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Summary

DISCRETE ELEMENT SIMULATIONS AND EXPERIMENTS:
TOWARD APPLICATIONS FOR COHESIVE POWDERS
by O. I. Imole

Granular materials are omnipresent in nature and widely used in various industries rang-
ing from food and pharmaceutical to agriculture and mining – among others. It has been
estimated that about 10% of the world’s energy consumption is used in the processing, stor-
age and transport of granular materials. Owing to complexities like dilatancy, shear band
formation and anisotropy, their behavior is far from completely understood. To gain an un-
derstanding of the deformation behavior, various laboratory element tests can be performed.
Element tests are (ideally homogeneous) macroscopic tests in which the experimentalist can
control the stress and/or strain path. One element test that can be performed is the uniaxial
compression test. While such macroscopic experiments are pivotal to the development of
constitutive relations for flow and rheology, they provide little information on the micro-
scopic origin of the bulk flow behavior of these complex packings. In this thesis, we couple
experiments and particle simulations to bridge this gap and link the microscopic properties
to the macroscopic response for frictionless, frictional and cohesive granular packings, with
the final goal of industrial application. The procedure of studying frictionless, frictional and
cohesive granular assemblies independent of each other allows to isolate the main features
related to each effect and provides a gateway into the use of discrete element methods to
model and predict more complex industrial applications.

For frictionless packings, we find that different deformation paths, namely isotropic/uniaxial
over-compression or pure shear, slightly increase or reduce the jamming volume fraction
below which the packing loses mechanical stability. This observation suggests a necessary
generalization of the concept of the jamming volume fraction from a single value to a “wide
range” of values as a consequence of the modifications induced in the microstructure, i.e.
fabric, of the granular material in the deformation history. With this understanding, a con-
stitutive model is calibrated using isotropic and deviatoric modes. We then predict both the
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stress and fabric evolution in the uniaxial mode.

By focusing on frictional assemblies, we find that uniaxial deformation activates microscopic
phenomena not only in the active Cartesian directions, but also at intermediate orientations,
with the tilt angle being dependent on friction, and different for stress and fabric. While a
rank-2 tensor (representing a second order harmonic approximation) is sufficient to describe
the evolution of the normal force directions, a sixth order harmonic approximation is neces-
sary to describe the probability distributions of contacts, tangential forces and the mobilized
friction.

As a further step, cohesion is introduced. From multi-stress level uniaxial experiments, by
comparing two experimental setups and different cohesive materials, we report that while
stress relaxation occurs at constant volume, the relative relaxation intensity decreases with
increasing stress level. For longer relaxation, effects of previously experienced relaxation
becomes visible at higher stress levels. A simple microscopic model is proposed to describe
stress relaxation in cohesive powders, which accounts for the extremely slow force change
via a response timescale and a dimensionless relaxation parameter.

In the final part of the thesis, we compare results from experiments and discrete element
simulations of a cohesive powder in a simplified canister geometry to reproduce dosing (or
dispensing) of powders by a turning coil in industrial applications. Since information is
not easily accessible from physical tests, by scaling up the experimental particle size and
calibrating material parameters like cohesive strength and interparticle friction, we obtain
quantitative agreement between the mass per dose in simulations and experiments for differ-
ent dosage times. The number of doses, for a given total filling mass is inversely proportional
to dosage time and coil rotation speed, as expected, but increases with increasing number of
coils. Using homogenization tools, we obtain the exact local velocity and density fields in
our device.



Samenvatting

Discrete Element Simulaties en Experimenten:
Naar toepassingen op cohesieve poeders
door O. I. Imole

Granulaire materialen zijn wijdverbreid in de natuur en worden verwerkt in een reeks van
industrieën, variërend van de voedsel- en farmaceutische tot de agriculturele en mijnbouw-
industrie. Er wordt geschat dat ongeveer 10% van het wereldwijde energieverbruik besteed
wordt aan het verwerken, opslaan en transporteren van granulaire materie. Door complica-
ties zoals dilatatie, spanningslocalisatie en anistotropie, is het gedrag van dit soort materi-
alen echter nog verre van begrepen, Om een beter begrip te krijgen van het gedrag onder
deformaties kunnen verschillende elementaire laboratoriumtesten worden uitgevoerd. Ele-
mentaire testen zijn (idealiter homogene) macrosopische testen waarin de onderzoeker het
rek- en/of spanningstraject van het materiaal onder controle heeft. Alhoewel deze macro-
scopische testen centraal staan in de ontwikkeling van constitutieve relaties, leveren ze maar
weinig inzicht in de microscopische processen die aan de basis liggen van het macroscopisch
stromingsgedrag van deze complexe materialen. In dit proefschrift worden experimenten en
deeltjessimulaties gebruikt om een brug te slaan tussen de microscopische eigenschappen en
het macroscopische gedrag voor wrijvingsloze, wrijvingsvolle en cohesieve granulare mate-
rialen, met industriële toepassing als uiteindelijk doel. Het individueel bestuderen van deze
drie verschillende soorten granulaire materialen stelt ons in staat de belangrijkste gevolgen
van elk effect te bepalen, en daarmee een route te vinden naar de toepassing van Discrete
Element Methods (DEM) in het modeleren en voorspellen van complexe industriële toepas-
singen.

Voor wrijvingsloze granulaire materialen vinden we dat verschillende deformatiegeschiede-
nissen, namelijk isotrope/uniaxiale compressie of een pure afschuiving, tot een kleine veran-
dering leiden van de blokkeringsvolumefractie waaronder het granulaire materiaal zijn sta-
biliteit verliest. Deze observatie suggereert de noodzaak van een veralgemenisering van het
begrip blokkeringsvolumefractie, van een eenduidige waarde naar een interval van waardes
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als gevolg van veranderingen in de microstructuur die zijn opgewekt door de vervormingsge-
schiedenis van het granulaire materiaal. Deze kennis is geïmplementeerd in een constitutief
model, dat gekalibreerd is tegen isotrope en deviatorische vervormingen. Met dit model
zijn vervolgens de ontwikkelingen van de spanning en de microstructuur onder een unixiale
vervorming voorspeld.

Bij de bestudering van granulaire materialen met interne frictie hebben we gevonden dat
uniaxiale vervorming niet alleen leidt tot microscopische effecten langs de actieve Carte-
sische richtingen, maar ook langs andere richtingen, waarbij de richtingshoek afhangt van
de wrijving en verschilt tussen de spanning en de microstructurele vervorming. Terwijl een
tweede-orde tensor volstaat voor de beschrijving van de ontwikkeling van de richtingen van
de normaalkrachten, blijkt een zesde-orde harmonische benadering nodig te zijn voor de be-
schrijvingen van de waarschijnlijkheidsverdelingen van contacten, de tangentiële krachten
en de gemobiliseerd wrijving.

In een vervolgstap is cohesie geïntroduceerd. Op grond van meerdere uniaxiale experimen-
ten rapporteren we, door het vergelijken van twee experimentele methods en verschillende
cohesieve materialen, dat terwijl spanningsrelaxatie optreedt bij constante volumetrische be-
lasting, de mate van relatieve relaxatie afneemt bij toenemende spanning. Voor langere
relaxaties wordt de invloed van eerder ondergane relaxaties zichtbaar onder later ingestelde
hogere spanningen. We stellen een eenvoudig microscopisch model voor dat de spannings-
relaxatie in cohesieve poeders beschrijft, en daarbij verklaringen biedt voor de extreem lang-
same krachtsveranderingen en de tijdschaal van de relaxatie, alsmede voor een dimensieloze
relaxatieparameter.

In het laatste deel van dit proefschrift vergelijken we experimenten en DEM simulaties van
cohesieve poeders in een vereenvoudigde trommelgeometrie voor de dosering (en afgifte)
van poeders in industriële toepassingen. Omdat het experimentele proces niet makkelijk di-
rekt bestudeerd kan worden, hebben we de experimentele deeltjesgrootte en de belangrijkste
deeltjeseigenschappen, zoals de cohesie en de wrijving tussen deeltjes, opgeschaald. Hier-
mee hebben we een quantitatieve overeenkomst gevonden tussen de massa per dosering in
de simulaties en experimenten, bij verschillende doseringstijden. Het aantal doseringen ver-
toont een omgekeerde evenredigheid met de rotatie tijd en -snelheid van de doseringsspoel,
maar neemt toe met de lengte van de spoel. Door gebruik te maken van homogeniseringsin-
strumenten verkrijgen we de lokale snelheids- en dichtheidsvelden in het doseringsmecha-
nisme.
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Chapter 1

Introduction

1.1 Background: Granular materials

From sandcastles to large rocks, from cereals to food powder, table salt to wheat grains,
coffee beans to baking flour, granular materials, next to water and air, are indispensable to
our existence on earth. Even in space exploration, the importance of granular materials to
the success of space mission has been reported.

The storage, handling, processing and packaging of granular materials also cuts across dif-
ferent industrial sectors. In the chemical, biotechnological, pharmaceutical, textile, envi-
ronmental protection, food industries, operations such as mixing, segregation, precipitation,
crystallization, fludization, agglomeration, are common and often involves the processing of
granular materials. In highly developed economies, number of particulate raw or finished
products can amount to millions and is permanently increasing day by day because of di-
versified requirements of various clients and consumers in the global market. In fact, it has
been estimated that about 10% of the world’s energy consumption is used in the processing,
storage and transport of granular materials. Despite its importance, a question that arises is
why the behavior of granular materials is far from being completely understood.

To answer this question, one would need to draw an analogy between granular materials and
water. It is known that largest portion of the earth’s surface is covered by water in form of
oceans, seas and lakes. Depending on the prevailing temperature and pressure, water may
take on different forms of matter. For example, at room temperature and pressure, water is
liquid. However, when the room temperature is increased, it changes state and water vapor
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Figure 1.1: Granular materials can take on the different states of matter in a sand hour glass
[1].

(or gas) emerges. Additionally, when water is frozen, it becomes (solid) ice with different
properties than when it is in the liquid or solid state at different temperature. Due to this
multi-variate nature, it is impossible to fully classify water as a perfect solid, liquid or gas.

Granular materials can also easily pass through the three phases of matter in a single ge-
ometry. For example, in the flowing sand hour glass illustrated in Fig. 1.1, the top section
consists of grains completely static, fixed in position as one would expect in a solid. Closer
to the channel at the bottom of the top section, one observes that the grains are flowing as one
would expect in a liquid. In the bottom compartment, as the flowing grains settle, they form
a heap at the center of the glass indicating that they can support their own weight, which a
normal liquid cannot do. Looking closely at the top of the heap, one observes collisions of
grains with the heap along with random motion of grains, similar to what one would see in a
gas.

Yet, one observes that in contrast to what is seen in gases, the collisions between the grains
in the sand hour glass are dissipative in nature. This means that the collisions are inelastic
leading to energy loss due to friction between the grains. Hence granular materials are seen
as an assembly of particles or grains that are not in thermal equilibrium and the classical laws
governing the flow of fluids and gases do not hold. All these make the study of granular ma-
terials an enigma – a challenging and interesting multi-disciplinary endeavor for scientists,
physicists, engineers, mathematicians and theoreticians.
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1.2 Philosophy

Many industrial particle systems display unpredictable behaviour and thus are difficult to
handle. This gives rise to considerable challenges for fundamental understanding and the
design and operation of unit-processes and plants. In an industrial survey, Ennis et al. [39]
reported that 40% of the capacity of industrial plants is wasted because of granular solid
problems. Merrow [109] also reported that the main factor causing long start-up delays in
chemical plants is solids processing, especially the lack of reliable predictive models and
simulations. This displays the urgent industrial need for a computational technique based
on a physical understanding of particle systems that can adequately model the mechanical
response of granular materials in order to be able to devise new technologies, to improve
existing designs and to optimize operating conditions.

In order to understand the behavior of granular materials, element tests can be performed.
Element tests are ideally homogeneous laboratory experiments that allow the user to control
the stress/strain path. Such macroscopic experiments are useful in developing and calibrating
constitutive relations, but provide little information on the microscopic origin of the bulk
flow behavior. An alternative approach is to perform discrete element simulations (DEM)
[11, 34, 89, 92, 151].

Despite the huge popularity of the discrete element method and the increased number of
publications over the past few years, one main there is still a lot of skepticism in the industry
about the power of this method in predicting industrial problems. One main obstacle for the
general acceptance of DEM in industry is the lack of verification and validation methodolo-
gies and accepted model calibration methods within the framework illustrated in Fig. 1.2 –
especially when cohesive fine powders of non-spherical shape are involved.1

Verification in this sense refers to methods aimed at determining that the DEM model imple-
mentation accurately reproduces the underlying conceptual model and its solutions [118]. In
verification, the discrete element code and calculation algorithms are checked against highly
accurate analytical or numerical benchmark solutions. In this sense, verification is about
the mathematics and the programming and not about the physics and mechanics involved.
Potential sources of numerical errors in a typical DEM computation include inappropriate
particle scale representation, insufficiently small computational time steps and computing
round-off and programming errors.

The verification process is followed by an altogether much more challenging task of valida-
tion which assesses the degree to which the computational model accurately represents the
physics being modelled. Validation of DEM simulation thus requires a comparison between

1The verification and validation framework presented in this section is largely based on J. Y. Ooi. Establishing
predictive capabilities of DEM - Verification and validation for complex granular processes. AIP Conf. Proc,
1542:20–24, 2013
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Figure 1.2: Verification and validation framework according to Ooi [118].

the simulation and the validation experiment, where the predictive capability is evaluated
against the physical reality whilst addressing the uncertainties arising from both experiments
and computations [118].

As many granular processes are inherently very complex, it is necessary to approach the
problem in a hierarchical fashion by first identifying and validating against simpler “com-
ponents” of the system before the complete process with the full-fledged complexities is
tackled. Validation experiments require a rigorous characterization of the test material, test
conditions and uncertainties in the experimental measurements. Exemplary verification tests
that can be performed include the elastic normal impact of two identical spheres, elastic nor-
mal impact of a sphere with a rigid plane and the oblique impact of a sphere with a rigid
plane at constant resultant velocity and varying incident angles [118].

Additionally, a micromechanical description, which takes into account the discrete nature
of granular systems, is necessary and must be linked to the continuum description, which
involves the formulation of constitutive relations for macroscopic fields [48, 49, 72, 79, 107,
152]. The parameters of these constitutive models have to be identified from experimental
or numerical calibration tests [41] while the predictive quality must then be tested against an
independent test.

In the following, we will address some interesting properties of granular materials and how
these influence their behavior under different conditions.

1.2.1 Particle Size and Shape

Granular materials come in different shapes and sizes and have different morphological
properties. A few examples of industrial materials are shown in Fig. 1.3 all having dif-
ferent properties – from long (tremolite), round porous (grain oil char), spherical (coal fly
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Figure 1.3: Granular materials can have different shapes from tremolite (elongated), grain
oil char (round and porous), coal fly ash (spherical) to mine waste (angular) according to
Ref. [2]

ash) and angular (mine waste). The particle shape and size distribution, amongst other pa-
rameters determine mechanical material properties such as friction, or compressive strength
[121, 144, 182] of granular materials. The description of shape can take place by words or
pictures (qualitative), by numbers (quantitative) or, to compare results from different analy-
sis procedures, by shape factors. The British norm (BS 2955) proposes some adjectives to
describe particle shapes. In a rougher form, elongation tells how close the particle shape is to
a sphere, but gives no information about the roughness of the surface. Circularity is defined
as the ratio of circuit of sphere with an area equal to particle to particle circuit. It is related
to the overall particle shape and its roughness. Convexity informs just about the roughness
of the surface with no other information [3].

For the description of a particle, geometrical length scales, the statistical length, as well as
physical equivalent diameters and also the specific surface are used. For example, commonly
used as geometrical length scale is the diameter or length of a cylindrical granular or an
almost spherical particle. Also the volume V of a particle and the surface S are often used as
direct size measurement. For a non spherical particle those properties can be transferred via
the equivalent diameter. The most important geometrical equivalent diameters are [3]:
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1. dV : diameter of a sphere with an equal volume,

2. dS: diameter of a sphere with an equal surface,

3. dP: diameter of a circle with the same projected surface and

4. dlc: light scattering diameter.

1.2.2 Friction

Friction is the force preventing the relative motion of solid surfaces, fluid layers or material
elements sliding against each other. The classical laws of solid friction was first written
by Amontons in 1699 and further developed by Coulomb in 1785 [13] and describes the
minimum lateral/tangential Ff force required to put two bodies in motion. The tangential
force is defined as:

Ff = µN, (1.1)

where the dimensionless scaler µ is the static friction coefficient and N is the normal force
pressing the two bodies together. The Amontons-Coulomb friction law are widely used in
several applications; for example in silo design where friction at the silo walls provides a
vertical load carrying capacity, thereby, reducing the horizontal stress at the bottom of the
silo [8]. Static and dynamic as well as sliding and rolling friction can be distinguished [3].

Static frictional forces from the interlocking of the irregularities of two surfaces will increase
to prevent any relative motion up until some limit where motion occurs. Dynamic friction
occurs when two objects are moving relative to each other and is usually lower than the
coefficient of static friction for the same material [108]. Dynamic friction is almost constant
over a wide range of low speeds.

Rolling friction is the torque that resists the rolling of a circular object along a surface.
The rolling friction can arise from several sources at the contact between two particles or
between a particle and surface. These may include micro-slip and friction on the contact
surface, plastic deformation around the contact, viscous hysteresis, surface adhesion and
shape effects [9, 67].

When both materials are hard, a combination of static/dynamic friction (caused by irregular-
ities of both surfaces) and molecular friction (caused by the molecular attraction or adhesion
of the materials) slow down the rolling. When the particle is soft, its deformation slows down
the motion. When the other surface is soft, the plowing effect is a major force in slowing the
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motion. Sliding resistance is the force that resists motion of a body over a surface with no
rolling.

The microscopic origin of friction is non-trivial. The first microscopic interpretation of fric-
tion, taking into account the asperities/roughness between surfaces in contact was proposed
by Bowden and Tabor [13, 27]. The theory assumes that the contact area between bodies in
contact are much smaller than the apparent contact area such that only the highest asperities
sustain the normal stress. Furthermore, the highest asperities deform plastically due to the
large contact stress, thus making the normal stress at contact a constant. Bowden and Tabor
further assume that the asperities in contact ‘weld’ together to form a ‘solid’ joint which
must be broken by a critical shear stress for sliding to occur.

Limitations of the Amontons–Coulomb laws occurs for high normal loads or very soft ma-
terials where the surface roughness is flattened leading to a saturation of the frictional force
with normal force. A second limitiation is the assumption of constant friction coefficients
– which is not valid for phenomena such as ageing (increasing µ with time) and velocity
weakening (decreasing dynamic friction with time) [13].

1.2.3 Cohesion

The cohesion, c, is the resistance of a physical body, subjected to its separation into parts.
The cohesion of particulate solids can be classified in two very broad types: wet and dry co-
hesion. In wet (moisture-induced) cohesion capillary forces dominate particles interactions.
In dry cohesion, for solids of less than 10 µm, van der Waals forces and electrostatic forces
are also significant [3].

Cohesive powders have the ability to gain strength when stored at rest under compressive
stress for a long period of time. Wahl et al. [165] reported that moisture, temperature, pres-
sure, particle size and storage time have a major effect on the particles during storage hence
research on the study of caking must be based on the application of real storage conditions.
Schulze [138] suggests that cohesion can be due to deformation and increase of the particle
contact area leading to higher adhesive forces, interlocking by particle shape effects (over-
lap due to surface asperities and hook-like bonds). Another reason can be bridge formation
due to solid crystallization during drying or due to the dissolution of some materials from
moisture absorption [3].
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1.3 The Discrete Element Method

The Discrete Element Method (DEM) [11, 34, 89, 92, 151] helps to better understand and
model the deformation behaviour of particle systems. Since the elementary units of granular
materials are mesoscopic grains which deform under stress and the realistic modelling of the
particles is much complicated, the DEM relates the interaction force to the overlap of two
particles. If all forces fi acting on the particle i either from other particles, from boundaries
or from external forces, are known, the problem is reduced to the integration of Newton’s
equations of motion for the translational and rotational degrees of freedom:

d
dt

(miṙi) = fi +mig (1.2)

with the mass mi of particle i , its position ri, the velocity ṙi of the center of mass, the
resultant force fi = ∑c fi

c acting on it due to contacts with other particles or with the walls,
the acceleration due to volume forces like gravity g.

Two spherical particles i and j, with radii ai and a j, respectively, interact only if they are
in contact so that their overlap δ = (ai +a j)− (ri − r j) ·n is positive, i.e. δ > 0, with the
unit normal vector n = ni j = (ri − r j)/

∣∣ri − r j
∣∣ pointing from j to i. The force on particle

i, from particle j, at contact c, has normal and tangential components. The normal force
is complemented by a tangential force law [92], such that the total force at contact c is:
fc = fnn̂+ ft t̂, where n̂ · t̂ = 0, with tangential force unit vector t̂. For more details on the
contact force laws, see chapter 5.

1.3.1 Thesis Outline

This thesis focuses on the deformation behavior of granular materials under different strain,
stress and dynamic conditions. As a tool, laboratory experiments and discrete element sim-
ulations are used to understand the microscopic and macroscopic response of these granu-
lar assemblies which have been idealized as packings of polydisperse spherical disks. In
general, the philosophy of this thesis is split into three distinct, however interrelated parts
namely:

1. The effects of the deformation paths on the microscopic and macroscopic response
of frictionless and frictional granular assemblies as presented in chapters 2 and 3, re-
spectively. This is accomplished purely using quasi-static DEM simulation of element
tests in a triaxial box geometry under high confining stress conditions.
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2. An experimental study of the time-dependent behavior of cohesive granular materials
under oedometric (uniaxial) compression is presented in chapter 4 showing where the
contact models used in the simulation have to be improved.

3. A combination of experiments and discrete element simulations in the investigation
of an application, namely the dosing of cohesive powders in a simplified canister
geometry, as presented in chapter 5. This study is conducted under low consolidation
stress and both static and dynamic conditions alternating.

In chapter 2, we investigate the response of granular assemblies to isotropic, uniaxial and
shear deformation. On the microscopic side we report on the response of the coordina-
tion number and fraction of rattlers and their dependence on their respective jamming vol-
ume fractions. On the macroscopic scale, we report on the evolution isotropic pressure and
isotropic fabric along with the deviatoric stress and fabric with volume fraction. In the final
part of the chapter, we test the predictive power of a simple anisotropy model – calibrated
with the deviatoric shear simulation – on the uniaxial mode.

In chapter 3, the effect of friction on packings of polydisperse granular assemblies sub-
jected to uniaxial loading and unloading is studied. We use the magnitude and orientation
of contacts to understand the dependence of the deviatoric stress ratio and deviatoric fabric
on friction. Microscopic observations on the number of sliding/sticking contacts and the
directional probability distribution of normal forces are also studied. Finally, evolution of
the normal force directions, contact probability distributions, tangential force and mobilized
friction are approximated using harmonic functions.

Chapter 4 focuses on experiments on the time-dependent relaxation behavior of two cohesive
powders under uniaxial deformation as compared between two testers. We show that strain
rate, relaxation time, and a step-wise loading and relaxation cycle all influence the creep-like
behavior. The parameters of a simple microscopic model that captures the creep behavior is
also presented. We highlight where the contact models used in discrete element simulations
need to be improved.

Finally in 5, we present experimental and numerical findings on the dosing of cohesive
powders in a simplified canister geometry. We show that our discrete element simulations
are capable of quantitatively reproducing observations from experiments in terms of the
dosed mass throughput, the number of coils and the initial mass in the canister. Finally,
using homogenization (coarse-graining) tools, we extract other macroscopic fields and show
further insights on the dosing action.





Chapter 2

Isotropic and shear deformation
of frictionless granular

assemblies*

Abstract
Stress- and structure-anisotropy (bulk) responses to various deformation modes are
studied for dense packings of linearly elastic, frictionless, polydisperse spheres in the
(periodic) tri-axial box element test configuration. The major goal is to formulate
a guideline for the procedure of how to calibrate a theoretical model with discrete
particle simulations of selected element tests and then to predict another element test
with this calibrated model (parameters).

Only the simplest possible particulate model-material is chosen as the basic reference
example for all future studies that aim at the quantitative modeling of more realistic
frictional, cohesive powders. Seemingly unrealistic materials are used to exclude
effects that are due to contact non-linearity, friction, and/or non-sphericity. This
allows to unravel the peculiar interplay of micro-structural organization, i.e. fabric,
with stress and strain.

Different elementary modes of deformation are isotropic, deviatoric (volume-conserving),
and their superposition, e.g., a uni-axial compression test. (Other ring-shear or

*Based on O. I. Imole, N. Kumar, V. Magnanimo, and S. Luding. Hydrostatic and Shear Behavior of Frictionless
Granular Assemblies Under Different Deformation Conditions. KONA Powder and Particle Journal, 30:84–108,
2013



12 Chapter 2 Isotropic and shear deformation of frictionless granular assemblies

stress-controlled (e.g. isobaric) element tests are referred to, but not studied here.)
The deformation modes used in this study are especially suited for the bi- and tri-axial
box element test set-up and provide the foundations for powder flow in many other ex-
perimental devices. The qualitative phenomenology presented here is expected to be
valid, even more clear and magnified, in the presence of non-linear contacts, friction,
non-spherical particles and, possibly, even for strong attractive/adhesive forces.

The scalar (volumetric, isotropic) bulk properties, like the coordination number and
the hydrostatic pressure, scale qualitatively differently with isotropic strain, but be-
have in a very similar fashion irrespective of the deformation path applied. The
deviatoric stress response, i.e., stress-anisotropy, besides its proportionality to devi-
atoric strain, is cross-coupled to the isotropic mode of deformation via the struc-
tural anisotropy; likewise, the evolution of pressure is coupled via the structural
anisotropy to the deviatoric strain. Note that isotropic/uniaxial over-compression
or pure shear slightly increase or reduce the jamming volume fraction, respectively.
This observation allows to generalize the concept of “the” jamming volume fraction,
below which the packing loses mechanical stability, from a single value to a “wide
range”, as a consequence of the deformation-history of the granular material that is
“stored/memorized” in the structural anisotropy.

The constitutive model with incremental evolution equations for stress and structural
anisotropy takes this into account. Its material parameters are extracted from discrete
element method (DEM) simulations of isotropic and deviatoric (pure shear) modes as
volume fraction dependent parameters. Based on this calibration, the theory is able
to predict qualitatively (and to some extent also quantitatively) both the stress and
fabric evolution in the uniaxial, mixed mode during compression.

2.1 Introduction

Dense granular materials are generally complex systems which show unique mechanical
properties different from classical fluids or solids. Interesting phenomena like dilatancy,
shear-band formation, history-dependence, jamming and yield stress - among others - have
attracted significant scientific interest over the past decade. The bulk behavior of these ma-
terials depends on the behavior of their constituents (particles) interacting through contact
forces. To get an understanding of the deformation behavior of these materials, various
laboratory element tests can be performed [111, 133, 140]. Element tests are (ideally homo-
geneous) macroscopic tests in which the experimentalist can control the stress and/or strain
path. Different element test experiments on packings of bulk solids have been realized in
the bi-axial box (see [113] and references therein) while other deformations modes, namely
uniaxial and volume conserving shear have been reported in [122, 131]. While such macro-
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scopic experiments are important ingredients in developing constitutive relations, they pro-
vide little information on the microscopic origin of the bulk flow behavior of these complex
packings.

The complexity of the packings becomes evident when they are compressed isotropically.
In this case, the only macroscopic control parameters are volume fraction and pressure [51,
98]. At the microscopic level for isotropic samples, the micro-structure (contact network)
is classified by the coordination number (i.e. the average number of contacts per particle)
and the fraction of rattlers (i.e. fraction of particles that do not contribute to the mechanical
stability of the packing) [51]. However, when the same material sample is subjected to
shear deformation, not only does shear stress build up, but also the anisotropy of the contact
network develops, as it relates to the creation and destruction of contacts and force chains
[11, 124, 166]. In this sense, anisotropy represents a history-parameter for the granular
assembly. For anisotropic samples, scalar quantities are not sufficient to fully represent
the internal contact structure, but an extra tensorial quantity has to be introduced, namely
the fabric tensor [47]. To gain more insight into the micro-structure of granular materials,
numerical studies and simulations on various deformation experiments can be performed,
see Refs. [157, 159, 160] and references therein.

In an attempt to classify different deformation modes, Luding et al. [98] listed four dif-
ferent deformation modes: (0) isotropic (direction-independent), (1) uniaxial, (2) devia-
toric (volume conserving) and (3) bi-/tri-axial deformations. The former are purely strain-
controlled, while the latter (3) is mixed strain-and-stress-controlled either with constant side
stress [98] or constant pressure [101]. The isotropic and deviatoric modes 0 and 2 are pure
modes, which both take especially simple forms. The uniaxial deformation test derives from
the superposition of an isotropic and a deviatoric test, and represents the simplest element
test experiment (oedometer, uniaxial test or lambda-meter) that activates both isotropic and
shear deformation. The bi-axial tests are more complex to realize and involve mixed stress-
and strain-control instead of completely prescribed strains as often applied in experiments
[113, 178], since they are assumed to better represent deformation under realistic boundary
conditions – namely the material can expand and form shear bands.

In this study, various deformation paths for assemblies of polydisperse packings of linearly
elastic, non-frictional cohesionless particles are modeled using the DEM simulation ap-
proach. One goal is to study the evolution of pressure (isotropic stress) and deviatoric stress
as functions of isotropic and deviatoric strain. Microscopic quantities like the coordination
number, the fraction of rattlers, and the fabric tensor are reported for improved microscopic
understanding. Furthermore, the extensive set of DEM simulations is used to calibrate the
anisotropic constitutive model, as proposed in Refs. [98, 101]. After calibration through
isotropic [51] and volume conserving pure shear simulations, the derived relations between
the parameters and volume fraction are used to predict uniaxial deformations. Another goal
is to improve the understanding of the macroscopic behavior of bulk particle systems and to
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guide further developments of new theoretical models that describe it.

The focus on the seemingly unrealistic materials allows to exclude effects that are due to
friction, other contact non-linearities and/or non-sphericity, with the goal to unravel the in-
terplay of micro-structural organization, fabric, stress and strain. This is the basis for the
present research – beyond the scope of this paper – that aims at the quantitative modeling
of these phenomena and effects for realistic frictional, cohesive powders. The deformation
modes used in this study are especially suited for the bi-axial box experimental element test
set-up and provide the fundamental basis for the prediction of many other experimental de-
vices. The qualitative phenomenology presented here is expected to be valid, even more
clear and magnified, in the presence of friction and non-spherical particles, and possibly
even for strong attractive forces.

This chapter is organized as follows: The simulation method and parameters used are pre-
sented in section 2.2, while the preparation and test procedures are introduced in section 2.3.
Generalized averaging definitions for scalar and tensorial quantities are given in section 2.4
and the evolution of microscopic quantities is discussed in section 2.5. In section 2.6, the
macroscopic quantities (isotropic and deviatoric) and their evolution are studied as functions
of volume fraction and deviatoric (shear) strain for the different deformation modes. These
results are used to obtain/calibrate the macroscopic model parameters. Section 2.7 is devoted
to theory, where we relate the evolution of the micro-structural anisotropy to that of stress
and strain, as proposed in Refs. [98, 101], to display the predictive quality of the calibrated
model.

2.2 Simulation method

The Discrete Element Method (DEM) [34], was used to perform simulations in bi- and tri-
axial geometries [38, 75, 89, 151], involving advanced contact models for fine powders [92],
or general deformation modes, see Refs. [11, 157, 160] and references therein.

However, since we restrict ourselves to the simplest deformation modes and the simplest
contact model, and since DEM is otherwise a standard method, only the contact model pa-
rameters and a few relevant time-scales are briefly discussed – as well as the basic system
parameters.

2.2.1 Force model

For the sake of simplicity, the linear visco-elastic contact model for the normal component
of force has been used in this work and friction is set to zero (and hence neither tangential
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forces nor rotations are present). The simplest normal contact force model, which takes into
account excluded volume and dissipation, involves a linear repulsive and a linear dissipative
force, given as

fn = f nn̂ =
(

kδ + γδ̇
)

n̂, (2.1)

where k is the spring stiffness, γ is the contact viscosity parameter and δ or δ̇ are the overlap
or the relative velocity in the normal direction n̂. An artificial viscous background dissipa-
tion force fb =−γbvi proportional to the moving velocity vi of particle i is added, resembling
the damping due to a background medium, as e.g. a fluid. The background dissipation only
leads to shortened relaxation times, reduced dynamical effects and consequently lower com-
putational costs without a significant effect on the underlying physics of the process – as
long as quasi-static situations are considered.

The results presented in this study can be seen as “lower-bound” reference case for more
realistic material models, see e.g. Ref. [92] and references therein. The interesting, complex
behavior and non-linearities can not be due to the contact model but due to the collective
bulk behavior of many particles, as will be shown below.

2.2.2 Simulation Parameters and time-scales

Typical simulation parameters for the N = 9261(= 213) particles with average radius 〈r〉=
1[mm] are density ρ = 2000 [kg/m3], elastic stiffness k = 108 [kg/s2] particle damping co-
efficient γ = 1 [kg/s], and background dissipation γb = 0.1 [kg/s]. The polydispersity of the
system is quantified by the width (w = rmax/rmin = 3) of a uniform distribution with a step
function as defined in [51], where rmax = 1.5[mm] and rmin = 0.5[mm] are the radius of the
biggest and smallest particles respectively.

A typical response time is the collision time duration tc. For for a pair of particles with
masses mi and m j, tc = π/

√
k/mi j − (γ/2mi j)2, where mi j = mim j/(mi + m j) is the re-

duced mass. The coefficient of restitution for the same pair of particle is expressed as
e = exp(−γtc/2mi j) and quantifies dissipation. The contact duration tc and restitution co-
efficient e are dependent on the particle sizes and since our distribution is polydisperse,
the fastest response time scale corresponding to the interaction between the smallest par-
ticle pair in the overall ensemble is tc =0.228[µs] and e is 0.804. For two average par-
ticles, tc =0.643[µs] and e=0.926. Thus, the dissipation time-scale for contacts between
two average sized particles, te = 2mi j/(γ) = 8.37[µs] is considerably larger than tc and the
background damping time-scale tb = 〈m〉/γb = 83.7[µs] is much larger again, so that the
particle- and contact-related time-scales are well separated. The strain-rate related timescale
is ts = 1/ε̇zz = 0.1898[s]. As usual in DEM, the integration time-step was chosen to be about
50 times smaller than the shortest time-scale tc [92].
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Note that the units are artificial; Ref. [92] provides an explanation of how they can be con-
sistently rescaled to match quantitatively the values obtained from experiments (due to the
simplicity of the contact model used).

Our numerical ‘experiments’ are performed in a three-dimensional tri-axial box with peri-
odic boundaries on all sides. One advantage of this configuration is the possibility of real-
izing different deformation modes with a single experimental set-up and a direct control of
stress and/or strain [38, 98]. The systems are ideally homogeneous, which is assumed, but
not tested in this study.

The periodic walls can be strain-controlled to move following a co-sinusoidal law such that,
for example, the position of the top wall as function of time t is

z(t) = z f +
z0 − z f

2
(1+ cos2π f t) with strain εzz(t) = 1− z(t)

z0
, (2.2)

where z0 is the initial box length and z f is the box length at maximum strain, respectively, and
f = T−1 is the frequency. The maximum deformation is reached after half a period t = T/2,
and the maximum strain-rate applied during the deformation is ε̇max

zz = 2π f (z0−z f )/(2z0) =

π f (z0 − z f )/z0. The co-sinusoidal law allows for a smooth start-up and finish of the motion
so that shocks and inertia effects are reduced.

Different strain-control modes are possible, like homogeneous strain-rate control for each
time-step, applied to all particles and the walls, or swelling instead of isotropic compression,
as well as pressure-control of the (virtual) walls. However, this is not discussed, since it had
no effect for the simple model used here, and for quasi-static deformations applied. For more
realistic contact models and large strain-rates, the modes of strain- or stress-control have to
be re-visited and carefully studied.

2.3 Preparation and test procedure

In this section, we describe first the sample preparation procedure and then the method for
implementing the isotropic, uniaxial and deviatoric element test simulations. For conve-
nience, the tensorial definitions of the different modes will be based on their respective
strain-rate tensors. For presenting the numerical results, we will use the true strain as defined
in section 2.4.2.

2.3.1 Initial Isotropic preparation

Since careful, well-defined sample preparation is essential in any physical experiment to ob-
tain reproducible results [40], the preparation consists of three elements: (i) randomization,
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(ii) isotropic compression, and (iii) relaxation, all equally important to achieve the initial
configurations for the following analysis. (i) The initial configuration is such that spherical
particles are randomly generated in a 3D box, with low density and rather large random ve-
locities, such that they have sufficient space and time to exchange places and to randomize
themselves. (ii) This granular gas is then isotropically compressed in order to approach a
direction independent configuration, to a target volume fraction ν0 = 0.640, sightly below
the jamming volume fraction νc ≈ 0.665, i.e. the transition point from fluid-like behavior
to solid-like behavior [105, 106, 117, 164]. (iii) This is followed by a relaxation period at
constant volume fraction to allow the particles to fully dissipate their energy and to achieve
a static configuration in mechanical equilibrium.

Isotropic compression (negative strain-rate in our convention) can now be used to prepare
further initial configurations at volume fractions νi, with subsequent relaxation, so that we
have a series of different initial isotropic configurations, achieved during loading and un-
loading, as displayed in Fig. 2.1. Furthermore, it can be considered as the isotropic element
test [51]. It is realized by a simultaneous inward movement of all the periodic boundaries of
the system, with strain-rate tensor

Ė= ε̇v

 −1 0 0
0 −1 0
0 0 −1

 ,

where ε̇v (> 0) is the rate amplitude applied to the walls until the target volume fraction is
achieved.

A general schematic representation of the procedure for implementing the isotropic, uniaxial
and deviatoric deformation tests is shown in Fig. 2.2. The procedure can be adapted for other
non-volume conserving and/or stress-controlled modes (e.g., bi-axial, tri-axial and isobaric).
One only has to use the same initial configuration and then decide which deformation mode
to use, as shown in the figure under “other deformations”. The corresponding schematic plots
of deviatoric strain εd as a function of volumetric strain εv are shown below the respective
modes.

2.3.2 Uniaxial

Uniaxial compression is one of the element tests that can be initiated at the end of the “prepa-
ration”, after sufficient relaxation. The uniaxial compression mode in the tri-axial box is
achieved by a prescribed strain path in the z-direction, see Eq. 2.2, while the other boundaries
x and y are non-mobile. During loading (compression) the volume fraction is increased, like
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Figure 2.1: Evolution of volume fraction as a function of time. Region A represents the
initial isotropic compression until the jamming volume fraction. B represents relaxation of
the system and C represents the subsequent isotropic compression up to νmax = 0.820 and
then decompression. Cyan dots represent some of the initial configurations, at different νi,
during the loading cycle and blue stars during the unloading cycle, which can be chosen for
further study.

for isotropic compression, from ν0 = 0.64 to a maximum volume fraction of νmax = 0.820
(as shown in region C of Fig. 2.1), and reverses back to the original volume fraction of ν0

during unloading. Uniaxial compression is defined by the strain-rate tensor

Ė= ε̇u

 0 0 0
0 0 0
0 0 −1

 ,

where ε̇u is the strain-rate (compression > 0 and decompression/tension < 0) amplitude ap-
plied in the uniaxial mode. The negative sign (convention) of Ėzz corresponds to a reduction
of length, so that tensile deformation is positive. Even though the strain is imposed only
on the mobile “wall” in the z-direction, which leads to an increase of compressive stress
on this wall during compression, also the non-mobile walls experience some stress increase
due to the “push-back” stress transfer and rearrangement of the particles during loading, as
discussed in more detail in the following sections. This is in agreement with theoretical
expectations for materials with non-zero Poisson ratio. However, the stress on the passive
walls is typically smaller than that of the mobile, active wall, as consistent with findings
from laboratory element tests using the bi-axial tester [113, 178] or the so-called λ -meter
[82, 83].
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Figure 2.2: Generic schematic representation of the procedure for implementing isotropic,
uniaxial and deviatoric deformation element tests. The isotropic preparation stage is repre-
sented by the dashed box. The corresponding plots (not to scale) for the deviatoric strain
against volumetric strain are shown below the respective modes. The solid square boxes in
the flowchart represent the actual tests. The blue circles indicate the start of the preparation,
the red triangles represent its end, i.e. the start of the test, while the green diamonds show
the end of the respective test.
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2.3.3 Deviatoric

The preparation procedure, as described in section 2.3.1, provides different initial configu-
rations with densities νi. For deviatoric deformation element test, unless stated otherwise,
the configurations are from the unloading part (represented by blue stars in Fig. 2.1), to test
the dependence of quantities of interest on volume fraction, during volume conserving de-
viatoric (pure shear) deformations. The unloading branch is more reliable since it is much
less sensitive to the protocol and rate of deformation during preparation [51, 78]. Then, two
different ways of deforming the system deviatorically are used, not to mention numberless
superpositions of these. The deviatoric mode D2 has the strain-rate tensor

Ė= ε̇D2

 1 0 0
0 0 0
0 0 −1

 ,

where ε̇D2 is the strain-rate (compression > 0) amplitude applied to the wall with normal in
z-direction. We use the nomenclature D2 since two walls are moving, while the third wall is
stationary.

The deviatoric mode D3 has the strain-rate tensor

Ė= ε̇D3

 1/2 0 0
0 1/2 0
0 0 −1


where ε̇D3 is the z-direction strain-rate (compression > 0) amplitude applied. In this case,
D3 signifies that all the three walls are moving, with one wall twice as much (in opposite
direction) as the other two, such that volume is conserved during deformation.

Note that the D3 mode is uniquely similar in “shape” to the uniaxial mode 1, see Table 2.1,
since in both cases two walls are controlled similarly. Mode D2 is different in this respect
and thus resembles more an independent mode, so that we plot by default the D2 results
rather than the D3 ones. The mode D2, with shape factor ζ = 0, is on the one hand similar
to the simple-shear situation, and on the other hand allows for simulation of the bi-axial
experiment (with two walls static, while four walls are moving [113, 178]).

2.4 Averaged quantities

In this section, we present the general definitions of averaged microscopic and macroscopic
quantities. The latter are quantities that are readily accessible from laboratory experiments,

1The more general, objective definition of deviatoric deformations is to use the orientation of the stresses (eigen-
directions) in the deviatoric plane from the eigenvalues, as explored elsewhere [63, 159], since this is beyond the
scope of this study.
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Mode Strain-rate tensor
(main diagonal)

Deviatoric strain-
rate (magnitude)

Shape factor
ζ =(εd

(2)/εd
(1))

Shape factor
(when −εd is
used)

ISO ε̇v (−1,−1,−1) ε̇dev = 0 n.a.

UNI ε̇u (0,0,−1) ε̇dev = ε̇u = ε̇zz 1 −1/2

D2 ε̇D2 (1,0,−1) ε̇dev =
√

3ε̇D2 0 0

D3 ε̇D3 (1/2,1/2,−1) ε̇dev = (3/2)ε̇D3 1 −1/2

Table 2.1: Summary of the deformation modes, and the deviatoric strain-rates ε̇dev, as well
as shape-factors, ζ , for the different modes, in the respective tensor eigensystem, with eigen-
values εd

(1) and εd
(2) as defined in section 2.4.2.

whereas the former are often impossible to measure in experiments but are easily available
from discrete element simulations.

2.4.1 Averaged microscopic quantities

In this section, we define microscopic parameters including the coordination number, the
fraction of rattlers, and the ratio of the kinetic and potential energy.

Coordination number and fraction of rattlers

In order to link the macroscopic load carried by the sample with the microscopic contact
network, all particles that do not contribute to the force network – particles with exactly
zero contacts – are excluded. In addition to these “rattlers” with zero contacts, there may
be a few particles with some finite number of contacts, for some short time, which thus
also do not contribute to the mechanical stability of the packing. These particles are called
dynamic rattlers [51], since their contacts are transient: The repulsive contact forces will
push them away from the mechanically stable backbone [51]. Frictionless particles with
less than 4 contacts are thus rattlers, since they cannot be mechanically stable and hence do
not contribute to the contact network. In this work, since tangential forces are neglected,
rattlers can thus be identified by just counting their number of contacts. This leads to the
following abbreviations and definitions for the coordination number (i.e. the average number
of contacts per particle) and fraction of rattlers, which must be re-considered for systems with
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tangential and other forces or torques:

N : Total number of particles.

N4 := NC≥4 : Number of particles with at least 4 contacts.

M : Total number of contacts

M4 := MC≥4 : Total number of contacts of particles with at least 4 contacts.

Cr :=
M
N

: Coordination number (simple definition).

C :=Cm =
M4

N
: Coordination number (modified definition).

C∗ :=
M4

N4
=

C
1−φr

: Corrected coordination number.

φr :=
N −N4

N
: (Number) fraction of the rattlers.

ν :=
1
V ∑

p∈N
Vp : Volume fraction of the particles.

Some simulations results for the coordination numbers and the fraction of rattlers will be
presented below, in subsection 2.5.1.

Energy ratio and the Quasi-Static Criterion

Above the jamming volume fraction νc, in mechanically stable static situations, there exist
permanent contacts between particles, hence the potential energy (which is also an indicator
of the overlap between particles) is considerably larger than the kinetic energy (which has to
be seen as a perturbation).

The ratio of kinetic energy and potential energy is shown in Fig. 2.3 for isotropic compres-
sion from ν1=0.673 to νmax=0.820 and back. The first simulation, represented by the solid
red line, was run for a simulation time T = 5000 µs and the second (much slower) simulation,
represented by the green dashed line was run for T = 50000 µs. For these, the maximum
strain-rates are ε̇max

zz = 52.68[s−1] and 5.268[s−1], respectively. During compression, with
increasing volume fraction, the energy ratio generally decreases and slower deformation by
a factor of 10 leads to more than 100 times smaller energy ratios with stronger fluctuations.
Most sharp increases of the energy ratio resemble re-organization events of several particles
and are followed by an exponentially fast decrease (data not shown). The decrease is con-
trolled by the interaction and dissipation time-scales and not by the shear rate; only due to the
scaling of ts, the decrease appears to be faster for the slower deformation. More explicitly,
the rate of decay depends on material parameters only and is of the order of 1/te. The low
initial ratio of kinetic to potential energy (Ek/Ep < 0.001) indicates that the system is in the
jammed regime and is almost in the quasi-static state [158]. To ensure that the quasi-static
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criterion is fulfilled in the simulations performed for the various deformation modes, all the
simulations are run at a very small strain-rate. In this way, dynamic effects are minimized
and the system is as close as feasible to the quasi-static state. For many situations, it was
tested that a slower deformation did not lead to considerably different results. For the ma-
jority of the data presented, we have Ek/Ep ≤ 10−3. Lower energy ratios can be obtained by
performing simulations at even slower rates but the settings used are a compromise between
computing time and reasonably slow deformations.
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Figure 2.3: Comparison of the ratio of kinetic and potential energy in scaled time (ts = t/T )
for two simulations, with different period of one compression-decompression cycle T , as
given in the inset.

2.4.2 Averaged macroscopic quantities

Now the focus is on defining averaged macroscopic tensorial quantities – including strain-
, stress- and fabric (structure) tensors – that reveal interesting bulk features and provide
information about the state of the packing due to its deformation.

Strain

For any deformation, the isotropic part of the infinitesimal strain tensor εv is defined as:

εv = ε̇vdt =
εxx + εyy + εzz

3
=

1
3

tr(E) =
1
3

tr(Ė)dt, (2.3)

where εαα = ε̇αα dt with αα = xx, yy and zz as the diagonal elements of the strain tensor E
in the Cartesian x, y, z reference system. The trace integral of 3εv denoted by 3εv, is the true
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or logarithmic strain, i.e., the volume change of the system, relative to the initial reference
volume, V0 [51].

Several definitions are available in literature [58, 159, 181] to define the deviatoric magnitude
of the strain. For the sake of simplicity, we use the following definition of the deviatoric
strain to account for all active and inactive directions in a tri-axial experiment, regardless of
the deformation mode,

εdev =

√
(εxx − εyy)

2 +(εyy − εzz)
2 +(εzz − εxx)

2

2
, εxy = εxz = εyz = 0, (2.4)

since, for our tri-axial box, for all modes, the Cartesian coordinates resemble the eigensys-
tem, with eigenvalues sorted according to magnitude εd

(1) ≥ εd
(2) ≥ εd

(3), which leaves the
eigenvalue εd

(1) as the maximal tensile eigenvalue, with corresponding eigen-direction, and
εdev ≥ 0 as the magnitude of the deviatoric strain 2. The description of the tensor is com-
pleted by either its third invariant or, equivalently, by the shape factor ζ , as given in Table
2.1. Note that the values for ζ are during uniaxial loading, where compression is performed
in the z-direction. The sorting will lead to different values, ζ = −1/2, after the strain is
reversed for both UNI and D3 modes.

Stress

From the simulations, one can determine the stress tensor (compressive stress is positive as
convention) components:

σαβ =
1
V

(
∑
p∈V

mpvp
α vp

β − ∑
c∈V

f c
α lc

β

)
, (2.5)

with particle p, mass mp, velocity vp, contact c, force f c and branch vector lc, while Greek
letters represent components x, y, and z [93, 94]. The first sum is the the kinetic energy tensor
and the second involves the contact-force dyadic product with the branch vector. Averaging,
smoothing or coarse graining [172] in the vicinity of the averaging volume, V , weighted
according to the vicinity is not applied in this study, since averages are taken over the total
volume. Furthermore, since the data in this study are quasi-static, the first sum can mostly
be neglected.

The average isotropic stress (i.e. the hydrostatic pressure) is defined as:

P =
σxx +σyy +σzz

3
=

1
3

tr(σ), (2.6)

2The objective definition of the deviatoric strain defines it in terms of the eigenvalues εd
(1), εd

(2) and εd
(3), of the

(deviatoric) tensor. However, since the global strain is given by the wall motion, the two definitions are equivalent
for tri-axial element tests.
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where σxx, σyy and σzz are the diagonal elements of the stress tensor in the x, y and z box-
reference system and tr(σ) is its trace. The non-dimensional pressure [51] is defined as:

p =
2〈r〉
3k

tr(σ) , (2.7)

where 〈r〉 is the mean radius of the spheres and k is the contact stiffness defined in section
2.2.

We define the deviatoric magnitude of stress (similar to Eq. (2.4) for deviatoric strain) as:

σdev =

√
(σxx −σyy)

2 +(σyy −σzz)
2 +(σzz −σxx)

2

2
, (2.8)

which is always positive by definition neglecting the small contributions of σxy,σxz and σyz.
The direction of the deviatoric stress is carried by its eigen-directions, where stress eigenval-
ues are sorted like strain eigenvalues according to their magnitude. Eqs. (2.4) and (2.8) can
easily be generalized to account for shear reversal using a sign convention taken from the
orientation of the corresponding eigenvectors, or from the shape-factor, however, this will
not be detailed here for the sake of brevity.

It is noteworthy to add that the definitions of the deviatoric stress and strain tensors are
proportional to the second invariants of these tensors, e.g., for stress: σdev =

√
3J2, which

makes our definition identical to the von Mises stress criterion [43, 55, 159] 3.

Fabric (structure) tensor

Besides the stress of a static packing of powders and grains, the next most important quantity
of interest is the fabric/structure tensor. For disordered media, the concept of the fabric tensor
naturally occurs when the system consists of an elastic network, or a packing of discrete
particles. The expression for the components of the fabric tensor is:

Fαβ = 〈F p〉= 1
V ∑

p∈V
V p

N

∑
c=1

nc
α nc

β , (2.9)

where V p is the particle volume which lies inside the averaging volume V , and nc is the nor-
mal vector pointing from the center of particle p to contact c. Fαβ are thus the components
of a symmetric rank two 3x3 tensor like the stress tensor. The isotropic fabric, Fv = tr(F)/3,
quantifies the contact number density as studied in Ref. [51]. We assume that the struc-
tural anisotropy in the system is quantified (completely) by the anisotropy of fabric, i.e., the

3Different factors in the denominator of Eqs. (2.4) and (2.8) have been proposed in literature [58, 181] but they
only result in a change in the maximum deviatoric value obtained. For consistency, we use the same factor

√
1/2

for deviatoric stress and strain and a similar definition for the deviatoric fabric, see the next subsection.
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deviatoric fabric. To quantify it, we define a scalar similar to Eqs. (2.4) and (2.8) as:

Fdev =

√
(Fxx −Fyy)

2 +(Fyy −Fzz)
2 +(Fzz −Fxx)

2

2
, (2.10)

where Fxx, Fyy and Fzz are the three diagonal components of the fabric tensor, again neglecting
small Fxy, Fxz and Fyz. The fabric tensor practically has only diagonal components with non-
diagonal elements very close to zero, so that its eigen system is close to the Cartesian, as
confirmed by eigen system analysis.

Conclusion

Three macroscopic rank-two tensors were defined and will be related to microscopic quan-
tities and each other in the following. The orientations of all the tensor eigenvectors show a
tiny non-colinearity of stress, strain and fabric, which we neglect in the next sections, since
we attribute it to natural statistical fluctuations. Furthermore, the shape factor defined for
strain can also be analyzed for stress and fabric, as will be shown elsewhere.

2.5 Evolution of micro-quantities

In this section, we discuss the evolution of the microscopic quantities studied – including
coordination number and fraction of rattlers – as function of volume fraction and deviatoric
strain respectively, and compare these results for the different deformation modes.

2.5.1 Coordination number and fraction of rattlers

It has been observed [51] that under isotropic deformation, the corrected coordination num-
ber C∗ follows the power law

C∗(ν) =C0 +C1

(
ν
νc

−1
)α

, (2.11)

where C0 = 6 is the isostatic value of C∗ in the frictionless case. For the uniaxial unloading
simulations, we obtain C1 ≈ 8.370, α ≈ 0.5998 and νUNI

c ≈ 0.6625 as best fit parameters.

In Fig. 2.4, the evolution of the simple, corrected and modified coordination numbers are
compared as functions of volume fraction during uniaxial deformation (during one loading
and unloading cycle). The compression and decompression branches are indicated by arrows
pointing right and left, respectively. The contribution to the contact number originating from
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Figure 2.4: Comparison between coordination numbers using the simple (‘+’ , blue), modi-
fied (‘�’, green) and corrected (‘H’, red) definitions. Data are from a uniaxial compression-
decompression simulation starting from ν0 = 0.64 < νc ≈ 0.6625. The solid black line rep-
resents Eq. (2.11), with parameters given in the text, very similar to those measured in Ref.
[51], see Table 2.2.

particles with C = 1, 2 or 3 is small – as compared to those with C = 0 – since Cr and Cm are
very similar, but always smaller than C∗, due to the fraction of rattlers, as discussed below.
The number of contacts per particle grows with increasing compression to a value of C∗ ≈
9.5 at maximum compression. During decompression, the contacts begin to open and the
coordination number decreases and approaches the theoretical value C0 = 6 4 at the critical
jamming volume fraction after uniaxial de-compression νUNI

c ≈ 0.662. Note that the νUNI
c

value is smaller than ν ISO
c ≈ 0.665 reached after purely isotropic over-compression to the

same maximal volume fraction. The coordination numbers are typically slightly larger in the
loading branch than in the unloading branch, due to the previous over-compression.

In Fig. 2.5, we plot the corrected coordination number for deformation mode D2 as a function
of the deviatoric strain for five different volume fractions. Two sets of data are presented for
each volume fraction starting from different initial configurations, either from the loading
or the unloading branch of the isotropic preparation simulation (cyan dots and blue stars in
Fig. 2.1). Given initial states with densities above the jamming volume fraction, and due to
the volume conserving D2 mode, the value of the coordination number remains practically
constant. Only for the lowest densities, close to jamming, a slight increase (decrease) in C∗

4The value, C0 = 6, is expected since it is the isostatic limit for frictionless systems in three dimensions [51],
for which the number of constraints (contacts) is twice the number of degrees of freedom (dimension) – in average,
per particle – so that the number of unknown forces matches exactly the number of equations. (C0 is different from
the minimal number for a mechanically stable sphere Cmin = 4 in 3D).
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Figure 2.5: Evolution of coordination number with deviatoric strain for the D2 mode.
Smaller symbols represent data with initial configuration from the loading branch of an
isotropic simulation, while the larger symbols start from an initial configuration with the
same volume fraction, but from the isotropic unloading branch. The horizontal line at the
large strain of the dataset indicates an average after saturation at steady state.

can be seen, for initial states chosen from the unloading (loading) branch of the preparation
step. However, both reach similar steady-state values after large strain, as indicated by the
solid lines. Hence, for further analysis, unless otherwise stated, we will only present the
steady-state values of micro- and macro-quantities from deviatoric modes D2 and D3.

The re-arrangement of the particles during shear thus does not lead to the creation (or de-
struction) of many contacts – in average. There is no evidence of the change of average
contacts after 10− 15 percent of strain. However, close to jamming, a clear dependence of
C∗ on the initial state exists, which vanishes in steady state when one gets saturated values
in micro- and macro-quantities, after large enough strain. For the same volume fraction, we
evidence a range of C∗

oc ≤ C∗
s ≈ C∗

ic, where the subscripts refer to over-compressed, steady,
and initially compressed states, respectively. The coordination number (or alternatively the
contact number density, as related to the trace of the fabric tensor) is thus is a control param-
eter closely linked to the volume fraction that contains more information about the structure
than ν (above the jamming volume fraction), see Refs. [85, 86] and references therein.

In Fig. 2.6, the corrected coordination number is shown as a function of volume fraction
for the purely isotropic- the uniaxial unloading- and the large strain deviatoric deformation
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Figure 2.6: Evolution of the corrected coordination number as a function of volume fraction
during unloading for all modes. The symbols represent the respective simulation data while
the solid lines represent the analytical equation according to Eq. (2.11) with the respective
values of C0, C1, α and νc shown in Table 2.2. Inset shows the corrected coordination number
at lower volume fractions closer to jamming.

datasets. Different symbols show the values of C∗ for the different deformation modes for
various volume fractions. Interestingly, the power law for the coordination number, derived
from isotropic data, describes well also the uniaxial and deviatoric data, with coefficients
given in Table 2.2. This suggests that (for the cases considered), when particles are friction-
less, the coordination number is independent on the deviatoric strain, in steady state, and the
limit values can be approximated by Eq. (2.11), as proposed for simple isotropic deforma-
tion. The distinction between the modes at the small (isotropic) strain region is shown as
zoom in the inset of Fig. 2.6. The mixed mode (uniaxial) is bordered on both sides by the
pure modes, namely isotropic and deviatoric (D2 and D3 cannot be distinguished), indicat-
ing that the two pure modes are limit states or extrema for C∗. Alternatively, the range in C∗

values can be seen as caused by a range in νc, with ν ISO
c > νUNI

c > νDEV
c , which represent

the maximal jamming volume fraction after previous (isotropic, strong) over-compression,
the intermediate jamming volume fraction after (mixed mode) deformation, and the mini-
mal jamming volume fraction after large deviatoric strain, respectively, with ν ISO

c ≈ 0.6646
and νDEV

c ≈ 0.6602. In other words, deviatoric deformations reduce the jamming volume
fraction of the packing, i.e, can disturb and dilate a dense (over-compressed) packing so that
it becomes less efficiently packed. This is opposite to isotropic over-compression, where
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unloading for all modes. The symbols represent the respective simulation dataThe solid
lines are the analytical fits of Eq. (2.12) for each mode with the values of fit parameters φc

and φν for each mode shown in Table 2.2. The arrow indicates the unloading direction.

after unloading, the jamming volume fraction is higher, i.e., the system is more efficiently
packed/structured. This behavior is qualitatively to be expected for frictional particles, how-
ever, this is to our knowledge the first time that this small but systematic range of jamming
volume fractions is reported for frictionless packings – where the most relevant and only
mechanism is structural reorganization, as will be discussed further in section 2.6.1.

As related interesting microscopic quantity, we recall the analytical expression for the frac-
tion of rattlers proposed in Ref. [51]:

φr(ν) = φc exp
[
−φν

(
ν
νc

−1
)]

, (2.12)

where the fit parameters for the different deformation modes are given in Table 2.2, and
νc ≈ 0.6646 is obtained from extrapolation of C∗ to the isostatic coordination number C0 =

6. In Fig. 2.7, the evolution of the fraction of rattlers is plotted as a function of volume
fraction for both isotropic and uniaxial unloading as well as for steady state deviatoric mode
simulations. We then compare these with the prediction/fit (solid lines) from the exponential
decay equation, Eq. (2.12). Interestingly, in contrast to the coordination number, the fraction
of rattlers displays strongest differences at the highest densities (ν = 0.82 in Fig. 2.7), and
it is lowest during isotropic unloading, as compared to the steady state deviatoric mode



2.5 Evolution of micro-quantities 31

C∗ C1 α νc

ISO [51] 8 ± 0.5 0.58 ± 0.05 0.66± 0.01
ISO 8.2720 0.5814 0.6646
UNI 8.370 0.5998 0.6625
D2 7.9219 0.5769 0.6601
D3 7.9289 0.5764 0.6603

φr φc φv

ISO [51] 0.13 ± 0.03 15 ± 2
ISO 0.1216 15.8950
UNI 0.1507 15.6835
D2 0.1363 15.0010
D3 0.1327 14.6813

p∗ p0 γp νc

ISO [51] 0.0418 0.110 0.666
ISO 0.04172 0.06228 0.6649
UNI 0.04006 0.03270 0.6619
D2 0.03886 0.03219 0.6581
D3 0.03899 0.02893 0.6583

Table 2.2: Fit parameters for the analytical predictions of coordination number, fraction of
rattlers, and pressure in Eqs. (2.11) with C0 = 6, (2.12) and (2.14), respectively. For the
φr fits, νc is used from the C∗ fits for the different deformation modes. The first rows of
isotropic data are from Ref. [51], for various polydispersities and also during unloading, but
for different over-compression.
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situations, and somewhat higher during uni-axial unloading. The difference between the
modes is smallest close to jamming. For uniaxial simulations, at the end of unloading, close
to νUNI

c , a considerable fraction (almost 20 percent) of the total number of particles are
rattlers that do not contribute to the stability of the network. For higher densities, a strong
exponential decay is evidenced. 5

To better understand the peculiar behavior of the systems jamming volume fraction under
the different modes of deformation, some macroscopic quantities are studied next.

2.6 Evolution of macro-quantities

In this section, we discuss results for the evolution of the macroscopic tensor quantities stress
and fabric, as defined in section 2.4.2. For clarity, we split them in isotropic and deviatoric
parts in subsections 2.6.1 and 2.6.2, respectively.

2.6.1 Evolution of macro-quantities: Isotropic part

Isotropic pressure

In this section, the relation between pressure and volume fraction is studied. First, we con-
sider the contact deformations, since the force is related to the contact overlap/deformation
δc, and stress is proportional to the force. The infinitesimal change d〈∆〉c = 3Dεv, of the
normalized average overlap, ∆c = δc/〈r〉, can be related to the volumetric strain under the
simplifying assumption of uniform, homogeneous deformation in the packing. As defined
in subsection 2.4.2, εv = εii/3 is the trace of the infinitesimal strain tensor increment, and
D≈ 0.425 is a proportionality constant that depends on the size distribution and can be read-
ily obtained from the average overlap and volume fraction (data not shown), see Eq. (2.13).
The integral of εv, denoted by εv, is the true or logarithmic volume change of the system,
relative to the reference volume Vref. This is chosen, without loss of generality, at the critical
jamming volume fraction νref = νc, so that the average normalized overlap is [51]

〈∆〉c =−D
∫ V

V0

εv =−Dεv = D ln
(

ν
νc

)
. (2.13)

As in Eq. (2.7), see Refs. [51, 141] for details, the non-dimensional pressure is:

p =
2〈r〉
3k

tr(σ) = p0
νC
νc

(−εv) [1− γp(−εv)] , (2.14)

5The sharp jump observed in Ref. [51] at the jamming transition during unloading is not seen here because the
system remains above the jammed state. Interestingly, the simulation data for the uniaxial and deviatoric mode all
collapse close to the (isotropic) exponential prediction.
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and the scaled pressure is:

p∗ =
pνc

νC
= p0(−εv) [1− γp(−εv)] (2.15)

where p0 ≈ 0.04006, γp ≈ 0.03270, and the critical volume fraction νc ≈ 0.6619 are fit
parameters to pressure for uniaxial unloading. Combining the quasi-static parts of Eqs. (2.5)
and (2.14), leads to the proportionality p ∝ νC∆c, which makes the p a measure for the
average overlap relative to the average particle diameter, and p∗ scales all p on the same
reference density, i.e., the jamming density.

Note that the critical volume fraction νc ≈ 0.6625 obtained from extrapolation of C∗ to the
isostatic coordination number C0 = 6 is very close to that obtained from Eq. (2.14). When
fitting all modes with pressure, one confirms again that νUNI

c falls in between the pure modes
(ν ISO

c and νDEV
c ), with all fits quite consistent within each mode, as summarized in Table 2.2.
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Figure 2.8: Evolution of (non-dimensional) pressure, Eq. (2.7), with deviatoric strain for
the D2 deformation mode, at different initial volume fractions νi. Small and large symbols
represent simulations starting with initial isotropic configurations from the loading and un-
loading branch, respectively. The horizontal line at the large strain of the dataset indicates
an average value of the pressure after saturation at steady state.

In Fig. 2.8, we plot the total (non-dimensional) pressure p for deformation mode D2 as a
function of the deviatoric strain for different volume fractions. Above the jamming volume
fraction, the value of the pressure remains practically constant except for the lowest densities
close to jamming where a slight increase in p can be seen when initial states are chosen from
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Figure 2.9: Total (non-dimensional) pressure, Eq. (2.14), plotted as function of volume frac-
tion for the uniaxial and isotropic datasets during unloading, and for the D2/D3 deviatoric
modes after large strain. The solid lines are the analytical fits of Eq. (2.14), for each mode,
with parameters p0, γp and νc shown in Table 2.2.
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Figure 2.10: The scaled pressure plotted against the (negative) volumetric strain, for the
same data as presented in Fig. 2.9. The solid lines are the prediction from Eq. (2.15), using
the fits of p and C for each mode.

the unloading branch of isotropic modes (blue stars in Fig. 2.1), whereas a slight decrease
in p is observed for initial states chosen from the loading branch (cyan dots in Fig. 2.1).
Independent of the initial configuration, pressure reaches the same steady state value at larger
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strains, very similar to the behavior of the coordination number.

Fig. 2.9 shows the total pressure as a function of the volume fraction for isotropic and uni-
axial unloading. The deviatoric mode D2 and D3 data, are obtained after large deviatoric
strain, as shown for D2 in Fig. 2.8. The pressure increases non-linearly during loading
(data not shown) until the predetermined maximum volume fraction is reached [51], and
also during unloading, the pressure decays non-linearly. Due to the linear contact model,
this can be directly related to contact number density, i.e., the isotropic fabric, which quan-
tifies the isotropic, direction independent changes of structure due to re-arrangements and
closing/opening of contacts.

In Fig. 2.10, we plot the scaled pressure defined in Eq. (2.15) against the volumetric strain
from the same data as in Fig. 2.9. The three datasets almost collapse for small strain. For
increasing densities (larger −εv) the isotropic mode scaled pressure is considerably larger
than the uniaxial and the deviatoric datasets, where again the uniaxial data fall in between
isotropic and deviatoric data sets. This is consistent with the fact that the uniaxial mode is a
superposition of the purely isotropic and deviatoric deformation modes and resembles very
much the behavior of C∗.

The dependence of pressure on isotropic strain can be interpreted in relation to sample his-
tory. The deviatoric modes (D2 or D3) lead to dilatancy and thus to the highest steady state
pressure, with respectively lowest νDEV

c ; the isotropic mode is strictly compressive, with
the lowest pressure, after over-compression, during unloading, with respectively the highest
ν ISO

c ; and the uniaxial mode is mixed and thus interpolates between the two other modes.

The apparent collapse of all scaled p∗ data at small strain, with similar pre-factors p0 ≈
0.040, is interesting since, irrespective of the applied deformation mode – purely isotropic,
uniaxial, and D2 or D3 deviatoric, it boils down to a linear relation between p∗ and −εv with
a small quadratic correction – not showing small non-linear powers as proposed earlier, e.g.
in Ref. [105]. The nonlinearity in 1−ν/νc is hidden in νC, which is actually proportional
to the isotropic fabric.

Isotropic fabric

The random, isotropic orientation of the contact directions in space was studied in detail in
Refs. [51, 141] and is referred to as the contact number density, with tr(F) = g3νC, where g3

is of order unity and depends only on the size-distribution (for our case with w = 3, one has
g3 ≈ 1.22). Note that νC directly connects to the dimensionless pressure which, remarkably,
hides the corrected coordination number and the fraction of rattlers in the relation C = (1−
φr)C∗, which fully determines tr(F).
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2.6.2 Evolution of macro-quantities: Deviatoric part

In the following, we present the evolution of the deviatoric stress ratio (which can be seen
as a measure of stress anisotropy) and also the evolution of the structural anisotropy, both as
a function of the deviatoric strain. In this sub-section, we will mostly present the raw data
from deviatoric and uniaxial simulations and their phenomenology, together with the fits of
the former (D2 element tests) to calibrate the constitutive model. The constitutive model, as
presented in Refs. [98, 101], is presented later in section 2.7, and is used to predict the stress
and fabric response under uniaxial (UNI) loading. By doing this, we do not fit the uniaxial
tests but qualitatively predict the evolution of stress and fabric.

Deviatoric Stress

The deviatoric stress ratio (sdev = σdev/P) quantifies the (stress) anisotropy [78]. The load-
ing response of the deviatoric stress ratio for the deformation mode D2, as function of the
deviatoric strain, is shown in Fig. 2.11. Some exemplary results of this dimensionless stress
ratio are shown for different volume fractions. The stress grows initially linearly with ap-
plied strain until an asymptote (of maximum stress anisotropy) is reached where it remains
fairly constant. The reached asymptote, is referred to as the deviatoric steady state and the
initial increase and the approach are well fitted by the exponential relation proposed in Refs.
[98, 101] for the bi-axial box. Interestingly, the stress response observed from mode D3 (not
shown) follows practically the same path as for mode D2, as discussed in section 2.7.

In Fig. 2.12, exemplary uniaxial (compression) simulations are shown, beginning from dif-
ferent initial volume fractions, to a maximum volume fraction defined by similar strain am-
plitudes. Unlike the deviatoric modes discussed previously, the evolution of the deviatoric
stress ratio during uniaxial compression leads to larger fluctuations that do not allow the clear
observation of a possible increase or decrease in the saturation regime. This difference is be-
cause the uniaxial deformation mode is not a volume conserving mode with continuously
increasing pressure in contrast, for example to a similar mode D3, where σzz is increasing
and σxx ≈ σyy are decreasing, such that the pressure remains (almost) constant. The corre-
sponding solid lines in the plot represent the predictions of the constitutive relations in Eq.
(2.17), with the parameters obtained from the deviatoric modes, D2 and D3, as explained in
detail in section 2.7.

Moreover, as the deviatoric strains increase from the uniaxial simulations for different vol-
ume fractions, the deviatoric stress ratios, sdev also increase (sometimes with a maximum).
For smaller volume fractions the values are higher, similar to what we observe in Fig. 2.11.
It is astonishing that uniaxial deformation for different initial volume fractions, lead to con-
vergence and collapse after 7.5% deviatoric strain. This feature of the uniaxial simulations
is also captured by the anisotropy model in section 2.7.3.
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Figure 2.11: Deviatoric stress ratio (sdev = σdev/P) plotted against deviatoric strain from
the D2 deformation mode for initial volume fractions νi during unloading, from which the
simulations were performed, as given in the inset. The symbols (‘∗’, ‘×’ and ‘+’) are the
simulation data while the solid lines through them represent a fit to the data using Eq. (2.17).
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Figure 2.12: Deviatoric stress ratio plotted against deviatoric strain from the uniaxial com-
pression mode data, for different initial volume fractions νi during unloading, from which
the uniaxial deformations were initiated, as given in the inset. The symbols (‘∗’, ‘×’ and
‘+’) are the simulation data while the solid lines represent the prediction, Eq. (2.17).

Deviatoric fabric evolution

The evolution of the deviatoric fabric, Fdev as a function of the deviatoric strain is shown in
Fig. 2.13 for mode D2 simulations with three different volume fractions. It builds up from
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different random, small initial values to different maximum values. The deviatoric fabric
builds up faster at lower volume fractions like the Goct/P ratio, where Goct is the octahedral
shear modulus [23], and the maximal values also are larger for smaller volume fractions.
The evolution of the deviatoric fabric for the D3 mode is not shown, since it is practically
identical to the D2 mode, implying that the fabric evolution is pretty much insensitive to the
deviatoric deformation protocol employed, as was observed before also for the stress ratio.
The saturation of the maximum deviatoric fabric for the deviatoric deformation data shown
in Fig. 2.13 is well defined, and the approach is very similar to that of sdev in Fig. 2.11.

Figure 2.14 shows the evolution of the deviatoric fabric for the uniaxial deformation mode
from the same simulations as presented in section 2.6.2. The deviatoric fabric builds up as
the deviatoric strain (and the volume fraction) increases. After a few percent of deviatoric
strain, it begins to saturate even though a slight decreasing trend is seen towards the end of
the simulation. The convergence of the deviatoric stress after large strain for different volume
fractions, as seen in Fig. 2.12, does not appear so clearly for the deviatoric fabric. The solid
lines representing the theoretical prediction of the constitutive relation in Eq. (2.17) agree
qualitatively well, but over-predict the deviatoric fabric for larger strains. Their analytical
form and parameters involved will be discussed in detail in section 2.7 below.
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Figure 2.13: Deviatoric fabric plotted against deviatoric strain from the D2 deformation
simulations of Fig. 2.11. The symbols (‘∗’, ‘×’ and ‘+’) are the simulation data while the
solid lines through them represent a fit to the data using Eq. (2.18).
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Figure 2.14: Deviatoric fabric plotted against deviatoric strain from the uniaxial deformation
simulations in Fig. 2.12. The symbols (‘∗’, ‘×’ and ‘+’) are the simulation data while the
solid lines through them represent a prediction to the data using Eq. (2.18).

2.7 Theory: Macroscopic evolution equations

Constitutive models are manifold and most standard models with wide application fields, like
elasticity, elasto-plasticity, or fluid-/gas-models of various kinds, were applied also to granu-
lar flows – sometimes with success, but typically only in a very limited range of parameters
and flow conditions; for overviews see e.g. Ref. [98, 111]. Only for rapid granular flows,
the framework of kinetic theory is an established tool with quantitative predictive value – but
it is hardly applicable in dense, quasi-static and static situations [95]. Further models, like
hyper- or hypo-elasticity, are complemented by hypo-plasticity and the so-called granular
solid hydrodynamics, where the latter provide incremental evolution equations for the evo-
lution of stress with strain, and involve limit-states [107], instead of a plastic yield surface
as in plasticity theory, where a strict split between elastic and plastic behavior seems invalid
in granular materials, see e.g. Ref. [11]. More advanced models involve so-called non-
associated / non co-axial flow rules, where some assumptions on relations between different
tensors are released, see e.g. Ref. [159]. While most of these theories can be or have been
extended to accommodate anisotropy of the micro-structure, only very few models account
for an independent evolution of the microstructure as for example Refs. [98, 151], as found
to be important in this study and many others.

In the following, we use the anisotropy constitutive model, as proposed in Refs. [81, 98, 101],
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generalized for a D-dimensional system:

δP = DBδ εv +ASδ εdev,

δσdev = Aδ εv +DGoctSδ εdev,

δA = βAsign(δ εdev)(Amax −A)δ εdev. (2.16)

In its simplest form, the model involves only three moduli: the classical bulk modulus B [51],
the octahedral shear modulus Goct, and the new variable “anisotropy modulus” A, evolving
independently of stress due to deviatoric strain. Due to A, the model provides a cross cou-
pling between the two types of stress and strain in the model, namely the hydrostatic and the
shear (deviatoric) stresses react to both isotropic and deviatoric strains. S = (1− sdev/smax

dev )

is an abbreviation for the stress isotropy. The parameter smax
dev resembles the macroscopic

friction and βs is the growth rate of sdev = σdev/P with deviatoric strain εdev. The parameters
Amax in the evolution equation of A represents the maximum anisotropy that can be reached
at saturation, and βA determines how fast the asymptote is reached (growth rate). Both Amax

and βA are model parameters for the anisotropy modulus and can be extracted from fits to
the macroscopic, average simulation results. Note that the evolution of A is assumed to be
kinematic, i.e., not explicitly dependent on pressure, but there is a possible volume fraction
dependence of βA and Amax, as detailed below.

In the following, we test the proposed model by extracting the model parameters from var-
ious volume conserving deviatoric simulations as a function of volume fraction ν . The
calibrated model is then used to predict the uniaxial deformation behaviour (see the previous
section). The theory will be discussed elsewhere in more detail [81, 102].

In short, it is based on the basic postulate: There is an independent evolution of stress and
structure possible. It comes together with some simplifying assumptions as:
(i) the new macroscopic field A is proportional to the microscopic rank-two deviatoric fabric
Fdev, so that they have the same non-dimensional growth rates βF = βA;
(ii) both A and sdev – to lowest order, i.e., neglecting additional (missing) terms in Eqs. (2.16)
– approach their limit states exponentially fast;
(iii) only one anisotropy modulus A is sufficient (valid in 2D, questionable in 3D, possibly
A1 and A2).
All these lead to Eqs. (2.17) and (2.18) below. (We use these two equations as empirical
fit functions, which turned out to be special cases of an advanced constitutive model with
anisotropy, and use the fit-result to predict one other solution of the (simplified) theory.)
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2.7.1 Reduced theoretical model

The reduced model thus consists of two evolution equations for the deviatoric stress ratio
sdev, related to the mobilized macroscopic friction, and the deviatoric fabric Fdev, based on
DEM observations in 2D, see Ref. [87, 89]. For volume conserving pure shear, Figs. 2.11 and
2.13 show that sdev and Fdev grow non-linearly until they approach exponentially a constant
value at steady state, with fluctuations, where the material can be indefinitely sheared without
further change. As discussed in Ref. [98], the coupled evolution equations (2.16) are (with
above assumptions) consistent with sdev approximated by:

sdev = smax
dev − (smax

dev − s0
dev)e

−βsεdev , (2.17)

where s0
dev and smax

dev represent the initial and maximum values of sdev and βs is its growth
rate. Similarly, the deviatoric fabric is approximated by:

Fdev = Fmax
dev − (Fmax

dev −F0
dev)e

−βF εdev , (2.18)

where F0
dev and Fmax

dev represent the initial and maximum (saturation) values of the deviatoric
fabric and βF is its rate of change. To study the variation of the parameters smax

dev , βs, F0
dev and

Fmax
dev with volume fraction ν during deviatoric deformation, we perform several isochoric

simulations at different volume fractions νi, and obtain the coefficients as shown in Figs.
2.15 and 2.16 from fits to Eqs. (2.17) and (2.18).

As final step, but not shown in this paper, in order to relate the macroscopic anisotropy (mod-
ulus) A to the evolution of the deviatoric fabric Fdev, one can measure the elastic modulus A
directly. For this the sample is deformed a little (either isotropically or purely deviatoric) at
various different stages along the (large strain) deviatoric paths for D2 and D3 deformation
modes. Details of the procedure and the results will be reported elsewhere [81]. Here, we
only note that a linear relation is found such that:

A ≈ a∗0Fdev
Pνc

2

(ν −νc)
≈ a0k

2〈r〉
FvFdev, (2.19)

where a0 = 0.137 is a combination of numerical constants including g3, p0.

Fitting the data of the volume conserving deviatoric simulations, in Figs. 2.11 and 2.13
through Eqs. (2.17) and (2.18), respectively, we get the dependence of smax

dev , βs, Fmax
dev and

βF on volume fraction ν . When the same equations are used to predict the evolution of
deviatoric stress and fabric with strain (and volume fraction) for uniaxial deformation in
subsection 2.6.2, perfect qualitative and satisfactory quantitative agreement is obtained (see
Figs. 2.12 and 2.14).
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2.7.2 Fitting of deviatoric deformations

For various deviatoric D2 and D3 simulations with different volume fraction, using Eq.
(2.17), we obtain the variation of smax

dev and βs with ν . As seen from Fig. 2.15(a), the fac-
tor smax

dev decreases with increasing volume fraction ν and in Fig. 2.15(b), where a similar
decreasing trend for βs with some larger scatter is seen. Both smax

dev and βs seem to saturate
towards a finite limit for large volume fractions and these values can be extrapolated by the
fitting procedure, described later in this section. The two parameters smax

dev and βs, as obtained
from the different D2 and D3 deformation modes are very similar. This is not astonishing
since the same net deviatoric strain applied in the two modes leads to the same net deviatoric
stress ratio response.
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Figure 2.15: Comparison of evolution parameters from Eq. (2.17): the maximum normalized
deviatoric stress smax

dev and the growth rate βs plotted against volume fraction ν for the D2 and
D3 deviatoric modes. Each point represents a unique simulation; the green ‘∗’ represent the
D2 mode while the blue ‘�’ represent the D3 mode. The solid black line is the proposed
analytical form in Eq. (2.20), with parameters given in Table 2.3.

Figure 2.16(a) shows the variation of Fmax
dev with volume fraction for the same simulations

as in Fig. 2.15, where the two deviatoric deformation modes D2 and D3 almost collapse on
each other. The Fmax

dev values decrease strongly with volume fraction ν for the two modes.
For higher volume fractions the motion of spheres is more constrained by more contacts
and hence the anisotropy developed in the system is smaller. Figure 2.16(b) shows a similar
decreasing behavior of βF with volume fraction ν , where stronger scatter is seen. In Fig.
2.16, the analytical fits of the normalized stress parameters (smax

dev and βA) are also shown
for comparison. A different behaviour between the normalized stress and the deviatoric
fabric with respect to both parameters (maximum saturation value and the evolution rate),
proves that stress and fabric evolve independently with deviatoric strain [85], as is the basic
postulate for the anisotropic constitutive model.

We propose a generalized analytical relation for both the stress parameters smax
dev , βs and the

fabric parameters Fmax
dev , βF , obtained from various different volume conserving deviatoric
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Figure 2.16: Comparison of evolution parameters from Eq. (2.18): the maximum anisotropy
Fmax

dev and the growth rate βF plotted against volume fraction ν for the D2 and D3 deviatoric
modes. The solid black line is the proposed theory, Eq. (2.20), for Fmax

dev and βF respectively,
while the red lines are the corresponding parameters smax

dev and βs from Eq. (2.17), in Fig.
2.15.

Evolution parameters Qa Qc α
smax

dev 0.1137 0.09166 7.916
βs 30.76 57.00 16.86

Fmax
dev 0 0.1694 4.562
βF 0 57.89 5.366

Table 2.3: Fitting coefficients for the parameters in Eqs. (2.17) and (2.18) with νc = 0.6653

D2/D3 deformation simulations. The dependence of the parameters on volume fraction ν , is
well described by the general relation:

Q = Qmax +Qve(−α( ν
νc −1)) , (2.20)

where Qmax, Qv and α are the fitting parameters with values presented in Table 2.3, ν is
the volume fraction and νc ≈ 0.6653 is chosen as the jamming volume fraction, see Table
2.2. For all four parameters, the Qmax values are the limit for large volume fractions, while
Qc = Qmax +Qv represents the limit at ν → νc, and α is the rate of variation (decay) with
the volume fraction increasing above νc. We assume, as consistent with the data, that the
structural anisotropy parameters Fmax

dev and βF tend to 0 as the volume fraction increases,
therefore keeping Qmax = 0 in the fitting function for the deviatoric fabric coefficients. Eq.
(2.20) represents the solid black lines shown in Figs. 2.15 and 2.16, with coefficients given
in Table 2.3.
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2.7.3 Prediction of uniaxial deformation

We use the parameters determined from the deviatoric simulations presented in Table 2.3,
to predict the behaviour of uniaxial simulations, where the volume fraction is changing with
deviatoric strain and hence dependence on ν is needed to properly describe the deformation
path.

Figure 2.12 shows the normalized deviatoric stress sdev against deviatoric strain εdev for
uniaxial deformations starting from three different volume fractions (ν = 0.671, 0.695 and
0.728), and compared with the predictions of Eqs. (2.17) with coefficients smax

dev (ν) and βs(ν)
taken from Table 2.2. The proposed model, although in its simplified version, is able to prop-
erly capture the behavior of the material qualitatively, approaching exponentially a maximum
value and then decreasing due to the volume fraction dependence of the parameters. Note
that the softening present in some of the deviatoric DEM data, is on purpose not plugged
into the model as a constraint. This renders the softening present in the uniaxial deformation
data as a valuable prediction of the model. Furthermore, the convergence of sdev for uniax-
ial loading simulations with different initial volume fraction at large strains, as discussed in
section 2.6.2, is also well captured by the theoretical model with calibrated parameters from
the deviatoric simulations, where this does not happen.

Figure 2.14 shows the evolution of deviatoric fabric, Fdev, with deviatoric strain, εdev, for
uniaxial deformations – as above – together with the predictions of Eqs. (2.18) and (2.20).
The model is still able to qualitatively describe the behavior of the deviatoric fabric, but with
order of 30% over-prediction. The complete coupled model needs to be used and possibly
improved, as will be presented elsewhere [79].

2.8 Conclusions and Outlook

The discrete element method has been used to investigate the bulk response of polydisperse,
linear, frictionless sphere packings in 3D to various deformation modes in terms of both their
micro- and macroscopic response. Main goal was to present a procedure to calibrate a consti-
tutive model with the DEM data and then use the same to predict another simulation (mode).
The (overly) simple material (model) allows to focus on the collective/bulk response of the
material to different types of strain, excluding complex effects due to normal or tangential
non-linearities. Therefore, the present study has to be seen as a reference “lower-limit” and
the procedure rather than the material is the main subject.

We focused on strain-controlled loading and unloading of isotropic, uniaxial and two devi-
atoric (pure shear) type deformation modes (D2 and D3). Experimentally most difficult to
realize is isotropic deformation, while both uniaxial and deviatoric modes can be realized in
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various element tests where, however, often mixed strain- and stress-control is applied. Both
micro-mechanical and coarse grained macroscopic properties of the assemblies are discussed
and related to each other. The study covers a very wide range of isotropic, uniaxial and de-
viatoric deformation amplitudes and thus practically all densities with mechanically stable
packings – except for those very close to the jamming volume fraction and higher than about
10% contact deformation, above which DEM pair contact models are questionable.

2.8.1 Microscopic quantities

The microscopic coordination number C, defined as the ratio of the total number of contacts
to the total number of particles, has been analyzed as function of volume fraction and de-
viatoric strain. By disregarding particles with less than four contacts (called rattlers), the
corrected coordination number C∗ is well described by Eq. (2.11) for all deformation modes
(since the particles are frictionless). For the uniform size-distribution used here, the fraction
of rattlers shows an exponentially decaying trend towards higher densities, very similar for
all modes, see Eq. (2.12), and Table 2.2. These analytical relations provide a prediction for
the coordination number C = (1−φr)C∗ that, notably, shows up in the macroscopic relations
for both pressure and isotropic fabric, in combination with ν , instead of C∗. (Note that C∗ is
better accessible to theory, while νC is related to the wave-propagation speed, which is ex-
perimentally accessible, while both are linked by the fraction of rattlers, which was already
identified as a control parameter of utmost importance [25].)

A small but systematic difference in the C∗ and φr parameters appears for the different defor-
mation modes. Most important, the jamming volume fraction νc is not a single, particular
volume fraction, but we observe a range of jamming densities dependent on the deformation
modes, i.e., the “history” of the sample. Over-compression leads to an increase of νc, i.e.,
to a better, more efficient packing. Subsequent deviatoric (pure shear) deformations slightly
reduce the jamming volume fraction of such a previously over-compressed packing, causing
it to become less efficiently packed. Note that more/less efficient packing is reflected by a
large/small jamming volume fraction and, inversely, small/large coordination numbers. The
effects described are more pronounced as the volume fraction becomes lower. For example,
a slight increase in the fraction of rattlers due to deviatoric deformations is also reported, as
consistent with the decrease in coordination number. Deviatoric modes (shear) can create
more rattlers, while isotropic modes (compression) reduce the fraction of rattlers.

2.8.2 Macroscopic quantities

When focusing on macroscopic quantities, an important result from this study is that at
small strains, the uniaxial, deviatoric and isotropic modes can be described by the same
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analytical pressure evolution Eq. (2.15), with parameters given in Table 2.2, evidenced by the
collapse of the data from these deformation modes on each other when the scaled pressure is
plotted as a linear function of the volumetric strain. This linearity is due to the scaling with
the non-linear terms, p∗ ∝ p/(νC) in particular. Thanks to the linear contact model used
allows to conclude that the non-linear (quadratic) corrections are due to the structural re-
arrangements and non-affine deformations. A deviation of the scaled deviatoric and uniaxial
from isotropic pressure data appears at larger strains, due to the build up of anisotropy in the
system caused by deviatoric strain, obviously not present in the isotropic deformation mode.
The good match of the data suggests an advantage of the “cheaper” uniaxial (and deviatoric)
deformation modes over the experimentally difficult to realize isotropic deformation mode.
(Three walls have to be moved simultaneously in the isotropic case, while a less complicated
set-up is required for the other modes.)

The evolution of the deviatoric stress ratio (the deviatoric stress scaled with the isotropic
pressure) as a function of the deviatoric strain is developing almost independently of the vol-
ume conserving deformation modes, when the deviatoric magnitude is defined in a similar
fashion to the second deviatoric invariant [159], for all quantities studied. The deviatoric
stress builds up with increasing deviatoric strain until a steady state is reached (where we
do not focus on peak- and softening-behavior in this study, which is becoming more pro-
nounced closer to the jamming volume fraction). Starting from isotropic initial configura-
tions, we also show that the slope (Goct/P) of the normalized deviatoric stress as function of
deviatoric strain decreases with increasing volume fraction, unlike the shear modulus Goct,
which increases with volume fraction. This indicates, that the pressure (and bulk modulus
B) are dependent on volume fraction “stronger” than the shear modulus.

From the macroscopic data, one observes that deviatoric and isotropic stresses and strains
are cross-coupled by the structural anisotropy. The latter is quantified by the deviatoric
fabric, which is proportional to the bulk-anisotropy modulus/moduli A, as relevant for the
constitutive model. Cross-coupling means that – in the presence of structural anisotropy –
isotropic strain can cause deviatoric stress responses and deviatoric strain can cause isotropic
stress responses (dilatancy or compactancy). The structural anisotropy behaves very similar
to the deviatoric stress ratio with deviatoric strain, but has different response rates as the
latter. The response rates of the anisotropy of both stress and structure with deviatoric strain
are functions of density and, most important, different from each other.

2.8.3 Constitutive model calibration

As first step, the parameters of the simplest constitutive model that involves anisotropy, as
proposed in Refs. [98, 101] for 2D, have been extracted from DEM data for calibration. From
the isotropic deformation mode, one can extract the bulk-modulus B, as done in Ref. [51].
From the volume conserving D2 and D3 modes, by fitting the idealized evolution equations
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for shear stress in Eq. (2.17), the macroscopic friction, smax
dev , and the deviatoric stress rate

βs can be inferred as functions of the volume fraction, entering the shear modulus Goct.
Similarly, the fit of Eq. (2.18) provides a relation for the maximum structural anisotropy
at steady state, Fmax

dev , and the fabric rate βF , as functions of volume fraction. A relation
between the deviatoric fabric and the anisotropy modulus/moduli A, in the model is finally
needed to close the system and allow to integrate the coupled evolution equations for stress
and structure.

As second step, and major result, the constitutive model calibrated on deviatoric data was
used to predict qualitatively (and to some extent also quantitatively) both the stress and fab-
ric evolution under uni-axial deformation. This is very promising, since the basic qualitative
features are caught by the model, even though it was used in a very idealized and short form,
with only main new ingredient the single anisotropy modulus A ∝ Fdev. Several additional
terms of assumed lesser magnitude are ignored and have to be added to complete the model,
see Refs. [81, 101, 151, 159] and references therein, as postponed to future studies. (For
example, an objective tensorial description of stress, strain and fabric, involves also the third
tensor invariants. Alternatively/equivalently, these deviatoric tensors can be completely clas-
sified by their shape factors in their respective eigen-systems, which allows to distinguish all
possible deformation and response modes in 3D.)

In this paper, we have reviewed and presented new results for frictionless particles undergo-
ing isotropic, uniaxial, and (pure) shear deformation. Since the particles are too idealized,
they provide insufficient freedom for direct application to practical systems, where shape,
friction, and other non-linearities are relevant. However, they form the basic reference study
with details given on the calibration procedure that yields a constitutive model with satisfac-
tory predictive quality. Therefore, the next steps in our research will involve more realistic
contact models with friction, cohesion, and other physically meaningful material parameters.
Only then, the validity of the analytical expressions, which predict well the phenomenology,
and the observations for pressure as well as the scaling arguments presented for the devia-
toric stress and fabric, can be tested for realistic frictional, cohesive systems.

2.8.4 Outlook

Laboratory element test experiments should also be performed with the bi-axial box to vali-
date the simulation results with realistic material properties. Macroscopic quantities that can
be readily obtained experimentally – for example the pressure-volume fraction relation and
the shear stress evolution with deviatoric (shear) strain – can then be compared with simu-
lation data. Moreover, the work underlines the predictive power of constitutive models with
anisotropy, see Refs. [98, 101, 151], that can be further tested, validated and extended with
more advanced physical and numerical experiments.
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Given the detailed insights from DEM, the (missing) terms and the parameters for the con-
stitutive models can now be further analyzed to perform the rigorous micro-macro transition.
Open questions concern, among others:
(i) the validity of the 2D model in 3D, related to missing terms and parameters,
(ii) the validity of global versus local coarse-graining, i.e., the scale of the micro-macro tran-
sition [77],
(iii) the microscopic (restructuring) and macroscopic (non-affine motions) origins of the
peak- and softening phenomenology at the lower densities, related to the (in-)homogeneity
of the packings,
(iv) the validity of the model predictions for strain-reversal and cyclic deformations, and
(v) the possible dependence of the moduli in the constitutive relations on other quantities
(e.g., pressure) than the volume fraction, as focused on in this study.

For future application, the present calibration procedure should be checked also for other
materials and applied to other element tests, among which there are (cylindrical) tri-axial
tests, ring-shear tests and also avalanche flow experiments like in a rotating drum, all of
which are more widely available than the “academic” bi-axial box. At the end the material
properties and parameters should not depend on the element test chosen and the predictive
value of the model(s) should be proven for more than only one validation test, be it another
element test or a real-size or lab-scale process like, e.g., granular flow in a silo or during a
landslide.
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Chapter 3

Effect of particle friction under
uniaxial loading and unloading*

Abstract
The influence of contact friction on the behavior of dense, polydisperse granular as-
semblies under uniaxial (oedometric) loading and unloading deformation is studied
using discrete element simulations. Even though the uniaxial deformation protocol is
one of the “simplest” element tests possible, the evolution of the structural anisotropy
necessitates its careful analysis and understanding, since it is the source of interesting
and unexpected observations.

On the macroscopic, homogenized, continuum scale, the deviatoric stress ratio and
the deviatoric fabric behave in a different fashion during uniaxial loading and un-
loading. The maximal stress ratio and strain increase with increasing contact fric-
tion. In contrast, the deviatoric fabric reaches its maximum at a unique strain level
independent of friction. For unloading, the reversal of stress displays a friction-
dependent delay, while the reversal of fabric is found to occur also with delay, but
slightly earlier.

On the micro-level, a friction-dependent non-symmetry of the proportion of weak/strong
and sliding/sticking contacts with respect to the total contacts during loading and un-
loading is observed. Coupled to this, from the directional probability distribution, the

*Based on O. I. Imole, M. B. Wojtkowski, V. Magnanimo, and S. Luding. Micro-Macro Correlations and
Anisotropy in Granular Assemblies under Uniaxial Loading and Unloading. Phys. Rev. E (Under Review), 2013
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“memory” and history-dependent behavior of granular systems is confirmed. Sur-
prisingly, while a rank-2 tensor is sufficient to describe the evolution of the normal
force directions, a sixth order harmonic approximation is necessary to describe the
contact probability distribution, the tangential force and the mobilized friction.

We conclude that the simple uniaxial deformation activates microscopic phenomena
not only in the active Cartesian directions, but also at intermediate orientations, with
the tilt angle being dependent on friction, so that the microstructure and forces cause
the interesting macroscopic behavior.

3.1 Introduction and Background

Granular materials are omnipresent in nature and widely used in various industries rang-
ing from food, pharmaceutical, agriculture and mining – among others. In many granular
systems, interesting phenomena like dilatancy, anisotropy, shear-band localization, history-
dependence, jamming and yield have attracted significant scientific interest over the past
decade [10, 62, 92]. The bulk behavior of these materials depends on the behavior of their
constituents (particles) interacting through contact forces. To understand their deformation
behavior, various laboratory element tests can be performed [111, 140]. Element tests are
(ideally homogeneous) macroscopic tests in which one can control the stress and/or strain
path. Such macroscopic experiments are important ingredients in developing and calibrat-
ing constitutive relations, but they provide little information on the microscopic origin of
the bulk flow behavior. An alternative is the Discrete Element Method (DEM) [92], since it
provides information about the micro-structure beyond what is experimentally accessible.

One element test which can easily be realized (experimentally or numerically) is the uniaxial
(or oedometric) compression (in a cylindrical or box geometry) involving an axial deforma-
tion of a bulk sample while the lateral boundaries of the system are fixed. This test is particu-
larly suited for determining the poroelastic properties of granular materials. During uniaxial
loading, isotropic compression and non-isotropic deformation (pure shear) are superposed,
so that pressure and shear stress build up. After reversal, pressure and shear stress decay
and the latter changes sign after a finite strain, which depends on friction. When a granular
material is sheared, along with the shear stress, also anisotropy of the contact network begins
to develop.

It is known that besides density and stress, geometric anisotropy (contact fabric) is an im-
portant ingredient to fully understand the micro-macro-mechanics of granular materials. In
addition, the effects of contact friction between the constituent grains influences the mi-
cromechanical response under uniaxial loading, such that a rather simple element test begins
to reveal interesting features. Several studies have numerically investigated the extent to
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which the response of granular media is affected by friction [12, 14, 15, 38, 145], especially
in the triaxial geometry but not many studies exist on uniaxial loading and unloading of
frictional systems [21].

Also, the transmission of stress between grain contacts is relevant, as detailed in this study.
Experimental visualizations of the distribution of forces using photo-elastic particles in 2D
is about the only way to access this information – see [104, 180] and references therein –
even though 3D photoelasticity and other neutron diffraction methods [173] have also been
employed. Earlier numerical studies have highlighted the particular character of the con-
tact force network, showing that strong contacts carrying force larger than the average, are
oriented anisotropically, with preferred direction parallel to the axis of compression, while
those originating from weak contacts are isotropic or have a weak orientation orthogonal
to the compression axis [125]. Another interesting issue is the distribution and orientation
of tangential forces during the deformation of dense frictional packings [124, 150, 158].
In early, two-dimensional studies on frictional avalanching [124], it has been observed that
friction is mobilized mostly from weak contacts, whereas strong contacts resist friction mo-
bilization.

It is important at this point to distinguish between the three-dimensional uniaxial element
test and the triaxial test. In the standard triaxial test, stress is imposed on test sample in
the axial (vertical) direction (σ1) while the stress in the lateral (horizontal) directions (σ2

and σ3) are kept constant (i.e. σ1 6= σ2 = σ3). As with the uniaxial test, the stress in the
axial direction is typically higher than the two lateral stresses during loading. A striking
difference between both tests is in the lateral direction where stress is kept constant in the
triaxial test (σ2 = σ3)= σ0 but different in the uniaxial test (σ2 ≈ σ3)> σ0, increasing from
its initial value σ0, since the walls are fixed. It is also worth mentioning that the triaxial
test is mostly used in geotechnical applications such as the testing of sands and rocks at
very high stress levels. Since the broader focus of our research is the testing of frictional and
cohesive granular materials for applications in the food, chemical and agricultural industries,
we focus on the much simpler confined uniaxial compression test and juxtapose our findings
with those obtained in the triaxial test.

In the present study, we use discrete element simulations of confined uniaxial compres-
sion tests to investigate and relate the dependencies between the microscopic observations
presented hereafter with the evolution of macroscopic quantities such as pressure and devia-
toric stress – and to further extend this to explain the evolution of the structural/contact and
force/stress anisotropies.

This work is structured as follows. We first describe the simulation method and model
parameters along with the preparation and test procedures in 3.2. The definitions of av-
eraged micro-macro quantities including strain, stress and structural anisotropies are pre-
sented in 3.3. Where given, anisotropy refers to not only the deviatoric stress, but also to
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the direction-dependence and inhomogeneity of forces, i.e., its microscopic origin. Next, we
discuss the results of the current study by presenting the evolution of the stress and struc-
tural anisotropies during uniaxial loading and unloading in 3.4.2 followed by the magnitude
and orientation of their respective eigenvalues in 3.4.3. Furthermore, we discuss friction
mobilization in Section 3.4.4 followed by the probability density functions of the normal
and tangential forces in 3.4.5 and the classification of weak and strong forces in 3.4.5. In
Section 3.5, we discuss the polar representation of the contact distribution based on the con-
stant surface and constant bin width method and extract the structural anisotropy parameters
using a 6th order Legendre spherical harmonic approximation in section 3.5.1. Finally, the
summary, conclusions and outlook are presented in Section 3.6.

3.2 Simulation details

We use the Discrete Element Method (DEM) [92] with a simple linear visco-elastic normal
contact force law f nn̂= (kδ +γδ̇ )n̂, where k is the spring stiffness, γn is the contact viscosity
parameter and δ or δ̇ are the overlap or the relative velocity in the normal direction n̂. The
normal force is complemented by a tangential force law [92], such that the total force at
contact c is: fc = fnn̂+ ft t̂, where n̂ · t̂ = 0, with tangential force unit vector t̂. A summary
of the values of the parameters used is shown in Table 3.1, with sliding and sticking friction
µ = µsl = µst and rolling– and torsion–torques inactive (µr = µt = 0). An artificial viscous
dissipation force proportional to the velocity of the particle is added for both translational
and rotational degrees of freedom, resembling the damping due to a background medium, as
e.g. a fluid.

3.2.1 Simulation set-up and boundary conditions

The simulation set-up is a cuboid volume [60], triaxial box, with periodic boundaries on
all sides. Since careful, well-defined sample preparation is essential, to obtain reproducible
results [40], we follow a three-step procedure where friction is active in all the preparation
stages:

(i) Spherical particles are randomly generated in the 3D box with low volume fraction and
rather large random velocities, such that they have sufficient space and time to exchange
places and to randomize themselves.

(ii) This granular gas is then isotropically compressed to a target volume fraction ν0 slightly
below the jamming volume fraction.

(iii) This is followed by a relaxation period at constant volume fraction to allow the parti-
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Value Unit Description

N 9261 [–] Number of particles

〈r〉 1 [mm] Average radius

w 1.5 [–] Polydispersity w = rmax/rmin

ρ 2000 [kg/m3] Particle density

kn 105 [kg/s2] Normal spring stiffness

kt 2.104 [kg/s2] Tangential spring stiffness

µ vary [–] Coefficient of friction

γn 1000 [kg/s] Viscosity – normal direction

γt 200 [kg/s] Viscosity – tangential direction

γbt 100 [kg/s] Background damping – translational

γbr 20 [kg/s] Background damping – rotational

tc 0.64 [µs] Contact duration (average)

Table 3.1: Summary and numerical values of particle parameters used in the DEM simula-
tions, where µ , the contact coefficient of friction is varied in the following. For more details,
see Ref. [92].

cles to dissipate their kinetic energy before further preparation or the actual element test is
initiated.

3.2.2 Isotropic Compression Methods

After the three-step preparation, an isotropic compression test can be initiated to measure
isotropic properties and to prepare further initial configurations at different volume frac-
tions, with subsequent relaxation, so that we have a series of different reference isotropic
configurations, achieved during loading and unloading, as displayed in Fig. 3.1. The goal
here is to approach a direction independent isotropic configuration above the jamming vol-
ume fraction νc, i.e. the transition point from fluid-like behavior to solid-like behavior [164].
Note that the initial packings for the respective frictional configurations are inherently differ-
ent since they are prepared with the different friction coefficients active from the beginning
of the first isotropic preparation stage (stage A in Fig. 3.1). We only keep as control param-
eter the volume fraction which is identical for the different configurations even though other
micro-macro quantities such as pressure and coordination number will be different at a given
volume fraction.

In the current study, to obtain a homogeneous initial isotropic configuration, several driving
modes have been compared and these modes are discussed briefly in the following section.
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Later, for uniaxial tests, unless explicitly mentioned, the wall-driven uniaxial deformation
protocol is applied. We tested the wall-driven against the strain-rate driven protocols for
some quantities of interest to this work and realize that they lead to mostly the same results
– besides some small details (see Sec. 3.2.2). Note that particular attention must be placed
on the choice of the preparation protocol when other boundary conditions or quantities are
considered as this conclusion may no longer hold. Even though strain-rate driven produces
more homogeneous systems, we use the wall-driven mode since it more resembles the real
experiment therefore important for future experimental validation of this work [29].

Wall-driven isotropic compression

In the first method, the periodic walls of the box are subjected to a strain-controlled motion
following a co-sinusoidal law such that the position of e.g., the top wall as function of time
t is

z(t) = z f +
z0 − z f

2
(1+ cos2π f t) (3.1)

with engineering strain

εzz(t) = 1− z(t)
z0

, (3.2)

where z0 is the initial box length and z f is the box length at maximum strain, respectively, and
f = T−1 is the frequency. The maximum deformation is reached after half a period t = T/2,
and the maximum strain-rate applied during the deformation is ε̇max

zz = 2π f (z0−z f )/(2z0) =

π f (z0 − z f )/z0. The co-sinusoidal law allows for a smooth start-up and finish of the motion
so that shocks and inertia effects are reduced. Also, the walls were driven in a quasi-static
manner such that the ratio of the kinetic and potential energy (Ek/Ep ≤ 10−5). By performing
slower deformations, the energy ratio can be reduced even further [60].

Pressure controlled isotropic deformation

In the pressure controlled mode, the (virtual) periodic walls of the system are subjected to
a co-sinusoidal periodic pressure-control until the target pressure is achieved, for details see
[88]. To achieve this, we set the mass of the virtual periodic walls of the system mw, to be of
the order of the total mass of the particles in the system, leading to consistent behavior. The
pressure controlled motion of the walls is described by [88]:

mwẍw(t) = Fx(t)− pAx(t)− γwẋ(t), (3.3)
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where Fx(t) is the force due to the bulk material, pAx(t) is the force related to the external
load and the last term is a viscous force, which damps the motion of the wall so that oscilla-
tions are reduced. Ax is the area of the wall perpendicular to x where x can be replaced by y
or z in Eq. 3.3, for other walls. We find that large values of mw generally lead to large energy
fluctuations/oscillations while the final pressure is more rapidly approached for systems with
smaller mw. In contrast, too small mw can lead to violent motions and should be avoided.
Additionally, we must mention that for our simulations, the sensitivity of the system to the
wall dissipation is small since the simulations are performed in the very slow, quasi-static
regime.

Homogeneous strain-rate controlled isotropic deformation

In this method, we apply a homogeneous strain rate to all particles in the ensemble and
to the walls in each time-step, such that each particle experiences an affine simultaneous
displacement according to the diagonal strain rate tensor:

Ė= ε̇v

 −1 0 0
0 −1 0
0 0 −1

 ,

where ε̇v (> 0) is the rate amplitude applied until a target maximum volume fraction of
e.g., νmax = 0.82 is achieved. A pictorial representation of the strain rate tensor is shown
in Fig. 2.2. The DEM dynamics allows the particles to approach mechanical equilibrium by
following the new unbalanced forces that lead to non-affine displacements due to the new
forces at each time-step, or after a relaxation period.

Swelling of Particles

An alternative isotropic deformation protocol is to allow the particle radii r to slowly ‘grow’
at rate gr from an initial volume fraction according to the relation dr/dt = grr. The swelling
of the particles leads to a change in the volume fraction until the target volume fraction is
achieved [96, 116]. During the growth period, the particle mass changes with the radius.
Additionally, the volume fraction also changes with time according to the relation dν/dt =
3νgr, leading to the volume fraction ν = ν0 exp{3grt} as function of time t. The detailed
form of the growth law with time is not relevant here, since all rates are very small.
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Comparison of driving modes

In summary, comparing the preparation methods, we find that isotropic quantities like pres-
sure, coordination number or isotropic fabric evolve in a similar fashion for all driving
modes. However, the strain-rate controlled isotropic preparation leads to very homogeneous
configurations especially when viewed in terms of the mobilized friction. In the wall driven
case, we find that friction is more highly mobilized in the contacts closest to the virtual pe-
riodic walls of the system leading to slight inhomogeneities. However, when the particles
closest to the wall (up to ≈ 30 % of the box length) are excluded from the computation, the
resulting probability distributions as well as the field quantities show negligible differences
with respect to the data from the full sample analysis. Due to this assessment, we choose here
to focus on the wall driven isotropic compression since this more resembles experimental set-
ups and is especially suitable for the subsequent uniaxial compression mode. Additionally,
the cosinusoidal wall motion allows for a smooth start-up and end of the compression cycle
unlike the “kick” (even though tiny) to each particle in the strain rate controlled protocol. To
be confident with our conclusions, some data are checked by comparing them with simula-
tions performed with the strain-rate protocol, without coming to different conclusions.
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Figure 3.1: Evolution of volume fraction as a function of time. Region A represents the ini-
tial isotropic compression below the jamming volume fraction. B represents relaxation of the
system to fully dissipate the systems potential and kinetic energy and C represents the subse-
quent isotropic compression up to νmax = 0.820 and then subsequent decompression. Cyan
dots represent some of the initial configurations, at different νi, during the loading cycle;
blue stars, for the same νi are different configurations, since obtained during the unloading
cycle; both can be chosen for further study.
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3.2.3 Uniaxial Loading and Unloading

After isotropic compression, initial states can be chosen from the loading or unloading
branch (after relaxation to allow for kinetic energy dissipation) from which the uniaxial test
is initiated.

As element test, uniaxial compression is achieved by moving the periodic walls in the z-
direction according to a prescribed co-sinusoidal strain path [60], as shown in Eq. (3.1), with
diagonal strain-rate tensor

Ė= ε̇u

 0 0 0
0 0 0
0 0 −1

 ,

where ε̇u is the strain-rate (compression > 0 and decompression/tension < 0) amplitude
applied in the uniaxial mode. The negative sign (convention) of Ėzz corresponds to a re-
duction of length, so that tensile deformation is positive. During loading (compression) the
volume fraction increases from ν0 (at dimensionless time τ = t/Tmax = 0) to a maximum
νmax = 0.820 (τ = 0.5) and reverses back to the original ν0 at the end of the cycle (τ = 1),
after complete unloading. For more details on preparation and other parameters, see Ref.
[60].

Even though the strain is imposed only on one mobile periodic “wall” with normal in the z-
direction, which leads to an increase of compressive stress during compression, also the non-
mobile x and y directions experience some stress increase as expected for “solid” materials
with non-zero Poisson ratio, as discussed in more detail in the following sections.

However, during decompression the stress on the passive walls is typically smaller than
that of the mobile, active wall, as consistent with anisotropic materials and findings from
simulations and laboratory element tests using the bi-axial tester [82, 178] or the so-called
lambdameter [83]. One of the main goals of this study is to also understand the behavior of
the packing when compression is changed/reversed to tension.

3.3 Definitions of Averaged Quantities

In this section, we present the general definitions of averaged microscopic and macroscopic
quantities.
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3.3.1 General Tensor Formulation

To describe and better understand the relationships between macroscopic quantities, tensors
are split up into isotropic, deviatoric and antisymmetric parts. For a general decomposition
theorem, each tensor can be decomposed as:

T =
1
2
(T +T T )+

1
2
(T −T T ) = T sym +T skew, (3.4)

where T sym and T skew are the symmetric and antisymmetric parts of the tensor. Since we
will focus on the symmetric part, we further decompose T sym uniquely into its spherical and
deviatoric parts as

T = TvI+TD (3.5)

with Tv = (1/3)tr(T ) and the traceless deviator TD = T −TvI . The latter contains informa-
tion about the eigensystem of T , that is identical to the eigensystem of TD itself.

Any (deviatoric) tensor can be transformed using a transformation matrix R to obtain its
diagonal form:

T
eig
D =

 T (1)
D 0 0
0 T (2)

D 0
0 0 T (3)

D

=RT ·TD ·R, (3.6)

TD =Ti−Tv/3, where Ti’s are eigenvalues of T . Also, T (1)
D , T (2)

D and T (3)
D are the eigenvalues

sorted such that, as convention, T (1)
D ≥ T (2)

D ≥ T (3)
D . R = (n̂1, n̂2, n̂3) is the orthogonal

transformation matrix, composed of the corresponding eigenvectors, which transforms TD

to its eigensystem. According to linear algebra, Eq. (3.6) can also be expressed as:

TD · n̂α = T α
D n̂α (3.7)

with T α
D and n̂α the α-eigenvalue and eigenvector of TD, respectively. The symbol “·”

represents the inner product of the tensor TD and the vector n̂α which leads to a vector
parallel to n̂α .

In the following, we provide a consistent decomposition for strain, stress and fabric tensors.
We choose here to describe each tensor in terms of its isotropic part (first invariant) and the
second (J2) and third (J3) invariant of the deviator:

J2 =
1
2

[
(T (1)

D )2 +(T (2)
D )2 +(T (3)

D )2
]

(3.8)
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J3 = det(TD) = T (1)
D T (2)

D T (3)
D (3.9)

J3 can further be decomposed as J3 = T (1)
D T (2)

D (−T (1)
D − T (2)

D ), since we are dealing with
deviators.

3.3.2 Strain

For any deformation, the isotropic part of the infinitesimal strain tensor εv (in contrast to the
true strain εv) is defined as:

εv = ε̇vdt =
εxx + εyy + εzz

3
=

1
3

tr(E) =
1
3

tr(Ė)dt, (3.10)

where εαα = ε̇αα dt with αα = xx, yy and zz as the diagonal elements of the strain tensor E in
the Cartesian x, y, z reference system. The integral of 3εv denoted by εv = 3

∫ V
V0
εv, is the true

or logarithmic strain, i.e., the volume change of the system, relative to the initial reference
volume, V0 [51].

Several definitions are available in literature [159] to define the deviatoric magnitude of the
strain. Here, we use the objective definition of the deviatoric strain in terms of its eigenvalues
εd

(1), εd
(2) and εd

(3) which is independent of the sign convention.

The deviatoric strain is defined as:

εdev =

√√√√(ε(1)d − ε
(2)
d

)2
+
(
ε
(2)
d − ε

(3)
d

)2
+
(
ε
(3)
d − ε

(1)
d

)2

2
, (3.11)

where εdev ≥ 0 is the magnitude of the deviatoric strain.

Note that the wall motion is strain controlled and the infinitesimal strain corresponds to
the external applied strain. Hence the eigenvalues for the strain tensor are in the Cartesian
coordinate system (thus no transformation is needed). For the purely isotropic strain, εISO =

εvI , with εdev = 0, which is direction independent by definition. The corresponding shape
factor for the deviatoric strain Λ(−ε), is represented as the ratio Λ(−ε) := ε

(2)
d /ε

(1)
d .
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3.3.3 Stress

From the simulations, one can determine the stress tensor (compressive stress is positive as
convention) components:

σαβ =
1
V

(
∑
p∈V

mpvp
α vp

β − ∑
c∈V

f c
α lc

β

)
, (3.12)

with particle p, mass mp, velocity vp, contact c, force f c and branch vector lc, while Greek
letters represent components x, y, and z [60, 89]. The first sum is the kinetic energy density
tensor while the second involves the contact-force dyadic product with the branch vector.
Averaging, smoothing or coarse graining [170, 172] in the vicinity of the averaging volume,
V , weighted according to the vicinity is not applied in this study, since averages are taken
over the total volume. Furthermore, since the data in this study are quasi-static, the first sum
can mostly be neglected. The isotropic stress is denoted as hydrostatic pressure:

p = σv =
1
3

tr(σ) (3.13)

As already mentioned, we will focus on the eigenvalues of the deviatoric stress tensor λ s
i =

σD
i = σi − p, as defined in section 3.3.1, with the principal directions being the same for σ

and σD. The (scalar) deviatoric stress for our 3D uniaxial simulations is:

σdev =

√
(λ s

1 −λ s
2)

2 +(λ s
1 −λ s

3)
2 +(λ s

2 −λ s
3)

2

2
, (3.14)

The deviatoric stress ratio, sdev = σdev/p, quantifies the “stress anisotropy” - where σdev =√
3Jσ

2 , with Jσ
2 the second invariant of the deviatoric stress tensor. The third stress invariant

Jσ
3 = λ s

1λ s
2λ s

3 = λ s
1λ s

2(−λ s
1 −λ s

2) = (λ s
1)

3(−Λσ −(Λσ )2) can be replaced by the shape factor
Λσ := λ s

2/λ s
1 , which switches from +1 at maximum uniaxial loading to −1/2 after some

unloading as will be shown below.

3.3.4 Structural (Fabric) Anisotropy

Besides the stress of a static packing of powders and grains, an important microscopic quan-
tity of interest is the fabric/structure tensor. For disordered media, the concept of a fabric
tensor naturally occurs when the system consists of an elastic network or a packing of dis-
crete particles. A possible expression for the components of the fabric tensor is provided in
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[89, 99]:

Fν
αβ = 〈F p〉= 1

V ∑
p∈V

V p
N

∑
c=1

nc
α nc

β , (3.15)

where V p is the particle volume of particle p which lies inside the averaging volume V , and
nc is the normal vector pointing from the center of particle p to contact c. Fν

αβ are thus the
components of a symmetric rank two 3×3 tensor. In a large volume with some distribution
of particle radii, the relationship between the trace of fabric, volume fraction ν and the
average coordination number C is given by 3Fv

ν := Fν
αα = g3νC, as first reported in [94]

and also confirmed from our wider friction (µ) data. The term g3 corrects for the fact that
the coordination number for different sized particles is proportional to their surface area such
that for a monodisperse packing g3 = 1 and for a polydisperse packing g3 > 1 [51, 99, 141].

A different formulation for the fabric tensor considers simply the orientation of contacts
normalized with the total number of contacts Nc, as follows [85, 114, 134]:

Fαβ =
1

Nc

N

∑
c=1

nc
α nc

β , (3.16)

The relationship between Eq. (3.15) and Eq. (3.16) is:

Fαβ =
Fν

αβ

g3νC
=

3Fν
αβ

Fv
. (3.17)

We can define the deviatoric tensor FD and calculate the eigenvalues λ f
i = Fi −Fv/3 with

Fv = 1, and Fi the eigenvalues of the deviatoric fabric based on Eq. (3.16).

We assume that the structural anisotropy in the system is quantified (completely) by the
anisotropy of fabric, i.e., the deviatoric fabric, with scalar magnitude similar to Eqs. (3.11)
and (3.14) as:

Fdev =

√
(λ f

1 −λ f
2 )

2 +(λ f
1 −λ f

3 )
2 +(λ f

2 −λ f
3 )

2

2
, (3.18)

proportional to the second invariant of FD, Fdev =
√

3JF
2 , where λ f

1 , λ f
2 and λ f

3 are the three
eigenvalues of the deviatoric fabric tensor.

Alternatively, a simpler definition of the deviatoric fabric for an axial symmetric element
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test takes into account the difference between the fabric eigenvalue of the main compressive
(axial) direction and the average values in the isotropic plane as follows:

F∗
dev = λ f

1 −
λ f

2 +λ f
3

2
. (3.19)

Note that if λ f
2 = λ f

3 , Eqs. (3.18) and (3.19) coincide. Analogous to the definitions in Eqs.
(3.18) and (3.19), Fdev and F∗

dev can also be defined using the definition of the fabric presented
in Eq. (3.15).

3.3.5 Eigenvector Orientation

Due to the axial symmetry of the uniaxial compression mode, the orientation of the eigen-
vectors of stress and fabric can be defined with reference to the main compressive z-direction
as:

θα = arccos
(
n̂(α) · ẑ

)
(3.20)

where ẑ is the unit vector in the z-direction. Additionally, orientations are projected such
that they lie within the range to π/2.

3.4 Results and Observations

In this section, as results of the current study, first we will discuss the influence of friction
on the evolution of stress and structural anisotropy as functions of deviatoric strain dur-
ing loading and unloading. To complement these results, we investigate the magnitude and
orientation of the eigenvalues of stress and fabric during loading and unloading and their
respective shape factors. To gain an insight into the relationship between the normal and
tangential force on the macroscopic stress and structure, we report briefly their probabil-
ity density functions (pdfs) for different frictional systems, as well as the force intensity
weighted by the contact state. Finally, we present a 6th order harmonic approximation of
the polar representation of contacts and forces to describe the axial-symmetric structural
anisotropy, relating fabric to the pdfs.

3.4.1 Pressure and Coordination Number

Isotropic quantities during loading and unloading for various deformation paths were pre-
sented in Ref. [60] for frictionless particles and in Ref. [52] for frictional particles and will
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not be discussed in detail here. We only note that the coordination number and the hy-
drostatic pressure scale quantitatively differently with isotropic strain but behave in a very
similar fashion irrespective of the deformation mode applied. The pressure is coupled to the
deviatoric strain via the structural anisotropy. The effects of polydispersity on the evolution
of the isotropic quantities have also been extensively studied in Ref. [79] for various defor-
mation paths. The isotropic quantities, namely pressure, coordination number and fraction
of rattlers show a systematic dependence on the deformation mode and polydispersity via
the respective jamming volume fractions.

In Figs. 3.2a and 3.2b, we plot the non-dimensional pressure p for different friction coef-
ficients µ = 0 to 1 during loading and unloading, respectively. Here we define the non-
dimensional pressure as

p =
2〈r〉
3kn

tr(σ) (3.21)

where tr(σ) is the trace of the stress tensor. The uniaxial test starts from an initial volume
fraction νi =0.692 above the jamming volume fraction and reaches a maximum volume frac-
tion νmax =0.82 during loading before returning to νi. The loading and unloading branches
are close with the unloading branch having a tiny shift to the right due to hysteretic effects
[51]. We observe that even though the different initial configurations are identical with re-
spect to the initial volume fraction, their initial pressure states are different since their friction
coefficients are activated right from the initial preparation stage (as in material being filled
into a constant volume sample-holder). We also note that p increases with increasing ν dur-
ing uniaxial loading for all friction coefficients. For any given volume fraction, we observe
an increase in p with increasing µ as indicated by the direction of the arrow.

Extrapolating the pressure data to p → 0 leads to the respective jamming densities νc(µ),
which decreases with µ increasing [52], which is the main reason for the observed behavior.

Furthermore, in Figs. 3.2c and 3.2d, we plot the evolution of the coordination number C∗ as
function of the volume fraction ν and show its dependence on friction during loading and
unloading, respectively. The coordination number here is defined as the average number of
contacts per particle in the ensemble. Here, we exclude the particles with less than four con-
tacts (called rattlers) since they do not contribute to the mechanical stability of the packing
[51, 60, 79]. During loading, we observe an increase in the coordination number followed by
a decrease after strain reversal. We observe a systematic decrease in the coordination num-
ber with friction with the largest friction showing the smallest coordination number. This
indicates that fewer contacts are necessary for stability with increasing friction, even though
p is larger.

In the following sections, we will focus on the non-isotropic quantities and their evolution
with respect to the deviatoric strain.
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Figure 3.2: The non-dimensional pressure plotted as function of volume fraction under uni-
axial deformation for different friction coefficients during (a) loading and (b) unloading and
coordination number (excluding rattlers) for the same dataset during (a) loading and (b) un-
loading.

3.4.2 Deviatoric Stress and Fabric

Under uniaxial compression, not only does shear stress build up, but also the anisotropy
of the contact and force networks develops, as it relates to the creation and destruction of
new contacts [60]. We term the deviatoric part of the stress tensor and its microscopic
force-direction dependence as the “stress anisotropy”, in parallel to the contact direction-
dependency of the structural anisotropy.

The deviatoric stress ratio, sdev = σdev/p is shown in Figs. 3.3a and 3.3b for a frictionless
(µ = 0) and several frictional (µ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5 and 1.0) systems during
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uniaxial loading and unloading, respectively. As the deviatoric strain applied to the system
is increased during uniaxial loading, the deviatoric stress ratio initially grows for all the fric-
tion coefficients shown. In some cases (for small µ), the maximal sdev is reached before
the maximum deviatoric strain applied (εmax

dev =0.1549) is reached. For some of the config-
urations studied, an asymptote (or steady state) is observed in which further application of
deviatoric strain does not lead to visible further increase/decrease in the deviatoric stress. At
the maximum applied deviatoric strain, we observe that not all configurations (especially the
highest friction coefficients) have reached full saturation. For the systems with lower micro-
scopic friction coefficients, a slight decrease of the deviatoric stress ratio for larger deviatoric
strains is seen. The slope of the deviatoric stress ratio, which represents its growth rate shows
a decreasing trend with increasing friction. Recall that the initial packings are different since
they are prepared with different friction coefficients. Due to this, the pressure increases with
increasing friction while the coordination number decreases with friction. The slope of the
deviatoric stress ratio in Fig. 3.3a, related to the initial shear stiffness of the isotropic packing
is proportional to these two quantities [37, 100, 167].

The evolution of the deviatoric stress during unloading (after strain reversal) is presented
in Fig. 3.3b. Note that due to the square-root definition used in Eq. (3.14), the deviatoric
stress remains positive 1 During deviatoric unloading, sdev begins to decrease until the system
approaches an isotropic stress configuration, where sdev = 0. The εdev values where sdev ≈ 0
consistently decrease with increasing friction – as consistent with the trend of the maximum
sdev values reached during uniaxial loading at larger εdev for stronger friction. For systems
with large friction coefficients (µ = 0.3, 0.5 and 1.0), the εdev values at which sdev = 0 are
closer to each other than for weakly frictional systems – see Fig. 3.9 below.

Along with the deviatoric stress ratio, for a characterization of the contact network of the
particles, we plot the deviatoric fabric magnitudes Fdev of the systems discussed above as
function of the deviatoric strain during uniaxial loading and unloading in Figs. 3.3c and 3.3d,
respectively. In Fig. 3.3c, the deviatoric fabric magnitude builds up from different (random,
but small) initial values and reaches different maxima within the same range of deviatoric
strain (εdev ≈ 4−6%). For larger strains, we observe a decrease in the structural anisotropy
towards zero. Interestingly, for systems with higher friction coefficients (µ = 0.3, 0.5 and
1.0), after the decrease in the structural anisotropy, further loading in the axial direction
leads to a (small) second increase of the deviatoric fabric, until at maximum compression,
the deviatoric fabric again reaches a local maximum.

This is explained by the fact that more contacts are created in the axial compressive direction
compared to the horizontal plane at the beginning of the loading cycle. At the first maximum

1An alternative way to enforce the sign convention is to multiply the deviatoric stress Eq. (3.14) by the sign
of the difference between the eigenvalue of the main compressive direction and the average in the other two fixed
directions as given for fabric in Eq. (3.19). This leads to positive and negative sdev, which should take care of the
strain reversal [80].
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Figure 3.3: The deviatoric stress ratio plotted as function of deviatoric strain during uniaxial
(a) loading and (b) unloading. The corresponding plots of the deviatoric fabric plotted during
uniaxial (c) loading and (d) unloading, for different microscopic friction coefficients.

(εdev ≈ 0.06), the material behavior changes such that the number of contacts created in
the horizontal plane becomes higher with respect to the vertical plane. This trend reverses
again as maximum compression is reached for systems with higher friction coefficients. This
interesting behavior will be further discussed when we analyze the magnitude and orientation
of the respective eigenvectors in Section 3.4.3.

After strain reversal, as presented in Fig. 3.3d, the initial isotropic state is not recovered –
a clear signature of history dependence and structural anisotropy being independent of (or
decoupled from) the deviatoric stress ratio. Additionally, a strong difference can be seen
in the fabric response of systems with lower and higher friction, respectively. As we will
see later, the orientation of the eigenvalues of these systems provide interesting insights into
these observations.

In general, comparing the evolution of deviatoric stress ratio and deviatoric fabric, we ob-
serve a strongly decoupled and non-linear qualitative behavior with the linear contact model
used in this study. This confirms that the non-linearity observed is a peculiarity of the defor-
mation mode and the structure of the packing.
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In Fig. 3.4, we plot the maximum deviatoric stress ratio and maximum deviatoric fabric
reached from Figs. 3.3a and 3.3c for the respective friction coefficients. Interestingly, the
maximum deviatoric stress ratios increase with increasing friction coefficient until µ ≈ 0.25,
where it peaks at smax

dev ≈ 0.43 and subsequently decrease for higher friction coefficients.
From Fig. 3.3a we observe that the highest friction coefficients (between µ = 0.1 and 1.0)
appear not to have reached a final saturation; the application of further strain could lead to a
higher maximum deviatoric stress ratio. Due to this, the decrease in the maximum deviatoric
stress ratio at higher friction coefficients under uniaxial compression requires further atten-
tion. For our system where we control volume, we argue that at a maximum volume fraction
νmax = 0.82, we are already close to the upper limit for realistic deformations with about 5%
average overlaps, i.e. compression is very strong. Note that the maximum deviatoric stress
ratio reached is termed the “macroscopic friction coefficient”, µmacro := smax

dev [60], represent-
ing the macroscopic mobilized friction, i.e. shear resistance of the material. We note that the
maxima reached are higher than the microscopic friction coefficient for systems with low
friction, between µ = 0 and 0.4, while for higher friction, the maxima are lower [163].

In Fig. 3.4, we also show the trend of the maximum structural anisotropy reached, Fmax
dev , with

increasing friction. Besides the increase between, µ = 0 and 0.01, the maximum deviatoric
fabric shows a decreasing trend with increasing friction and saturates at Fmax

dev ≈ 0.025 for
the highest friction coefficients. In comparison, the structural anisotropy is much smaller
than the deviatoric stress ratio and it is reached at comparable εdev, whereas the extreme
stress anisotropy is reached much later for higher µ . Under triaxial loading, the coordination
number decreases with increasing strain (dilatancy) while it increases under uniaxial loading
(due to ongoing compaction). The decrease in the structural anisotropy with increasing
friction is different from observations reported for triaxial tests [15, 74] where the maximal
structural anisotropy is observed to increase with increasing friction. In frictionless systems,
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the maximum fabric anisotropy decreases as the distance from the jamming volume fraction
increases [60]. For our system and preparation procedure, the distance from the jamming
point increases with increasing friction, so that Fmax

dev consequently decreases.
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Figure 3.5: Eigenvalues of stress for µ = 0.1 plotted as functions of the deviatoric strain for
(a) loading and (b) unloading along with their corresponding orientations with respect to the
compressive direction during uniaxial (c) loading and (d) unloading.

3.4.3 Eigenvalues and Eigenvectors of Stress and Fabric

In this section, we will discuss the magnitude of the eigenvalues of deviatoric stress and
deviatoric fabric during uniaxial loading and unloading as well as the orientation of the
eigenvectors. As reference and representative example, we will show the data for only one
of the coefficients of friction (µ = 0.1) and discuss in words the interesting trends for the
others. Finally, we will couple the observations to the evolution of stress and structural
anisotropies presented in section 3.4.2.

In Figs. 3.5a and 3.5b, we plot the eigenvalues of the deviatoric stress for the frictional system
with µ = 0.1 during loading and unloading against deviatoric strain εdev. During loading
λ s

1 which corresponds to the stress eigenvalue of the axial compression direction increases
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Figure 3.6: Eigenvalues of the deviatoric fabric for µ = 0.1 plotted as functions of the de-
viatoric strain for (a) loading and (b) unloading along with their corresponding orientations
with respect to the compressive direction during uniaxial (c) loading and (d) unloading.

linearly from 0 and remains positive while the eigenvalues λ s
2 and λ s

3 of the two non-mobile
direction are negative and very similar in magnitude. During unloading, λ s

1 decreases but
remains positive; at εdev ≈ 0.075, all eigenvalues become zero and then switch order, so that
the axial direction eigenvalue is becoming increasingly negative. The intermediate λ s

2 then
gets identical to λ s

1 , both growing to positive values. The orientation of the corresponding
eigenvectors during loading and unloading are shown in Figs. 3.5c and 3.5d. At εdev =

0, the orientations are different and random which is an indication of the almost isotropic
initial configuration. With increasing strain, θ s

1 , which corresponds to the orientation of the
compressive stress eigenvalue, converges to θ s= 0◦ and remains until the end of the loading
path. During this period, the stress and strain eigenvectors are said to be colinear with
respect to each other. On the other hand, the orientation θ s

2 and θ s
3 of the other eigenvalues

also drops to θ s= 90◦ showing a perpendicular alignment with respect to the compression
direction. After strain reversal, the eigen-directions of stress do not instantaneously respond
to the directional change until at εdev ≈ 0.10 where θ s

1 begins to increase to 90◦ and finally
reaches at εdev ≈ 0.03. Accordingly, θ s

3 drops to 0◦, while θ s
2 remains close to 90◦ all the

time.
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Shape factor τ ≈ 0 τ ≈ 0.5 τ ≈ 1
Λσ = λ s

2/λ s
1 Random -1/2 1

Λ f = λ f
2 /λ f

1 Random -1/2 1
Λ(−ε) = ε

(2)
d /ε

(1)
d Undefined -1/2 1

Table 3.2: Shape-factors of stress and fabric in the respective tensor eigensystem at the
beginning, maximum and end of uniaxial compression.

The corresponding eigenvalue and eigenvector orientations of the deviatoric fabric for µ =

0.1 are presented in Figs. 3.6a and 3.6b during uniaxial loading and unloading. Similar to
the eigenvalues of stress, the major eigenvalue λ f

1 , remains positive while the two lower
eigenvalues are negative. In contrast to stress, λ f

1 increases and reaches a peak at εdev ≈ 0.05
after which it begins to decrease towards zero as the maximum strain is approached. Also,
λ f

2 and λ f
3 are not identical, i.e., λ f

3 has a slightly higher magnitude than λ f
2 . This is an

indication of the existence of anisotropy in the plane perpendicular to λ f
1 even though the

stress picture shows isotropy. At maximum deviatoric strain, however, the magnitudes of
all the eigenvalues are close to zero. After strain reversal, λ f

1 and λ f
2 show an increasingly

positive trend from εdev ≈ 0.08 but are not exactly identical in magnitude while λ f
1 is negative

and consistently decreases from εdev ≈ 0.08 until the end of the decompression cycle.

Similar to the stress, the orientations of the fabric components are interesting. Starting from
random values, θ f

1 decreases and is close but distinct from 0◦ during loading, while θ f
2 and

θ f
3 are close to 90◦ during the same period. This indicates that θ f

1 is not fully aligned with
the strain eigenvector with the deviation showing the non-colinearity. After strain reversal,
a delay can be seen before θ f

1 and θ f
3 transit to 90◦ and 0◦, respectively, while θ f

2 remains
close to 90◦.

Additionally, to fully describe the tensors, one can calculate the respective shape factors for
stress and fabric, respectively, as the ratio of the eigenvalues as shown in Table 3.2 at the
initial, maximum and end of the uniaxial compression–decompression cycle.

In the following analysis, we will investigate how the orientation changes with increasing
the microscopic friction coefficient and the relationships with the force network.

In Figs. 3.7a and 3.7b, we plot the orientations of the first eigenvectors of stress θ s
1 and fab-

ric θ f
1 for all contacts and different friction coefficients, respectively. The initial value of

θ s
1 is random at the beginning of the loading path for the different friction coefficients. As

loading begins, θ s
1 decreases and at εdev ≈ 0.02, θ s

1 ≈ 0◦ for all friction. The relaxation rate
(data scaled with the initial value of the respective θ s

1), shown as an inset on a log-scale is
non-systematic for the different friction coefficients possibly due to the initial isotropic con-
figuration. Note that since the angle θ s

1 does not exactly decrease to zero since θ s
1 is always

positive even though it fluctuates around zero. Observing the behavior of the eigenvectors
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n̂x and n̂y of the largest eigenvalue, we find that during loading, they approach zero (aligned
with the compression direction) and remain until maximum compression. After strain rever-
sal, a slight delay is seen before the vectors finally flip back to the plane [53]. After strain
reversal at εdev = 0.16, the response of θ1(s) is slow and it only begins to increase at εdev ≈
0.12 for µ = 0. It is interesting to note that the delay time increases with friction and pos-
sibly due to the higher maximum deviatoric stress values reported with increasing friction.
The corresponding orientation of the major eigenvector of fabric θ1( f ) for all contacts and
different friction coefficients also starts from different random values before decreasing to
0◦ with increasing loading. Surprisingly at εdev = 0.08, for the configurations with lower
friction (µ =0, 0.01, 0.02 and 0.05), θ1( f ) remains close to 0◦ while those with higher fric-
tion (µ =0.2, 0.3, 0.5 and 1.0) begin to increase towards 90◦ as we approach maximum
compression. This indicates that the orientations and build-up of contacts for systems with
lower/higher friction behave in opposite fashion to each other and makes clear the reason for
the decrease seen in the deviatoric fabric evolution in Fig. 3.6a. At the lower friction case,
with increasing loading, contacts are mostly built along the main compression direction.
However with increasing friction, a ‘saturation’ of contact build-up in the vertical direction
sets in and an increasing number of contacts begin to build-up in the horizontal direction. As
strain is reversed, the eigenvector orientation for systems with low friction increases to 90◦

while a decrease before an increase to 90◦ is seen for systems with higher friction.

To further understand this interesting observation we sub-divide the respective systems into
strong and weak contacts and we plot the orientation of the stress and fabric eigenvector
corresponding to the compression direction for the two sub-divisions. Strong contacts are
termed as those whose normal force intensity is greater than the mean normal force while
those with lower intensity with respect to the mean normal force are termed weak.

We plot the orientation of the major direction eigenvector of stress and fabric respectively in
Figs. 3.7c and 3.7d for strong contacts. From Fig. 3.7c, the orientation of the strong contact
main eigenvector of stress and fabric behaves in a similar fashion as the total contact in the
ensemble. This is consistent with earlier findings [158] where the strong contacts have been
observed to carry most of the load during deformation. Interestingly and in contrast to the
observation for all contacts, the fabric eigenvalue for systems with both low and high friction
all stay close to 0◦ during loading and initial unloading.

Next, the orientation of the main eigenvector of stress and fabric for weak contacts is shown
in Figs. 3.7e and 3.7f. Similar to the strong contacts, the stress and fabric orientation of weak
contacts behave in a similar fashion but in contrast are mostly oriented at 90◦ during loading.
During unloading, the orientation tends towards 0◦.

Comparing Figs. 3.7b, 3.7d and 3.7f, it can be seen that strong contacts predominate for the
system with very low friction while for higher friction, the orientation of the weak contacts
play a much significant role.
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Figure 3.7: Orientation of the largest positive (a) Stress eigenvector for all contacts (b) fabric
eigenvector for all contacts (c) Stress eigenvector for strong contacts (d) Fabric eigenvector
for strong contacts (e) Stress eigenvector for weak contacts (f) Fabric eigenvector for weak
contacts plotted against dimensionless time for different coefficient of friction.
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Figure 3.8: Shape factors of (a) stress and (b) fabric as function of the deviatoric strain for
some exemplary friction coefficients.

We also plot the respective shape factors as ratio of the eigenvalues of stress and fabric for
some exemplary friction coefficients during uniaxial loading and unloading in Fig. 3.8. For
stress, shown in Fig. 3.8a, beginning from random values, Λσ decreases to -1/2 during load-
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which the deviatoric stress ratio, deviatoric fabric and the stress shape factor cross zero for
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ing and reverses to 1 at the end of the unloading cycle. The rates of change during loading
and unloading are almost identical, for different µ while during unloading, the deviatoric
strain at which the increase occurs decreases with increasing friction. As with the stress, the
shape factor of fabric Λ f , shown in Fig. 3.8b, also begins from random values and during
loading approaches Λ f ≈−1/2 with stronger fluctuations for higher friction coefficients. At
the end of unloading however Λ f approach unity.

In Fig. 3.9, we plot the deviatoric strains at which the major eigenvalues θ s
1 cross 45◦ during

unloading for different friction coefficients. Additionally, we also plot the deviatoric strains
at which the deviatoric stress ratio, deviatoric fabric and the stress shape factor cross zero
from Figs. 3.3b, 3.3d and 3.8a, respectively. As shown, the transition point decreases non-
linearly with increasing friction. All data originating from the stress tensor, namely the
major eigenvalue of stress, its orientation and the stress shape factor all collapse on each
other. On the other hand, it is not surprising that the transition points for the fabric quantities
are slightly off since the fabric behaves differently from the stress. The definition of the
fabric tensor takes into account only the normal directions and does not include the strong
tangential contributions to the contacts. Therefore, as friction is increased, the deviations
can be stronger.

In the following section, we will investigate in more detail the fraction of weak and strong
contacts in these systems and discuss their interplay and relation to the observations on the
orientations of the strong and weak contacts. For clarity and to better view the evolution
of the quantities, instead of the deviatoric strain εdev, we will study the evolution of the
quantities against dimensionless time τ = t/T – where T is the simulation time.
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3.4.4 Friction Mobilization

Mobilization of contact friction, during uniaxial deformation of the bulk material, is quanti-
fied by the factor ft/µ fn ≤ 1 for each contact. The tangential forces grow towards their limit
and support larger shear stress; for tangential forces at/above the Coulomb limit, i.e., at fully
mobilized friction, sliding sets in and rearrangements of contacts can lead to new, more sta-
ble configurations. It has been observed [147] that sliding is mostly active at weak contacts
(termed weak sliding, wsl), while stronger contacts stay in the sticking regime and sustain
larger friction forces while being less mobilized (termed strong sticking sst). We refer to this
as the ws–rule. Weak and strong contacts are defined relative to the average normal force at
each timestep;

f ∗ = fn/〈 fn〉< 1 (3.22)

are termed weak and

f ∗ = fn/〈 fn〉> 1 (3.23)

are termed strong [147], with dominating sliding and sticking, respectively.

As we will see shortly, we find that this friction mobilization rule may not strictly hold in
certain cases, as there may be a considerable number of weak contacts with friction not fully
mobilized (termed weak sticking, wst), as well as strong contacts fully mobilized (termed
strong sliding, sst).

As representative examples, in Fig. 3.10, we track two different contacting pairs during
uniaxial loading and unloading of the system with µ = 0.1 and study the force intensity and
friction mobilization as they evolve as function of the dimensionless time τ . For the first
contact pair shown in Fig. 3.10a, during the first stages of loading, the contact is weak since
f ∗ < 1; friction is fully mobilized and sliding occurs at the contact, i.e. weak contacts tend
to full friction mobilization. For a short period at τ ≈ 0.2, the contact becomes stronger and
ft/µ fn correspondingly reduces (with strong fluctuations) indicating a strong contact where
sticking predominates. At τ ≈ 0.36, the contact between this particle pair is lost (opened) and
is only recovered at τ ≈ 0.7, where it can again be classified as weak sliding (wsl) contact.
As the end of the compression cycle is reached, the contact intensity increases and ft/µ fn

decreases, with strong fluctuations again, and sometimes sliding. In general, the ws–rule
is mostly true for this contact pair except during the transition from weak to strong where
some fluctuations in ft/µ fn can be seen, transitions from sliding to sticking can happen for
weak contacts (wst) well below f ∗ = 1 during increase of f ∗, but also sliding can happen for
strong contacts (ssl).

The second contact pair shown in Fig. 3.10b is even more interesting. Like the first particle
pair, the second pair also begin as a weak sliding contact and f ∗ grows until τ ≈ 0.15, where



3.4 Results and Observations 75

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

τ

fn/<fn> ft/µfn

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

τ

fn/<fn> ft/µfn

(b)

Figure 3.10: Tracking ft/µ fn and f ∗ = fn/〈 fn〉 for two single particle pairs randomly se-
lected from the ensemble during compression and decompression where τ is the dimension-
less time. (a) Particle pair 1 (b) Particle pair 2.

it becomes strong. Interestingly, while the contact remains very strong for almost all of the
loading–unloading cycle, friction is highly mobilized ft/µ fn remains close to 1.

Since studying just two contact pairs within an ensemble containing tens of thousands of
contacts provides very little information, we first extract the total fraction of weak and strong
contacts in the system. In Fig. 3.11a, we plot the total proportion of weak contacts with
reference to the total number of contacts for the different friction coefficients (which was
studied in detail in Refs. [60, 79] so that those data are not shown here). Surprisingly, as
with the orientation of the largest eigenvalue of fabric for weak and strong forces plotted in
Fig. 3.7, we see a clear difference between the fraction of weak and strong contacts. In the
following, we will discuss in detail the observations for weak contacts – which have opposite
trends as the observations for strong contacts.

The first observation from Fig. 3.11a is that a greater fraction (over 50%) of the contacts in
the respective systems are weak – an indication that fewer contacts carry a larger than aver-
age proportion of the load in the system, which is due to the shape of the force probability
density function P( f ∗), see Section 3.4.5. Secondly, for systems with lower friction, the
fraction of weak contacts at the beginning of the loading cycle is significantly higher than
for higher friction, meaning that the load is more evenly (not exactly proportionally) dis-
tributed between weak and strong contacts for systems with higher friction coefficient. With
increasing loading, while the total number Ctot strongly increases (not shown), the fraction
of weak contacts decreases for packings with lower friction coefficients, and increases for
those with higher friction. Also, the decrease of weak contacts with increasing loading for
lower friction systems is stronger and occurs earlier than the increase for systems with higher
friction. At maximum loading τ = 0.5, the proportion of weak contacts are close for all fric-
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Figure 3.11: Proportion of (a) weak contacts (c) sliding contacts with respect to the total
number of contacts during uniaxial loading- and unloading-cycle for different friction coef-
ficients.

tion coefficients with slightly higher fraction for the highest friction coefficients µ = 0.5
and 1.0. This observation, that the packings with higher friction behave in a qualitatively
different fashion, is consistent with the earlier observation in Fig.3.7b, where the difference
in orientation of strong/weak contacts for low/high friction coefficients can be seen too.

It is surprising that the fractions of weak contacts are close for systems with lower friction
and evolve in a similar (almost symmetric) fashion during loading and unloading. For µ =

0.01 and 0.05, the fractions of weak contacts at the end of unloading are slightly lower than
at the beginning of loading. With increasing friction, the fractions of weak contacts at the
end of unloading are higher than at the beginning of loading; the anti-symmetry between the
loading and unloading phases is more visible for µ ≥ 0.1.

To evaluate the proportion of weak and strong contacts contributing to sliding and sticking at
contacts, we plot in Fig. 3.12, the number of weak sliding (∑wsl) and strong sticking (∑sst)
contacts with respect to the the total weak (∑w) and strong (∑s) contacts, respectively.
From Fig. 3.12a, the fraction of weak sliding contacts grows during loading and reaches a
peak before it begins to decrease towards zero as maximum loading (τ = 0.5) is approached.
The initial growth rate of the weak sliding contacts and the peak reached decreases with
increasing friction but all approach zero at τ = 0.5 because the deformation rate decreases to
zero before reversal. During unloading, a second growth phase of the weak sliding contacts
is seen and the maximum reached is higher than that reached during loading – thus leading
to a non-symmetry around τ = 0.5. Additionally, only a small proportion (much less than ≈
50%) of the total weak contacts are sliding. This indicates that even though an increase in
the number of weak sliding contacts is seen during loading and unloading, more and more
weak contacts stick ( ft/µ fn < 1) for increasing µ .
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Figure 3.12: Fraction of (a) weak sliding contacts (wsl) and (b) strong sticking contacts (sst)
with respect to the total number of weak (∑w) and strong (∑s) contacts, respectively, during
uniaxial loading- and unloading for different friction coefficients.
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Figure 3.13: Fraction of (a) weak sliding contacts (wsl) and (b) strong sticking contacts (sst)
with respect to the total number of sliding (∑sl) and sticking (∑st) contacts, respectively,
during uniaxial loading- and unloading for different friction coefficients.

In contrast to the weak sliding contacts, the fraction of strong sticking contacts, as presented
in Fig. 3.12b decreases during loading until it reaches a minimum before an increase towards
τ = 0.5 can be seen. The rate of decrease and the minima reached decrease with increasing
friction and the minima are lower during unloading, i.e. all data are non-symmetric around
τ = 0.5.

In Fig. 3.13, we plot the number of weak sliding (∑wsl) and strong sticking (∑sst) contacts
with respect to the total sliding and sticking contacts, respectively. In Fig. 3.13a, we confirm
that a higher proportion (> 0.5) of the sliding contacts are weak [17, 18, 147, 148]. The
proportions of weak sliding contacts for µ = 0.01− 0.3 are almost identical and decrease
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during loading. During unloading, however, the proportions of weak sliding contacts behave
differently with increasing friction. We again observe the non-symmetry of the loading
and unloading data. In Fig. 3.13b, we plot the fraction of strong sticking contacts with
respect to the total sticking contacts. A little less than 50 % of the sticking contacts are
strong. The fractions of strong sticking contacts increase initially during loading and later
decreases as maximum compression is approached. The fraction of strong sticking contacts
show a decreasing trend at τ = 0.5 with increasing µ . During unloading, the fractions of
strong sticking contacts increase and later decrease towards the end of the unloading branch.
With increasing friction, the non-symmetry of the data decreases. For the highest friction
coefficients, the fraction of strong sticking contacts during loading is slightly more than
those present during unloading.

In summary, strong and weak forces have been analyzed along with the level of friction
mobilization. It has been shown that a higher proportion of the total contacts in the system
are weak, irrespective of the friction coefficient. Among these weak contacts, the contacts
which are sliding are less in number compared to the sticking contacts. In contrast, when the
total sliding contacts are considered, a higher proportion of them are weak, as also reported
in earlier literature.

3.4.5 Probability density function

To better understand the relationship between contact forces and the macroscopic stress and
structure, we first study the probability density function of normal contact forces in different
directions [74, 76].

In the following analysis, we will consider the probability distribution of the normal forces
during uniaxial compression with reference to the compressive z−direction and the two lat-
eral x and y−direction. Keeping each direction as reference, we define a cut off χ such
that the contact forces admitted for the probability distribution analysis fulfill the criteria
|n̂c · n̂ε|> χ where n̂c is the normal unit vector of the reference direction and n̂ε is the strain
eigenvector corresponding to a compressive or tensile direction. The strain eigenvector is
fixed due to the deformation mode, but will be different for other test set-ups. In the case
χ = 0, all contact forces in the ensemble will be considered while no contacts exist when
χ = 1. For the present study, we set χ = 0.8 and only note that as χ approaches 1, less data
are available and the noise level increases, but not changing much the following results.

In Fig. 3.14, we plot the normalized probability density of the normal force P( f/〈 fall〉)
against the normalized force f∗ = f/〈 fall〉 for the three reference directions (x, y and z) and
for all contacts. In this case, µ = 0.1 and cut-off χ has been set to 0.8. To allow for com-
parison, the forces have been normalized with the mean of the normal force for all contacts.
As shown in Fig. 3.14a, at τ = 0, the force probabilities from the three reference directions
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Figure 3.14: Normalized probability density of the normal force P( f/〈 fall〉) for the three
reference directions and for all contacts forces plotted against the normalized force f∗ =
f/〈 fall〉 for µ = 0.1 and cut-off χ = 0.8. Three snapshots are shown at (a) initial, τ= 0, (b)
maximum, τ =0.5, and (c) final, τ= 1.0 compression.

and for all contacts are virtually the same evidenced by the apparent collapse of the differ-
ent curves on each other. This is not surprising since the initial state is isotropic and no
direction-dependent deformation has taken place. At maximum compression (in Fig. 3.14b),
a difference between the force distribution in the compression z−direction and the radial x
and y direction is evident. Firstly, we observe that the force probability in the radial direc-
tions (x,y) are close since no active deformation takes place in these directions. Another
observation is that the proportion of weak forces in the radial direction significantly exceeds
those in the compression direction. Also, the mean force in the z−direction is observed to be
higher than in the radial direction. At maximum compression, we observe a wider distribu-
tion in the compressive z− direction compared to the force distribution for all contacts and
the two lateral directions.

The longer tail seen in the force distribution in the z−direction is due to the presence of
stronger forces compared to the other directions. At the end of the decompression cycle,
shown in Fig. 3.14c, we observe that the initial state is not recovered due to the deformation
history of the sample and there is a higher proportion of weak forces in the decompression
z−direction compared to the radial directions.

3.5 Polar Representation

To understand the orientation and arrangement of the contacts over the whole angular spec-
trum during uniaxial deformations, we introduce now the polar representation of contacts,
forces and mobilized friction. For the analysis, we test two different averaging methods,
namely the constant bin width (b) and constant height (h), which give comparable results
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and are shown in detail in Appendix I. In the following, we will use data obtained using the
constant bin width method.

3.5.1 Harmonic approximations

The axial distribution of contact force orientations P(θ), along with the degree of anisotropy
in a granular packing, can be approximated by a Legendre polynomial based on spherical
harmonics of the form Y m

l (θ ,ϕ) [19, 30, 74, 76]. The approximation is simplified by admit-
ting only functions that are consistent with the symmetry of the deformation mode, namely
functions independent with respect to ϕ and periodic as a function of θ . With this criteria,
the two lowest admissible functions are Y 0

0 =1 and Y 0
2 = 3cos2 θ − 1 such that the second

order harmonic representation of contacts is of the form:

P2(θ) = a0[1+ ε(3cos2 θ −1)] (3.24)

with the factor a0 as constant and a unique anisotropy descriptor ε. In our case, due to nor-
malization, a0 ≈ 0.5.. For the uniaxial mode, snapshots of the contact probability density
data are presented in Fig. 3.16a during uniaxial loading and unloading. We observe distri-
butions with two peaks and a dip around π/2 indicating that a higher order approximation
is needed. The higher order needed for the present uniaxial dataset is possibly due to the
peculiarity of the deformation mode. Unlike the triaxial test which involves an active stress
control on the lateral boundaries of the system, the stress on the lateral boundaries of the
uniaxial mode evolve, albeit with smaller magnitude in comparison to the stress in the axial
direction.

Eq. (3.24) can be extended to admit higher order spherical harmonic functions with l =
4,6. For l= 4, Y 0

4 = 35cos4 θ − 30cos2 θ + 3 and for l =6, Y 0
6 = 231cos6 θ − 315cos4 θ +

105cos2 θ −5 all with different prefactors. For a 6th order expansion, the contact distribution
will take the form:

P6(θ) = a0[1+ ε2Y 0
2 + ε4Y 0

4 + ε6Y 0
6 ], (3.25)

where the axial symmetry is implied. Eq. (3.25) introduces now three anisotropy state de-
scriptors εi, with i = 2, 4, 6. Also, Equations (3.24) and (3.25) can be further simplified for
the well defined limits at θ = 0,π/2 and π as shown in Table 3.3.

Different methods of obtaining the anisotropy state descriptors have been attempted in this
study. The details and comparison of the methods are discussed in Appendix II. For all meth-
ods, we consistently observe that the contact distribution is approximated by a sixth order
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θ P2(θ) P6(θ)

θ = 0 a0[1+2ε] a0[1+2ε2 +8ε4 +16ε6]

θ = π/2 a0[1− ε] a0[1− ε2 +3ε4 −5ε6]

θ = π a0[1+2ε] a0[1+2ε2 +8ε4 +16ε6]

Table 3.3: Second and sixth order harmonic expansion of the contact distribution for the
axial direction (compression: θ = 0,π) and the lateral direction (θ = π/2).

polynomial with two peaks and a strong depression at π/2. In the following, as a reference
case, we use the azimuthal fit to the constant probability data discussed in Appendix II.

3.5.2 Discussion of Results

Having established that the contact distribution is approximated by a sixth order distribution
with three anisotropy state descriptors, we compare descriptors ε2, ε4 and ε6 for different
friction coefficients as functions of the deviatoric strain during uniaxial loading and unload-
ing. From Fig. 3.15a, besides a slight increase in the maximum ε2 values between µ = 0 and
0.02, the maximum ε2 value shows a decreasing trend with friction and almost saturates for
the highest friction coefficients. This is consistent with the trend of the maximum deviatoric
fabric shown in Fig. 3.4. Also consistent with the deviatoric fabric evolution during unload-
ing is that the initial state is not recovered. In Fig. 3.15b, beginning from different random
values, ε4 is negative and systematically decreases for all friction coefficients during load-
ing followed by a slight increase during unloading. The descriptor ε6 is distributed around
zero and remains fairly constant during loading and unloading but has some variation within
either deformation.

In addition to the contact probabilities in Fig. 3.16a, we now study the distribution for other
quantities. The polar distributions of the normal force shown in Fig. 3.16b during loading
displays a high and increasing normal force along the compression (axial 0◦) direction com-
pared to the lateral (π/2) direction reaching their maximum at τ = 0.5. After strain reversal
(unloading), the normal force in the tensile (extension) direction is reduced until the force
in the lateral (π/2) direction becomes higher. Interestingly, in contrast to P(θ), the distribu-
tion of the normal forces fn(θ) is well described by a second-order harmonic approximation
similar to Eq. (3.24) during loading and unloading.

For the distribution of the tangential force and mobilized friction, shown respectively in
Fig. 3.16c and 3.16d, we observe a distribution similar to that of the contacts shown in Fig.
(3.19), with two strong peaks and a depression around π/2. This indicates the need for a
higher order tensorial descriptor also for these two quantities that appear to be strongly re-
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Figure 3.15: Comparison of the 6th order anisotropy state descriptors (a) ε2 (b) ε4 (c) ε6 as
a function of the deviatoric strain for different friction coefficients during loading (left) and
unloading (right).

lated with the behavior of the contact network, rather than with the normal forces. Similar
to fn(θ), the distribution of the tangential force ft(θ) also shows an increase along the com-
pression direction followed by a decrease during decompression. We also find that during
loading, the mobilized friction increases along the tensile (π/2) direction while remaining
fairly stable and flat in the lateral direction. After strain reversal, the mobilized friction in-
creases again along the tensile direction (which is now 0◦). Coupling these observations to
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Figure 3.16: Snapshots of the polar distribution of the (a) contacts P6(θ) (b) normal force
fn(θ) (c) tangential force ft(θ) (d) mobilized friction ψt(θ) at different dimensionless time
(τ) during uniaxial loading and unloading for friction µ = 0.1.
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Figure 3.17: Polar distribution of the (a) contacts P6(θ) (b) normal force fn(θ) (c) tangential
force ft(θ) (d) mobilized friction ψt(θ) at dimensionless time (τ = 0.5) for friction µ = 0.1.

the normal force distribution, we find that friction is less mobilized along the direction where
stronger forces exist (compression) and more mobilized along the direction where weaker
forces (tension) are seen. Similar to the directional probability distribution of the normal
force presented in Section 3.4.5, the initial state (at τ = 0) which is mostly isotropic is not
recovered at the end of unloading (τ = 1). As a complement, in Fig. 3.17, we show the
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pictorial representation of the distributions of contacts, normal force, tangential force and
mobilized friction at τ =0.5 for the same dataset shown in Fig. 3.16, clearly visualizing the
4th and 6th harmonic contributions in 3.17a, 3.17c, and 3.17d.

3.6 Summary and Outlook

The discrete element method has been used to investigate the microscopic and macroscopic
response of frictional, polydisperse granular assemblies under uniaxial loading and unload-
ing paths. The main goal was to investigate the effects of contact friction on the force and
contact network orientation and distribution and to relate this to the evolution of structural
anisotropy – which is the key ingredient that quantifies the response of granular materials un-
der non-isotropic loading conditions. Since the uniaxial test is widely realizable in laboratory
experiments using various geometries, our findings should be relevant for both experimental
and numerical researchers interested in the behavior of packings under different deformation
and stress conditions. The present study covers a wide range of friction coefficients for sys-
tems that are already “jammed”. Since the boundary walls are periodic, the effects of walls
and system geometry should be minimal, which allows to understand the bulk behavior with
rather few particles (N ≈ 10,000).

As preparation procedure, in order to obtain homogeneous initial isotropic states, we at-
tempted several preparation protocols and found that the methods lead to mostly identical
initial states even though care has to been taken in the presence of friction which leads to
protocol dependence. The evolution of the deviatoric stress ratio and the deviatoric fabric,
as functions of the deviatoric strain, in the presence of friction, are different with respect
to each other. Even though the contact model is linear, both quantities show a non-linear
behavior due to the structural changes during loading and unloading. For the configurations
with lower friction, a saturation in the deviatoric stress ratio during loading was observed.
However, when friction is increased, a clear saturation of the deviatoric stress ratio is not
seen within the same maximum strain. During loading, the deviatoric fabric, which quan-
tifies the structural anisotropy reaches a maximum before maximum εdev independent of µ ,
and then decreases as the maximum strain is approached. Interestingly for the higher friction
coefficients, a second increase was observed. The peak deviatoric stress ratio smax

dev reached
during uniaxial loading increases up to µ = 0.42 and subsequently decreases for higher fric-
tion to µ ≈ 0.33. The peak deviatoric fabric reached Fmax

dev largely shows a decreasing trend
with increasing friction and eventually saturates at Fmax

dev ≈ 0.025.

The orientation of the largest stress eigenvector θ s
1 , during loading with non-systematic rates

aligns to 0◦, i.e. the compression direction. When strain is reversed, we observe that θ s
1

remains oriented along the vertical direction before reverting to 90◦. The deviatoric strain
at which the reversal happens is observed to decrease with increasing friction. On the other
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hand, the orientation of the largest fabric eigenvector θ f
1 shows a strong dependence on

friction. For systems with low friction, θ f
1 aligns with the compressive direction during

loading while the configurations with high friction begin to align perpendicular to the axial
direction as maximum deviatoric strain is approached.

The deviatoric strains at which the stress tensor changes, i.e. sdev = 0, θ s
1 = 45◦ and stress

shape factor Λσ = 0 (zero), are identical to each other and show a decreasing dependence
on friction, with εdev ≈ 0.01 for µ = 1. For quantities relating to the microstructure, e.g. the
strain at which, e.g., Fdev = 0, is different from the stress.

In comparison to other deformation protocols, we find while the coordination number is
found to decrease with increasing triaxial loading (or increasing deviatoric strain) [15, 123],
we find that the coordination number under increases with strain under uniaxial compres-
sion. Under triaxial loading, the number of contacts is found to increase in the the vertical
(compression) direction while decreasing/dilating in the horizontal (fixed stress) direction
[74]. In the uniaxial mode, the number of contacts is found to increase in both the horizontal
and vertical directions. Also, the peak deviatoric fabric is found to increase with increasing
friction under triaxial loading [15, 123]. In the uniaxial mode, the peak deviatoric fabric
decreases with increasing friction.

As reported in previous studies [125], we also confirm that the orientation of the eigenvector
of stress corresponding to the compression direction for strong (forces greater than average)
and weak (forces less than average) contacts are orthogonal with respect to each other. As
a consequence of the definition of the stress tensor, the effects of strong contacts are more
dominant for stress. For fabric however, strong contacts are more dominant when friction is
low while the weak contacts are found to play a bigger role for stronger friction, causing the
qualitatively different behavior.

In terms of the proportion of contacts, we confirm that a larger proportion of the total contacts
are weak while the proportion of sliding contacts out of the total contacts are less than 45%.
More importantly, we find less than 50% weak sliding contacts with respect to the total
number of weak contacts. On the other hand, the proportion of weak sliding contacts with
respect to the total sliding contacts are significantly higher. The latter is in agreement with
earlier studies that show that friction is more highly mobilized in weak contacts [147, 148].

As a consequence of the isotropic initial configuration, we find that the directional distribu-
tion of normal forces at the initial state are isotropic for all µ . At maximum compression,
we observe a higher mean, a lower peak and a wider tail of the force distribution in the com-
pressive z−direction, while the distributions in the two lateral directions remain identical,
narrower, with a shorter tail. Due to history, after uniaxial compression and tension, the
initial states are not recovered when the original state, εdev =0 is reached. Forces are weaker
and one has less contacts in the tensile z− direction.
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We have also presented two averaging methods for the polar representation of contacts using
the constant azimuthal and constant height methods. For our data, a second order tensor is
insufficient to describe the structural anisotropy. We find a sixth order distribution with two
peaks leading to three anisotropy state descriptors (ε2, ε4 and ε6).

The second harmonic ε2 is close to Fs
dev/

√
3, so that for different friction, the maximum ε2

values behave in a similar fashion to the maximum deviatoric fabric. A second order tenso-
rial descriptor is sufficient for the normal force but the tangential force and mobilized friction
show a similar behavior to the contact distribution – requiring a higher order harmonic ap-
proximation due to the two strong peaks at π/4 and the dip around π/2.

Future studies should concern exploring higher order tensors and the validity of the findings
for other non-isotropic deformation modes (e.g. under simple and pure shear or triaxial
tests). Furthermore, recent experiments [29] will allow to validate the present observations
from DEM. The final goal is to develop constitutive models of particulate matter based on
the microscopic insights gained.

Appendix I: Averaging Methods

In this appendix, we describe the two averaging methods namely the constant azimuthal
angle method (b) and the constant height method (h).

3..1 Constant azimuthal angle (bin width) method

Given the three normal unit vector components n̂x, n̂y, and n̂z for each contact pair, to cal-
culate the azimuthal angle, one needs the polar orientation arccos(n̂z) of the normal unit
vector in the direction relative to the active (axial) direction as schematically described in
Fig. 3.18a. We average over the spherical azimuthal (vs. polar) (r,ϕ) coordinate and then
distribute the vectors, based on their orientation into bins of width ∆θ .

The fraction of contacts in a single bin is defined as φ θ = Cθ/Ctot , where Cθ = ∑C∈b 1
and b ∈ [θ − ∆θ/2;θ + ∆θ/2]. Furthermore, φ θ is normalized with the surface of the
spherical annulus for each b by the factor ∆θ sinθ to yield the azimuthal contact proba-
bility density P(θ) = (φ θ/∆θ sinθ) such that

∫ π
0 P(θ)sinθ∆θ = 1. 2 The polar distribu-

tions of the normal forces, tangential forces and mobilized friction are given respectively,
by fn(θ) = (∑C∈b fn)/(Cθ ), ft(θ) = (∑C∈b ft)/(Cθ ) and ψt(θ) = (∑C∈b( ft/µ fn))/(Cθ ),
where the normalization with the number of contacts in each bin has been used.

2An alternative to the ∆θ sinθ normalization is a discrete formulation cosθ f − cosθi where θi = θ −∆θ/2 and
θ f = θ +∆θ/2.
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(a) (b)

Figure 3.18: Schematic representation of the angles of the contact unit vector (green arrow)
for (a) the constant bin width ∆θ method and (b) the constant height method. The angles θ
and ϕ are the azimuthal angle and polar angle of the system, respectively.

3..2 Constant height method

In the constant height method, we sort the vectors based on their orientations into n azimuthal
spherical segments with equal heights ∆h = cosθ2 − cosθ1 as shown schematically in Fig
3.18b. Given the polar radius r, and the height from the center of each segment to the middle
of the sphere h, the polar angle θ of each vector is calculated for every n̂z ∈ h. The fraction
of contacts within each segment range is then given as φ h = Ch/Ctot , where Ch = ∑C∈h 1
and h ∈ [h−∆h/2;h+∆h/2]. With −1 ≤ h ≤ 1, specifying the number of bins Mh (e.g.
Mh = 20), allows to compute all h−intervals and boundaries.

Other quantities, including the normal and tangential forces and mobilized friction can be
computed similar to the constant bin width method, just by summation and normalization
with Ch instead of Cθ .

Appendix II: Fit Methods

In the following, we describe different methods of obtaining the anisotropy state descriptors
using the data obtained using the constant bin width or the constant height methods.

3..3 Method 1: Fit azimuthal contact probability density P(θ)= (φ θ/∆θ sinθ)

In the first case, we fit the azimuthal contact probability density data P(θ) = (φ θ/∆θ sinθ)
using the harmonic equation (3.25). Note that for the special case of uniaxial compression,
Eq. (3.24) does not lead to consistent results across the methods and is thus disregarded.
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Reference Mode Contact Harmonic function

probability

P(θ)

1. Azema et al. [19] triaxial second order 1
4π [1+ ε(3cos2 θ −1)]

2. Deng and particle Settling higher order –

Dave [35] in a cylindrical

geometry

3. Ishibashi et al [64] triaxial second order K(1− ε+3εcos2 θ)
4. Jenkins [66] triaxial second order C

4π [(1− ε)+3εcos2 θ ]
5. Silbert et al. [146] 3D particle settling higher order –

on a flat base

6. Staron and 2D avalanche higher order –

Radjai [147]

Table 3.4: Selected references on the orientational contact distribution for various modes.
For an isotropic sample, K =C/4π and C is the coordination number.

However, as shown in different literature especially under triaxial compression, the second
order approximation P2(θ) is sufficient to fully capture the contact probability density data.
Exemplary (not exhaustive) references of works where forms of Eq. (3.24) as applied to
various triaxial tests are presented in table 3.4. Other experimental and numerical set-ups
are also shown. Note that in these cases, the orientational contact distribution obtained is not
of second order and are not fitted.

3..4 Method 2: Fit to the constant height data

In the second case, we directly fit the fraction of contacts φ h, generated using the constant
height method such that the bad statistics at the poles are not over-exposed as in Method 1.
In this case, we set the zero order parameter a0 = 0.5.

3..5 Method 3: Fit to fraction of contacts φ θ with a ∆θ sinθ scaling

In the third case, we fit the fraction of contacts φ θ data directly using harmonic equation
(3.24) or (3.25) multiplied by ∆θ sinθ . The original signal is a first order sinus, i.e. less
weighting is given to the areas close to the poles such that their larger statistical errors are
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Figure 3.19: 6th Order Fits of methods 1 and 2 and 3 to the P(θ) = (φ θ/∆θ sinθ) data
at dimensionless time τ = 0.076. The solid red symbols represent data obtained using the
constant height method (h), while the triangles are those obtained with the constant bin width
method (b).
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Figure 3.20: Evolution of the anisotropy state descriptors ε2, ε4 and ε6 of the 6th order
expansion Eq. (3.25) as function of deviatoric strain using the three methods for µ = 0.

In Fig. 3.19, we show the sixth order harmonic fits using methods 1 (M1), 2 (M2) and 3
(M3) to the constant bin width (b) and constant height (h) data for µ = 0. For each method,
three anisotropy state descriptors, namely ε2, ε4 and ε6 are obtained. Here, as an example,
we show a single snapshot, namely at τ = 0.076. Note that the original data is from 0 to
π/2 and the extension from π/2 to π is only a mirror image. Focusing on the numerical data
(symbols), we observe two strong peaks at about π/2±π/4 and a local maximum at π/2.
The twin peaks indicate that a distribution higher than second order is needed. The data are
well captured by a sixth order approximation P6(θ) (solid lines). Comparing the b and h,
we observe stronger scatter at the boundaries for the b data due to the weak statistics at the
extreme θ values (0 and π). For the fits, we observe that M1, M2 ad M3 are close and the
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major differences between them are most pronounced at both peaks and extrema.

In Fig. 3.20, we plot the evolution of the anisotropy state descriptors ε2, ε4 and ε6 as functions
of the deviatoric strain and compare the three methods. From Fig. 3.20a, during loading,
ε2 grows and reaches a maximum at εdev ≈ 0.025 from where it slightly decreases. After
maximum loading, ε2 decreases (taking well into account the sign change) and becomes
increasingly negative until it reaches ε2 ≈−0.055 at complete unloading (τ=1). Comparing
the three methods, M3 is slightly off (higher) during loading while M1 is also slightly off
at the end of unloading. Interestingly, we find that the evolution of ε2 is similar to the
simple definition of the deviatoric fabric in Eq. (3.19) involving a difference between the
fabric component of the axial direction and the average of the components of the two lateral
components. Note that the definition of the fabric used here is based on Eq. (3.16) which
considers only the contacts and not the dependence on the volume fraction. We note that the
magnitude of ε2 is proportional to Fdev/

√
3 (black diamonds in Fig. 3.20a) with M3 slightly

off during loading and the unloading data also showing slight variations. From Fig. 3.20b and
3.20c, the values of ε4 and ε6 appear small compared to ε2 but must not be neglected. When
ε2 is taken as the structural anisotropy state descriptor, it much resembles Fdev. However, the
higher order anisotropy is quantified by the ε4 (which is negative) and ε6 (which is strongly
fluctuating and different for different methods).



Chapter 4

Slow relaxation behaviour of
cohesive powders*

Abstract

We present findings from uniaxial (oedometric) compression tests on cohesive granu-
lar materials. Experimental results are presented for the compressibility, tested with
two devices, the FT4 Powder Rheometer and the custom made lambdameter. We fo-
cus on the stress response and the slow relaxation behavior of the cohesive samples
tested. After compression, at constant volume, the decrease in stress is found to follow
a power law for cohesive powders, consistently for the different testing equipments.
A simple model is proposed for stress relaxation in cohesive powders, which accounts
for the change of force and includes a response timescale along with a second, di-
mensionless stress relaxation parameter. The reported observations will be useful for
both the improvement of discrete element simulations and constitutive macroscopic
models relating to cohesive granular materials.

*Based on O. I. Imole, M. Paulick, M. Morgeneyer, V. Magnanimo, E. C. Montes, M. Ramaioli, A. Kwade, and
S. Luding. An experimental and theoretical investigation of the time-dependent relaxation behavior of cohesive
powders. In preparation, 2014
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4.1 Introduction and Background

Granular materials are omnipresent in nature and widely used in various industries rang-
ing from food, pharmaceutical, agriculture and mining – among others. In many granular
systems, interesting phenomena like dilatancy, anisotropy, shear-band localization, history-
dependence, jamming and yield have attracted significant scientific interest over the past
decade [10, 62, 92]. The bulk behavior of these materials depends on the behavior of their
constituents (particles) interacting through contact forces. To understand their deformation
behavior, various laboratory element tests can be performed [111, 140]. Element tests are
(ideally homogeneous) macroscopic tests in which one can control the stress and/or strain
path. Such macroscopic experiments are important ingredients in developing and calibrat-
ing constitutive relations and they complement numerical investigations of the behavior of
granular materials, e.g. with the discrete element method [92]. Different element test ex-
periments on packings of bulk solids have been realized experimentally in the biaxial box
[112, 113, 130] while other deformations modes, namely uniaxial and volume conserving
shear have also been reported [122, 131, 177]. Additionally, element tests with more com-
plex, non-commercial testers have been reported in literature [22, 54, 56, 65], even though
their applications are restricted for example to the testing of non-industrially relevant mate-
rials at very high consolidating stresses.

The testing and characterization of dry, non-sticky powders is well established. For exam-
ple, rotating drum experiments to determine the dynamic angle of repose have been studied
extensively as a means to characterize non-cohesive powders [24, 31, 127]. The main chal-
lenge comes when the powders are sticky, cohesive and less flowable like those relevant in
the food industry. For these powders, dynamic tests are difficult to perform due to contact
adhesion and clump formation. One possibility to overcome this challenge is to perform
confined quasi-static tests at higher consolidation stresses.

One element test which can easily be realized (experimentally or numerically) is the uniaxial
(or oedometric) compression (in a cylindrical or box geometry) involving deformation of a
bulk sample in one direction, while the lateral boundaries of the system are fixed [21, 60,
62, 63]. This test is particularly suited for determining the poroelastic properties of granular
materials.While most uniaxial tests on dry bulk solids have been devoted to studying the
relationship between pressure and density and the bulk long time consolidation behavior,
the dynamics of the time-dependent phenomena has been less studied in experimental and
practical applications [179]. For example, in standard shear testers like the Jenike shear
tester [70] and the Schulze shear tester [137], during yield stress measurements, the focus
is usually not on the relaxation behavior. Considerable stress-relaxation of bulk materials
can even disturb yield stress measurements. Additionally, most cohesive contact models
[92, 161, 163, 168] used in discrete element simulation of granular materials do not account
for the time dependent relaxation behavior, similar to those observed in viscoelastic materials
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such as polymers [44, 46, 110], gels [32, 174], in dielectric relaxation [68, 69] and in the
attenuation of seismic waves [71]. For the improvement of both discrete element contact
models and constitutive macro models relating to cohesive powders, it is necessary to have
an experimental and theoretical understanding of the stress response of cohesive materials
under different loading conditions. The creep-like response at constant strain is the focus of
this study.

For viscoelastic materials, the relaxation has been reported to imply a memory effect and can
be described using convolution integrals transformed to their fractional form and containing
a relaxation modulus that describes the response of the system to stress [135]. For these
materials, phenomenological models involving the combination of springs and dashpots,
such as the Maxwell, Zener, anti-Zener, Kelvin-Voigt, and the Poynting-Thomson models
have been developed (see Refs. [16, 20, 73, 103] and references therein). Even though stress
relaxation has also been observed in granular media [21, 137, 179], not much work has been
done in providing a theoretical description of this phenomenon for granular materials.

In the present study, using two simple testers, we perform oedometric compression tests with
the main goal of investigating the relaxation behavior of industrial powders at different stress
levels under constant strain (volume). Another goal is to provide a quantitative comparison
between the relaxation behavior as observed in two testers, namely the lambdameter and
the FT4 Rheometer, in order to confirm that this behavior occurs irrespective of the device
used. The lambdameter has the peculiar advantage that both vertical and horizontal stress
can be obtained simultaneously – unlike the FT4 Rheometer and other simpler oedometric
test setups. Finally, we will propose a simple model for stress relaxation that captures the
relaxation of cohesive powders at different compaction levels.

The work is structured as follows. In section 4.2, we provide a characterization of the ma-
terial sample, and in section 4.3 the description of the experimental devices and the test
protocol. In section 4.4, we present the theoretical model for stress relaxation. Section 4.5 is
devoted to the discussion of experimental and theoretical results, while the conclusions and
outlook are presented in section 4.6.

4.2 Sample Description and Material Characterization

In this section, we provide a brief description of the experimental samples along with their
material properties. In order to investigate the relaxation behavior, two cohesive reference
samples were chosen, namely cocoa powder and Eskal 500 limestone. The choice can be
based on several selection factors, among which are the suitability for different industrial
applications, ability to withstand repeated loading without changes in the property of the
sample and long term availability/storage of the samples. The Eskal limestone has been used
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extensively as reference cohesive powder, and is made available in convenient amounts in a
collaborative European project [154] and www.pardem.eu. Scanning Electron Microscope
(SEM) images obtained using a Hitachi TM 1000 Instrument (Hitachi Ltd, Japan) for both
powders are displayed in Fig. 4.1.

(a) (b)

Figure 4.1: Scanning electron microscope images of the cohesive samples (a) Cocoa with
12% fat content (b) Eskal 500 limestone powder. Note the different scales at the bottom
right.

The particle size distributions and specific surface area are measured by the dry dispersion
module of the Malvern Mastersizer (Malvern Instruments Ltd., UK) while the particle den-
sity is measured by helium pycnometry (Accupyc, Micromeritics, USA). The water uptake
is given as the ratio of the difference between the original and dried mass (after 24 hours
in a oven at 100◦C) and the original sample mass. The bulk cohesion is the limiting value
of shear stress for which the normal stress is equal to zero and is determined from shear
experiments with a ring shear tester (RST-01.pc by Dietmar Schulze Schüttgutmesstechnik,
Germany).

A more specific description of the experimental samples are provided in the following sec-
tion.

4.2.1 Cocoa Powder

One cohesive sample used in this work is cocoa powder with 12% fat content - which is a
representative sample for the material used as basic ingredient in the production of chocolate
and related beverages. The material properties including size distribution, particle density
and moisture content are shown in Table 4.1 along with a scanning electron microscope vi-
sualization of its morphology in Fig. 4.1a. We note that even though the powder is relatively
hygroscopic, its humidity does not change significantly during the experiments. Addition-
ally, the experiments were performed over a relatively short period under ambient conditions
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Property Unit Cocoa(12%) Limestone
Size distribution D10 µm 2.14 1.34

D50 µm 9.01 4.37

D90 µm 37.40 8.24

Particle Density [kg/m3] 1509 2710

Water absorption % < 15% < 0.2%

Cohesion (as function σc kPa 1.8 at 7.4 kPa 1.3 at 4.6 kPa

of vertical stress) 9.6 at 41.8 kPa 3.3 at 12.7 kPa

Table 4.1: Material parameters of the experimental samples. Water absorption and cohesion
are defined in the main text.

and samples are sealed in air-tight bags when not in use to minimize effects that could arise
due to changes in the product humidity.

4.2.2 Eskal 500 Limestone

The other industrial sample powder used in this work is Eskal 500 limestone powder (KSL
Staubtechnik, Germany). Eskal 500 limestone is a commercially available powder that has
wide applications in architecture, road construction, blast furnaces, medicines and cosmetics.
It is also considered a suitable reference material for calibration, measurements and standard
testing [42, 179]. One advantage of this material over other grades is its inability to absorb
humidity from air. During long term storage under stress, Eskal 500 limestone shows no
degradation as confirmed by repeatable results from experiments carried out under different
conditions. The material properties and SEM morphology are shown in Table 4.1 and Fig.
4.1b.

Comparing the physical features of the powders, cocoa powder is brownish while Eskal
500 is whitish in color. Secondly, while cocoa powder contains some 12% fat, Eskal 500
limestone does not. As we will see shortly, this distinction is important for a comparison of
their relaxation behavior.

4.3 Experimental Set-up

In this section, we describe the Lambdameter and FT4 Powder Rheometer along with the
protocols used in performing the tests.
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4.3.1 FT4 Powder Rheometer

The first experimental equipment used in this work is the FT4 powder rheometer (Freeman
technology Ltd. UK), illustrated in Fig. 4.2a. Standard accessories for the compressibility
test include the 50mm diameter blade for conditioning, the vented piston for compression
and the 50mm height by 50mm diameter borosilicate test vessel. One advantage of the
commercial FT4 rheometer is the automated nature of the test procedure requiring minimal
operator intervention.

(a) (b) (c)

Figure 4.2: (a) The FT4 Powder Rheometer and (b) The Lambdameter apparatus used for
the experimental tests. (c) A schematic representation of the Lambdameter test set-up.

The compression test sequence is as follows. The sample is placed in the test vessel (see
Fig. 4.3a) after the tare weight of the vessel has been obtained. The weight of the powder
is measured and the conditioning cycle is initiated. The conditioning procedure involves the
gentle movement of the conditioning blade into the test sample to gently disturb the powder
bed for a user pre-defined number of cycles. This action creates a uniform, lightly packed test
sample that can be readily reproduced. In this study, we allow three pre-conditioning cycles
before the uniaxial compression tests are carried out. Subsequently, the blade is replaced
with a vented piston, which incorporates a stainless steel mesh to allow the entrained air in
the powder to escape uniformly across the surface of the powder bed. The vessel assembly is
split (or leveled) to provide precise volume measurement and the powder mass is recalculated
after splitting. The compression test then begins with the distance travelled by the piston
measured for each applied normal stress.
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(a) (b)

Figure 4.3: Schematic representation showing the difference in the cell design of (a) the FT4
Rheometer with aspect ratio α = 1 and (b) the lambdameter with α = 0.4.

4.3.2 The Lambdameter

The custom made lambdameter represents a horizontal slice of a silo and is primarily used
in obtaining the lateral stress ratio [82–84] – one of the most important parameters in the
calculation of stress distributions in silos for reliable design [139, 140]. The lambdameter
used was designed at the Institute of Particle Technology (iPAT), Technical University of
Braunschweig and is shown schematically in Fig. 4.2b and 4.2c. The lambdameter measures
the vertical (axial) and horizontal (radial) stress of a powder under compaction. The hori-
zontal stress is measured through the installation of pressure cells along the periphery of the
cylindrical mould. The measuring ring of the Lambdameter is made from stainless steel with
a very smooth surface and the dimensions are listed in Table 4.2. To allow for the automation
of the compression test, similar to that of the FT4, the lambdameter set-up is installed into
a Zwick Z010 (Zwick/Roell, Zwick GmbH & Co. KG, Germany) uniaxial testing device as
shown in Fig. 4.2b.

The experimental procedure is as follows. The experimental sample is first sieved to prevent
formation and a funnel is used to channel the sample into the cylindrical mould (see Fig.
4.3b) until it is completely full. Using a smooth object, excess material is removed without
allowing for a compaction of the sample in the mould. Next, the top plate (1.48kg) and the
top hanger (2.68kg) are carefully placed on the mould. Subsequently, additional weights are
carefully placed on the hanger in successive steps until the target pressure is reached. The
horizontal and vertical stresses along with the position of the top punch at a given time are
recorded with a data logger on a computer connected to the experimental set-up.

A detailed comparison between the main features of both testers is shown in Table 4.2. We
only note that the FT4 is more automated and requires less human intervention compared
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Property FT4 Rheometer Lambdameter

Cell volume 8.5 ×10−5 m3 1.046 ×10−3 m3

Cell shape cylindrical cylindrical

Area (diameter (D) × height (H)) 0.05m × 0.05 m 0.149 m × 0.06 m

Aspect ratio α = H/D 1 0.40

Driving mode Motor control Automated

Test control Built in test program on PC Labview

Sample Weighting on-board offline

Compression device vented piston dead weights

Driving velocity variable variable

Maximum stress 22kPa 69.96kPa

Sample pre-conditioning Automatic Manual

Test duration variable variable

Stress measurement vertical stress horizontal and
(direction) vertical stress

Table 4.2: Comparison of the FT4 rheometer and the lambdameter specifications.

to the Lambdameter. On the other hand, in contrast to the FT4 Rheometer, higher volu-
metric strains and axial stresses can be reached with the Lambdameter. Additionally, the
lambdameter also provides for the measurement of the horizontal (lateral) stress.

4.3.3 Test Protocols

In order to investigate the relaxation behavior of the different experimental samples under
uniaxial loading, different staged test protocols are employed, see Table 4.3. The uniax-
ial loading is done in steps of 5kPa with intermediate relaxation between each step. The
maximum stress reached for experiments with the FT4 Rheometer is 22kPa while for the
Lambdameter, we reach a higher maximum stress of 25kPa. We performed more extensive
experiments with the Lambdameter set-up due to its versatility in terms of the maximum
stress reached and the horizontal stress measurement. We compare in some cases the stress-
relaxation behavior under uniaxial loading for both equipments.

In general, we study the effects of strain rate, relaxation time duration, and the stress at which
the relaxation is initiated along the loading path. We measure the vertical stress as function
of the volumetric strain i.e. vertical strain since we are in an oedometric set-up.
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protocols Velocity No. of Vertical Relaxation FT4 Lambda-
[mm/s] steps stress [kPa] time [mins] meter

Protocol 1 0.05 5 5 - 10 - 15 - 20 - 25 5 x x

Protocol 2 0.05 5 5 - 10 - 15 - 20 - 25 10 x

Protocol 3 0.05 5 5 - 10 - 15 - 20 - 25 20 x

Protocol 4 0.05 5 5 - 10 - 15 - 20 - 25 30 x

Protocol 5 0.01 5 5 - 10 - 15 - 20 - 25 10 x x

Protocol 6 0.3 5 5 - 10 - 15 - 20 - 25 10 x

Protocol 7 0.7 5 5 - 10 - 15 - 20 - 25 10 x

Protocol 8 1.0 5 5 - 10 - 15 - 20 - 25 10 x

Protocol 9 1.3 5 5 - 10 - 15 - 20 - 25 10 x

Table 4.3: Table of experimental protocols performed. Note that for experiments with the
FT4 Rheometer, the maximum stress reached is 22kPa. Protocols 1–4 represent a variation
of the relaxation time, while 5–9 are different compression rates. Crosses indicate the device
used in performing the experiment.

4.4 Stress Relaxation Theory

Assuming a force f = σvA that acts on the top plate under uniaxial loading, the change
of force f should be stronger for stronger applied force due to a micro- or nano-scopic or
change of the contact structure. The model evolution relation is:

∂
∂ t

f =− C
t0 + t

f , (4.1)

where C is a dimensionless proportionality constant and t0 is a typical response time. The
time in the denominator on the r.h.s. accounts for the fact that the change of force decays
with time (extremely) slowly. For organic materials like coffee and cocoa, the initial grains
contain liquid and solid ingredients. Due to a strong force, the liquid is squeezed out of the
solid matrix – locally at the contact during deformation. The terminal state would be a state
where all liquid content has been squeezed out, however, since pores exist on many scales,
this can take extremely long, i.e. much longer than the experiments presented here.

The change of force is also proportional to the force itself, since at zero force, there is no rea-
son to assume further force changes. The constant C determines the magnitude of the force
change and contains information about the microscopic constitution of the material. Hard
materials with low liquid content are described by large C values, whereas soft materials
with high liquid content correspond to small C values.
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Assuming that the force is raised from zero to a value f max instantaneously the response of
the system is then given by the solution of the above equation with initial force f max and
starting from time t=0, so that:

ln
(

f
f max

)
=
∫ f

f max

∂ f ′

f ′
=
∫ t

0
− C

t0 + t ′
∂ t ′ =−C ln(t0+ t)+C ln t0 = ln

(
t0 + t

t0

)−C

(4.2)

which can be further simplified to:

1− f
f max = 1−

(
t0 + t

t0

)−C

= 1−
(

1+
t
t0

)−C

(4.3)

In the next section, the simple model presented above will be compared to experimental data
and the response time t0 and parameter C will be analyzed.

4.5 Results and Discussion

In this section, as one result of the current study, we will first compare the uniaxial compres-
sion and relaxation experiments carried out with the FT4 Rheometer and Lambdameter. To
complement these results, we also compare the relaxation behavior of the different cohesive
powders using the Lambdameter set-up. Finally, we investigate the effects of strain-rate,
loading steps and relaxation time on the decay of the stress at constant strain.

4.5.1 Testing Equipments - A Comparison

A comparison of testers is necessary for several reasons. Apart from the fact that several lit-
eratures have reported on comparative studies between different testers used in the character-
ization of cohesive powders [65, 70, 154], most differences observed have been attributable
to human errors, differences in the filling procedure and the measurement conditions. For
our experiments, it is important to confirm that the relaxation feature can be reproduced in
different testers and not due to drift or bias in our testing equipments. The material used here
is cocoa powder.

In order to compare the response of the two testing equipments to vertical (axial) stress,
we perform uniaxial compression test on cocoa powder with a carriage speed on 0.05mm/s
(protocol 1 in Table 4.3). Five intermediate relaxation stages (R1–R5)1, in which the top

1Due to the difference in the final stress reached at R5 in the FT4 (22kPa) and lambdameter (25kPa), the final
relaxation R5 for both equipments should be compared with caution.
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piston/punch is held in position for 300 seconds at specific intervals of 5kPa during the
compression tests were included. In Fig. 4.4a we plot the vertical stress σv as function of
time. During loading, the axial stress builds up with time until the first target stress of 5kPa
(at R1) is reached. We observe a slower increase of the axial stress in the Lambdameter in
comparison to the Rheometer even though the respective pistons were moved with the same
carriage speed. This is possibly due to the difference in masses of the powders and volume
as well as aspect ratio of the experimental moulds for both equipments, leading to different
initial densities of the same sample, and consequently different response to compressive
stress.
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Figure 4.4: Comparison of the vertical (axial) stress plotted against (a) time (b) volumetric
strain for experiments with cocoa powder using the FT4 Rheometer and the Lambdameter.
The carriage velocity is 0.05mm/s while R1–R5 represent the intermediate relaxations for
increasing target stress.

With the initiation of the first relaxation R1 at 5kPa, we observe for both equipments a time-
dependent stress decrease for a relaxation time of 300 seconds. This observation, along with
other observations reported in literature for other granular materials [137, 179] confirms
that the stress decrease is not due to a drift in the measuring equipments but it is a feature.
From 5kPa, we observe an approximate 45 percent decrease in stress for the lambdameter
compression compared to the 22 percent in the Rheometer. With the activation of axial
compression after the relaxation, we observe a sharp increase in the axial stress until the next
intermediate stress state is reached. This sudden jump is similar to that observed in stick/slip
[137, 143] experiments and friction between solid bodies [36] where a sudden increase in
shear velocity results in a sharp increase in shear stress. The same feature is reproduced for
the higher stress states.

An objective comparison of the stress-strain evolution in both testing equipments is presented
in Fig. 4.4b, where the vertical stress is plotted against volumetric strain. The volumetric
strain is defined here as (L−L0)/L0 where L and L0 are the final and initial piston positions,
respectively. We observe that the lambdameter produces a softer response to the applied
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Figure 4.5: Relaxation at different stress levels R1–R5 during the uniaxial compression of
cocoa powder in Fig. 4.4. The subscripts F and L represent data from the FT4 and Lamb-
dameter experiments respectively. The symbols represent the experimental data while the
solid lines represent the theoretical fit using Eq. (4.3) with parameters listed in Table 5.2.(b)
Evolution of the dimensionless C parameter of Eq. (4.3) with intermediate maximum stresses
σmax

v for the two equipments.

stress, as evidenced by the slower increase in the vertical stress during loading. The same
intermediate target stresses are reached at a higher strain in the lambdameter as compared to
the FT4 Rheometer. Secondly, the decrease in stress occurs at constant strain as shown by
the vertical drops along the deformation path.

Next, we turn our attention to the relaxation stages and extract the data for the steps R1–R5 in
Fig. 4.5a. For clarity, R1 is termed the first relaxation occurring at 5kPa while while R5 is the
final relaxation at 25kPa (or 22kPa for the FT4). The vertical stresses have been normalized
by their initial values before relaxation while τR is the relaxation time which in this case is
300 secs. Note that even though the data output was at 50Hz, we show only points at intervals
of ≈20Hz to allow for a clear visualization of the relaxation process. In general, we observe
stronger relaxation amplitudes in the lambdameter tests. Most notably, the lambdameter
relaxation occurring at the highest stress of 25kPa (R5L) shows even stronger relaxation than
the first relaxation (R1F) observed in the rheometer. Interestingly, the stress relaxation law
proposed in Eq. (4.3) describes well the relaxation in both equipments at all stress states
after the stress in each state has been normalized by its maximum value f max such that f ∗ =
σv/σmax

v = f/ f max has a maximum value of 1. The maximum intermediate stress reached
along with the other parameters are displayed in Table 5.2. Comparing the parameters of the
model, we observe that the response time t0 fluctuates with increasing stress from R1–R5
and is higher for relaxations with the FT4 than with the lambdameter. On the other hand, the
parameter C also plotted in Fig. 4.5b shows a decreasing trend, its magnitude being smaller
for the FT4. This is possibly due to both different geometries (see Fig. 4.3) and ongoing,
reduced relaxation as the material becomes more and more compressed. The FT4 is much
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Step σmax
L t0L CL σmax

F t0F CF

R1 4.89649 0.2894 0.0792 4.75 0.7462 0.0444

R2 9.96843 0.2274 0.0702 9.5 1.0308 0.0361

R3 14.913 0.2502 0.06521 14.25 1.0227 0.0282

R4 20.0375 0.2207 0.06124 19.01 0.3614 0.0178

R5 25.0718 0.1422 0.0555 20.9 0.5809 0.0187

error [%] – 0–3 0–0.4 – 0–5 0–1

Table 4.4: Fit parameters for the analytical predictions of the relaxation model Eq. (4.3). The
subscripts L and F represent data from the Lambdameter and FT4 Rheometer, respectively
while R1–R5 are the relaxation steps.

narrower and thus a strong effect of the side walls is expected. A study of the influence of
aspect ratio is ongoing.

4.5.2 Relaxation of Two Powders - A Comparison

As a second step, in order to compare the response of different cohesive powders, we intro-
duce the second powder (Eskal 500) and repeat the same protocol as described in section
4.5.1. For the sake of brevity, the comparison is done using only the lambdameter set-up.

In Fig. 4.6a, we show the time evolution of stress during compression for cocoa powder and
Eskal 500 limestone. Both powders show qualitatively identical relaxation behavior under
applied stress. Comparing the stress-strain response in both testing equipments as presented
in Fig. 4.6b,we observe a similar stress-strain response for both materials within the small
strain region (εvol < 0.15). However at larger strains, the response diverges and limestone
responds softer to strain, evidenced by the slower increase in vertical stress. Secondly, we
confirm that the decrease in stress at R1–R5 occurs at constant strain as shown by the ver-
tical drops along the deformation path. For the same intermediate stress, the onset of the
relaxation occurs at a higher strain in limestone as in cocoa.

In Fig. 4.7a, we extract the relaxation phases of the experiments shown in Fig. 4.6 Eskal
(E) and cocoa (C) and plot them against the relaxation time. We observe that at the same
stress and using the same driving velocity, cocoa powder relaxes more and much faster than
the Eskal limestone. For example, the relaxation under the lowest compressive stress (R1),
shows a 33 percent decrease in stress for Eskal compared to a 43 percent decrease for cocoa.
This is possibly arising from the fat content present in the cocoa powder and absent in Eskal
500 limestone.

The fit parameters of Eq. (4.3) are shown in Table 5.3 for the five relaxation data shown
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Figure 4.6: Comparison of the vertical (axial) stress plotted against (a) time (b) volumetric
strain for experiments with cocoa powder and Eskal 500 limestone. Experiments carried
out using the Lambdameter with carriage velocity is 0.05mm/s while R1–R5 represent the
intermediate relaxations during loading.

Step σmax
C t0C CC σmax

E t0E CE

R1 4.8964 0.28945 0.0792 5.0027 0.00082 0.0300

R2 9.9684 0.2274 0.0702 10.0246 0.00046 0.0227

R3 14.9130 0.2503 0.0652 15.0648 0.00032 0.0184

R4 20.0375 0.2207 0.0612 20.0004 0.00021 0.0160

R5 25.0718 0.1422 0.0556 25.0253 0.00032 0.0159

error[%] – 0–3 0–0.4 – 3–7 0–1.3

Table 4.5: Fit parameters for the analytical predictions of the relaxation model Eq. (4.3).
The subscripts C and E represent data for cocoa and Eskal, respectively, while R1–R5 are
the relaxation steps.

for each powder in Fig. 4.7a, limestone and cocoa. For each powder, the response time t0
and dimensionless parameter C generally shows a decreasing trend with the maximum stress
at which the relaxation is initiated. The decreasing trend of both parameters t0 and C is
confirmed also for Eskal 500, however, the time-scale is orders of magnitude smaller while
C is of the same order only about a factor of two smaller, as summarized in table 5.3 and
plotted in Fig. 4.7b.

In summary, for both powders, we conclude that even though both Eskal and Cocoa pow-
der show qualitatively similar relaxation at constant strain, their individual magnitudes and
responses are quantitatively dissimilar at different intermediate stress.
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Figure 4.7: (a) Extract of the 5 relaxation steps R1–R5 for both experimental specimens in
Fig. 4.6. The subscripts E and C represent data from experiments with Eskal 500 (E) and
Cocoa (C), respectively. The symbols represent the experimental data while the solid lines
represent the analytical Eq. (4.3) (b) Evolution of the dimensionless C parameter of Eq. (4.3)
with intermediate maximum stresses σmax

v for the two powders.

4.5.3 Effect of Relaxation Duration

In order to compare the changes in the vertical stress drop due to the relaxation duration, us-
ing the Lambdameter, we perform several experiments in which the waiting (relaxation) time
is varied between 5 minutes and 30 minutes during the different relaxation phases (protocols
1–4 in Table 4.3). Thereafter, we compare the stress states achieved from different levels af-
ter the same relaxation for τ = 5 minutes (300 s), to highlight the effect of (previous) history
where the powders with larger τR relaxed longer.

In Fig. 4.8, we plot the relative stress reduction, 1−(σv(τ = 5mins)/σmax
v ) as function of the

maximum intermediate stresses σmax
v for different previous relaxation times τR. We observe

that increasing the relaxation time at the lowest stress of 5kPa does not lead to any visible
change in the stress reached, as evidenced by the collapse of the data at 1− (σv(τ)/σmax

v )≈
0.32. It is important to note that this is the first relaxation stage, hence there is no effect yet
of the loading history (different τR) of the bulk sample at this stage. This also confirms the
repeatability of our measurements.

For subsequent relaxations at higher stresses (10, 15, 20 and 25kPa), the difference due to
the longer previous waiting times becomes visible. We observe a consistent pattern at all
stresses where an increase in relaxation time τR results in lower relative stress reduction.
This is an indication that the effects of previously experienced longer relaxation kicks in at
higher stresses, i.e. the loading history becomes important so that longer previous loading
reduces the possible relaxation in the present state. Another interesting observation is the
similarity in the span of the difference from the 5 mins relaxation to the 30 mins relaxation
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for all stresses.

In summary, the effect of the relaxation duration is found to become visible after the first
intermediate stress where history effects from preceding relaxation stages manifest. Also, at
σmax

v =20 and 25kPa, the difference between the τR =20 and 30 mins at the highest stress is
small suggesting a saturation effect.

4.6 Conclusion and Outlook

We have performed oedometric experiments to study the slow relaxation of two cohesive
powders under different consolidation stresses. The main goal was to study the slow relax-
ation behavior in two experimental devices, namely the custom-built lambdameter and the
commercially available FT4 powder rheometer. Additionally, a comparison of the relation
behavior of two industrially relevant cohesive powders, namely cocoa powder with 12% fat
content and Eskal 500 limestone powder was explored.

A comparison of both testing equipments revealed a qualitative reproduction of the relax-
ation behavior, i.e. the decrease in stress occurring at constant strain. The lambdameter is
found to produce a softer response to applied stress when compared to the FT4. Due to
differences in aspect ratio and sample volume used in both devices, larger strain is required
in the lambdameter to reach the same intermediate stress in comparison to the FT4. The
relaxation model Eq. (4.3) captures well the decrease in stress during relaxation at different
stress levels for both testing equipments with the parameter t0 strongly fluctuating and C
systematically decreasing from low to high stress levels.
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For the two cohesive powders studied, it is interesting that both materials show an identical
response to axial loading until ≈15 percent strain where the difference in the response begins
to manifest. Eskal 500 limestone is found to produce a softer response to applied vertical
stress in comparison to cocoa powder. At the same stress level, cocoa powder is found to
relax more slowly and more relative in amplitude than Eskal. In terms of the parameters of
the model, the response timescale for Eskal, t0E , is several orders of magnitude smaller than
that of cocoa. On the other hand, the dimensionless parameter C shows a decreasing trend
and is only about a factor two higher for cocoa than for limestone.

In terms of the relaxation duration, we find that the effect of longer relaxation is visible
after relaxation at the second intermediate stress level (σmax

v = 5kPa), leading to observable
differences in relative stress reduction reached at σv(τ = 5mins)/σmax

v , reached at τ = 5
mins: Previous longer relaxation reduces the present relaxation.

Further studies will focus on the effect of different compression velocity (or strain rate) and
the solution of the model for finite compression rate. The effects of system walls and aspect
ratio of the experimental device also needs to be given further attention. The validity of
the proposed model for relaxation at constant stress (or strain creep) will be investigated.
Finally, the incorporation of the features of the present findings into discrete element contact
models for cohesive powders will be explored.
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Chapter 5

Dosing of cohesive powders in a
simplified canister geometry*

Abstract

We perform experiments and discrete element simulations on the dosing of cohesive
granular materials in a simplified canister geometry. The setup is a simplified canis-
ter box where the powder is dosed out of the box through the action of a constant-pitch
screw feeder connected to a motor. A dose consists of a rotation step followed by a
period of rest before the next dosage. From the experiments, we report on the oper-
ational performance of the dosing process through a variation of dosage time, coil
pitch and initial powder mass. We find that the dosed mass shows an increasing linear
dependence on the dosage time and rotation speed. In contrast, the mass output from
the canister is not directly proportional to an increase/decrease in the number coils.
By calibrating the interparticle friction and cohesion, we show that DEM simulation
can quantitatively reproduce the experimental findings for smaller masses but also
overestimate arching and blockage. With appropriate homogenization tools, further
insights into microstructure and macroscopic fields can be obtained.

*Based on O. I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo, E. C. Montes, M. Ramaioli, and S. Luding.
Experiments and Discrete Element Simulation of the Dosing of Cohesive Powders in a Canister Geometry. In
preparation, 2014
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5.1 Introduction and Background

The dynamic behavior of granular materials is of considerable interest in a wide range of in-
dustries (e.g. pharmaceutical, chemical and food processing). In these industries, every step
in the product manufacturing process contributes to the final quality of the product. Hence,
if uniform product quality is to be achieved, a full understanding and control of the different
stages of the production process is essential. In many applications, the transport and convey-
ing of granular materials is a common process that forms a critical part of many production
and delivery techniques. For example, transport to silos, process transport, controlled drug
delivery and dosing of beverages all rely on an effective and uniform delivery of granular
materials. Also, the design of products for these processes is hugely dependent on having a
good understanding of the transport behavior and metering process of granular assemblies.

When granular materials are being transported, the behavior of the granular material and
the efficiency of the process will depend on several material properties including particle
shape, particle size, surface roughness, frictional properties, cohesion and moisture content
among others. Discontinuities and inhomogeneities in the micro-mechanical behavior of
bulk assemblies of granular materials are ever-present hence, changes in operating condition
affect the flow behavior of granular assemblies [115]. Also the geometry of the transport
media (boundary conditions) including wall friction and the loading/preparation procedure
will play an important role.

Over the past decade, the mechanism during transport of granular materials have attracted
significant interests and efforts from researchers. These efforts can be grouped into three
classes namely, experimental, numerical modelling and developing constitutive models to
predict granular flows in conveying mechanisms [128, 176]. The numerical modelling of
granular flows has been based on Discrete Element Method (DEM) as proposed in Ref. [34].
The earlier (more favored) experimental approach mostly involves the design and construc-
tion of experimental models of such applications followed by series of studies and bench-
mark tests to determine quantities of interest and fine-tune the process to desirable levels.
Thereafter, a scale-up of the process can be performed. In this case, the challenging task is
the selection of relevant parameters and boundary conditions to fully characterize the flow
rheology in these systems.

A measure of knowledge in characterizing dry, non-sticky powders exists. For example,
rotating drum experiments and simulations to determine the dynamic angle of repose have
been studied extensively as a means to characterize non-cohesive powders [28, 153]. What
has been less studied is the case where the powders are sticky, cohesive and less flowable like
those relevant in the food industry. For these powders, dynamic tests are difficult to perform
due to contact adhesion and clump formation. Inhomogeneities are also more rampant and
flow prediction becomes even more troublesome.
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Screw conveyors are generally used in process industries to transport bulk materials in a
precise and steady manner. Materials like cereals, tablets, chemicals, pellets, salt and sand
among others can be transported using screw conveyors. As simple as this process may
seem, problems of inaccurate metering, unsteady flow rates, bridging, channeling, arching,
product inhomogeneity, segregation, high start up torques, equipment wear and variable resi-
dence time have been reported [26, 33, 119, 120]. In addition, the design and optimization of
screw conveyors performance is not well understood and has been based on semi-empirical
approach or experimental techniques using dynamic similarities as pointed out in Ref. [26].
Earlier researchers have investigated the effect of various screw (auger) parameters includ-
ing choke length (the distance beyond which the screw projects beyond the casing at the
lower end of the intake) and pitch–diameter ratio (See Refs [45, 129, 149] and references
therein). Robert and Willis [129] reported that since grain motion is largely influenced by
its centrifugal inertia, augers with large diameters attain maximum output at lower speeds
compared to those with small diameters. They also reported that for maximum throughput
during conveying, longer chokes are necessary.

The subject of modelling screw conveying of granular materials with the Discrete Element
Method (DEM) [34] is fairly recent. One of the earliest work on this subject was reported in
Ref. [142] where the performance of horizontal and vertical screw conveyors are investigated
and results are compared with empirical equations. In a related work, Owen et al. [119]
studied the performance of a long screw conveyor by introducing the so-called ‘periodic
slice’ model. Along this line, Cleary [33] investigated the effects of particle shape on flow
out of hoppers and on the transport characteristics of screw conveyors. Experiments on the
dosing of glass beads and cohesive powders along with the discrete element simulation of the
dosing of glass beads have also been reported [126]. A fundamental question is the extent to
which discrete element simulations can predict the dosing of these powders, especially when
the powders are cohesive.

In the current study, we use experiments and discrete element simulations to investigate the
dosing of cohesive powders in a simplified canister geometry. The characterization of the
experimental samples, experimental set-up and procedure are presented in section 5.2. In
section 5.3, we present the force model, simulation parameters and homogenization tech-
nique followed by a discussion of experimental and numerical results in section 5.4. Finally,
the summary, conclusions and outlook are presented in section 5.6.

5.2 Dosage Experiments

In this section, we discuss in detail the experimental set-up and measurement procedure
along with the material parameters of the experimental sample.
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Property Unit Value
Size distribution d10 µm 31.55

d50 µm 184

d90 µm 979.19

Span (d90 −d10)/d50 [-] 5.151

Particle Density [kg/m3] 1427

Specific surface area m2/g 0.088

Table 5.1: Material properties of the experimental cocoa sample.

5.2.1 Sample Description and Characterization

The cohesive granular sample used in this work is cocoa powder with material properties
shown in Table 5.1. The particle size distribution (PSD) is obtained by the “dry dispersion
module” of the Malvern Mastersizer 2000 (Malvern Instruments Ltd., UK), while the par-
ticle density is obtained by helium pycnometry (Accupyc, Micromeritics, US). The span is
defined as the width of the distribution based on the 10%, 50% and 90% quantile. The exper-
iments were performed over a relatively short period under ambient conditions and samples
are sealed in air-tight bags when not in use to minimize effects that could arise due to changes
in the product humidity.

5.2.2 Experimental Set-up

The setup is a simplified canister box where the powder is dosed out of the box through the
action of a constant-pitch screw feeder connected to a motor. A schematic representation
of the experimental set-up is shown in Fig. 5.1 along with the dimensions on Table 5.2. A
typical experiment begins with the careful filling of the canister with the exit closed until
a pre-determined powder mass is reached. Care is taken to ensure that the initial profile of
the powder surface is as flat as possible and that any pre-compaction that may arise due to
shaking or vibrations are minimized. Subsequently, the dosing experiment begins with the
rotation of the screw for a specified time duration followed by an intermediate rest before the
next dosage. The dosed mass per screw turn is recorded through a weighing scale connected
to a computer. The experiment is complete when the cumulative dosed mass recorded for
three consecutive doses is less than 0.15grams indicating either the box is empty or the
powder is blocked through arching in the canister. In addition, to obtain and post-process the
profiles of the sample surface during the experiments, an external camera (Logitech HD Pro,
Logitech Int’l SA) was mounted in front of the canister box and a video recording of each
experiment was obtained.
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(a) (b)

Figure 5.1: Schematic representation of the (a) simplified canister, (b) the coil used for the
dosing experiments and simulation, with box length (L), width (W ), height(H), throat length
T , outlet diameter (D), coil radius rc and pitch p.

Image Processing

Snapshots of the profile of the powder surface during each experiments were obtained using
a camera attached to the experimental set-up. To improve the quality of the snapshots and
for comparison, we use the open-source software FIJI [136] to post-process the images fol-
lowing a three step procedure, namely quality adjustment, binarization and extraction of the
lateral surface of the powder. In the first stage, we adjust the quality of the images by first
selecting the region of interest and enhancing its contrast. In the second stage, the image
is binarized into black (0) and white (1) pixels such that the area containing the bulk sam-
ple is easily differentiated from other areas in the picture. In the final step, we iteratively
move along the length of the image from top to bottom to trace out the profile of the powder
surface.

For a given rotation speed, the linear coil (push) velocity is:

Vz =
pω
2π

(5.1)

where ω is the angular velocity of the coil and p is the pitch of the coil. Also, the coil
tangential velocity is:

Vt = ωrc (5.2)
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where rc is the coil radius. Accordingly, the expected dosed mass for a single rotation of the
coil is:

mdose
exp = ρb ·Vc ·nt = ρb · p ·πrc

2 ·nt (5.3)

where ρb is the bulk density, Vc is the volume within a single pitch and nt = td ·ω/2π is the
number of rotations completed within a given dosing time td . The expected number of doses
is then:

Ndose
exp =

mtot

mdose
exp

(5.4)

where mtot is the total initial mass filled into the canister.

5.3 Numerical Simulation

The numerical simulation was carried out using the open source discrete element code Mer-
curyDPM [155, 172]. Since DEM is otherwise a standard method, only the contact model
and the basic system parameters are briefly discussed.
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Figure 5.2: (a) Two particle contact with overlap δ in normal direction. (b) Schematic graph
of the linear, hysteretic, adhesive force-displacement model in normal direction
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5.3.1 Force Model

Since realistic and detailed modeling of the deformations of particles in contact with each
other is much too complicated, we relate the interaction force to the overlap δ of two par-
ticles as shown in Fig. 5.2a. Thus, the results presented here are of the same quality as the
simplifying assumptions about the force-overlap relations made. However, it is the only way
to model larger samples of particles with a minimal complexity of the contact properties, tak-
ing into account the relevant phenomena: non-linear contact elasticity, plastic deformation,
and adhesion.

In this work, we use the Luding’s linear hysteretic spring model [92] – which is a simplified
version of more complicated non-linear hysteretic force laws [132, 161, 162, 169, 183]. The
adhesive, plastic (hysteretic) normal force is given as:

f hys =


k1δ if k2(δ −δ0)≥ k1δ
k2(δ −δ0) if k1δ > k2(δ −δ0)>−kcδ
−kcδ if −kcδ ≥ k2(δ −δ0)

(5.5)

with k1 ≤ k2 ≤ k̂2 as shown in Fig. 5.2b where k̂2 is the maximum stiffness and f0 has been
set to zero. During initial loading the force increases linearly with the overlap, until the
maximum overlap δmax is reached (δmax is kept in memory as a history variable). The line
with slope k1 thus defines the maximum force possible for a given δ .

During unloading the force drops on a line with slope k2 , which depends, in general, on δmax.
The force at δ = δmax decreases to zero, at overlap δ0 = (1− k1/k2)δmax , which resembles
the plastic contact deformation. Reloading at any instant leads to an increase of the force
along the same line with slope k2, until the maximum force is reached; for still increasing δ ,
the force follows again the line with slope k1 and δmax has to be adjusted accordingly [92].

Unloading below δ0 leads to attractive adhesion forces until the minimum force −kcδmin is
reached at the overlap δmin = (k2 − k1)δmax/(k2 + kc), a function of the model parameters
k1,k2,kc, and the history parameter δmax. Further unloading leads to attractive forces f hys =

−kcδ on the adhesive branch. The highest possible attractive force, for given k1 and k2 , is
reached for kc → ∞, so that one has fmin ≥−(k2 − k1)δmax for arbitrary kc.

A more realistic behavior will be a non-linear un-/re-loading behavior. However, due to a
lack of detailed experimental information, the piece-wise linear model is used as a compro-
mise. One reasonable refinement, which accounts for an increasing unloading stiffness with
deformation, is a k2 value dependent on the maximum overlap. This also implies relatively
small and large plastic deformations for weak and strong contact forces, respectively. Unless
a constant k2 = k̂2 is used, the contact model [90, 91, 97], requires an additional quantity,
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Parameter Value
Canister dimensions
(L×W ×H) 60×23×170 mm

Throat length (T ) 10 mm

Outlet diameter (D) 23 mm

Coil thickness 2 mm

Coil length 70 mm

Coil radius (rc) 10.4 mm

Number of coils 4 (Wide), 8 (Narrow)

Coil pitch 17.5 mm (Wide), 8.75 mm (Narrow)

Coil angular velocity (Ω) 90 rpm (9.42 rad/s)

Table 5.2: Summary of system parameters used in the experiments and DEM simulations.

i.e., the plastic flow limit overlap

δ ∗
max =

k̂2

k̂2 − k1
φ f

2a1a2

a1 +a2
, (5.6)

with the dimensionless plasticity depth φ f , defined relative to the reduced radius. If the
overlap is larger than a φ f fraction of the particle radius (for radius a1 = a2), the (maximal)
constant stiffness constant stiffness k̂2 is used. For different particle radii, the reduced radius
increases towards the diameter of the smaller particles in the extreme case of particle-wall
contacts (where the wall-radius is assumed infinite).

Note that a limit stiffness k2 ≤ k̂2 is desirable for practical reasons. If k2 would not be limited,
the contact duration could become very small so that the time step would have to be reduced
below reasonable values. For overlaps smaller than δ ∗

max, the function k2(δmax) interpolates
linearly between k1 and k2:

k2(δmax) =

{
k̂2 if δmax ≥ δ ∗

max

k1 +(k̂2 − k1)
δmax
δ ∗

max
if δmax < δ ∗

max.
(5.7)

The implementation of the tangential forces and torques have been described extensively in
Refs. [90–92, 97].
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5.3.2 Simulation Procedure and Parameters

The actual number of particles present in the bulk powder used in the dosing experiments
are of the order several billions. The realistic simulation of the exact size is exceptionally
challenging due to computational cost. Due to this constraint, one choice available is to
either scale the system size while keeping particle properties fixed. The other choice is to
do the contrary, namely keeping the system size fixed and scaling (or coarse graining) the
particle sizes up by essentially making them meso particles. We choose to do the latter,
namely using the same system size in simulation as in experiments and increasing the size of
our particles so that each meso-particle in our system can be seen as an ensemble of smaller
constituent particles. The system parameters used in both simulation and experiment are
presented in Table 5.2. Note that the number of coils refer to the number of turns in the coil
which, when divided by the length of the coil should give an indication of the pitch of the
coil. Typical numerical parameters used in the DEM simulation are listed in Table 5.3.

The numerical implementation of the dosing test is as follows. The particles are generated
and positioned on regular grid points within the dimensions of the box. To avoid any initial
overlap of particles, either with the coil, surrounding wall or with other particles, we ensure
that the initial position of the lowest particle during this generation stage is higher than the
diameter of the coil. Subsequently, the particles are allowed to fall under gravity and are left
to settle and dissipate their energies for 2 seconds while the coil is not rotating. We find that
for strong cohesion, this preparation method leads to initial inhomogeneities and irregular
packing within the circumferential area of the coil during the settling phase. This gives
rise to irregular dose patterns and increases the possibility of arches (blockage) forming just
above the screw. To minimize this, the particles are allowed to settle with a initial cohesive
stiffness kc/k = 0.3 such that the initial packing structure is homogeneous while the actual
cohesion is activated after the settling phase.

5.3.3 Homogenization Technique

In order to drive macroscopic fields such as density, velocity and stress tensor from averages
of the microscopic discrete element variables such as the positions, velocities and forces of
the constituent particles, we use the coarse-graining method proposed in Refs. [50, 170–172].

The microscopic mass density of a flow at a point rα at time t is defined by

ρmic(r, t) =
N

∑
i=1

miδ (r− ri(t)), (5.8)

where δ (r) is the Dirac delta function and mi and ri are the mass and center of mass position
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Parameter Experiment Simulation

Number of Particles > 1010 3360 for mtot = 48 grams

Mean particle diameter (〈d〉) 0.184mm 2.50 mm

Particle density (ρ) 1.427×10−6 kg/mm3 1.427×10−6 kg/mm3

Polydispersity (w) see Table 5.1 rmax/rmin = 3

Restitution coefficient (e) [–] 0.45

Plasticity depth (φ f ) [–] 0.05

Maximal elastic stiffness (k = k̂2) [–] 24067 kg/s2

Plastic stiffness (k1/k) [–] 5

Cohesive stiffness (kc/k) [–] 0.873 (varied 0–1)

Friction stiffness (kt/k) [–] 0.286

Rolling stiffness (kr/k) [–] 0.286

Coulomb friction coefficient (µ) [–] 0.5 (varied 0.5–0.65)

Rolling friction coefficient (µr) [–] 0.5

Normal viscosity (γn = γ) [–] 0.0827 kg/s

Friction viscosity (γt/γ) [–] 0.286

Rolling viscosity (γr/γ) [–] 0.286

Wall friction (µw) [–] 0.2

Contact duration tc [–] 1.1297×10−4 s

Table 5.3: Numerical values of parameters used in experiment and DEM simulations.
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of particle i. Accordingly, the macroscopic density can be defined as:

ρ(r, t) =
N

∑
i=1

miW(r− ri(t)), (5.9)

where the Dirac delta function has been replaced with an integrable ‘coarse-graining’ func-
tion W whose integral over the domain is unity and has a predetermined width, or homoge-
nization scale w. In this work, we use a Gaussian coarse-graining function.

The homogenized momentum density is also defined as:

pα(r, t) =
N

∑
i=1

miviαW(r− ri). (5.10)

with viα the velocity of particle i. The macroscopic velocity field Vα(r, t) is defined as the
ratio of momentum and density fields, Vα(r, t) = pα(r, t)/ρ(r, t). Comparing other fields,
like stress- and structure- tensors as shown in Refs. [50, 170–172], is beyond the scope of
this study.

In order to obtain the height variation during the dosing process hz as in experiment, we
average over the height and the depth of the drum

The height variation of the packing during the dosing is given as:

hz =
mbin(z, t)
mbin(z,0)

·hini =
ρ(z, t)
ρ(z,0)

·hini, (5.11)

assuming an almost constant bulk density. mbin(z, t) is the mass change as function of time
during the dosing process, mbin(z,0) is the initial mass of the particles at time t = 0 and hini

is the initial height of the packing. Furthermore, the mass in a bin as function of time is:

mbin(z, t) =
∫ ∆z

0

∫ H

0

∫ D

0
ρ(x,y,z, t)dxdydz (5.12)

where D is the depth (or width) of the drum, H the box height, and ∆z the bin width.

5.4 Experiments

In this section, we present the results from the experiments and simulations and their compar-
ison. For an understanding of the dosing process, in the following, we present experimental
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results on the effect of initial mass, number of coils and dosage time.

5.4.1 Effect of Initial Mass in the Canister

In Fig. 5.3a, we plot the cumulative dosed mass as function of the number of doses for sample
masses mtot = 60g, 80g and 100g in the canister. For these experiments, a dose consists of
the rotation of the narrow pitch screw for 2 seconds at a speed of 90rpm. As expected the
number of doses increases with increasing the mass of powder filled in the canister. The
number of doses recorded when 99 percent of the total powder mass in the canister is dosed
are 16, 23 and 30, for the 60, 80 and 100g fill masses respectively.

The mass per dose obtained for different initial masses is close as shown by the near collapse
of the data on each other. We however note that the sensitivity of the mass per dose to the
initial mass is tiny as seen in the inset.
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Figure 5.3: (a) Cumulative dosed mass from experiments plotted as function of the number
of doses for (a) different initial mass in the box (b) different coils (pitch).

5.4.2 Effect of Number of Coils

In Fig. 5.3b, we plot the cumulative dosed mass as function of the number of doses for
experiments with two different coils namely a wide coil with 4 coils (or crests) and a narrow
coil with 8 crests. The initial powder mass in the canister is 80g and a dose consists of the
rotation of the coil for 2 seconds at a speed of 90rpm. The error bars represent the standard
deviation over three experimental runs for each test. From Fig. 5.3b, it is evident that the
dosed mass per coil turn for the coil with the wide pitch is higher compared to the dosed
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mass reported for the narrow screw. As a result, the cumulative dosed mass recorded for the
coil with the wide pitch increases faster (with slope 7.15 g/dose) in comparison to the narrow
one (3.705 g/dose). This indicates that increasing the number of coils from 4 to 8 leads to
almost double increase in the mass per dose.
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Figure 5.4: (a) Cumulative dosed mass from experiments plotted as function of the number
of doses for different dose time, (b) number of doses recorded for the respective dose times,
and (c) mass per dose plotted for different dosage times. The solid black lines represent
the expected mass mdose

exp using Eq. (5.3) and the expected doses Ndose
exp using Eq. (5.4), as

prediction.

5.4.3 Effect of Dosage Time

To understand the effect of dosage time, in Fig. 5.4a, we vary the dosage time from 1-4 s
while keeping the initial powder mass in the canister and the rotation speed constant at 80g
and 90rpm respectively. A first observation is the higher slope for longer dosing time, that
leads to a decrease in the number of doses recorded. This is explained by the increased
number of complete screw rotations as the dosage time is increased, thus allowing for an
increased mass throughput. In Fig. 5.4b, we plot the number of doses for different dose
time, and observe inverse proportionality. Also, the expected number of doses predicted
using Eq. (5.4) is lower. The decrease in the number of doses is faster between t= 1–1.5 s
and then slows down as the time increases until t =4 s. In Fig. 5.4c, we plot the actual (red
squares) and predicted (solid black line) mass per dose βt taken from the cumulative dosed
mass before saturation, for different dose time. The predicted mass per dose is obtained
using Eq. (5.3) for an initial bulk density ρb ≈ 4.71×10−4 g/mm3, coil pitch p = 8.75 mm
and coil radius 10.4 mm. We observe a linear increase in the mass per dose with increasing
dosage time. The experimental mass per dose for the different dosage times is close to
the predicted values with the predicted mass slightly higher. This indicates that less mass
is being transported per dose, which could be due to the uneven, inhomogeneous re-filling
of the coil during the dosing process and due to the small volume of the coil that is not
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considered in Eq. (5.3).

5.5 Numerical Results

In this section, we discuss the results from discrete element simulations of the dosing test.
First, we compare the snapshots of the particle bed surface with images taken from experi-
ments. Next, we describe the process of calibration of the material parameters used in our
simulations. As studied in the experiments, we show results on varying the dosage time,
coil rotation speed and number of coils. Finally, we report on the macroscopic velocity and
density fields during the dosing process.

5.5.1 Surface profile of the dosed material

As a first step to gain insights into the dosing process, we show exemplary snapshots of the
time evolution of the surface profile of bulk sample during a typical simulation in Figs. 5.5(a-
d). For this study, the initial mass in the box is set at 60grams while the coil with the narrow
pitch (8 complete turns) is used. Fig. 5.5(a) shows the state of the bulk sample sample after
the first 2 seconds where the particles have been allowed to settle. At this point, the kinetic
energy of the particles are close to zero since they are non-mobile. As the coil begins to turn
in Fig. 5.5(b) after the relaxation phase, particles within the area of the coil begin to move
leading to an increase in their kinetic energy, as seen from the bright colors in the lower part
of the box. In general, particles around the uppermost layer of the box remain largely static
while the the region where the kinetic energy is highest can be seen around the rear end of
the coil. Moving further in time to Fig. 5.5(c), we find that the emptying of the box occurs
faster at the rear (left) end of the box, thereby causing avalanches as the void left due to the
emptying of the box is filled. In addition to this, we observe in some cases, arches forming
above the coil, where the void created below the screw is visible. We must also point out
that particles closest to the right wall of the box remain static and they only collapse into the
coil at the base as an increased amount of powder is dispensed from the box as shown in Fig.
5.5(d).

Along with this, in Figs. 5.5(e-h) we show image processed visualizations of the experimen-
tal powder profile during the dosing process. From the initial solid, bulk powder in Fig.
5.5(e), we observe a progressive change in the powder surface profile with the canister emp-
tying faster from its left rear end. Arches forming on the lower left side of the box above the
coil is also seen leading to avalanches and collapse of the powder around this region.

In summary, comparing the experimental and simulation profiles of the powder surface, we
observe that the essential features observed in the experiment, namely the faster emptying
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Figure 5.5: Snapshot of the time evolution of the simulation during the dosing test with
time increasing from (a–d) and (e-h), respectively. (a–d) are taken from simulation while
comparable snapshots (e–h) are image processed experimental visualizations of the powder
profile. Colors/shades in (a–d) indicate the kinetic energy of the particles with blue (static)
and orange (dynamic) particles. For the simulation, parameters are Kc = 0.872 and µ = 0.5.
The coil is not shown for clarity.

at the rear end of the coil and arches forming during ongoing dosage are reproduced in the
simulation. Also, we must point out that the faster emptying at the rear end of the coil is due
to the design of the coil which can be mitigated through the use of conical inserts in the coil
[126]. In the next sections, we will focus on a quantitative comparison between experiments
and simulation.

5.5.2 Calibration and Sensitivity Studies

The particles used in the simulation can be seen as meso-particles consisting of an agglom-
erate of other smaller particles. Due to this, it is important that their material properties are
carefully selected based on sensitivity studies of how each parameter influence the dosing
process in comparison to the experiment.

In order to obtain relevant parameters unique for our problem, we perform various studies in
order to test the sensitivity of the essential material parameters, namely interparticle friction
and cohesion during the dosing process. To achieve this, several simulations were run where
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the interparticle friction is fixed in each case and cohesion is varied. Note that for each
simulation, we obtain data on the cumulative dosed mass and the number of doses. From
each simulation, the respective mass per dose β are obtained within the linear region where
initial conditions and other artefacts due to arching are absent. The mass per dose β is then
systematically compared for different interparticle friction and cohesion and bench-marked
against the obtained experimental β value. We choose β as a calibration parameter since
it is largely independent of the initial mass (see Fig. 5.3a). The For the sake of brevity,
this calibration procedure is performed on using a total mass of 48grams in the box and the
narrow pitch coil with 8 complete turns. We attempted a calibration with higher masses as
compared with the experiments but we observe that due to arching occurring when cohesion
is high, the plot of the cumulative dosed mass becomes non-linear. This made defining an
appropriate β challenging therefore requires further work. In the mean time, we focus the
calibration with the lower mass.
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Figure 5.6: Calibration of the cohesive stiffness Kc = kc/k and inter particle friction µ . Here
we plot the mass per dose β for different Kc and different µ as given in the inset. The dotted
horizontal line shows the experimental β value.

In Fig. 5.6, we show the mass per dose β , plotted against the interparticle cohesive stiffness
Kc and different interparticle friction coefficient µ . The horizontal dotted line shows the
mass per dose obtained in the experiment with value 3.702g/dose. A first observation is the
consistent decrease of β with increasing Kc for all friction. This is due to reduced flowability
of the bulk sample with increasing cohesion. We note however that for the highest friction,
we observe a slight increase in the β values obtained at high cohesion. This is a consequence
of arching that sets in due to high cohesion causing a bridge in the flow especially in the
region above the coil. This leads to highly unsteady mass throughput from the box.

Comparing the data for different friction, we observe a decrease in β with increasing µ .
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Increased interparticle friction leads to an an increased resistance to flow which reduces
the rate at which the material is being dispensed out of the box and consequently lower β .
Similar to what is found in other studies, for interparticle friction within the range µ =0.5
and 0.65, the effect becomes less strong as seen in the saturation and collapse of β .

As seen from Fig. 5.6, the experimental measured mass per dose (dotted horizontal line)
intersects with the different friction data at different points leading to different possible Kc

values. A choice therefore has to be made of the appropriate Kc which reproduces the exper-
iments and leads to the least variability between successive doses in the simulations. In this
case, we choose the lowest possible Kc which gives the match with the experimental β value
at Kc = 0.872 and µ = 0.50.

5.5.3 Comparison with Experiments

In order to test the validity of the interparticle friction and cohesion parameters obtained from
the calibration test, we perform simulation setting Kc = 0.872 and µ = 0.5. We then compare
the simulation results with experiments. We note that the total mass mtot used in experiment
is approximately 60grams while the simulation mass is 48grams. For both experiment and
simulation, the narrow coil with 8 turns is used. For each dose, the coil is rotated at a speed
of 90rpm for 2 seconds.
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Figure 5.7: Comparison between simulation and experiment. Here we plot the cumulative
dosed mass as function of the number of dose obtained from experiment and simulation. For
simulations, mtot = 48g, and parameters are Kc = 0.872, and µ = 0.5.
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The comparison between simulation and experiments is shown in Fig. 5.7. We observe that
for the first few doses, the experimental and numerical dosed masses obtained are slightly
different – with the simulation slightly under-predicting the experimental masses. This is
possibly arising from the different initial preparation and the randomness of the initial states.
After the first few doses, the simulation is observed to compare well with experiments as
shown by the collapse of both datasets on each other. By comparing the individual points on
the cumulative dosed mass plots between experiment and simulation, we obtain a maximum
variation in mass per dose of less than 9 percent. This is comparable to the variation of about
5 percent obtained for experiments with different masses (see section 5.4.1).

5.5.4 Parametric Studies

In this subsection, we will discuss the numerical results of parametric studies on the dosing
experiments. Similar to the experiments, we investigate the effect of varying the dosage time
and the number of coils. Although not studied in the experiment, we also look at the effect
of higher rotation speeds during the dosing action.
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Figure 5.8: (a) Cumulative dosed mass from simulation plotted as function of the number of
dose for different dose time; (b) Number of doses obtained from the respective simulations
and experiments for different dose times; (c) mass per dose obtained from simulation (from
the first few doses) and experiments for different dose times. The solid black line represents
the expected mass mdose

exp using Eq. (5.3) as prediction.

In Fig. 5.8, we plot the cumulative dosed mass as function of the number of dose for different
dosage times. The initial mass in the canister is 48grams while the interparticle friction and
cohesion are kept constant at 0.5 and 0.872, respectively. From Fig. 5.8a, we observe that
the cumulative dosed mass increases slightly non-linearly as the number of doses increases.
The effect of slight arching and inhomogeneous density is evident by the slight reduction in
the mass per dose as the number of dose increases. Due to this, the mass per dose is obtained
over the first few doses before arching sets in. The number of dose is obtained when the
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cumulative dosed mass does not change for three consecutive doses. As observed in the ex-
periments, we find that the number of doses required to empty the particles in the box shown
in Fig. 5.8b also clearly decreases with an increase in the dosage time. The number of doses
obtained for experiments is higher than those obtained in experiments since a higher initial
mass (mtot= 80grams) is used in experiment compared to 48grams in simulation. However,
a comparable number of doses is obtained if the difference in mass between simulation and
experiment is corrected for.

The mass per dose βt for different dosage time is compared between simulation and experi-
ment in Fig. 5.8c. For all simulations, the mass per dose is obtained from the first few doses
as the slope of the cumulative dosed mass in the linear region where the cumulative dosed
mass is less than 15 grams. Recall that the calibration was done at a dose time of 2 seconds
while parameters obtained are then used for the other dose times. The mass per dose is found
to increase linearly with the dose time in simulation and experiments. The mass per dose
obtained from experiments and simulation for different dosage times are slightly lower than
the prediction from Eq. (5.3).
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Figure 5.9: (a) Cumulative dosed mass from simulations plotted as function of the number of
doses for different rotation speeds (b) Number of dose and (c) mass per dose βrpm obtained
from the respective simulations for different rotation speeds. The solid black lines represent
the expected mass mdose

exp using Eq. (5.3), and the expected doses Ndose
exp using Eq. (5.4), as

prediction.

The effect of varying the rotation speed is presented in Fig. 5.9. For these simulations, the
dose time is fixed to 2 seconds with while the rotation speed is varied. It is evident that the
box empties faster with increasing rotation speed. Also, the number of doses required for the
complete emptying of the box, shown in Fig. 5.9b, is found to decrease fast between 20rpm
and 40rpm followed by a much slower decrease upon further increase in the coil rotation
speed. The slope (mass per dose) of the cumulative dosed mass, obtained from the first few
doses for different rotation speeds βrpm, shown in Fig. 5.9c, increases with rotation speed –
similar to βt observed when the dosage time is varied. Here, interestingly the expected mass
per dose, Eq. (5.3) mostly under-predicting the simulation, possibly due to on-going refilling
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of the coil during rotation and variation in the bulk density from compaction and avalanches
occurring during the simulation.
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Figure 5.10: (a) Cumulative dosed mass from simulation plotted as function of the number of
doses for different number of coils. The arrow indicate the decreasing trend with increasing
number of coils. (b) Number of doses and (c) mass per dose βc obtained from the respective
simulations for different number of coils. The solid black lines represent the expected mass
mdose

exp using Eq. (5.3), and the expected doses Ndose
exp using Eq. (5.4), as prediction.

Simulation results on the effect of varying the number of coils from 2 to 8 coils are shown
in Fig. 5.10. Increasing the number of coils essentially means reducing the pitch of the coil
such that the simulation with two coils has the widest pitch. An increase in the number of
coils is accompanied by an increase in the number of doses as shown in Fig. 5.10b, due to
the decrease in the mass per dose, as can be seen from Fig. 5.10c. The volume of particles
transported per dose in the system with 2 coils is more than that transported in the system
with 8 coils. An increase in the number of coils is not directly proportional to the output
mass, i.e. a two-fold decrease in the number coils does not necessarily lead to a two fold
increase in the output dosed mass. For example, at the third dose, the configurations with 2, 4
and 6 coils have cumulative dosed masses of 37grams, 24grams and 15grams, respectively.
The under-prediction of the mass per dose is more extreme for less numbers of coils (or
wider pitch) but is close to the mass per dose for the simulation with the narrower pitch (7 to
8 coils).

5.5.5 Locally averaged macroscopic fields

One advantage of performing simulation is the possibility for data-mining to obtain macro-
scopic fields from microscopic data. In this section, we show macroscopic fields of velocity
and density that can be obtained from simulations.

In Fig. 5.11, we show the velocity of the particles in the outlet of the box along with the
staggered motion of the coil (on = 1/off = 0). For this simulation, the motion of the coil is
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Figure 5.11: Outlet material velocity (along z) during multiple dosing. The solid line repre-
sent the on-off motion of the coil. The coil angular velocity ω = 9.42 rad/s, Vt = 94.5 mm/s
and Vz = 2.09 mm/s.

such that an initial relaxation of 2 s allows the particles to settle during particle generation,
followed by a staggered dosing phase where the coil is rotated for 2 seconds at 90rpm, with
waiting time of 0.5 seconds between successive doses until the box becomes empty.

During the initial phase, where the particles are, a momentary increase in the velocity can
be seen as the particle fall to the base of the box and some escape through the outlet. The
particles quickly settle and the velocity drops to zero. Once the coil begins to move at t =
2 s, the velocity increases again with fluctuations and reaching a peak of ≈ 18 mm/s before
steadily decreasing to zero as the coil motion goes to zero. The same pattern can be seen
from the subsequent doses. It should be noted that even though the velocity profile is mostly
positive, we observe in some cases a negative velocity arising from a single particle moving
in the opposite direction. This happens mostly during the dosing phase when the coil is
moving and is possibly due to collision with other particles or due to violent contact with the
boundary (coil).

Along with the velocity profile, in Figs. 5.12 we also show the surface profile evolution from
experiments and simulation. At the initial state, for both simulation and experiment, the
initial profile is flat with the particles evenly distributed along the length of the box. As the
dosing progressed with more and more particles leaving the box, the height reduces unevenly.
As observed in the experiments, the height is lower in the region around the rear end of the
box since the mass transport is filling the empty coil this region. In general, the evolution of
the surface profile as observed in experiment and simulation are qualitatively very similar.
For a quantitative comparison, effects of e.g. the wall friction and other parameters must be
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Figure 5.12: The surface profile evolution in time during the dosing process for (a) experi-
ment (b) simulation; the arrow indicates the decreasing trend in time.

studied in more detail to complete the picture.

5.6 Conclusion

The dosing of cohesive powders in a simplified canister geometry has been studied using
experiments and discrete element simulations. This work has highlighted the prospects of
using discrete element simulations to model a complex application test relevant in the food
industry. While the modelling of cohesion remains a challenging issue, this work highlights
important aspects that can be useful for future research on this subject.

i. Scaling or coarse-graining of meso-particles by increasing their size relative to the
primary (real) particles and setting appropriate parameters, e.g. timescales, to mimic
the experimental particles makes it possible to simulate fine powders.

ii. Calibration of the interparticle friction and cohesive model parameters to match the
experimental dosed mass leads to parameter values, different from those expected for
the primary particles.

iii. Homogenization techniques to obtain macroscopic fields provides further insights into
the dosing mechanisms beyond experimental methods.
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Using the dosed mass as a target variable, we have shown experimentally that the number of
doses shows an inverse proportionality to increasing dosage time. Consequently, the dosed
mass shows a linear increase with dosage time as expected from the estimated mass per dose.
Increasing the number of turns in the coil leads to a non-proportional increase of the dose
mass. The mass output from the canister is found to show only a tiny sensitivity to the initial
mass in the canister.

All these observations have been confirmed by discrete element simulations for smaller
masses while effects of arching and blockage were observed for higher masses are over-
estimated. Future work will focus on the quantitative comparison for the masses as used in
the experiments. The effects of wall friction and rolling resistance are presently being stud-
ied. An extraction of other macroscopic fields like stress or structure using homogenization
tools can shed further light on the dosing process.

Acknowledgement

Helpful discussions with N. Kumar and M. Wojtkowski are gratefully acknowledged. This
work is financially supported by the European Union funded Marie Curie Initial Training
Network, FP7 (ITN-238577), see http://www.pardem.eu/ for more information.





Chapter 6

Conclusions and
Recommendations

Conclusions

Understanding the mechanical properties of granular materials is important both for practi-
cal and fundamental reasons. In the chapters 2 and 3 of this thesis, we have used discrete
element simulations to study the microscopic and macroscopic response of assemblies of
polydisperse granular packings under quasi-static isotropic and anisotropic loading and un-
loading. Through a variation of the preparation, the loading paths and quantities such as
the volume fraction and contact friction coefficient, this thesis contributes to the understand-
ing of the micromechanical origin of the macroscopic response of granular packings. As a
complement, chapter 4 provides new insights on the stress relaxation response of cohesive
powders at different stress levels and should be relevant for future research on the devel-
opment of new contact models for cohesive granular systems. As a step forward towards
application, in chapter 5, we have showcased the strength of DEM in modelling an industri-
ally relevant problem like the dosing of cohesive powders. The insights on the macroscopic
fields obtained through homogenization techniques are novel for this set-up and should be
relevant for various applications in powder transport or processing especially in the food
industry.

For validation, a wide class of element tests was defined in the example of a cubical box with
periodic boundary conditions that allow to control stress or strain, or both. The beauty of the
this set-up is its flexibility in providing various element deformation tests within one set-up.
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For example, isotropic and deviatoric tests which were used for calibration of a model and
the uniaxial compression test used for validation/prediction.

Validation on the level of element tests is a first level consistency-check before the model
and insights gained is used for the prediction of larger scale applications, which are typically
non-homogeneous, non-continuous, erratic such as the dosing accuracy test. Comparison of
DEM simulations with element test experimental data, also opens the door towards insight
into the microscopic mechanisms and the wealth of information DEM can provide. By
applying data-mining techniques, the microscopic mechanisms at the basis of the behaviour
of particle systems is now better understood and used to improve calibration procedures,
validation tests and the predictive quality in general.

Several conclusions can be drawn from the analysis:

From the strain-controlled loading and unloading of isotropic, uniaxial and two complemen-
tary deviatoric (pure shear) type deformation modes we conclude, for frictionless assemblies
(see chapter 2) that:

1. The jamming volume fraction, νc is not a single, particular volume fraction, but de-
pends on the deformation modes. Isotropic deformation leads to an increase of the
jamming volume fraction whereas deviatoric modes slightly decreases νc.

2. The uniaxial, deviatoric and isotropic modes can be described by the same analytical
pressure evolution equation.At larger strains, the build up of anisotropy causes the
uniaxial and deviatoric modes to deviate from the isotropic deformation mode.

3. The structural anisotropy response (quantified by the deviatoric fabric) to deviatoric
strain is qualitatively similar to that of the deviatoric stress ratio while the quantitative
response is different. The deviatoric and isotropic stress and strains are cross-coupled
by the structural anisotropy such that isotropic strain can cause deviatoric stress re-
sponse in the presence of structural anisotropy (and vice versa).

4. The calibration of the parameters of a constitutive model with anisotropy, using the
deviatoric mode, predicts well an independent test. The uniaxial compression test
prediction captures well the basic features of the deviatoric stress and fabric evolution.

In summary, using the simplest contact model and seemingly unrealistic materials, the pe-
culiar interplay of stress, strain, and microstructure was obtained for various deformation
modes while the predictive quality of a calibrated anisotropy model was successfully tested.

For the effects of friction on polydisperse assemblies under uniaxial loading and unloading
(see chapter 3), we find that:

5. The deviatoric stress and deviatoric fabric evolve strongly differently from each other,
in the presence of friction. The peak deviatoric stress ratio reached increases up to
µ = 0.3 before decreasing a little for higher friction. On the other hand, the peak
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deviatoric fabric reached shows a decreasing trend with friction.

6. The directional change of the orientation of largest stress eigenvector has a friction-
dependent delay with respect to when strain is reversed. On the other hand, high
friction causes reversal of fabric to happen much earlier than stress reversal leading to
a tilt to the perpendicular direction. The orthogonality of strong and weak forces with
respect to each other was also confirmed.

7. The history or “memory” effect leads to the irrecoverability of the initial states after
strain reversal. From the directional probability distributions, we find that the forces
and contacts in the tensile direction after unloading are generally weaker than those in
the neutral (non-mobile) directions.

8. A second order harmonic approximation describes the normal force, whereas contacts,
mobilized friction, and tangential force require higher order tensorial descriptors.

Thus, with friction, the microstructure and forces under the simple uniaxial deformation
activates microscopic observations that cause interesting macroscopic behavior.

Chapter 4 of this thesis is devoted to understanding the relaxation behavior of cohesive pow-
ders under uniaxial compression, experimentally and theoretically

The main conclusions of this study are:

9. Under uniaxial compression of cohesive powder samples for intermediate relaxation
at different stress levels, a slow, systematically time-dependent decrease in the axial
stress at constant volumetric strain is observed and confirmed in two experimental
setups.

10. For longer relaxation time, effects of previously experienced relaxation becomes visi-
ble at higher stress level.

11. A simple microscopic model including only two parameters namely the relaxation
timescale and a creep material parameter captures the stress relaxation behavior for all
stress levels and different materials.

12. Previous long relaxation reduces the possibility for present relaxation.

In general, measurements with simple oedometric testers have revealed the time dependent
stress relaxation behavior of cohesive powders which originates from slow dynamics in con-
tacts and thus macroscopic stress relaxation or creep.

On the experimental and numerical study of the dosing of cohesive powders in a simplified
canister geometry, the following conclusions are drawn.

13. Scaling or coarse-graining of meso-particles by increasing their size relative to the
primary (real) particles and setting appropriate parameters, e.g. timescales, to mimic
the experimental particles makes it possible to simulate fine powders. For our system,
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a limitation to size scaling is the pitch of the coil which determines the maximum
particle size possible, i.e, it should be several times smaller than the pitch or diameter
of the coil.

14. Using the mass per dose as a calibration parameter, discrete element simulation results
compare quantitatively with results from experiments.

15. Experiments and discrete element simulation of the dosing process confirm that the
dosing is most rapid at the back of the screw, where empty space becomes available
first, and where avalanches occur.

16. The number of doses is found to be inversely proportional to dosage time and coil
rotation speed but increases with increasing number of coils. The mass per dose shows
a linear dependence on the dosage time, as expected.

17. Only the dependence on the coil pitch is non-linear.

Scaling or coarse-graining of meso-particles by increasing their size relative to the primary
(real) particles and setting appropriate parameters, e.g. timescales, to mimic the experimental
particles makes it possible to simulate fine powders.

Recommendations

The critical evaluation of DEM simulations that predict new, non-calibrated regimes and
materials will still remain a challenge in the future, however, a few successful cases could be
shown in this thesis. Having a prediction of an experimental lab-scale or real-size industrial
application, the comparison between prediction and real-life realization represents a second
level validation, but requires more attention. Based on the experience gathered over the
course of completing this thesis, the following recommendations could guide future research.

In polydisperse packings, interactions between particles were modeled with using the sim-
plest linear contact force-overlap law. This simple approach is able to capture important
features of granular materials. A possible direction for future research will be simulations
where more realistic, non-linear contact models such as Hertz-Mindlin are used to generalize
the results in this thesis for the case of linearly elastic spheres. Additionally, the validity of
the findings for non-spherical particles also needs to be given more attention.

A great deal of care has to be taken when element test simulations are carried out. Most
systems are very sensitive to the preparation protocol employed and these effects have to be
quantified appropriately for reliable numerical results and models derived from those. A set
of best practice guidelines when performing element test simulations are highlighted below:

- When performing wall driven isotropic preparation, one must take into account inhomo-
geneities that could arise due to the wall motion. This is visible even when periodic boundary
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conditions are used under (slow) quasi-static conditions. To check for the presence of inho-
mogeneities, it is best to visualize (on a 3D plot) the locations of particle contacts with high
friction mobilization. As consistency check, the particles closest to the wall (where friction
is mobilized directly/first) could be excluded and the results compared with the full system
analysis for consistency.

- When pressure–driven isotropic preparation is used, the mass of the walls (periodic or
real) must be set to be of the order of the total mass of particles used in the simulation.
Additionally, too large values of wall mass can lead to large energy fluctuations and too
small wall mass values can lead to violent spurious motions; hence both must be avoided.

- Strain-rate control simulations generally lead to more homogeneous states compared to
the wall driven mode. However, as best practice, in all cases, the system must be sufficiently
relaxed after each preparation state, to approach mechanical equilibrium as close as possible.

- When the swelling method is used and particles are allowed to grow, it must be understood
that the particle mass changes as well as the radius. Due to this, one must take care that the
values of parameters such as the contact duration and particle stiffness are still reasonable
and valid for the particular set-up. Comparison with the previous methods can be done
nevertheless, by using dimensionless quantities.

Furthermore, the element test simulation results need to be checked against laboratory exper-
iments and if required new experiments should be carried out. Parameters not easily accessi-
ble from experiments, namely, coordination number or fraction of rattlers, will also require
advanced experimental and numerical techniques such as X-ray tomography, positron emis-
sion particle tracking (PEPT) and others. Additionally, experimental measurements of the
parameters of the anisotropy model also needs to be explored.

Outlook

At the beginning of this research, the plan was to use the uniaxial element experimental
data presented in chapter 4 to calibrate DEM simulation parameters from chapter 3, with
cohesion included as new ingredient, in addition to friction. This can then be combined
with the calibration results from dynamic rotating drum tests (in a related project) to finally
predict the dosing application test presented in chapter 5 based on independent calibration
experiments. Due to delay in some parts of the project, we directly simulated the dosing
test without relying on the independent calibration experiments for the DEM parameters.
Instead, we use a simplified calibration procedure based on the mass per dose obtained as
the initial slope of the cumulative dosed mass. With the simplified calibration, other dosage
time were compared to experiments. The use of independent calibration experiments is
certainly a gap that will need to be addressed in future research on this topic.
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As shown in this thesis, still a lot of bulk material behaviour need to be understood and
only by developing material characterization tests accessing to those mechanisms will this
be possible. Modelling of real-life particle shapes, system sizes and contacts remains a
daunting challenge. We hope that the results presented in this thesis will be useful in the
future for understanding the potential of discrete element simulations in modelling industrial
problems and by providing a starting point for future research.

Advances in computational methodologies and parallel programming is expected to aid the
deployment of discrete element simulations in modelling industrial applications on a larger
scale. The answers provided by this thesis, no doubt elicited new questions which will have
to be answered in the future.
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