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Nomenclature

As for the notation, we generally employ Roman letters with an arrow
above for vectors and boldface letters for second-rank tensors. Particles are
identified by Roman superscripts i, j, . . .. Tensor components are denoted
by Greek indices α, β, . . ., with expressions of the form ψαβ . The symmet-
ric part of a tensor will be indicated by round brackets as ψ(αβ) while the
antisymmetric part is denoted by ψ[αβ].

The tensor product of ψαβ and φαβ is denoted by ψ ⊗ φ to be distinguished
from the contraction of indices (scalar product in the case of vectors) ψ · φ.

We further adopt certain notations of the modern continuum-mechanics lit-
erature (BECKER AND BÜRGER [8]; TRUESDELL [98]), in particular σ for
the stress tensor. Each symbol is declared upon its first appearance. A list
of symbols is also included below.

List of Symbols

Symbol meaning throughout this thesis

~a vectorial quantity
a tensorial quantity
ȧ time derivative
ar radial outwards component of a
aφ azimutal/tangential component of a
aαβ component αβ of tensor a
a(αβ) component αβ of symmetric part of tensor a
a[αβ] component αβ of skew symmetric part of tensor a

Symbol meaning throughout this thesis

ai radius of particle i
B body in the actual configuration
d̃ reference diameter of the particles
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Symbol meaning throughout this thesis

dsmall diameter of the small particles
dlarge diameter of the large particles
D diameter of the inner wheel
δ overlap between two particles
∆t time step
en coefficient of normal restitution
E granular stiffness
η length of the tangential spring
ε total elastic deformation gradient
~f forces
~f n normal direction of force
~f t tangential direction
F fabric tensor
G shear stiffness
γn viscous damping constant in normal direction
γt viscous damping constant in tangential direction
J moment of inertia
kn springconstant in normal direction
` Cosserat length
m mass
~M external moments
M couple stress tensor
µC Coulomb constant
ν local volume fraction
ν̄ global volume fraction
ω angular velocity
ω̄ continuum rotation velocity
ω∗ excess rotation
Ω angular velocity of the inner wheel
ν̄ global volume fraction
r radial distance of a particle from the center of the

shearing device
ri radial position of particle i
r̃ dimensionless distance from the inner wheel (r−Ri)/d̃
Ri inner radius of the shear cell
Ro outer radius of the shear cell
% density
%p density of the particles
σ stress tensor
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Symbol meaning throughout this thesis

t time
τ M bottom torque parameter
~x position
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1
Deutsche Zusammenfassung

1.1 Einführung

Sitzt man am Strand und beobachtet Kinder beim Bau von Sandburgen oder
Pferde die über den Sand galoppieren, wird sich kaum jemand Gedanken
über eine mathematische Beschreibung des Sandes machen. Dennoch loh-
nen sich diese Gedanken. Sand gehört zu einer Gruppe von Materialien,
die als granulares Material oder Schüttgut bezeichnet wird. Im alltäglichen
Gebrauch fallen uns granulare Materialien meist nicht auf, obwohl be-
reits beim Frühstück das Kaffeepulver oder die Cornflakes Beispiele gra-
nularer Medien sind. Zucker, Tabletten oder Zahncreme sind weitere Bei-
spiele granularen Materials im Haushalt. Auch im industriellen Umfeld
sind Schüttgüter wie Erze, Zement oder auch Plastikgranulate omnipräsent.
Aufgrund ihrer Allgegenwärtigkeit erscheinen Granulate häufig als einfach
und gut verstanden, allerdings geben einige Phänomene im Verhalten von
Schüttgütern bis heute Rätsel auf.

Wir haben uns daran gewöhnt Materialien in flüssig, gasförmig oder fest
zu unterscheiden. Für Schüttgut trifft dieses Schema jedoch nur bedingt zu.
Vakuumverpackter Kaffee beispielsweise scheint ein fester Block zu sein,
öffnet man jedoch die Verpackung, so lässt sich das Pulver fast wie eine
Flüssigkeit ausgießen. Andererseits bildet das Pulver auf einem Tisch einen
Haufen und zerfließt nicht wie Wasser. Die gasartige Verhaltensweise von
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Granulaten zeigt sich, wenn man diese stark schüttelt. Granulares Materi-
al zeigt also durchaus das Verhalten der klassischen Phasen, darüber hin-
aus lassen sich jedoch Phänomene wie ”nicht-Gleichverteilung der Ener-
gie“, Klusterbildung, Phasenübergänge, Glasphasen, Anisotropie, Struktur-
bildung und hysteretisches Verhalten beobachten. All diese Beispiele zei-
gen, dass es nicht immer möglich ist Schüttgüter mit einer der klassischen
Methoden wie der Hydrodynamik, der kinetischen Gastheorie oder der
Kontinuumstheorie, zu beschreiben.

Eine Eigenschaft granularer Medien, welche die Verwendung klassischer
Kontinuumstheorien verhindert, sind starke Fluktuationen beispielsweise
der Kräfte innerhalb des Materials. Diese Kräfte werden durch die Kontak-
te zwischen den Teilchen übertragen. Die Richtung dieser Kraftübertragung
wird dabei möglichst beibehalten, wodurch sich Strukturen ausbilden, die
als Kraftketten bezeichnet werden. Von diesen Kraftketten wird nahezu die
gesamte externe Last des Systems getragen, während direkt benachbarte
Teilchen keine oder nur geringe Kräfte erfahren und so lediglich das “star-
ke” Kraftnetzwerk stabilisieren. Dadurch entsteht eine starke Inhomoge-
nität innerhalb des Granulates. Diese Inhomogenität ist letztendlich auch
die Ursache beispielsweise für das zu beobachtende Verstopfen von Silos.
Dabei bilden sich, während das Silo geleert wird, Kraftketten als eine Art
Bogen vor dem Auslass und verhindern so das Nachfließen weiterer Teil-
chen. Ein weiteres wichtiges Phänomen bei granularem Material ist die Di-
latanz. Läuft man am Strand entlang, so kann man feststellen, dass sich beim
kräftigen Auftreten auf nassem Sand der Fußabdruck nicht mit Wasser füllt,
sondern die Umgebung des Abdrucks trocknet. Dieser Effekt lässt sich da-
durch erklären, dass sich komprimierter Sand ausdehnen muss, bevor er
sich verformen lässt und dadurch Platz für die Flüssigkeit zwischen den
Teilchen schafft.

Dieser Effekt spielt auf einer größeren Skala auch bei Erdbeben, Erdrut-
schen oder Lawinen eine Rolle. Wenn sich bei Erdbeben beispielsweise zwei
benachbarte Erdschollen aneinander vorbei bewegen, bildet sich zwischen
beiden eine Zone, in der sich das Material (lokal) ausdehnen muss. In dieser
Dilatanzzone finden sich vergleichsweise viele Einzelkörner welche rotieren,
um dadurch die Bewegung der großen Blöcke zu ermöglichen. Die Dicke
dieser lokalisierten Zonen beträgt nur wenige Korndurchmesser, dennoch
wird in diesen Scherzonen oder Scherbändern die gespeicherte Energie freige-
setzt, welche für das Erdbeben verantwortlich ist.
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1.2 Übersicht

Die genannten Beispiele zeigen die Vielfalt von Effekten in granularer Mate-
rie. Die vorliegende Arbeit beschäftigt sich mit Scherzonen und Dilatanz in
einem gescherten Granulat, ihrer Modellierung und theoretischen Beschrei-
bung. Der Aufbau der Arbeit spiegelt dieses Ziel wider, indem zunächst
ein experimentelles Modellsystem vorgestellt und anschließend mittels ei-
ner Molekulardynamik simuliert wird. Um einen Vergleich von Experiment
und Simulation zu ermöglichen, wird ein geeigneter Mittelungsformalis-
mus entwickelt, um aus den diskreten ”mikroskopischen“Größen der Simu-
lation ”makroskopische “Messgrößen zu erhalten. Dieser Formalismus wird
verwendet, um kinematische Größen wie Geschwindigkeitsprofile und Ro-
tationen in der Simulation der Scherzelle zu ermitteln und mit den expe-
rimentellen Daten zu vergleichen. Aufgrund der gefundenen Vergleichbar-
keit von Experiment und Simulation lassen sich dann vertrauenswürdige
Aussagen auch über Größen treffen, die im Experiment gar nicht oder nur
schwer zugänglich, jedoch für das Verständnis der Vorgänge innerhalb des
Granulates hilfreich sind. Im Rahmen eines kontinuumstheoretischen An-
satzes werden die Spannungen und die Deformationen des Granulates be-
stimmt. Zusätzlich wird der Fabric-, oder Strukturtensor ermittelt, mit des-
sen Hilfe sich Aussagen über die innere Struktur des Schüttgutes, wie bei-
spielsweise den Grad der Anisotropie, treffen lassen. Die ermittelten Feld-
größen werden dann verwendet, um Materialkenngrößen einer Kontinu-
umstheorie zu bestimmen. Dazu wird zunächst ein elastisches Material-
gesetz nach Hooke verwendet und der Elastizitäts- und Schermodul be-
rechnet. Da es sich zeigt, dass die Rotationen der einzelnen Körner im Sy-
stem eine wichtige Rolle für das Verhalten des Materials insbesondere in
der Scherzone spielen, führen wir einen Cosserat-Ansatz ein, in welchem
die klassische Kontinuumstheorie um die rotatorischen Freiheitsgrade er-
weitert wird. Daher müssen die Bilanzrelationen um Gleichungen für Mo-
mente und Krümmungen erweitert werden. Diese Größen werden eben-
falls aus den Simulationen bestimmt und eine neue Materialgröße, die Ver-
drehungssteifigkeit errechnet. Im letzten Teil der vorliegenden Arbeit wer-
den die Ergebnisse der Simulationen mit den Vorhersagen eines elasto-
plastischen Cosserat-Modelles verglichen. Da experimentelle Daten für die-
sen Vergleich fehlen, bietet die Simulation hier erstmals die Möglichkeit
einen Test des Modells durchzuführen.
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1.3 Das Modellsystem

Im Gegensatz zu Effekten von Granulaten in der Natur, bei denen eine
sehr große Anzahl von Körnern beteiligt ist, ist es sinnvoll sich bei La-
borversuchen und Simulationen zum Verständnis granularer Materie auf
eine begrenzte Anzahl von Teilchen zu beschränken. Daher werden meist
nur Teil- oder Modellsysteme untersucht. Um die Bildung und Entwick-
lung von Scherbändern studieren zu können, muss über einen längeren
Zeitraum hinweg eine Scherung auf ein Granulat ausgeübt werden. Die
Couette-Scherzelle ist ein Gerät, mit dem dies möglich ist. Daher wird sie für
die vorliegende Arbeit als Modellsystem verwendet. Eine 2-dimensionale
experimentelle Umsetzung des Gerätes wurde an der Duke University in
Durham (USA) in der Gruppe um Prof. Behringer entwickelt und experi-
mentell untersucht.

Die Geometrie der simulierten Scherzelle wurde den Abmessungen der
experimentellen Anlage angepasst, um soweit möglich einen quantitati-
ven Vergleich und eine Eichung der Simulationsergebnisse vornehmen zu
können. In Abb. 1.1 ist die Scherzelle schematisch dargestellt. Zwischen ei-
nem inneren und einem äußeren Zylinder befinden sich Plexiglasscheib-
chen zweier unterschiedlicher Radien. Durch die beiden unterschiedlichen
Teilchenradien werden Kristallisationseffekte reduziert, wenn auch nicht
ganz verhindert. Der innere Ring des Gerätes kann um die Symmetrieachse
rotieren, der äußere Ring wird festgehalten, somit bleibt das Volumen der
Scherzelle konstant. Der Boden des Apparats ist mit einer dünnen Schicht
Backpulver bestreut, um die Reibung der Teilchen mit der Bodenplatte zu
reduzieren.

Im Experiment werden die Teilchen einzeln von Hand in die Scherzelle ein-
gesetzt. In der Simulation werden die Teilchen auf einem Dreiecksgitter auf-
gesetzt, wobei der äußere Zylinder zunächst einen größeren Radius besitzt
und erst langsam auf den experimentellen Wert geschrumpft wird, um so
eine dichte Teilchenpackung zu erhalten.
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b) Kraftketten

Ri

oR

10.32 cm

a) Scherzonenbildung

25.24 cm

c) Realisierung der Wände

Fig. 1.1: Schematische Draufsicht des experimentellen Aufbaus. a) Bildung einer Scher-
zone nach einer halben Umdrehung des inneren Ringes. Die Farbe der Teilchen
kodiert die vertikale Position der Teilchen zu Beginn der Simulation. b) Kraftket-
ten in einem Teilbereich der Scherzelle nach einigen Rotationen des Innenrings.
Die Stärke der übertragenen Käfte ist farblich markiert. Dabei bedeutet dunkel
starke Kräfte und hell schwache. c) Skizze der Realisierung der Ränder in der
Simulation.

1.4 Die Molekulardynamik

Für die Simulation wird eine Molekulardynamik (MD) bzw. Diskrete-
Elemente-Methode (DEM) verwendet. Dabei werden die Newtonschen Be-
wegungsgleichungen aller Teilchen numerisch integriert. Für die Integra-
tion wird ein Verlet-Verfahren verwendet. Um die aufwendige Suche nach
benachbarten Teilchen (Stoßpartnern) zu beschleunigen, wurde ein Linked-
Cell Algorithmus implementiert.

Für die Modellierung spielen die Wechselwirkungskräfte zwischen den
Teilchen eine entscheidende Rolle. In der hier verwendeten Simulationsme-
thode werden die Wechselwirkungen als Kontaktkräfte mit Dissipation und
Reibung zwischen Teilchenpaaren beschrieben.
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Die Teilchenzentren befinden sich an den Orten ~x i (i = 1, . . . , N ) und die
Größe der Teilchen wird durch den Radius ai bestimmt. Zwei Teilchen i

und j sind in Kontakt, sobald sich ihre Umrisse überlappen und üben dann
eine gegenseitige Kraft aufeinander aus (”actio = reactio“). Man zerlegt die
Kraft zwischen den Teilchen eines Paares in eine normale Komponente ~f nij ,
die der Abstoßung und Energie-Dispersion Rechnung trägt und eine tan-
gentiale Komponente ~f tij , für welche die Reibung verantwortlich ist.

Sieht man von starken ”plastischen“ Verformungen wie lokalen ”Dellen“
oder Brüchen der Teilchen ab, so lässt sich die Normalkraft in einen elasti-
schen und einen dissipativen Anteil zerlegen. Für die Simulation von Schei-
ben wird im einfachsten Fall ein lineares Gesetz verwendet. Die Kraft ist
dabei proportional zum virtuellen Überlapp δ = |~xi−~xj|− (ai+aj) der Teil-
chen. Der zweite Anteil der Normalkraft trägt der Dissipation von Energie
während des Stoßes Rechnung und wird mittels einer viskosen, dissipati-
ven Kraft beschrieben, die proportional zur Normalkomponente der Rela-
tivgeschwindigkeit zweier kontaktierender Teilchen ist.

Die Tangentialkräfte ~f t lassen sich im einfachsten Fall als Coulombsche
Reibungskräfte ~f tCoulomb definieren. Dabei ist jedoch die statische Reibung
zwischen den Teilchen als wichtiges Element realistischer Simulationen
nicht berücksichtigt. Eine quasi-statische Reibungskraft kann als Cundall-
Strack-Feder implementiert werden. Hierbei verwendet man als Tangen-
tialkraft die Länge einer imaginären Tangentialfeder, die sich zum Zeit-
punkt des Kontaktbeginns zwischen zwei Teilchen ausbildet. Das Kraftge-
setz erwies sich als zuverlässig, stabil und realistisch insofern, als dass stati-
sche Packungen erzeugt werden konnten. Zusammenfassend lässt sich die
Kraft auf ein Teilchen i damit als

~fi =
∑

c

(~f nel + ~f ndiss + ~f t) + ~fb (1.1)

beschreiben, wobei sich die Summe über die Kräfte an allen Kontaktpunk-
ten c erstreckt und weiterhin eine Volumenkraft ~fb wie die Gravitation
berücksichtigt werden kann. Berechnet man neben den Kräften und daraus
entstehenden Beschleunigungen noch die Drehmomente und entsprechen-
de Rotationen, so ist die Dynamik des Systems vollständig beschrieben und
die Bewegungsgleichungen können numerisch integriert werden.
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1.5 Die Mittelungsmethode

Um die Ergebnisse diskreter Simulationen mit physikalischen (makroskopi-
schen) Messungen vergleichen zu können, bedarf es effizienter Mittelungs-
methoden, welche die diskreten Werte der Simulation homogenisieren und
so das Verhalten des Granulats als Ganzes beschreiben. Dazu wird ein Mit-
telungsformalismus definiert, mit dem sich neben skalaren Größen (wie
Dichte oder Koordinationszahl) auch vektorielle und tensorielle Felder (wie
Geschwindigkeit, Spannung oder Geschwindigkeitsgradient) ortsabhängig
ermitteln lassen. Aufgrund der Symmetrie des untersuchten Systems, sind
alle Teilchen gleichen Abstands zum Zentrum gleichwertig. Daher lassen
sich Mittelungen sowohl räumlich (in Kreisringen), wie auch zeitlich (quasi-
stationärer Zustand) durchführen.

Ausgangspunkt für unseren Formalismus ist die naheliegende Definition
des lokalen Volumenanteils

ν =
1

V

∑

p∈V
wpV V

p , (1.2)

den man aus der allgemeinen Beziehung für eine beliebige Größe Q

Q = 〈Qp〉 =
1

V

∑

p∈V
wpV V

pQp , (1.3)

erhält, indem man die für ein Teilchen definierte Größe Qp = 1 setzt. V p ist
dabei das Teilchenvolumen und wpV der Gewichtsfaktor des Teilchens p.

Für die Wahl von wpV gibt es mehrere Möglichkeiten: zum einen kann man
eine teilchenzentrierte Mittelung durchführen, eine andere Möglichkeit ist
die zu mittelnde Größe gleichmäßig über das Teilchen zu verschmieren
und nur den im Mittelungsvolumen V liegenden Anteil des Teilchen zu
berücksichtigen. Die zweite Methode erwies sich als wesentlich robuster
und führte zu realistischen Resultaten. Interessanterweise stimmen beide
Mittelungsverfahren gerade dann besonders gut überein, wenn die Dicke
∆r des Mittelungskreisrings in etwa so groß wie ein Teilchendurchmesser
gewählt wird.

Eine beliebige Größe Qp, die für ein Teilchen p definiert ist, lässt sich mit
Glg. 1.2 in das zugehörige Volumen-Mittel überführen. Dabei kann die Teil-
cheneigenschaft Qp ein Tensor beliebiger Stufe sein, die gemittelte makro-
skopische Größe Q = 〈Qp〉 besitzt dann die entsprechende Tensorstufe.
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1.6 Vergleich zwischen Simulation und Experiment

Ein Ziel dieser Arbeit war es eine Simulation zu entwickeln, welche sich
mit einem existierenden Experiment vergleichen lässt. Unsere Ergebnis-
se zeigen zumeist sehr gute qualitative, in vielen Fällen auch quantitative
Übereinstimmung mit dem Experiment.

Sowohl im Experiment als auch in der Simulation entwickelt sich aus einer
anfänglich homogenen Dichte, in radialer Richtung eine Dilatanzzone in-
nen und eine leicht komprimierte Zone außen. Dabei bildet sich aufgrund
der durch die Drehung des inneren Ringes induzierten Scherung und der
daraus resultierenden Dilatanz an der inneren Wand ein Scherband aus.
Die Dichteprofile aus Simulation und Experiment stimmen dabei gut mit-
einander überein. Aus beiden lässt sich eine Scherbandbreite von ca. 5 − 6

Teilchendurchmessern ablesen.

Besondere Aufmerksamkeit bei den Vergleichen galt der Variation der glo-
balen Packungsdichte ν̄. Dabei zeigte es sich, dass sich das System für
Packungsdichte von ν̄ < 0.793 in einem subkritischen Bereich befindet.
In diesem Bereich besteht nach einigen Umdrehungen des Innenrings kein
Kontakt mehr zwischen Ring und System, da alle Teilchen nach außen ge-
drückt werden. Erhöht man die Dichte, so findet sich am inneren Ring ein
ausgeprägtes Scherband, welches mit weiter zunehmender Dichte schmäler
wird und schließlich bei einer Packungsdichte von ν̄ > 0.811 nur noch
schwer zu bestimmen ist. Bei diesen hohen Dichten können die Teilchen
nicht mehr ausreichend gegeneinander verschoben werden, das System ist
blockiert.

Betrachtet man das Profil der Tangentialgeschwindigkeit als Funktion des
radialen Abstands vom Zentrum, so findet man sowohl in den Simulationen
wie auch in den Experimenten ein exponentielles Abklingen der Geschwin-
digkeit wenn man sich vom inneren Ring entfernt. Allerdings ist in den Ex-
perimenten deutlich zu erkennen, dass die Amplitude der Geschwindigkeit
mit zunehmender Packungsdichte ebenfalls zunimmt. In unseren Simula-
tionen lässt sich dies nur für hohe Dichten eindeutig feststellen, bei gerin-
gen Dichten scheinen Unterschiede in der Implementierung der Wände und
der Bodenreibung einen starken Einfluss zu haben.

Sowohl im Experiment wie auch in den Simulationen lassen sich die Rota-
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tionen der Körner messen. Dabei findet man ein Oszillieren der Rotations-
richtung der Teilchen, wenn man sich vom inneren Ring entfernt. Die Teil-
chen verhalten sich dabei wie eine Art Kugellager, in dem sie Schichtweise
aufeinander abrollen um so die Scherung zu erleichtern.

Betrachtet man die Häufigkeitsverteilungen der Tangentialgeschwindig-
keiten und der Rotationen der Teilchen nahe des inneren Ringes, so zeigen
diese sowohl in den Simulationen, wie auch in den Experimenten eine kom-
plexe Struktur, welche ebenfalls von der globalen Packungsdichte abhängt.
Zum Verständnis dieser Struktur hilft es, die Korrelation zwischen Rotation
und Tangentialgeschwindigkeit zu betrachten. Dabei zeigt sich, dass sich
für geringe Dichten die meisten Teilchen in Ruhe befinden. Mit zunehmen-
der Dichte findet man mehr und mehr Teilchen in einem Zustand, in dem
sie eine Kombination aus Dreh- und Translationsbewegung ausführen, um
dadurch ein Abgleiten auf anderen Teilchen und dem inneren Ring zu ver-
hindern.

Zusammenfassend lässt sich also feststellen, dass die vorliegende, ver-
gleichsweise ”einfache“ Simulation in der Lage ist, das Verhalten eines
Modellexperimentes qualitativ, in vielen Fällen auch quantitativ zu repro-
duzieren. Diskrepanzen in den Ergebnissen lassen sich auf Unterschie-
de zurückführen, deren Implementierung eines enorm großen Aufwands
bedürfte, wie beispielsweise die Möglichkeit der Teilchen sich aus der Be-
wegungsebene zu verkippen. Die Übereinstimmungen ermutigen jedoch im
Weiteren auch Größen zu bestimmen, welche im Referenzexperiment nicht
zugänglich sind und diesen Größen zu vertrauen.

1.7 Der Mikro-Makro-Übergang

Das übergeordnete Ziel von diskontinuierlichen, mikro- oder mesoskopi-
schen Simulationsverfahren ist letztendlich das Verständnis des Material-
verhaltens, auch auf makroskopischer Ebene. Dieser Übergang von den zu
bestimmenden Größen und Eigenschaften des diskreten Mikrosystems zu
einer makroskopischen Kontinuumsbeschreibung und die damit verbun-
dene Vorhersagbarkeit des für praktische Anwendungen interessierenden
Materialverhaltens, war ein weiterer Schwerpunkt unserer Arbeit.
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Aufgrund der gefundenen Vergleichbarkeit von Experiment und Simula-
tion, lassen sich vertrauenswürdige Aussagen auch über Größen treffen,
welche im Experiment gar nicht oder nur schwer zugänglich sind.

Als ein Beispiel sei hier der Strukturtensor genannt. Dieser, obwohl nicht Be-
standteil der klassischen Kontinuumstheorie, beschreibt zu einem gewissen
Grad die innere Struktur des Granulates. Aus der Orientierung der Haupt-
achsen des Strukturtensors lässt sich ermitteln, ob es innerhalb des Systems
eine Vorzugsrichtung gibt, in welcher sich vermehrt Kontakte befinden. Im
Fall der vorliegenden Scherzelle findet man nahe des inneren Ringes bevor-
zugt Kontakte in tangentialer Richtung, die durch die Wand-Nahordnung
hervorgerufen werden. Ebenso finden sich Kontakte in Richtung von 600 ge-
gen die Tangentialrichtung. Diese Kontakte bilden sich, da sich das Granulat
gegen die Scherung wehrt. Entfernt man sich vom Innenring, so wird die
Kontaktverteilung zunehmend homogener, bevor sie im äußeren Bereich
erneut anisotrop wird. Diese Anisotropie rührt allerdings aus Kristallisati-
onseffekten in der Kompressionsphase der Simulation her und repräsentiert
eine Dreiecksgitter-Struktur. Da die Dynamik im Außenbereich der Scher-
zelle sehr langsam ist, überleben diese Strukturen sehr lange.

Um Aussagen über das makroskopische Verhalten von Granulaten un-
ter Belastung von außen machen zu können, müssen makroskopische
Zustandsgrößen aus der Mittelung mikroskopischer Größen gewonnen
werden. Für praktische Zwecke wird dabei gemeinhin eine Spannungs-
Dehnungs Beziehung als unverzichtbar angesehen. Im Rahmen dieser Ar-
beit wurde die Bestimmung dieser Größen aus den mikroskopischen Varia-
blen Kontaktkräfte, Kontaktvektoren und Verformungen am Kontakt herge-
leitet. Dabei wurden insbesondere auch die Anteile des Spannungstensors
berücksichtigt, die sich aus der Dynamik des Granulates ergeben. Für diese
kann jedoch gezeigt werden, dass sie um einige Größenordnungen kleiner
sind als die Spannungen aus den wirkenden Kräften. Daher kann der dyna-
mische Anteil hier vernachlässigt werden.

Das Verhalten der Komponenten des Spannungstensors lässt sich aus kon-
tinuumstheoretischen Überlegungen herleiten. So sind die Hauptdiagonal-
elemente des Spannungstensors konstant, während die Nebendiagonalele-
mente die die Scherung beinhalten mit 1/r2 abklingen, wenn man sich radial
auswärts bewegt.

Die Definition eines makroskopischen Dehnungstensors ist ein kontrover-
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ses Thema der aktuellen Forschung. Unsere Definition des Dehnungsten-
sors basiert auf der Arbeit von LIAO ET AL. [51]. Mit dem verwendeten Mi-
nimierungsverfahren wurde der elastische Dehnungstensor bestimmt. Mit
Hilfe von Spannung und Dehnung kann man dann versuchen Stoffgesetze
für granulares Material zu formulieren, um so wiederum zu einer Kontinu-
umstheorie zu gelangen. Basierend auf einem isotropen, elastischen Stoffge-
setz konnten wir die SteifigkeitE des granularen Materials für verschiedene
globale Packungsdichten bestimmen. Obwohl die Annahme der Isotropie
für das verwendete System in weiten Bereichen nicht zutrifft, lassen sich
dennoch die Steifigkeiten bei verschiedenen Dichten auf eine gemeinsame
Kurve skalieren, wenn sie gegen die Spur des Strukturtensors aufgetragen
werden. Dieses Resultat lässt sich auch aus ”mean field“ Überlegungen ab-
leiten. Ebenso das Verhalten der Schersteifigkeit G.

1.8 Rotationsfreiheitsgrade

Ein besonderes Phänomen in Scherexperimenten sind die in der Scherzo-
ne verstärkt auftretenden Teilchenrotationen. Die Rotationen ermöglichen
den Schichten des Granulats kugellagerartig aufeinander abzugleiten. In
einer klassischen Kontinuumstheorie werden die Rotationsfreiheitsgrade
jedoch nicht berücksichtigt. Daher wurde in der vorliegenden Arbeit ein
Cosserat-Kontinuum als Erweiterung gewählt. Dabei werden jedem Mate-
riepunkt zusätzlich zu den translatorischen Freiheitsgraden auch rotatori-
sche Freiheitsgrade zugeordnet. Die Gesamtrotation der Teilchen (Spindich-
te) setzt sich aus einer Kontinuumsrotation und der Teilchenzusatzrotation
ω∗ zusammen. Die Kontinuumsrotation lässt sich aus der klassischen Kon-
tinuumstheorie insbesondere aus dem Geschwindigkeitsgradienten ablei-
ten. Die abgeleitete Größe stimmt gut mit den Ergebnissen der Simulationen
überein.

Die konstituierenden Gleichungen in einem Cosserat-Kontinuum müssen
um eine Beziehung zwischen den Momentenspannungen und den Krüm-
mungen erweitert werden. Jene erhält man aus den Definitionen der Span-
nungen σ und der Dehnungen ε durch Analogieüberlegungen, wobei
Kräfte bzw. zugehörige Überlappungen jeweils durch Drehmomente bzw.
Kreuzprodukte ersetzt werden.
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Die genannten Größen bilden den Kern mikropolarer Theorien und die ana-
lytische Herleitung sowie das bessere Verständnis ihrer Eigenschaften sind
Voraussetzung dafür, dass die interne Länge in der Cosserat-Theorie mit
entsprechenden Längenskalen anderer Modelle verglichen werden kann.
Das erste vielversprechende Resultat hierzu betrifft den Quotienten der Mo-
mentenspannung und der korrespondierenden Krümmung, der angibt, wie
stark ein Material auf eine kleine Rotationsbewegung reagieren wird – er
stellt also eine Verdrehungssteifigkeit (in Analogie zur Steifigkeit E) dar.
Die Ergebnisse zeigen, dass die Rotationssteifigkeit in der Scherzone ab-
nimmt (durch abnehmende Dichte und dadurch abnehmende Frustration)
und aus ähnlichen Gründen, mit zunehmender Materialdichte systematisch
zunimmt. Ein dichtes Material setzt also einem Drehmoment mehr Wider-
stand entgegen als ein dünneres.

1.9 Vergleich mit einem Kontinuumsmodell

Mit den aus den Simulationen gewonnenen makroskopischen Größen kann
nun das mikropolare Modell eines elasto-plastischen Reibungsmaterials ge-
testet werden. Für das von MOHAN ET AL. [65] vorgeschlagene Modell gibt
es derzeit keine experimentelle Rechtfertigung. Aus der Simulation lassen
sich hingegen alle benötigten Größen bestimmen und mit den Modellvor-
hersagen vergleichen. Dies zeigt, dass das Modell für die Geschwindig-
keitsprofile, sowie die Rotationen exzellent mit den Daten der Simulation
übereinstimmt. Auch das Verhalten der Asymmetrie des Spannungstensors,
die sich aus einer Cosserat-Theorie ergibt, stimmt in Modell und Simulation
qualitativ überein. Allerdings scheint das Modell zu einer Momentenspan-
nung zu führen, welche mit wachsender Entfernung von der inneren Wand
ansteigt. Dieses Verhalten steht in deutlichem Widerspruch zu den Ergeb-
nissen der Simulation, in der die Momentenspannungen weg vom Innen-
ring schnell abklingen. Hier muss eine genaue Untersuchung der Modell-
gleichungen klären was die Ursache für das falsche Modellverhalten ist.
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1.10 Zusammenfassung und Ausblick

Um den Mikro-Makro-Übergang von einer ”mikroskopischen“ zu einer
kontinuumstheoretischen Beschreibung eines Granulates möglich zu ma-
chen, ist ein konsistenter allgemeiner Mittelungsformalismus entwickelt
worden. Damit konnten neben der Dichte und dem Geschwindigkeitsfeld
auch tensorielle Größen wie der Geschwindigkeitsgradient, der Spannungs-
tensor, der elastisch-reversible Deformationsgradient und der Strukturten-
sor berechnet werden. Zusätzlich zu diesen Größen einer klassischen Kon-
tinuumstheorie wurden aus der Teilchenrotation und der Kontinuumsdre-
hung die Teilchenzusatzrotation im Sinne einer mikropolaren Kontinuums-
theorie bestimmt. In Analogie zu den klassischen Größen Spannungstensor
und Deformationsgradient sind zuletzt auch der Momentenspannungsten-
sor und die Krümmung ausgewertet worden.

Aus den tensoriellen Größen lassen sich verschiedene Materialparameter
wie z.B. die isotrope Steifigkeit oder das Schermodul berechnen. Als neue
Größe kommt die aus den mikropolaren Tensoren bestimmte Rotationsstei-
figkeit hinzu, die den Widerstand eines Materials gegenüber Drehungen
einzelner Teilchen beschreibt.

Die vorgestellte Simulation kann mit einem Experiment verglichen und da-
ran geeicht werden. Andererseits erhält man mit Hilfe der Simulation auch
mehr Informationen über den Mikro-Makro-Übergang. Sie eignet sich da-
her, die Vorhersagen einer Kontinuumstheorie zu überprüfen. Simulationen
sind daher ein wertvolles Werkzeug, um ein tieferes Verständnis des Verhal-
tens granularer Materie zu erlangen. Die hier gezeigten Ergebnisse haben
dazu sicherlich beigetragen, jedoch haben sich durch die Arbeit auch neue
Fragestellungen ergeben.

Im Rahmen dieser Arbeit haben wir uns auf runde Scheibchen beschränkt.
Für die Simulation von realen Granulaten ist es jedoch von Interesse auch
nicht runde Teilchen in einem dreidimensionalem Behälter zu simulieren.
Nicht runde Teilchen ermöglichen einerseits einen stärkeren Drehmomen-
tenübertrag, andererseits werden sich solche Teilchen deutlicher verhaken,
wodurch Rotationen behindert werden.

Der vorgestellte Mittelungsformalismus erwies sich als sehr zuverlässig. In
Systemen, die nicht wie das verwendete zeitliche wie auch räumliche Mit-
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telungen erlauben, ist die Frage nach der Größe des Mittelungsvolumens
immer noch offen.

Die verwendete Definition des Dehnungstensors berücksichtigt nur elasti-
sche Deformationen. Hier wäre eine Erweiterung, welche die plastische Ver-
formungen des Granulates berücksichtigt, wünschenswert. Dazu muss je-
doch die Umgebung eines Teilchens und deren Deformation miteinbezogen
werden.

Im Hinblick auf die Verwendung eines Cosserat-Modells zur Beschreibung
granularer Medien konnte diese Arbeit aufzeigen, dass in einem solchen
Modell das Fließverhalten des Granulates zutreffend beschrieben wird. Für
die Formulierung der Gleichungen der Momentenspannungen müssen je-
doch weitergehende Überlegungen erfolgen. Dies insbesondere im Hinblick
auf die Tatsache, dass sich die mikropolaren Effekte nur in der schma-
len Scherzone des Granulates abspielen. Aufgrund der oszillierenden Rota-
tionsrichtungen der Körner ist hier jedoch eine Mittelung äusserst schwierig
und bedarf weiterer Untersuchungen.

Der Weg, um in einem Kontinuumsmodell das Verhalten eines Granulates
auch in Scherzonen vorhersagen zu können scheint noch weit, jedoch inter-
essant und gangbar.
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Introduction

While sitting on a beach and watching children building sand castles or
horses galloping on the sand no one will think of how to describe sand in a
mathematical way. But it is worth thinking about. Sand belongs to a group
of materials known as granular materials. Most of the time we handle granu-
lar materials in everyday life, we do not even notice it. At breakfast, the cof-
fee powder and the cereals are granular materials. Sugar, drugs and tooth
paste are other examples of granular media in a household. In industrial
environments granular materials are also omnipresent, e.g. cement, ore and
plastic pellets. With the abundance of granular materials they often seem
particularly ordinary and well understood, yet there are a lot of phenomena
which are still not (HERRMANN [39]; JAEGER AND NAGEL [46]).

We are adopted to sort matter into the categories of gas, fluid or solid. Ho-
wever, granular materials sometimes behave like either of the three states,
or even different from any. As an example let us consider the coffee powder
mentioned above: The vacuum packed block of coffee powder seems to be
quite solid but by opening the package one can pour out the powder just like
a liquid. Still, in contrast to a fluid the powder does not deliquesce but forms
a heap, i.e. it behaves like a solid again. The gas-like behavior of granular
material can be found by shaking a granular assembly heavily. These ex-
amples demonstrate that granular media show the behavior of the classical
phases as special cases and, in addition, show a variety of extra phenom-
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ena like non-equipartition of energy, clustering, phase transitions, jammed
or glassy states, anisotropy, structuring and hysteretic behavior. Because of
this variety of effects it is not possible to describe granular media always
with one of the classical theories like hydrodynamics, kinetic gas theory or
continuum mechanics.

One of the features of granular media which prohibits the use of clas-
sical theories are the strong fluctuations for example of the forces inside
a granular assembly. In short range, the forces propagate along the contacts
between the grains. Because they keep their direction the structure formed
by this particles is called a force chain. Yet, directly in the neighborhood of
the force chains there might be particles bearing no load. So there is a strong
inhomogeneity inside the assembly which, in the end, is also responsible
for the clogging in silos. While letting the grains flow out of a silo force
chains sometimes develop at the outlet, blocking the descending particles
and thus jam the silo.1Another fascinating property of granular materials is
the dilatancy. While walking on the beach one might recognize that when
stepping on wet sand the footprints do not fill with water, instead the sur-
rounding of the print becomes dry. The effect is understood by considering
the fact that compressed sand needs to dilate before becoming able to de-
form and thus leaving more space for the fluid between the grains. On a
larger scale granular materials are also of interest to earth scientists in or-
der to understand earthquakes, landslides or avalanches. Earthquakes may
serve as an example for intermittent behavior. Most of the time the frag-
mented rock layer (termed “gouge”) within a geological fault stays at rest.
But sometimes two adjacent blocks of soil move relative to each other and
energy is released by the fast moving blocks overcoming their blockages.
Between the two blocks a zone forms which has to dilate. In this dilated re-
gion relatively many small particles are found to rotate in order to support
the motion of the bigger blocks. These localized zones are only of the width
of a few particle diameters and are called shear bands.

These few examples show the wide variety of effects occurring in granular
media. In the present thesis we will focus on the shear zone and dilatancy
in a sheared granular media. As a model system an actual experiment will
be used and simulations are carried out, in order to finally evaluate a con-
tinuum theoretical approach predicting the collective behavior of a granular
assembly.

1 This is why you can sometimes see people hitting a silo with iron bars.
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Experiments

In contrast to natural phenomena where a huge number of grains is in-
volved, it is useful to investigate systems with a limited number of particles
in order to obtain better insights into the underlying physics. These refer-
ence experiments have a long tradition in engineering science, where they are
used to characterize granular media. Apart from the obvious properties of a
granulate like grain sizes and their distribution or the volume fraction, there
are further characteristic properties that are accessible via experiments. Es-
pecially in geotechniques various experiments with different boundary con-
ditions exist, which are used for this purpose. For example the oedometer
is used to determine the compressibility of a granular material while the
shear resistance is measured with biaxial or triaxial devices. These devices
are only capable to produce small deformations before the boundary condi-
tions change significantly.

In order to observe the formation of shear bands shear has to be applied
over a comparatively long time. Therefore, geometries are required which
resemble a quasi infinite medium. In this kind of apparatus a quasi steady
state develops and can be studied for long times and corresponding, large
displacements. The physical realization of such a device is done by forming
rings. The Couette shear cell used in this thesis belongs to this class of meas-
urement tools. It consists of two concentric rings which are able to rotate.
The granular material is confined between the two rings and by rotating
one or two of the (often roughened) walls shear is induced at the walls and
a shear band might form.

Continuous Modeling of Granular Media

Research activities in the field of granular media have attracted scientists
and engineers with a variety of backgrounds. Not only physicists but also
applied mathematicians, geologists, geophysicists, chemical, mechanical,
and civil engineers have been working on a general physical or mathem-
atical formalism that successfully predicts the collective behavior of a large
number of grains. The modeling of the granular material is often done with
a continuum-based model. In this kind of models the granular structure
of the material is idealized with a continuum of material points. The cor-
responding field equations can be derived from the properties of a repres-
entative elementary volume (REV) in the vicinity of the point. The combina-
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tion of classical continuum theory and hardening material theories has not
been that successful. In particular, it results in a mathematically ill-posed
problem because the numerical solutions show a mesh dependency. For ex-
ample, the width of a shear band approaches zero in the limit of an infinite
fine mesh (in the framework of a traditional continuum theory).

In recent years some regularization methods arose to circumvent this in-
sufficiency. Among others the micropolar Cosserat continuum (COSSERAT

AND COSSERAT [19]; DE BORST [24]; MÜHLHAUS AND VARDOULAKIS

[73]; STEINMANN [89]; STEINMANN AND WILLAM [90]), gradient theories
(gradient plasticity) (GERMAIN [34]; MÜHLHAUS AND AIFANTIS [71]) and
integral continua (non-local plasticity) should be mentioned. For an over-
view see also (BAŽANT AND GAMBAROVA [7]; ERINGEN AND KAFADAR

[30]; MÜHLHAUS [70]).

Discontinuous Modeling of Granular Media

A different approach to model granular materials are discontinuous models
which treat the particles in a direct, discrete way (ALLEN AND TILDESLEY

[1]; BASHIR AND GODDARD [6]; CUNDALL AND HART [22]). Examples of
this approach are the “discrete element method” (DEM) or “molecular dy-
namics” (MD). This discrete way allows to take care of details like particle
shape and material, size distribution, friction or cohesion of the granular
material. The basic idea is to capture these properties by the interactions at
a contact between two particles. These interaction laws are modeled with
linear or non-linear springs in a direction normal and tangential to the con-
tact plane. In order to describe, e.g. repulsive forces, rotations or dissipation
the springs have to be chosen carefully by means of form, size and material
laws. Then the equations of motion of the particles are solved with an expli-
cit integration scheme like the VERLET algorithm (VERLET [104]). The ad-
vantages of particle based methods are: All forces, velocities and rotations
of every single grain are known at every point in time. Thus the simula-
tion provides at least the same information as the experiment. In contrast to
continuum models the granular structure and thus a natural length scale is
implicitly included by the formalism. Shear bands and cracks show up on
the particle scale. However, the exact formulation of the interaction laws,
the meaning of some of the parameters therein and the relevance of most
of the details is still unsolved. Hopefully, as indicated by some research,
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some details are not important – and thus negligible. To overcome this dis-
advantage a comparison between actual experiments and simulations has
to be performed to calibrate the parameters and to validate the results of
the simulation to allow, finally, for predictive results.

Micro-Macro Transition

δdD

meso micromacro

x

PSfrag replacements ~x

~f

Fig. 2.1: The different scales a granular media might be looked at. From the left: On the
macro scale a block of granular media is treated as one unit. On a mesoscopic
scale one already takes care of the multi body nature of granulates, while on the
microscopic scale the behavior of every single grain is dealt with.

Quantities like the velocity which are intrinsically available in the simula-
tion are relatively easy to compare to experimental data, but for example
for the stress tensor this task is not as straightforward. Such quantities have
to be calculated indirectly from quantities directly accessible. Moreover, in
most experiments the quantities are not measured for the single grains, but
for a bulk of particles. Thus a comparison between simulation and exper-
iment necessitates a formalism how to derive an averaged, “macroscopic”
quantity from the “microscopic” quantities of the single grains. To accom-
plish this homogenization process the physical properties of the particles have
to be averaged over a region of the granulate including a sufficiently large
number of grains. If the result of the averaging is statistically representat-
ive the averaging volume is called a representative elementary volume (REV).
Within REV the local inhomogeneities on the micro-scale are averaged away
but the size of the REV is still small enough to account for global inhomo-
geneities on the macro-scale. These three different length scales are shown
in Fig. 2.1. On the right side the micro-scale is defined by the diameter δ
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of a characteristic particle. The dimension of the REV is denoted by d and
the system size is given by D. In order to derive a consistent REV a scale
separation

δ � d� D (2.1)

has to exist but should never be taken for granted.

Provided that scale separation holds, different averaging techniques can be
applied to derive homogenized quantities characterizing the overall beha-
vior of the assembly. A key to the understanding of the behavior of granu-
lar materials is the stress-strain relationship. Therefore, the definition of the
macroscopic stress tensor has been studied intensively (CHRISTOFFERSON

ET AL. [18]; ROTHENBURG AND SELVADURAI [83]) and might now be con-
sidered as well established (BAGI [4]; CHANG [17]; KRUYT AND ROTHEN-
BURG [48]; LÄTZEL ET AL. [50]; LUDING ET AL. [58]). However, the de-
scription of a granular material also necessitates a definition of the strain
tensor. Various studies have been dedicated to the derivation of explicit ex-
pressions for the overall strain tensor (BAGI [4]; CAMBOU AND DUBUJET

[15]; DEDECKER ET AL. [26]; KRUYT AND ROTHENBURG [47]) in order to
obtain macroscopic constitutive moduli (CAMBOU ET AL. [14]; CHAMBON

ET AL. [16]; LIAO ET AL. [51]).

With the derivation of the constitutive moduli the circle closes. This mod-
uli like YOUNGs modulus or the shear resistance may now be inserted into
a continuous model and the results of this macroscopic models have then
again to be validated with either experiments or simulations. For a better
understanding of granular materials all scales of the granulate prove to be
important: the interactions between the single grains in a simulation, the
stress-strain curves in an experiment in a laboratory, and also the applica-
tion of a continuum model on for example the rings of Saturn.

2.1 Overview

The aim of this thesis is twofold. On the one hand, a DEM is carried out and
compared with an experiment. On the other hand, a micro-macro transition
is developed and applied, leading to insights related to constitutive models
for continuum theories. These two goals reflect also in the structure of this
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thesis. Chapters 3 - 6 deal with the setup and the comparison of the sim-
ulation and the experiment, while Chapters 7 - 9 develop the micro-macro
transition and compare the results to a recently presented, micropolar con-
tinuum model.

After this introduction part one starts with Chapter 3 by presenting the
setup of the simulation and the experiment. A motivation for the use of
the Couette shear device is given, as well as an overview of the literature on
Couette devices. The dimensions of the system and the particles confined
in the cell are shown and the way of preparing the system is outlined. Inter-
spersed in this first section the differences between the physical system and
the simulation are pointed out.

For the simulation of the system a MD simulation is used. Chapter 4
describes how this simulation method works and briefly outlines the al-
gorithms used. The integration method and a speed up method for the
neighborhood search, namely the linked-cell algorithm, are recalled in this
chapter. Since the interaction forces between the particles play a significant
role in the simulation of granular media, the necessary laws and their im-
plementation are provided. Forces in the normal direction at a contact point
are dealt with as well as tangential forces.

In order to compare the results of the simulation to experiments and to move
towards a continuum description of the system, a consistent way of obtain-
ing various quantities has to be developed. This averaging formalism is
presented in Chapter 5 and the use of the formalism is demonstrated by
computing the local density profile and the velocity profile in the shear cell.

The simulation results are compared to the experimental data in Chapter 6.
An initial, homogeneous density becomes radially non-uniform as a con-
sequence of shear induced dilatancy, for both experiment and simulation.
The investigation of this shear zone shows good quantitative agreement
between experiment and simulation. Special attention is drawn to the kin-
ematic properties of the device such as radial and angular velocities and the
spin of the particles. Profile as well as distribution data are compared and
the quantitative agreement/disagreement is discussed and possible reasons
are given.

Because of the good agreement the simulation is used to gain further in-
sights on quantities not available from the experiment. These quantities are
useful in order to explore granular media by means of a continuum theory.
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Part two starts with Chapter 7 by recalling the classical continuum theory.
The chapter continues by providing the formalism how macroscopic quant-
ities are obtained. Even if not a quantity of the classical continuum theory
the fabric tensor is introduced. The fabric tensor describes the local structure
of the granulate to some extent and therefore is a measure for the anisotropy
of the system. It is also used in the definition of the stress and strain tensors.
Finally, these tensors are used to compute the macroscopic moduli, namely
the Young’s and the shear modulus which we use to develop a new con-
stitutive model relating the stress with the deformations and the structure
inside a granular assembly.

Due to the ability of the single grains to rotate freely, the classical continuum
theory has to be extended. Therefore, a COSSERAT type theory is introduced
in Chapter 8. The related macroscopic quantities of the theory are calculated
from the simulation and a new modulus, the torque resistance is calculated.

Chapter 9 finally compares the simulation results with a recently presented
micropolar continuum model involving the previously discussed ideas and
a flow rule as an additional ingredient.

The thesis closes with a summary and an outlook of the work in Chapter 10.



3
The Model System

The behavior of granular materials e.g. in landslides or avalanches seems
to be that of an ordinary fluid. But when exposed to shear stresses the re-
actions are quite different. Rather than being deformed uniformly, materi-
als such as dry sand or cohesionless powders develop shear bands, narrow
zones of large relative particle motion, with essentially rigid adjacent re-
gions. This shear bands mark areas of flow, material failure, and therefore,
energy dissipation, making them important in various industrial, civil en-
gineering and geophysical processes.

However, detailed (three-dimensional) measurements on the physics within
a shear band, including the degree of particle rotation and inter-particle
slip, are lacking. Similarly, very little is known about the dependency of
the grains movement in densely packed material on the microscopic prop-
erties of the particles. Most of the experiments on granular shearing have
primarily focused on the force properties of the system (HOWELL ET AL.
[42]; HOWELL [43]; HOWELL ET AL. [44]; MILLER ET AL. [64]; VEJE ET AL.
[102, 103]). The kinematics of shear zones were explored only in a few
experiments, and these involved using either inclined or vertical chutes
(AZANZA ET AL. [3]; DRAKE [27]; NEDDERMAN AND LAOHAKUL [74])
or vibrated beds (LOSERT ET AL. [54]) involving also air flow between the
particles.

The setup used in this study is a Couette shear device shown in Fig. 3.1.
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Fig. 3.1: Plexiglas disks near the inner shearing wheel of the Couette shear device of the
Behringer group. (Photo: USA, Durham, 1999, Marc Lätzel)

In the physical system the granular material (disks) is confined between a
stationary outer and a rotating inner cylinder, thus exposed to shear at the
inner wall. As a consequence of the shear and the higher curvature at the
inner wall a small shear band localizes at the inner cylinder, indicated e.g.
by the velocity and spin profiles, which decay approximately exponentially
away from the rotating wall. For that reason the Couette shear cell is used
as a prototype system to have a closer look at the properties inside a shear
band. To relate the simulation results to experiments, they are compared
to the work of Dan Howell (HOWELL ET AL. [42]; HOWELL [43]; HOWELL

ET AL. [44]) and differences in model-details are discussed.

In this chapter the history and motivation of this kind of shearing devices is
presented before the setup of the physical system is introduced. We also
show the preparation of the sample and point out the differences in the
modeling between simulation and experiment.
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3.1 Motivation and History

Shear devices are a well established tool for the study of the rheology of
polymers, fluids, etc. and also for granular materials. They are used to de-
termine the properties of granular materials experimentally, e.g. to test the
usability of a type of sand for a specific task. Shearing tests are also per-
formed to obtain the parameters to properly design industrial plants like
silos or conveyors.

In principle, one can distinguish two groups of shear devices:

• Shear devices where measurements at the surface determine the full stress
and strain situation inside the device. Examples for this type are the
biaxial- and triaxial-compression-device.

• Shear devices in which a deformation at the boundaries of the granular
material leads to a sliding of granular material inside the medium. In this
kind of devices, e.g. the Jenike or the Couette shear device, it is not pos-
sible in general to deduce the traits of the shear zone from measurements
at the boundaries.

There are three reasons for using a Couette shear cell in this work: First,
we were able to check and calibrate our results with those of the experi-
mental group of Prof. R. Behringer, Duke University (Durham, NC (USA)).
Second, after some transient initial effects a (quasi) steady state of the sys-
tem is reached, which allows taking measurements over a long time, i.e.
time averaging can be carried out. And third, because of the symmetry of
the device, also space averaging in the cylindrical geometry is possible.

Comparisons between experiments with a Couette apparatus and a
continuum approach trace back to BOGDANOVA-BONTCHEVA AND

LIPPMANN [11] in 1975. In order to model a two-dimensional system they
were using a material consisting of parallel metal needles (Schneebeli ma-
terial) with very weak frictional particle-particle interactions. However, in
their work no quantitative measurements were performed. Instead, because
of the observed spin of the particles a COSSERAT-type continuum theory
was developed. In 1989 BUGGISCH AND LÖFFELMANN [13] also performed
experiments on a Couette device focusing on the mixing properties of the
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granulate. In his PhD thesis LÖFFELMANN [52] additionally examined the
influence of the wall roughness and showed measurements of tangential
velocities. Recently, apart from the work of VEJE ET AL. [101; 102] and
HOWELL ET AL. [42; 43] to which will be referred in the next Sections,
MUETH ET AL. [67; 68] did three dimensional experiments. Their appar-
atus was filled with mustard seeds (spherical) and poppy seeds (kidney-
shaped). With a combination of magnetic resonance imaging, X-ray tomo-
graphy and high-speed-video particle tracking they obtained the local
steady state particle velocity, rotation and packing density in the Couette
device. In contrast to the results of a 2D system the velocity is almost com-
pletely described by a Gaussian for aspherical particles. Another three di-
mensional experiment of a Couette cell was performed by BOCQUET and
LOSERT ET AL. [10; 53]. The main focus of their work was on the fluc-
tuations of the tangential velocity and on the shear forces. They also de-
veloped a locally Newtonian, continuum model of granular flow and com-
pare it with the experimental results. The only simulations of a 2D Cou-
ette setup of which we are aware is that of ZERVOS ET AL. [109; 110]. In
their work they addressed the problem of a 2D Couette shear device filled
with Schneebeli material experimentally and with Contact-Dynamics simu-
lations, focusing mainly on the dynamical features of the material. Different
to our setup their experiment is not carried out under constant volume con-
ditions, but constant confining pressure. ZERVOS ET AL. investigate the tan-
gential velocity as well as the rotation of the grains and propose the use of
a COSSERAT-type continuum model for the description of the granular ma-
terial and compute the COSSERAT rotation (see Sect. 8.1). Unfortunately the
process of experimental data acquisition does not allow immediate compar-
isons between simulation and experiment. So only qualitatively agreement
could be found.

The thesis in hand was inspired by the work of VEJE ET AL. [101; 102] in
Paris at the early nineties. In his diploma thesis SCHÖLLMANN [87] de-
veloped a first version of the simulation used and compared his results with
the experiments (SCHÖLLMANN [88]). The code of this first version was re-
implemented using the P3T-classes (P3T CLASS LIBRARIES [77]) developed
at the ICA1.
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(b)
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(ii)

A

(i)
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C

Fig. 3.2: (i) schematic top view of the experimental setup. (ii) schematic drawing of the
disks close to the shearing wheel. (a)) experimental realization of the walls. (b))
realization of the walls in the simulation.

3.2 The Setup

In the simulation the granular material is sheared in a Couette geometry.
This geometry was chosen in a way to match the experimental setup of VEJE

ET AL. [102] and HOWELL [43] as closely as possible. Thus, the material is
confined between two concentric rings, as sketched in Fig. 3.2. The inner
shearing wheel (A) of radius Ri = 10.32 cm is able to rotate, whereas the
outer ring (B) of radius Ro = 25.24 cm is stationary during the simulation,
i.e. the simulation is carried out under constant total volume condition.1

In order to enhance the shearing between the granular material in the cell
and the walls, where the actual energy input takes place, the walls have to
be roughened. In the physical system this is done by coating the side of
the wheel and the inner surface of the ring with plastic ‘teeth’ spaced 7 mm

apart and 2 mm deep to enhance shearing (Fig. 3.2 (ii) (a)). For simplicity
half disks of radius awall = 1.25 mm with a spacing of 2.5 mm are used in the
simulation, as shown in the right part of Fig. 3.2.

The granular material in the experiment is made of a 6 mm thick trans-
1 Although both the wheel and the outer ring could be used to shear (SCHÖLLMANN

[88]), we will focus on shearing with the inner wheel only.



40 3.2 The Setup

Tab. 3.1: Microscopic material parameters of the model.
Property Values
radius of outer wall Ro 0.2524 m
radius of inner wall Ri 0.1032 m
radius asmall, mass msmall 3.71 mm, 0.275 g
radius alarge, mass mlarge 4.495 mm, 0.490 g
reference diameter d̃ 7.4 mm
material density %p 1060 kg/m3

wall-particle radius awall, 1.25 mm
system/disk-height h 6 mm

parent photo-elastic polymer which has a nominal Young’s modulus of
Y = 4.8 MPa. Therefore, the disks are much softer than the material of the
wheel and the ring (Y ≈ 3 GPa).

The disks are confined to a plane between these rings and two smooth ho-
rizontal Plexiglas sheets. The surfaces of the Plexiglas sheets are lubricated
with a fine dusting of baking powder.2 Even with this precaution, there is
still some remaining friction between the disks and the sheet, which is also
taken into account in the simulation, see Sect. 4.2.4. However, the typical
friction force between the particles and the bottom sheet is about an order
of magnitude smaller than the typical force in a stress chain, so its influence
on the material properties like, e.g. the stress, should be small.

When compacting a sample of mono-disperse particles the grains crystal-
lize, i.e. regular grain patterns form in the sample. These patterns, although
helping in the formation of very stable arches that prevent deformation,
make mono-disperse samples unsuitable for the shearing device where one
is interested in the dynamics and reorganization of the particles. Therefore,
a bi-disperse size distribution is used in the experiment as well as in the
simulations, with roughly 400 larger and 2500 smaller disks, i.e. about 86%

of the total number of particles are smaller disks. The bimodal distribution
limits the formation of hexagonally ordered regions over large scales – even
though the presently used width of the size distribution might be a little too
small in order to avoid ordering effects (see also Sect.7.2.4). According to a
recent paper of LUDING [56] our distribution will still lead to the formation

2 Another way was chosen by LOSERT ET AL. [53]. They used a continuous upwards air
flow, to suppress friction with the bottom plate in their experiment.
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of ordered structures.

One concern is that the disks would segregate by size. However, we have
not observed any strong tendency for this to happen over the course of a
typical experiment. We used small particles of radius asmall = 3.71 mm and
large particles of radius alarge = 4.495 mm. Throughout this thesis the dia-
meter d̃ = dsmall is used as a characteristic length scale.

The packing fraction ν̄ (fractional area occupied by disks) is varied over the
range 0.789 ≤ ν̄ ≤ 0.828. As we vary ν̄ we maintain the ratio of small to
large grains almost fixed.3

A variation of the angular velocity, Ω, of the inner wheel over the range
0.0029 s−1 ≤ Ω ≤ 0.09 s−1 shows rate independence in the experiments. A
few simulations with 0.01 s−1 ≤ Ω ≤ 1.0 s−1 showed clear rate independency
at least for the slower shearing rates Ω ≤ 0.1 s−1.

Although the system is a representation of a two-dimensional model, the
physical particles have a height of h = 6 mm which is taken into account
in the simulation as well, so that all properties like mass, stress, etc. are
provided in their natural units.

3.3 Preparation of the Sample

The creation of a sample is a relatively simple process: In the experiments,
the particles are put into the shearing device by hand, one by one until the
desired number and density is reached.

The dense packing of grains is an other topic in the research of granular
media (NICODEMI ET AL. [75]; NOWAK ET AL. [76]), involving a very slow
process for the packing and is out of the scope of this thesis. Therefore,
the simulations are started in a dilute state with an extended outer ring
Rprepare > Ro = 25.24 cm, and the inner ring already rotates counterclock-
wise with constant angular velocity. The particles are created in the sample’s
area on a regular, triangular lattice with a random velocity in order to pre-

3 Note that the effect of the wall particles for the calculation of the global packing fraction
is very small. The small particles glued to the wall are counted with half their volume only,
and thus contribute with ν̄wall = 0.0047 to ν̄.
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Tab. 3.2: Details of the simulation runs provided in this study. Mentioned are those
particle numbers for which data were available in both experiment and simu-
lation. The horizontal lines in the last column mark the transition between the
sub-critical (the blocked) range of density with the shear flow regime.

Global Volume Number of Particles Flow Behavior
Fraction ν̄ small large

0.789 2462 404
0.791 2469 405 sub-critical
0.793 2476 406 ————
0.796 2483 407
0.798 2490 408
0.800 2498 409
0.800 2511 400
0.802 2520 399
0.804 2511 410 shear flow
0.805 2524 404
0.807 2518 412
0.807 2545 394
0.809 2525 414 ————-
0.810 2538 407 ————-
0.811 2555 399
0.819 2560 418 blocked
0.828 2588 422

vent crystallization.4 The created sample, though, is loose and grains are
not in contact with each other in general. The particles are initialized with
a random velocity in order to prevent crystallization. Afterwards, the outer
wall shrinks up to the desired radius of Ro = 25.24 cm.

Before collecting the data the inner ring ran for about 20 rotations in the ex-
periment. In the simulation, however, the preparation had to be limited in
order to reduce the comparatively long computation time. The simulations
are prepared for about 5 rotation periods, because a few runs with prepar-
ation times of up to ten periods of rotation did not show clearly further
relaxation effects. However, the still much longer relaxation time of tens

4 The triangular lattice provides that the particles do not overlap with existing grains or
the boundaries. However, the sample remembers the lattice due to the chosen distribution
of the particle sizes, especially at the boundaries. This effect will be discussed in Section 7.2.
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(a) Initial configuration. (b) Configuration after shrinking of the
outer wall.

Fig. 3.3: The Figure demonstrates the preparation of the sample. In the initial configur-
ation the particles are placed on a triangular lattice, which is then compressed
until the desired radius is reached.

to hundreds of periods as used in the experiment was not reached, so that
long time relaxation effects can not be ruled out by the simulation results
presented here.

3.4 Differences between Experiment and Simulation

Although the simulation was set up in a way to resemble the experiment
as closely as possible, there still remain some seemingly modest differences,
some of which can not be overcome without substantially re-modeling.

First, the inner ring in the original apparatus is not perfectly round, but
there is a small bump at the region where the strip forming the roughness
of the inner wheel overlaps. Especially in the case of low packing fractions,
where the particles are easily moved away from the inner wheel, this results
in an intermittent behavior, because even if the inner wall is not in contact
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with the granular material, in general, the small bump might sometimes be.
Thus the radius of the inner wall is in effect a little larger than the ideal Ri

used in the simulations.

The second difference seems to be more crucial. In the experiment the
bottom plate is coated with backing powder in order to reduce friction.
The amount of remaining friction is hard to determine because the bak-
ing powder is not uniformly distributed and snow-plug (stack of powder)
effects might occur. Additionally, the friction depends on the number of
particles in a cluster moved over the powder. Therefore, the friction of the
simulation might be smaller than in the actual experiment thus allowing
more dynamics of the particles.

As a third difference it should be mentioned that the grains in the exper-
iment are real three dimensional bodies and are able to slightly tilt out of
plane of observation (parallel to the bottom). A degree of freedom which
is not allowed in the simulation. This difference is connected with possibly
increased tangential forces due to increased, artificial, normal forces.

3.5 Conclusion

In this chapter we reasoned the use of a Couette shear device as an exper-
imental realization of a quasi infinite media. In this kind of apparatus a
quasi steady state develops and might be studied for long times. Therefore,
the Couette shear cell has attract many scientist to perform experiments and
simulations on granular media.

We introduced the geometrical setup of our apparatus and showed the
physical values of the granulate used in the experiment. Moreover, we out-
lined the preparation procedure for the experiment and the simulation and
pointed out the differences between simulation and experiment.

In Chapter 4 we will describe the simulation model in detail. Due to the
importance of the interaction laws between the single particles, special at-
tention will be drawn on these force laws.
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The Simulation Method

Because of its wide variety of effects, granular media have been and are still
attracting considerable attention both from the experimental, and the the-
oretical side. In the last decade, as a third way to study granular materials,
the computer simulations, have emerged due to the considerable increase in
computing power. The advantage of such a micro-mechanical simulation is
that for all the grains and at every instant in time, the displacements, rota-
tions and acting contact forces are known. Therefore, it offers the possibility
of analyzing and visualizing the behavior inside the medium. Additionally
to most experiments simulations provide access to the state of inter-granular
forces (TSOUNGUI ET AL. [99]) which is a key quantity to the understanding
of granular media.

The challenge of simulations is to develop techniques that are, on the one
hand, giving accurate enough results to be compared to physical experi-
ments, but on the other hand, are of sufficient numerical efficiency to study
“large” systems in terms of particle numbers and boundary conditions, sys-
tem sizes and “long” times with respect to intrinsic time scales like e.g. L/v,
the time information needs to propagate from one end of the system to the
other, with a typical velocity v.

Many different methods are used to simulate granular materials, for an
overview see HERRMANN AND LUDING [40]. One way to characterize the
two major different simulation approaches is the way the material is de-
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scribed: as a continuum or as discrete particles. The aim of this study is
to start with the properties of the discrete particles and to end up with a
continuous description, eventually. Therefore, a discrete element method
(DEM) is chosen for the simulations.

The method is described in the first section of this chapter. As will be poin-
ted out there, the implementation of the forces plays a crucial role in how
accurately the simulation mimics an experiment. We will present the force
laws used throughout our simulations in Section 4.2. In the last section of
this chapter we comment on the use of non-linear force laws to simulate the
behavior of a granular medium.

4.1 Molecular Dynamics

Molecular Dynamics (MD) simulations are one of the oldest computer-
simulation techniques. They were primarily designed for the simulation
of atoms and molecules as a new approach to the understanding of “many
particle” systems. Those systems could only be tackled in a statistical way,
since detailed properties of every particle were not available experiment-
ally. However, MD simulations integrate the equations of motion for each
particle, thus enabling the knowledge of e.g. the velocities or trajectories,
of a discrete atom. Especially in system with highly fluctuating quantities
most experimental measurements smear out a quantity over a certain re-
gion, thus averaging away the details.

A MD simulation is performed as follows. First an initial configuration of a
physical system is created, i.e. every particle in the system possesses at least
a position and a velocity vector, as well as an angular velocity. Afterwards,
the NEWTONian equations of motion

~f i = m i~̈x i , ~M i = J iω̇ i (4.1)

are solved for every particle i, with mass m and acceleration ~̈x according
to the acting forces ~f as well as for all particles with ~M the external mo-
ments, J the moment of inertia and ω̇ the angular acceleration, respectively.
These equations are discretized and solved numerically to obtain the time
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evolution of the N particle system.1Different ways to solve Eq. 4.1 are avail-
able, for an overview see e.g. (ALLEN AND TILDESLEY [1]; PRESS ET AL.
[79]; RAPAPORT [82]). Each of these algorithms has its pros and cons in
ways of speed, stability and accuracy. In this study we use a VERLET-
Integration scheme (VERLET [104]) to solve the resulting finite differences
equations. The VERLET integrator is derived from a TAYLOR expansion of
~x i(t) up to second order:

~x i(t±∆t) = ~x i(t)±∆t~̇x i(t) +
1

2
∆t2~̈x i(t) . (4.2)

Subsequent addition of ~x i(t + ∆t) and ~x i(t −∆t) leads to the new position
vector ~x i(t+ ∆t) at time t+ ∆t:

~x i(t+ ∆t) = 2~x i(t)− ~x i(t−∆t) + ~̈x i(t)∆t
2 . (4.3)

The time step ∆t of the integration has to be chosen clearly smaller than a
typical natural oscillation of a contact (LUDING [55]; LUDING ET AL. [57]).
A ratio of 1 : 50 proved to give satisfying results. Different integration
schemes do not lead to a different outcome of our simulation, as shown
by (SCHÖLLMANN [87]).
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Fig. 4.1: Linked-cell algorithm for molecular dynamic simulations. The search for inter-
action partners is limited to the actual cell (dark gray) and its neighbors (light
gray).

During the integration process the most time consuming part is the calcu-
lation of the interactions between the particles. This calculation results in a

1 Note that solving of the equations of motion is a fully deterministic process. Random-
ness enters the system only via different initial conditions.
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O(N2) loop over all possible pairs, if N particles are interacting with each
other. For short range forces, as discussed here, one can speed up this calcu-
lations by using so called linked cell structures (ALLEN AND TILDESLEY [1]),
resulting in an O(N) algorithm. In the linked-cell algorithm the system is
divided into cells of length Lc, where Lc is the so called cut-off length. If
all interactions beyond this range are neglected, it is sufficient to look for
interaction partners in the actual cell and the neighboring cells (see Fig. 4.1).

A more crucial point than the integration method used and the speed-up
tricks in the MD simulation, is the implementation of the forces since those
forces incorporate assumptions and simplifications. Forces, as e.g. gravity,
electromagnetic forces are quite straightforward. The important particle-
particle interactions are not known in general. Therefore, we will describe
the force laws used in this study in detail in the following sections.

4.2 Force Laws

Even if the approach of a MD simulation is physically motivated, one can-
not avoid to introduce phenomenological assumptions on the interaction
forces. In this study only dry granular media are investigated, which im-
plies the forces arising between the particles are only of short-range type.
For (nearly) sphere shaped particles the forces acting at a contact between
particles i and j can be decomposed into normal ~f nij and tangential ~f tij com-
ponents

~fij = ~f nij + ~f tij , (4.4)

with respect to the contact line (dashed line in Fig. 4.2).2

The behavior of an inelastic collision is modeled via the normal components
and requires at least two terms; repulsion and some sort of dissipation. The
repulsive force accounts for the excluded volume of the modeled grains and
is active during the collision of the particles, acting normal to the contact
line. The dissipative part of the force is modeled as a phenomenological
damping in a way to represent linear viscoelastic behavior.

2 In 3D the contact line becomes a contact plane. In the following only the 2D case is
dealt with.
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In addition to the normal forces there is a force parallel to the contact line,
accounting for the friction between the particles.

In the following sections these forces are described in more detail according
to their hierarchy in the complexity of their implementation. We start with
the implementation of the normal forces, and advance to the more diffi-
cult tangential forces in Section 4.2.2. The different realizations of the forces
in some cases lead to dramatic changes in the outcome of a simulation as
shown in Section 4.2.3. Therefore, we will also comment on the limitations
of the chosen interaction laws.

i
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Fig. 4.2: Definition of the quantities of particles i and j used for the description of the force
laws.

4.2.1 Normal Forces

When solving the equations of motion as described in Section 4.1, two grains
may turn out to overlap due to the finite time step. This overlap is inter-
preted as the elastic deformation which occurs for particles under stress.
However, in dry granular media particles only interact when they are in
contact. Therefore, the overlap

δ = (ai + aj)− (~xi − ~xj) · ~n (4.5)
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of two particles is related to the interaction force between the two grains i
and j.3 The symbol ’·’ denotes the scalar product of vectors or, more gener-
ally, the contraction of indices for each of two tensors. ~n = (~xi−~xj)/|~xi−~xj|
is the unit vector pointing from j to i. The radius and the position of particle
i are denoted by ai and ~xi, respectively, as shown in Figure 4.2.

The first contribution to the force acting on particle i from particle j is an
elastic repulsive force

~f nel = knδ~n , (4.6)

proportional to the overlap and a spring constant kn proportional to the
material’s modulus of elasticity with units [N/m]. Since we are interested in
disks rather than spheres, we use a linear spring that follows HOOKE’s law,
whereas in the case of elastic spheres, the Hertz contact law would be more
appropriate (HERTZ [41]; LANDAU AND LIFSHITZ [49]; SCHÄFER ET AL.
[86]).

One of the key features of granular materials is the dissipation of energy
due to inter-particle collisions i.e. the transfer of kinetic energy into internal
degrees of freedom of a particle and finally into heat. In order to introduce
dissipation into the system, one assumes a viscous damping proportional to
the relative velocity in the normal direction

~f ndiss = γn~v n , (4.7)

where ~v n = −(~vij ·~n)~n = −((~vi−~vj)·~n)~n. The proportionality coefficient γn is
of pure phenomenological origin and has to be chosen in a way to assemble
the desired dissipation.

The dissipation is quantified by the normal restitution coefficient en which
is defined as the ratio of the post- and the pre-collisional velocities in a head
on collision between two particles

en = −vnf /vni ∈ [0, 1] . (4.8)

Here the subscripts i and f refer to the pre-collisional (initial) and to the
post-collisional (final) normal velocity, respectively. The coefficient of nor-
mal restitution equals 0 for a completely inelastic collision and becomes 1

for a perfectly elastic collision.
3 Note that the evaluation of the inter-particle forces based on the overlap may not be

sufficient to account for the nonlinear stress distribution inside the particles. Consequently,
our results presented below are of the same quality as this basic assumption.
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The combination of the linear elastic part of Eq. 4.5 and the dissipative part
of Eq. 4.7 is know as linear spring dashpot model and reads as

~f n = ~f nel + ~f ndiss = knδ~n+ γn~v n . (4.9)

The force law leads to a constant en for different velocities and is valid if
the range of velocities in a simulation is not too broad. Otherwise, one has
to think of force laws accounting for a normal restitution coefficient which
falls off like (vn)−1/4 with increasing impact velocity (SCHÄFER ET AL. [86]).

4.2.2 Tangential Forces

As mentioned previously the normal force is accompanied by a frictional
force tangential to the contact line. This frictional force prevents e.g. a sand
pile from deliquescing to a plain, even though this would be the more favor-
able energy state. In this section the implementation of the tangential forces
is described.

Tangential forces are active at contacts where the relative tangential velocity
of the particles ~v t is non-zero, or was non-zero during the history of the con-
tact. The relative tangential velocity is obtained from the relative velocity of
two particles i and j at a contact via

~v t = ~vij − ~v n , (4.10)

= ~vij − (~vij · ~n)~n , (4.11)

with the relative velocity

~vij = (~vi − ~vj)− (ωiai + ωjaj)× ~n , (4.12)

where ωi denotes the angular velocity of particle i (see also Fig. 4.2). The
relative tangential velocity is also used to define the tangential unit vector:

~t =
~v t

|~v t|
, (4.13)

in a somewhat different way from the frequently used rotation of ~n by 90◦.
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Coulomb Friction

In general, tangential friction forces are implemented proportional to the
normal force according to COULOMB [20]:

f tstatic ≤ µsf
n vt = 0 , (4.14)

f tdynamic = µdf
n vt 6= 0 . (4.15)

Here µs and µd are the coefficients of static and dynamic friction, respect-
ively. Additionally to the dynamic (sliding) and the static friction there ex-
ist different kinds of friction forces like rolling friction. Those forces are not
accounted for in this study, because in most cases µs > µd � µr, so the
coefficients for static friction and sliding friction are assumed to be equal
(µd = µs = µC), whereas the rolling coefficient is set to zero (µr = 0).

The simplest implementation of a COULOMB friction force is

~f tCoulomb = −µC |~f n|~t . (4.16)

However, this setup accounts only for the dynamic friction of Eq. 4.15. The
static part in Eq. 4.14 is more complex and is described in the following.

Static Friction

The difficulty of handling static friction originates in the discontinuity of
Eq. 4.16 for ~v t → 0. To overcome this difficulty one introduces a viscous
force

~f tvisc = −γt~v t (4.17)

and thus regularizes Eq. 4.15. Yet, there is no real phenomenological equi-
valent of a viscous force in a collision of two bodies. But coupling Eqs. 4.16
and 4.17 by taking the minimum leads to a widely used tangential friction
force which is a good trade-off between reality and implementation ability

~f t = −min
(

γt |~v t|, µC |~f n|
)

~t . (4.18)

The parameter γt is auxiliary, and should be set large enough to ensure that
on the one hand, the singularity vanishes and on the other hand, the devi-
ations from Eq. 4.15 are still small.

Even often used, there are two problems with force law 4.18: First, it does
not allow the reversal of vt (SCHÄFER ET AL. [86]) although this is observed
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in experiments (FOERSTER ET AL. [32]). Second, it yields f t(vt = 0) = 0,
which means that such a contact is not able to bear any load at rest, and
hence, e.g. a sand pile under gravity would collapse. Therefore, in the next
paragraph another force law is given, overcoming this intricacy.

Tangential Spring

Already in 1979 CUNDALL AND STRACK [23] tried to implement a force law
able to allow for the reversal of vt by introducing a tangential spring. At
the moment when two particles get into contact (t0) one assigns a “virtual”
spring with length zero to this contact, connecting the contact points. Dur-
ing the time the particles stay in contact, the spring is stretched according
to

ξ =
(∫ t

t0
~v t(t′) dt′

)

· ~t . (4.19)

Note that due to its definition ξ can either be positive or negative so that
~ξ = ξ~t can be anti-parallel to ~t. With this CUNDALL-STRACK spring the
tangential force reads as

~f t = −min
(

kt ξ, µC |~fn|
) ~ξ

|~ξ|
, (4.20)

where kt is the stiffness of that spring. In contrast to Eq. 4.18 where the Cou-
lomb force acts in the direction−~t against the relative tangential velocity ~v t,
here it works against the elongation of the spring thus enabling the reversal
of the tangential velocity.

In order to account for sliding at the contact the elongation of the tangential
spring has to be limited by the relation ktξmax = µCf

n.

This force scheme is widely used in the literature (e.g. (MATUTTIS ET AL.
[61])) and was shown to produce quite realistic results for collisions
(BRENDEL AND DIPPEL [12]; RADJAI ET AL. [80]). However, there are some
cases where this force law may lead to unphysical behavior. In Eq. 4.19 one
assumes that ~ξ is parallel to ~t. This may be wrong for long lasting con-
tacts, as they occur in dense granular media. Another drawback of force
law 4.20 is the lack of damping. In the following section both difficulties are
addressed.
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Extensions

For long lasting contacts the frame of reference of the contact might change
while the particles are in contact thus ~ξ is no longer parallel to ~t. Therefore,
a remapping of ~ξ into the actual tangential plane is used

~ξ = ~ξ′ − ~n(~n · ~ξ′) , (4.21)

where ~ξ′ is the old spring from the last iteration. This action is only relev-
ant for an already existing spring, if the contact just formed, the tangential
spring length is zero anyway.

One property, which force scheme 4.20 inherited from law 4.18 is the ab-
sence of any damping. This may become inconvenient for example if a
particle in the shear cell would be kicked, it would not exactly come to rest
but would persist to vibrate with a small amplitude. An obvious solution
to overcome these oscillations is to add a viscous damping like Eq. 4.17 to
Eq. 4.20. Such an extension was proposed by BRENDEL AND DIPPEL [12].

Unfortunately, this extended scheme, including the damping, cannot be
written in a simple form like 4.20 anymore. Instead, the implementation
requires first a test force

~f ∗ = −kt~ξ − γt~v t, (4.22)

and second, the comparison of its absolute value to the threshold µCf
n. In

the case of a too large test force, one gets

~f t = µCf
n
~ξ

|~ξ|
, ~ξ = −µC

kt
fn

~ξ

|~ξ|
for |~f t∗| > µCf

n . (4.23)

While for a test force smaller than the Coulomb threshold, one has

~f t = ~f ∗ , ~ξ = ~ξ + ~v t dt for |~f t∗| ≤ µCf
n . (4.24)

The combination of this force law with the distinction between µs and µd is
straightforward to implement, but not used in this work. Thus finally the
tangential force in short notation reads as follows:

~f t = −min
(

µCf
n, |~f t∗|

)

~f t∗/|vecf t∗| . (4.25)

The exact implementation of Eq. 4.24 is of lower importance in collision
dominated systems, but in dense sheared systems like in this study, it
should be used, especially if one is interested in quantities such as the force
distributions in the quasi-static case (cf. (RADJAI ET AL. [81])).
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4.2.3 Effect of Different Tangential Force Laws

In order to illustrate the influence of the different tangential force laws on a
two particle collision a series of head on collisions with different initial spin
and different force laws was performed. In Fig. 4.3 the dimensionless final
tangential velocity

Ψf = (vt)f/(vn)i , (4.26)

defined as the ratio of the final relative tangential velocity of the two
particles and the initial relative normal velocity is plotted as a function of
the dimensionless initial tangential velocity Ψi. The effects of the different
tangential force laws are demonstrated in Fig. 4.3 namely only the tangential
spring resembles the reversal of the tangential velocity as in the experiments
of e.g. FOERSTER ET AL. [32].
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Fig. 4.3: Ψf = (vt)f/(vn)i vs. Ψi = (vt)i/(vn)i for different tangential forces described
in the text. The triangles denote the viscous force of Eq. 4.17, the diamonds
refer to the Coulomb force of Eq. 4.16, whereas the circles represent the tangen-
tial spring without damping of Eq. 4.20. The lines give the analytic asymptotes
according to LUDING [55].
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4.2.4 Bottom Forces

In order to account for the interaction of the particles with the bottom plate
an additional bottom friction is implemented. The bottom friction acts both
on the rotational and the translational degrees of freedom. In the model
used throughout this work the bottom force is modeled analogously to the
tangential friction forces 4.24 as a spring model. In short notation this reads:

~f b = −min(µb|~f n|, |~f b∗|)
~f b∗

|~f b∗|
, (4.27)

where ~f b∗ follows the rules described for the extensions of the tangential
spring.

For the damping of rotations of the disks due to bottom friction a phe-
nomenological approach is used. Again a test force

f M∗ = −sgn(ω)τ M |~f b∗| − γbωr , (4.28)

has to be implemented. The parameter τ M is of purely phenomenological
origin and is adjusted in a way that the first and the last term of Eq. 4.28 are
of the same order. The applied torque reads as:

M = −sgn(f M∗)min
(

µb|~f n|, |f M∗|
) 2

3
r . (4.29)

Note that the term 2
3
r stems from the integration of the force over the surface

of the disk.

Recently, FARKAS ET AL. [31] started to investigate the relationship between
rolling, sliding and the interaction with a surface. The results of these ex-
periments might lead to a more physical implementation of the body forces
in future simulations.

4.2.5 Non-linear Forces

For the sake of completeness it should be mentioned, that even for spherical
particles the linear spring dashpot model used for the normal forces is not
accurate when compared with experimental force measurements for single
particles. Recently, BOB HARTLEY and JUNFEI GENG from the Behringer
group in Durham provided the data of Fig. 4.4. Instead of a linear depend-
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Fig. 4.4: Experimental curve of the force against the deformation of a single disk of the
shear experiment of Howell, Duke University, Durham. (Measurements by Bob
Hartley and Junfei Geng). The inset shows the linear force law used for the
simulations together with the fitted force law of the experiment in the range of
the typical particle overlaps occurring in both the experiment and the simulation.

ency of the force on the overlap, the data show a cubic behavior. And may be
fitted by f(δ) = 8.456 ·109 δ2−3.73 ·1012 δ3. However, the maximum overlap
during a normal run of the simulation is of the order of 10−7 m. Therefore,
we are still in a regime where a linear behavior is a rather good approxima-
tion to the (fitted) experimental data. More complicated non-linear or hys-
teretic or plastic models (MEI ET AL. [63]; THORNTON [94, 95]; THORNTON

AND ANTONY [96]; THORNTON AND YIN [97]; WALTON AND BRAUN

[107, 108]) are not considered in this study but are an interesting direction
to follow in order to achieve exact quantitative matching between experi-
ments and simulations.

4.3 Conclusion

In this chapter the simulation method was presented. After a brief descrip-
tion of the used VERLET-integrator scheme and the linked-cell method as a
speed up mechanism the force laws of the MD simulation were introduced.
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Tab. 4.1: Microscopic material parameters of the model
Property Values
normal spring constant kn 352.1 N/m
normal viscous coefficient γn 0.19 kg/s
Coulomb friction coefficient µC 0.44
tangential spring constant kt 267.1 N/m
tangential viscous damping γt 0.15 kg/s
bottom friction coefficient µb 2× 10−5

bottom spring constant kb 267.1 N/m
bottom viscous damping γb 0.15 kg/s
bottom torque parameter τ M 0.0001

For the normal component of the inter-particle forces a linear spring dash-
pot model (Eq. 4.9) is used. Elastic and dissipative behavior are taken into
account with this kind of normal forces. Possible extensions towards a non-
linear force law were given in Section 4.2.5 but are not considered in this
thesis.

We argued that it is necessary to implement a Cundall-Strack spring
(Eq. 4.20) and commented on the extension to implement damping. Ad-
ditionally to the normal and tangential direction of the forces a friction with
the bottom was implemented. In summary the complete force law reads as

~f = ~f n + ~f t + ~f b (4.30)

= knδ~n+ γn~v n (4.31)

−min(µCf
n, |~f t∗|)~f t∗/|~f t∗| (4.32)

−min(µbf
n, |~f b∗|)~f b∗/|~f b∗| . (4.33)

The values of the different parameters used throughout this study are sum-
marized in Table 4.1.



5
The Averaging Method

One advantage of a discrete element simulation is the possibility to obtain
detailed information such as forces and stresses of an individual particle.
However, the behavior of an isolated particle is not significant for the beha-
vior of the whole system, as most of the measurable quantities in granular
materials vary strongly on short distances.

One example is the stress, which is not constant inside a grain, but has its
largest value at the contacts. An other illustrative example are force chains.
The forces in granular materials are transmitted at the contact points from
one grain to the other. Thus a network of forces forms inside the medium
bearing all the forces and leaving some particles in “cages” nearly force
free. In Fig. 5.1 few dark particles carry high forces caging some light gray
particles.

This fluctuating behavior, also found in experiments, necessitates the av-
eraging over suitable domains, which in general leads to smearing out the
fluctuations. In order to suppress the fluctuations, we perform averages
in both, time and space. Which is possible first, due to the quasi-steady
state and second, because of the chosen axisymmetric boundary conditions,
i.e., the macroscopic fields, when viewed in cylindrical coordinates, should
only depend on the radial coordinate. Therefore, averages are taken in ring-
shaped areas, concentric to the inner wheel. The mean value is reported
on the mid-radius of each ring. The finite width of these rings is limited
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Fig. 5.1: Force chain spanning the lower left part of the shear device. Dark indicates high
forces (high potential energy) on a particle.

by the need for “sufficiently many” particles inside one ring. The question
what “sufficiently many” actually means is addressed in Sect. 5.3 about the
Representative Elementary Volume (REV).

In this section we first elaborate the averaging strategy used to obtain scalar
as well as tensorial quantities. By using this technique on the density field
of the simulation we demonstrate the legitimacy for the time and space av-
eraging. In the last part of this chapter the dependence of the results on the
width of the averaging area is presented.

5.1 Averaging Strategy

The intriguing feature of granular materials that most of the measurable
quantities vary strongly, both in time and on short distances, leads to the
question how to perform proper averages. In general during the compu-
tation of the properties presented later on, one has either to reduce or to
average over the fluctuations.

In our system it is possible to perform averages in time as well as in space.
The time averaging is justified because the system can run for a long time
in a quasi-steady state. Therefore, e.g., small but fast rearrangements in the
granulate are accounted for by taking averages over many snapshots in time
with time steps ∆t.
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r Vr

∆r

Fig. 5.2: Points at a certain distance r from the origin are equivalent to each other, therefore
space averaging is performed in ring shaped areas of width ∆r.

Additionally, in the cylindrical symmetry of the Couette device all points
at a certain distance r from the origin are equivalent to each other. The
space averaging is done as follows. Data are measured in rings of mater-
ial at a center-distance r with width ∆r so that the averaging volume of
one ring is Vr = 2hπr∆r, as sketched in Figure 5.2. Although our data are
two-dimensional the averages taken are three dimensional, with h being the
height of the particles (6 mm).

For the sake of simplicity (and since the procedure is not restricted to cyl-
indrical symmetry), the averaging volume is denoted by V = Vr in the fol-
lowing. The rings are numbered from s = 0 toB−1, withB = (Ro−Ri)/∆r.
Each ring s reaches from rs = r −∆r/2 to rs+1 = r + ∆r/2. Averaging over
many snapshots is somehow equivalent to an ensemble average. However,
we remark that different snapshots are not necessarily independent of each
other as discussed in Sect. 5.2 and the duration of the simulation might be
too short to explore a representative part of the phase space.1

Local Coordinate System

Since we are interested not only in scalar but also in tensorial quantities a
local coordinate system is used at every averaged particle. A local directed
quantity like a vector, is therefore, rotated depending on the Cartesian posi-

1 Especially in the outer part of the system where the dynamics is very slow.
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Fig. 5.3: Local coordinate system for a particle in the shear device.

tion ~ri = (xi, yi) of the corresponding particle i. The orientation of particle i
is φi = arctan(yi/xi) for xi > 0 and periodically continued for xi < 0 so that
φi can be found in the interval [−π, π]. The vector ~nc that corresponds to
contact c of particle i is then rotated about the angle −φi from its Cartesian
orientation before being used for an average. Note that this does not corres-
pond to a transformation into orthonormal cylindrical coordinates.

In the following, the index r is used for the radial outward direction and the
index φ is used for the counterclockwise perpendicular direction.

5.2 The Averaging Formalism

The core of our averaging formalism is the definition of the mean value of
some quantity Q as

Q =
1

V

∑

i∈V
wVi ViQi , (5.1)

with the particle volume Vi, the pre-averaged particle quantity

Qi =
Ci
∑

c=1

Qc , (5.2)

and the quantity Qc attributed to the contact c of particle i which has Ci
number of contacts.
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The simplest choice for wVi , the weight of the particle’s contribution to the
average, is

wVi =

{

1, if the center of the particle lies inside the ring
0, otherwise (5.3)

This method will be referred to as particle-center averaging in the following
and is shown schematically in Figure 5.4(a).

A more complex way to account for particles which lie partially inside the
averaging volume is the slicing-method. With this method the weightwVi cor-
responds to the fraction of the particle’s volume that is covered by the aver-
aging volume. Since an exact calculation of the area of a circular particle that
lies in an arbitrary ring is rather complicated, we assume that the boundar-
ies of V are locally straight, i.e. we cut the particle in slices, as shown in
Fig. 5.4(b). The error introduced by using straight cuts is well below one
per-cent in all situations considered here.

(a) particle-center averaging

PSfrag replacements
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(b) slicing method

Fig. 5.4: (a) Schematic plot of discrete particles. The averaging volume is intimated by
the shaded area and the particles plotted as thick circles contribute to the average.
(b) Schematic plot of a particle i at radial position ri which is cut into pieces by
the boundaries rs of the averaging volumes. We assume s = 0, . . ., m+ 1 such
that all rs with s = 1, . . ., m hit the particle, i.e. |ri − rs| < d/2.

The volume V s
i = wVi Vi of a particle i which partially lies between rs and

rs+1 is calculated by subtracting the external volumes V s
− and V s

+ from the
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particle volume Vi = πh(di/2)2 so that

V s
i = Vi − V s

− − V s
+

= h(d/2)2[π − φs + sin(φs) cos(φs)

−φs+1 + sin(φs+1) cos(φs+1)] (5.4)

with φs = arccos(2(ri − rs)/d) and φs+1 = arccos(2(rs+1 − ri)/d). The term
(d/2)2φ is the area of the segment of the circle with angle 2φ, and the term
(d/2)2 sin(φ) cos(φ) is the area of the triangle belonging to the segment. In
Fig. 5.4(b) the case s = 1 is highlighted, and the boundaries between V s

−, V s
i ,

and V s
+ are indicated as thick solid lines. The two outermost slices V 0

i = V 1
−

and V s
i = V s−1

+ have to be calculated separately.

Time Averaging

As a first example for an averaged scalar quantity, the local volume fraction
ν is computed. The volume fraction is related to the local density %(r) ≈ %pν,
with the material density %p. With the proposed averaging formalism the
local volume fraction is given by

ν = ν(r) =
1

V

∑

i∈V
wVi Vi . (5.5)

It means that Qi of Eq. 5.1 is set to 1.2

The volume fraction ν is displayed for snapshots at different averaging
times in Fig. 5.5, in order to understand the fluctuations in the system over
time, and to test whether subsequent snapshots can be assumed to be inde-
pendent.

Changes in density are very weak and mostly occur in the dilated shear
zone for small r̃. Note that a rather large dilation in the thin shear zone part
leads to a comparatively small compression of the remaining outer part.

From one snapshot to the next, we frequently find that the configuration in
the outer part of the shear cell has not changed, whereas a new configura-
tion is found in the inner part. Only after rather long times does the density

2 For a completely filled averaging volume one would obtain a value of ν = 1. The
densest possible packing with mono-disperse particles, a hexagonally packed system,
would result in a volume fraction of ν = 0.9069 while a square packing results in ν =
0.7854.
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Fig. 5.5: Volume fraction ν, plotted against the dimensionless distance r̃ = (r−Ri)/dsmall

from the inner ring, for different times from a simulation with an initial global
volume fraction ν̄ = 0.796. After some rotations of the inner wheel the volume
fraction in the inner part of the system does not change within fluctuations. For
the averaging procedure the slicing method is used.

change also in the outer part. Thus, simulation results in the outer part are
subject to stronger fluctuations because the average is performed over less
independent configurations than in the inner part.

5.3 Representative Elementary Volume (REV)

An important question is, how does the result of an averaging procedure de-
pend on the size of the averaging volume V . We combine time- and space
averaging, i.e. we average over many snapshots and over rings of width
∆r, so that the remaining “size” of the averaging volume is the width of
the rings ∆r. In Fig. 5.6 data for ν at fixed position r = 0.12, 0.13, 0.14,
and 0.20 m, but obtained with different width ∆r, are presented. The posi-
tions correspond to r̃ ≈ 2.2, 3.6, 4.9, and 13, when made dimensionless with
the diameter of the small particles. Both the particle-center method (open
symbols) and the slicing method (solid symbols) are almost identical for
∆r/dsmall ≥ 2, for the larger ∆r the averaging volume can partially lie out-
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Fig. 5.6: Volume fraction ν at different distances r from the inner ring, plotted against
the width ∆r of the averaging ring. Note that the horizontal axis is logarithmic.
The open symbols are results obtained with the particle-center method, the solid
symbols are results from the slicing method. The inset is a zoom into the large ∆r
region. The arrows indicate the optimal width ∆r for the particle-center method
for which the results appear almost independent of the averaging procedure.

side the system. For very small ∆r/dsmall ≤ 0.1 the different methods lead
to strongly differing results, however, the values in the limit ∆r → 0 are
consistent, i.e. independent of ∆r besides statistical fluctuations. In the in-
termediate regime 0.1 < ∆r/dsmall < 2, the particle-center method strongly
varies, while the slicing method shows a comparatively smooth variation.

Interestingly, all methods seem to collapse at ∆rREV ≈ dsmall (and twice this
value), close to the size of the majority of the particles. For the examined
situations, we observe that the particle-center and the slicing method lead
to similar results for 0.97 ≤ ∆rREV/dsmall ≤ 1.03. This indicates that the
systems (and measurements of system quantities) are sensitive to a typical
length scale, which is here somewhat smaller than the mean particle size.
When using this special ∆rREV value, one has B = 20 or B = 21 binning
intervals. The open question of this being a typical length scale that also
occurs in systems with a broader size spectrum, cannot be answered with
our setup, due to the given particle-size ratio.
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Fig. 5.7: Volume fraction ν plotted against the dimensionless distance r̃ = (r−Ri)/dsmall

from the inner ring for the different binning methods. Two different binnig widths
are investigated. The closed (open) symbols correspond to 20 (60) binning inter-
vals, respectively. The data are taken from a simulation with a global packing
fraction ν̄ = 0.804.

In Fig. 5.7 the results of the particle-center and the slicing averaging strategy
are ploted for two different widths of binning. The curves of the particle-
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center averaging strongly fluctuate for B ≥ 24 which can be seen in the
figure where the density is plotted for 20 and 60 binning intervals. The data
points even exceed the value 1.0 for fully packed samples. These oscillations
arise due to ordered layers of the particles close to the walls. The particle-
center method leads to peaks, where the centers of the particles in a layer are
situated and to much smaller densities where few particle centers are found;
the particle-center density is obtained rather than the material density. The
slicing method although shows oscillations for fine binnigs but these oscil-
lations are much smoother and never exceed 1; the slicing method reflects
the real density distribution for fine enough binning. For that reason the
particle slicing method will be used in the following.

5.4 Conclusion

Finally, we should remark that the most drastic assumption used for our
averaging procedure is the fact, that all quantities are smeared out over
one particle. Since it is not our goal to solve for the stress field inside one
particle, we assume that a measured quantity is constant inside the particle.
This is almost true for the density, but not, e.g., for the stress. However,
since we average over all positions with similar distance from the origin,
i.e. averages are performed over particles with different positions relative
to a ring, details of the position dependency inside the particles will be
smeared out anyway. An alternative approach was recently proposed by
GOLDHIRSCH [36] who smeared out the averaging quantities along lines
connecting the centers of the particles and weighted the contribution ac-
cording to the fraction of this line within the averaging volume.



6 Comparing Simulation and
Experiment

In this chapter the simulation results are compared quantitatively to those
of the experiment carried out by the group of R. BEHRINGER, in Durham,
North Carolina, USA (HOWELL ET AL. [42]; HOWELL [43]; VEJE ET AL.
[102]) and agreement is found.

Provided that numerical and experimental results agree on the grain dis-
placement and rotation fields, the simulation may be considered as com-
plementary to the physical experiment, providing additional information
concerning stresses and forces at the microscopic level.

In the first section 6.1 the density profiles are investigated, and used to de-
termine the width of the shear zone which forms after a short time of shear-
ing near the inner wall of the Couette device. Various global densities are
used and their influence on the width of the shear band is pointed out in
Section 6.2. We find a specific global density ν̄ which results in maximum
shear band width.

In Section 6.3.1 the velocity profiles of both, the experiment and the simu-
lation are compared. The mean azimuthal velocity decreases roughly ex-
ponentially with the distance from the inner shearing wheel. Within the
statistical fluctuations, there is shear rate invariance, rectifying a quasi steady
state.

The mean particle spin oscillates near the wheel, but falls rapidly to zero
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away from the shearing surface. These spin profiles are investigated in Sec-
tion 6.3.2, before distribution data are compared in Section 6.3.3. The distri-
butions for the tangential velocity and particle spins show a complex shape
particularly for the grain layer nearest to the shearing surface, indicating a
complicated dynamics. One key to the understanding of this dynamics is
the role of stick-slip motions at the interface. This can be demonstrated by a
two-variable distribution.

Finally, we comment on the remaining differences between simulation and
experiment.

6.1 Density Change with Time

In the traditional picture for shearing of a dense granular material, grains
are assumed to be relatively hard so that they maintain their eigen-volume. If
shear is applied to a granular sample, the grains will respond elastically1 up
to the point of failure where the particles break. The question if the elastic
response does exist at all is another issue, not addressed here (GENG ET AL.
[33]; VANEL ET AL. [100]). Before failure, the grains will dilate against an
applied normal load, and shear will be made possible.

In our setup, this process of dilation begins with the motion of grains nearest
to the shearing wheel. The density in the vicinity of the inner wheel de-
creases as the process evolves; leading to an axial flow further from the
shearing wheel. Generally, one assumes that under continued shearing the
system can reach a steady state, subject to localized failure in the narrow
regions known as shear bands.

The feature of shear band formation, already shown in the discussion of
the steady state in Sect. 5.2, is easy to see in the time evolution of the
system. Starting from a fairly uniform random packing (dashed lines in
Fig. 6.1); the local packing fraction ν quickly becomes nonuniform radially
as a consequence of the shearing. This effect occurs in the plot of the simu-
lation data already for the initial density right after the compression of the
shear cell, because the inner wheel is rotating from the very beginning. The

1 If they are not infinitely rigid.
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Fig. 6.1: Volume fraction ν plotted against the dimensionless distance r̃ = (r−Ri)/d̃ from
the inner ring, for different times. The experiment a) is performed over a long
time, while the simulation data b) investigate 8 rotations of the inner wheel. Still
both plots demonstrate that after some rotations of the inner wheel the volume
fraction in the inner part of the system does not change within fluctuations. The
data were taken from a system of disks with a global packing fraction of ν̄ =
0.804.

dashed line in the lower panel of Fig. 6.1 therefore represents a transient
state between the initial and the steady state of the shear band. Whereas,
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the experimental data are obtained from the static initial state, where no
onset of the shear band could take place.

The transient time for the formation of the shear band is less than about
five rotations of the inner wheel. The simulation data hint that after several
rotations the reorganizations in the inner part lead only to changes within
the fluctuations of the density profile and the process of shear band forma-
tion is slowing down. However, the inner wheel of the experiment can be
run for quite long times (days). While most of the evolution of the resulting
shear band also occurs in less than about five inner wheel rotations (HOW-
ELL [43]), there are indications that small changes of the profile continue
to occur even over very long times. Given a CPU-time of 1 − 2 days per
rotation, not more than 8 rotations of the inner ring were investigated in the
simulation. Therefore, the true long-time behavior is not discussed here.

6.2 Changing the Packing Fraction

In both, the experiment and the simulation, various global packing fractions

ν̄ =
1

Vtot

N
∑

p=1

V p (6.1)

of the shear cell are examined. The sum in Eq. 6.1 runs over all particles p
with volume V p in the cell, with Vtot = π(R2

o − R2
i ). Because Vtot is fixed

for all simulations, ν̄ is varied by changing the number of particles in the
apparatus. The particle number was varied form 2866 to 2978 grains, corres-
ponding to 0.789 ≤ ν̄ ≤ 0.828; while always about 86% of the total number
of particles were small particles. The details are summarized in Tab. 3.2 of
Sect. 3.

In this section the dependence of the local density and the kinematics of
the system are examined as a function of ν̄. Using this global density ν̄

as a parameter has led to the discovery of an interesting transition as the
system approaches a critical packing fraction, ν̄c (HOWELL ET AL. [42]). In
the experiment we found ν̄c ∼ 0.792 whereas in the simulation ν̄c ∼ 0.793 is
evidenced.

The reason for the ν̄-dependence is easy to understand by imagining what
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would happen if ν̄ was very low. In this case, grains would easily be pushed
away from the wheel, and after some rearrangements they would remain at
rest without further contact with the moving wall. Increasing ν̄ by adding
more and more grains leads to the critical mean density, ν̄c, such that there
would always be at least some grains subject to compressive and shear
forces from the boundaries. By adding more grains, the system would
strengthen, more force chains would occur, and grains would be dragged
more frequently by the shearing wheel. If even more particles were added,
the system would become very stiff and eventually would become blocked,
i.e. so dense that hardly any shearing can take place. In the extreme limit,
due to large compressive forces and deformations, permanent plastic de-
formations might occur and brittle materials even might fracture. However,
due to the rather soft, rubber-like polymeric material used in the experi-
ment and due to the relatively weak forces applied, this limit can not be
investigated with our setup.

6.2.1 Density
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Fig. 6.2: Volume fraction ν, plotted against the dimensionless distance from the origin
r̃ = (r − Ri)/d̃, for different initial global densities ν̄. The left plot shows data
for the experiment, in the right plot simulation data are displayed.

We first consider again the local density profiles. In the two plots of Fig. 6.2
the local density ν is observed and plotted vs. r̃ = (r − Ri)/d̃ the radial
distance scaled by the mean particle diameter d̃. Two regions are clearly
separated in the data presented for various ν̄ values.

First, the outer part of the system; the dynamics in the outer part is really
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slow so that very few reorganizations take place and the packing fraction
changes only very slightly. In the outer part of the system the experimental
data express higher fluctuations than the simulations, which might be due
to the different way of the preparation of the samples. During the com-
pression phase of the simulation the particles tend to form homogeneous
clusters. Later in the shearing phase these clusters are only subject to very
few rearrangements due to the slow dynamics in the outer part of the sys-
tem. The outermost data points in the simulation plots of Fig. 6.2 are signi-
ficantly lower than the mean value in the outer part of the system because
of ordering effects arising due to the boundary conditions which foster crys-
tallization of the outermost grains.

The behavior of the inner part of the system is different: The data presented
for various ν̄ values clearly indicate a dilated region close to the inner wheel
for both the experiment and the simulation, where those of the simulation
are systematically smaller than the experimental ones.

These deviations are due to differences in obtaining local density data either
from experiment or from simulation:

• In the simulations the data are averages over full rings around the sym-
metry center of the shear cell, whereas in the physical system a radial slice
that corresponds to one quarter of the entire apparatus was used for aver-
aging. Even though averages were computed over an extended time inter-
val, a systematic error due to this procedure cannot be ruled out. Because of
possible circumferential fluctuations associated with this averaging process,
the area under the experimental curves is not necessarily constant, and not
necessarily identical to the global density.

• In the experiment the local density is measured via optical intensity meth-
ods, where also some uncertainty is intrinsic due to light scattering and non-
linear transmission. In addition, calibration is complicated by the fact that
the real particles are not perfect disks as assumed in the simulation. Spe-
cifically, data are obtained by using the fact that UV light is strongly atten-
uated on passing through the photoelastic disks. This technique is calib-
rated against packings with well known area fractions, such as square and
hexagonal lattices. For details see the PhD thesis of HOWELL [43]. There
are still some small systematic uncertainties in this procedure, and if one
computes the packing fraction using the experimental data given in the up-
per part of Fig. 6.2, a packing fraction higher than the global one is found.
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For that reason we shift the experimental local density data downward by a
constant value of νshift = 0.08.
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Fig. 6.3: Volume fraction ν, plotted against the dimensionless distance from the origin
r̃ = (r − Ri)/d̃, for different initial global densities. The solid symbols show
experimental data ν−νshift shifted by νshift = −0.08. The open symbols resemble
simulation data with ν̄ as given in the legend. The dotted lines are exponential
fits to the simulation data as obtained by Eq. 6.2.

After shifting the local densities the data of Fig. 6.3 show good quantitat-
ive agreement between simulation and experiment within the fluctuations.
Like in the time dependent density profiles of Fig. 6.1 there is again a clear
difference in density between the dynamic, dilute shear zone and the static
outer area for all ν̄.

In order to quantitatively determine the width of the shear zone the density
profiles of the experimental as well as the simulation data are fitted with an
exponential curve of the form:

νf = ν0 −B exp(−C(r −Ri)/d̃) , (6.2)

where ν0, B and C are fit parameters. For the fits to the simulation data the
range of 0.5 ≤ r̃ ≤ 8.5 was used. The dotted lines of Fig. 6.3 show two
exemplary fits to the simulation data for ν̄ = 0.789 and 0.811, respectively.
The variation of the fit parameters ν0 and B with different ν̄ is shown in
Fig. 6.4.
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Fig. 6.5: Exponential width of the shear band as obtained by Eq. 6.2 versus the global
packing fraction. The solid symbols resemble experimental, the open symbols
simulation data.

The exponential width C−1 of the fits is shown in Fig. 6.5. For simulations
with a volume fraction of ν̄ < ν̄c a sub critical state is reached after some
rotations of the inner shearing wheel. The innermost particles are pushed
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away from the inner wall and remain at rest without further contact to the
wall. While increasing the volume fraction from ν̄c further the width of
the shear band decreases because the movement of the particles is more
and more hindered. The system is in a shear flow regime. At ν̄ ≈ 0.809 a
minimal width of the shear band is found, i.e. C−1 of the fit function Eq. 6.2
reaches a maximum for the simulation , as shown in Fig. 6.5. By increasing
the packing fraction further the system is blocked and the determination of
a clear shear zone becomes difficult. The experimental data hint a furthe
decreasing shear band width up to ν̄ ≈ 0.811 before both simulation and
experimental data seem to saturate at a specific shear band width.

6.3 Kinematic Quantities

In addition to the density, the mean velocity and the spin of the particles
also evolve to a steady state. In this section these kinematic quantities are
presented in the steady state and examined for different global packing frac-
tions.

In order to check wether the particles are able to move radially or not, the
radial velocity of the particles is plotted in Fig. 6.6. The data of the upper
panel were taken from a ring of the width of 1 particle next to the inner ring
for the indicated values of ν̄. The width of the Gauss distribution changes
with ν̄, but not the mean, which is zero. In the outer parts of the shear cell
even less dynamics is found as can be seen in the lower panel of Fig. 6.6.

6.3.1 Velocity Profiles

Because the particles are limited in their radial movements, we focus on the
normalized azimuthal velocities, vφ/(ΩRi), scaled by the angular speed of
the inner shearing surface ΩRi.

The mean of vφ/(ΩRi) as a function of r̃ is shown in Figure 6.7. All data
indicate a roughly exponential profile corresponding to a shear zone with a
width of a few disk diameters. Additionally, the experimental data show
a clear curvature in the outer part of the system were the saturation level is
reached. This saturation level of fluctuations in the velocity is at a higher
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Fig. 6.6: Radial velocity vr/d̃ distribution in particle diameters per sec for a bin 0 < r/d̃ <
1 in the upper panel and 12 < r/d̃ < 13 in the lower panel. Data are shown for
three different values of ν̄. The width of the distribution changes with ν̄, but not
the mean, which is zero.

level for the simulation data, possibly due to the systematically larger shear
rate in simulations used to save CPU-time. However, the logarithmic scal-
ing over-amplifies this very small quantity.
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Fig. 6.7: Velocity profiles for different packing fractions ν̄. The mean azimuthal velocities
are normalized by the velocity of the shearing surface of the inner cylinder ΩRi.
The solid line is a fit of A exp(−((r −Ri)/d̃)/B).

The data of the experiment as well as the simulation data are fitted with
A exp(−((r − Ri)/d̃)/B) in the range of 0 < r/d < 6. The amplitude of
the exponential term (the velocity of the particles close to the inner wall,
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v0) decays steadily as ν̄ decreases towards νc. The simulation data show a
weaker decay of the velocity at the inner wall with decreasing density. The
values of v0/(ΩRi) � 1 indicate that either slip or intermittent shear takes
place at the inner wall. Only values of v0/(ΩRi) = 1 would correspond to
perfect shear in a sense that the particles are moving with the wall without
slip and during all the time. For high densities the agreement is reasonable,
but for low densities the magnitude of the velocities differs strongly. This
may be due to either of the differences in bottom- or wall-friction, or due
to different wall shape. Especially the more irregular and rough wall in
the experiment can lead to stronger intermittency and thus reduced mean
velocities.

Our observed profile differs from some recent observations by MUETH

ET AL. [67] for 3D Couette shearing experiments, where they report a larger
quadratic term relative to the linear one in the exponential. At this point,
we do not know what causes this difference, but some obvious candidates
are differences in dimensionality, shape of the particles, etc.

6.3.2 Spin Profiles

Another interesting quantity is the spin of the particles. In analogy to the
azimuthal velocity we use a normalized spin s = Sd/(ΩD) with D the dia-
meter of the inner wheel, so that s = 1 corresponds to the rolling of the
inner particles on the inner shearing wheel. The mean profile for s is shown
in Figure 6.8.

The particles adjacent to the wheel rotate backwards on average, i.e., in the
direction opposite to the wheel rotation. However, the next layer rotates in
the same direction as the wheel on average. These oscillations damp very
quickly with distance from the wheel. In order to examine this damping, we
fit the spin profile to Sd/(ΩD) = A exp(−B(r − Ri)/d) cos(π(r − Ri)/d + φ).
We chose this formula to combine an oscillatory part with an exponentially
decaying function. The fit coefficients are A = 0.24 ± 0.02, B = 1.46 ± 0.16

and φ = 1.79 ± 0.08 for ν̄ = 0.796 which means that the oszillations damp
away really quick. This is related to the fact that the spin of the disks in a
given layer is driven in one direction by neighboring disks that lie in a layer
closer to the wheel, while at the same time impeded by neighboring disks
that are a layer further from the wheel.
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Fig. 6.8: Spin Profiles for different values of ν̄.

Fig. 6.9: Schematic plot of the alternating rotation directions of the particles near the inner
wheel.

6.3.3 Velocity Distributions

From the previous section, it is clear that changing the packing fraction must
not only change the profiles, but also the distributions of the velocity. In
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Fig. 6.10: Velocity and spin distributions. The solid symbols denote experimental the open
symbols simulation data.

Fig. 6.10 the velocity distributions in a one-particle wide bin next to the
inner wheel are shown for various ν̄-values from the experiment and the
simulation.

The data clearly show that the peaks near zero, corresponding to non-
rotating particles, become weaker with increasing density. Furthermore
the corresponding regions with negative spin and nonzero vφ grow with
increasing ν̄. The fact that increasing ν̄ leading to a decreasing number of
stationary particles is not surprising. But the formation of the second peak
in the velocity distribution at vφ ' 0.5 is not as intuitive as the small peak at
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Fig. 6.11: 2D probability density for vφ/(ΩRi) and Sd/(ΩD) for 0 < r/d < 1. Dark
is high probability density. The upper panels show simulation data, the lower
experimental data for high (right) and low (left) densities ν̄, respectively.

unity. Instead one might expect a simple broadening of the distribution.

A key to understanding this phenomenon is contained in the two-variable
distribution P (vφ/(ΩRi), Sd/(ΩD)). Examples for this distribution are
shown in Fig. 6.11 for high (right) and low (left) density ν̄. The upper
panel shows experimental the lower panel simulation data. The probability
is coded in grayscale with dark denoting higher probability.

Looking at the figure one finds two distinct features, corresponding to two
qualitatively different processes. The first feature is the concentration of
probability around (0, 0) which corresponds to a state where the disks are
essentially at rest, without neither spin nor translation. The other feature is
the clustering of probability around the line vφ/(ΩRi) = 1 + Sd/(ΩD). This
line corresponds to a non-slip motion of grains relative to the wheel. No-slip
here means that the particles execute a combination of backwards rolling
and translation, such that the wheel surface and the disk surface remain in
continuous contact. The peak at vφ/(ΩRi) = 0, which is strong for low ν̄,
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but decreases for high ν̄, corresponds to particles that are so weakly com-
pressed that they can easily slip with respect to the shearing wheel. With
higher density, and hence greater forces at the contacts between the grains
and the shearing ring, slipping becomes less likely and the combination of
translation and backwards rolling is the preferred state.

6.4 Conclusion

We have reported parallel experimental studies and molecular dynamics
simulations of shearing in a two-dimensional Couette geometry. Here, an
important goal was to benchmark such simulations in a setting where it was
possible to have good overlap between the parameters relevant to the sim-
ulations and the experiments. In most respects, the numerical results are
in good qualitative, partially even quantitative agreement with the experi-
mental results.2

Both methods show rate-independence within the statistical errors, and the
range of rates that were studied. We have particularly focused on the de-
pendence of the shearing states on the global packing fraction. Good agree-
ment between simulation and experiment was found for the density profiles
associated with the formation of a dilated shear band next to the inner shear-
ing wheel and the width of the shear band of about 5-6 particle diameters.

Both simulation and experiment also showed a roughly exponential velocity
profile. However, the simulations did not capture the density dependence
of the experimental profiles, especially at the outer edge of the shear band.
In this regard, further exploration if appropriate of the role of the rough-
ness of the shearing surface and the effect of the particle-bottom friction are
necessary. The former can lead to intermittent behavior, whereas the latter
might explain the velocity-drop at the outer edge of the experimental shear
band.

The alternating spin profiles in experiment and simulation agreed nicely, in-
dicating a roling of the innermost particle layers (parallel to the walls) over

2 This is astonishing when the possible discrepancies concerning particle shape and
boundaries, as well as the partially huge differences between experimental reality and the
particle-particle and particle-wall contact models in the simulation are considered.
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each other. Outside of the shear band rotations are not activated, however.
From the velocity- and spin-probability densities, a combination of roling
and sliding with the inner wall is evidenced. With decreasing density more
and more particles remain at rest – stopped by the bottom friction. With
increasing density, more and more particles are dragged with the moving
wall, but at the same time roll over each other – in layers with strongly de-
creasing amplitude away from the moving wall.

The present study is one step towards ending the ever-lasting discussion
about the reliability of numerical simulations, and especially simplified mo-
lecular dynamics simulations, where only due to the very simple interaction
force laws, a simulation with large particle numbers is possible. Even with
many differences in details, a quantitative agreement could be achieved and
the strong discrepancies could be (possibly) explained by differences that
would make the simulations extremely more complicated and an arduous
task. Examples therefore are a possible tilt of the particles out of their plane
of motion, a possibly wrong modeling of the bottom friction, and a non-
perfect cylindrical inner cylinder.

Thus, in conclusion, the appearingly “simple” experiment allows for a lot
of discrepancies as compared to a “simple” simulation. There are two ways,
either a real experiment is modeled with a more realistic simulation, that
takes all details into account – a probably non practicable approach – or only
the intrinsically unknown important details have to be corrected. In order
to learn what these are, we propose to think first of even simpler model
experiments that do not leave as much space for discrepancies. This, to-
gether with a strong effort in quantitative, and finally predictive, simula-
tions should lead to a better understanding of the flow behavior of granular
materials.
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7
The Micro-Macro-Transition

In the previous part of this study we presented a MD simulation which is
capable to resemble a physical experiment to some extend. Within the com-
puter simulation the state of a granular ensemble is completely described
and its development can be fully predicted. This is possible, because the
position, the shape, the material properties and the displacement of every
grain, as well as the contact forces acting on every grain are known. The be-
havior of the whole assembly under external forces can exactly be predicted
on the level of the individual grains. Such a detail description is not necessary
in general and in most cases this approach will also be too complicated for
practical purposes.

Instead, the goal of the micro-macro-transition is to develop a theory which
is capable to predict the macroscopic behavior of a deformable body without
looking at all the discontinuous microscopic effects at each grain of the body.
To be more precise, our aim is to provide a relationship between external
loads acting on the material and the resulting displacements occurring in
the sample.

Traditionally, the external loads are expressed in terms of stresses and the
displacements are reflected by the strain. The relation between loads and
stress is given in terms of the equilibrium conditions of the continuum,
whereas the strain is derived via kinematic considerations. These neces-
sary equations for the kinematics and the balance laws for the classical con-
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tinuum theory will be shown in Sect. 7.1. A more detailed derivation can
be found e.g. in the textbooks of BECKER AND BÜRGER [8], TRUESDELL [98]
and MALVERN [59].

As stated, macroscopic continuum equations for the description of the be-
havior of granular media rely on constitutive equations for stress, strain,
and other physical quantities describing the state of the system. In the clas-
sical continuum theory the microscopic (atomistic) structure of a material is
not taken into account explicitly. However, the forces acting inside a gran-
ular material are transmitted from one particle to the next only at the con-
tacts of the particles. Therefore, the description of the associated network of
inter-particle contacts is essential, especially for the quasi-static mechanics
of granular assemblies (COWIN [21]; GODDARD [35]). The fabric tensor F
is a kind of a measure for the structure of the system. Although, the fabric
tensor is not a quantity of the classical continuum theory it will be investig-
ated in Sect. 7.2.

In order to perform the micro-macro-transition, a macroscopic state variable
like the stress has to given in terms of microscopic variables. For the stress
these variables are the forces acting between the grains and the vectors con-
necting the center of a particle with its contact points. The derivation for
this relation is given in Sect. 7.3.

As an essential ingredient for practical purposes at least a stress-strain re-
lationship should be given as a result of any theory. Therefore, in Sect. 7.4
a definition of the strain based on microscopic variables is given. The be-
havior of the fabric tensor, the stress tensor and of the strain tensor in our
simulations are discussed each in the section where the quantity is defined.

We will close this section by using the stress and the strain to calculate dif-
ferent elastic moduli of our simulation. Therefore, a simple constitutive
equation for isotropic, elastic materials of HOOKEs type is used which is
elaborated in the next section. Its application we will show in Sect. 7.5 were
we will also develop a simple constitutive law which relates the stress to the
deformations and (via the fabric tensor) to the local structure of the granu-
late.
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7.1 Classical Continuum Theory

In the following we will briefly summarize the kinematic basis of the clas-
sical continuum theory. For the derivation we limit ourself to the geomet-
rically linear regime.

Kinematic Equations

Already the name “continuum” theory hints that matter in this kind of a
theory is view as a continuum. The points which form the continuum are
called material points X . More precise, every material point is denoted by
a label X in a unique way. A body B is composed of a connected, compact
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Fig. 7.1: Schematic drawing of the reference and the actual configuration of a body B.

set of material points X . The position ~x of each of these points at time t is
a function of its position in a chosen reference configuration, ~X , and of the
current time t

~x = ~x( ~X, t) . (7.1)

Since neighboring points in the reference configuration are mapped to
neighboring points in the actual configuration and due to the principle that
at one place there can only be one point and one point can only be at one
place, the inverse of Eq. 7.1 can be written as

~X = ~X(~x, t) . (7.2)
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In order to calculate actual problems with the continuum theory a coordin-
ate system has to be introduced. In the following we will use a rectangular
Cartesian coordinate system. This coordinate system might be introduced
in two different ways: First, the LAGRANGian description which relates the
position of the actual configuration to the reference configuration, i.e. meas-
urements are taken at a specific material point moving in space. The other
way is to chose a fixed position in space yielding to a spatial (EULERian)
formulation.

With this two points of view also two different definitions of the derivative
of a quantity Q = Q(~x, t) exist. At a fixed position in space one computes
the local derivative

∂Q

∂t
. (7.3)

In the LAGRANGian formulation the material derivative

Df

Dt
, (7.4)

has to be used. These two formulations are related to each other via

DQ

Dt
=
∂Q

∂t
+ ~v grad Q . (7.5)

By this expression the material derivativeDQ/Dt equals the local derivative
∂Q/∂t plus a convective term which captures the influence of the velocity
field ~v.

For the following it is useful to introduce the displacement vector ~u which
depends on the reference configuration and is defined as

~u = ~x− ~X . (7.6)
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For the derivation of material laws it is important to define deformations
quantitatively. This is accomplished by the deformation gradient tensor

D =
∂~x

∂ ~X
. (7.7)

The tensorD transforms the vector ~dX connecting to points in the reference
configuration into the vector ~dx connecting the same points in the actual
configuration. Using Eq. 7.6 leads to

D = I + grad ~u . (7.8)

With I being the unity tensor. To quantitatively describe the deformation
of a body the change of distance between two points may be used. Fig-
ure 7.2 shows the vectors ~dX1 and ~dX2 in the reference configuration and
their counterparts ~dx1 and ~dx2 in the actual configuration. Taking the differ-
ence of the scalar product of these vectors yields

~dx1 · ~dx2 − ~dX1 · ~dX2 = (D ~dX1) · (D ~dX2)− ~dX1 · ~dX2

= ~dX1 · ((DTD − I) ~dX2) (7.9)

= 2 ~dX1 · (G ~dX2) .

In this equation the GREENS deformation tensor

G =
1

2
(DTD − I) (7.10)

was used. With the definition Eq. 7.8 Eq. 7.10 may be rewritten into

G =
1

2

(

I + (grad ~u)T
)

(I + grad ~u)− 1

2
I (7.11)

=
1

2

(

(grad ~u) + (grad ~u)T
)

+
1

2
(grad ~u)T grad ~u . (7.12)

The second term of Eq. 7.12 can be neglected if the gradients of the displace-
ment are small, i.e.

∣

∣

∣

∣

∣

∂ui
∂Xj

∣

∣

∣

∣

∣

� 1 . (7.13)

With this condition, G is linearized yielding the linearized deformation
gradient or strain ε with the components

Gαβ = εαβ =
1

2

(

∂uα
∂Xβ

+
∂uβ
∂Xα

)

. (7.14)
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Momentum Balance

All the previous considerations only affected the kinematics of the con-
tinuum. In order to describe the mechanics one has to include the forces
acting on a body. A force acting on a body B can be decomposed

~f =
∫

B
~b dV +

∫

∂B
~s dA , (7.15)

into body forces
∫

B
~b dV and surface tractions

∫

∂B ~s dA. With the body forces
all long range interactions between B, its surroundings and the different
parts of B are captured. The most common body force is the gravity ~b =

−%g~ez with g the acceleration due to gravity and ~ez the unit vector pointing
vertical upwards.1 The body force density ~b in this and most other cases is
proportional to the mass density % therefore, a mass force density ~k = ~b/% is
introduced. Thus Eq. 7.15 can be rewritten as

~f =
∫

B
%~k dV +

∫

∂B
~s dA . (7.16)

The second term of Eqs. 7.15 and 7.16 may be interpreted as the part govern-
ing the short range interactions of B and its surroundings. The stress vector
~s is a force per unit area in contrast to~b which is a force per unit volume.

The momentum of a body B is defined as

~I =
∫

B
%~v dV . (7.17)

Let the reference system be an inertial system. With

D~I

Dt
= ~f (7.18)

and Eqs. 7.16 and 7.17 the momentum balance equation

D

Dt

∫

B
%~v dV =

∫

B
%~k dV +

∫

∂B
~s dA (7.19)

is formulated. Without derivation in the following the CAUCHY stress
tensor σ and its relation to the stress vector

~s = σ · ~n (7.20)
1 In technical applications on earth ~b reflects only the interaction between the parts of

B and the body of the earth itself. The gravitation acting between the different parts of B
with each other are of importance e.g. in astrophysical problems. But even then they are
described via a body force, as long as the relation “actio equals reactio” holds.
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is used, i.e. the stress vector ~s is derived from ~n by application of a homo-
geneous, linear transformation. Therefore, Eq. 7.19 reads as follows

∫

B
%
(

D

Dt
~v − ~k

)

dV =
∫

∂B
σ · ~n dA . (7.21)

By application of GAUSS theorem and the use of the definition of the mater-
ial derivative of Eq. 7.5 the following final formulation for the momentum
balance equation can be achieved

%
D

Dt
~v = %~k + div σ , (7.22)

%
∂

∂t
~v%~v · grad ~v = %~k + div σ . (7.23)

Angular Momentum Balance

Additional to the momentum balance a balance of angular momentum can
be postulated. Starting with the angular momentum ~L of a body B

~L =
∫

B
~x× %~v dV (7.24)

the time derivative of ~L is postulated as the moments of the body and sur-
face forces

D

Dt

∫

B
~x× %~v dV =

∫

B
~x× %~k dV +

∫

∂B
~x× ~s dA . (7.25)

Using that D~x/Dt × ~v = ~v × ~v = 0 and by applying the definition of the
CAUCHY stress tensor of Eq. 7.20 we obtain

∫

B
~x× % D

Dt
~v dV =

∫

B
~x× %~k dV +

∫

∂B
~x× σ · ~n dA . (7.26)

Applying GAUSS’ theorem to the equation above the surface integral can be
converted into a volume integral as follows:

∫

B
~x× % D

Dt
~v dV =

∫

B

[

~x× (%~k + div σ) + ~s ∗
]

dV (7.27)

The vector ~s ∗ in this equation is the axial vector of σ with the components
eαβγσβα (γ = 1, 2, 3) and e the permutation tensor. On the left hand side
of Eq. 7.27 the momentum balance of Eq. 7.23 might be applied thus finally
leading to

∫

B
~s ∗ dV = ~0 . (7.28)
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Due to the arbitrary choice of B the vector ~s ∗ has to obey ~s ∗ = 0. Because of
the meaning of ~s ∗ as an axial vector and due to the definition of e this is an
equivalent formulation to

σαβ = σβα, or σ = σT . (7.29)

In other words, the balance of the angular momentum demands the
symmetry of the Cauchy stress tensor. This statement is know as the
BOLTZMANN axiom, however it is only valid for classical continua. For po-
lar media the balance equations have to be extended, as we will show in
Sect. 8.1.

Constitutive Equations

The balance equations of the previous paragraphs in principle do not rely on
any assumptions of the material behavior itself. However, in the kinematic
paragraph the material points were only allowed to perform translational
movements, thus polar materials are not captured by this type of theory.
The balance equations however are universal for all non-polar kinds of ma-
terials. They prove useful for gases, fluids and solids which deform by a
finite amount under external forces. Because different materials behave dif-
ferent under the same external forces, it is quite clear that the balance equa-
tions are not enough to completely describe the behavior of a given material.
The missing equations are the constitutive equations. In a purely mechanical
description of a material these equations relate the stresses acting on the
material with its movements.

In the following we summarize the constitutive equations of an elastic ma-
terial. We call a material elastic if its relation between the stress tensor and
the deformation gradient may be formulated as:

σαβ = σαβ
(

D11( ~X, t), . . . , D33( ~X, t)
)

. (7.30)

The components of the stress tensor at point ~X at time t only depend on the
elementsDαβ( ~X, t) of the deformation gradient at this point and at this time.
Specifically, this leads to homogeneity of the material because otherwise the
position ~X would have to occur on the right side not only implicit inDαβ but
also explicit. Additionally Eq. 7.30 uses time independence of the material
law as t also enters the equation only implicit.
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For an isotropic material Eq. 7.30 takes the form of HOOKEs law:

σ = 2µG+ λ tr GI (7.31)

= 2µε+ λ tr εI . (7.32)

7.2 The Micro-Mechanical Fabric Tensor

In the classical continuum theory the microscopic (atomistic) structure of a
material is not taken into account explicitly. For example, the lattice struc-
ture of metals or the movement of the molecules of a gas do not enter the
constitutive equations directly. In assemblies of grains, the forces are trans-
mitted from one particle to the next only at the contacts of the particles.
Therefore, the description of the associated network of inter-particle con-
tacts is essential, especially for the quasi-static mechanics of granular as-
semblies (COWIN [21]; GODDARD [35]).

In the general case of non-spherical particles, a packing network is charac-
terized by the vectors connecting the particle centers with their contacts and
by the geometry at each contact. For spherical particles the contact normal
equals the direction of the center-center vector of the connected particles.
Therefore, the information of the contact normals suffices to characterized
the inner structure of the granular material to some extent. The fabric tensor
F accomplishes this and is therefore a measure for the anisotropy of the sys-
tem. Although, the fabric tensor is not a quantity of the classical continuum
theory it will be investigated in this section. The way the fabric tensor is
derived will show the basic principles how to measure tensorial quantit-
ies with our averaging formalism. After defining the fabric tensor for one
particle and for an ensemble of grains we will demonstrate how the fabric
tensor may be used to test for the isotropy of the granular structure of a
material. The fabric tensor is a measure of the contact number density in a
given direction in the granulate. Thus the fabric tensor may be used to test
whether the grains in the material are placed in an isotropic way or if there
exists some kind of ordering.

For all following derivations we limit ourself to the description of disk
shaped particles.2

2 Which is the equivalent to spherical particles in 3D, in the sense that contact normal
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Fig. 7.3: Schematic plot of a particle with radius a and four contacts as indicated by the
small circles. The branch vector ~lpc and the normal unit vector ~n c are displayed
at contact c = 1.

7.2.1 The Fabric Tensor for one Particle

One quantity that describes the local configuration of the grains to some
extent is the fabric tensor (GODDARD [35]) of second order

F p =
Cp
∑

c=1

~n c ⊗ ~n c , (7.33)

where ~n c is the unit normal vector at contact c of particle p. Other definitions
of the fabric use the so-called branch vector ~lpc from the center of particle p
to its contact c, however, the unit normal and the unit branch vector are
identical in the case of spherical particles.

Using the identity ap~n c = ~lpc, one has an alternative definition of the fabric
tensor

F p =
1

a2
p

Cp
∑

c=1

~lpc ⊗~lpc . (7.34)

From Eqs. 7.33 and 7.34 one obtains the number of contacts of particle p

tr F p =
Cp
∑

c=1

~n c ⊗ ~n c = Cp , (7.35)

because the scalar product of ~n c with itself is unity.

and center-center vector share the same direction.
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7.2.2 The Averaged Fabric Tensor

The fabric tensor is a quantity that describes the contact network in a given
volume V . Assuming that all particles lie inside V and thus contribute to
the fabric tensor with a weight V p, which can be seen as the area occupied
by particle p, the fabric tensor reads as

F̄ =
1

V

∑

p∈V
V pF p =

1

V

∑

p∈V

V p

a2
p

Cp
∑

c=1

~lpc ⊗~lpc . (7.36)

We can imagine different possibilities for V p: One is to divide the volume
in polygons with a VORONOI tessellation (VORONOI [106])3 with only one
particle per polygon such that the polygons cover the whole volume; in that
case V p is the volume of the polygon that contains particle p. However,
we will use another possibility, i.e. we use the volume of particle p so that
V p = πha2

p. Inserting our definition of V p into Eq. 7.36 leads to the averaged
fabric tensor

F̄ =
πh

V

∑

p∈V

Cp
∑

c=1

~lpc ⊗~lpc . (7.37)

In analogy to the trace of the fabric for a single particle, the trace of the
averaged fabric is

tr F̄ =
πh

V

∑

p∈V
a2
pCp . (7.38)

In the case of a regular, periodic contact network of identical particles (i.e.
ap = a), Eq. 7.38 reduces to tr F̄ = νC̄, where ν is the volume fraction,
defined as the ratio of the volume covered by particles and the total volume:

ν =
1

V

∑

p∈V
V p (7.39)

and C̄ the averaged number of contacts. This combination of Eqs. 7.38
and 7.39

tr F̄ = C̄ν . (7.40)

can be used as a test for the averaging procedure. When plotting tr F̄

against νC̄ all points should collapse onto the identity curve. In Fig. 7.4 vari-
ous simulations with different global density are found to collapse on the

3 In 2D the plane is subdivided into polygonal domains, each of them containing ex-
actly one particle. The borders of the domain are the bisecting lines of the straight lines
connecting the centers of neighboring particles.
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Fig. 7.4: As a test of the averaging procedure the trace of the fabric tr F̄ is plotted versus
the mean number of contacts C̄ times the volume fraction ν. All data points from
simulations with different global density collapse on the identity curve. The devi-
ating points result from the averaging bins adjacent to the walls, where contacts
with the wall occur.

identity curve. The points deviating from the identity curve are the points
adjacent to the walls, where due to contacts with the wall tr (F ) leads to
higher values than νC̄.

7.2.3 Properties of the Fabric Tensor

The fabric tensor in Eq. 7.33 is symmetric by definition and thus consists of
up to three independent scalar quantities in two dimensions.

The first of them, the trace FV = tr F = Fαα = Fmax + Fmin, is the number
of contacts of particle p, with the major and the minor eigenvalues Fmax and
Fmin, respectively. The trace of the averaged fabric is shown in Fig. 7.5 for
six simulations with different global densities. In the shear band the number
of contacts is lowest and increases with increasing distance from the inner
wheel. In the vicinity of the outer wall the trace of the fabric is again lowered
because of ordering effects of the particles. With increasing global density
the particles are packed more dense, thus the average number of contacts
for the particles increases likewise.
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Fig. 7.5: The trace of the fabric tensor tr F plotted against the dimensionless distance
from the inner wheel for different global densities. The symbols refer to the same
simulations as given in Fig. 7.6.

The second independent scalar quantity of the fabric tensor accounts for
the magnitude of the anisotropy of the contact network in first order FD =

Fmax − Fmin and is called the deviator. In order to compare the deviator
of different simulations the deviatoric fraction FD/FV is used and plotted in
Fig. 7.6. The deviatoric fraction seems to decrease while increasing the mean
density. This means that a denser system is slightly more isotropic concern-
ing the fabric. Figure 7.6 also indicates that the fabric is more anisotropic in
the inner part of the shear device and more isotropic in the outer part where
fewer reorganizations take place. This behavior will also be shown in the
next section by means of the contact probability distribution.

As third independent scalar quantity of the fabric tensor the angle φ that
gives the orientation of the major eigenvector with respect to the radial out-
wards direction is examined. The major eigendirection is shown in Fig. 7.7.
The eigendirection is tilted counterclockwise4 by somewhat more than π/4

from the radial outward direction, except for the innermost layer and for
the strongly fluctuating outer region. However, these fluctuations of the ei-
gendirection in the outer part are due to the more isotropic structure of the
fabric, i.e. for a perfect isotropic fabric the eigendirection is not well defined.

4 In direction of the shear motion.
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Fig. 7.6: The deviatoric fraction of the fabric is plotted versus the dimensionless distance
from the inner wheel for different global densities.
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Fig. 7.7: The figure shows the orientation of the major eigenvector of the fabric with respect
to the radial outwards direction. The definition of φ is shown in the right panel.

As already mentioned the question of the isotropy of the fabric can be ad-
dressed in more detail by the contact probability distribution of the fabric,
as done in the next section.
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Fig. 7.8: Probability distribution of contacts in a given direction of the particles in a one
particle wide ring at the inner ring of the shearing device. The data are obtained
from a simulation with ν̄ = 0.804. Φ = 0 denotes the radial outward direction
like defined in Fig. 7.7. The lines are fits to the data taking into account terms of
the form sin(2n ∗ x+ ψ) with n = 0, 1, 2, 3.

7.2.4 Contact Probability Distribution

The fabric tensor was used in the previous section to describe the inner
structure of the contact network of the particles. In particular the major ei-
gendirection of the fabric may be used to predict in which direction to find
most of the contacts of the particles.

To test whether a system is isotropic or anisotropic it is helpful to plot the
probability distribution to find a contact in a given direction of a particle.
In Fig. 7.8 this probability is plotted for the particles in a one particle wide
ring at the inner shearing wheel for a simulation with ν̄ = 0.804. Because
of the rotational symmetry of the system the probability distribution is 2π-
periodic, where Φ = 0 denotes the radial outward direction. The straight
line in the plot at 0.16 is the mean value given by 1/(2π). If the data of
Fig. 7.8 are plotted in polar coordinates (see Fig. 7.9a)) the mean resembles a
circle. With the second rank tensor used throughout this thesis only dipole
moments of the contact probability function are taken into account. Thus
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the shape of the probability distribution is approximated by the dotted line
in Fig. 7.8. To fully describe the structure of the probability distribution
higher order fabric tensors have to be used

F p =
Cp
∑

c=1

~n c ⊗ ~n c ⊗ ~n c ⊗ ~n c ⊗ · · · , (7.41)

thus also considering quadrupole, octupole, . . . moments (GODDARD [35];
MEHRABADI ET AL. [62]) as shown by the dashed and dashed-dotted line
in Fig. 7.8.5

This approach is beyond the scope of this thesis. For clarity we plot repres-
entative contact probabilities from a simulation with ν̄ = 0.804. The system
reveals a complex structure which changes from the inner to the outer part
of the shear device. This transition is shown in the subfigures of Fig. 7.9 and
reveals distinct differences between different radial areas.

In the shear zone (Fig. 7.9a) and Fig. 7.9b) ) a triangular structure with pre-
ferred angles π/2 is obvious together with an underpopulation at 5π/6 and
an overpopulation at π/6. Farther outside, this structure softens (Fig. 7.9c)
) and the distribution is more homogeneous (see Fig. 7.9d) and Fig. 7.9e) ).
Near the outer ring (Fig. 7.9f) ), again a very distinct triangular structure oc-
curs, but now, additional peaks at −π/6 occur with comparable probability
as at π/6.

The angles −π/6, π/6 and π/2 correspond to an annular triangular lattice
or, in other words, the disks are located in annular layers. Inside the shear
zone, this structure is reasonable because it may allow sliding of the layers.
Outside the shear zone neither dilation nor geometrical order due to a wall
foster the forming of structures, therefore a more homogeneous distribution
is found. The repeated occurrence of the annular triangular lattice near the
outer boundary cannot be ascribed to the shearing and following dilation. It
is formed during the initial compression of the shear cell, and resembles the
“remembering” of the triangular lattice due to the near mono-disperse size
distribution of the particles as a near-order wall-effect close to the almost
flat outer wall.

5 Actually the lines in Fig. 7.8 are fits with f0(x) = a0, f2(x) = a+ b ∗ sin(2 ∗ x+ c),
f4(x) = a+ b ∗ sin(2 ∗ x+ c) + d ∗ sin(4 ∗ x+ e) and
f6(x) = a+ b ∗ sin(2 ∗ x+ c) + d ∗ sin(4 ∗ x+ e) + f ∗ sin(6 ∗ x+ g) each taking into ac-
count a moment of higher order than the previous one.
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Fig. 7.9: Probability to find a contact in a given direction of a particle. An angle of Φ = 0
denotes the radial outwards direction, the dashed line resembles an angle of Φ =
π/6. The data are shown for an area of width one particle directly at the shearing
device in plot a). In the subplots b)-e) averaging areas 2, 4, 8 and 12 particle
diameters away from the inner ring are investigated, whereas the data of plot f)
are taken at the outer ring. All data stem from a simulation with ν̄ = 0.804.
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7.3 The Dynamical Micro-Mechanical Stress Tensor

The micro-mechanical approach models the material as an assembly of
(semi)-rigid particles interacting by contact forces. In order to describe
the behavior of the assembly under external loading the aim of the micro-
mechanical approach is to find macroscopic state variables through a proper
averaging of microscopic variables. In the following a definition of the
stress based on microscopic variables is given, following this route. In con-
trast to previous work (BAGI [5]; CAMBOU ET AL. [14]; CHRISTOFFERSON

ET AL. [18]; KRUYT AND ROTHENBURG [47]; LIAO ET AL. [51]; ROTHEN-
BURG AND SELVADURAI [83]) in this field we derive the complete dynamical
micro-mechanical stress tensor.

For an arbitrary volume V with surface ∂V , the mean stress is defined as

σ̄ =
1

V

∫

V
dV ′ σ , (7.42)

where σ = σ(~x) is a function of the position of volume element dV ′ inside
V which might strongly fluctuate.

In the framework of the theory of porous media the stress in the pore space
might be neglected, e.g. if it is occupied by gas. We adopt this for our gran-
ulate, i.e. only the grains are able to carry stresses. Therefore, the above
integral turns into a sum over the stresses pre-averaged for particles p. This
operation enables us to deal with particle averages instead of volume aver-
ages later on. Eq. 7.42 thus reads

σ̄ =
1

V

∑

p∈V

∫

V p
dV ′ σ , (7.43)

=
1

V

∑

p∈V
V pσp . (7.44)

The integral signifies the pre-averaging of σ over the particles. The aver-
aged stress

σp =
1

V p

∫

V p
dV ′σ (7.45)

of one particle is derived in the following, before the averaging procedure
is used on it, in order to finally achieve the averaged stress in the sample.
The properties of the stress in our system are shown in Section 7.3.3 and are
being compared to the stresses predicted by a continuum approach.
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7.3.1 The Mean Stress for one Particle

For the sake of simplicity the superscript p indicating a particle quantity
will be dropped, though we deal with one specified particle. It will turn out
more handy to start with the transposed stress tensor σT instead of σ. By
introducing the unit tensor I = grad ~x the transposed stress becomes

σT = grad ~xσT = div (~x⊗ σ)− ~x⊗ div σ . (7.46)

The law of momentum balance (see Eq. 7.23) in the EULERian reference
frame, for the volume occupied by particle p at time t, reads

%~̈x+ %~v · grad ~v = div σ + %~k , (7.47)

where the dots denote the partial derivatives with respect to time and ~k

represents an external acceleration, e.g. gravity. Inserting Eqs. 7.46 and 7.47
in Eq. 7.45 yields

σ̄T =
1

V p













∫

∂V p
~x⊗ σ · d ~A

︸ ︷︷ ︸

σ̄T
s

−
∫

V p
~x⊗ %(~̈x− ~k)dV ′

︸ ︷︷ ︸

−σ̄T
v

−
∫

V p
~x⊗ %(~v · grad ~v)dV ′

︸ ︷︷ ︸

−σ̄T
d













(7.48)
and the three parts namely the surface integral σ̄Ts , the volume integral σ̄Tv
and the kinetic part σ̄Td will be addressed separately below.

The Surface Integral

Using the CAUCHY theorem ~s = σ · ~n and the definition d ~A = ~ndA, with
~n the normal to the boundary ∂V p of particle p, the first part of Eq. 7.48
transforms into a sum

σ̄Ts =
1

V p

∫

∂V p
(~x⊗ ~s ) dA =

1

V p

C
∑

c=1

~x c ⊗ ~f c , (7.49)

after replacing the surface stresses active at the contacts by the correspond-
ing forces ~f c.6

6 Here we assume a small contact area δs with constant ~s = f/(δs).
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Fig. 7.10: Schematic plot of two particles p and q with their common contact c.

Introducing the branch vector ~lpc by the vector addition ~xc = ~xp + ~lpc, as
shown in Fig. 7.10, leads to

σ̄Ts =
1

V p

[

~xp ⊗
C
∑

c=1

~f c +
C
∑

c=1

~lpc ⊗ ~f c
]

. (7.50)

With NEWTONs law for the motion of particle p with mass m,

m~̈x
p

=
C
∑

c=1

~f c +m~k , (7.51)

we finally derive

σ̄Ts =
1

V p

[

m~xp ⊗ (~̈x
p − ~k) +

C
∑

c=1

~lpc ⊗ ~f c
]

(7.52)

for the first integral in Eq. 7.48. For static equilibrium both acceleration (2nd

term) and torque (4th term) vanish.
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The Volume Integral

The volume integral

σ̄Tv = − 1

V p

∫

V p

(

~x⊗ %~̈x− ~x⊗ %~k
)

dV ′ (7.53)

contains those terms acting on all material points of particle p. Therefore,
one has to introduce a vector ~l which points from the center of mass of the
particle to the material points inside so that ~x = ~xp +~l, see Fig. 7.10.

This leads to

σ̄Tv = − 1

V p

∫

V p
(~xp +~l)⊗ %

(

~̈x
p

+ ~̈l − ~k
)

dV ′ , (7.54)

where the vectors ~xp and ~k are constant, so that they can be taken out of the
integral. The integral

∫

V p %dV
′ is the mass m of the particle as implied in the

following. In separate terms the stress reads

σ̄Tv = − 1
V p

[

+m~xp ⊗ ~̈xp (7.55)

+~xp ⊗
∫

V p
%~̈ldV ′ (7.56)

−m~xp ⊗ ~k (7.57)

+
(∫

V p
%~ldV ′

)

⊗ ~̈xp (7.58)

+
∫

V p
%~l ⊗ ~̈ldV ′ (7.59)

−
(∫

V p
%~ldV ′

)

⊗ ~k
]

(7.60)

The fourth term, Eq. 7.58, and the sixth term, Eq. 7.60, vanish due to the fact
that

∫

V p %
~ldV ′ is the definition of the center of mass and ~l is defined relative

to the center of mass. For the rotational motion of a rigid body with angular
velocity ω around its center of mass one has

~̇l = ~ω ×~l , and

~̈l = ~̇ω ×~l + ~ω × ~̇l
= ~̇ω ×~l + ~ω × (~ω ×~l) ,

(7.61)

so that also the second term, Eq. 7.56, equals zero because both ~ω and ~̇ω are
constant over the rigid particle and thus can be drawn out of the integral.
Finally, using ~ω × (~ω × ~l) = ~ω(~ω · ~l) − ~l(ω2) = −~l(ω2), since ~ω and ~l are
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perpendicular in 2D disks rotating around their axis of rotational symmetry,
one obtains

σ̄Tv = − 1

V p

[

m~xp ⊗ (~̈x
p − ~k) +

∫

V p
%~l ⊗ (~̇ω ×~l − ω2~l)dV ′

]

. (7.62)

Using the identity ~l ⊗ (~̇ω ×~l) = −(~l ⊗~l)× ~̇ω and drawing the constants out
of the integrals, yields

σ̄Tv = − 1

V p

[

m~xp ⊗ (~̈x
p − ~k)− θ × ~̇ω − ω2θ

]

, (7.63)

after introducing the symmetric tensor θ :=
∫

V p %
~l ⊗~l.

The Dynamic Stress

The integral

σ̄Td = − 1

V p

∫

V p
% (~x⊗ ~v · grad ~v) dV ′ (7.64)

can be simplified by transforming the components of the term in brackets

− xαvγvβ,γ = −(xαvγvβ),γ + xα,γvγvβ + xαvγ,γvβ , (7.65)

where the ,γ is an abbreviation for the gradient. The last term on the r.h.s.
vanishes due to the assumed incompressibility of the particles vγ,γ = 0. The
first term can be transformed into a surface integral using the CAUCHY the-
orem. However, it vanishes because the surface integral of the normal velo-
city, ~v · ~n = ~vp · ~n, vanishes due to the symmetric particle shape. The second
integral survives and, after replacing grad ~x by the unit tensor, has to be
treated in a way similar to the volume integral in the previous subsection.

Therefore, we replace the vector ~v by ~̇x = ~̇x p + ~̇l, so that

σ̄Td =
1

V p

∫

V p

(

%(~̇x p + ~̇l)⊗ (~̇x p + ~̇l)
)

dV ′ . (7.66)

Since the mixed terms contain ~̇x p ⊗ ~̇l they vanish due to the definition of
~l. The dyadic velocity tensor %~̇x p ⊗ ~̇x p can be easily integrated so that the
remaining integral contains

~̇l ⊗ ~̇l = (~ω ×~l)⊗ (~ω ×~l) = ω2(l2I −~l ⊗~l) . (7.67)

The integral over the term in brackets is the definition for the moment of
inertia tensor J . For our disk shaped particles the integral leads to J =

(m/4)a2I . Therefore, the the dynamic stress is

σ̄Td = %
[

~vp ⊗ ~vp +
1

4
a2ω2I

]

(7.68)
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The Combined Stress

Inserting Eqs. 7.52, 7.63, and 7.68 in Eq. 7.48, finally leads to

σ̄T =
1

V p

[ C
∑

c=1

~lpc ⊗ ~f c +m~vp ⊗ ~vp + θ × ~̇ω + Jω2 + θω2

]

, (7.69)

For axisymmetric particles like our disks the two last term are the same,
thus the final equation reads

σ̄T =
1

V p

[ C
∑

c=1

~lpc ⊗ ~f c +m~vp ⊗ ~vp + θ × ~̇ω + 2Jω2

]

, (7.70)

Note that the term containing ~̈x p − ~k cancels in the combination of the
stresses.

The first term in Eq. 7.70 is the well-known, static contribution to the stress
tensor and the second term is the dynamic contribution due to the particle
motion with respect to the Eulerian reference frame (for details see the kin-
etic theory of gases (HANSEN AND MCDONALD [38]; PÖSCHEL AND LUD-
ING [78])), i.e. a kinetic energy density.

The third, asymmetric term is related to the change of angular velocity and,
thus, couples the translational degrees of freedom to the rotational motion
via torques. For disks application of the integral yields

θ × ~̇ω = I ×
C
∑

c=1

~lpc × ~f t
c

(7.71)

with ~̇L ≡ J · ~̇ω =
∑C
c=1

~lpc × ~f t
c

and ~f t
c

the tangential forces at the contact
for disks the integral over θ equals J . By using the contraction of indices7

on the cross product the combined stress tensor finally reads

σ̄Tαβ =
1

V p

[ C
∑

c=1

lpcα f
c
β +mvpαv

p
β +

C
∑

c=1

(

lpcβ f
t
α − lpcα f tβ

)

+
1

2
ma2ω2δαβ

]

. (7.72)

By decomposing the force vector of the first sum into normal and tangential
parts we write

σ̄Tαβ =
1

V p

[ C
∑

c=1

(lpcα f
nc
β + lpcβ f

tc
α) +mvpαv

p
β +

1

2
ma2ω2δαβ

]

. (7.73)

7 σtorque
αβ = eβγδθαγ ω̇δ = eβγδδαγeδεφl

pc
ε fφ = δαγ l

pc
ε fφeβγδeδεφ = δαγ l

pc
ε fφeβγδeεφδ . Con-

traction of indices yields σtorque
αβ = δαγ l

pc
ε fφ(δβεδγφ − δβφδγε) = (δαφl

pc
β fφ − δαεl

pc
ε fβ) =

(lpcβ fα − lpcα fβ).
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In our case of a linear force law in normal as well as in tangential direction
we finally find

σ̄Tαβ =
1

V p

[ C
∑

c=1

(lpckn(δnαnβ + δtangential k
t

kn
tαnβ)) +mvpαv

p
β +

1

2
ma2ω2δαβ

]

.

(7.74)

7.3.2 The Averaged Stress Tensor

For the sake of simplicity in the following only the first part of Eq. 7.70 is
taken into account. This corresponds to a case with slow motions ~v ≈ 0,
ω ≈ 0 and quasi steady state ω̇ ≈ 0. Still, the averaging procedure holds
also for the complete equation.

Inserting Eq. 7.70 in Eq. 7.44 gives a double sum over all particles with cen-
ter inside the averaging volume V , and all their contacts

σ̄ =
1

V

∑

p∈V

Cp
∑

c=1

~f c ⊗~l pc . (7.75)

Note that Eq. 7.70 uses the transposed stress tensor, thus the order of the
force and the branch vector changes in the above equation.

With our averaging formalism the weight factor wpV has to be added so that
finally

σ = σ̄ =
1

V

∑

p∈V
wpV

Cp
∑

c=1

~f c ⊗~l pc (7.76)

is obtained.

To that end we can summarize: The “static equilibrium” stress tensor is
proportional to the dyadic product of the force ~f c acting at a contact c with
its branch vector ~lpc, which accounts for the distance over which the force is
transmitted.

7.3.3 Behavior of the Stress

In this section the properties of the stress tensor obtain in our simulations
are shown.
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Fig. 7.11: The dynamic stress dσ, and the fluctuation contribution %v2
φ, plotted against

the dimensionless distance from the center r̃.

As a first test the influence of the dynamical part of the stress tensor as
given by Eq. 7.68 is investigated. For the sake of simplicity and because the
terms involving ω are by orders of magnitude smaller than the remaining
dynamical component of the stress tensor we use

σd = 〈σpd〉 =
1

V

∑

p∈V
wpV V

pρp~vp ⊗ ~vp . (7.77)

This tensor has two contributions: (i) the stress due to velocity fluctu-
ations around the mean and (ii) the stress dσφφ ∼ ρv2

φ due to the mean
mass transport in φ-direction.8 In Fig. 7.11, the dynamic contribution to
the stress tensor is plotted. From the dynamic stress tensor, one obtains
dσφφ >

d σrr >
d σφr; the velocity fluctuations lead to a small stress in all com-

ponents, decreasing exponentially with increasing r. The angular velocity
in the shear zone strongly contributes to dσφφ, however, the dynamic stress
is two orders of magnitude smaller than the static stress, as can be seen by
comparison with Fig. 7.12. Therefore, when referring to the stress tensor,
we only address the static part of the stress tensor and neglect the dynam-
ical influence. In Fig. 7.12, the static contributions of the stress are plotted.
In our system, the diagonal elements of the static stress are almost constant,

8 For better readability we shifted the index d in front of the tensor in order to address
components αβ by subscripts so that the tensor reads dσαβ .
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Fig. 7.12: Components of the static stress σ plotted against the distance from the center
r. The diagonal elements of the static stress are almost constant, whereas the
off-diagonal elements decay proportional to r−2, as indicated by the lines.

whereas the off-diagonal elements decay proportional to r−2, as indicated
by the solid and dashed lines, respectively. This behavior is in complete
agreement with the predictions of a linear elastic continuum theory as out-
lined in the following.

Imposing a steady state situation (∂/∂t = 0) and using the axial symmetry
of the shear cell (∂/∂φ = 0), the divergence of the stress tensor in the 2D
system yields:

~∇ · σ =

[

1

r

∂(rσrr)

∂r
− 1

r
σφφ

]

~er +

[

1

r

∂(rσrφ)

∂r
+

1

r
σφr

]

~eφ , (7.78)

with the unit vectors~er and ~eφ in radial outwards and in tangential direction,
respectively. The indices r and φ denote the corresponding components of
σ. In static equilibrium, both components should vanish independently of
each other, so that one obtains

∂(rσrr)

∂r
= σφφ and

∂(rσrφ)

∂r
= −σφr . (7.79)

If the diagonal and the off-diagonal elements of σ depend on r pairwise in
the same way, the above equations lead to

σrr ∝ σφφ ∝ r0 and σrφ ∝ σφr ∝ r−2 . (7.80)
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This result is consistent with the numerical data presented in Fig. 7.12 as
indicated by the lines.
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(a) The σrr components of the static stress.
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Fig. 7.13: The components of the static stress plotted against the dimensionless distance
from the center r̃ for different initial densities ν̄.

Another question is how the stress depends on the initial packing fraction.
Figure 7.13 shows the σrr and σrφ components for various initial packing
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Fig. 7.14: The trace of the stress tensor tr (σ) versus the dimensionless distance from the
inner ring for various global densities.

fractions. The stress of the diagonal elements of the stress tensor, as well
as the off-diagonal elements increase with increasing initial packing frac-
tion, as shown in Figure 7.13. This behavior is obvious, as more and more
particles should lead to a more “stressed” packing.

As in the section on the fabric tensor we close this section with a look on the
eigen values of the stress tensor. Figure 7.14 shows the trace of the stress
tensor versus the distance from the inner wall for various simulations. The
dependence on r̃ is the same as in Fig. 7.13(a) namely tr (F ) remains con-
stant over the whole shear cell.

The deviatoric fraction decreases while increasing the mean density. Like
the fabric a denser system yields a slightly more isotropic stress tensor than
a dilute system. Figure 7.15 also indicates that the stress is more anisotropic
in the inner part of the shear device and more isotropic in the outer part.

7.3.4 Conclusion

In the literature various approaches can be found on how the macroscopic
stress tensor may be obtained from microscopic discrete variables. Ho-
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wever, non of these approaches derives the complete dynamical stress
tensor as done in this section. The above calculations were performed with
the constrain of rigid disks in a two-dimensional, quasi-static system. The
generalization for the more general case of three-dimensional, possibly non-
spherical, objects with internal degrees of freedom like vibrational modes
remains an open question. While the generalization to 3D spheres seems
straightforward, the consequences of a non-spherical geometry and some
non-rigidity might complicate the integrals too much to allow for a compar-
atively straightforward approach.

7.4 Total Elastic Deformation Gradient

Due to the duality of stress and strain, and the duality of contact forces and
relative displacements, one would expect that the micro-mechanical defini-
tion of the strain tensor is easy to find. Unfortunately this is not the case.

In the literature mainly two ways for deriving an averaged strain in
an assembly of grains exist: First the equivalent continua theories (BAGI

[4]; SATAKE [84]) and second the least square fit theories (LIAO ET AL. [51]).
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In this thesis a least-square-fit theory is considered. We, generally, follow
the approach of LIAO ET AL. [51], but use ~l pc instead of ~lpq.

To obtain a stress-strain relationship a kinematic hypothesis relating dis-
placements and strains is used. The least-square-fit theory is based on the
application of “VOIGT’s hypothesis” assuming that the deformation is uni-
form and that every particle displacement conforms to the corresponding
mean displacement field. Thus the movement of a particle p in an assembly
of grains is in accordance with the mean displacement field. Under a given
strain εij9 the mean field of particle displacement is given by

~up = ε · ~xp . (7.81)

With ~up the displacement and ~xp the position of the center of particle p.

c
p

PSfrag replacements

~∆pc

~l pc

ε

Fig. 7.16: Definition of the quantities used for the description of the displacement.

Now we consider two particles in contact at point c according to Fig. 7.16.
The branch vector connecting the centroid of particle p with the contact
point is denoted ~l pc. Then the expected displacement at contact c, relat-
ive to the force free situation, and due to the mean total elastic displacement
gradient ε, is

~∆pc = ε ·~l pc . (7.82)

With the simple and plausible assumption that particles are relatively rigid
and discontinuities are allowed at inter-particle contacts, the relative dis-
placement ~∆pc represents the discontinuity at the inter-particle contact c.

9 Note that the linear, symmetric strain ε = 1
2 (ε+εT) is not identical to the displacement

gradient, in general.
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However, the VOIGT-hypothesis restricts the movement of the particles and
thus corresponds to an upper-bound solution for the analysis. In our least-
square-fit approach the VOIGT-hypothesis is extended by postulating that
the actual displacement field does not coincide with the mean displacement
field, but fluctuates about it. The difference between the actual (contact)
displacement ~∆pc and the expected displacement is

~χpc = ε ·~l pc − ~∆pc . (7.83)

The actual displacement is directly related to the simulations via ~∆pc = δc~nc

with δc the overlap between the two particles at contact c and ~nc the normal
vector from the center of the particle to the contact.

If one assumes that the mean displacement field best approximates the ac-
tual displacement, one can apply a “least square fit” to the total fluctuation,
represented by the sum of square of ~χpc for all individual contacts C

S =
Cp
∑

c=1

(~χpc)2 =
Cp
∑

c=1

(ε ·~l pc − ~∆pc)2 . (7.84)

Thus minimizing S so that the partial derivatives with respect to the mean
displacement gradient are zero, i.e. ,

∂S

∂ε
!

= 0 (7.85)

leads to
∂S

∂ε
=
Cp
∑

c=1

(ε ·~l pc − ~∆pc) · ∂
∂ε

(ε ·~l pc − ~∆pc) . (7.86)

These four equations for the four components of ε in 2D can be transformed
into a relation for the mean displacement tensor as a function of the contact
displacements and the branch vectors, by assuming that ∂~∆pc/∂ε = ~0,

ε =
1

a2

Cp
∑

c=1

~∆pc~l pc ·A . (7.87)

The tensorA denotes the inverse of the fabric tensorF =
Cp
∑

c=1

~n c~n c as defined

in Sect. 7.2.

By applying the averaging formalism of Chapter 5 on the above derivation
of Eq. 7.87 the equations look as follows:

S =
1

V

∑

p∈V
wpV V

p
Cp
∑

c=1

(~χpc)2 , (7.88)
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2

V

∑

p∈V
wpV V

p
Cp
∑

c=1

(ε ·~l pc − ~∆pc) · ∂
∂ε

(ε ·~l pc − ~∆pc) = 0 , (7.89)

ε̄ =
2πh

V





∑

p∈V
wpV

Cp
∑

c=1

~∆pc~l pc



 ·A . (7.90)

This relates the actual deformations to a “virtual stress-free” reference state
where all contacts start to form, i.e. particles are just touching with δ = 0.
The result is a non-symmetric tensor ε, which is not the strain, instead we
refer to it as the total elastic deformation gradient.

In principle one should distinguish between three different formulations:
First, our “total elastic deformation gradient” ε = f(~∆) which is total in the
sense that ~∆ is relative to the stress free state. Second, the deformation rate
tensor ε̇ = f( ~̇∆) and third, the differential deformation gradient δε = f( ~δ∆).
Because of our chosen force laws, we assume linearity in the sense that
∫

δ~∆ = ~∆. Therefore, we are allowed to use our total elastic deformation
gradient in the same way as the traditional strain (see also Sect. 7.5).

7.4.1 Behavior of the Total Elastic Deformation Gradient

We investigated the strain by looking at the eigenvalues of the strain tensor.
In Fig. 7.17 the volumetric part of the elastic deformation gradient is local-
ized in the shear zone where it is largest. This effect is stronger for lower
global density. It is easier to compress the dilute material closer to the inner
ring due to dilation, as compared to the denser material in the outer part.
For higher global densities the density in the shear zone does not change
that strong as compared with the outer parts, therefore also the volumetric
strain becomes nearly constant.

The deviatoric fraction of ε, as shown in Fig. 7.18, behaves in a similar way.
It is decaying with increasing distance from the center, similar to the devi-
atoric fractions of fabric and stress. From the figure it is also evident, that
the strain, like the fabric and stress, becomes more isotropic with increasing
mean density. However, dev (ε)/ tr (ε) is not much dependent ν̄ in contrast
to dev (F )/ tr (F ).

In Fig. 7.19 we show the orientation of the deformation gradient with re-
spect to the radial outwards direction. The orientation of the major eigen-
vectors is almost constant for different simulations up to a value of about
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Fig. 7.17: The trace of the strain tensor tr ε plotted against the dimensionless distance
from the inner wheel for different global densities.
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Fig. 7.18: The deviatoric fraction of the strain is plotted versus the dimensionless distance
from the inner wheel for different global densities.

10 layers of particles counted from the inner ring. In the region between
10 and 17 layers of particles the peaks in φε are correlated to very small
dev (ε)/ tr (ε) where the orientation is not well defined. In the outermost
part φε decreases as dev (ε)/ tr (ε) increases clearly.
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Fig. 7.19: The figure shows the orientation of the major eigenvector of the strain tensor
with respect to the radial outwards direction.

7.4.2 Conclusion

The derivation of a strain tensor is not that straightforward as for the stress
tensor. In our work we followed the least square fit approach of LIAO ET AL.
and calculated the total elastic deformation gradient. By limiting ourselves
to only describe the elastic behavior of a granulate and because of the used
linear force laws we are allowed to relate the total elastic deformation gradi-
ent to the actual strain tensor. By observation of the volumetric part of the
gradient we demonstrated that it is easier to compress the material in the
more dilute inner part of the shear cell than in the outer part. For the de-
viatoric fraction of the strain a behavior similar to that of the fabric tensor
was found, yet dev (ε)/ tr (ε) does not depend that strongly on the volume
fraction ν than the fabric.

Despite the nice results for the total elastic deformation gradient the ques-
tion of how to compute also plastic strain remains an open question. A for-
mulation incorporating plastic deformations has to take care of the opening
and closing of contacts during the time of observation. An other approach
might be the commutation of the strain rate from two consecutive snapshots
of the simulation. However, we were interested in a definition of the strain
which is capable to compute the strain from one snapshot of the system. A
task which is fulfilled by our definition.
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7.5 Material Properties

In order to use a continuum model to describe a granular material, one
needs to know the coefficients of the constitutive model used. The con-
stitutive model relates the stress to the strain tensor in the simplest linear
elastic approach. The situation is shown in Fig. 7.20 for the linear and the
non-linear case. The plots show the relationship between stress and strain,
starting from the virtual stress free reference frame. In the linear case (left
panel (a)) the ascending slope of σ shows the proportionality between stress
and strain, thus the differential and the total formulation of the relationship
are equivalent. In the non-linear case shown in the right panel of Fig. 7.20,
the stress is not proportional to the strain everywhere. Therefore, the rela-
tionship is locally defined by ∂σ/∂ε instead. However, we restrict ourself to
the linear approach.

δε
δσ σ

ε

σ

εε =0 elastic

(a)

σ
ε

∂ε
∂σ

ε

σ

(b)

Fig. 7.20: Schematic plot of the stress-strain relation in a (a) linear and a (b) non-linear
case. For the linear case the differential and the total formulation are equivalent,
whereas in the non-linear case they are different.

In a simple isotropic theory the stress and the strain tensor are assumed to
be co-linear, which means they share the same orientation.

In Fig. 7.21 the orientations of the fabric, stress and deformation gradient
tensor are plotted against the distance from the inner wheel. In the outer
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Fig. 7.21: Orientation of the tensors F , σ, and ε, plotted against the distance from the
inner ring for three different simulations. Solid symbols are fabric, solid symbols
connected by lines are stress, and open symbols are elastic deformation gradient
data.

part, the deviatoric fraction is usually around 10 per-cent, i.e. so small that
the orientations become too noisy to allow for a proper definition. We find
that all orientation angles φ show the same qualitative behavior, however,
the fabric is tilted more than the stress which, in turn, is tilted more than the
deformation gradient. Thus, the three tensorial quantities examined are not
co-linear. Still, in the following we will examine the bulk stiffness as well as
the shear stiffness of a classical isotropic material model, keeping in mind
that the anisotropy is neglected here.

We first compute mean field expectation values forσ and ε to get a rough es-
timate for the orders of magnitude of the material constants E, the material
stiffness, and G, the granular shear resistance.

With the proposed averaging procedure the stress tensor was computed via

σ =
1

V

∑

p∈V
wpV

Cp
∑

c=1

~f c ⊗~l pc . (7.91)

Replacing ~f c by its mean ~̄f = knδ̄~n c and ~l pc by the mean branch vector ā~n c

one gets
σ̄ = (knδ̄/hπa)F . (7.92)
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Fig. 7.22: Granular stiffness 2πhĒ/kn = tr (σ)/ tr (ε), plotted against tr (F ) for differ-
ent simulations. Every point corresponds to one ring of 150, i.e. ∆r ≈ (1/8)d̃.

For the strain

ε =
2πh

V





∑

p∈V
wpV

Cp
∑

c=1

~∆pc ⊗~lpc


 ·A . (7.93)

similar replacements lead to

ε̄ = (δ̄/a) I , (7.94)

equivalent to
ε̄ = (2πh/kn) σ̄ ·A . (7.95)

The material stiffness, Ē, can be defined as the ratio of the volumetric parts
of stress and strain, so that one obtains from Eq. 7.92 and 7.94

Ē = (kn/2πh) tr (F ) . (7.96)

In Fig. 7.22 the rescaled stiffness of the granulate is plotted against the trace
of the fabric for some simulations. Note that all data collapse almost on
a line, but the mean-field value (solid line) underestimates the simulation
data by a few per-cent. Simulation data for different kn and even data from
simulations with neither bottom- nor tangential friction collapse with the
data for fixed kn and different volume fractions, shown here. The deviations
from the identity curve are closely related to shear, as the two highly blocked
simulations with ν̄ = 0.811 and ν̄ = 0.820 are fitted nicely by the line.
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Fig. 7.23: Scaled granulate shear resistance πhḠ/kn = dev (σ)/dev (ε) plotted against
tr (F ) for various simulations. The symbols refer to the same simulations as in
Fig. 7.22.

In Fig. 7.23 the ratio of the deviatoric parts of stress and strain is plotted
against the trace of the fabric. We did not use the traditional definition of the
shear modulus (KRUYT AND ROTHENBURG [47]), since our tensors are not
co-linear as shown in Fig. 7.21. Like the material stiffness, both quantities
are proportional, for points near or within the shear band. In the outer part
of the shear-cell the particles are strongly inter-locked and thus resist much
more against shear, and therefore Ḡ diverges. For increasing global density,
the critical contact number density also grows, at a critical density.

7.6 Constitutive Law

With the derived material constants we are able to formulate a constitutive
law for sheared 2D granular media which takes also into account the micro-
structure of the assembly. As a starting point it is convenient to decompose
the stress tensor as

2σ = tr (σ)I + ˜φσ dev (σ) (7.97)
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into an isotropic and a deviatoric (trace-free) part with

˜φσ = R

(

1 0
0 −1

)

R−1 (7.98)

being the deviatoric unit tensor rotated by an angle φσ andR = R(φσ). This
equation could be rewritten with p = 1

2
tr (σ) as follows

σ = pI + ˜φσ(dev (σ)/2) , (7.99)

= p
[

I + ˜φσ(dev (σ)/ tr (σ))
]

, (7.100)

= p
[

I + ˜φσ(q)
]

, (7.101)

with the deviatoric fraction q. In order to formulate a constitutive law we
request σ to be a function of the deformations in terms of ε and the local
structure as expressed by F

σ =
!
f(ε,F ) . (7.102)

By introducing the material laws found in the previous section for the iso-
tropic modulus

Ē ≡ tr (σ)

tr (ε)
=

kn

2πh
tr (F ) , (7.103)

and the non-dimensional shear modulus

G∗ =
Ḡ

Ē
≡ dev (σ) tr (ε)

dev (ε) tr (σ)
=

{

kn

πh
tr (F ) ≤ tr (F )div

∞ > tr (F )div (7.104)

we obtain

σ = ε0Ē
[

I +G∗ ˜φε,F (ε1)
]

(7.105)

as final constitutive law. Herein the constants are the isotropic strain

ε0 = tr (ε)/2 , (7.106)

and the deviatoric strain fraction

ε1 = dev (ε)/ tr (ε) . (7.107)
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From Fig. 7.21 we “guess”

˜φσ = ˜φε,F
∼= (φε + φF ) /2 . (7.108)

The value of tr (F )div at which the shear modulus Ḡ starts to diverge as
shown in Fig. 7.23 is plotted in Fig. 7.24 against the global packing fraction
ν̄. The different regimes separated by the dotted lines are the same as in
Fig. 6.5. The functional behavior of tr (F )div is still an open question and
should be subject to further investigations.

Thus due to Eq. 7.102 we finally find

σ = ε0
kn

2πh
tr (F )

[

I +G∗ ˜φε,F (ε1)
]

. (7.109)

This linear isotropic constitutive law relates the stress tensor with the strain
tensor, but also accounts for the internal structure of the granulate by in-
cluding the trace of the fabric and therefore the mean number of contacts
of the granular ensemble. With the shear modulus Ḡ the divergence of the
fabric tensor enters the equations. This term is coupled with the local and
the global density of the system.10 However, a closer examination of this
relationship would be of value.

10 This can easily seen for the limit ε1 = 0 meaning isotropic compression where we
obtain p = kn

2π Cνε0 and in the case of pure deviatoric shear ε0 = 0 where q = G∗(Cν)ε1 is
evidenced.
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7.7 Conclusion

The final goal of the mechanics of granular media is to gain knowledge of
the behavior of granular materials under external loads or under externally
applied deformations. This goal is often tackled via continuum mechan-
ics relating external loads on the material to the resulting displacements by
constitutive relations or vice versa.

In this section after a brief introduction on classical continuum theory we
used our proposed averaging formalism to compute different tensorial
quantities. Continuum theories homogenize the heterogeneous and dis-
crete nature of granular material. However, we are interested also in the
structural properties of the assembly and therefore investigated the fabric
tensor as one possible measure for the degree of anisotropy of the assembly.
The probability distribution to find a contact in a given direction of a particle
shows that near the inner wall there are more contacts in tangential direction
due to ordering influenced by the wall layering. Additionally there exists
an overpopulation of particle contacts in the direction of φ = 60o measured
in the shearing direction because the grains resist against the shear or, with
other words, contacts are opened due to shear in the opposite direction −φ
were an underpopulation is found. Farther away from the shearing wall,
the distribution became more homogeneous. At the outer part it became
again inhomogeneous, this time due to crystallization effects during the ini-
tial compression phase where the grains formed a triangular lattice. The
dynamics in this outer part is slow, therefore this structures survive over
long times.

To compute the macroscopic variables stress and strain, we derived those
quantities from the microscopic variables: forces, contact vectors and con-
tact displacements. For the stress tensor we also took care of the components
related to the dynamics of the granulate. However, these components were
by orders of magnitude smaller than the stresses due to the forces. There-
fore, the dynamical part was neglected in the rest of this section as well as
components related with the rotations of the grains. These components only
appear in the innermost part of the device and are strongly correlated with
the shear zone, thus they might be of interest for further studies.

We predicted the behavior of the stress tensor by continuum theoretical con-
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siderations. These predictions, the diagonal elements of the stress tensor are
constant, whereas the off-diagonal elements related to the shear stress decay
proportionally to 1/r2 when increasing the distance to the inner wall are in
agreement with the simulations. They also explain why the shear band is
always found at the inner wall where the shear stress is largest.

The definition of the strain tensor is a controversial topic of current research.
In this section we derived the total elastic deformation gradient based on a
least square fit approach. Because we use a linear force law and limit ourself
to the description of the elastic behavior of the granulate, we are allowed
to relate this tensor to the actual strain. With the stress and the strain at
hand we computed the granular stiffness E and the shear stiffness G in the
framework of an isotropic elastic material law of Hooke type. Even if the
assumption of an isotropic material is wrong in large parts of the material
we were able to collapse the computed stiffness for various packing frac-
tions on one curve when plotted against the trace of the fabric tensor. This
result is in agreement with mean field considerations. The shear modulus
of different simulations also collapsed on one curve when plotted against
the trace of the fabric for points near or within the shear band. In the outer
part of the shear-cell the particles are strongly inter-locked and thus resist
much more against shear, so that G diverges. For increasing global density,
the critical contact number density also grows. By using this dependence
of the material constants on the local structure (given in terms of the fabric
tensor) we formulated a constitutive law relating the stress tensor with the
deformations and the micro structure of the granulate.



8 Rotational Degrees of Free-
dom

The classical continuum theory introduced in Section 7.1 and used in the
previous chapter, is, according to its name, the currently accepted theory of
continua. Nevertheless, other descriptions exist to incorporate phenomena,
like rotations, not captured by the classical theory.

Granular media are characterized by the discrete nature of their grains.
These grains possess the a priori independent degrees of freedom, rotation
and translation. However, in a continuum approximation of the behavior
of granular media, usually the degree of freedom of rotation is suppressed
or neglected, as already at relatively low stresses, the grains behave more or
less as rigid bodies. The assumption of a continuum whose material points
displace only (BOLTZMANN continuum) leads usually to a rather good ap-
proximation of the behavior of a granular assembly, and is almost always
adopted in soil mechanics. This approach was used in Chapter 7.

However, looking for example at shearing experiments, there is a class of de-
formation patterns, termed localization modes, where the grain rotations as
additional degrees of freedom in the continuum description are paramount
(ASTRØM ET AL. [2]). In our setup we also find this kind of localizations
in the shear zone at the inner wheel, as already reported in Sect. 6 while
comparing the simulations to the physical system.

Because of the evident importance of the rotational degree of freedom, we
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use the theoretical framework of a COSSERAT continuum (COSSERAT AND

COSSERAT [19]; ERINGEN [29]; ZERVOS ET AL. [110]) to extend our con-
tinuum description. In addition to the stress and the displacement gradient
a couple stressM and a curvature κ have to be defined.

In the following section we will briefly introduce the concept of the Cosserat
continuum. Thereafter, we will use our averaging formalism to compute the
quantities used within the Cosserat theory. We further calculate the macro-
scopic quantities the couple stress and the curvature and calculate a new
material property, the torque resistance.

8.1 Cosserat Theory

Continuum theories including non-standard degrees of freedom, are called
generalized continuum theories. In the case of independent rotational de-
grees of freedom one speaks of a COSSERAT continuum. This type was first
described by the COSSERAT brothers (COSSERAT AND COSSERAT [19]) and
later rediscovered by GÜNTHER [37] and SCHAEFER [85]. For a more fun-
damental derivation see also the book of ERINGEN AND KAFADAR [30].
The extensions of the kinematics and the balance laws, as shown in the
following, can be found in detail for example in (BESDO [9]; DE BORST

[25]; EHLERS AND VOLK [28]; MÜHLHAUS ET AL. [72]; STEINMANN

[89]; VOLK [105])

In continuum mechanical terms the “Cosserat continuum” is a continuum of
material points, where each of them is provided with an additional space-
direction.1 So the Cosserat theory of elasticity, additionally to the trans-
lation assumed in the classical theory, incorporates a local rotation of the
points. Analogous to stress and deformation gradient in the classical the-
ory a couple stress (torque per unit area) and a curvature (gradient of the
“rotation” variable) are introduced.

In the following again only a linear theory will be used, but the Cosserat
theory in general is not restricted to that.

1 Because of this orientation, such medias are often referred to as micropolar.
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Fig. 8.1: Definition of the quantities used for the Cosserat approach. ~Ξ and ~ξ are the so
called directors in the reference and the actual configuration, respectively. The
rotation of the joint from particle i to j depends on the movement of the system
and therefore equals the continuum rotation φ̄. Additionally the particles might
rotate freely and thus add an independent rotation φ∗ to the total rotation φ.

Kinematics

Because of the rotations as an additional degree of freedom every material
point in a COSSERAT continuum yields not only a displacement vector ~u but
also a rotation vector φ. In the linear formulation of the theory, considered
here displacements as well as rotations are infinitesimal. The infinitesimal
rotation leads to a rotation vector φ which can be decomposed, according to
Fig. 8.1, into a continuum rotation φ̄ and an independent rotation φ∗

φ = φ̄+ φ∗ . (8.1)

The continuum rotation is related with the displacements via

φ̄ = −1

2
rot ~u . (8.2)

The deformation tensor is now non-symmetric in general

εαβ = ∂αuβ + eαβγφγ , (8.3)

where eαβγ is the permutation tensor. The symmetric part of ε

ε(αβ) =
1

2
(uβ,α + uα,β) = εclassical (8.4)
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equals the classical deformation tensor. The skew symmetric part

ε[αβ] =
1

2
(uβ,α − uα,β) + eαβγφγ = eαβγφ

∗
γ (8.5)

is directly related with the independent rotations of the material points.
Therefore, for vanishing independent rotations the classical theory is re-
stored.

In the micropolar theory an additional quantity the also non-symmetric
curvature is introduced

καβ = ∂αφβ . (8.6)

Balance Equations

In the following a brief outline of the balance equations of the Cosserat con-
tinuum is given. The mass balance equation

∂ρ

∂t
+ div (ρ~v) = 0 (8.7)

and the momentum balance equation

ρ
D

Dt
~v = ρ~k + div σ (8.8)

of the standard continuum (cf . Eq. 7.19) and the Cosserat continuum are
identical.

As a result of the angular momentum balance in the classical theory Eq. 7.28
∫

B
~s∗dV = ~0 (8.9)

and due to the fact, that this equation should hold under all values of B the
stress tensor had to be symmetric ~s∗ = ~0.

In the Cosserat theory every material point has not only translational de-
grees of freedom but an additional orientation. So the angular momentum
balance has to be extended by a volume moment ~m and a surface moment
~µ.2 On the left hand side of the balance equation 7.25 the spin I~ω of every
material point has to be added which finally leads to

D

Dt

∫

B
ρ(~x× ~v + I~ω)dV =

∫

B
(~x× ρ~k + ~m)dV +

∫

∂B
(~x× ~s+ ~µ)dA . (8.10)

2 As an example for a volume moment one may think of a magnetic material in an ex-
ternal magnetic field.
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Fig. 8.2: Components of a two-dimensional Cosserat element. The arrows indicate our
convention for positive values.

Analogous to the CAUCHY definition 7.20 of the stress tensor σ · ~n = ~s the
couple stress tensor M with ~µ = M · ~n is introduced. Applying GAUSS

theorem Eq. 8.10 reads

∫

B
ρ

(

~x× D~v

Dt
+
DI~ω
Dt

)

dV =
∫

B

[

~x× (div σ + ρ~k) + ~s∗ + ~m+ div M
]

dV .

(8.11)
Due to the momentum balance (Eq. 8.8) and by taking into account that the
integral should not depend on the value of B

ρ
DI~ω
Dt

= ~s∗ + ~m+ div M (8.12)

is obtained. In this equation the symmetry of the stress tensor can no longer
be deduced. Though symmetry could be retained if M , ~µ and I~ω were to
form an equilibrated system by themselves. Thus the non-symmetry might
not be of importance in applications where the exchange of momentum
between translational and rotational degrees of freedom is weak.

Constitutive Equations

With the relations of the two previous sections only the constitutive equa-
tions are missing in order to have a closed set of equations for a micro-
polar continuum theory. From the deformation and the curvature tensors
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we claim the existence of an elastic potential

Φ = Φ(ε,κ) (8.13)

and define the stresses as

σαβ =
∂Φ

∂εαβ
, and Mαβ =

∂Φ

∂καβ
. (8.14)

From a theoretical point of view the stress σ in principle could also depend
on κ but this is excluded by our constitutive relation. Likewise, M is as-
sumed to be independent of ε.

In a linear theory the potential energy Φ is a homogeneous function of
second order of εαβ and καβ so

Φ =
1

2

(

∂Φ

∂εαβ
εαβ +

∂Φ

∂καβ
καβ

)

=
1

2
(σαβεαβ +Mαβκαβ) . (8.15)

Besides the geometrical linear theory in the following linearity also applies
for the material law used. For an isotropic material we therefore use a mod-
ified HOOKEs law like the one of Eq. 7.32. A detailed derivation of the ma-
terial law can be found in (DE BORST [25]; VOLK [105]).

σ = 2µεsym + λ(trε)I + 2µcεskew

M = 2µ∗κsym + λ∗(trκ)I + 2µ∗cκskew

(8.16)

As a result of the Cosserat considerations instead of the two Lamé constants
µ and λ in the classical theory there are six Cosserat parameters in general
(µ, λ, µc, µ

∗, λ∗ and µ∗c). According to de Borst (DE BORST [25]) one can sim-
plify the coupling betweenM and κ by assuming direct proportionality

M = 2µc(`
2)κ . (8.17)

Unlike in classical continuum theory with Eq. 8.17 a length scale ` enters the
set of equations. There is a lot of controversy on how this length is related
to the material specific properties like e.g. the grain diameter (MÜHLHAUS

AND VARDOULAKIS [73]; VOLK [105]).
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8.2 Rotational Degree of Freedom in the Simulation

In Sect. 6 we showed the oscillating behavior of the spin of the particles in
a localized shear zone near the inner wall of the shearing device. The spin
density of the particles was defined as:

νω =
1

V

∑

p∈V
wpV V

pω p . (8.18)

The spin considered so far describes the total rotation φ of the particles. Fol-
lowing Eq. 8.1 of the previous section the total rotation can be decomposed
in two parts, a rotation due to the movement of the material as whole in
the given geometry and an excess rotation of the single particles. The first
one, the continuum rotation φ̄, is obtained from the displacement gradient
according to Eq. 8.2. The associated angular velocity is therefore calculated
from the deformation rate tensor ~∇~v.

In our geometry, the deformation rate ~∇~v has only two entries, namely

[~∇~v]rφ =
∂vφ
∂r

and [~∇~v]φr = −vφ
r
, (8.19)

from which one can derive the continuum rotation velocity ω̄:

ω̄ =
1

2

[

∂vφ
∂r

+
vφ
r

]

. (8.20)

In Fig. 8.3 the macroscopic particle spin ω and the continuum rotation ω̄, are
displayed. In the figure both the total particle rotation and the continuum
rotation decay exponentially with increasing r̃, similar to the velocity vφ.
Figure 8.4 shows an oscillation of the excess rotationω∗ near the inner wheel,
from one disk layer to the next. This is due to the fact that the disks in
adjacent layers are able to roll over each other in the shear zone.

In order to obtain the macroscopic quantities of the Cosserat theory from our
simulations our provided averaging formalism has to be applied also for the
couple stress and the curvature. We define these quantities in analogy to the
stress and the strain tensor. Following the derivation of the stress tensor in
Sect. 7.3 the couple stress tensor reads as:

M =
1

V

∑

p∈V
wpV

Cp
∑

c=1

(

~lpc × ~f c
)

⊗~lpc . (8.21)
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Fig. 8.3: Angular velocities ω (solid line) of the particles and of the continuum ω̄ (sym-
bols), plotted against the scaled radial distance r̃. The dotted line is ω̄ as obtained
from the fit to vφ, see subsection 6.3.1.
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Fig. 8.4: The data show the excess rotation ω∗ of the particles for a global packing fraction
ν̄ = 0.809 against the scaled radial distance r̃.

The force in the formulation of the stress tensor is replaced by the torque
exerted by the tangential component of the force acting on the branch vector.
The ‘×’ denotes the vector-product.
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In a two-dimensional system, only the two components Mzr and Mzφ of
the tensor are non-zero. The values of Mzr as a function of r̃ are shown
in Fig. 8.5. Note that M = 0, when the sum of the torques acting on one
particle vanishes in static equilibrium. In our steady state shear situation
M fluctuates around zero, except for a large value in the shear band, close
to the inner wall.
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Fig. 8.5: Plot of the couple stress Mzr/d̃
2 against r̃.

In analogy to εwe define

κ =
πh

V





∑

p∈V
wpV

Cp
∑

c=1

(~lpc × ~∆pc)⊗~lpc


 ·A , (8.22)

where the local contact displacement ~∆pc is replaced by the corresponding
angular vector~lpc×~∆pc. The values of the curvature κzr are plotted in Fig. 8.6
against r̃ with similar qualitative behavior as Mzr. The other components
Mzφ and κzφ lead to no new insights and are omitted here.

Since we are interested in the role the rotational degree of freedom plays for
the constitutive equations, we define the “torque resistance” µc`2 as the ratio
of the magnitudes of the couple stress and the curvature components (see
Eq. 8.17). This quantity describes how strongly the material resists against
applied torques in analogy to Ē and Ḡ. In Fig. 8.7 the torque resistance is
plotted for three simulations with different packing fraction ν̄. In the dilute
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Fig. 8.6: Plot of the curvature κzr/d̃ 2 against r̃.

regions near the inner wheel, where the particles are less dense packed and
are able to rotate more easily because of this dilatancy, µc is smaller than in
the dense outer part, where the particles are interlocked and thus frustrated.
This behavior is consistent with the results for increasing global densities,
i.e. the torque resistance increases with density. Note that the strongest fluc-
tuations are due to the division by small κzr values and have no physical
meaning in our interpretation.

8.3 Conclusion

In shear experiments rotations of the grains play an important role in or-
der to foster the ball bearing behavior of adjacent layers of grains. These
rotations are not taken into account by classical continuum theories. By us-
ing a Cosserat type of continuum theory we extended the previously used
continuum theory by rotational degrees of freedom. The total rotation of the
particles, as measured experimentally can be decomposed into a continuum
rotation and an excess rotation. The continuum rotation can be derived
from the continuum theory by means of the velocity gradient and is in good
agreement with the simulation results. We calculated the curvature and the
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Fig. 8.7: Torque resistance µc`2 = Mzr/κzr plotted against r̃ for various packing frac-
tions.

couple stress tensor which extend the constitutive equations of the classical
continuum theory. The computation of the ratio of the couple stress and
the related curvature lead to a new material parameter which we termed
torque resistance. It depicts how strongly a material responds to small ap-
plied torques. Our results showed that the torque resistance is small in the
shear zone due to a small local density and increases in the outer part where
the particles are frustrated due to the higher densities. A dense material res-
ists to an applied torque stronger than a dilute system.
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9
Frictional Cosserat Model

Shearing experiments of granular material show that the deformation of the
material localizes in narrow zones of a width of a few grain diameters. The
particles in these shear zones also rotate strongly. The behavior of the gran-
ulate in this kind of experiments can not be described properly by classical
continuum mechanical models as in Sect.7.1. Especially the width of the
shear zone can not be calculated with classical approaches.

One approach to model a granulate under shear are models of Cosserat
type. In this kind of models the fields of a classical continuum are sup-
plemented by a couple stress and an intrinsic angular velocity field.

Cosserat plasticity models have been applied to problems in granular flow
earlier (MÜHLHAUS [69]; MÜHLHAUS AND VARDOULAKIS [73]; TEJCH-
MAN AND GUDEHUS [91]; TEJCHMAN AND WU [92, 93]) but the models
in these studies are posed in terms of strain increments as they only address
unsteady flows, and no results are reported for steady flow. Recently MO-
HAN ET AL. [66] presented a rigid-plastic Cosserat model for slow frictional
flow.

The effects of a Cosserat continuum like asymmetric stress tensors or the
deviation of the rotations from the continuum rotations have, to our know-
ledge, not been directly measured in the laboratory so far. Experiments in
this direction would be of value to test the use of a Cosserat continuum as



142 9.1 Mohan’s Model

a description of slow granular flow. However, our simulations enable us
to calculate the necessary quantities involved in a Cosserat type continuum
theory and thus we have the opportunity to compare the simulation results
with the model proposed by Mohan.

9.1 Mohan’s Model

The model of Mohan is based on the concept of a Cosserat continuum.
Therefore, additional to the stress and the deformation rate tensor as mac-
roscopic field variables of a classical continuum model couple stresses and
intrinsic angular velocities are taken into account. The granulate is treated
as a material which deforms plastically. In order to solve the balance equa-
tions of a Cosserat type theory an associated flow rule is used.

In the following the model of MOHAN ET AL. will briefly be summarized.
After the introduction of the basic equations the model will be used to solve
a viscometric flow in a Couette shear device as used in this thesis.

Balance Equations in the Absence of Gravity

The model is based on the balance equations of a Cosserat continuum as
given in Sect. 8.1. The model is developed in the absence of gravity, there-
fore no body forces and volume moments appear in the equations:

∂ρ

∂t
+ div (ρ~v) = 0 , (9.1)

ρ
D~v

Dt
− div σ = 0 , (9.2)

ρ
D(I~ω)

Dt
− div M − ~s∗ = 0 . (9.3)

Where D/Dt is the usual material derivative and ~s∗ is the axial vector of the
stress tensor. In general, the distribution of size, shape, and orientation of
the particles is required to determine the intrinsic inertia tensor I. As the
present work is confined to steady, fully developed flow, the term involving
I in Eq. 9.3 vanishes.
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Constitutive Equations

These balance equations have to be accompanied by constitutive equations
relating the applied stresses and the resulting deformations. In contrast to
the constitutive equations used in Sect. 7.1 and Sect. 8.1 Mohan’s model
treats the material not only as an elastic one but an elasto-plastic material.
Therefore, the material deforms elastically under stress, as long as the stress
is lower than a specific threshold. If the stress exceeds the threshold value,
the material deforms plastically, i.e. in a non reversible way.

Yield Condition

In Sect. 4.2.2 we presented the Coulomb force as the shear force f t acting on
a block sliding on a plane. The shear force f t is proportional to the normal
force fn with µC the friction coefficient being the constant of proportionality.
When the block is at rest f t < µCf

n holds. A continuum analog of this
relation is the yield condition F which relates the shear stresses and the
stresses acting on a block at rest.

In a classical continuum for elastic material the yield condition is of the
form F (σ, ν) < 0, where F is a scalar function of the stress tensor σ and
the volume fraction ν. If F = 0, either plastic or irrecoverable deformation
occurs.

In order to model this behavior different yield conditions are proposed. Mo-
han’s model is based on an extended VON MISES condition which reads as

F = τ(J2)− Y (J1, ν) , (9.4)

where τ is the shear stress depending on J2 the second invariant of the de-
viatoric stress tensor. Y in Eq. 9.4 is the so called yield function, which
depends on J1, the first invariant (i.e. the trace) of σ.

To generalize Eq. 9.4 for a Cosserat continuum, additionally τ has to be a
function of the couple stressM . Following (BESDO [9]; DE BORST [25]) τ is
defined as

τ ≡
(

a1σ
′
αβσ

′
αβ + a2σ

′
αβσ

′
βα +

1

(Ldp)2
MαβMαβ

)1/2

. (9.5)

Here
σ′αβ = σαβ −

1

3
σγγδαβ , (9.6)
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and δαβ resembles the KRONECKER delta. The parameter L determines the
characteristic material length scale, and is perhaps related to the length of
force chains (HOWELL ET AL. [42]), dp is the diameter of the grains and a1

and a2 are material constants. These constants are set to equal

a1 + a2 = 1/2, (9.7)

without loss of generality following MÜHLHAUS AND VARDOULAKIS [73].
In the following

L = 10, A ≡ a2/a1 = 1/3 , (9.8)

are used just because they nicely fitted experimental data for flow down
vertical channels as reported in (MOHAN ET AL. [65]).

In his work DE BORST [25] assumed that the yield function Y depends on
the mean stress σ = σγγ/3 and a hardening parameter which is taken as the
solids fraction ν thus Y = Y (σ, ν) here. When using σc(ν) the mean stress
in the critical state (for details, see JACKSON [45]) and ψ the internal friction
angle the yield condition might be rewritten as

Y = Y1(α)σc(ν) sin(ψ), α = σ/σc (9.9)

In this study the material is assumed to be in a critical state everywhere,
therefore, α = σ/σc is set to 1. Hence, Eq. 9.4 becomes

F = τ − σc(ν) sin(ψ) = 0; σ = σc(ν) (9.10)

when setting Y1(α) equal 1 without loss of generality.

In his model Mohan assumes the stress in the critical state σc(ν) to vanish
when the grains are no longer in sustained contact, and to increase as ν in-
creases. For the sake of simplicity the material is assumed incompressible.
Therefore, σc is taken as constant and treated as a primitive variable and
an explicit expression for σc(ν) is not required. The assumption of an in-
compressible material contradicts the findings in the experiments and the
simulations. However, the conclusion of σc being constant is rectified by the
simulation results shown in Sect. 7.3.3.

Flow Rule

The flow rule relates the deformation rate tensor to the stress tensor. A com-
monly used flow rule in classical frictional models is the plastic potential
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flow rule, which is expressed as

Dαβ ≡
1

2

(

∂vα
∂xβ

+
∂vβ
∂xα

)

= λ′
∂Π

∂σβα
. (9.11)

Here Dαβ is the deformation rate tensor, Π(σ, ν) is a scalar function called
the plastic potential, and λ′ is a scalar factor (LAGRANGE multiplier) which
must be determined as a part of the solution. As detailed information on
the plastic potential Π is usually not available, an associated flow rule1

Π ≡ F = τ − Y , (9.12)

is used. This form for the flow rule, in conjunction with a yield condition
defined by Eqs. 9.4 and 9.10, accounts for density changes accompanying a
deformation. Together, they constitute a rate-independent constitutive rela-
tion, which is a desirable feature for slow granular flows.

The flow rule of Eq. 9.11 has to be extended in order to account for a Cosserat
continuum. Based on the work of TEJCHMAN AND WU [92] and MÜHL-
HAUS [69] the flow rule is written as

D∗ ≡ ~∇~v + e · ~ω = λ′
∂F

∂σT
, W ≡ ~∇~ω = λ′

∂F

∂MT . (9.13)

The deformation rate tensor D∗ is extended by the angular velocities ana-
logous to the deformation tensor ε of Eq.8.3. The second term the angular
velocity tensorW relates the rotation rate with the couple stresses.

Coordinate System

In order to compare the results of Mohan’s model with the results of our
simulations and due to the geometry of the setup cylindrical coordinates
are used. Thus, the velocity field for steady axisymmetric flow is of the
form

vr = 0, vz = 0, vφ = vφ(r) . (9.14)

Because the grains are two-dimensional disks the angular velocity has only
one non-zero component

ωr = ωφ = 0, ωz = ωz(r) . (9.15)
1 In an associated flow rule the vector of the deformation rate is perpendicular to the

flow plane described by the yield condition.
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Finally, as a consequence of the incompressibility the diagonal components
of σ are assumed to be equal and constant

σrr = σφφ = σzz = σc(ν) = const. . (9.16)

In order to compare different sets of data, the variables are rewritten in a
dimensionless form.

ξ =
r −Ri

H
, u =

vφ
v0

, ω =
ωzH

v0

, (9.17)

σ̄c =
σc

ρpgH
, σ̄αβ =

σαβ
ρpgHσ̄c

, m =
1

dpL
√

2(A+ 1)

Mrz

ρpgHσ̄c
, (9.18)

with Ri and v0 are the radius and the velocity of the inner cylinder, respect-
ively. H denotes the width of the shear cell (the Couette gap).

Set of Equations

Using the symmetries of the Couette device on the Yield condition Eq. 9.10
one obtains

(σ̄2
rφ + σ̄2

φr) + 2Aσ̄φrσ̄rφ + 4(A+ 1)2m2 = 2(A+ 1)(σ̄c sin(ψ))2 . (9.19)

This equation is solved for σ̄φr as

σ̄φr = −Aσ̄rφ±
√

((A2 − 1)σ̄2
rφ − 4(A+ 1)2m2 + 2(A+ 1)(σ̄c sin(ψ))2) . (9.20)

With the use of the symmetries of the device and after solving the flow rule
of Eq. 9.13 for the factor λ′/τ one obtains:

du

dξ
− u

(R̄i + ξ)
= −

(

ω +
u

(R̄i + ξ)

)

(A+ 1)(σ̄φr + σ̄rφ)

(σ̄φr + Aσ̄rφ)
, (9.21)

εα
dω

dξ
= −

(

ω +
u

(R̄i + ξ)

)

2(A+ 1)m

(σ̄φr + Aσ̄rφ)
, (9.22)

By applying the dimensionless variables on the balance equations 9.1-9.3
the following set of non dimensional differential equations is obtained:

∂σ̄rφ
∂ξ

+
σ̄rφ + σ̄φr
(R̄i + ξ)

= 0, (9.23)

ε

(

∂m

∂ξ
+

m

(R̄i + ξ)

)

= σ̄rφ − σ̄φr . (9.24)
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Here ε = dp/H is the non-dimensional particle size and R̄i = Ri/H is the
ratio of the radius of the inner cylinder and the Couette gap.

9.2 Comparison

Using the set of differential equations of the previous section, we compare
the theoretical results of the model with those of our molecular dynamic
(MD) simulations of a Couette shear cell. The simulation data fit the ex-
perimental data of HOWELL (HOWELL ET AL. [42]; VEJE ET AL. [102]) very
well as we demonstrated in Sect. 6. Since the simulation and the experiment
are performed in slow flow and assumed to have reached a steady state it is
reasonable to compare the results with the model.

Parameters

In the current study the parameters L = 10 and A = 1/3 of the model were
retained according to the theory of MOHAN ET AL. [65]. The setup of the
Couette shear device was Ri = 0.1032 cm and H = 0.1492 cm, see Sect. 3.
Therefore, R̄i = 0.6916. For the particle diameter we use dp = 0.008 m thus
ε = 0.0536.

In order to solve the differential equations of the model, one has to specify
the boundary conditions of the problem. At the outer wall (ξ = 1) the ve-
locity of the particles is assumed to equal zero u(ξ = 1) = 0 as the particles
are essentially at rest. The Cosserat effect is assumed to have vanished at
the outer boundary so that the stress is symmetric like in the classical con-
tinuum σ̄rφ(ξ = 1) = σ̄φr(ξ = 1).

At the inner cylinder (ξ = 0) the boundary conditions are applied as follows:

σ̄rφ(ξ = 0) = − tan(δ), u(ξ = 0) = u0, and ω(ξ = 0) = Ω0 . (9.25)

The velocity and the angular velocity at the inner shearing wheel have to be
taken from the simulation data.

The internal friction angle ψ was chosen to be equal to 22.6o and for the wall
friction a value of δ = 9.8o was used in order to fit the data to the theory.
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Fig. 9.1: Velocity profile from the simulation and the calculations of the model (solid line).

The value for δ seems to be too small, but because of the roughness of the
wall and due to the fact that only very few particles are in contact with the
wall it could be reasonable.

The resulting Boundary Value Problem was solved with the use of MAT-
LAB 6 [60].

The obtained solutions are quite stable against variation of the boundary
conditions. In particular, even when changing the boundary values the
qualitative behavior inside the shear device stays the same.

Results

The solid line in Fig. 9.1 is the prediction of the model. The value for u0 was
chosen in a way that the velocity of the model matches the simulation data
at the inner ring. At the outer ring the model velocity was forced to drop
to zero, whereas the simulation data saturates on a small, finite noise-level.
Nevertheless, the model fits the simulation data nicely, as can be seen more
clearly in the logarithmic inset of Fig. 9.1. As the data of the simulation
the velocity of the model also decays. However, the simulation data decay
exponentially whereas the model decays even faster.

The other quantity we used to fit the model to the simulation data was the
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Fig. 9.2: Angular velocity from simulation and theory. Instead of the oscillating ω in the
simulations the absolute value of ω is plotted.

angular velocity ω. So Ω0 was obtained from the simulations and put into
the model. To compare the model with the simulation data the wall friction
angle δ in the model was chosen in a way to match ω at the inner wall. As ω
is oscillating in the simulations and this effect is not captured by the model,
we used |ω| to compare to the model. As for the velocity this matching is
enough to derive a qualitatively good agreement with the provided data as
can be seen in Fig. 9.2.

When comparing the off-diagonal elements of the stress tensor qualitative
agreement is found on the first glance. The simulation and the model show
an asymmetric stress tensor at the inner wall decaying when moving away
from the inner wall. The difference between the two stress components also
decreases and fluctuates around zero in the simulations. In the model the
difference does not decrease as strong as in the simulations even if forced
to equal zero at the outer wall. However, the oscillating behavior of the
stress components in the simulations make a quantitative comparison rather
difficult, as the difference between the two stress components depends on
the radial position and fluctuates quite strongly.

As a last quantity we examine the couple stresses m in Fig. 9.4. Here the
model predictions and the results of the simulations show totally different
behavior. The couple stresses in the model increases from the inner wall



150 9.3 Conclusion

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

σ

ξ

σrφ sim

σrφ sim

σrφ theory

σφr theory

Fig. 9.3: Plot of the off diagonal elements of the stress in the simulation and the model.

while moving radial outwards. The couple stress has therefore its maximum
value at the outer part of the system. This is contradicted by the results of
the simulation. In the simulation the couple stress is highest in the shear
zone at the inner wheel and decreases rapidly when moving away from the
inner wall. In the outer part the couple stresses of the simulations fluctuate
around zero. To us this behavior seems reasonable, as in the inner part
the particles are able to rotate and exert stresses onto each other. In the
outer part the particles stay at rest and Cosserat effects should not be visible.
Therefore the couple stresses should also vanish in the outer region.

9.3 Conclusion

In this section we introduced the frictional Cosserat model of MOHAN ET

AL. As there are only experimental data available to verify parts of the
model, our simulations resemble an opportunity to test the whole model.
The comparison between the simulation results and the model predictions
showed good agreement concerning the velocity profiles as well as the an-
gular velocity profiles. The model also predicts the asymmetry of the stress
tensor in a similar way as obtained from the simulations. However, the
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Fig. 9.4: Behavior of the couple stress m in the Mohan model (a) and in the simulations
(b).

couple stress tensor of a Cosserat type theory is predicted in the model in
a different way as in the simulations. While in the simulation this quantity
decays in radial outward direction, it increases in the model and reaches
its maximum at the outer wall. At this point further investigations have to
clarify what the reasons for the wrong behavior of the model are.
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10
Conclusion

The goal of this thesis was to bridge the gap between a microscopic point
of view of granular media where all the particles and the forces acting
between them are considered and a macroscopic description of granular me-
dia where the material can be seen as a continuum. To achieve this goal we
implemented a molecular dynamics simulation of a two-dimensional shear
cell. The design of the shear cell was setup as close as possible to an actual
experiment of that type in Durham (USA) in the group of Prof. R. Behringer.

As a first step a specific averaging formalism for computing macroscopic
variables from the simulation was developed and tested. By using the same
formalism we measured various quantities from the simulations and com-
pared the results with the experiment. Encouraged by the agreement found,
we computed quantities which are not or quite difficult to obtain in the ex-
periment still these quantities lead to a better understanding of the pro-
cesses happening inside the granular assembly. Within the framework of
a continuum mechanics approach tensorial quantities like the stress tensor
and the strain tensor were computed. Additionally we measured the fabric
tensor which is helpful to describe the structure of a material, especially its
degree of anisotropy. The derived field variables were used to compute ma-
terial parameters of the constitutive relations of a continuum theory. At first
we used an elastic Hooke type material law and computed the stiffness and
the shear stiffness. As the rotations of the grains of the material play an im-
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portant role in the behavior of the system especially in the shear zones the
classical continuum theory was extended by the rotational degrees of free-
dom leading to a Cosserat type theory. Within this kind of theory the bal-
ance equations have to be supplemented by equations for the couples and
the curvature. We also computed these quantities and derived the torque
resistance as an additional material parameter. As a last step of this thesis
the results of the simulations were compared to a recently proposed elasto-
plastic Cosserat model. For the model are no experimental data available
yet the simulation provided the possibility to test the model.

10.1 From a Microscopic Point of View. . .

In order to study the formation and the development of shear bands one
has to observe the granular material during a comparatively long time of
shearing. Experimentally this can be done in a Couette shear cell. The two-
dimensional realization of such a device by the group of Prof. R. Behringer
seemed “simple” enough to try to setup a computer simulation which yields
the same results as the experiment. In chapters 3 and 4 we reported the
geometry and the simulation method used in this study.

Even if the experiment is performed with single particles the measurements
taken are averages in time and space. Therefore, one consistent averaging
formalism for arbitrary quantities was developed. The proposed averaging
formalism proved to give reasonable results for ring shaped areas of the
shearing device even if the width of the ring was chosen smaller than an
average particle diameter.

With our averaging formalism we computed the local density, the tangential
velocity and the rotation field inside our shear cell. The question of whether
the numerical simulations are able to reproduce the actual experiment can
clearly be answered positive. Our molecular dynamics simulation showed
good qualitative agreement with the experimental results of the Behringer
group. Partially even quantitative agreement was found despite the simple
interaction force laws used and notwithstanding the many differences in
details of the setup. The remaining discrepancies could be (possibly) ex-
plained by differences that would make the simulations extremely more
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complicated and an arduous task. Examples therefore are a possible tilt
of the particles out of their plane of motion, a possibly wrong modeling of
the bottom friction, and a non-perfect cylindrical inner cylinder. We can see
two ways to get rid of the discrepancies. Either a more realistic simulation
has to be performed, that takes all details into account. This might be too
complex and therefore a non practicable approach. The other way is to think
of an even simpler model experiment that does not leave as much space for
discrepancies. By this experiment one might learn what the important de-
tails in the implementation of a numerical simulation are. Both approaches
should lead to a better understanding of the flow behavior and the shear
band formation of granular media.

10.2 . . . to a Macroscopic Description

The final goal of the mechanics of granular media is to gain knowledge of
the behavior of granular materials under external loads or under externally
applied deformations. This goal is often tackled via continuum mechan-
ics relating external loads on the material to the resulting displacements by
constitutive relations or vice versa. As an essential ingredient for practical
purposes at least a stress-strain relationship should be given as a result of
any more fundamental theory.

As a first step in this direction we used our proposed averaging formal-
ism to compute different tensorial quantities. The heterogeneous and dis-
crete nature of granular materials is homogenized by continuum theories.
However, we are interested also in the fabric tensor which is one possible
measure for the degree of anisotropy of the assembly. The probability dis-
tribution to find a contact in a given direction of a particle shows that near
the inner wall there are more contacts in tangential direction due to order-
ing influenced by the wall. Additionally there exist more particle contacts
in the direction of φ = 60o measured in the shearing direction because the
grains resist against the shear or, with other words, contacts are opened due
to shear in the opposite direction −φ. Farther away from the shearing wall,
the distribution became more homogeneous. At the outer part it became
again inhomogeneous, this time due to crystallization effects during the ini-
tial compression phase where the grains formed a triangular lattice. The
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dynamics in this outer part is slow, therefore this structures survive over
long times.

To compute the macroscopic variables stress and strain, we derived those
quantities from the microscopic variables forces, contact vectors and con-
tact displacement. For the stress tensor we also took care of the components
related to the dynamics of the granulate. However, these components were
by orders of magnitude smaller than the stresses due to the forces. There-
fore, the dynamical part was neglected in the rest of this thesis as well as
components related with the rotations of the grains. These components only
appear in the innermost part of the device and are strongly correlated with
the shear zone, thus they might be of interest for further studies.

The behavior of the stress tensor can be predicted by continuum theoret-
ical considerations. The diagonal elements of the stress tensor are constant,
whereas the off-diagonal elements related to the shear decay proportional
to 1/r2 when increasing the distance to the inner wall. These findings are
in agreement with the simulations and also explain why the shear band is
always found at the inner wall where the shear stress is largest.

The definition of the strain tensor is a controversial topic of current research.
In our thesis we derived the strain based on a least square fit approach. With
the stress and the strain at hand we computed the granular stiffness E and
the shear stiffness G in the framework of an isotropic elastic material law
of Hooke type. Even if the assumption of an isotropic material is wrong in
large parts of the material we were able to collapse the computed stiffness
for various packing fractions on one curve when plotted against the trace
of the fabric tensor. This result is in agreement with mean field consider-
ations. The shear modulus of different simulations also collapsed on one
curve when plotted against the trace of the fabric for points near or within
the shear band. In the outer part of the shear-cell the particles are strongly
inter-locked and thus resist much more against shear, so that G diverges.
For increasing global density, the critical contact number density also grows
and has a proportionality factor of about 1/3.

An interesting feature of shear experiments are the rotations occurring in-
tensified in the shear zone. This rotations foster the rolling of layers of gran-
ulate like a gear. In the classical continuum theory these rotations are not
considered. Therefore, we chose a Cosserat theory as an extension. In this
type of theory not only translatoric degrees of freedom are taken into ac-
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count, but also the rotational ones. The total particle rotation can be decom-
posed into a continuum rotation and an excess rotation. The continuum
rotation can be derived from the continuum theory by means of the anti-
symmetric part of velocity gradient and is in good agreement with the sim-
ulation results.

The constitutive equations of the Cosserat continuum have to be extended
by a relation between the curvature and the couple stresses. From consid-
erations analogous to those of stress and strain, we were able to compute
the curvature and the couple stress. These quantities resemble the core of
a micropolar theory and their derivation and understanding are essential
to compare the internal length of a Cosserat theory with length scales of
other models. A first step in this direction is the computation of the ratio of
the couple stress and the related curvature. This quotient is a new material
parameter we termed as torque resistance the rotational equivalent to the
elastic moduli. It depicts how strongly a material responds to small applied
torques. Our results showed that the torque resistance is small in the shear
zone due to a small local density and increases in the outer part where the
particles are frustrated due to the higher densities. A dense material resists
to an applied torque stronger than a dilute system.

At the end of this thesis the simulation was compared with a recently pro-
posed frictional Cosserat model. By now there are no experimental res-
ults available to verify the model. However, we were able to compute the
necessary kinematic quantities. The comparison showed good agreement
between the predicted and the measured velocity profiles and rotation pro-
files. Also the model predicted the antisymmetric stress tensor qualitatively
correct it failed to describe the couple stress tensor of the Cosserat theory.
While in the simulation this quantity decays in radial outward direction, it
increases in the model and reaches its maximum at the outer wall. At this
point further investigations have to clarify what the reasons for the wrong
behavior of the model are.

10.3 Outlook

Despite the fact that investigations in shear bands and shear zones are sub-
ject to research from various scientific communities, there are still many
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open questions in this field. Some of them have been attacked in this work
but at the same time new questions arose.

A general problem of the study of shear bands is how to measure processes
and quantities deeply inside the media. Computer simulations provide a
tool which opens the possibility to keep track of all forces velocities and
other quantities of every grain. In this thesis we showed that numerical
simulations as the molecular dynamics are able to reproduce an actual ex-
periment. Still, there were difficulties which could be investigated more
closely as the role of tilting of the particles and the effects of friction with
the walls and the bottom plate.

Another subject not addressed in this work was the question of the be-
havior of non-spherical particles. Especially the rotations of the particles
will change significantly. On the one hand a non-spherical shape gives
rise to higher moments acting on the particles, while on the other hand the
particles will inter-lock more strongly, thus reducing rotations.

We also encourage the study of three dimensional systems as in our geo-
metry the only direction for the grains to dilate was the radial outward one.
Whereas in a three dimensional geometry the particles can also move up-
and downwards. The mentioned inter-locking will also increase as it be-
comes more difficult to form the ball bearing shown in the two-dimensional
system. Since recent experiments are available to guide 3D simulations in
that direction.

In order to perform the transition from the microscopic discrete variables
to the macroscopic field variables a homogenization method is needed. We
showed that this could be done with the proposed averaging formalism.
Yet, the question of the proper size for an averaging volume remains con-
troversial. In our geometry due to the possibility of space and time aver-
aging we were able to use rather small areas. However, for a different kind
of system, where one wants to measure quantities only at one time instant
and deduce macroscopic variables out of these data the volume might be
chosen more carefully, possibly much larger.

We have to bear in mind that in continuum theories the role of the structure
of the packing is not taken into account in general. Especially in the presen-
ted definition of the strain tensor the opening and closing of contacts is not
captured at all. Therefore, a definition of the strain which takes into account
the neighborhood of particles seems to be of interest. This kind of exten-
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sions also would possibly be able to capture plastic deformations occurring
in the granular assembly. Furthermore, we think that a theory including the
anisotropy of the granulate might be useful in order to find effective mod-
uli which predict more completely the response of the granular material to
external loads and take into account the anisotropy of the packing.

Concerning the question of the usefulness of a micropolar Cosserat ap-
proach to granular media we showed that there are strong reasons for doing
so. We found localization of tangential displacement as well as of grain rota-
tions accompanied by a density decrease in an interface layer of a few grain
diameters. These phenomena are not predicted by classical continuum the-
ories whereas Cosserat type theories include inherently a length scale en-
abling a prediction of the width of such fault zones. However, the shear
zone in which the couple stresses and curvatures play an important role
are quite small. In order to increase the effect of moments transmitted at the
contacts non-spherical particles seem to be promising. In that case the equa-
tions derived in this study have to include not only the moments resulting
from the contact forces, but the particles might transmit moments directly
at a contact.

Finally, the most difficult question is whether any continuum model will be
able to account for the oscillations of the rotation directions of the layers
of the granulate. We do not know if this information is crucial in correctly
predicting the behavior of the granulate on a larger scale, but on a small
microscopic scale it seems an arduous task and we are not aware of a con-
tinuum description that seems able to describe oscillating rotations and the
rolling of layers.

As the industrial applications of granular media are quite large and cover a
great range of product lines the understanding of the behavior of granular
media is of big importance. In this thesis we focused on the subject of shear-
ing and showed various approaches to predict the behavior of a granulate
in a shear device. We hope that our work will stimulate further investiga-
tions and will be inspiring to the community searching for answers in the
field of granular matter. The path to the final goal of a theory of granular
media might be long but on the other hand it is still very exciting.
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[7] P. Z. Bažant and B. H. Gambarova. Crack shear in concrete: Crack
band microplane model. J. Struct. Engng., 110:2015–2036, 1984.

[8] E. Becker and W. Bürger. Kontinuumsmechanik. B. G. Teubner, Stut-
tgart, 1 edition, 1975.



162

[9] D. Besdo. Ein Beitrag zur nichtlinearen Theorie des Cosserat-Konti-
nuums. Acta Mechanica, 20:105–131, 1974.

[10] L. Bocquet, W. Losert, D. Schalk, T. C. Lubensky, and J. P. Gollub.
Granular shear flow dynamics and forces: Experiments and con-
tinuum theory. Phys. Rev. E, 65:011307, 2002. cond-mat/0012356.

[11] N. Bogdanova-Bontcheva and H. Lippmann. Rotationssymmetrisches
ebenes Fließen eines granularen Modellmaterials. Acta Mechanica, 21:
93–113, 1975.

[12] L. Brendel and S. Dippel. Lasting contacts in molecular dynamics sim-
ulations. In H. J. Herrmann, J.-P. Hovi, and S. Luding, editors, Physics
of Dry Granular Media, page 313, Dordrecht, 1998. Kluwer Academic
Publishers.
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granular assemblies. Géotechnique, 29(1):47–65, 1979.

[24] R. de Borst. Simulation of strain localization: A reappraisal of the
Cosserat continuum. Engng. Comp., 8:317–332, 1991.

[25] R. de Borst. A generalisation of j2-flow theory for polar continua. Com-
put. Methods Appl. Mech. Engrg., 103:347–362, 1993.

[26] F. Dedecker, M. Chaze, P. Dubujet, and B. Cambou. Specific features of
strain in granular materials. Mech. Coh.-Fric. Mat., 5(3):174–193, 2000.

[27] T. G. Drake. Structural features in granular flows. J. of Geophysical
Research, 95(B6):8681–8696, 1990.

[28] W. Ehlers and W. Volk. Cosserat-Theorie für gesättigte poröse Fest-
körper. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM),
77(Supplement 1):83–84, 1997.

[29] A. C. Eringen. Theory of micropolar elasticity. In H. Liebowitz, editor,
Fracture, volume 2, pages 621–729. Academic Press, New York and
London, 1968.

[30] A. C. Eringen and C. B. Kafadar. Polar field theories. In A. C. Eringen,
editor, Continuum Mechanics, volume VI, pages 1–73. Academic Press,
1976.

[31] Z. Farkas, G. Bartels, T. Unger, and D. E. Wolf. Frictional coupling
between sliding and spinning motion. cond-mat/0210024, 2002.



164

[32] S. F. Foerster, M. Y. Louge, H. Chang, and K. Allia. Measurements of
the collision properties of small spheres. Phys. Fluids, 6(3):1108–1115,
1994.

[33] J. Geng, D. Howell, E. Longhi, R. P. Behringer, G. Reydellet, L. Vanel,
E. Clément, and S. Luding. Footprints in sand: The response of a
granular material to local perturbations. Phys. Rev. Lett., 87:035506,
2001.
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milieux continus. J. Mécanique, 12:236–274, 1973.

[35] J. D. Goddard. Continuum modeling of granular assemblies. In H. J.
Herrmann, J.-P. Hovi, and S. Luding, editors, Physics of Dry Granular
Media, pages 1–24, Dordrecht, 1998. Kluwer Academic Publishers.

[36] I. Goldhirsch. Note on the definition of stress for discrete systems.
preprint, 1999.

[37] W. Günther. Zur Statik und Kinematik des Cosseratschen Kontinuums,
volume 10, pages 195–213. 1958.

[38] J. P. Hansen and I. R. McDonald. Theory of simple liquids. Academic
Press Limited, London, 1986.

[39] H. J. Herrmann. Die wunderbare Welt der Schüttgüter. Physikalische
Blätter, 51(11):1083, 1995.

[40] H. J. Herrmann and S. Luding. Modeling granular media with the
computer. Continuum Mechanics and Thermodynamics, 10:189–231,
1998.
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[69] H.-B. Mühlhaus. Application of Cosserat theory in numerical solution
of limit load problems. Ing. Arch., 59:124–137, 1989.
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