensity profile based on a Fourier series approach as presented in [42]

I(t) = −D
∂U

∂z

����
z=l

z=0
= ce U0

2 l
e−t/τa

∞�

n=0

(−1)n

δn
cos (nπ l∗/l) e−D(n π)2 t/l2

, (5.3)

where U0 is the energy of the transmitted scattered waves and l the sample length.
δn=2 for n=0, otherwise δn=1. τa describes the inelastic absorption time and
can be expressed in terms of the quality factor of the scattered waves as

τa = Q

2 π f
. (5.4)



140 CHAPTER 5. SCATTERING

Ultrasound experiments are commonly used to measure the diffusion coefficient
and the quality factor from the time evolution of the transmitted high-frequency
scattered waves. In this respect, the measured transmitted acoustic intensity is
determined by ensemble averaging the square of the envelope of the scattered
sound field, which is represented in the incoherent wave part of the received time
signal [68, 93, 138, 180], see Figure 5.1 (A.-B.). Figure 5.2 shows a typical result
of the evaluation of scattered ultrasound waves in a water-saturated glass bead
sample. The measured normalized intensity curve results from the averaging of
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Figure 5.2: Comparison of normalized Intensities obtained from ultrasound mea-
surements and diffusion model. The measured averaged intensity curve is deter-
mined from 10 independent measurements. The piezo-electric acoustic transmit-
ter is excited with a 10-cycle-sinus burst at 0.9 MHz. The diffusion coefficient and
quality factor is determined by fitting the diffusion model the measured averaged
intensity profile at D = 0.38m2/s and Q = 105.

ten independent ultrasound experiments and is compared with the theoretical in-
tensity curve, represented by the red solid line and determined from the solution
of the diffusion equation given in (5.3). The ultrasound measurements are ob-
tained from five different samples with the same glass bead diameters and sinter-
ing treatment. To ensure a well defined ultrasonic frequency, a sinus-burst-signal
with 10 cycles is used. The frequency of the generated quasi-monochromatic wave
has been chosen at 0.9 MHz. The diffusion approximation, which is normalized
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Table 5.1: Input parameters for the diffusion model and results obtained from
the fit of the theoretical time-dependent intensity curve to measurement data.

Parameter Unit

Sample length l [mm] 50
Energy transport velocity[A] ce [m/s] 956
Energy of transmitted scattered
waves[B] U0

[cV2] 113.6

Frequency f [MHz] 0.9
Number of speckles N [ - ] 50
Diffusion coefficient[C] D [m2/s] 0.38
Quality factor[C] Q [ - ] 105
Mean transport free path[C] l∗ [mm] 1.2

[A]: Experimentally determined energy transport velocity obtained from the
average Time Of Flight (TOF ) of the received time signals of ten independent
ultrasound measurements transmitted through the water-sample-water system.
The ultrasound measurements are obtained from five different samples, whereby
the transmitter and receiver have been changed for each investigated sample.
[B]: Determined from the integration of the measured averaged intensity profile
according to the trapezoidal rule with step size (b − a)/n, where a and b describe
the integration limits and n the number trapezoidal areas.
[C]: Determined from the fit to the theoretical time-dependent intensity profile
to experimental data.

to the peak of the intensity, is calculated by using the diffusion coefficient and
quality factor as fit parameter. For the water-saturated sintered sample with
bead diameters between 1.0 and 1.2 mm the best fit is obtained with a set of pa-
rameters D=0.38 m2/s and Q=105. Note, that for the fit of Equation (5.3) a new
temporal axis is defined with t = TOF = 0 as the beginning of the penetration
of the ultrasound wave into the porous sample. Further input parameters used to
predict the time-dependent intensity curve and important results are summarized
in Table 5.1. The mean transport free path of the ultrasound wave is determined
according to Equation (5.4) at 1.2 mm. This means that the ultrasound wave
changes its direction and is being randomized every approximately 1.2 mm in the
porous sample, which satisfactory close to the particle diameter.
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5.4 Conclusion
In summary, we can conclude that the diffusive wave propagation model can be
successfully applied to the incoherent wave part of the received time signals from
ultrasound transmission measurements in water-saturated sintered glass packings.
A good agreement between experimentally and theoretically time-dependent in-
tensity curves of the scattered waves could be achieved. For the generated si-
nusoidal signal of 10 cycles with 0.9 MHz, the frequency-dependent diffusion
coefficient could be determined at D =0.38 m2/s. The transport mean free path
of the ultrasound wave was determined from the measured Diffusion coefficient
as l∗ =1.2 mm. This result corresponds approximately to glass bead sizes, which
the porous sintered sample is composed of. The quality factor, which describes
the time-dependent attenuation of the (multiple-) scattered wave part, could be
determined as Q =105.
Future work should therefore include the evaluation of the diffusion coefficient
and the quality factor of scattered waves for different frequencies and pore fluids
to further understand the relevance of the diffusive wave model for the acoustical
wave propagation in sintered glass bead systems.
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CHAPTER 6

A Contribution to Biot’s
Slow P2-Wave: An

Experimental Study in
Fluid-Saturated Porous

Sintered Glass Bead
Systems

The detection of slow P2-waves in fluid-saturated porous media is in practice diffi-
cult due to it’s strong attenuation and superposition with different wave types (i.e.
scattered waves). In the most cases the technical requirements necessary for the
observation of the slow P2-wave (for instance the vertical resolution of the used
oscilloscope) are not sufficient. In this study, the applicability of Biot’s theory is
investigated experimentally on a fluid-saturated porous sintered glass bead sample.
The Biot theory is used to identify the slow P2-wave in ultrasonic measurements.
Different Newtonian fluids (water and silicone oil) are used to saturate the same
glass bead sample, in order to check the consistency of Biot’s theory. While the
slow P2-wave could be clearly identified for the water-saturated sintered sample,
the detection of the slow P2-wave in silicone oil-saturated sample is hampered by
the higher viscous coupling property with the solid frame and stronger attenua-
tion coefficient as compared to water. A good agreement between theoretically and
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experimentally determined Time Of Flights (TOF) of the detected waves is re-
ported. However, the frequency-dependent attenuation obtained from Biot theory
is not sufficient to describe the attenuation in the studied systems, which gives
the ultrasound experiments a great importance for a better understanding of the
physical interactions between the fluid and solid matrix - in our case composed of
sintered glass beads.

6.1 Introduction
The investigation of ultrasonic wave propagation in fluid-saturated porous me-
dia is often interpreted in terms of Biot’s theory with varying degree of success
[24, 25, 27, 107]. The detection and evaluation of the slow P2-wave, which is
highly sensitive on the underlying microstructure of the porous medium and it’s
saturating pore fluid, has always occupied the research in the field of acoustical
wave propagation in porous media [36, 74, 84, 99, 104, 105, 110, 111, 172]. How-
ever, the application of Biot’s theory on real experimental data proved to be very
difficult, since, unlike the fast P1-wave, the detection of the slow P2-wave is in
the most cases not directly visible due to it’s strong attenuation and superposi-
tion (time-overlapping) with different wave types, like (multiply-) scattered waves
or/and the fast P1-wave. Practical observation of single wave modes can become
even more difficult, due to the required differentiation into time or frequency
domain or too low sensitivity, cf. [101]. Therefore, experimental observations
of the slow Biot-waves required a long time, cf. [144]. Two longitudinal wave
modes can also be observed in bones [114, 172]. Bones, however, have a strongly
anisotropic structure, due to adaptation to mechanical loading. For this reason,
the slow P2-wave only occurs in directions where fluid flow is possible along the
bone channels [84, 105, 114].
In this study, the general problems addressing the detection of the slow P2-wave
are outlined and discussed. The presence of the slow P2-wave is experimentally
confirmed in fluid-saturated artificial porous media composed of sintered glass
beads. In contrast to common rock samples and bones, the microscopic and
macroscopic features, which favor the propagation of slow P2-wave, can be in-
fluenced by the selection of certain glass beads and special sintering treatments.
The acoustical wave propagation in porous sintered glass bead sample is ana-
lyzed extensively for different saturating fluids. The effect of the saturating fluid
is investigated in detail with the goal of evaluating it’s contribution to the pres-
ence of the slow P2-wave and the velocity and attenuation dispersion mechanisms.

In section 6.2 the mathematical frame work for the propagation of the fast and
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slow P-waves is briefly introduced and the frequency-dependent TOFs of both
waves determined from the dispersion relation for different saturating fluids. In
section 6.3 the experimental set-up and procedure is described. The results from
the ultrasound experiments are presented in section 6.4. The final section 6.5
addresses the conclusion gained from the ultrasound experiments in water- and
silicone oil-saturated sintered sample and gives an outlook for future work.

6.2 Theoretical background

6.2.1 Biot model

One of the most important features of the Biot model [24, 25, 27] is the presence of
the so-called slow P2-wave, often referred to as Biot-wave, which arises from the
out of phase movement of the solid matrix and the fluid phase. In contrast, the
fast P1-wave arises when the fluid and solid phase move in phase due to viscous
or inertial coupling. In accordance with [104, 172] the dispersion relations for the
propagation of both P-waves can be formulated as an eigenvalue problem

det(AP − k̄2
P BP ) = 0, (6.1)

with the matrices

AP =
�
ρ11 ω2 − iωF (ω)b0 ρ12 ω2 + iωF (ω)b0
ρ12 ω2 + iωF (ω)b0 ρ22 ω2 − iωF (ω)b0

�
and BP =

�
P Q
Q R

�
.(6.2)

The matrix AP describes the frequency-dependent momentum exchange between
the solid matrix and the saturating fluid due to inertial (∝ ω2) or viscous (∝ i ω)
effects with angular frequency (ω) and wave number k̄P [104]. The densities in
matrix AP can be expressed in terms of measurable quantities of the propagating
medium ρ11 := (1−φ0) ρsR −ρ12, ρ22 := φ0ρfR −ρ12 and ρ12 := (1−α∞) φ0ρfR.
The porosity and tortuosity of the porous medium are introduced as φ0 and
α∞ and the true bulk densities of the solid and the fluid phase as ρsR and
ρfR. The viscous damping is usually expressed in terms of the intrinsic per-
meability ks

z of the porous medium as b0 = ηfRφ2
0/ks

z. The index z refers to
the intrisic permeability in flow and propagation direction z. The frequency-
dependent correction factor for the damping according to Johnson et al. [95]
reads as F (ω) =

�
1 − 0.5i ω/ωcrit with a critical frequency ωcrit which character-

izes the transition from a viscous dominated flow regime to an inertial dominated
flow regime. The critical frequency is defined as ωcrit = fcrit/2π := b0/ρ22. The
frequency-dependent phase velocities and attenuation coefficients of the P-waves
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can be calculated on basis of the eigenvalue problem as

cP 1,P 2(ω) = ω

Re
�
k̄P 1,P 2(ω)

� and αP 1,P 2(ω) = Im
�
k̄P 1,P 2

�
. (6.3)

The generalized elastic parameters in matrix BP can be determined from mea-
surable quantities as

R = Kf

φE
φ2

0; Q = Kf

φE

�
K

Ks
+ 1 − φ0

�
; P = K + 4

3G + Kf

φE

�
K

Ks
+ 1 − φ0

�
.(6.4)

As can be seen in Equation (6.4), the elastic parameters depend not only on the
bulk modulus of the skeleton frame K, the fluid Kf and the solid grains Ks, but
also on the effective porosity φE := φ0 + Kf /Ks

�
1 − φ0 − Kf

Ks

�
.

6.2.2 Immersion ultrasonic measurements
The frequency-dependent phase velocity in immersion ultrasonic measurements
is usually determined as

cP 1,P 2(ω) = cref
�

1 − cref
l

∆TOF (ω)
�−1

, (6.5)

whereby the time difference is defined as the difference in arrival times between
sample and reference measurement ∆TOF (ω) := TOF (ω) − TOFref . cref and
TOFref := L/cref are the speed of sound and the arrival time obtained from the
reference measurement, where a no dispersive sample is positioned between the
transducers. L and l represent the distance between the transducers and the
length of the porous sample, see Figure 6.1.

Figure 6.1: Simplified sketch of the measuring cell with length specifications used
for ultrasound measurements.
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A.) B.)

Figure 6.2: Frequency-dependent TOFs of the fast P1- (A.) and slow P2-waves
(B.) for the investigated porous sintered sample in silicone oil and water. The
frequency-dependent TOFs are determined from the dispersion relations accord-
ing to Equation (6.6). The vertical lines represent the critical frequencies of
investigated sample in water and silicone and the gray-shaded area indicates the
approximate frequency-range if the received ultrasound signals.

Combining Equation (6.5) and (6.3) yields the frequency-dependent arrival
times of the P-waves

TOFP 1,P 2(ω) = TOFref + l

cref
−

l
��Re[k̄P 1,P 2(ω)]

��
ω

. (6.6)

Equation (6.6) combines the theoretical determination of the arrival times with
the given geometrical boundary conditions of the ultrasound experiments and
can be used to predict the arrival times of the P-waves and to identify the slow
and fast P-waves in ultrasound experiments. In this respect, Figure 6.2 shows the
frequency-dependent arrival times of the fast and slow P2-waves for a water- and
silicone oil-saturated sintered glass bead sample with glass particles between 0.4
and 0.6 mm. For the theoretical predictions the dispersion relation formulated
in (6.1) and the material parameters summarized in Table 6.1 are used.

6.2.3 Prediction of Time of Flights
While the frequency-dependent TOF curves for the fast P1-wave, shown in Fig-
ure 6.2 (A.), remain almost constant and hardly show any dispersion, the pre-
dicted TOFs for the slow P2-waves goes to infinity (TOFP 2 → ∞) for ω → 0,
which indicate that the slow P2-wave, independent from the saturation fluid,
shows a diffusive character below the critical frequency and cannot propagate
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in the low-frequency regime, cf. Figure 6.2 (B.). The critical frequencies of the
water- and oil-saturated sintered sample are given by the vertical lines. The
critical frequency of the oil-saturated sample is approximately 20 times higher
due to the higher viscosity of the used silicone oil (Fragoltherm-X-160-A), see
Table 6.1. However, it can be seen that in the relevant frequency range of the
ultrasound experiments, represented by the gray-shaded area, the TOFs of the
fast and slow P-waves remain, independent from the used pore fluid, constant
and no dispersion is expected. In the relevant frequency range of the received
ultrasound signals both P-waves can theoretically propagate.
However, it should be noticed that the Biot theory does not take the scattering

effects into account, which is a main problem in detecting the slow P2-wave in
ultrasonic measurements. Scattering effects usually takes place when the wave-
lengths of the ultrasonic waves are of same the order as the glass particle, which
the solid matrix is composed. Scattered waves are created if the dimensions of the
heterogeneities are comparable to or lower than the wavelength (λ ≈ dp, λ < dp)
[107, 137, 138, 163]. To overcome or minimize this problem glass particles with
diameters between 0.4 and 0.6 mm are used. Figure 6.3 (A.) shows the wave-
length of the P1- and P2-wave transmitted through the water- and oil-saturated
sample. One can see, that the wavelengths are greater than the particle diameter,
represented by the black area. Note, that scattering effects do not only depend
on the sizes of the used glass particles, but also on the sintering necks that can
be different dependent on the treatment. Longer sinter durations or microcracks,
resulting from rapid cooling after sintering, can also cause stronger heterogeneity
of the samples and pore shape and thus enhances the scattering effects.

6.3 Experiments
Ultrasonic measurements have been performed according to the transmission
method, where one transducer serves as a transmitter (sender) and the other
as a receiver, see Figure 6.1. The experimental arrangement for transmission of
ultrasound is shown in Figure 6.3 (B.). Broadband immersion transducers with
central frequencies of 1 MHz (Olympus, Panametrics-NDT, type V303-SU, 0.5
inch in diameter, see Ref. [4]) have been mounted opposite to each other in a
specially developed multi-purpose measuring cell, which has been flooded with
distilled water or silicone oil at 23.7 ± 0.2◦C. The piezo-electric transmitter is
driven by an arbitrary function generator (Tektronix model AFG 3101 with a
time resolution of 8 ps and a vertical resolution of 1 mV), whereby different elec-
trical input signals, such as a single sinusoidal burst signal or a Ricker wavelet
with voltages of ± 711 mV at different frequencies are used. The electrical input
signals are power-amplified with 55 dB (RF Power Amplifier, model E&I 1040L,
10 kHz-5 MHz, 400 W). The received signals are pre-amplified and displayed on
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Table 6.1: Material parameters used for Biot theory.
Parameter Unit Water

Fluid temperature[A] T fR [◦ C] 23.9
Viscosity ηfR [µPa s] 922
Density ρfR [kg/m3] 998
Time Of Flight[A] TOFref [µs] 132.3
Speed of Sound[A] cref [m/s] 1481
Bulk modulus Kf [GPa] 2.22
Critical frequency fcrit [Hz] 40.8
Viscous frequency fv [MHz] 0.46
Parameter Unit Silicone oil

Product name [ - ] Fragoltherm X-160-A
Fluid temperature[A] T fR [◦ C] 23.6
Viscosity[B] ηfR [µPa s] 19200
Density[B] ρfR [kg/m3] 960
Time Of Flight[A] TOFref [µs] 197.6
Speed of Sound[A] cref [m/s] 992
Bulk modulus Kf [GPa] 0.94
Critical frequency fcrit [Hz] 882.7
Viscous frequency fv [MHz] 9.27

Parameter Unit Sintered glass bead sample

Glass particle diameter[B] ds [mm] 0.4-0.6
Density of solid grains[B] ρs [kg/m3] 2500
E-modulus of solid grains[B] Es [GPa] 59
Bulk modulus of solid grains Ks [GPa] 36.42
E-modulus of solid frame E [GPa] 6.62
Bulk modulus of solid frame K [GPa] 3.34
Tortuosity factor[C] [ - ] 1.46
Mean pore diameter[C] [µm] 165.74
Initial porosity[A] φ0 [%] 37.04
Effect. permeability[A] ks

z [m2] 9.16 x 10−10

[A]: Measured values, see Refs. [69, 71]
[B]: Manufacturer information, see Refs. [1, 6]
[C]: Obtained from 1024 x 1024 x 2048 cuboid extracted from µXRCT data, see
Ref. [69]
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Figure 6.3: Frequency-dependent wavelength of the fast and slow P-wave in
water- and silicone oil-saturated sintered glass bead specimen (A.). The diameter
range of the glass particles is represented by the black area. The approximately
frequency range of the received time signal is given by the gray-shaded area.
The experimental set up for the ultrasound measurements (B.) according to the
transmission method.

a storage oscilloscope (ZTec model 4441 with a vertical resolution of 14 bits).
The cylindrical porous sample with a bulk diameter and length of 50 mm is posi-
tioned between the transducers. The distance between sample and transducers is
fixed at ls =73 mm on both sides, so that L = 2 Ls + l =196 mm, cf. Figure 6.1.
Note, that the angle of incidence of the ultrasonic wave, under the assumption
of a plane wave, is perpendicular to the considered surface of the investigated
sample, so that shear waves can be excluded.

6.4 Results and discussion
The raw time signals obtained from the ultrasound measurements of both water-
and silicone oil-saturated sintered sample at different electrical input signals are
shown in Figures 6.4 and 6.5 (A., B.). The time signals basically consist of
a coherent impulse characterized by large amplitudes and an incoherent part
arriving at later times, which consists of (multiply-) scattered waves, the slow
P2-wave and reflected waves. Comparison of the arrival times obtained from Biot
theory and ultrasound experiments confirms that the coherent pulse corresponds
to the fast P1-wave, which mainly arises from the inertial coupling between solid
and fluid phase, when both phases move in phase, see Table 6.2.
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Table 6.2: Comparison of theoretically and experimentally determined TOFs and
SOSs of the slow and fast P-waves.

Parameter Unit Water Silicone oil

Experiment Theory Experiment Theory

Fast P1-wave TOFP 1 [µs] 117.4 117.9 169.6 168.6
Slow P2-wave TOFP 2 [µs] 157.6 149.1 - 215.3

Fast P1-wave cP 1 [m/s] 2652.5 2577.0 2231.3 2334.0
Slow P2-wave cP 2 [m/s] 846.7 990.2 - 737.0

For the detection and a better visualization of the slow P2-wave, the raw
signals are lowpass-filtered (with a cut-off frequency of 0.45 MHz). In this way
the background noise and the (multiply-) scattered wave part is removed from
the remaining part of the signal. While the slow P2-wave in the water-saturated
sample is clearly visible after the lowpass-filtering, the slow P2-wave of the silicone
oil-saturated sample cannot be clearly detected due to higher viscous coupling
and attenuation by the pore fluid, cf. Figures 6.4 and 6.5 (C., D.). It should be
stated, that in both cases the same porous sintered sample was used.
For comparison the reference signals in water and silicone oil are illustrated in
Figures 6.4 and 6.5 (E., F.). The insets in Figures 6.4 and 6.5 (E., F.) show
an enlargement of the transmitted useful signals determined from the reference
measurements, where in addition to the TOFs and the amplitudes the signals
shapes of the received signals can be seen. The received signal in silicone oil shows
additional oscillations compared to water, although in both cases the acoustic
transmitter was either excited with a 1-cycle-sinus-burst signal at 1 MHz or a
1-cycle-Ricker-wavelet at 0.1 MHz. The Speed of Sound (SOS) in water and in
silicone oil were determined at room temperature (23.6-23.9◦C) at 1481 m/s and
998 m/s.

The comparison of the predicted and the measured arrival times of the slow P2-
wave in the water-saturated sample proves the detection of the Biot-wave, see
Table 6.2. The time difference between experimentally and theoretically deter-
mined TOFs of the P2-wave results especially from the densification in propaga-
tion direction of the porous sample, which highly affect the decoupling process
between the fluid and solid phase and is not considered in the conventional Biot
theory. Figures 6.4 (C.) and 6.5 (C.) demonstrate that the P2-wave exhibits a
smaller amplitude compared to the fast P1-wave. The relative motion between
the solid and fluid phase, required for the propagation of the fast P2-wave, leads
to higher energy dissipation and thus to smaller amplitudes.



152 CHAPTER 6. EVIDENCE OF SLOW P2-WAVE

0 100 200 300 400 500
-1

-0.5

0

0.5

1

1.5

Time [µs]

V
o
lta

g
e
 [

m
V

]

Coherent part

Incoherent part

0 100 200 300 400 500
-0.1

-0.05

0

0.05

0.1

Time [µs]

V
o
lta

g
e
 [

m
V

]

Coherent part

Incoherent part

A.) B.)

0 100 200 300 400 500
-1

-0.5

0

0.5

1

Time [µs]

V
o
lta

g
e
 [

m
V

]

Fast P1-wave

Slow P2-wave

 Reflected waves

0 100 200 300 400 500
-0.1

-0.05

0

0.05

0.1

Time [µs]

V
o
lta

g
e
 [

m
V

]

Fast P1-wave Reflected waves

C.) D.)

E.) F.)

Figure 6.4: Received time signals of the water- and oil-saturated porous sintered
sample in raw state (A.-B.) and after lowpass-filtering (C.-D.). For comparison
the received signals of the reference measurements in water (E.) and silicone
oil (F) are shown below. The insets in (E., F.) show an enlargement of the
transmitted useful signals determined from the reference measurements. A 1-
cycle-sinus-burst-signal at 1 MHz is used as electrical input signal.
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Note that the higher attenuation and even the hindrance of the generation of the
slow P2-wave can also be attributed to underlying microstructural features of
the investigated sample. The investigated sample shows a relatively high tortu-
osity of 1.46, which impedes the decoupling of the fluid and solid phase, but the
most important point is the inhomogeneity in the direction of wave propagation.
The investigated sample features an increasing density in propagation direction,
which leads to a porosity and permeability gradients along the sample length.
The densification along the sample length impede the fluid flow along the pore
channels, so that the slow P2-wave cannot propagate. In such “layered” systems
the coupling mechanism between fluid and solid phase is further enhanced and
the propagation of the slow P2 wave is hindered. Sound propagation perpendicu-
lar to the density gradient might eventually lead to an increase of the amplitude
of the slow P2-wave.
Hosokava et al. [85] have investigated the sound propagation through bovine
cancellous bone and found out that the presence of the slow P2-wave is highly
dependent on the propagation direction of the ultrasound wave with respect to
the main direction of alignment of the trabeculae, which represents the porous
bone matrix within the cancellous bone and is aligned towards the mechanical
load distribution that a bone experiences [117]. These results were experimentally
confirmed in human and bovine cancellous bones and the results were examined
under the consideration of a stratified model [88, 107, 134].

Furthermore, Johnson et al. [94] have investigated the ultrasound propagation
through water-saturated unconsolidated and slightly fused glass beads and re-
ported that the slow P2-wave could only be observed, if the viscous skin depth
is considerably less than the characteristic pore size. In this respect, he has
introduced a second limit, named the viscous frequency

fv = 4 ηfR

π ρfR d2
pt ζ2 , (6.7)

where ζ is an empirically determined dimensionless constant of the order of 0.01
and dpt is a characteristic pore size. The coupling between the pore fluid and solid
matrix is especially controlled at the narrowest place of the pore space, namely
the pore throat. Using the mean pore throat diameter determined from the µCT
data as the characteristic pore size leads to a viscous frequency of fv =9.27 MHz
for the silicone oil-saturated sintered sample, which is considerably higher com-
pared to the frequency of the water-saturated sample of fv =0.46 MHz, which
lies within the frequency range of the received ultrasound signals and ensures the
propagation of the slow P2-wave.
The power spectra of the detected fast and slow P-waves are shown in Figure 6.6
(A.) and (C.). For a better comparability, the power spectra are normalized
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Figure 6.5: Received time signals of the water- and oil-saturated porous sintered
sample in raw state (A.-B.) and after lowpass-filtering (C.-D.). For comparison
the received signals of the reference measurements in water (E.) and silicone
oil (F) are shown below. The insets in (E., F.) show an enlargement of the
transmitted useful signals determined from the reference measurements. A 1-
cycle-Ricker-wavelet at 0.1 MHz is used as electrical input signal.
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Figure 6.6: Illustration of normalized power spectra (A., C.) and normalized
attenuations (B., D.) of the detected waves. The theoretical predictions of the
attenuations of the detected waves are represented by solid and dotted lines (B.,
D.). The piezo-electric transmitter was excited with a 1-cycle-sinus-burst-signal
at 1 MHz (A., B.) or a 1-cycle-Ricker wavelet at 0.1 MHz (C., D.).
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to their maximum values. It can be seen that the peaks are shifted to lower
frequencies compared to the power spectra of the reference measurements. The
high-frequency components of the incident ultrasonic wave is either filtered out by
the sintered sample or converted to high-frequency (multiply-) scattered waves.
The power spectrum obtained from the reference measurement in silicone oil is
narrower compared to the power spectrum of the water measurement due to the
additional cycles of the useful signal, although the same input signals have been
used, see insets of Figures 6.4 and 6.5 (E.-F.). Moreover, it can be seen that the
frequency range of the detected slow P2-wave in water lies within the frequency
range of the fast P1-wave. Both P-waves propagate with approximately the same
frequency through the porous sample, independent from the used electrical input
signal. Furthermore, the power spectra of the detected fast P1-waves exhibit at
least two distinct peaks for both saturation fluids, while the power spectra of the
P2-wave is monomodal.
The corresponding frequency-dependent attenuation coefficients α(f) at different
excitation signals are presented in Figure 6.6 (B.) and (D.). The frequency-
dependent attenuation coefficients α(f) were determined form the amplitude
spectra of the reference and sample measurement according to

α(f) = ln
�

|Aref(f)|
|A(f)|

�
. (6.8)

For a better comparability between theoretical and experimental results the at-
tenuation coefficients are normalized with the value at 0.7 MHz. The measured
and predicted attenuation coefficients differ considerably and the Biot theory is
insufficient to describe to attenuation mechanism of the detected P-waves in the
fluid-saturated porous sintered glass bead system. The different excitation sig-
nals, which result in different frequency-dependent attenuation coefficients, are
not taken into account in the classical Biot theory.

6.5 Conclusion
In summary, we can state that the classical biphase Biot-theory can be used to
identify the detected waves in ultrasonic measurements of water- or silicone oil-
saturated sintered glass bead packings.
We have demonstrated that the saturating fluid plays a very important role in
the presence of the slow P2-wave in ultrasonic measurements. While the slow-P2
wave in the water measurements could be clearly detected, the slow P2-wave in
oil measurements could not be generated due to the higher viscous coupling and
attenuation properties of the used silicone oil.
While the measured TOFs of the detected fast and slow P-waves are reflected
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properly by the Biot theory, the measured frequency-dependent attenuation co-
efficients differ considerably from the predicted values. Therefore, for a proper
description of the dispersion properties (attenuation, phase velocities) a more so-
phisticated model is required, which takes the specific microstructural features,
for instance the density gradient of the sintered sample in propagation direction
of the ultrasonic waves into account. Ultrasound measurements perpendicular to
the densification direction may eventually lead to an increase of the amplitude
of the detected P2-wave or even to the presence of slow Biot-wave in silicone-
oil-saturated sample, since the slow wave mostly occurs in directions where fluid
flow is easily possible along the pore channels [105].
Future work should therefore include the investigation of ultrasound propaga-
tion at arbitrary angles of incidence on the sample surface. Moreover, a proper
sintering method (rotational sintering) is required in order to produce more ho-
mogeneous samples. This will increase the probability for the detection of the
slow P2-wave, since for it’s generation a relative motion between the fluid and
the solid is required. In homogeneous samples the relative motion between both
constituents is easier than in samples with local porosity gradients.
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CHAPTER 7

The Effect of Magnetic
Field on Wave Propagation

in MRF-Saturated Porous
Media

In this paper, we present an experimental study of ultrasonic wave propagation in
a porous sintered glass bead sample, which is saturated with a magneto-rheological
fluid (MRF). The ultrasonic wave propagation in the MRF-saturated sample is
studied at different magnetic strengths. For this purpose, a new-innovative mea-
suring cell is designed and presented. In the ultrasound experiments, the trans-
mission method is used to determine frequency-dependent dispersion properties
(specific attenuation, intrinsic attenuation, phase velocity) of the MRF-saturated
sample. Different excitation signals (sinus burst signals and Ricker wavelets)are
used to study the ultrasound propagation through the MRF-saturated sample. The
sample measurements are compared with reference measurements performed in the
MRF, where no porous sample is placed between the transducers. In this study, we
focus mainly on the investigation of the coherent deterministic pulse. A signifi-
cant decrease of the amplitude of the received coherent pulse and a clear frequency
shift of the peaks in the power spectra towards higher frequencies could be verified
from the sample measurements with increasing magnetic strength. The reference
measurements showed an increasing trend of the amplitude of the coherent pulse
and the peaks of the power spectra occurred at the same frequency, when the MRF
was subjected to a magnetic field. Moreover, the reference measurements showed
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a time shift of the coherent pulse whereas the sample measurements remained un-
changed in terms of arrival times, when an external magnetic field is generated.
We have demonstrated that dispersion properties of the MRF-saturated sample
can be significantly influenced when a magnetic field is applied and that this ef-
fect is depends on the electrical input signal, with which the acoustic transmitter
is briefly stimulated. The decay of the amplitude of the coherent wave with in-
creasing magnetic strength transmitted through the MRF-saturated sample is also
confirmed in the frequency-dependent attenuation coefficients. Furthermore, we
have demonstrated the lowpass filtering effect of the used MRF. The cut-off fre-
quency is dependent on the excitation signal and lied between 0.4 and 0.5 MHz.
The lowpass filtering effect could be further enhanced when additionally a porous
sample was positioned between the transducers.

7.1 Introduction
The study of ultrasonic wave propagation in fluid-filled porous materials has a
long history and a crucial importance in many research fields. For instance,
ultrasonic methods can be used to monitor the bone status [74, 83, 84, 99, 106,
132, 133, 185] or to increase the recovery of the oil from rock reservoirs [7, 12, 124].
In Enhanced Oil Recovery methods (EOR), ultrasound waves are applied to
overcome the interfacial surface tension between oil and water, and subsequently
reduce the capillary pressure in the pores of the rock [18, 89, 123]. The waveforms
applied at specific frequencies, amplitudes and phases generate a second sound
wave, often referred as slow P2- or Biot wave [24, 25, 122, 123], which arises from
the out-of-phase movement between the solid and fluid phase. This causes the
pore fluids trapped in porous rock formation and the porous rock matrix to move
in opposite directions. The generated slow Biot-wave can, for instance, be used
to move the oil in the porous rock structure towards already existing flow paths
(percolation path) and be recovered from the rock formation.
In order to further increase the oil production rate in porous rocks the use of nano-
and micron sized particles is very promising in Enhanced Oil Recovery methods,
since they can accumulate at oil-water interfaces and additionally lower surface
tension in similar fashion as surfactants [22, 23]. Here, magnetic particles, as an
example, can be traced or even guided when a magnetic field is generated outside
the porous medium. In this respect, magneto-rheological fluids (MRF), which
are magnetizable micron-sized particles suspended in a carrying fluid (mostly a
hydrocarbon-based solvent) constitute promising candidates to be used in EOR
methods. MRFs greatly change their apparent viscosity, when subjected to a
magnetic field, to become a viscoelastic solid [45]. Moreover, the yield stress
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A.) B.)

Figure 7.1: Illustration of MRF behavior, in the cases when no magnetic field is
applied (A.) or a magnetic field (B.) is generated [141].

of the suspension can be controlled selectively and accurately by varying the
magnetic strength [171]. Hereby the micro-sized particles align themselves along
the magnetic field lines, see Figure 7.1, whereas under normal conditions, when no
magnetic field is generated, the magnetizable particles are randomly distributed
in the suspension.

Numerous studies addressing the rheological behavior of magneto-rheological flu-
ids, which preferably used in dampers, brakes, hydraulic valves, clutches etc.,
exist already exist [37–39, 62, 64, 65, 97, 112, 142, 182]. However, their acous-
tical properties and behavior in a porous medium is rarely investigated and un-
derstood. Due to their aforementioned advantages MRFs can be used to study
the internal physical interactions between the fluid and solid, which highly af-
fect the acoustic properties of the fluid-filled materials. The properties of the
pore fluid, such as the viscosity, density and bulk modulus can be interactively
changed during ultrasound experiments and thus the internal physical coupling
and decoupling processes of the detected waves can be precisely changed with the
applied magnetic strength.
Therefore, in this paper, we present broadband ultrasonic experiments on a MRF-
saturated porous sintered glass bead sample under external generated magnetic
field. Compared to many natural and artificial porous materials, the used sin-
tered sample has a simple and repeatable pore structure. The ultrasound results
at different applied magnetic strengths are compared with ultrasound measure-
ments at normal conditions when the MRF-saturated sample is not subjected
to an external magnetic field. The spectral ratio technique, which is applied to
determine the dispersion properties of the MRF-saturated sample at different ap-
plied magnetic strengths, is presented in chapter 2. The experimental procedure
and measuring cell including the magnets used for the ultrasound experiments
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are described in chapter 3. The results obtained from the transmission signals
are presented in the following chapter 4. The main findings from the ultrasound
experiments are concluded in the final chapter.

7.2 Background theory and evaluation algorithm
In many research areas, such as geophysics or medical engineering, the spec-
tral ratio technique is often applied in ultrasound investigations to examine the
frequency-dependent dispersion properties of porous rocks or bones, which are
often saturated with different fluids. The spectral ratio technique has found the
be a reliable method and therefore found the broadest acceptance [107, 134, 179].
In this method, a reference signal is recorded with no porous sample in the path
and the other is recorded with the porous sample in between the transducers
[198]. Therefore, this method is also often referred as the substitution method
[107]. The signal transmitted through the fluid-saturated porous medium is com-
pared with the signal transmitted through the reference medium with specific
attenuation αref and speed of sound cref .
In addition to the frequency-dependent phase velocity, this method enables the
determination of the so-called frequency-dependent quality factor Q, or it’s in-
verse the specific attenuation Q−1, which quantifies the intrinsic attenuation of
seismic energy [72]. According to [179] the quality factor is defined as the frac-
tional energy loss per cycle experienced by a ultrasonic wave. The quality factor
is usually expressed as

Q = π f

α̂(f) c(f) (7.1)

where f , α̂(f) and c(f) are the frequency, the frequency-dependent intrinsic at-
tenuation normalized to the sample length and phase velocity of the ultrasound
wave [125]. Depending on the propagation medium and saturation degree of the
pore fluid, the quality factor can considerably differ from sample to sample. How-
ever, the behavior of the frequency-dependent quality factor in MRF-saturated
porous samples under different magnetic strength has not been investigated yet.
The quality factor in Equation (7.2) determined from ultrasound experiments is
an effective value, which is controlled by intrinsic effects of the investigated sam-
ple and also by additional (apparent) attenuation processes, such as scattering
from inclusion, heterogeneity, the effect of interface losses, etc. [72, 107]:

1
Qeff

= 1
Qint

+ 1
Qadd

. (7.2)

Following the fundamental principles of ultrasonic wave attenuation and disper-
sion, we can describe the amplitude spectrum of the received waveform that has
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propagated through the reference medium (MRF) as follows

Aref(f) = A0(f) Ad
ref(f) (7.3)

where A0(f) is the amplitude spectrum of the electrical input signal and the
transfer functions of the receiving and transmitting transducers and electronics.
Ad

ref(f) is the transfer function which characterizes the effect of ultrasound prop-
agation for the MRF path only [43]. In this study, sinus-burst-signals and Ricker
wavelets are used as electrical input signals.
According to [107] the amplitude spectrum of the received sample signal can be
expressed as

A(f) = A0(f) T (f) Ad(f) e−α̂(f) l (7.4)

where Ad(f) e−α̂(f) l characterizes the transfer function of the ultrasound wave,
when additionally a porous sample is positioned between the transducers. The
term e−α̂(f) l describes the attenuation caused by the porous sample with length
l. T (f) represents the transmission coefficient for the reference fluid-sample and
sample-reference fluid interfaces. The diffraction transfer functions in Equa-
tions (7.3) and (7.4) are represented by Ad(f) and Ad

ref(f).
The frequency-dependent apparent attenuation ᾱ(f) is usually defined on the
logarithmic scale as

ᾱ(f) l = ln
�

|Aref(f)|
|A(f)|

�
. (7.5)

By inserting Equations (7.3) and (7.4) in Equation (7.5) the apparent attenuation
can be expressed as

ᾱ(f) l = α̂(f) l + ln
�

|Ad
ref(f)|

|Ad(f)|

�
− ln(|T |), (7.6)

where α̂(f) l represents the actual intrinsic attenuation of the signal transmitted
through the MRF-saturated sample. In the considered frequency range of 0.1-
0.4 MHz for the ultrasound experiments, the slope of the determined apparent
attenuation α̂(f) l yields the quality factor Q. In the some cases, for instance in
water-bone-systems [43, 107], it is assumed that the

• the effect of diffraction ln
�

|Aref(f)|
|A(f)|

�
is negligible small [43],

• the transmission losses ln(|T |) are frequency-independent and do not affect
the slope of the attenuation [43, 107],

• phase cancellation effects can be neglected, which occurs especially when
the fast and slow P-waves overlap in time [13, 15, 120].
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The TOFs of the reference and sample measurements can be calculated [107] in
the time domain as

reference material : TOFref = L

cref
(7.7)

reference and sample material : TOF = L − l

cref
+ L

c
. (7.8)

The corresponding sound velocity of the MRF-saturated sample is determined
from the time difference of the sample and reference measurements [73], given in
Equations (7.7) and (7.8), as

c = l
l

cref
− ∆TOF

, (7.9)

where the time difference between the sample and reference measurement is de-
fined as ∆TOF = TOFref − TOF . For the determination of the frequency-
dependent phase velocities, we use the phase spectra of the sample and reference
measurement

∆φ(f) = φ(f) − φref(f) = arctan
�

Im(A(f))
Re(A(f))

�
− arctan

�
Im(Aref(f))
Re(Aref(f))

�

= 2πf l

�
1

cref
− 1

c(f)

�
(7.10)

Reformulating Equation (7.10) yields the frequency-dependent phase velocities

c(f) = l
l

cref
− ∆φu(f)

2πf

, (7.11)

where the time difference in Equation (7.9) is expressed in terms of the frequency
f and phase difference ∆φu(f). ∆φu(f) denotes the unwrapped phase difference,
where the discontinuities of the arc-tangent functions in the calculations of the
phase spectra are removed. It should be noticed, that the short ultrasound pulses
used in this experiment (1-cycle-Ricker and 1-cycle-sinus) show a broad frequency
(0.01-2.0 MHz), and each frequency present in the signal react differently to the
structure of the used sintered glass bead sample and MRF in terms of attenuation
and phase velocity.
Figure 7.2 shows flow chart for the determination of the dispersion properties
according to spectral ratio method. First, the time signals obtained from refer-
ence and sample measurements are acquired. So-called time windows are applied
to isolate the useful signal from the remaining part of the signal. The isolated
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Figure 7.2: Flow chart for determination dispersion properties (i.e. α̂(f), Q(f),
c(f)) according to the spectral ratio method.

signal parts are transformed via FFT into the frequency domain to determine
the amplitude spectra. The frequency-dependent dispersion properties are deter-
mined from the amplitude ratio of the sample and reference measurement. In the
final step, the relevant frequency range of the determined dispersion parameters
is identified.

7.3 Experiments

7.3.1 Sintered specimen and MRF
The sintered glass bead sample used in this study is developed in a special sinter-
ing set-up, which is described in [69, 71]. Figure 7.3 (A.) depicts a photograph of
the investigated sample, which has a bulk diameter of 30 mm and sample length
of 50 mm. The solid matrix is composed of sintered glass beads with particle di-
ameters from 1.0 to 1.2 mm. Compared with many natural and artificial porous
materials, the sintered sample shows a simple and repeatable pore geometry. Fig-
ure 7.3 (B.,C.) shows the volume-rendered solid matrix and the corresponding
pore structure determined from µXRCT data of the investigated sample. A de-
tailed analysis of the solid matrix and pore space is described in chapters 2 and
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A.) B.) C.)

Figure 7.3: Photograph of the used porous sintered glass bead sample (A.) and
µCT image of the solid matrix (B.) and corresponding pore structure (C.).

4.

The photographs in Figure 7.4 shows the commercial available magneto-rheological
fluid (MRF-140CG, Lord MR), which is used for the ultrasound experiments, at
different states. The used MRF-140CG is a dark gray suspension with magneti-
zable, micron-sized particles in a silicone oil-based carrying fluid [3]. To decrease
the rate of ferro particle setting and guaranty a stable suspension, surfactant are
added to the used MRF-140CG. As can be seen from pictures in Figure 7.4 (A.)
the used MRF-140CG allows free movement in the absence of a magnetic field,
and when a magnetic field is applied, the ferro particles align themselves with
the direction of the applied magnetic field in chain-like fashion [3], see Figure 7.4
(B.). In Figure 7.4 (B.) a NeFeB-permanent magnet is used to restrict the fluid
movement and generate visco-elastic solid.

Further properties of the used MRF-140CG and the produced sintered glass bead
sample are listed in Table 7.1.

7.3.2 Experimental procedure
In this study, ultrasonic measurements are made according to the pulse transmis-
sion technique consisting two identical immersion broadband transducers with
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A.) B.)

Figure 7.4: Photographs of the used MRF 140CG, when no magnetic field is ap-
plied (A.) and a magnetic field is generated by using a NeFeB-permanent magnet
(B.).

Table 7.1: Material parameters of the used ferro fluid and sintered glass bead
sample.

Parameter Unit Magneto-rheological fluid

Product name[A] [ - ] MRF-140CG

Carrying fluid[A] [ - ] synthetic hydrocarbon base and decanedioic acid

Viscosity[A] at 40◦ ηfR [Pa s] 0.280 ± 0.070

Density[A] [g/cm3] 3.54 - 3.74

Solid content by weight[1] [%] 85.44

Flash Point[A] [◦C] 150

Operating temperature[A] [◦C] -40 to +130

Particle size of Fe-particles[B] [µm] 0.88 - 4.03

Parameter Unit Sintered glass bead sample

Tortuosity factor[C] [ - ] 1.54

Effect. porosity[D] [%] 31.84

Effect. permeability[E] [m2] 4.58 x 10−10

Particle diameter of beads [mm] 1.0 - 1.2

[A]: manufacturer information, see Ref. [3]
[B]: see Ref. [11]
[C]: Obtained from 1024 x 1024 x 2048 cuboids extracted from µCT data
[D]: Obtained from bulk density and volume
[E]: determined from stationary permeability experiments
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central frequencies of 2.25 MHz (Olympus, Panametrics NDT, V306-SU). The
piezo-electric transducers are aligned contrarily and mounted in specially devel-
oped thin-walled measuring cell made of acrylic glass at fixed distance of 84 mm,
cf. Figure 7.6. The electrical pulses for the broadband transmitter were gener-
ated by an arbitrary function generator (Tektronix, AFG 3101, 1 GS/s, 100 MHz)
and power-amplified with 55 dB (RF Power Amplifier, model E&I 1040L, 10 kHz-
5 MHz, 400 W). Sinus-burst signals and Ricker wavelets at different frequencies
are used as electrical input signal to simulate the piezo-electric acoustic trans-
mitter. The Ricker wavelet is the negative normalized second derivative of a
Gaussian function and is often referred as Mexican hat wavelet due to it’s shape.
The amplitude of the Ricker wavelet is defined in the time domain as

A(t) = 2√
3σ π1/4

�
1 − t2

σ

�
e

−t2
2σ2 , (7.12)

where t and σ represent the time and duration of the wavelet signal [63]. The
Ricker wavelet represents theoretically a solution of the Stokes differential equa-
tion, which takes into account the effects of Newtonian viscosity. Therefore, it is
often applied as model seismic wavelet which propagates through a viscoelastic
homogeneous porous media [183]. For the ultrasound measurement a maximum
of 2 cuboid-shaped permanent magnets are used. The residual magnetic strength
for each of the used permanent magnets is B =1.26-1.29 T. Further charac-
teristic parameters of the NeFeB-magnets are listed in Table 7.2. In order to
investigate the influence of an magnetic field on the ultrasound experiments, the
NeFeB-magnets are attached at the top or/and bottom measuring cell, where the
thickness of the plates made of acrylic glass is only 3.35 mm, see Figure 7.6.
The signal from the receiving transducer is first pre-amplified with 20 or 40 dB
using a spike impulser (Olympus, Panametrics NDT, model 5052PR) and finally
fed to a 200 MHz digital storage oscilloscope (LeCroy 24Xs-A, 2.5 GS/s), which
is interfaced to a PC. In order to minimize the noise level, the received signals
are averaged over 512 acquisitions. The synchronization is achieved by trigger-
ing the oscilloscope from the output of the function generator. Prior to the
ultrasound measurements, the measuring cell including porous sample is rinsed
out with carbon dioxide to achieve an optimal saturation of the porous sample.
The sintered specimen itself is coated with a latex membrane and fixed on a
specially-developed sample holder, in order to prevent a sliding of the sample
during saturation with the high viscous MRF. The sintered sample is positioned
in the center of the measuring cell and the distance to both immersion transduc-
ers is fixed at 17 mm. Figure 7.5 shows a scaled CAD drawing of the measuring
cell, which was used to study the effect of magnetic field strengths on the wave
propagation in MRF-saturated porous sintered glass bead sample.
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Figure 7.5: Scaled CAD drawing of the thin-walled measuring cell and the used
broadband immersion transducers (central frequency 2.25 MHz, Panametrice-
NDT, V306-SU). Length informations are given in mm.

The saturation of the sample is performed using a syringe pump, see Figure 7.6.

7.4 Results and discussion

7.4.1 Time signals and power spectra
The waveforms for the ultrasound pulse traveling through the MRF-saturated
sample at different magnetic strength are shown in Figure 7.7 (B.). For com-
parison the MRF pulse received from ultrasound measurements without placing
porous sample is shown in Figure 7.7 (A.). From Figures 7.7 (A.) and (B.), we
can clearly see that the received time signals basically consist of a coherent deter-
ministic pulse characterized by large amplitudes and an incoherent part, which
arrives at certainly later times and show smaller amplitudes compared to the
coherent pulse at the leading edge.

For the determinations of the power spectra and the dispersion properties only
the coherent parts are considered. The coherent part is windowed to separate
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Figure 7.6: Photographs of the measuring cell made of acrylic glass and designed
to investigate the influence of magnetic strength on the acoustical wave propa-
gation of MRF-saturated porous samples.

Table 7.2: Material parameters of the used permanent magnets[1].
Chemical composition NdFeB
Coating Nickel (Ni-Cu-Ni)
Volume (L x W x H) Length [mm3] 60 x 30 x 15
Approx. magnetic strength [N] 550
Maximum working temperature[◦C] 80
Weight [g] 205.2
Curie temperature [◦C] 310
Residual magnetism B [T] 1.26 - 1.29
Coercive field strength bHc [kA/m] 860 - 955
Coercive field strength ich [kA/m] ≥ 955
Energy product (BxH)max [kJ/m3] 303 - 318

[1] manufacturer information, see Ref. [5]
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Figure 7.7: Received time signals of MRF only (A.) and MRF-saturated sin-
tered glass bead sample (B.). The piezoelectric transmitter is excited with a
sinus-burst-signal at 1 MHz. The coherent and incoherent parts are marked ac-
cordingly.

it from remaining part of the signal and subsequently the FFT is calculated.
In general, the temporal widths of the time windows decrease with increasing
frequency according to T = 2 π/ω. Figure 7.8 shows exemplary the raw signal
and the isolated coherent part for the reference measurement performed in MRF
only, as well as for the sample measurement, whereby the piezo-electric acoustic
transmitter is excited with a sinus-burst-signal at 1 MHz.

Figure 7.9 illustrate the enlarged coherent parts of the received time signals
(A.,C.) and the corresponding power spectra (B.,D.) of the reference and sample
measurement at different magnetic strength B, when the transmitter was excited
with a sinus-burst-signal at 1 MHz. The coherent part of the sample measurement
corresponds to the fast P1-wave, which arises mainly from the inertial coupling
between the pore fluid and solid matrix. The hydrodynamic coupling of the
pore fluid on the solid frame is proportional to the relative velocity between the
solid frame and fluid [91]. It can be clearly seen that the maximum peaks of
the reference measurement increase with increasing magnetic strength, whereas
in the case of the sample measurement the opposite effect occurs. The ampli-
tudes of the coherent wave part of the sample measurements are more damped
and decrease with increasing magnetic strength B (or increasing number of used
NdFeB-magnets), since the pore fluid behaves more stiffer with increasing mag-
netic strength. This indicates the low coupling mechanism between the both
constituents. In contrast to this, the fast P-wave of the reference measurement
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Figure 7.8: Examples of raw and windowed signals, when the acoustic transmitter
is excited with a sinus-burst-signal at 1 MHz.
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Figure 7.9: Coherent Part of the received time signals (A.,C.) transmitted
through only MRF and MRF-saturated sintered sample with corresponding nor-
malized power spectra (B.,D.). The piezo-electric acoustic transmitter is excited
with a sinus-burst-signal at 1 MHz.

propagates faster and with higher intensity, when the MRF is subjected to a
magnetic field due to chain forming of the iron particles suspended in the fluid.
The amplitude change at different magnetic field strengths is also highlighted in
the normalized power spectra Figure 7.9 (B.,D.).

For the reference measurement the TOF of the detected coherent wave decreases
about 1.90 µs, when a magnetic field strength is increased from 0 to 1.26-1.29 T.
For further increase in magnetic strength the TOF remains relatively unchanged.
In contrast to that, the TOFs of the sample measurements remain relatively con-
stant independent on the applied magnetic strength B. The TOFs and the corre-
sponding Speed Of Sound (SOS) determined in the time domain are summarized
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Table 7.3: Experimental and theoretical determined TOFs and SOSs of fast P1-
wave of investigated sintered samples at a excitation frequency of 1 MHz.

Parameter Unit 0 Magnet 1 Magnet 2 Magnets

Magnetic strength B [T] 0 1.26-1.29 1.26-1.29
Time Of Flight TOFref [µs] 95.78 94.87 94.99
Time Of Flight TOF [µs] 56.07 55.86 55.91
Time difference ∆TOF [µs] -39.71 -39.01 -39.08
Speed Of Sound cref [m/s] 877.01 885.42 884.30
Speed Of Sound c [m/s] 2889.86 2863.65 2863.42

in Table 7.3. Moreover, it is remarkable that the peak obtained from the sample
measurement is shifted to higher frequencies with increasing magnetic strength
B, whereas the frequencies of the peaks for the reference measurement remain
almost identical with changing magnetic strength B. Since the power spectra
of the sample measurements lie within the frequency spectrum of the reference
measurements, a linear wave conversion at boundary between the solid and fluid
phase can be assumed. The almost same distributions for the power spectra are
observed, when the frequency of the input waveform is changed to 2.25 MHz,
which corresponds to central frequency of the used immersion transducers, cf
Figure 7.10.

The power spectra of the reference measurements in Figure 7.9 and 7.10 clearly
demonstrate that the frequency spectrum is limited to approximately 0.5 MHz,
although sinus-burst-signals with frequencies of 1.0 and 2.25 MHz have been
used. It proves that the high-frequency component (f > 0.5 Hz) of the broad-
band input signal is filtered out through the MRF. The filter effect is further
enhanced through the porous sintered sample. The cut-off frequency is lower,
when additionally a porous sample is placed between the transducers and lies at
approximately at 0.4 MHz.

Similar lowpass filter effects of the MRF and the sintered sample are also observed
for different excitation signals at different frequencies. Figures 7.11 and 7.12 show
the time signals and amplitude spectra, when the transmitter is excited with a
Ricker wavelet at 0.2 and 1 MHz. The cut-off frequencies of the MRF and the
porous sintered sample are lower compared to the results obtained from excita-
tion with a sinus burst signal. The cut-off frequency lies at 0.4 and 0.32 MHz,
respectively. It is also apparent from the power spectra, that for the reference
measurements, the filter effect slightly decreases with increasing number of used
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Figure 7.10: Coherent Part of the received time signals (A.,C.) transmitted
through only MRF and MRF-saturated sintered sample with corresponding nor-
malized power spectra (B.,D.). The piezo-electric acoustic transmitter is excited
with a sinus-burst-signal at 2.25 MHz.
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Figure 7.11: Coherent Part of the received time signals (A.,C.) transmitted
through only MRF and MRF-saturated sintered sample with corresponding nor-
malized power spectra (B.,D.). The piezo-electric acoustic transmitter is excited
with a Ricker wavelet at 0.2 MHz.
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Figure 7.12: Coherent Part of the received time signals (A.,C.) transmitted
through only MRF and MRF-saturated sintered sample with corresponding nor-
malized power spectra (B.,D.). The piezo-electric acoustic transmitter is excited
with a Ricker wavelet at 1.0 MHz.

magnets. Conversely, the power spectra of sample measurements show an en-
hancement of the filter effect, when the MRF-saturated sample is subjected to a
magnetic field.

7.4.2 Dispersion properties
Figures 7.13 and 7.14 show the dispersion parameters for different input wave-
forms determined from the spectral ratios of the reference and sample measure-
ments. The approximate frequency spectrum of the analyzed coherent wave part
is represented by the gray-shaded area. As can be seen from Figure 7.13 and
7.14 the investigated sintered sample show higher (specific) attenuation effects,
when the MRF-saturated sample is exposed to higher magnetic field strengths.
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This finding has been also confirmed in the normalized power spectra of the
MRF-saturated sample shown in the previous section.

The measured specific attenuation 1/QP 1(f), shown in Figure 7.13 (A.,B.) and
7.14 (A.,B.) steadily decreases up to a certain frequency value and finally remains
relatively constant in the relevant frequency range independent from the used
input signals and excitation signals. In contrast to that, the attenuation αP 1(f)
steadily increases with increasing frequency in the relevant frequency range, when
the transmitter is excited with a sinus-burst-signal. However, the increase of the
attenuation is not significant for higher magnetic strengths, when the Ricker
wavelet is used as input signal.

Independent from the used input signal, the phase velocity, illustrated in Fig-
ure 7.13 (E.,F.) and 7.14 (E.,F.), determined at different magnetic strength fluc-
tuate around the constant reference values, listed in Table 7.3. The fluctuations
are reduced with increasing frequency. However, the fluctuations differ with the
used input signal, excitation frequency and magnetic strength.

7.5 Conclusion
In summary, we have demonstrated that the dispersion properties of a MRF-
saturated porous sintered glass bead sample can be influenced, when a magnetic
field is generated. We have presented a new thin-walled measuring cell, which
has enabled us to investigated the influence of an magnetic field on the acoustical
wave propagation in MRF-saturated porous media. This work provides insight
and experimental evidence of the influence of the pore fluid on the acoustical
wave propagation in porous media. We have demonstrated that the detected
and analyzed coherent wave part, which represents the fast P1-wave in Biot’s
theory, is attenuated, when a magnetic field is applied. The TOF remained
almost constant. The reference measurements without a porous sample showed
surprisingly the opposite effect. A clear signal enhancement and time shift of
the coherent wave part could be determined, when the MRF is subjected to a
magnetic field. In general, we have proved that the interaction between pore fluid
and solid matrix can be selectively controlled by the magnetic strength, when a
MRF is used as pore fluid.
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Figure 7.13: Specific attenuation 1/Q(f), attenuation α(f) and phase veloc-
ity cP h(f) in dependence on the frequency of the detected fast P1-wave, where
different magnetic strength B are applied during ultrasound experiments. The
piezo-electric transmitter is excited with a sinus-burst-signal at 0.1 (A.,C.,E.) and
1.0 MHz (B.,D.,F.).



180 Wave propagation in MRF-saturated sintered sample

0 0.1 0.2 0.3 0.4 0.5 0.6

0

5

10

15

20
x 10

-3

Frequency f [MHz]

S
p
e
ci

fic
 a

tt
e
n
u
a
tio

n
 Q

-1 P
1
(f

) 
[ 

- 
]

 

 

B = 1.26 - 1.29 T (2x)
B = 1.26 - 1.29 T (1x)
B = 0 T

0 0.1 0.2 0.3 0.4 0.5 0.6

0

5

10

15

20
x 10

-3

Frequency f [MHz]

S
p
e
ci

fic
 a

tt
e
n
u
a
tio

n
 Q

-1 P
1
(f

) 
[ 

- 
]

 

 

B = 1.26 - 1.29 T (2x)
B = 1.26 - 1.29 T (1x)
B = 0 T

A.) B.)

0 0.1 0.2 0.3 0.4 0.5 0.6
-1

0

1

2

3

4

5

Frequency f [MHz]

A
tt

e
n
u
a
tio

n
 α

P
1
(f

) 
[ 

- 
]

 

 

B = 1.26 - 1.29 T (2x)
B = 1.26 - 1.29 T (1x)
B = 0 T

0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1

0

1

2

3

4

5

Frequency f [MHz]

A
tt

e
n
u
a
tio

n
 α

P
1
(f

) 
[ 

- 
]

 

 

B = 1.26 - 1.29 T (2x)
B = 1.26 - 1.29 T (1x)
B = 0 T

C.) D.)

0 0.1 0.2 0.3 0.4 0.5 0.6
600

700

800

900

1000

1100

1200

1300

1400

Frequency f [MHz]

P
h
a
se

 v
e
lo

ci
ty

 c
P

1
(f

) 
[m

/s
]

 

 

B = 1.26 - 1.29 T (2x)
B = 1.26 - 1.29 T (1x)
B = 0 T

0 0.1 0.2 0.3 0.4 0.5 0.6
600

700

800

900

1000

1100

1200

1300

1400

Frequency f [MHz]

P
h
a
se

 v
e
lo

ci
ty

 c
P

1
(f

) 
[m

/s
]

 

 

B = 1.26 - 1.29 T (2x)
B = 1.26 - 1.29 T (1x)
B = 0 T

E.) F.)

Figure 7.14: Specific attenuation 1/Q(f), attenuation α(f) and phase veloc-
ity cP h(f) in dependence on the frequency of the detected fast P1-wave, where
different magnetic strength B are applied during ultrasound experiments. The
piezo-electric transmitter is excited with a Ricker wavelet at 0.2 (A.,C.,E.) and
1.0 MHz (B.,D.,F.).
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CHAPTER 8

Summary, conclusion and
Outlook

8.1 Summary and conclusion
The main objectives of this investigation are the hydraulical transport and acous-
tical wave properties of sintered glass bead packings. The introductory chapter
has provided a background information and motivation for both topics and illus-
trated the fundamentals of transport and wave behavior in porous media.
In the following paragraphs the main findings of each chapter are summarized
and concluded with further comments on limitations and future work.

• Chapter 2 emphasized the sintering procedure and hydraulical properties
the produced sintered glass bead samples. Moreover, an extensive proce-
dure for the determination of parameters from µCT data, which highly
affect the transport properties of the sintered packings, is presented and
was applied to various porous samples. A good agreement between ex-
perimentally observed and numerically predicted permeabilities could be
achieved for various sintered samples with different microstructures due to
the used glass bead sizes and different sintering treatments. An appropriate
filtering procedure of the image data revealed that the intrinsic permeabil-
ity of the sintered granular packings is quantitatively and qualitatively well
described by the Kozeny-Carman model. The empirical constant was de-
termined at c1 = 131 i.e. considerably smaller compared to commonly used
value for monodisperse and non-sintered spherical packings of c1 = 18 π2.
The numerical LB results showed that the Kozeny Carman factor not only
depends on the porosity, but also on the microscopic pore structure, like
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pore throats, and particle shapes, orientations and sizes. Different segmen-
tation procedures applied on to the data sets of different samples revealed
that the porosity across the cross-sectional area of the cylindrical samples
remained almost constant, while a clear porosity gradient across the sam-
ple height exists due to gravitational forces acting on the beads during
sintering. Rotational sintering may eventually lead to more homogenous
samples. A clear linear correlation between porosity, pore throat diameter
and intrinsic permeability could be detected. The local intrinsic perme-
ability as well as the porosity decrease linearly with increasing averaged
equivalent pore throat diameter determined from the pore throat distribu-
tions of the investigated subsets. The pore throat distributions showed two
distinct peaks independently from the edge sizes of the subsets, which can
be clearly assigned to typical pore throat areas from three or four particle
constellations.

• In Chapter 3 an innovative and elaborate set-up for the investigation of the
frequency-dependent hydraulical properties of the sintered samples is pre-
sented. Different methods and set-up configurations are tested to determine
the frequency-dependent permeability. A clear decrease of the dynamic
permeability with increasing frequency of the induced oscillatory fluid flow
could be determined for the sintered samples, when the measurement data
were evaluated according to [161]. However the inertial effects leading to
lower permeabilities occurred at much lower frequencies than theoretically
predicted. Moreover, the pressure pore oscillation allowed to determine
besides the permeability also the storage capacity and diffusivity of the
samples. However, the correct choice of the frequency and amplitude re-
main challenging. Technical improvements of the experimental set-up, for
instance the oscillation of the latex membrane, the pressure measurement
as well as the volume of the downstream reservoir may eventually lead to
reliable results.

• Chapter 4 dealed with the acoustical wave propagation of water-saturated
sintered glass bead samples. In this chapter only the coherent wave part,
which arrives at the leading edge and is characterized by large amplitudes,
were considered. The coherent wave part was analyzed for different samples,
which exhibit different microstructures, and used for the determination of
the dispersion properties. The increasing lowpass-filter effect of the samples
with increasing bead sizes and sintering durations was shown. Further
properties determining the acoustical properties, such as the contact area
between the beads were visualized and analyzed from µCT data and used as
input parameters in Biot’s theory. The coherent wave part of the received
signals was confirmed in Biot’s theory as the fast P1-wave.
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• While the previous chapter addressed the coherent wave part, where the
wavelengths are usually greater than the glass particles sizes, chapter 5
focused on incoherent wave part, which consists usually of (multiple-) scat-
tered waves and exhibit wavelengths in the order or smaller than glass par-
ticles. The incoherent wave part is successfully approximated by a diffusive
wave model and the diffusion coefficient and quality factor are determined
for a selective input signal with specific frequency.

• Chapter 6 focused on the evidence of the slow P2-wave in fluid-saturated
sintered glass bead samples. While the slow P2-wave was clearly observed
in water-saturated sintered sample, it’s propagation in silicone oil-saturated
samples is hampered due to the higher viscous coupling of the pore fluid
with the solid matrix. The Biot theory was used to classify the detected
signals. The attenuation of the slow P2-wave is found to be considerably
higher compared to the fast P1-wave, since it’s generation is connected with
a higher energy dissipation due to the out-of-phase movement between the
fluid and solid phase. The propagation of the slow P2-wave is additionally
attenuated or even hampered through the densification of the sample in the
wave propagation direction

• The study of wave propagation in MRF-saturated sintered sample in Chap-
ter 7 revealed that the pore fluid plays an important role for the wave prop-
agation in fluid-saturated porous media. The experiments showed that the
dispersion properties of the MRF-saturated sample changes, when a mag-
netic field is applied. A clear increase of the frequency-dependent attenua-
tion coefficient could be determined, when an external magnetic field was
generated. Moreover, changes in the arrival times of the detected fast P1-
waves could be observed for the reference measurements with increasing
magnetic strengths, when no sample was placed between the transducers,
whereas the arrival times of the P1-waves of the sample measurements re-
mained almost constant.

Complementary, to the quantitative analysis the main findings of this thesis
can be summarized as:

Transport properties:

• The transport properties in sintered granular systems, such as the intrinsic
permeability, correlate with the microscopic properties such as the averaged
equivalent pore throat diameter (ks

z ∝ dpt) or particle arrangement (c1 =
131).

• An appropriate filtering procedure based on the minimization of the intr-
aclass variance and maximization of interclass variance of the gray-scale
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value distributions during XRCT data processing is crucial for a proper
segmentation and thus for the accurate determination of the permeabili-
ties. In this respect, the applied “Delineate”- and “Median”-filter showed
satisfactory results.

• New universally applicable strategies for the determination of parameters as
shown for pore throats or contact areas, which affect not only the transport
but also the wave properties, from µXRCT data are important for the
understanding of micro-macro relationships.

• For accurate and reliable permeability experiments, a proper design and
development of a measuring cell as well as the method of measurement,
which include for instance the proper affixing and optimal saturation of the
sample, is of great importance.

Wave properties:

• Individual phenomena, like particle size, pore fluid, magnetic strength, sin-
tering treatment have great influence on the wave properties and decide for
instance whether scattering occurs or not.

• The detection of the slow P2-wave in sintered glass bead systems requires
the proper choice of glass beads, sintering treatment and pore fluid. Longer
sintering duration and larger glass beads lead to stronger densification of the
sample and scattering of ultrasonic waves, which makes it difficult to detect
the slow P2-wave. The propagation of slow P2-wave occurs in directions,
where fluid flow is possible.

• The received signals and dispersion properties are not only affected by the
properties of the fluid and porous solid matrix, but also depend on the input
signals used to stimulate the transmitter. This point is not considered in
the Biot theory.

• The classical bi-phase Biot theory is sufficient to predict the arrival times
of the detected waves, but insufficient to describe the dispersion proper-
ties, for instance, the frequency-dependent attenuation from ultrasound
experiments differs qualitatively and quantitatively considerably from the
theoretical predicted attenuation coefficients obtained from Biot theory.

In this thesis a conclusion for each chapter was provided. Moreover, a lot of ex-
perimental and numerical data was provided, which served to better understand
the transport and wave phenomena in sintered glass bead systems and to develop
new or complement already existing models. The developed experimental set-ups
presented in this work have a broad generality for the investigation of transport
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and wave properties of porous media with applicability in many industrial pro-
cesses. The present work also offers theoretical and technical fundamentals of
processing µCT data in porous media for a wide readership. This work provides
a further step in understanding the transport and wave propagation phenomena
in sintered granular systems.

8.2 Outlook
Although several aspects of transport and wave propagation phenomena through
sintered glass bead systems were treated, several remarks are given, that have
to be improved or examined more deeply. From the author’s point of view the
subsequent issues with scientific and industrial relevance are:

• Extension of LB simulations towards oscillatory fluid flow, whereby the
binarized XRCT data of the sintered specimens are used as geometrical
boundary conditions, cf. [8, 143].

• Testing of further µCT-based methods for the determination of pore throat
sizes as shown in [177], for instance, it remains to be ascertained whether
the area or the extent of the pore throat is more decisive for the intrinsic
permeability.

• Solving numerically and theoretically the differential equations formulated
in chapter 3 for the pressure pore oscillation method, which takes the iner-
tial effects at high frequencies into account.

• Technical improvements of the experimental set-up for dynamic perme-
ability measurements, such as the excitation of the latex membrane with
accurately controllable amplitudes for the generation of oscillatory fluid
movement or the additional recording of further measurable quantities, like
the volumetrical flux, are required. This lead to more accurate results and
the determination of the volumetrical flux can be additionally used to verify
the results. measurements.

• Extension of dynamic hydraulic measurements towards electrokinetic meth-
ods, cf. the determination of the electrokinetic coupling coefficient [66, 67,
181].

• Extension of ultrasound experiments towards electroseismic measurements
[146, 155, 156, 199].

The above listed topics provide many interesting possible directions for future re-
search. However, it cannot be a complete list. Although this study constitutes an
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important step towards a better understanding of the transport and wave prop-
agation phenomena in general, and in sintered granular systems specifically, the
combination of mechanical and electromagnetic phenomena in saturated sintered
systems can motivate and inspire much further research.
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