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SUMMARY

Segregation in dense granuar flows occurs due to particles having different properties,
with particle size and density playing a dominant role among others such as shape and
surface roughness. A good understanding of segregation of realistic materials is required
to avoid costly unnecessarily long or re-mixing operations in industrial plants and to
predict the evolution of natural hazards like avalanches and pyroclastic flows.

Segregation in sheared granular flows is normally described in terms of kinetic siev-
ing, where the larger particles act as a sieve for smaller particles, and squeeze expulsion,
where larger particles are squeezed out of their layer in the opposite direction of the
smaller particles. The aim of this research is to better understand the micro-mechanical
origins of segregation by numerical simulations and to develop models that can qualita-
tively predict segregation. The considered system is a monodisperse flow with a single
large intruder, effectively removing kinetic sieving, but keeping squeeze expulsion.

First, the analogy to a single particle in a standard Newtonian fluid is taken by con-
sidering a model of buoyancy, drag and lift forces. Two remarkable discoveries are: (i)
an upstream velocity is measured which is correlated to the lift force and (ii) the gran-
ular buoyancy force being different to Archimedes’ law. Further investigations into the
buoyancy force show that the difference stems from a lack of scale separation between
the bulk particles and the intruder. For increasing intruder size, the number of contacts
per intruder surface area reduces, effectively reducing the buoyancy force. This contact
mechanism is captured accurately by a Voronoi volume correction to Archimedes’ law.

The second approach is to visualise the mechanisms of segregation by analysing how
the intruder size, density and friction affects the granular flow. This is done by convert-
ing the discrete particle simulation data into smooth conservative continuum (density,
velocity, stress) fields with a technique called coarse graining. These fields show that a
large intruder does not fit inside a layer of bulk particles leading to an anisotropic stress
field. This observation has inspired new scalings for the lift force on an intruder, pro-
portional to the shear rate and viscosity gradient of the bulk flow. Simulations for many
different flows have been performed to confirm this hypothesis.

The segregation strength of an intruder depends on the granular flow. Hence, sim-
ulations of granular flows with continuum methods are performed. A generalised µ(I )-
rheology in a split-bottom shear cell setup has been simulated, with a new correction for
low inertial values. Results show improvement compared to the classical µ(I )-rheology,
however further corrections are recommended.

The fundamental mechanisms discovered in this thesis have improved the under-
standing of individual particles in granular flows, which can be used to develop more
accurate continuum models for segregation. The developed micro-based force model
can be used as starting point to develop more sophisticated models that could aid in
the engineering of granular materials by balancing size with density and other realistic
particle properties with the goal of reducing segregation.

ix





SAMENVATTING

Segregatie in granulaire stromingen met hoge dichtheid vindt plaats als gevolg van de
verschillende eigenschappen van de granulaire deeltjes. Hierbij spelen de grootte en
dichtheid een dominante rol, maar ook o.a. de vorm en oppervlakteruwheid hebben in-
vloed. Een goed begrip van segregatie is belangrijk in de industrie om het onnodig of
opnieuw mengen van granulaire materialen te voorkomen, ter reductie van kosten en
energie. Verder speelt het een belangrijke rol bij het voorspellen van natuurlijke gevaren
zoals lawines en pyroclastische stromen.

Normaal wordt segregatie in dichte, granulaire stroming beschreven door kinetic sie-
ving, waarbij de grotere deeltjes fungeren als een zeef voor kleinere deeltjes, en squeeze
explusion, waarbij grotere deeltjes uit hun laag worden gedrukt, in tegenovergestelde
richting van de kleinere deeltjes. Het doel van dit onderzoek is om de micromechanische
oorsprong van segregatie beter te begrijpen met behulp van numerieke simulaties en om
een model te ontwikkelen dat segregatie kwalitatief kan voorspellen. Het bestudeerde
systeem bestaat uit identieke deeltjes met een enkel groter deeltje. Hierdoor wordt ef-
fectief kinetic sieving verwijderd, maar wordt squeeze expulsion behouden.

In een eerste benadering wordt de analogie genomen met een deeltje in een stan-
daard Newtoniaanse vloeistof door een model te beschouwen met een drijf-, weerstand-
en liftkracht. Twee opmerkelijke ontdekkingen zijn: (i) een stroomopwaartse snelheid
wordt gemeten die verband houdt met de liftkracht en (ii) de drijfkracht verschilt met
de wet van Archimedes. Nader onderzoek naar de drijfkracht toont aan dat het verschil
komt doordat de omvang van de stromingsdeeltjes en het grote deeltje van gelijke schaal
is. Het aantal contacten per oppervlak van het grote deeltje neemt af naarmate het grote
deeltje groter wordt, hierdoor vermindert de drijfkracht. Dit mechanisme kan nauwkeu-
rig worden beschreven door een Voronoi-volumecorrectie toe te passen op de wet van
Archimedes.

De tweede benadering is om segregatie zichtbaar te maken door te visualiseren hoe
de grootte, dichtheid en wrijving van het grote deeltje de granulaire stroom beïnvloedt.
Dit wordt gedaan door de discrete simulatiedata van deeltjes om te zetten in conserva-
tieve continuumvelden (dichtheid, snelheid, spanning) met een techniek die coarse grai-
ning wordt genoemd. Deze velden laten zien dat een groot deeltje niet in een laag van
stromingsdeeltjes past, waardoor een anisotroop spanningsveld ontstaat. Deze waarne-
ming heeft tot een nieuwe schaling geleid voor de liftkracht op het grote deeltje, welke
evenredig is met de afschuifsnelheid en de gradient inviscositeit van de granulaire stro-
ming. Simulaties voor veel verschillende stromen zijn geanalyseerd om deze hypothese
te bevestigen.

De sterkte van segregatie van een groot deeltje hangt af van de granulaire stroming.
Vandaar dat simulaties van granulaire stromingen met continuummethoden worden
uitgevoerd. Een gegeneraliseerde µ(I )-reologie is gesimuleerd in een ronde afschuifop-
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stelling met een gespleten bodem. De resultaten laten een verbetering zien in vergelij-
king met de klassieke µ(I )-reologie, maar verdere correcties worden aanbevolen.

De nieuw ontdekte mechanismen die in dit proefschrift zijn beschreven, hebben het
begrip van individuele deeltjes in granulaire stromingen verbeterd. Deze inzichten kun-
nen worden gebruikt om meer accurate continuummodellen voor segregatie te ontwik-
kelen. Verder kan het ontwikkelde krachtenmodel worden gebruikt als uitgangspunt
voor het ontwikkelen van meer geavanceerde modellen. Deze modellen kunnen hel-
pen bij het ontwerpen van granulaire materialen met gereduceerde segregatie, door de
grootte van deeltjes te balanceren met dichtheid en andere realistische eigenschappen.



1
INTRODUCTION

1.1. GRANULAR MATERIALS
Granular materials can be defined as a collection of discrete particles dissipatively inter-
acting with each other. This is a very general definition and therefore many examples of
granular materials exist such as coffee powder, snow, coal, sand and even the asteroid
belts in the solar system.

When undisturbed, granular materials show solid-like behaviour (e.g. a pile of sand).
However, when agitated, the material exhibits fluid-like behaviour. The individual par-
ticles start to rearrange themselves in a flow-like movement, commonly referred to as a
granular flow. These flows can be categorised into two types, a granular liquid and gran-
ular gas. In granular liquids the individual particles are packed closely together and they
are therefore commonly referred to as dense granular flows. An example of such flow can
be observed when pouring coffee powder. An example of a granular gas is a dust storm,
where there is quite some distance between the particles.

The properties of the individual particles ultimately determine how the granular ma-
terial behaves on a large (industrial) scale. The individual particles in a granular mate-
rial can be described by properties such as size, shape, density or surface roughness,
amongst others. Often granular materials consist of distinctly different particles. As an
example see Fig. 1.1(a), where the granular material consists of two different sizes of par-
ticles: large pebbles and small sand grains.

Dense granular flows of such bidisperse materials show a peculiar phenomenon
called segregation. An experimental observation of segregation is shown in Fig. 1.1(b) [1].
Here an initially homogeneously mixed material flows down an incline. The mixture
consists of two differently sized particle types: large particles (red) and small particles
(white). As these particles flow down the incline they segregate into a large particle phase
on top and a small particle phase on the bottom. In this particular case segregation oc-
curs due to a difference in size, however a difference in density or other properties can
induce segregation too.

Granular materials are widely used in many industries such as the agricultural, phar-
maceutical, food and mining industry. Knowing how to efficiently handle granular ma-

1
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Figure 1.1: a) A typical granular material found in nature, containing dissimilar grains. This specific example
consist of fine sand and small stones. b) An experimental setup of a granular material flowing down an incline.
At the top-left the material is homogeneously mixed, containing large (red) and small (white) particles. The
material starts flowing due to gravity and segregates into a large particle phase on top and a small particle
phase at the base. The image on the right is reproduced from [1].

terials is therefore important if one aims at reducing operation costs and energy con-
sumption.

An important goal in industry is to create homogeneous mixtures of different types
of granular materials, such as spice mixes in the food industry, or medicinal powder
in the pharmaceutical industry. Homogeneous mixtures could be created by agitating
the granular material such that it starts to flow, rearranging the individual particle posi-
tions in a process generally called mixing, however, segregation counteracts this. When
a material is homogeneously mixed, it is important to keep it mixed during transport.
However, during transport often segregation occurs and costly re-mixing operations are
frequently required. A thorough understanding of this phenomenon could lead to a re-
duction of segregation in granular materials, yielding more efficient industrial plants.

1.1.1. SEGREGATION

A number of segregation mechanisms have been proposed for dense sheared granular
media [2, 3]. One important mechanism is the percolation of small particles, driven by
gravity. Two regimes can be identified, spontaneous percolation [4] and kinetic sieving
as defined in [5]. Spontaneous percolation occurs when a particle is so small that it can
fall through the matrix of large particles without resistance. Kinetic sieving requires a
sheared flow for the small particle to percolate; the flow dilates due to shear, creating
space for particles to percolate. Statistically, small particles have a higher chance to per-
colate compared to large particles. Another segregation mechanism is squeeze expulsion,
where a particle is pushed out of its current layer [5]. The combination of kinetic sieving
and squeeze expulsion is termed gravity-driven segregation [3, 6]. A different descrip-
tion is based on the granular temperature [7, 8]. Small and large particles are attracted
to regions of low granular temperature. However, small particles are typically more ki-
netic and arrive first in these regions [9]. An alternative segregation description has been
given by extending kinetic theory to dense granular flows [10, 11].
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Although these mechanisms give phenomenological explanations of why segrega-
tion occurs, quantifying segregation remains a challenge. In order to possibly unify all
these theories it is important - as a starting point - to understand the microscopic details
of the extreme limit case of a single particle in dense granular flows.

This has led to research on the drag and lift forces on single particles in dense gran-
ular flows. The lift forces on a single intruder particle of varying size in a 2D shear flow
have been investigated in Ref. [12]. To refrain the particle from moving away it was at-
tached to a spring. The authors proposed two competing segregation mechanisms that
depend on the gradient of shear stress and the gradient of the pressure, respectively. In-
vestigation of a drag force due to density segregation in a 3D chute flow was performed
in Ref. [13]. The observed drag force is similar to the Stokesian drag force measured in
classical fluids, although the drag coefficient changes with the chute angle [14]. These
and other investigations [15–18] highlight significant details of the fundamentals of seg-
regation, but a complete description is still missing.

1.1.2. RESEARCH METHODS

Experimental investigations into the fundamental mechanisms of segregation are ham-
pered by two important limitations. Firstly, most granular materials are opaque and
therefore it is not possible to look inside the material, even if the individual particles are
transparent. Standard cameras are therefore limited to tracking the particles at transpar-
ent walls or surfaces (e.g. see Fig. 1.1(b)).

Experimental techniques have been developed that can overcome this limitation.
Refractive Index-Matched Scanning (RIMS) is a technique that can accurately capture
the internal structure of transparent granular materials [19]. Particle position and ve-
locity can be measured in a 2D intersection of the experiment, while only the position
can be measured when investigating a volume due to slow scanning time [20]. Positron
emission particle tracking (PEPT) is a technique that radioactively labels a single parti-
cle [21], enabling high resolution position and velocity tracking. Only recently an X-ray
technique has been developed that is capable of determining the flow profile of rapidly
flowing steady state systems and potentially transient systems [22].

A second experimental limitation is the lack of measurement of inter-particle forces.
One method to observe the stresses between particles is by using particles of photo-
elastic material [23]. This material changes optical properties when elastically deformed,
enabling a visual measurement of stress. Thus far this method can only be applied to 2D
systems and no success in 3D has been reported.

Segregation in granular material is an interplay between particle velocities and con-
tact forces, and therefore both need to be studied simultaneously. Measuring the combi-
nation of both contact forces and flow profile in an experiment is very challenging, if not
impossible. As an alternative, computer simulations can be used to investigate segre-
gation, since discrete simulation methods track the position, velocity and forces of each
individual particle.

There are a number of discrete simulation methods used for granular matter. Event-
Driven simulations solve the motions of particles and predict when collisions occur. The
collisions between particles are solved instantaneously and time is forwarded to the next
collisional event [24]. The method is well-suited for dilute to moderately dense flows
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and hard spheres. Another method is the non-smooth Contact Dynamics method [25]
which is based on two conditions, (i) particles can not penetrate each other and (ii) a dis-
continuous Coulomb friction law describes the tangential forces. An alternative is the
Discrete Particle Method (DPM) [26] which relaxes the non-penetration and disconti-
nous Coulomb constraints, allowing overlaps. These overlaps are then related to contact
forces through contact laws. The relaxation of the non-penetration constraint enables
extra freedom allowing many different (complex) contact laws and is relatively easy to
implement. It is therefore a widely used simulation method for granular materials.

In DPM, the motion of every particle p is described by Newton’s second law,

F p = mp ap , (1.1)

where F p is the total force on particle p, mp is the mass of the particle and ap is the
acceleration. Numerical integration of the acceleration yields the velocity and positions
of particles. The forces on the particle consists of body forces such as the gravity force,
but also on the contact forces between neighbouring particles. These contact forces are
modelled by contact laws and are crucially important in a DPM simulation. The chal-
lenge is to adopt a contact law that captures most of the contact physics, yet remains
simple for fast computations.

Often the contact force is decomposed in a normal and a tangential contact compo-
nent. For dry, non-cohesive materials a physically accurate contact law takes the contact
theory of Hertz [27] for the forces in the normal direction and the theory of Mindlin [28]
for forces in the tangential direction, also known as the Hertz-Mindlin contact model.
This law has a non-linear dependence on the overlap between particles with a history de-
pendent tangential contact stiffness. A more simple and computationally less demand-
ing contact law is the linear viscoelastic contact law developed originally in Ref. [26].
The normal contact forces are modeled by a spring-dashpot system. Here the elastic
deformation of the contact is modeled by a linear elastic spring and the dashpot intro-
duces dissipation proportional to the velocity. The tangential force model is similar to
the normal contact force model, with the addition of a slider allowing Coulomb friction.
Comparison between the Hertz-Mindlin contact law and the simplified linear contact
law shows that the latter is surprisingly accurate for granular flows [29, 30]. As a result
of the simplicity and accuracy of the linear contact law, it is the most commonly used
contact law in DPM simulations. More complicated contact laws have introduced dry
particle cohesion [31] and liquid bridges [32], see also references therein, but are not
subject of this thesis.

Due to its simplicity, DPM methods are widely used in granular research. It is used to
investigate granular phenomena in more detail than experiments and to develop mod-
els that predict the behaviour of granular materials. It is important to stress that these
models should always be validated by experiments, using realistic granular materials.

1.2. GOALS AND QUESTIONS
The aim of this research is to fundamentally understand segregation of a single intruding
particle with different size, density and friction, compared to the granular flow particles.
This is done by developing a force model that captures its behaviour. The behaviour
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of the intruder is studied using DPM simulations and the force model to describe this
behaviour is based on analogies with a particle in a normal fluid. The first four questions
are related to testing these analogies, while the fifth question is related to continuum
models for the base-granular flow without intruder.

• Q1 Does the intruder experience a lag velocity in flow-direction and is it related to
a lift force on the intruder?

A correlation between a particle lag and a lift force is sought by drawing an analogy with
lift forces observed in classical fluid dynamics. By performing DPM simulations in a
steady state flow down an incline, long time-averaged force and velocity statistics are
obtained. The intruder particle is attached to a virtual spring to prevent it from moving
upward and enabling lift force measurements.

• Q2 What is the buoyancy force on an intruder particle?

The classical buoyancy force on an intruder in a fluid is proportional to the fluid volume
displaced by the intruder. A Voronoi volume approach allows for a geometrical interpre-
tation of the displaced volume, but only if the intruder and bulk particle size are iden-
tical. For larger intruders it is not clear how to define the displaced volume due to the
void spaces between particles. By analysing the force distribution and contact structure
around the intruder a more complete theory is developed and validated.

• Q3 What is the effect of the intruder size, density and friction on the granular flow?

As the intruder changes properties, the flow does not only have an effect the intruder, but
the intruder also affects the flow. Visualising this is done by converting discrete particle
data into continuum fields, yielding high resolution density, velocity and stress fields
around the intruder. These fields shed new light on the various segregation mechanisms.

• Q4 Can the segregation force on an intruder be captured by a force model?

Answering this research question is done by combining all observations and insights
from Q1, Q2 and Q3 and validating this for different granular flow situations.

• Q5 Can a continuum model using a generalised µ(I )− rheology simulate granular
materials in a split-bottom ring shear cell?

The segregation strength of an intruder depends on the granular flow around the in-
truder. Obtaining such granular flows efficiently could be done with continuum simula-
tion methods, if the correct rheology is known and used. Here a newly developed gen-
eralised µ(I )-rheology [33] is investigated in a split-bottom ring shear cell to investigate
the base flow without intruder.
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1.3. DISSERTATION OVERVIEW
The outline of this thesis follows the research questions. In Chapter 2 Q1 is addressed
and answered, resulting in a preliminary force model of the intruder particle. Two impor-
tant aspects of this model are a buoyancy force model and a lift force model. The buoy-
ancy force depends on size and is further investigated in Chapter 3, answering question
Q2. In Chapter 4 the effect of the intruder on the granular flow is visualised, answer-
ing Q3 and in Chapter 5 the force model is finalised by uncovering a general segregation
mechanism for the lift force, answering Q4. In Chapter 6 a recently proposed granular
rheology is tested in a split-bottom ring shear cell, addressing Q5. Conclusions and out-
look of this thesis are discussed in Chapter 7. Additionally, in Appendix C an algorithm
is presented for highly parallelised DPM simulations.

REFERENCES
[1] A. R. Thornton, A Study of Segregation in Granular Gravity Driven Free Surface

Flows, Ph.D. thesis, The University of Manchester (2005).

[2] J. J. McCarthy, Turning the corner in segregation, Powder Technology 192, 137
(2009).

[3] J. M. N. T. Gray, Particle segregation in dense granular flows, Annual Review of Fluid
Mechanics 50, 407 (2018).

[4] A. M. Scott and J. Bridgwater, Interparticle percolation: A fundamental solids mixing
mechanism, Industrial & Engineering Chemistry Fundamentals 14, 22 (1975).

[5] S. Savage and C. Lun, Particle size segregation in inclined chute flow of dry cohesion-
less granular solids, Journal of Fluid Mechanics 189, 311 (1988).

[6] J. M. N. T. Gray and A. R. Thornton, A theory for particle size segregation in shallow
granular free-surface flows, in Proceedings of the Royal Society of London A: Math-
ematical, Physical and Engineering Sciences, Vol. 461 (The Royal Society, 2005) pp.
1447–1473.

[7] Y. Fan and K. M. Hill, Phase transitions in shear-induced segregation of granular ma-
terials, Physical Review Letters 106, 218301 (2011).

[8] Y. Fan and K. M. Hill, Theory for shear-induced segregation of dense granular mix-
tures, New Journal of Physics 13, 095009 (2011).

[9] D. R. Tunuguntla, T. Weinhart, and A. R. Thornton, Comparing and contrasting size-
based particle segregation models, Computational Particle Mechanics 4, 387 (2017).

[10] M. Larcher and J. T. Jenkins, The evolution of segregation in dense inclined flows of
binary mixtures of spheres, Journal of Fluid Mechanics 782, 405–429 (2015).

[11] M. Larcher and J. T. Jenkins, Segregation and mixture profiles in dense, inclined flows
of two types of spheres, Physics of Fluids 25, 113301 (2013).

http://stacks.iop.org/1367-2630/13/i=9/a=095009


REFERENCES

1

7

[12] F. Guillard, Y. Forterre, and O. Pouliquen, Scaling laws for segregation forces in dense
sheared granular flows, Journal of Fluid Mechanics 807 (2016).

[13] A. Tripathi and D. V. Khakhar, Numerical simulation of the sedimentation of a sphere
in a sheared granular fluid: a granular stokes experiment, Physical Review Letters
107, 108001 (2011).

[14] A. Tripathi and D. V. Khakhar, Density difference-driven segregation in a dense gran-
ular flow, Journal of Fluid Mechanics 717, 643–669 (2013).

[15] S. Liu and J. J. McCarthy, Transport analogy for segregation and granular rheology,
Physical Review E 96, 020901 (2017).

[16] L. Staron, Rising dynamics and lift effect in dense segregating granular flows, Physics
of Fluids 30, 123303 (2018).

[17] L. Jing, C. Kwok, and Y. Leung, Micromechanical origin of particle size segregation,
Physical Review Letters 118, 118001 (2017).

[18] N. Thomas and U. D’ortona, Evidence of reverse and intermediate size segregation
in dry granular flows down a rough incline, Physical Review E 97, 022903 (2018).
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2
SEGREGATION OF LARGE PARTICLES

IN DENSE GRANULAR FLOWS

SUGGESTS A GRANULAR SAFFMAN

EFFECT

We report on the scaling between the lift force and the velocity lag experienced by a single
particle of different size in a monodisperse dense granular chute flow. The similarity of
this scaling to the Saffman lift force in (micro) fluids, suggests an inertial origin for the
lift force responsible for segregation of (isolated, large) intruders in dense granular flows.
We also observe an anisotropic pressure field surrounding the particle, which potentially
lies at the origin of the velocity lag. These findings are relevant for modelling and theo-
retical predictions of particle-size segregation. At the same time, the suggested interplay
between polydispersity and inertial effects in dense granular flows with stress- and strain-
gradients, implies striking new parallels between fluids, suspensions and granular flows
with wide application perspectives.

2.1. INTRODUCTION
Size-polydispersity is intrinsic to non-equilibrium systems like granular materials [2].
It gives them the ability to size-segregate when agitated, a process which spatially sepa-
rates different sized grains [3–8], but is different from phase separation in classical fluids.
Particle-size segregation in dense granular flows [9, 10] has been intensively studied [e.g.
11–26], but a fundamental question remains unanswered: why do large particles segre-
gate?

This chapter has been published in Physical Review Fluids 3, (2018) [1]. Kasper van der Vaart and Marnix P.
van Schrojenstein Lantman have contributed equally to this study.
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It is generally understood that in dense granular flows both small and large particles
are pushed away from high shear regions [12, 13] or pulled by gravity [14, 15]. The reason
for the separation of large and small particles is that small particles are more mobile and
are therefore more effectively pulled or pushed. They can carry proportionally more of
the kinetic energy [17–20], and are statistically more likely to move into gaps between
larger particles. This process is referred to as kinetic sieving [14, 15]. However, when
the large-particle concentration (volume fraction) is very low and there are no gaps for
small particles to move in to, arguably the concept of kinetic sieving breaks down. Thus
a qualitative—let alone a quantitative—understanding of size-segregation in this regime
is lacking.

Current models for size-segregation in dense granular flows perform well when the
small and large-particle concentrations (volume fractions) are nearly equal [13, 27–30].
When accounting for the effect of size-segregation asymmetry [31, 32], models have been
extended to more unequal concentrations, but they remain inaccurate in the limit of low
large-particle concentrations. Extending models to this limit is critical because during
segregation, and even after reaching a steady state, regions of low large-particle concen-
tration occur and can persist throughout the flow [24, 26, 31]. Moreover, current mod-
els are either completely or partly phenomenological. Thus, to advance modelling, we
should aim to understand the physical origin of size-segregation allowing us to derive
the free state-variables from their microscopic quantities. An important related issue
is that current constitutive models for dense granular flows only work with an average
particle size [33, 34]. If we are to implement size-distributions in these models a better
understanding of micro-scale effects between large and small particles seems crucial.

In contrast to particle-size segregation, particle migration in suspensions, in the limit
of low concentrations, is generally well understood [e.g. 35, 36]. Arguably this progress
has been aided by the fact that the fluid forces acting on a particle can be calculated,
which can not be said for granular media. This inspired us to treat the particles that
surround an intruder as a continuum and attempt to understand the forces acting on a
segregating particle based on the measured continuum fields.

Recently, Guillard et al. [37] measured for the first time the segregation lift force on a
single large intruder particle in a mono-disperse granular flow by attaching the intruder
to a virtual spring perpendicular to the plane (see Fig. 2.1). They found scaling laws that
linked the total upward force or net contact force on the intruder to shear and pressure
gradients. These scaling laws predict the direction of segregation of large particles in
different flow configurations depending on whether a shear or pressure gradient has the
strongest contribution. However, they do not shed any light on the origin of the lift force.

In this study we present new physical insights into the origin of the segregation lift
force on large intruders in three-dimensional mono-disperse dense granular flows. We
do so, firstly, by taking a different approach to Guillard et al. [37] and determine the lift
force FL by decomposing the net contact force on an intruder as Fc = FL+Fb , where Fb is
a generalised buoyancy force for dense granular media that accounts for the local geom-
etry around an intruder. This novel approach is inspired by our finding of an anisotropic
pressure field that surrounds the intruder and grows with its size. Secondly, we report on
a velocity lag of the intruder relative to the bulk flow and demonstrate a scaling between
this velocity lag and the lift force. The similarity of this scaling to the known Saffman lift
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Figure 2.1: Schematic of the simulations: 3D mono-disperse granular flow down an incline, with angle θ = 22◦.
Only base (white) and surface (blue) particles are shown, as well as three bulk particles. The flow contains
three intruder particles that are held with springs around three different z-positions z0 (intruder positions in
the schematic are to scale), but move freely in the x-y plane.

force in fluids and the presence of the anisotropic pressure field, allow us to propose a
physical origin for the segregation lift force.

2.2. METHODS
We use MercuryDPM, based on discrete particle methods (MercuryDPM.org; [38, 39]),
and investigate three-dimensional (3D) flows of mixtures of spherical dry frictional par-
ticles flowing down an incline of θ = 22°. We verified that changing the inclination angle
between 22° and 26° has no significant effect (within the fluctuations) on the measured
lift force FL (see Appendix A.2). All simulation parameters are non-dimensionalised such
that the particle density is ρp = 6/π and the gravitational acceleration is g = 1, with
downward vertical component gz =−cosθ. The simulations are conducted in a box with
dimensions (Lx ,Ly ,Lz ) = (20,8.9,∞), with periodic walls in the x- and y-direction. The
particles that make up the bulk of the flow have a diameter db = 1. We vary the intruder
diameter dp between size ratios S = dp /db = 0.5 and 3.2. The rough base of the chute
consists of particles of radius 0.85 and the flow height is h = 32±0.5.

A linear spring-dashpot model [40, 41] with linear elastic and linear dissipative con-
tributions is used for the normal forces between particles. The restitution coefficient for
collisions is chosen er = 0.1 and the contact duration is tc = 0.005. This results in a dif-
ferent stiffness depending on the particle size. We verified that our findings are not the
result of this difference in stiffness nor the dependence on er and tc . The friction coef-
ficient for contacts between bulk particles µbb and between bulk and intruder particles
µbp equals 0.5, unless otherwise stated.

We place three identical intruders in the flow at vertical positions zp,0 = 5, 15 and 23
(see Fig. 2.1). Each intruder is attached to a spring [37], which applies a vertical force
Fsp = −k(zp − zp,0) proportional to the vertical distance between the intruder position
zp and its corresponding zp,0. Here ks = 20 is the spring stiffness. We also simulate
ks =∞ by fixing the intruder at zp = zp,0. Our findings are independent of ks , so unless
stated otherwise all data reported are for ks = 20. We do not discuss the data for zp,0 = 5
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because the intruder experiences boundary effects, likely due to layering near the bed,
as reported in [41].

The net contact force Fc on an intruder can be determined in two ways: (i) Through
the force balance −Fc + Fsp − Fgz = 0, where Fsp is computed from the intruder’s av-
erage vertical position, and Fgz = ρp gzVp is the positively defined gravity force, with
Vp = 4

3π(dp /2)3 the intruder volume; (ii) By using the force balance Fc = Fnz +Ftz , with
Fnz and Ftz the vertical normal and tangential contact forces, respectively. We verified
that both methods give the same answer.

Applying coarse-graining (CG) [41–43], after a steady state has been reached, we ob-
tain time-averaged 3D continuum fields for φ the local solids fraction, and σ the stress
tensor, which satisfy the conservation laws. From the stress tensor we calculate the pres-
sure field p = Tr(σ)/3 and the shear stress field τ = σ− p I . The CG-width is chosen of
the order of the particle diameter w = db to achieve both rather smooth fields and inde-
pendence of the fields on w [42]. We approximate the bulk solids fraction at the position
of the intruder φ(xp , yp , zp ) = φp = Vp /VV ,p using the ratio of the particle volume Vp

and the Voronoi volume VV ,p , which we obtain through 3D raidus-weighted Voronoi tes-
sellation (math.lbl.gov/voro++; [44]). All error-bars (shaded areas) correspond to a 95%
confidence interval.

2.3. RESULTS

2.3.1. VELOCITY LAG
Our first and most obvious finding is that intruders that have a size ratio larger than one
(S > 1) are positioned (on average) above zp,0, thus with a non-zero and negative value
of Fsp . Our second finding is that the downstream velocity vxi of an intruder with S > 1,
experiences a lagλx = 〈up,x (t )−ux (zp , t )〉with respect to the downstream velocity ux (zp )
of the bulk at height zp , where 〈...〉 corresponds to a time average. Figure 2.2(a) shows
that a large intruder (S > 1) lags (λx < 0), while a same sized intruder (S = 1) experience
no lag, within the fluctuations. Interestingly, but outside the scope of this study, for S < 1,
when the intruder is smaller than the bulk particles and sinks, λx flips sign and becomes
a velocity raise (increase). Figure 2.2(b) shows that the lag velocity increases at higher
positions in the flow.

Based on the derivation in Appendix A.1 we propose the following expression for the
lag:

λx = 1

πdb

1

η

∆F (S)

c(S)S
(2.1)

where c(S) is a coefficient that potentially depends on S, η is the granular viscosity,
and ∆F is the unknown upslope-directed—in the negative x-direction—and size-ratio-
dependent force responsible for the lag. The data in Fig. 2.2 provides us with the S de-
pendency of λx and confirms the 1/η dependency predicted by Eq. (2.1). Namely, we
find a good fit of the data using

λx = a(1/S −1)/η (2.2)

We calulate the viscosity from a reference flow without intruder via η = |τ|/γ̇, where
γ̇ = ∂z ux is the shear rate, and τ is the shear stress. The dimensional fit parameter a
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accounts for the 1/(πdb) in Eq. (2.1), as well as for ∆F , which has dependencies that
cannot be straightforwardly extracted from the data in our chute-flow geometry. If cer-
tain assumptions are made, which we cannot verify in this geometry, a full expression
of λx as a function of the fluid and particle properties can be obtained, as described in
Appendix A.1.

Importantly, both the S-dependent data and the zp -dependent data in Fig. 2.2 can
be fitted with the same value for a. This fit also demonstrates that

∆F (S)/c(S) ∝ 1−S. (2.3)

Further support for the correct scaling of λx is provided in Fig. 2.2(c), where a collapse
of the data—except for outliers—is shown when plotting ηλx as a function of S, while
Fig. 2.2(d) shows that all data fall on a line with slope 1.0 when plotting ηλx as a function
of a(1/S −1).

Figure 2.2: (a) The velocity lagλx of the intruder particle as a function of size ratio S, for zp,0 = 15 and zp,0 = 23.
(b) Velocity lag as a function of the vertical positions 〈zp,0〉 of an intruder for S = 2.4. The dashed lines in (a)
and (b) are fits of Eq. (2.2), with a = 0.24, and η = 21.2. The circles indicate the outliers. (c) The data from
(a) and (b) are plotted here as ηλx versus S. The yellow circles are the data from (b), with the black circles
indicating the outliers. (d) The data from (a) and (b) are plotted here as ηλx versus a(1/S −1). The solid black
line has a slope of 1.0. The yellow circles are again the data from (b), with the black circles indicating the
outliers.

2.3.2. PRESSURE
We look for the origin of the lag in the pressure field p around the intruder. Figure 2.3(a)
shows the cross-section p(x−x p ) at y−yp = 0 for different size ratios. For S ≤ 1 the pres-
sure is (almost) hydrostatic, i.e., p ≈ ph = φρp gz (h − z), with a measured φ ≈ 0.577. A
hydrostatic pressure ph , with very little variation in the solids fraction as a function of
height, is characteristic for the bulk of this type of flow [45]. For S > 1, p deviates from
ph , and a strong anisotropy manifests itself with a high pressure region at the bottom-
front side of the intruder. Pressure variations of lower magnitude also appear around the
intruder. This demonstrates that the presence of a large particle modifies the local pres-
sure around it. Although it is known that pulling an object through a granular medium
affects the local pressure [46, 47], the situation here is different as the intruder is not
pulled but instead is fixed by a spring in the z-direction, while it can freely flow in the
x-y plane.

In order to isolate the non-hydrostatic effects in the pressure we study pL = p −
ph . Figure 2.3(b) shows that for S ≤ 1 pL is zero, within the fluctuations, while pL in-
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Figure 2.3: (a) Cross-sections p(x −x p ) at y − yp = 0 around the intruder, centred at the origin, for an intruder
at zp,0 = 15. The blue circle (diameter dp ) corresponds to the intruder. The edge of the white circle (diameter
dp +db ) corresponds to the position of the first layer of bulk particles. (b) Cross-sections pL (x,0, z), where
pL = p −ph , around the intruder at zp,0 = 15.

creases for S > 1 and is characterised by positive regions (over-pressure) in the lower
right and upper left quadrants, and negative regions in the lower left and upper right
quadrants. It seems reasonable now to correlate the lift force and the velocity lag to this
non-hydrostatic pressure.

2.3.3. GRANULAR BUOYANCY AND LIFT FORCE
Now that we have found indications that the velocity lag is linked to the local non-
hydrostatic pressure field pL , we proceed to calculate the lift force FL similar to the way
we obtained pL , i.e., by subtracting the granular buoyancy force Fb , that originates from
ph , from the net contact force on the intruder: FL = Fc − Fb . Various definitions for
granular buoyancy forces exist [e.g 37, 48], but none account for a dependency on the
size ratio. Here we introduce a more general definition that does depend on the size
ratio." Taking inspiration from [48] and using our approximation φ(xp , yp , zp ) = φp for
the solids fraction at the intruder position, we integrate ph over the surface AV ,p of VV ,p .
With the divergence theorem we find:

Fb =
∫

AV ,p

ph n ·ez d A =φρp gz

∫
VV ,p

dV =φρp gzVV ,p (2.4)

Here n is the normal outward vector to AV ,p and ez is the upward unit vector. Substituting
VV ,p =Vp /φp we obtain:

Fb = φ

φp
ρp gzVp = φ

φp
Fgz (2.5)

Effectively this is a generalised size-ratio-dependent buoyancy force Archimedes prin-
ciple at the particle level defined through an effective density that is equal to the mass
of the particle divided by its Voronoi volume. Figure 2.4(a) shows that the measured φp

strongly depends on S and is bigger than the bulk solids fraction φ for S > 1. This means
that a larger intruder occupies a larger fraction of its Voronoi volume. The data for φp

can be fitted by:
φp = (φ−1)Sc +1, (2.6)
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Figure 2.4: (a) Local intruder solids fraction φp versus S. Different (almost collapsing) symbols correspond to
intruders with µbp = 0.5, µb = 0, zp,0 = 15, zp,0 = 23, θ = 22°,23°,24°,25°, and 26°, k = 20 and k =∞. Solid line
corresponds to Eq. (2.6) with c =−1.2 and φ= 0.577. The schematic depicts the Voronoi volume VV , p (dotted
octagon) of the intruder (dashed circle). (b) The measured forces Fb , FL and FL +Fb , normalised by Fgz , for
zp,0 = 23, as well as a fit of FL with Eq. (2.9) (solid red line), with a = 0.24 and b = 130.0. The value of a is
obtained from the fit in Fig. 2.2(a). The buoyancy force Fb (blue circles) corresponds to Eq. (2.5) with φp from
(a). (c) The measured forces Fb , FL , Fnz and Ftz , normalised by Fgz , for S = 2.4, µbp = 0 and 0.5, at zp,0 = 15.

with c =−1.2 and φ= 0.577.
The ratio φ/φp in Fb in Eq. (2.5) has a crucial consequence, namely that for S > 1

the buoyancy force will be less than the gravity force Fgz = ρp gzVp acting on the par-
ticle. This can be seen in Fig. 2.4(b) where Fb/Fgz < 1 for S > 1. When S = 1, φ equals
φp , and the buoyancy force balances Fgz . In the limit of S → ∞, we have that φp → 1
and thus Fb corresponds to the buoyancy force in a fluid with density ρ = φρb . This
generalised buoyancy force differs from the classical Archimedean buoyancy definition
Fb = φρp gzVp in a granular fluid, which has two problems: it is independent of S, and
more critically, predicts that Fb < Fgz if S = 1.

Using the new definition for Fb we can determine the lift force FL = Fc − Fb , with
Fc = Fnz +Ftz . Figure 2.4(b) shows that FL/Fgz is approximately zero for S = 1, increases
rapidly for S > 1 and tends to a finite value above S = 2. The plot of (Fb + FL)/Fgz in
Fig. 2.4(b) shows that there is an optimal size ratio for segregation, in agreement with
experimental findings [11], simulations [49], and theoretical predictions [50].

2.3.4. SAFFMAN LIFT FORCE
Here we investigate the relation between the velocity lag of the intruder and the lift force
it experiences. Such a relation is known to exist for suspended particles in a fluid: The
Saffman lift force on a particle with diameter dp suspended in a fluid of density ρ and
viscosity η is found to scale with the velocity lag with respect to the surrounding fluid [51,
52]:

FSaffman =−1.615
√
η|γ̇|ρλx d 2

p sgn(γ̇), (2.7)

where γ̇ = ∂z ux (zp ) is the shear-rate. Saffman [51] derived this relation taking the fluid
properties in the absence of the particle and considered the limit:

ρλx dp

2η
¿

(
ρ|γ̇|d 2

p

4η

)0.5

¿ 1 (2.8)
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where the first term is the Reynolds number for the velocity lag Rλx and the second term
is the square root of the shear-rate Reynolds number Rγ̇. Note that for a granular fluid
we can write R0.5

γ̇ = IθS/(2
p
µ), if we substitute the granular viscosity η = µp|γ̇|−1 and

shear rate |γ̇| = Iθd−1
b

√
p/ρp , with Iθ the inertial number [10], and µ = tanθ the bulk

friction.
Equation (2.8) physically corresponds to a flow around an intruder that is locally

governed by viscous effects (Rλx ¿ 1), but away from the intruder by inertial effects
(Rλx ¿R0.5

γ̇ ). The derivation of the Saffman lift force is not valid when the inertia starts
to dominate the local flow around the intruder, and hence the validity is constrained to
R0.5
γ̇ ¿ 1. Whether Eq. (2.8) is valid for dense granular flows in general remains to be

seen, nonetheless it is valid for our current system; we find Rλx =O (10−4) using ρ =φρb

and measuring η from CG-fields in absence of the intruder, while R0.5
γ̇ = I22°S/(2

p
µ) =

O (10−1) using I22° = 0.050.

2.3.5. GRANULAR SAFFMAN LIFT FORCE
In order to test if a Saffman-like relation exists between FL and λx we fit

FL =−b
√
η|γ̇|ρλx d 2

p sgn(γ̇) (2.9)

analogous to Eq. (2.7). Here b a dimensionless coefficient that accounts for unknown de-
pendencies, λx = a(1/S−1)/η corresponding to Eq. (2.2), and ρ =φρb . Using η−1

√
η|γ̇|ρ

= Iθ(db
p
µ)−1, Eq. (2.9) can be written as:

FL =−abIθµ
−0.5(1/S −1)d 2

p d−1
b sgn(γ̇), (2.10)

demonstrating that the lift force is independent of the flow depth, since Iθ and µ are
constant in a chute flow. We verify that FL is indeed independent of depth (see Ap-
pendix A.3), in agreement with the findings of Guillard et al. [37].

We fit Eq. (2.9) to the data of FL in Fig. 2.4(b), using the value for a obtained from
the fit in Fig. 2.2, and find that it captures the data well. Subsequently, using the same
value for a, and the value for b obtained from the fit to FL in Fig. 2.4(b), we fit Eq. (2.9)
to the lift force measured as a function of depth in Appendix A.3. This demonstrates that
Eq. (2.9) is the correct scaling between the lift force, size ratio, viscosity and velocity lag
at constant inclination angle in a chute flow. The fact that this scaling is Saffman-like
suggests that inertial effects could lie at the origin of the segregation of large particles
in dense granular flows with pressure and velocity gradients in the limit of low large-
particle concentrations.

To provide further support for our finding that the generalised buoyancy force does
not support the weight of a large intruder (S > 1) we set the intruder-bulk friction µbp to
zero and find that FL is reduced, as shown in Fig. 2.4(c). Critically, this leads to a large
none-frictional intruder sinking instead of rising, as found recently also experimentally:
lower-friction particles sink below higher-friction particles in mono-disperse granular
flows [53]. Since the net contact force Fc = Fnz +Ftz on the intruder is lower than Fgz , the
buoyancy Fb must also be less than Fgz . Note that in Fig. 2.4(c) the spring force brings
the force balance back to zero: Fsp − Fgz + Fc = Fsp − Fgz + Fb + FL = 0. Interestingly,
the lift force does not completely disappear, indicating it should have both a geometric
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and frictional component. We verified that pL is reduced but does not disappear for
frictionless particles.

2.4. CONCLUSIONS
We report that a single large particle in a dense granular flow is surrounded by an an-
isotropic, non-hydrostatic pressure field. This coincides with our observations of a ve-
locity lag and a lift force, coupled through a Saffman-like relation, Eq. (2.9), causing the
particle to rise against gravity. These findings suggest that the mechanism of squeeze
expulsion [15]—which is often invoked to qualitatively explain the segregation of large
particles in dense granular flows—is the granular equivalent of the Saffman effect; an
inertial lift force in an otherwise strongly viscous bulk flow [51, 52].

A possible physical interpretation of the Saffman effect for a granular fluid could be
that in our mostly viscous and slow flow, but with a finite, considerable inertial num-
ber, a large intruder disturbs the local (Bagnold) flow profile. Because the bulk inertial
effects, which are proportional to the strain-rate, are not negligible, the rheology driven
by the velocity gradient—associated with the inertially generated, but perturbed velocity
field—produces an anisotropy of the pressure field, which creates both the lift force and
the drag force responsible for the velocity lag.

The decomposition of the contact force on the intruder into a lift force and gener-
alised buoyancy force is essential to the preceding analysis. Moreover, it provides a phys-
ical explanation for the sinking of very large intruders [54, 55], as well as for the optimal
size ratio for segregation [11, 50] and the unexplained trend of the total contact force
Fc (S) in Fig. 6 of [37]. Namely, if we consider the limit of Eq. (2.9) at large size ratios,
we see that the lag approaches a constant value, while the buoyancy force approaches a
fluid buoyancy with density ρ = φρb . Gravity will then outgrow the total upward force
and the particle will sink.

Further studies could address the following questions: If inertial effects indeed lie at
the origin of size segregation of large intruders at low large-particle concentration, they
could potentially also play a role in slow, dense, polydisperse granular flows with more
than one intruder. Thus, the variation of the lift force when the large-particle concentra-
tion increases could be investigated. Furthermore, in order to validate the Saffman rela-
tion for granular flows changing the stress gradient in the flow would be necessary. This
can be done by using other geometries, for example, such as the one used by Guillard
et al. [37]. Last but not least, the reported sinking of a large intruder with zero intruder-
bulk friction µbp hints at the importance of particle properties.

Drag forces on a free-flowing object in granular media, in contrast to a dragged ob-
ject, have received little attention [48]. Our findings suggest that the Stokesian drag,
found by Tripathi and Khakhar [48] for a heavy sinking mono-disperse intruder, plays an
important role in the rising of large intruders (see Appendix A.1). A continued effort to
determine all drag forces acting on free-flowing particles is important for the rheology
of granular flows in general, but foremost because drag is a cornerstone of models for
particle-size segregation in dense granular flows.

In order to unify Eq. (2.9) with the scaling laws found by Guillard et al. [37] and de-
velop a multi-scale model for the segregation of large intruders in dense granular flows
the lag will have to be expressed in terms of λx = f (∂p/∂z,∂|τ|/∂z, γ̇,∂γ̇/∂z), where τ is
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the shear stress. This is far from trivial: The dependency of all variables on z and θ is very
weak and the range of accessible pressure gradients, inertial numbers, etc., is very lim-
ited in steady state chute flows (inclination angles that are too large lead to accelerating
flows, whereas too small angles lead to stopping of the flow [18, 45]). To demonstrate the
dependencies more convincingly, one should disentangle pressure and tangential stress
and show that the Saffman-like relation still holds. In order to do so, a completely differ-
ent flow geometry needs to be considered, which, however, goes beyond the scope of the
present study. Finally, for a formal proof that a Saffman-like relation holds in granular
fluids, the analytical derivation by Saffman could be repeated for a granular rheology.
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3
THE BUOYANCY FORCE ON A

SPHERICAL INTRUDER IN DENSE

GRANULAR FLOWS

Archimedes’ principle states that an object in a fluid feels an upward buoyant force pro-
portional to the weight of the displaced fluid. In dense granular flows a correction to this
principle is required due to a lack of scale-separation between an intruding object and
bulk particle size. Here we derive a correction based on micro structure and forces and
incorporate force chains and force fluctuations for both sheared and non-sheared gran-
ular systems. We observe that as a large intruder approaches the size of a bulk particle,
the number of contacts per surface area increases. More contacts around the spherical in-
truder yields an increase in buoyancy force. This mechanism can be accurately captured by
applying Archimedes’ principle to the Voronoi volume of the object. The approach shows
that the correction does not only apply to the buoyancy force, but it applies to all mecha-
nisms like lift and drag forces. This is important when developing a more complete model
for mixing and segregation.

3.1. INTRODUCTION
An intruder in a granular flow is an object that differs from bulk particles in size, density
or other properties. Predicting the trajectory of such an intruder in granular flows is
important in industrial processes such as mixing. A lift and drag force based model could
capture the trajectory of the intruder, similar to the Basset-Boussinesq-Oseen-equation
for a particle in a classical viscous fluid [1].

Drag forces have been measured when increasing the intruder density, while keeping
the size similar to the bulk particles. Simulations in chute flows have shown the presence
of a granular equivalent to the Stokes drag force [2]. This drag force depends linearly on
the density ratio between bulk particles and intruder. When higher inertial flows are
considered, the drag force shows non-linear scaling with the density ratio [3].
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Lift forces on intruders have been observed when increasing the size of the intruder.
A recently developed force model considers the total vertical force, yielding scaling laws
that purely depend on the derivative of the pressure and shear stress [4] . In Chapter 2
this vertical force was decomposed in a buoyancy force and a lift force by splitting the
pressure p around the intruder in a hydrostatic and a lift part, p = ph +pL .

An aspect that has not yet received much attention is Archimedes’ principle. This
principle states that an object in a fluid feels an upward force proportional to the weight
of the displaced fluid and is called the buoyancy force. If the size of the intruder is close
to the size of the bulk particles, it is non-trivial to identify how much volume is displaced
by the intruder due to a lack of scale separation. Only in limiting cases can the buoyancy
force be estimated and in this work two cases are considered.

The first limiting case case is S → ∞, where the intruder is so large that the gran-
ular flow can be assumed to be a continuum and thus the classical buoyancy force is
expected. Experiments for larger intruders have confirmed the classical buoyancy force
in locally stirred systems [5] and in a (horizontally vibrated) fluidised bed [6]. In the lat-
ter work the smallest size ratio’s used were S = rp /rb = 8, with radii rp for intruder and rb

for bulk particle, thus this limit is obtained before ∞.

The second limiting case is S = 1 where the intruder is exactly equal to the bulk par-
ticles. In these cases an increase of the buoyancy force is observed [2], deviating from
Archimedes principle. Since all bulk particles are similar, the effective displaced vol-
ume can be determined by distributing all void space equally among all bulk particles.
Another system where a deviation from Archimedes’ law is observed is in binary suspen-
sions, where dense particles can be on top of lighter particles [7]. This was observed for
large size ratio’s, in contrast to the current system, implying a different mechanism.

The buoyancy force on an intruder for S ≥ 1 was generalised for all S by applying
a Voronoi volume correction to the buoyancy force [8]. Instead of using the volume of
the intruder in Archimedes’ principle, the Voronoi volume is used. This geometrical cor-
rection naturally satisfies the two limiting cases of S → 1 and S → ∞. However, this
correction raises a few questions. Firstly, it is still unclear what the physical mechanism
behind this correction is. Secondly, if the buoyancy force requires a correction based on
the Voronoi volume, do drag and lift forces also require such a correction? Finally, on a
more philosophical level: at what size ratio does the intruder behave like an object in a
granular fluid, i.e. when can scale separation be assumed between the intruder and bulk
particles.

To answer these questions, we adopt a similar decomposition as in Chapter 2. How-
ever, instead of focussing on the continuum pressure, we focus on the contact forces by
disentangling the contact structure (fabric) and contact forces similar to Ref. [9]. This
separation of structure and contact forces facilitates a decomposition of the contact
forces without decomposing the structure. This approach has been used to study bulk
behaviour of granular materials in 2D [10, 11] and 3D [12] for constitutive modelling.

In this work, the contact structure and contact force fields in dense granular flows
for intruders with S ≥ 1 is analysed in the well-known chute flow system [13, 14]. Details
of the simulation and analysis methods are given in section 3.2 and in section 3.3 the
flow profile of the monodisperse flow without intruder is discussed. The buoyancy the-
ory of a spherical intruder in a granular flow is elaborated in section 3.4. Assumptions



3.2. METHODS

3

25

made in the theory are validated in section 3.5 and finally in section 3.6 the results and
implications of the theory will be discussed and an outlook is given.

3.2. METHODS
First the simulation method is discussed in section 3.2.1. In section 3.2.2 the analysis
method is elaborated on how to obtain the spatial structure on the surface of an intruder.
Converting simulation data of discrete particles in continuum fields is explained in sec-
tion 3.2.2.

3.2.1. SIMULATION SETUP
The simulation setup is similar to chapter 2. A gravity driven granular flow down an
incline (chute flow) with angle θc = 22° is simulated. Periodic boundaries are applied
in the x- and y-directions. This setup is chosen as it produces a velocity field which is
shearing in only one plane, the xz-plane. This is a well studied system, see Refs. [13–15]
and references therein. The granular chute flow is simulated using the discrete particle
method (DPM). The system is non-dimensionalised such that the non-dimensional bulk
particle diameter is db = 1, density ρb = 6/π and the gravitational acceleration g = 1.
The simulation box has a size (Lx,Ly,Lz) = (20,8.9,40)db , The gravity is given by g =
[sin(θc ),0,−cos(θc )]. A rough bottom is composed of slightly larger than bulk particles,
with a diameter of 1.7db . Details for the creation method of the rough bottom can be
found in Ref. [14].

Roughly 6000 dry frictional particles are simulated yielding an average flow height
of h ≈ 30db . Contacts between particles are modeled using a linear spring-dashpot
model [15, 16] with linear elastic and linear dissipative contributions for the normal
forces between particles. Particle properties and contact parameters are given in Ta-
ble 3.1. The stiffness and dissipation of the contact laws are computed through the anal-
ysis of two colliding particles [17]. The tangential, sliding and rolling friction between
bulk particles are all equal to the friction coefficient µbb in Table 3.1. The friction be-
tween intruder and bulk particles,µpb is taken similar toµbb . Simulations are performed
by the open-source software package MercuryDPM (MercuryDPM.org; [18, 19]).

An intruder with size ratio S is introduced in the flow at a height of zp,0 = 23 and to
keep the intruder at approximately the same height, a restoring spring is introduced [4]
in the z-direction, while it can freely flow in the x- and y-directions. The spring stiffness
of the restoring spring is set to ks = 20.

3.2.2. STRUCTURAL ANALYSIS
Measuring the structure and contact force fields on the surface of the intruder is done
by tessellating the surface of the intruder with mesh elements. Here we use a spherical
coordinate system with (r,θ,φ), respectively the radial-, azimuthal- and polar-direction
where θ ∈ [0,2π) and φ ∈ [0,π]. The angles are uniformly discretised with ∆θ = 2π

nθ
and

∆φ= π
nφ

, where nθ and nφ are the number of elements in the θ- andφ-direction, respec-

tively. The surface area of a mesh element is denoted by ∆Ai j , where the indices i and
j indicate the mesh coordinates θi and φ j . To obtain good statistical data, Nt = 3400
time snaps were used with 9724 contacts for the S = 1 case. A grid of nθ = 20 and nφ = 10
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Parameter Symbol value
bulk particle diameter db 1.0
Intruder particle diameter Sdb 1.0 - 3.2
particle density ρb π/6
Restitution coefficient er 0.1
Contact duration tc 0.005
Friction µbb , µpb 0.5

Table 3.1: Dimensionless particle properties and contact model parameters. Contact duration and restitution
coefficient set the stiffness and dissipation of the particles, see Ref [17].

resulted in a detailed yet reasonably smooth surface. Larger sized intruders encounter
more contacts due to increasing coordination number improving the statistical results.

The average number of contacts per in area E in ∆Ai j is given by

Êi j = 1

Nt∆Ai j

∑
c

1, c ∈∆Ai j , (3.1)

where the contact c needs to be within element ∆Ai j and the hat indicates it is a mea-
sured quantity. The hat indicates a measured value as opposed to the theoretical field
later discussed in section 3.4. Summation over the surface area yields the coordination
number Z , ∑

i

∑
j

Êi j∆Ai j =Z . (3.2)

The average local force on an element F̂ can obtained by summation of all local contact
forces f̂ c

F̂ i j = 1

Nt

∑
c

f̂ c , c ∈∆Ai j . (3.3)

Note that summing over all elements yields the total average force on the intruder,

F̂ tot =
∑

i

∑
j

F̂ i j . (3.4)

To obtain the average contact force F̂ c in a single element ∆Ai j , the average local force
on an element is divided by the number of contacts, Êi j∆Ai j ,

F̂ ci j =
F̂ i j

Êi j∆Ai j
. (3.5)

The total force on the intruder particle can be expressed as

F̂ tot =
∑

i

∑
j

F̂ ci j Êi j∆Ai j (3.6)

In a situation where the grid can be taken infinitely small this equation would reduce to
the integral of Eq. (3.20) in section 3.4.3.
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3.2.3. COARSE GRAINING
Turning discrete particle data, such as particle position and velocity, into continuum
fields like stress σ, volume fraction φb and velocity vector (ux ,uy ,uz ) is done by ap-
plying the coarse graining analysis technique [20]. This technique takes "microscopic"
point values of particles and smoothes them by applying a kernel function W . In this
work we use a Heaviside kernel with a smoothing length scale of db/2. For details of the
analysis the reader is referred to [21] and references therein. The coarse graining analysis
is performed with MercuryCG [19].

The sign convention of stress in the granular material community and the fluids
community is different. In this work the fluid convention is adopted where compres-
sional stress is negative. The stress is therefore defined as σ = τ− p I , where τ is the
shear stress tensor and p the pressure.

3.3. SIMULATIONS
A reference bulk simulation is performed with S = 1 to investigate the behaviour of the
homogeneous granular fluid. In Fig 3.1 the volume fraction, velocity and stress profiles
are shown. A practically constant volume fraction in the bulk of the flow is observed in
panel a), with φb ≈ 0.577. The pressure, due to the constant density, appears to be linear
in z and so is τxz ; these trends are in agreement with Ref. [14]. The analytical solution
of a Bagnold profile is used as model [22], where the the density is assumed constant
yielding hydrostatic pressure,

pR =φbρb g h
(
1− z

h

)
cos(θc ), (3.7)

where ρ = φρp and R implies it is a reference flow without intruder. Note that the mea-
sured pressure is (1−αzz )σzz with αzz = 0.05 due to anisotropy in the stress, in agree-
ment with Ref. [14]. The measured stress σzz is lithostatic which explains the slight de-
viation between the measurements and the model, see panel c). The shear stress τxz

is
τR

xz =φbρb g h
(
1− z

h

)
sin(θc ), (3.8)

and the Bagnold velocity profile is given by

uR
x = 2

3
Iθc

√√√√g db cos(θc )
h3

d 3
b

[
1−

(
1− z

h

)3/2
]

. (3.9)

Here the (constant) inertial number I22° = 0.049 is used as a fit parameter and h ≈ 30 is
the height of the flow.

The model is in good agreement with the measurements, as can be seen from Fig 3.1.
The field profiles at the surface and at the base of the chute flow considerably deviate
from the Bagnold model, but in the bulk very good agreement is obtained.

3.4. THEORY
This section discusses and generalises the Archimedes principle for an object in a gran-
ular flow such that it is valid for all objects equal to or larger than the size of the bulk
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Figure 3.1: Coarse grained continuum fields of a chute flow simulation with angle θc = 22°. a) Volume fraction,
b) Velocity in the x-direction, c) pressure and d) shear stress. The dashed black lines indicate the height of the
flow, i.e. the free surface. Coarse grain kernel is Heaviside with a smoothing length scale of w = db /2.
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particles. To this end the buoyancy force is defined and discussed in section 3.4.1. Two
approaches are used to support the buoyancy force definition, a Voronoi tessellation
approach in section 3.4.2 and an approach based on the surface contact density in sec-
tion 3.4.3.

3.4.1. BUOYANCY FORCE

Given the stress tensor in a fluid σ=τ−p I , the force on a general object inside the fluid
can be calculated by integrating the stress over its surface,

F =
∫

Ap

σnd A, (3.10)

where n is the normal outward unit vector. The buoyancy force component F b of the
total force is generally defined in a fluid as the force caused by the presence of a pressure
gradient in the undisturbed reference flow. To distinguish between this reference pres-
sure and the actual pressure on the intruder, the superscript R indicates the reference
flow. The buoyancy force is then defined as

F b =:
∫

Ap

−pR nd A =−
∫

Vp

∇pR dV , (3.11)

where the divergence theorem has been used to obtain a volume integral.

A. GRANULAR BUOYANCY FORCE FOR S →∞
In a chute flow setup, consider the force in the z-direction by applying the divergence
theorem on the reference stress σR and noting that derivatives in the x- and y-direction
are zero, yielding

F R
z = ez ·

∫
Ap

σR nd A =
∫

Vp

∂(τR
zz −pR )

∂z
dV. (3.12)

In a normal fluid with an isotropic stress tensor the term τR
zz is zero, however in a gran-

ular flow this term depends on the pressure, τR
zz =−αzz pR , see [15]. While in a fluid the

definition of a buoyancy force normally is given by Eq. (3.11), we adopt a buoyancy force
definition including this anisotropic term by defining the hydrostatic pressure as

ph =−σR
zz =φbρb g cos(θ) [h − z] , (3.13)

such that the buoyancy force is given by

F S→∞
b =−

∫
Vp

∂ph

∂z
dV =φbρb g cos(θ)Vp . (3.14)

Note that this definition of buoyancy is equal to the classical buoyancy, which assumes
fluid particles are very small compared to the intruder. Interestingly, this buoyancy defi-
nition has already been observed for S > 8 [6].
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B. GRANULAR BUOYANCY FORCE FOR S → 1
If Eq. (3.14) is applied to an object the size of a granular fluid particle, S = 1, the total
force balance in the z-direction can be written as

F S→∞
b +Fg = (φb −1)ρb g cos(θ)Vp 6= 0. (3.15)

As the buoyancy force and gravity force are not in equilibrium it would imply this particle
is not in a steady state, while the flow is. Hence, the expected buoyancy force, Eq. (3.14),
is unable to compensate the gravity force other than for S →∞. The magnitude differ-
ence between Fg and F S→∞

b can not be explained by the (weak) anisotropy in the stress.
The buoyancy force at S = 1 can be reasoned by an equality argument. The hydro-

static pressure in the flow is defined at all points, including any void spaces. The pressure
in these void spaces can be attributed to all particles equally, since all particles have the
same size. Including the pressure inside the voids in Eq. (3.12) implies integration over
an effective volume. The effective volume of the particle then becomes V /Np , where V
is the volume of the whole flow and Np is the number of particles. With the definition
of solids fraction in a homogeneous flow (See Fig. 3.1(a)), φb = (NpVp /V ), the effective
volume can be written as Vp /φb . The buoyancy force at S = 1 therefore becomes

F S=1
b = 1

φb
F S→∞

b =−Fg , (3.16)

effectively balancing the gravity force in Eq. 3.15. Although this definition is generally
accepted [2, 23], it remains a remarkable observation that a buoyancy force definition
does not obey Archimedes’ law.

C. GENERALISED GRANULAR BUOYANCY FORCE

In order to fully understand the buoyancy force on an intruder, it is important to find a
common definition that couples both Eq. (3.14) and Eq. (3.16) as a function of S. There-
fore, a non-dimensional S-dependent buoyancy function B(S) is introduced,

B(S) = Fb(S)

φbFg z

, (3.17)

where the function B(S) has to satisfy B(S = 1) = 1
φb

and B(S →∞) = 1 such that Eq. (3.14)
and Eq. (3.16) are obtained. To generalise the granular buoyancy force an appropriate
function B(S) needs to be found. Two approaches are taken here that could approxi-
mate the behaviour of B(S). First by using Voronoi tessellation in section 3.4.2 and sec-
ondly an approach that investigates structural changes (fabric) around the particle in
section 3.4.3.

3.4.2. VORONOI APPROACH
A natural approach to satisfy both limits of the function B(S) is to perform a volume
correction of the particle as first proposed in Chapter 2 by defining

Bφ(S) = VV

Vp
, (3.18)
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where VV is the Voronoi volume of the intruder particle and Vp is the particle volume.
For a homogeneous mixture at S = 1, each particle has (on average) identical values for
VV and Vp so Eq. (3.18) reduces to the bulk volume fractionφb satisfying Eq. (3.16). It can
be shown that Bφ(S →∞) = 1. The Voronoi approach is therefore a simple and valid ap-
proach that defines the buoyancy force of objects within the two size ratio limits, based
on purely geometrical arguments. This correction does not depend on the shape of the
Voronoi volume, which could be measured [24]. The Voronoi approach does not guaran-
tee physical correctness between the two limiting points as the particle is not (directly)
aware of its Voronoi space and therefore a different approach based on contact forces is
taken in the next section.

3.4.3. SURFACE CONTACT DENSITY APPROACH
As an alternative approach to Bφ(S), the structural changes around the intruder as func-
tion of S are investigated. Although the interaction between particles is of a discrete
nature, consider a situation where a simulation is in a steady state for a very long time
such that a continuum approach is allowed. The time-averaged force on the intruder
can then be expressed by

F tot =
∫

Ap

dF

d A
d A, (3.19)

where dF is time-average force on an infinitesimal surface element d A of the sphere and
Ap is the surface area of the sphere. By taking a similar approach to Ref. [9], the force on
the surface of the intruder can be split in a contact force component and a structural
component. Applying the chain rule yields,

F tot =
∫

Ap

dF

dC

dC

d A
d A =

∫
Ap

F c E d A (3.20)

where dC is the number of contacts on an infinitesimal surface element d A,

F c := dF

dC
(3.21)

is the (time-averaged) average contact force and

E := dC

d A
(3.22)

is the (time-averaged) number of contacts per surface area, henceforth called the contact
structure. Integrating E over the surface area yields the coordination number Z ,∫

Ap

E d A =
∫

Ap

dC

d A
d A =

∫ Z

0
dC =: Z . (3.23)

A. NORMALISATION

For analysis purposes it is convenient to rewrite Eq. (3.20) by introducing normalised
angular distribution functions. For the contact structure this distribution function is
defined as

PE := E Ap

Z
, (3.24)
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with the property
1

Ap

∫
Ap

PE d A = 1. (3.25)

Furthermore, the number of contacts per surface area, termed surface contact density,
is defined as

cρ :=Z /Ap . (3.26)

Taking Eq. (3.22) and substituting the definitions of Eq. (3.24) and Eq. (3.26) yields

E = cρPE . (3.27)

Similarly to the contact structure, the contact force is rewritten. First by defining a
contact force magnitude Fc and contact direction nc ,

F c := Fc nc , (3.28)

where Fc is a scalar, but still is orientation dependent, Fc = Fc (A). Normalisation of Fc (A)
is done by defining a normalised angular distribution function,

PFc := Fc (A)

F̄c
, (3.29)

where F̄c is the average contact force magnitude (orientation-independent). The distri-
bution function satisfies the property

1

Ap

∫
Ap

PFc d A = 1. (3.30)

Combining Eq. (3.28) with Eq. (3.29) yields

F c = F̄c PFc nc . (3.31)

Substituting Eq. (3.27) and Eq. (3.31) in Eq. (3.20) yields

F tot = F̄c cρ

∫
Ap

PFc PE nc d A. (3.32)

Note that both F̄c and cρ are orientation independent scalars, and only depend on S.

B. FORCE DECOMPOSITION

To define the granular buoyancy force, the total force F tot needs to be split into a buoy-
ant part and other remaining forces (such as lift and drag). Before splitting F tot note that
the contact structure cρPE can not be split, because a contact can not be assigned to a
single mechanism. Instead, the contact forces should be split into the various mecha-
nisms. The split is performed by making an assumption about F̄c PFc .

The hydrostatic pressure in a granular flow stems from the contact forces between
particles that support the weight of the flow. As the weight varies linearly in depth, the
hydrostatic is also linear. It is therefore straightforward to assume that (i) the contact
forces related to the hydrostatic pressure are also linear in depth. Moreover, the intruder
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size has no significant effect on the hydrostatic pressure which implies that (ii) the lin-
ear dependency is independent of S. Furthermore, (iii) the only force present in the
hydrodynamic theory at S = 1 is the buoyancy force, see section 3.4.1. With these three
observations the split in the contact force is given by

F̄c (S)PFc (S) = F̄ S=1
c bS=1

z z +R(S), (3.33)

where F̄ S=1
c bS=1

z is the magnitude of the (i) linear, (ii) S-independent gradient of the con-
tact forces at S = 1. The second term R(S) is the remainder of the contact forces, at-
tributed to other forces. To accommodate observation (iii) it is mandatory for this split
that integration of R(S = 1) yields no force, which will be verified in section 3.5.1. Com-
bining the force decomposition of Eq. (3.33) with Eq. (3.32) leads to the following defini-
tion of the buoyancy force,

F S
b (S) ≡ F̄ S=1

c cρ(S)
∫

Ap

bS=1
z zPe (S)nc ·ez d A. (3.34)

Note that although the contact forces are assumed independent of S, the buoyancy force
could still depend on S through the contact structure. The non-dimensionalised buoy-
ancy for the surface contact density approach is then defined by

Bρ(S) :=
F S

b

F S→∞
b

, (3.35)

the ratio of Eq. (3.34) and Eq. (3.14). The assumptions made in the surface constant
density buoyancy definition are verified in section 3.5.2 by showing that Bρ(S) satisfies
the correct physical limits.

C. SURFACE CONTACT DENSITY

By assuming that the contact forces attributed to the buoyancy do not depend on S, it
directly implies that any change in S comes from a change in contact structure. This
can either be a change in cρ , angular distribution function, or the contact force direction
nc . The impact of cρ can be estimated by considering the contact between a bulk par-
ticle and the intruder. An area As on the surface of the intruder is shielded from having
contacts with any other bulk particles, see Refs. [25, 26]. In 3D As is given by,

As = 2πS2rb

1−
√

1−
(

1

S +1

)2
 , (3.36)

where the limits As (S = 1)/r 2
b = 2π(1−p

3/4) ≈ 0.84 and As (S → ∞)/r 2
b = π show that

As depends on S. The surface contact density is closely related to the compacity, cs :=
Z As /Ap , which is the the ratio of the shielded area and the surface area of the intruder.
Previous studies have assumed and validated this compacity to be approximately con-
stant for larger particles in compressed polydisperse packings [25–27]. If the same as-
sumption is used here, the surface contact density could be expressed as cρ(S) = cs /As (S)
and therefore indicates that cρ(S) could have a significant contribution the total force
on the particle. The impact of PE is harder to estimate and will be investigated in sec-
tion 3.5.1.
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3.5. RESULTS
To verify the surface contact density theory, both the structural fields E and contact force
fields F c around the intruder are measured and analysed, using Eq. (3.1) and Eq. (3.5).
The structure of these fields is investigated by fitting them, such that Eq. (3.35) can be
measured. Analysis of these fields is in section 3.5.1. With these measurements the sur-
face contact density theory can be validated which is done in section 3.5.2.

3.5.1. ANGULAR DISTRIBUTION FUNCTIONS

The contact force distribution P̂Fc is shown in Fig. 3.2. Here the hat indicates a mea-
sured value of PFc (see Eq. (3.29)) using Eq. (3.5). For S = 1 the contact force distribution
looks pill-shaped under an angle of 45°. As S increases this shape changes and a clear
asymmetry starts to develop, with a higher contact force at the bottom than at the top.
A curious observation is that the angle of the anisotropy seems to be robust with a value
of 45°. The contact force is fitted using the most important contribution from a second
order Fourier series [12] and linear contributions in the x- and z-direction 1,

P̂Fc ≈ 1+bx cos(θ)sin(φ)+bz cos(φ)+axz cos(φ)cos(θ)sin(φ), (3.37)

where axz is the most important contribution taking anisotropy into account at an angle
of 45° and bx and bz are the linear gradients. Although not present at S = 1, bx emerges
for increasing S. The fit is shown in Fig. 3.2 and shows very good agreement with the
data. The coefficients as function of S are shown in Fig. 3.3(a). A clear trend in all co-
efficients are shown. Coefficient bx does not seem to be present at S = 1, but becomes
important for S > 1. The coefficient bz at S = 1 corresponds to the buoyancy force and is
clearly present. Curiously, even this coefficient increases for increasing S, which could
be related to the presence of lift and drag forces. The anisotropy increases which can
also be clearly observed in Fig. 3.2.

In Fig. 3.4 P̂E = (Ê Ap )/Z is shown for various values of S. The normalisation ensures
that the profiles can be compared directly. All situations are dominated by the shear flow
where the top-left and bottom-right part of the intruder encounter many flow particles.
The top-right and bottom-left barely show any contact. Specifically for S = 1 a horizontal
contact plane can be observed, and a contact plane under an angle of roughly 25°. This
might be caused by the structural shielding surface area by the horizontal plane particles.
It is not observed for S > 1. As S increases an interesting asymmetry in the z-direction
can be observed. Especially for S = 3.2 the top-left has more contacts than the bottom-
right.

Further investigation of the structure is done by proposing a fit function. Here we
use a similar fit function as used for P̂Fc , normalised by the particle surface area,

P̂E ≈ 1

4πr 2
p

(
1+aE

xz cos(φ)cos(θ)sin(φ)+bE
x cos(θ)+ sin(φ)bE

z cos(φ)
)

. (3.38)

The fitted surfaces shown in Fig. 3.4 seem to capture most trends, except close to S = 1.
The coefficients as a function of S are shown in Fig. 3.3(b). The value of aE

xz first shows

1This series can also be expressed in spherical harmonics as P̂Fc ≈ 1+ c1
1 Re(Y 1

1 )+ c0
1 Re(Y 0

1 )+ c1
2 Re(Y 1

2 ) with

c1
1 =−2

p
2π/3bx , c0

1 = 2
p
π/3bz and c1

2 =−2
p

2π/15axz .
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Figure 3.2: In the left panel the normalised contact force distribution around an intruder for increasing S on
equal grids and in the xz-plane. The red cross marks the center of the plot. Dashed lines are visual guides. In
the left panels fits of the measured data to Eq. (3.37) are shown. The color bar for all plots are identical.
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Figure 3.3: Coefficients obtained from fitting a) ˆPFc to Eq. (3.37) and b) P̂E from fitting Eq. (3.38). The error
bars indicate the 95% confidence intervals of the fitting parameter.

a decrease, to the point of S ≈ 2 and then increases again slightly. The linear trend ob-
served in Fig. 3.4 is both captured by bE

x and bE
z , although bE

z seems to be more dominant.

3.5.2. VALIDATION

Validation of the fit functions is done by computing the total force using Eq. (3.6) in com-
bination with the fit functions Eq. (3.38) and Eq. (3.37). Comparison of this with the
measured total force is shown in Fig. 3.5(a). The fit functions capture the global trend,
yet significant deviations can be observed, especially for values close to S = 1. This is no
surprise when comparing the fit to the measurements in Fig. 3.4. When the raw data for
PE is used, the blue curve is obtained, which is a very good match. This indicates that
PFc is captured really well by the fit function.

Validation of the surface contact density theory is done by measuring Eq. (3.35). To
stay close to the true nature of the measurement, only PFc is fitted to create a clean split
between the various terms. The structure PE and contact direction nc are used straight
from measurements which yield better results in light of Fig. 3.5(a). This is important,
because the force gradient in the flow is measured at S = 1.

The scaled buoyancy force is shown in Fig. 3.5(b) and at S = 1 it has a value of roughly
1.05/φ, which is equal to the total force measured in DPM at S = 1. This force is purely
produced by the linear slope encountered in the contact force, as the other components
do not contribute. For increasing S the buoyancy force reduces slowly and seemingly
converges towards 1, as measured in experiments. The surface contact density and non-
dimensional buoyancy force are proportional to each other, Bρ ∝ cρ , with a proportion-
ality constant of 2.2. Therefore it can be concluded that the physical mechanism chang-
ing the buoyancy force is the surface contact density.

The Voronoi approach Bφ is also shown in Fig. 3.5(b). When comparing both Bφ and
Bρ , it can be seen that the Voronoi over estimates the buoyancy force for larger S, while
the surface contact density approach under estimates this. The deviations however stay
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Figure 3.4: The angular distribution P̂E of the number of contacts per surface area is shown for different values
of S in the left panels. The scale is identical for all plots and the plane of view is the xz-plane. The red cross
marks the center of the plot. The black dashed lines are visual indicators. In the right panels the fit surface of
the measurements to Eq. (3.38) are shown.
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Figure 3.5: a) Total force on the intruder as size ratio changes. Fit functions for PFc and PE are Eq. (3.37) and
Eq. (3.38), respectively. The blue line represents a mixed case where the raw measurements are used for PE . b)
Non-dimensional buoyancy force. The dashed lines correspond to the two physical limits of B with 1/φb and
1. The green square indicates the measured total vertical force from DPM measurements at S −1

within 10% of Bρ which is acceptable from a modeling perspective.
In practice, the Voronoi approach is easy to measure compared to the surface con-

tact density approach. This is because the latter approach requires a measurement of
the contact force profile at S = 1 and measuring the coordination number requires more
time snaps due to its discrete nature. Furthermore, the Voronoi approach naturally sat-
isfies both theoretical limits of S = 1 and S →∞. Between these two points the Voronoi
slightly over estimates the buoyancy force, but is close enough to the physical mecha-
nism.

3.6. CONCLUSION & DISCUSSION
In this work we derive a micro mechanical definition of the buoyancy force and compare
it to the recently proposed buoyancy force in [8]. Both approaches yield very similar re-
sult, revealing a microscopic explanation for the observed deviation from Archimedes’
principle. As the intruder increases in size, the apparent curvature of the intruder re-
duces, leading to a decrease in contacts per intruder surface area. The physical expla-
nation of the surface contact density approach gives a solid base for the generalised
Archimedes principle for spherical objects in granular flow, but the Voronoi approach
seems more practical in use as it does not require to fit contact forces at S = 1. Further-
more, this mechanism is relevant for all the contact forces, not only the buoyancy force.
This is an important realisation when developing a force model for a single particle in
granular flows, as the gravity force is the only force that does not depend on this mecha-
nism.

The buoyancy force for S < 1 has not been investigated and is future work. It is ex-
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pected that the definition still holds true for values slightly smaller than one, but at some
point will deviate significantly as the structure will change significantly when intruders
start to percolate. Obtaining good statistical data for f and nc around small particles is
computationally expensive as the number of contacts on these particles is small. How-
ever, when good statistical data is obtained, numerical integration can still be done to
investigate the contact force and structural fields.

Last, but not least, a philosophical question can be asked: When is the intruder part
of the fluid, and when does it become an object inside the fluid? From Fig. 3.5(b) it
appears that for S > 3.2 there is barely any change in either Fb or FL . This coincidentally
agrees with observations for particles that start to sink instead of segregate [28].
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4
HIGH RESOLUTION CONTINUUM

FIELDS AROUND A SPHERICAL

INTRUDER IN A CHUTE FLOW

This work presents high-fidelity continuum fields around a single large intruder parti-
cle in a dense, steady mono-disperse granular chute flow. The density, velocity and stress
fields are obtained using the coarse graining technique converting discrete particle data
into continuum fields compatible with the conservation laws of mass and momentum.
Size, density and friction of the intruder are changed to observe the response of the gran-
ular flow. Clear layering structures, size and friction dominated velocity profiles and rich
non-Newtonian stress effects are observed in the vicinity of the intruder. Possible mecha-
nisms for segregation have been identified that could help develop a more fundamental
understanding of segregation due to size, density and friction, eventually leading to better
predictions of segregation. The investigated continuum fields could inspire the develop-
ment of new constitutive models for granular flows, and contribute to the development
of continuum or up-scaled simulation techniques better capable of simulating objects in
realistic dense granular flows with too many particles.

4.1. INTRODUCTION
Granular flows are important in industrial environments such as the food, pharmaceuti-
cal and agricultural industries, and in the geophysical context with pyroclastic flows and
avalanches or land slides as examples. The flow of these granular materials exhibit many
different complex phenomena such as dilatancy [1], anisotropy [2, 3], shear bands [4, 5]
and segregation [6–8]. Segregation in dense granular flows is a persistent phenomenon
that induces various flow features such as fingering [9], bulbous head formation [10]
and generally the de-mixing of mixed flows [6]. However, the fundamental details of the
cause of segregation are still not fully understood.

Considering a granular flow with identical spherical particles, no segregation takes
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place as the particles have no preferred position in the flow. Yet, when one of the par-
ticles changes its properties, that particle usually starts to segregate. The particle size
is widely regarded as the most important property affecting segregation. It is therefore
the most studied particle property, especially with the focus on 50/50 volume ratio mix-
tures [11–15], for which segregation models have been successfully developed [16–18].
However, industrial applications often tend to have more dilute volume ratio mixtures,
such as 10/90 mixtures. The models developed for 50/50 mixtures don’t capture the di-
lute regimes as accurately [19]. Furthermore, reverse segregation is observed for very
large particles [20] which is not included in the current models either. Investigations of
polydisperse systems with large size distributions have also been investigated previously
in Refs. [21, 22] and references therein.

Density differences in mixtures also induce segregation [23] and have been studied in
a chute flow setup [24]. The resulting model was inspired by the discovery of a (modified)
Stokes drag law on a single intruder particle [25, 26]. Improved segregation models have
take both size and density into account [27, 28]. The effect of friction on segregation
has had less attention than density and size [29, 30], but could have significant effects
too [31].

To improve the fundamental understanding of segregation, single intruders have
been investigated. The segregation force was found to be related to the derivative of
pressure and shear stress [32]. Recently a connection between a horizontal velocity lag
and the segregation force was found [33]. The importance of rotation of an intruder par-
ticle has also been linked to size segregation [34]. These results are pieces of a complex
puzzle, but the true origin of size segregation has yet to be revealed.

Thus far, these investigations have focussed on the forces on the intruder itself, yet
the reverse effect of the intruder particle on the flow has not yet been investigated and
could yield valuable insights into the mechanics of granular flows and segregation. In
this work we focus on the effect of size, density and friction of the intruder on the flow.
The flow around the intruder is visualised by converting long time-averaged particle data
into continuum fields using the coarse graining method [2, 35, 36]. By comparing high
resolution density, velocity and stress fields for different intruder properties, we aim to
obtain more insight in the processes and mechanisms that cause segregation.

First the simulation and coarse grain methods are discussed in section 4.2. The struc-
ture, velocity and stress fields are then discussed in section 4.3, 4.4 and 4.5, respectively.
Based on the investigations of the fields, conclusions are draw in section 4.6.

4.2. SIMULATION AND METHODS
Gravity-driven granular flow down an incline (chute flow) is a well studied system, see
Refs. [2, 37, 38] and references therein. In this work we chose a similar setup as it pro-
duces a velocity field which is shearing in only one plane. Discrete particle method
(DPM) simulations of a chute flow are performed by the open-source software package
MercuryDPM (MercuryDPM.org; [39, 40]).

A schematic description of the simulation setup is shown in Fig. 4.1(a). A chute angle
of θc = 22° is used and periodic boundaries are applied in the x- and y-directions. The
system is non-dimensionalised such that the non-dimensional bulk particle diameter
is db = 1, density ρb = 6/π and the gravitational acceleration g = 1. The gravity vec-
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tor is given by g = g [sin(θc ),0,−cos(θc )]. The simulation box has a size
[
Lx,Ly,Lz

] =
[20,8.9,40]db . Within this box roughly 6000 dry frictional particles are simulated yield-
ing an average flow height of h ≈ 30db . A rough bottom is composed of (slightly) larger
than bulk particles, with a diameter of 1.7db . Details for the method of creating the rough
bottom can be found in Ref. [38].

Contacts between particles are modeled using a linear spring-dashpot model [2, 41]
with linear elastic and linear dissipative contributions for the normal and tangential
forces between particles. Coulomb friction in the tangential direction is modeled by a
slider. Particle properties and contact parameters are given in Table 4.1. The stiffness
and dissipation of the contact laws are computed through the analysis of two colliding
particles [42]. The tangential, sliding and rolling friction between bulk particles are all
equal to the friction coefficient µbb in Table 4.1. The friction between intruder and bulk
particles is given by µpb and is varied.

An intruder with size ratio S is introduced in the flow at a height of zp,0 = 23 and to
keep the intruder at approximately the same height, a restoring spring is introduced [32]
in the z-direction, while it can freely flow in the x- and y-directions. The spring stiffness
of the restoring spring is set to ks = 20. The non-dimensional intruder size S, density
D and friction M are scaled such that unity implies the value of a bulk particle, see Ta-
ble 4.1.

Parameter Symbol value
bulk particle diameter db 1.0
particle density ρb π/6
Restitution coefficient er 0.1
Contact duration tc 0.005
Contact friction µbb 0.5
Size ratio S = dp /db 1.0 - 3.2
Density ratio D = ρp /ρb 1/6 - 10/6
Friction ratio M =µpb/µbb 1.0×10−4 - 1.0×104

Table 4.1: Dimensionless particle properties and contact model parameters. Contact duration and restitution
coefficient set the stiffness and dissipation of the particles, see Ref [42]. The subscript p indicates an intruder
property.

An important part of the analysis of this research is the continuum density profile
around the intruder particle. To obtain this field a technique called coarse gaining (CG)
is employed [2, 35, 36]. This technique takes the micromechanical information of the
granular flow and transforms it into a macromechanical field-based description. As ex-
ample, the "micro" point-density of the centers of mass is

ρmic(x, t ) =
N∑

i=1
miδ(x−xi (t )), (4.1)

where xi is the position of particle i , mi is its mass and N the total number of particles.
Transforming this to a macromechanical field is done by replacing the delta function by
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a smoothing kernel W (x −x i ) with
∫

W (x −x i )d x = 1, so that

ρ(x, t ) =
N∑

i=1
mi W (x−xi ), (4.2)

Other continuum fields such as momentum and stress can be treated in a similar man-
ner, for full details see Ref. [2]. Possible choices for the smoothing kernel are a Gaussian
function, Lucy polynomial [43] or a Heaviside function. Regardless of which function
is taken, a coarse graining length scale w has to be chosen that accurately catches the
problem. In this work a Heaviside smoothing kernel is used,

W (x) =
{

1
(4/3)πw3 |x| ≤ w

0 |x| > w
, (4.3)

with a smoothing length scale w the size of the granular fluid particles radius, w = db/2.
The length scale is chosen such that for a given time, the instantaneous density field ac-
curately matches the density fields of the bulk particles. Furthermore, this gives a sharp
interface at the surface of the intruder. A larger width could smooth out the layering
structure around the intruder.

Evaluation of the density field on a spherical surface is done using the quadrature
points of the Lebedev quadrature [44]. These points are distributed such that no bias
with the angle is generated on the sphere. The average value of a field f in a shell around
the intruder surface is defined by

f̄ = 1

Vs

∫ rs

rp

∫
AL

f d Adr, (4.4)

where Vs is the volume of the shell and rs is the outer radius of the shell. Here rs =
rp+2rb if not stated otherwise. Numerical integration is done by performing a combined
trapezoidal rule in the radial direction and discretisation by the Lebedev quadrature in
the azimuthal and polar directions.

4.3. STRUCTURE
The structure around the intruder is investigated by analysing the density profiles. A
schematic situation of the intruder in the xz-plane is shown in Fig. 4.1(b). The intruder
experiences the shear rate γxz of the bulk flow. The velocity of bulk particles are denoted
by the red arrows. The shear rate introduces compression in the top-left and bottom-
right corner. In these regions bulk particles have to move around the intruder. In the
top-right and bottom-left corner tension regions emerge. In these regions bulk particles
gain some freedom as they just have overtaken the intruder, therefore they will be less
likely to stay attached to the surface of the intruder (like separation in fluids). The effect
of compression and tension caused by the shear will have effect on the structure around
the intruder. How this structure changes based on size ratio, density ratio and friction
ratio is investigated in the next sections.
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Figure 4.1: (a) Schematic of a chute flow down an incline of θc = 22°. The gravity force g induces a velocity
profile ux (z). (b) Schematic of the intruder situation in the xz-plane, with the y-direction perpendicular into
the plane. The shear introduces compression and tension at different regions on the particle.

4.3.1. DENSITY FIELD
The density field for various S is shown in Fig. 4.2. An (almost) spherical layer is visible
directly around an intruder of S = 1 (no size-effect). A second (almost) spherical layer
is present as well, however in diminished strength. A third layer and fourth layer can
also be observed, although they have a relative straight structure. This indicates that
the small particle only has a range of influence of approximately 2 particle layers. A
remarkable observation is the general formation of (straight) layers in the bulk flow, far
away from the intruder. The formation of layers seem to be a robust feature that even
remain in non-planar flows [45].

A similar structure is observed for increasing size ratio, although the third and fourth
layers become more pronounced. This implies that the interaction distance of the large
particle increases as S increases. For the case of S = 2.4 more clear layering can be ob-
served left of the intruder compared to the right side. This could be caused by the obser-
vation that the intruder is moving slower than the average flow, see Chapter 2.

The layers in the z-direction are shown in more detail in Fig. 4.3, where the coordi-
nate z − (zp + rp ) allows for direct comparison between the different intruder sizes. The
first minimum is at approximately z − (zp + rp ) = 1 as the bulk particles have a diameter
of one and can not penetrate the intruder. For larger values, the distance between peaks
stays approximately constant with an average distance of approximately 0.85 which is
close to the measured value of 0.9 at the bottom of chute flows [2]. As the size ratio in-
creases, the peak values of the layers seem to increase. The minima between the layers
show no significant trend.

FIRST LAYER FOR DIFFERENT SIZE RATIO

A high resolution density field of the first layer around an intruder of S = 1 is shown in
Fig. 4.4(a), as reference situation, revealing a few interesting effects. Firstly, a layer of
particles is observed around the intruder, with six strong maxima. Due to the coarse
graining method it is expected that the peak values correspond to the preferred centre
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Figure 4.2: Coarse grained density far-field around an intruder particle in the xz-plane with coarse grain width
of w = 0.5 for S = {1.0,1.6,2.4}.
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Figure 4.3: Layer density in the upward direction from the surface of an intruder particle for different sizes. The
radius is subtracted from z for direct comparison between different S. The dashed line indicates the average
density in the flow.
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Figure 4.4: Coarse grained density profiles around an intruder at zp,0 = 23 in the xz-plane with coarse grain
width of w = 0.5. The focus is on the density field between the surface of the particle and the first layer. The x-
and z-axis limits are therefore defined as [−(0.8+dp /2), (0.8+dp /2)]. White dashed lines indicate 0°, 60° and
120° angles. The dashed black line refers to the center of the closest possible fluid particle with a distance of
db to the surface of the particle. Local maximum values in the density profile are marked by ∗.

positions of the particles in the first layer. The closest possible positions of rigid parti-
cles around the intruder particle are depicted by the dashed black line. All maxima are
slightly outside this black line, because there is no configuration where particles are in
permanent contact with the intruder. A slight separation of roughly 0.025db is measured,
where db is the diameter of the fluid particle. The density at the surface of the intruder
particle is practically zero due to the CG width of w = 0.5. Deviations of zero are purely
caused by the tiny overlaps between intruder and bulk particles during contacts.

Strong variations of density can be observed in the layer around the intruder. In
general, when a fluid moves around a spherical object, stagnation points are expected
where the relative fluid velocity is zero. In the current flow situation this would imply
stagnation points left and right of the intruder. The maxima left and right of the intruder
correspond to such a points, however in case of a granular flow they become stagnation
zones due to the size of fluid particles. Due to the presence of a particle at the stagnation
zones left and right of the intruder, there is reasonable part of the intruder shielded from
possible contact. The next possible position of a particle would be at an angle of 60
degrees from the horizontal axes. The two maxima at the top-right and bottom-left do
not emerge as clearly as the maxima left and right of the particle. Less strong, but also
present are maxima at the top-left and bottom-right corner. The compressional and
tensional regions, as depicted in the schematic situation of the intruder, see Fig. 4.1(b),
clearly emerge in the density profile. The layer of particles stays attached to the intruder
in the compressional region, while in the tensional region the flow shows detachment
from the intruder.

For S > 1, the structure of the density profile does not change much. The features
merely get better defined. Although, the maxima in the top-left and bottom-right seem
to disappear. In general for increasing S the attachment in the compression area and
detachment in the tension area become more pronounced. A 3D surface of the density
profile of the first layer for S = 2.4 is show in Fig. 4.5. The compression region and de-
tachment regions are clearly visible and the layer seems quite symmetric in the y z-plane.
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Figure 4.5: Coarse grained density field with w = 0.5 around an intruder particle of S = 2.4 at a distance of
rp + rb , depicting the density fluctuations of first layer of particles around the intruder with the same colour
bar as Fig. 4.4. The average density in the flow is 1.1. The points of view are, respectively, x = {−1,−1,1},
x = {1,−1,1} and x = {1,1,1}. The arrows indicate the shear direction.

FIRST LAYER FOR DIFFERENT DENSITY RATIO

The density profiles around the intruder particle for changing density ratio D are shown
in Fig. 4.6. The structure around the intruder is still dominated by compression and
tension regions as schematically shown in Fig. 4.1(b). However, a distinct new feature
emerges as D changes. The stagnation regions shift as the particle changes density. The
stagnation zones left and right of a light intruder move towards the compression region,
reducing the effective compression region. The opposite effect is happening for dense
intruders. Additionally one of the stagnation regions diminishes in magnitude. For an
intruder with a velocity similar to the bulk flow, the stagnation zones are equally strong
and symmetric around the z-axis. A possible explanation for the change in stagnation
region intensity could be that as the density of the intruder changes, the gravity force is
increased, yielding a different velocity lag [33] in the x-direction and hence the flow pro-
file around the particle changes. Variation of D shown here remains close to the original
density and it is expected that a very heavy particle would eventually plough through the
granular flow. This should yield a compression zone at the front of the intruder, and a
wake behind the intruder. The transition to this situation can already be observed for
D = 10/6. The opposite is happening for D → 0 as the particle then lags behind the flow
and creates a more intense stagnation region zone on the left side, and a wake on the
right side as can be observed at D = 1/6.

FIRST LAYER FOR DIFFERENT FRICTION RATIO

Similar to S and D , the density profiles for various friction ratio M are shown in Fig. 4.7.
Although the fields do seem to change with different M , no clear trend can be observed.

4.3.2. AVERAGED LAYER DENSITY
A measure to more quantitatively observe changes in the first layer around the intruder
is the averaged layer density ρL . The layer density is computed using Eq. (4.4) with rs =
rp +2rb to capture the first layer. In Fig 4.8(a) the layer density is shown as function of
S. A clear downwards trend can be observed as the size ratio increases. It is expected
that as S → 0 the average density of the flow, ρL = ρbφ is obtained, since it would be
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Figure 4.6: Coarse grained density profiles around an intruder at zp,0 = 18 in the xz-plane with coarse grain
width of w = 0.5 and changing density D . Symbols and colour bars are similar to Fig. 4.4. Here ∆F is the
difference between the total contact forces on the intruder and the gravity force, where a positive number
indicates an upwards lift force. The relative velocity of the intruder with the flow is indicated by λx , for more
details see section 4.4.

Figure 4.7: Coarse grained density profiles around an intruder at zp,0 = 18 in the xz-plane with coarse grain
width of w = 0.5 and changing friction ratio M . Here ∆F is the difference between the total contact forces on
the intruder and the gravity force, where a positive number indicates an upwards lift force. Symbols and colour
bars are similar to Fig. 4.4.
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equal to the average of the flow in a sphere around a singular point. For S = 0.5 this
value is already close to ρb . For large values of S is it apparent that the density around
the intruder reduces. Although a linear trend could be observed in the current region
of investigation, it is highly unlikely that this continues for large S. Eventually for really
large S it should become constant, independent of S for S →∞.

Variations of ρL as a function of D are shown in Fig. 4.8(b). For a wide range of values
of D there appears to be a plateau of constant ρL , yet for larger and smaller values of
D the density seem to reduce slightly. One possible theory for this could be that as D
increases, the particle has an increased relative velocity compared to the surrounding
particles, creating a void in its wake. This effect can also be observed in Fig. 4.6.

The effect of friction on the layer density seems to be remarkably small, which sup-
ports the observation in Fig. 4.7 that the density profile around the intruder is barely
affected by the friction. A small trend could be noted where low friction shows a slightly
more denser layer than for a highly frictional intruder.
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Figure 4.8: The average density of the first layer around the intruder particle for different properties. (a) zp,0 =
23, D = 1 and M = 1, (b) zp,0 = 8, S = 2.4 and M = 1, and (c) zp,0 = 18, S = 2.4 and D = 1. Note the different
vertical axis. The red cross marks similar intruder properties between the graphs.

4.3.3. COORDINATION NUMBER
The density profiles are related to the average number of contacts of bulk particles with
the intruder, the coordination number,

Z = Nc

Nt
, (4.5)

with Nc the total measured number of contacts and Nt the number of time steps. The
coordination number for S is shown in Fig. 4.9(a) a clear upward trend is shown as S
increases. It is expected that for large values of S the surface area is the dominant factor,
Z ∝ S2. A quadratic fit with an offset seems to work really well, yet for S < 1 a different
behaviour is observed which appears to be roughly linear. This change in behaviour
could be related to asymmetric segregation between large and small particles [14].

To understand this, define the number of particles inside the first layer,

Np = ρLVL

ρpVb
= ρL

ρb

(
6S2 +12S +8

)
, (4.6)
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with VL the volume of the layer and Vb the volume of the bulk particles. From Fig. 4.8
it was shown that although the density decreases, this is a minor effect and hence the
number of particles inside the layer could be approximated with Np = φ(6S2 +12S +8)
for small values of S as can be seen in Fig 4.10(a).

The efficiency of these particles to make a contact with the intruder is defined as
ec = Z /Np and this is shown in Fig. 4.10(b). For S = 1 it takes roughly 5.5 particles to
create a contact on the intruder. As the size ratio increases this efficiency increases, im-
plying that more particles are packed efficiently within the layer. It is this effect that
could explain why the intruder S = 2.4 in Fig. 4.2 shows extra layers, because the parti-
cles inside the layer themselves form a shell like structure. By definition the maximum
value of ec could be one, yet the actual limit is elusive. As S → 0 the efficiency declines

to zero as a point will never contact any bulk particles. The fit ac

[
1−e(−Sb

c )
]

captures ec

pretty well, obtaining a lower limit of zero and predicting an upper limit of e∞c = 0.3.

The dramatic decline in efficiency for S < 1 could be explained by Fig. 4.10(c) which
shows the contact probability which is defined as Pc = Tc /Ts , where Tc is the time the
particle has at least one contact and Ts is the total simulation time. A value smaller
than one implies that the intruder is in free flight, not partaking in the flow. A curious
observation is that even for S = 1 the intruder is not always in contact with the other
particles, roughly 8%. At S > 1.6 the particle will practically be always in contact with at
least one other particle. Small particles simply do not partake in the fluid as they reside
in voids generated by the larger bulk particles.

Combining the observations from Np and ec yields an estimation for the number of
contacts in a granular flow

Z = Np ac

[
1−e(−Sbc )

]
. (4.7)

This relation now also captures the low S values and physically sensible limits. The de-
pendency of ec on φ would be interesting future work.

The dependence of Z on D is shown in Fig. 4.9(b). There is a visible trend that is
very similar to Fig. 4.8(b) Because in this situation the size ratio is constant, the number
of particles in the layer only vary with ρL , yet this small deviation in ρL could cause a
particle to lose it’s contact with the intruder.

The effect of M on Z is shown in Fig. 4.9(c). A clear trend can be observed between
no friction and high friction, captured really well with an error function. Interestingly,
this might be inversely related to Fig. 4.8(c).

4.4. VELOCITY

An important aspect of the system shown in Fig. 4.1(b) is the shear. How this shear flow is
locally affected by the intruder properties is investigated in this section. The effect on the
streamlines is investigated in section 4.4.1. Additionally the translational velocity up and
angular velocity ωy of the intruder are compared with the reference flow. Notation is as
follows. Denoting the velocity field of the bulk as u = (u, v, w)T , the relative velocity field
around the particle can be expressed as ur el = up −u, where up is the particle velocity.
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Figure 4.9: Coordination number Z of the intruder. (a) Coordination number as function of S. quadratic
fit parameters are a = 1.47 and b = 1.48 and the second fit has values of ac = 0.3121 and bc = 0.6638. (b)
Coordination number as a function of D , with the dashed back line as visual guide. (c) Coordination number
as a function of M with fit function parameters Z0 = 9.45, ∆Z = 0.53, M0 = 0.32 and ∆M = 2.0. The red cross
marks similar intruder properties between the graphs.
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Figure 4.10: (a) Average number of particles located in the first layer around the intruder particle. (b) Con-
tact efficiency of particles in first layer around the intruder. Fit values are ac = 0.3121 and bc = 0.6638. (c)
Probability of the intruder having at least one contact with a bulk particle. Fit values are a = 2.01 and b = 3.35.
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4.4.1. FLUID VELOCITY PROFILES

The relative velocity profile around an intruder in the xz-plane for different S is shown in
Fig. 4.11. Consider the case where the intruder has the same size as the bulk particles, S =
1. The flow has a positive shear rate γ̇ and hence at the top of the intruder the particles
move from left to right and at the bottom the particles move from right to left.

The small particles appears to reside in a layer that stretches from left to right. This
layer has approximately the height of the bulk particle. Inside the layer there is some
circulation, however the streamlines indicate that particles present in the layer stay ap-
proximately in the layer. The extent of this feature is larger than four times the bulk
particle diameter, however on the right side of the intruder the layer starts to diminish.
This velocity layer explains the high density peak left and right of the intruder in Fig. 4.4
as these particles have no big tendency to move up or downwards. Above and below the
intruder the velocity profiles seem barely affected and remain straight lines.

As S increases, it does not "fit" in the layer anymore and hence it has to push particles
away on the top and bottom, which can clearly be observed in Fig. 4.11. The layers re-
main present in the profile, and their height remains approximately the height of a bulk
particle. When S →∞ it is expected that the layers reduces to a single line obtaining a
stagnation point at the intruder, equivalent to a stagnation point in a standard fluid. For
S = 2.4 a clear difference in layer position can be observed left and right of the intruder.
The right layer appears to be slightly higher than the left layer. This effect can also be
observed in the density profile, Fig. 4.4, where the high density peaks left and right of the
intruder show a similar effect.

The effect of density on the streamlines is shown in Fig. 4.12. At first glance no dra-
matic change can be observed between various values of D . However, for D > 1 it ap-
pears that the thickness of the layer on the right-hand side is reduced. As the density of
the intruder increases, the intruder will start to penetrate the flow yielding a significant
change in flow profile. It is believed that for D = 1.67 this effect is slowly starting to be-
come visible. This has connections to the slight change in structure and coordination
number observed in section 4.3. Future investigations could reveal this change in flow
and structure.

The effect of M on the streamlines is displayed in Fig. 4.13. The difference between
M = 1.0 and M = 100 is not profound, which could be related to the coordination num-
ber in Fig. 4.9 where the value of M = 0.5 approximates the high friction plateau. Inter-
estingly a huge difference between M = 1.0 and M = 0.01 can be observed. The effec-
tive layer seems to change structure yielding a double layer structure and reducing the
effective shear zone area in the top-left and bottom right of the intruder. Additionally
the effect of the intruder with respect to streamlines above and below the intruder is re-
duced significantly, with practically straight lines one bulk particle above the intruder.
Curiously, this effect is not very pronounced in the density field around the intruder, see
Fig. 4.7. A reduction in the compressional region of the flow could be the mechanism
behind the reduced lift force observed in [33].

The length of the streamlines is an indication of the disturbance of the flow away
from the particle. When the lines are straight, they have the domain length Lx . Fig. 4.14
shows the non-dimensional streamline length Ls (z) for z ∈ [0,Lz /2]. Only streamlines
that reach the other side of the domain are taken into account to avoid the circulation
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Figure 4.11: Magnitude of the relative velocity, |ur el | around the intruder particle for various S. The relative
velocity at the height of the intruder is approximately zero by definition. The shear rate γ̇= ∂ux /∂z is positive.
The intruder is located at approximately z = 23.

Figure 4.12: Magnitude of the relative velocity, |ur el | around the intruder particle for S = 2.4 and various D at a
height of approximately zp,0 = 18. The shear rate γ̇ is positive. The color bar is identical to Fig. 4.11.

Figure 4.13: Magnitude of the relative velocity, |ur el | around the intruder particle for S = 2.4 and various M at
a height of approximately zp,0 = 18. The shear rate γ̇ is positive. The color bar is identical to Fig. 4.11.
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areas in the flow layer.
For S = 1 a fluid layer of roughly 0.5 can be observed. Between z = 0.5 and z = 0.8 a

short disturbance in the streamlines can be measured and for z > 0.8 the streamlines are
practically straight. The disturbance length scale is defined at the point when Ls /Lx =
0.999. For S = 1 This is roughly 1.6rp and for S = 2.4 roughly 2.0rp . Changing the density
ratio does not show any significant differences, indicating that the flow disturbance is
not influenced by the density of the particle, but only by the size. When considering
the friction clear deviations can be observed again. Small friction reduces the influence
range to 1.5rp . The difference between M = 1 and M = 100 having both approximately
an influence range of 2rp .
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Figure 4.14: The streamline lengths divided by the domain lengths for various intruder properties. The crossed
circles mark the value of Ls /Lx = 0.999 and the dashed lines indicate the particle radius.

4.4.2. LAG VELOCITY
As the particle changes properties, it starts to interact differently with the surrounding
particles. One of the measurements of this behaviour is the lag velocity, which recently
has been linked to segregation lift force [33]. Here the lag velocity in x-direction is de-
fined as

λx = up −uR , (4.8)

where up is the velocity of the particle and uR is the reference velocity of a flow without
the intruder, at the position of the intruder. Note that definition is different compared
to [33], where the flow velocity including the intruder was used.

The lag of the intruder in a chute flow with an angle of θc = 22° is shown in Fig. 4.15(a).
At S = 1 the lag velocity is expected to be zero due to symmetry, yet this is not the case. It
is possible that locally the structure around the particle was different from the theoretical
case. As S > 1 a clear trend emerges of λx ∝ (1/S −1) which is similar to the observed
trend in Chapter 2, even though a different measurement of λx is used.

Changing the density of the particle results in Fig. 4.15(b). A linear trend in λx can
be observed when varying D . With approximately a zero velocity at D0 ≈ 1.2. The lin-
ear increase can be explained by the gravity force, which also increases linearly with D ,
which is (partially) compensated by a velocity based drag force [24]. Interestingly, the
value of D0 is in agreement with Fig. 4.9(b) where the coordination number has a peak
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at roughly the same value. For high values of D , the intruder starts to penetrate the flow
similar to a ball falling on a bed of grains. In these situations a non-linear scaling might
be observed [26].

The trend of λx as function of M is given in Fig. 4.15(c). A positive lag is observed for
very small M while a negative lag is observed for a large M . At M ≈ 1 there seems to be
great fluctuations in λx which can’t directly be explained. The overall trend follows the
inverse trend of the coordination number, see Fig. 4.9(c).
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Figure 4.15: The lag velocity λx with changing intruder parameters. (a) Lag velocity for changing S at a chute
angle of θc = 27° at a height of Zp ≈ 23. (b) Lag velocity for an intruder with S = 2.4 and changing D at a chute
angle of θc = 22° at a height of Zp ≈ 18. (c) Lag velocity for an intruder with S = 2.4 and changing M at θc = 22°
and Zp ≈ 18.

4.4.3. ANGULAR VELOCITY
The angular velocity of an intruder has been suggested to play an important role in seg-
regation [34], although no direct link was given. Here the angular velocity is investigated
in more detail. The angular velocity scaled by the shear rate in a chute flow of an in-
truder with S = 1 at various heights is shown in Fig. 4.16. As expected due to symmetry,
no rotation is observed around the z- and x-axis . A clear positive angular velocity along
the y-axis can be observed which remains constant after scaling with the shear rate, as
expected. Since the segregation force in a chute flow is height independent [32], it could
be possible that ωy /γ̇ is related to the segregation force.

The scaled angular velocity for different intruder properties are shown in Fig. 4.17.
When the size ratio increases, the angular velocity decreases with a minimum value at
S = 2. Changing the density of the intruder practically has no influence on the angu-
lar velocity of the intruder. The angular velocity for different friction is very interesting.
For large M the angular velocity seems to be saturated at a constant value. A peak value
occurs for small M , yet if the intruder particle has no friction (µpb = 0), there is no incen-
tive for the particle to rotate and no angular velocity is expected. It appears this effect
will only be observed for extremely small values of M .

4.5. STRESS
In this section the effect of the intruder on the stress is investigated. The symmetric
stress tensorσ can be decomposed in an isotropic and a deviatoric part,σ=τ−p I . Here
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Figure 4.16: The angular velocity along the given axis x, y and z for an intruder particle of S = 2.4 in a chute
flow angle of θc = 27°.
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θc = 22°.
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τ is the (deviatoric) shear stress tensor and p = Tr (σ)/3 is the isotropic (compressional)
pressure. The norm of the deviatoric stress tensor is given by |τ| =p

τi jτi j . Section 4.5.1
discusses the pressure and section 4.5.2 discusses the shear stress. Bulk friction, the ratio
between pressure and shear stress is discussed in section 4.5.3.

To investigate non-Newtonian stress effects in the flow, the deviatoric stress tensor
can be transformed in its diagonal form,

τeig =
τ1 0 0

0 τ2 0
0 0 τ3

= RTτR , (4.9)

where R is the rotation matrix containing the eigenvectors of the system and τi are the
eigenvalues sorted in a descending order. The ratio of Λ = τ2/τ1 indicates the out-of-
plane anisotropy within the flow and is discussed in section 4.5.4.

Another non-Newtonian effect observed in granular flows is the non-colinearity be-
tween the shear rate tensor γ̇ and τ, however the shear rate tensor contains too much
noise to make reasonable observations.

4.5.1. PRESSURE
The pressure field around the intruder can be decomposed in a mean hydrostatic con-
tribution from the reference flow and a lift contribution induced by the intruder,

p = pR +pL . (4.10)

The hydrostatic pressure in a chute flow is given by pR = (1−αzz )φρp gz (h − z) where h
is the height of the flow and αzz = 1−σzz /p = 0.05 is a factor due to anisotropy [2]. Here
we obtain the lift pressure pL by subtracting the pressure component far away from the
intruder from the local pressure field around the intruder.

For increasing S the lift pressure is shown in Fig. 4.18. For S = 1 a layering pattern
can be observed which is consistent with the density layer profile in Fig. 4.4. The pres-
sure within the first layer does not show a significant structure. As the size ratio increases
a clear the magnitude of the pressure in the compressional regions is observed. This is
most likely related to the bulk particles explicitly have to move over the intruder par-
ticles, as seen from the velocity profiles, Fig. 4.11. The pressure increase seems asym-
metric with more pressure at the bottom side, yielding lift forces in both the x- and z-
direction.

Interestingly, in the case of S = 2.4 the pressure region on the bottom is divided into
two parts which extend for roughly two to three layers, marked by the dashed red line.
The angles are roughly 25° and 60°. It is possible that this is caused by the structure
having two preferred particle positions in the compressional region.

The lift pressure field for S = 2.4 and changing D is shown in Fig. 4.19. There seems
to be no significant change in pressure which, similar to S, could be related to the un-
changed flow around the intruder, Fig. 4.12.

Variations in pL due to M are shown in Fig. 4.20. A remarkable difference between
M = 0.01 and M = 1 can be observed. When the intruder has barely any friction the
anisotropy in pressure seems to disappear. Both M = 1 with M = 100 show comparable
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pressure fields. These findings are also in line with the findings observed in the velocity
profile, Fig. 4.13.

Figure 4.18: The lift pressure pL for different S at zp,0 = 23 in the xz-plane with coarse grain width of w = 0.5.
The x- and z-axis limits are [−4,4]. White dashed lines indicate 0°, 60° and 120° angles. Red dashed lines
suggest local (time-averaged) force chains.

Figure 4.19: The lift pressure pL for S = 2.4 and different D at zp,0 = 18. Color bar and other details are similar
to Fig. 4.18.

Figure 4.20: The lift pressure pL for S = 2.4 and different M at zp,0 = 18. Color bar and other details are similar
to Fig. 4.18.
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4.5.2. SHEAR STRESS

Similar to the pressure, the norm of the shear stress |τ| =p
τi jτi j contains a linear back-

ground dependency in z, τR . The lift shear stress is then defined as τL = |τ|−τR .

The lift shear stress for S is shown in Fig. 4.21. For S = 1 there appears to be shear
in the top-left and bottom-right corner close to the particle. The top-right and bottom-
left show no shear. This is consistent with the compressional and tension regions. As
the size ratio increases, the shear stress shows a significant increase with a peak value of
roughly 4 at S = 1.6 and roughly 12 at S = 2.4. This increase is significantly stronger than
the change in pressure. It appears that the angle of the shear stress remains 45° for all S.

In Fig 4.22 the density of the intruder is varied and it is no surprise that the lift shear
stress field doesn’t show any significant change, similar to the density, velocity and pres-
sure fields.

The friction has an enormous impact on the lift shear stress as can be observed in
Fig. 4.23. When friction is almost absent, the shear stress field also is strongly diminished
by a factor of roughly three. The difference between M = 1 and M = 100 is not very
significant. Also in the case of friction the angle of shear stress remains 45°.

4.5.3. BULK FRICTION

An important quantity in continuum modeling of granular materials is the bulk friction
µ, defined as the ratio of shear stress and pressure,

µ= τ

p
(4.11)

Note that this is not the friction used in interaction between particles used in Table 4.1.
The friction for different S is shown in Fig. 4.24. For S = 1, an almost homogeneous field
of µ ≈ 0.6 is observed. This is higher than the theoretical bulk friction of a chute flow,
µ= tan(θc ) = 0.40. A mild increase of the bulk friction can be observed in the top-left and
bottom-right corner at an angle of 135°, with a value of roughly µ = 1.2. As S increases,
this effect is enhanced significantly to a value of approximately µ = 2.0 for S = 2.4. As S
increases, a new feature in the tensional regions can be observed, where four spots show
a reduced bulk friction. The minimum bulk friction value in these spots is approximately
µ= 0.25, which is a significant reduction compared to the average bulk friction far away
from the intruder. The mechanism behind this feature is unclear, however it could be
related to the detachment of the flow.

The flow profiles around different density ratios for S = 2.4 is shown in Fig. 4.25.
There does not appear to be a visible difference between different D , in line with ob-
servations for the shear stress and pressure in Fig. 4.22 and Fig. 4.19, respectively.

The effect of friction is shown in Fig. 4.26. For increasing M , the compressional re-
gion grows slightly, but the maximum measured bulk friction remains roughly µ = 2.0.
The influence of M on the reduced friction in the tensional regions is apparent when
comparing M = 0.01 and M = 1. The region of reduced bulk friction is larger for low M
and the minimum value is close to µ= 0.15.
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Figure 4.21: The lift shear stress τL for different S at zp,0 = 23 in the xz-plane with coarse grain width of w = 0.5.
The x- and z-axis limits are [−4,4]. White dashed lines indicate 45° and 135° angles.

Figure 4.22: The lift shear stress τL for S = 2.4 and different D at zp,0 = 18. Color bar and other details are
similar to Fig. 4.21.

Figure 4.23: The lift pressure pL shear stress τL for S = 2.4 and different M at zp,0 = 18. Color bar and other
details are similar to Fig. 4.21.
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Figure 4.24: The bulk friction µ for different S at zp,0 = 23 in the xz-plane with coarse grain width of w = 0.5.
The x- and z-axis limits are [−4,4]. White dashed lines indicate 45° and 135° angles.

Figure 4.25: The bulk friction µ for S = 2.4 and different D at zp,0 = 18. Color bar and other details are similar
to Fig. 4.24.

Figure 4.26: The bulk friction µ for S = 2.4 and different M at zp,0 = 18. Color bar and other details are similar
to Fig. 4.24.
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4.5.4. OUT-OF-PLANE ANISOTROPY
The ratio of the eigenvalues Λ is shown in Fig. 4.27. For S = 1 a relative homogeneous
field is observed with fluctuations around the value of Λ ≈ −0.2 (plane stress would be
Λ = 0) , which is in agreement with observations in Ref. [2]. As the size ratio increases
Λ changes significantly. The top-left and bottom-right side of the intruder approach
a value of Λ = −0.5 (dark blue) which represents an intermediate state between plane
stress and axial compression (Λ = −1.0). This is in line with the schematic picture in
Fig. 4.1(b) and coincides with the change of flow profile around the intruder in Fig. 4.11.
At the top-right and bottom-left cornerΛ changes sign from negative to positive and ap-
proaches a value ofΛ≈ 0.25. An explanation could be that the flow gains suddenly more
freedom after passing over the larger particle. Curiously both sides show two distinct
peaks, but it is not directly clear what could cause this structure. Locations of positive
Λ could possibly related to the locations of reduced friction observed in Fig. 4.24. Sim-
ilar to the shear stress, the angle of the compressional direct remains 45° and therefore
seems to be determined by the direction of shear.

Change ofΛwith respect of D is shown in Fig. 4.28. Although with some fluctuations,
the structure observed for S = 2.4 does not change significantly. No significant trend can
be observed which is in line with all other fields for changing D .

Even for different M , shown in Fig. 4.29 the structure remains and does not seem
to be influenced much by changing the friction. It appears to be a robust feature for
particles with S > 1.

4.6. CONCLUSIONS & DISCUSSIONS
In this work we have extensively analysed the continuum fields around a larger intruder
particle in a granular flow. Three important intruder properties size, density and friction
were varied to observe the response of the flow around the intruder.

The general structure of an intruder in a granular flow is determined by the shape of
the intruder and the shear flow. The shape causes a spherical layering structure and the
shear flow introduces compressional and tension regions. In the compression regions
the flow is attached to the intruder and in the tension regions barely any contacts are
present. The extent of the layering structure goes up to a thickness of three layers for the
presently investigated intruders.

The most pronounced effect observed in the flow is caused by the size of the intruder.
Bulk particles form layer structures in the flow and as the intruder increases size it does
not fit in these layers. The result is a significant change in the velocity field around the
intruder. This change in flow is accompanied by a change in pressure and shear stress
at the compressional regions. An anisotropic structure emerges with an angle of 45°.
The angle does not appear to depend on the intruder properties. The anisotropic stress
field is asymmetric which indicates could be caused by an asymmetry in the flow. Future
investigations are recommended to investigate whether a gradient in the granular flow
could cause this asymmetry.

Friction has shown to be an important influence on the emerging stress fields around
large intruders. When friction is almost turned off the anisotropic stress seems to al-
most disappear and the influence of the intruder on the velocity profile is significantly
reduced. The influence of friction for M > 1 is only minimal.
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Figure 4.27: Ratio of eigenvalues Λ = τ2/τ1 shown for various values of S. Red lines indicate a sign switch.
White dashed lines indicate 45° and 135° angles.

Figure 4.28: Ratio of eigenvalues Λ = τ2/τ1 shown for various values of D . The red lines indicate a switch in
sign.

Figure 4.29: Ratio of eigenvalues Λ = τ2/τ1 shown for various values of M . The red lines indicate a switch in
sign.
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The range of investigated densities barely have any influence on the flow. The only
significant change could be measured in the lag velocity in Fig. 4.15 which is approxi-
mately linear, capturing the change of the change in gravity force. Furthermore the co-
ordination number shows a peak roughly at the value of no lag in Fig. 4.9. This indicates
that the structure is changing when increasing the density, albeit very small for the cur-
rent study. Increasing the density by an extra order of magnitude would be interesting,
to see the transition from a flowing particle to a penetrating particle.

The layering structure of the granular flow could have a significant effect on the drag
experienced by an intruder. Specifically, in Ref. [25] a Stokesian drag law on a single
(dense) intruder has been observed in a chute flow. The drag coefficient of this drag law
changes for different chute flow angles and this change has not yet been understood. A
possible explanation could be that if the velocity of the intruder is in the direction of the
compressional regions the coefficient might be larger than if it is in the direction of the
tension regions. Future investigations into this mechanism can be studied by pushing
a free-flowing intruder in directions other than the gravitional direction, while keeping
the chute flow angle constant.

The influence range of the intruder on the bulk flow varies, depending on the ex-
amined continuum field. When considering the density field, the maximum observed
layering around the intruder increases for S and for S = 2.4 disturbances are observed
three layers away from the intruder. From the limited range of S investigated it is insuf-
ficient to determine how this trend develops for larger S and will require further investi-
gation. Considering the velocity profile, flow deviations up to 2 times the intruder radius
are observed. The stress fields only show significant changes within the first layer of the
particle.

Rich non-Newtonian effects around the intruder particle are observed for S > 1, es-
pecially the ratio of eigenvalues and friction show significant behavioural changes. Other
non-Newtonian effects such as the non-colinearity between the stress tensor and the
shear rate tensor require more accurate CG fields as a numerical derivative of the veloc-
ity profile yields a high noise to signal ratio.

An important future goal is to simulate objects in granular flows. While dense gran-
ular flows have been captured with great success by the µ(I )-rheology [46], it does not
capture the rich layering structure observed in the density fields when following a single
particle. Furthermore the flow around an object always often yields stagnation regions,
regions where there is no shear present. The µ(I )-rheology can’t cope with this unless
regularised. For sufficient large particles, the structural layering around the object is
smaller than the object, such that it could be replaced by a special boundary condition.
However this would require further investigation. Finally, the rich non-Newtonian ef-
fects observed are generally not included in constitutive models and could prove to be
important.
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5
FORCE MODEL FOR A LARGE

INTRUDER IN DENSE GRANULAR

FLOWS

The fundamental origin of segregation of a large intruder is investigated in a monodis-
perse sheared granular flow. The intruder behaviour is described by a force model, which
includes a segregation inducing lift force which scales proportional to γ̇(∂η/∂z). This scal-
ing allows for a unified segregation mechanism valid for many different systems: large
particles tend to move to low viscosity regions. This observation is critically important for
the understanding of segregation. Moreover, it could significantly help improve contin-
uum segregation models. The derived force model can be used to predict segregation in
dense mixtures and could even capture reverse segregation.

5.1. INTRODUCTION
A plethora of theories have been proposed to explain size segregation in dense granu-
lar flows such as percolation, kinetic sieving, squeeze explusion and granular tempera-
ture [2–7].

Based on these theories segregation models have been developed for bidisperse mix-
tures of large and small particles. A gravity-driven binary mixture theory has been de-
veloped by formulating a model for kinetic sieving [8]. This was done by partitioning
the pressure based on the local solids fraction of large and small particles. An improve-
ment of this model has been made by the observation that this pressure partitioning is
asymmetric [9, 10]. Further extensions have been made by incorporating the density ra-
tio [11]. By introducing a grain size coordinate a mixture theory for polydisperse flows
was developed [12]. Alternative models consider kinetic temperature instead of gravity
as the driving force behind segregation [13, 14].

The simulations in this chapter have been performed by F. Guillard [1].
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A recent comparison of these models shows that it is not clear why the models cap-
ture 50/50 bidisperse segregation correctly [15]. Moreover, in dilute regimes (e.g. 10/90
mixtures) most models do not capture segregation as accurately [16]. Therefore, a more
fundamental approach to segregation is required.

The origin of segregation is investigated by considering one large particle (intruder)
in a monodisperse bulk and to capture its behaviour in a force model. A previous study
with a similar aim shows that the total contact force on an intruder can be expressed
by a combination of gradients in pressure and shear stress and bulk friction-dependent
empirical functions [1]. Here we take a different approach by decomposing the total
contact force into buoyancy, drag and lift forces, similar to a particle in a Newtonian
fluid [17]. The buoyancy force has been studied in detail in Chapter 3 revealing a size
ratio-dependent mechanism related to the contact density on the surface of the intruder.
Drag forces on intruder particles have recently had much attention [18, 19], showing
Stokes drag-like behaviour. The lift forces in such a model have not yet been investigated.
Especially the recently discovered velocity lag inducing lift force in the flow-direction,
observed in Chapter 2, has not yet been understood. The objective of this chapter is to
capture the scaling laws of the lift forces and to complete the force model on the intruder.

To determine the lift force scalings the segregation direction is considered first. In
Chapter 4 the origin of lift of an intruder has been visualised by analysing the impact
of the intruder on the flow. A clear anisotropic stress profile emerges as the intruder
particle does not fit in a flow layer of bulk particles. This anisotropy is likely caused by an
asymmetry in the properties of the flow (i.e. shear-rate, viscosity, granular temperature).
Therefore, a systematic investigation of all important flow properties is performed to
determine the correct segregation direction.

The magnitude of segregation is then investigated by isolating the lift force on the
intruder. In most systems this is non-trivial, due to the presence of stress gradients in
the flow. However, it is possible in a plate driven sheared setup with gravity in either
vertical or horizontal direction to either remove the pressure or shear stress gradient [1].
The scaling of the lift force in this configuration is then investigated in relation to the
flow gradient that determines the segregation direction. This result is then combined
with the buoyancy and drag forces into a force model of the intruder.

The Chapter is organised as follows. In Section 5.2 the method and simulations are
discussed. The origin of segregation is investigated in Section 5.3. Combining all results
lead to a force model in Section 5.4. The result is concluded and discussed in Section 5.5.

5.2. METHODS AND SIMULATIONS
The 2D configuration considered in this work is shown schematically in Fig. 5.1(a) and is
the same as in Ref. [1]. The setup consists of a fixed rough bottom, while the top consists
of a moving rough rigid plate. The plate applies a pressure P0 on the granular material
and and moves with a velocity V , generating a sheared flow. In the x-direction periodic
boundaries are applied and gravity is applied under an arbitrary angle. The simulations
are performed in the discrete element software LIGGGHTS [20].

The bulk material consists of disk-shaped particles with a mean diameter of d =
1.5 mm and a density of ρb = 2500 kg/m−2. A slight polydispersity of 20% is added to
avoid crystaline structures. The normal contact forces between particles are modeled as
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spring-dashpot system with a stiffness of kn = 81×104 N/m and a dissipation coefficient
of γn = 12 kg/s. The tangential contact forces between particles are also modeled by a
spring-dashpot system with an added frictional slider. The stiffness and dissipation are
kt = 86×104 N/m and γt = γn , while the sliding friction is µb = 0.5.

Segregation is investigated by adding a single intruder with diameter dc to the system
at a height of zp,0. The intruder is attached to a vertical spring with stiffness ks = 70 N/m
to allow for some vertical movement, yet keeping the intruder roughly at the same flow
height. The spring force is defined as Fs =−ks (zp−zp,0), where zp is the average position
of the particle. For more details the reader is referred to Ref. [1].

Measuring the lift force on the intruder is done by investigating two specific setups.
Both are shown in Fig. 5.1(b) and Fig. 5.1(c) with, respectively, vertical and horizontal
gravitation. In the first system no gravity force is present in the x-direction, such that the
lag inducing lift force, see Chapter 2, is isolated and in the second case the lift force in
vertical direction can be measured directly through the spring force.

(a) (b) (c)

Figure 5.1: (a) Schematic of the simulation setup, with a fixed bottom and a moving plate on top. The intruder
particle is attached to a spring to keep it from moving. (b) Velocity profile for a system with vertical gravity.
(c) Velocity profile for a system with horizontal gravity. Schematic and graphs reproduced from Ref. [1] with
permission.

5.3. RESULTS

A. HORIZONTAL GRAVITY

Consider a sheared flow with horizontal gravity. The spring force of the intruder is shown
in Fig. 5.2(a). For an intruder with S = 1, the spring force is very small, fluctuating around
zero. The gravity force is absent in the vertical direction, indicating that all the individual
particle contact forces are approximately balanced. As the intruder increases in size, a
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clear positive spring force can be measured. This implies that the particle has the ten-
dency to sink due to a downwards directed lift force.

Observations of a velocity lag were made in Chapter 2 for increasing intruder size.
Here the relative velocity of the intruder with the bulk velocity is defined similarly,

λ= up −uR (zp ), (5.1)

where up is the intruder velocity and uR (zp ) is the velocity of a reference flow at intruder
position zp without intruder present. For increasing S the considered system shows a
velocity rise, as can be observed in Fig. 5.2(b), which indicates that the intruder is moving
faster than the flow. This could be purely caused by the gravity force, however it could
also indicate a similar lift force present in the x-direction.
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Figure 5.2: Sheared flow with horizontal gravity (constant pressure) and various boundary conditions. Plate
velocity V = {2.5,5} m/s, respectively solid and crossed symbols. Plate pressure P0 = {1,2.5,5} Pa, respectively
square, diamond and triangle. Gravitational acceleration g = {3,5,7} m/s2, respectively blue, green and red.
(a) Measured spring force and (b) relative velocity of the intruder for increasing S. The data has been obtained
from Ref. [1].

B. VERTICAL GRAVITY

Now consider a sheared flow with vertical gravity. The spring force of the system is shown
in Fig. 5.3(a). At S = 1 there is no spring force active as expected. For increasing S a
negative spring force emerges, implying the intruder wants to rise. In this system the
gravity force is absent in the x-direction and therefore an imbalance in contact forces
would yield a velocity lag. The relative velocity of the intruder is shown in Fig. 5.3(b),
showing no velocity lag for S = 1. However, for increasing S, a velocity rise emerges,
implying the presence of a lift force in the x-direction. Note that most simulations follow
a downwards curve, but for roughly three simulations alternative behaviour is observed
for which no explanation has been found.
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Figure 5.3: Sheared flow with vertical gravity and various boundary conditions. Shear velocity V =
{1,2.5,5} m/s, respectively open, closed and crossed symbols. Plate pressure P0 = {1,2.5,5} Pa, respectively
circle, square and diamond. Gravitational acceleration g = {3,5,7} m/s2, respectively blue, green and red. (a)
Measured spring force and (b) relative velocity of the intruder for increasing S. The data has been obtained
from Ref. [1].

5.3.1. SEGREGATION DIRECTION
In the two sheared flow configurations considered thus far, the flow changes in such a
way that segregation direction reverses, including the direction of the lag velocity. It is
important - as a starting point - to understand in which direction the intruder segregates.
To this purpose, other configurations are also considered. In Fig. 5.4(a) and Fig. 5.4(b) the
sheared flows with horizontal and vertical gravity are schematically shown, together with
the observed lift force directions. The other configurations shown are: a chute flow [21]
in Fig. 5.4(c), a shear box [10] in Fig. 5.4(d) and a vertical chute [22] in Fig. 5.4(e). Not
all systems have been investigated with a single intruder, and therefore a reasonable as-
sumption is to take the lift force direction similar to the direction of a 50/50 mixture.

Previous investigations have linked the lift force direction with gradients in pressure
∂p
∂z , shear stress ∂|τ|

∂z or granular temperature ∂T
∂z [1, 22]. Two gradients that have not

yet been directly investigated to our knowledge are the shear rate gradient ∂γ̇xz
∂z and the

gradient in viscosity ∂η
∂z . These gradients are related to the shear stress, τ= ηγ̇xz . When

only flows with a shear component of γ̇xz are considered, the derivative of the shear
stress becomes

∂τxz

∂z
= η∂γ̇xz

∂z
+ ∂η

∂z
γ̇xz . (5.2)

To analysis of the sign of the gradient it is convenient to introduce a non-dimensional
ratio between the two terms,

α= η
∂γ̇xz
∂z

γ̇xz
∂η
∂z

. (5.3)
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In Fig. 5.4 the value ofα is shown for different flow configurations, together with the sign
of all gradients present in the flow. The derivation of α for the different configurations
can be found in Appendix B, where it is assumed that the bulk friction µ follows the well-

known µ(I )-rheology [23, 24]. The sign of γ̇xz and ∂γ̇xz
∂z can be determined directly from

the velocity profiles. The direction of the granular temperature can be estimated through

the observation of T ∝ γ̇2 [25], yielding ∂T
∂z ∝ γ̇xz

∂γ̇xz
∂z . The sign of the viscosity gradient

can be obtained with

sgn

(
∂η

∂z

)
= sgn

(
1

αγ̇xz
η
∂γ̇xz

∂z

)
, (5.4)

where the viscosity is by definition always positive. This definition is ill-defined in case
of a shear box where α= 0. Instead, the viscosity gradient can be expressed as

∂η

∂z
= 1

|γ̇xz |
β(I )

∂p

∂z
, (5.5)

where β(I ) is a positive valued function, see Appendix B for details.
Next, we investigate if a single gradient can capture segregation in the z-direction

correctly. The gradient ∂γ̇xz
∂z can be eliminated when considering the shear box, see

Fig. 5.4(d). Here positive segregation is present while ∂γ̇xz
∂z is absent. The gradient in

granular temperature shows an incompatibility when considering the sheared flow with
gx = 0 in Fig. 5.4(b) and the chute flow in Fig. 5.4(c). In both cases an upward lift force
is observed, while the gradient in temperature changes sign. Note that this is in contrast
with previous theories considering granular temperature [22]. The pressure gradient is
absent in the sheared flow with horizontal gravity and the vertical chute while segrega-
tion is still present, see Fig. 5.4(a) and Fig. 5.4(e). Therefore, the pressure gradient is also
eliminated. The only remaining gradient that captures all lift force directions correctly

is ∂η
∂z . Note that this does not imply that other gradients do not cause lift forces on the

intruder. Instead, ∂η
∂z could be identified as the dominating gradient causing the asym-

metry observed in Chapter 4.
A lift force in the flow direction has only recently been observed [21] and therefore

it is not known for all configurations. Interestingly, the direction of lift force in the x-

direction for γ̇xz > 0 is also captured by ∂η
∂z . By means of a mirror argument, the segrega-

tion in x-direction should change sign when γ̇xz < 0. In Fig. 5.5 all possible segregation

directions are shown, based on the sign of both ∂η
∂z and γ̇xz .

5.3.2. SEGREGATION MECHANISM
The next step is to determine the mechanism for segregation. Since the direction of

the lift force FL can be described by the sign of γ̇xz and ∂η
∂z , an obvious choice is to test

FL ∝ γ̇xz
∂η
∂z Vp , where Vp is the volume of the intruder. For most systems it is non-trivial

to isolate the lift force, especially due to gravity generating buoyancy-like forces, see
Chapter 3. However, the sheared systems in Fig. 5.4(a) and Fig. 5.4(b) give an unique
opportunity due to an absence of gravity force in the z- and x-direction, respectively.

Firstly, consider a sheared flow with horizontal gravity, see Fig. 5.4(b). In the absence
of a gravity force in the z-direction, the spring force purely compensates an emerging lift



5.3. RESULTS

5

77

ux

|umax|

z
h

g

(a) Sheared flow, gz = 0

x

z

γ̇ > 0 ∂γ̇
∂z

< 0

α < 0 ∂T
∂z

< 0

η > 0 ∂η
∂z
> 0

∂p
∂z

= 0 ∂|τ |
∂z

< 0

ux

|umax|

z
h g

(b) Sheared flow, gx = 0
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x

z

γ̇ > 0 ∂γ̇
∂z

< 0

α = 1 ∂T
∂z

< 0

η > 0 ∂η
∂z
< 0

∂p
∂z
< 0 ∂|τ |

∂z
< 0

ux

|umax|

z
h

g

(d) Shear box, γ̇ > 0

x

z

FLx unknown

γ̇ > 0 ∂γ̇
∂z

= 0

α = 0 ∂T
∂z

= 0

η > 0 ∂η
∂z
< 0

∂p
∂z
< 0 ∂|τ |

∂z
< 0

ux

|umax|

z
h g

(e) Vertical chute
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Figure 5.4: Different configurations showing the approximated non-dimensionalised velocity profiles u(z),
segregation direction of the (red) intruder and the sign of flow gradients. The gradients have been obtained as
discussed in section 5.3.1.
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∂η
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Figure 5.5: Segregation directions quantified by the signs of γ̇xz and
∂η
∂z .

force. Since the intruder is in a time-averaged steady state, the force balance in the z-
direction is given by FLz +Fs = 0. The scaled lift force in Fig. 5.6(a) shows a clear collapse
for most simulations. For small values of S some simulations go to zero as expected,
while some simulations do not. A possible cause for this could be high fluctuations ob-
served for intruders with S = 1. For large values of S the value seems to converge to a
value of approximately one.

Secondly, consider the x-direction of a sheared system with gravity in the vertical di-
rection, see Fig. 5.4(a). The presence of a lag velocity suggests a balance between two
forces. One forces is related to λx , commonly referred to as a drag force. The other force
is the lift force, FLx . The force balance can therefore be written as FLx −Fd (λx ) = 0. The
magnitude of either the lift nor the drag force can be measured, due to a lack of spring

force in the x-direction. However, it is possible to test whether FLx ∝ γ̇xz
∂η
∂z . In a 3D sys-

tem a Stokesian drag force has been observed with the scaling Fd ∝ ηλx dp [26]. There-

fore, a plausible scaling for a 2D system is Fd ∝ ηλx . Assuming that FLx ∝ γ̇xz
∂η
∂z Vp ,

a collapse should be observed when ηλx is correctly rescaled. In Fig. 5.6(b) the lag is
rescaled accordingly and shows a good collapse for most simulations.

Both systems show a lift force that indeed does scale with γ̇
∂η
∂z , capturing both seg-

regation in x- and z-direction with a unified mechanism. The segregation mechanism
can be understood when considering the velocity profiles observed in Chapter 4. Here
a large intruder does not fit inside a layer of bulk particles. An increased effort of the
bulk particles is required to move around the intruder, yielding anisotropic pressure and
shear stress fields. Bulk particles in low viscosity regions move more easily around the
intruder than bulk particles in high viscosity regions. Therefore, the the bulk particles in
the more viscous areas push the intruder towards low viscosity regions.
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Figure 5.6: (a) Scaled lift forces in z-direction of a sheared flow with horizontal gravity and various bound-
ary conditions. Plate velocity V = {2.5,5} m/s, respectively solid and crossed symbols. Plate pressure P0 =
{1,2.5,5} Pa, respectively square, diamond and triangle. Gravitational acceleration g = {3,5,7} m/s2, respec-
tively blue, green and red. (b) Scaled lift force in x-direction of a sheared flow with vertical gravity and
various boundary conditions. Shear velocity V = {1,2.5,5} m/s, respectively open, closed and crossed sym-
bols. Plate pressure P0 = {1,2.5,5} Pa, respectively circle, square and diamond. Gravitational acceleration
g = {3,5,7} m/s2, respectively blue, green and red. The data has been obtained from Ref. [1].

Simulations of intruders in chute flows show a z-independent lift force [21]. This

is agreement with the new scaling as for such flows γ̇ ∂η∂z is also independent of height,
see Appendix B. Simulations in vertical chutes can show reverse segregation when dilute
flows are considered [22]. In these cases the segregation mechanism might not apply as
the granular flow does not flow in layers. An alternative segregation mechanism in dilute
regimes could be due to an emerging density gradient in the flow or just due to the grav-
ity force. Instead, a density gradient emerges which could drive a possible alternative
segregation mechanism. Whether the new scaling works in a shear box remains to be
seen.

5.4. FORCE MODEL
With the newly found scalings in the moderate to large S-regime of the lift forces on
intruders, see section 5.3, a force model can be developed. The model will be derived
for gravity driven flows with only a shear stress component γ̇xz , such that the following
hydrodynamic relations can be adopted.

∂p

∂z
=φρb gz , (5.6)

and
∂τxz

∂z
=−φρb gx . (5.7)



5

80 5. FORCE MODEL FOR A LARGE INTRUDER

Fg

θg

FR

FL

FD

λ

θd

z

x

(a) g = ex,
∂ux

∂z > 0, ∂η∂z > 0

Fg

FR

FL

FD

λ

θd

z

x

(b) g = ez,
∂ux

∂z > 0, ∂η∂z < 0

Figure 5.7: A schematic of the forces on an intruder in a sheared flow with (a) horizontal gravity and (b) vertical
gravity.

Small anisotropies in dense granular flows are ignored here for simplicity [27].

The model consists of four different force types: a drag force Fd related to λ, an S-
dependent lift force FL , a gravity force Fg and a reference force FR . Here FR are the forces
caused by the presence of stress gradients in the reference flow profile (e.g. buoyancy
force). A general schematic description of the force model is shown in Fig. 5.7 for sheared
flows with horizontal and vertical gravity, respectively. In the following sections each
type of force is discussed.

5.4.1. REFERENCE FORCES

Reference forces are the forces on intruders that are already present on particles with
S = 1. Consider the forces on a bulk particle. Since the system is in a (time-averaged)
steady state, the total force on a single particle equals zero,

∑
F = 0. This balance can

be expanded into the gravity force F g and the reference forces resulting from collisions
with bulk particles F r such that,

F g +F S=1
r = 0, (5.8)

with

F g = gρpVp

[
sinθg

−cosθg

]
= Fg

[
sinθg

−cosθg

]
. (5.9)

Next, The contact forces can be expressed as an integral of the stress over the surface of
the particle, which has to be proportional to the gravity force,∫

Ap

σµ,S=1nd A+F g = 0. (5.10)
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Hereσµ,S=1 is the effective microscopic stress felt by the bulk particle and n is the normal
outward unit vector. For a bulk particle, it can be shown that

σµ,S=1 =σ/φ, (5.11)

where σ is the stress state of the reference flow, see Chapter 3. The most simple approx-
imation of the stress tensor of the considered hydrodynamic model is given by

σ=
[−p τ

τ −p

]
, (5.12)

where p and τ are defined through Eq. (5.6) and Eq. (5.7). This stress tensor has first been
used in segregation models by Ref. [12]. Substituting this tensor in Eq. (5.11) and then
integrating Eq. (5.10) yields

F R,S=1 = 1

φ

[
∂τ
∂z

− ∂p
∂z

]
Vp . (5.13)

Note that this force satisfies Eq. (5.8). The reference force in the z-direction is the buoy-
ancy force on the particle and in z-direction a similar type of force is observed. By in-
troducing a density ratio D = ρp /ρb , Eq. (5.13) can be rewritten in terms of the gravity
force,

F R,S=1 = 1

D
F g , (5.14)

When the size of the intruder increases, the reference forces have to be corrected due
to a change in contact density, see chapter 3. This is done by applying an S-dependent
correction function φB(S).

F R =−φB

D
F g , (5.15)

where φB(S = 1) = 1. Note that the reference (buoyancy-like) force is always in opposite
direction of the gravity force.

5.4.2. LIFT FORCES

With the newly obtained scaling, see section 5.3, the lift force can be expressed as

F L =
[

cLx

sign(γ̇xz )cLz

]
φB γ̇xz

∂η

∂z
Vp =

[
cLx

sign(γ̇xz )cLz

]
FL , (5.16)

where cLx and cLz are positive functions of S and B is the correction due to a lack of
scale-separation, see chapter 3. The direction is automatically satisfied by the shear rate
and the sign thereof. The lift force is not present at S = 1 and hence cLz (S = 1) = 0 and
cLx (S = 1) = 0. Since the lift force is related to shear, it is possible that the angle of lift
force is 45°. This implies that cLz = cLx . However, this is an assumption which will require
validation.
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Figure 5.8: The lag velocity times viscosity versus the spring force measured wit vertical gravity, marked by
the dashdot lines and horizontal gravity, marked by the dashed lines. Various boundary conditions are: plate
velocity V = {2.5,5} m/s, respectively solid and crossed symbols. Plate pressure P = {1,2.5,5} Pa, respectively
square, diamond and triangle. Gravitational acceleration g = {3,5,7} m/s2, respectively blue, green and red.
The data has been obtained from Ref. [1].

5.4.3. DRAG FORCES
The presence of a spring in the z-direction enables direct lift force measurement. In
absence of the spring force, the particle would rise with a (time-averaged) steady ve-
locity [28]. Therefore, the spring force effectively replaces the drag force. This implies
that the magnitude of the spring force would be very similar to the magnitude of the
drag force in the z-direction and additionally that the scaling between Fs and Fdx are
very similar. In Fig. 5.8 a correlation between the spring force and Fdx is found implying
Fs ∝ ηλx . As the drag of a single larger intruder particle has not been studied in detail,
a Stokesian drag law is adopted here, observed on a dense intruder particle in a chute
flow [26].

F d =−cdφBηλ

[
sinθd

−cosθd

]
=−Fd

[
sinθd

−cosθd

]
, (5.17)

where cd is the drag coefficient and λ is the absolute lag velocity of the particle. The drag
coefficient appears to change for different chute flow angles and the exact origin of that
behaviour is unknown. Furthermore, it is not clear if the drag coefficient scales with the
size ratio. Note that the drag force is always in the opposite direction of the velocity of
the lag velocity of the intruder.

5.4.4. FORCE MODEL
Summing up all forces discussed yields a model for a single larger intruder in a granular
flow, (

1− φB

D

)
Fg

[
sinθg

−cosθg

]
+FL

[
cLx

sign(γ̇xz )cLz

]
= Fd

[
sinθd

−cosθd

]
(5.18)

The model contains four unknowns, cd , θd , cLx and cLz .
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From the sheared flow with horizontal gravity, only two functions can be obtained.
The lift coefficient cLz is directly obtained as shown in Fig. 5.6(a) and the relation be-
tween drag and spring force observed in Fig. 5.8 yields

cdφB
λz

λx
= 1, (5.19)

where it is assumed that the magnitude of Fs is similar to the drag force in the z-direction.
The force balance in the x-direction does not allow for such measurement due to the
absence of a spring force.

Three coefficients can be measured for the sheared flow with vertical gravity. The
observed collapse function observed in Fig. 5.6(b) can be written as

cLx

cd
= f (S), (5.20)

where f (S) can be estimated by a 3rd order Laurent series. The second relation is similar
to Eq. (5.19). The third coefficient is cLz which can be directly computed by rewriting the
force balance in z-direction,

cLz =
Fs −

(
1− B

D

)
Fg

η
∂γ̇
∂z Vp

. (5.21)

Here the Voronoi correction is used, B = 1/φp , where φp is defined as the local Voronoi
volume of the intruder [21]. The local Voronoi volumes of the intruder are shown in
Fig. 5.9(a). For all simulations they seem to collapse on a single curve of

φp (S) = (φ−1)S−1.5 +1, (5.22)

with φ the solids fraction of the bulk flow. Note that this functional form is similar to the
results found in Ref. [21], with a different power of −1.5 instead of −1.2, obtained for a
3D chute flow. In Fig. 5.9(b) cLz is shown. Most simulations collapse on a similar curve
observed in Fig. 5.6(b). This suggests that that cLx = cLz , implying a lift force angle of
45°. Unfortunately, the drag force in the x-direction can not be measured and therefore
the model can not be closed with the current setup.

Experiments and simulations have reported that reverse segregation can take place
for large particles [29, 30]. The current force model could capture this effect due to the
first term in Eq. (5.18), where for increasing S the buoyancy force no longer is strong
enough to counter the gravity force. In flows where the lift force is only weak (i.e. small

γ̇xz
∂η
∂z ) it is possible that the lift force together with the buoyancy force are not strong

enough to compensate the gravity force and therefore the particle sinks.

5.5. CONCLUSIONS AND DISCUSSIONS
The lift forces on an intruder have been investigated by considering two (plate-driven)
sheared systems with a vertical gravity and horizontal gravity. By applying a vertical
spring on the intruder, the lift force in the vertical direction can be measured. The lift
force in the horizontal direction can only be indirectly observed by measuring a hori-
zontal velocity lag/raise.
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Figure 5.9: (a) Scaled local intruder solids fraction φp with φ for various simulations. (b) Lift coefficient cLz ,
Eq. (5.21) for the system with vertical gravity and different boundary conditions, see Fig. 5.6 for details.

A unique segregation mechanism is uncovered by systematically considering flow
properties in many other different configurations. The sign of all flow gradients is com-
puted and compared, revealing a single gradient that determines the direction of seg-

regation, namely the gradient in viscosity ∂η
∂z . The implication is that a large intruder

particle always moves to low viscosity regions in a flow. This observation is in contrast
with the theory of temperature-driven segregation [7]. The viscosity-driven mechanism
is confirmed by direct measurements of the lift force in the sheared system, yielding a lift

force scaling of FL ∝ γ̇xz
∂η
∂z Vp .

The observed scaling implies that γ̇xz
∂η
∂z Vp is the dominant lift force. However, it

remains possible that the (shear stress) related term η
∂γ̇xz
∂z Vp also induces a weaker lift

force with another S-dependence. This lift force scaling would show close similarities
with Faxen’s law [31] and warrants further research. Alternatively, this lift force is related

to γ̇xz
∂η
∂z by the parameterα and could explain why the lift coefficients measured in both

horizontal and vertical sheared systems, see Fig. 5.6(a) and Fig. 5.9(b) scale differently
with S.

A physical explanation of segregation is that a larger intruder does not "fit" in side a
layer of bulk particles, see chapter 4. Bulk particles have to move around the intruder and
this takes considerably more effort in high viscosity regions than in low viscosity regions,
yielding an anisotropic and asymmetric stress profile. According to this explanation,
segregation could be prevented in flows with no viscosity gradient present. With the
presence of gravity this is hard to obtain, but not impossible.

Based on the new segregation scaling, shown in this chapter, a force model is derived
that describes the behaviour of an intruder in dense granular flows. The model contains
gravity, lift, drag and reference forces (i.e. buoyancy force). The force model takes scale-
separation into account such that for larger S the intruder reference forces reduce. This
potentially enables reverse segregation, however more research is required to establish
if this is correct [29]. The model could not be closed with the current set of simulations.
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Closure of the model can be obtained by measuring the actual segregation velocity λz

when the spring is removed. This would enable the investigation of the S-dependence of
cd . The currently proposed model is expected to be valid only in the dense flow regime.

The current ideas capture the direction of segregation in many systems, but only for
the chute and sheared systems the scaling has been directly measured. To fully confirm
the proposed mechanism, it is necessary to perform single intruder simulations in verti-
cal chutes, shear box setups and flows with no viscosity gradients.
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6
CONTINUUM SIMULATIONS OF

GRANULAR MEDIA IN A

SPLIT-BOTTOM RING SHEAR CELL

Recently proposed generalised µ(I )-rheologies are compared to the classical µ(I )-rheology
for steady state granular flow. This is done by modifying the viscosity of the Navier-Stokes
equations and solving them using the finite element method. For verification of the solver,
a 2D Couette shear cell benchmark is used, while for validation a split-bottom ring shear
cell geometry is used as it exhibits a shear band with a wide range of stress and strain states.
Compared to the classicalµ(I )-rheology the generalised rheologies have additional correc-
tions for (i) particle stiffness, (ii) surface effects and (iii) low inertial numbers. The stiffness
has a minor effect on the centre of the shear band, shifting it away from the centre a little.
The surface correction shows a more profound qualitative effect, so far not seen in exper-
iments, which could be related to particle friction. The low inertial flow correction shows
some improvement of the shear band tails compared to the classical µ(I )-rheology and
removes the need for an arbitrary regularisation for I → 0, however further, corrections
are identified as necessary. Recommendations are given to investigate effects of granular
temperature and compressibility on the generalised rheology.

6.1. INTRODUCTION
Industry is heavily based on equipment dealing with granular media such as chute flows,
rotating drums and screw conveyors. It would be of impeccable value if the designs for
these equipment could be done solely on a computer, avoiding costly experiments and
prototyping.

The current state-of-the-art simulation methods for granular matter are discrete par-
ticle methods (DPM) [1]. These simulations can accurately capture a wide variety of phe-
nomenon seen in granular media such as force chains, segregation, dilation and jam-
ming of the material [2–4]. A disadvantage of DPM is the limit of the number of particles

89
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of a simulation, as the computational effort scales, in the best case, with the number of
particles. One way to overcome this limit is to massively parallelise the DPM algorithm,
see Appendix B. Handling the shear amount of data generated by a DPM simulation is
challenging. A useful method is to convert particle data into continuum fields by using
coarse graining (CG) analysis [5]. The fields obtained by CG give good insight in the dy-
namics of a granular system, yet its applicability to optimisation methods for industrial
equipment is non-trivial.

Another way of simulating granular materials is using continuum methods in which
a system of Partial Differential Equations (PDE’s) is solved numerically, enabling a wide
variety of new applications and methods. One of the benefits of this approach is the abil-
ity to solve large-scale industrial problems, since not every single particle is tracked, but
a continuum is approximated. Another major advantage is that gradient-based optimi-
sation techniques, such as adjoint-based methods [6], can be applied to create cost and
energy efficient equipment designs.

Simulating granular materials by continuum equations is a challenging subject, i.e.
see [7], since the governing PDE’s and their closure constitutive relations (i.e. rheology)
are still not well understood. Much progress has been made the past two decades. One
of the major milestones is the 3D chute flow simulations with frictional walls [8]. More
recently column collapse, [9], flow over cylinders [10, 11] and more complex geome-
tries [12] have also been captured by continuum models.

Since the quest for the granular rheology is still in progress, it is no surprise all these
simulations use different rheologies, with the Schaeffer rheology, Tardos rheology and
µ(I )-rheology being the most popular ones [8, 13, 14]. In this work we focus on the latter.
This model relates the shear rate and shear stress in a single point by a granular viscosity,
resembling a yield stress fluid. In the limit of dry, frictional rigid particles, it is governed
by a single parameter, the inertial number I , the ratio of the shear rate forces and the con-
fining pressure forces. A recent proposed extension also takes particle stiffness and low
I correction into account [15]. An alternative extension of the µ(I )-rheology is the ’non-
local’ rheology, where a new state variable, the fluidity, is defined, based on a certain
relation between the shear rate and the shear stress [16]. The evolution of the fluidity is
governed by an additional differential equation which reduces to the local µ(I )-rheology
at high inertial numbers and to the Helmholtz equation at low inertial numbers. This
model has been successfully applied to split-bottom shear cell geometries [17].

The generalised µ(I )-rheology [15] has not yet been verified with continuum meth-
ods. This chapter is focussed on solving the fluid equations using this rheology. The
simulation setup uses a split-bottom ring shear cell geometry. This geometry is chosen
as it exhibits a rich variety in stresses and shear rates within one setup [18]. Moreover,
the generalised rheology has been developed within this geometry.

The split-bottom ring shear cell induces a wide shear band in the bulk of the granu-
lar flow, while in the standard Couette cell one has a local shear band at the wall. This
was observed first by experiments [19], where the top of a split-bottom shear cell was
investigated. The setup contains regions with very low inertial number and therefore it
is expected that the classical µ(I )-rheology does not fully describe the granular problem.
The confining stress varies from low values at the surface to high values at the bottom
and thus also has to be considered, in particular for soft particles. This extended µ(I )-
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Figure 6.1: Schematic overview of the split-bottom ring shear cell setup (created by A. Singh). Definitions and
values of the symbols are given in Table 6.1.

rheology is also investigated [15], involving additional non-dimensional numbers based
on the stiffness stress of the particle.

The orginisation of the chapter is as follows. In section 6.2 the geometry of the simu-
lation is described together with the governing equations and the rheology. In section 6.3
the continuum solver is explained in detail including possible regularisations. The re-
sults obtained from the model are discussed in section 6.4 and finally the conclusion
and discussion is given in section 6.5

6.2. SIMULATION MODEL
The simulation model consists of a geometry, governing equations with boundary equa-
tions and a rheology for the fluid viscosity. In section 6.2.1 the geometry of the split-
bottom ring shear cell is discussed. This includes a short overview of the observations
found in experiments and DPM simulations. The governing equations of the contin-
uum model and boundary conditions are presented in section 6.2.2. Three granular rhe-
ologies are discussed in section 6.2.3 and will be compared with experiments and DPM
simulations in section 6.4.

6.2.1. GEOMETRY

The geometry of the split-bottom ring shear cell is shown in Fig. 6.1. It consists of an
inner cylinder of radius Ri and an outer cylinder of radius Ro . The bottom of the shear
cell is split between the inner and outer cylinder at split radius Rs . The fill height of the
split-bottom ring shear cell is H . The inner cylinder is fixed and the outer cylinder is
rotating with an angular velocity ofΩ. Dimensional values of the geometry setup can be
found in Table 6.1 and are similar to the DPM simulation geometry in [15].

The system is axi-symmetric with only an azimuthal velocity component uφ. The
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Parameter Symbol value unit
Inner radius Ri 0.0147 [m]
Outer radius Ro 0.11 [m]
Split radius Rs 0.085 [m]
Filling height H 0.01 - 0.08 [m]
Angular frequency Ω 0.01 [rad/s]

Table 6.1: Geometrical properties of the split-bottom ring shear cell. Dimensions of the setup follow [15].

non-dimensionalised angular velocity is defined as ω(r ) = uφ/(2πrΩ). The profile of
ω(r ) depends on the ratio of the fill height with split radius H/Rs . At the surface ω(r )
evolves from a step function at H/Rs → 0 to a a shear band with a certain width Wtop and
a band centre Rctop . From experiments it has been observed that the shear band slowly
moves towards the inner cylinder, while the width remains constant. For H/Rs < 0.45
the angular rotation in these experiments is captured well by an error function [20],

ωtop (r ) = 1

2
+ 1

2
erf(λs ) , (6.1)

which is symmetric around Rc and described by the coordinate

λs = r −Rc

Wtop
, (6.2)

where r is the radial coordinate. Experiments in this regime Rs and Wtop show that Rc

and Wtop scale accordingly, (
Rs −Rctop

)
/Rs = (H/Rs )5/2 (6.3)

and
Wtop /d ∼ (H/d)2/3 . (6.4)

Given a ratio H/Rs , the width W and shear center Rc change as functions of z. DPM
simulations [21] have shown that the width behaves like,

W (z) =Wtop

√
1−

(
1− z

H

)2
. (6.5)

As the ratio of H/Rs increases the angular velocity profile becomes asymmetric. It
however still can be represented by an error function [20],

ωtop (r ) = 1

2
+ 1

2
erf(λ), (6.6)

with an asymmetric coordinate

λ= a0 +a1r +a2r 3. (6.7)
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6.2.2. GOVERNING EQUATIONS
The granular fluid in a split-bottom ring shear cell is modeled by the incompressible
steady state axi-symmetric Navier-Stokes equations. Here incompressibility is assumed
for simplicity. The axi-symmetric coordinates (r, z,θ) are respectively in the radial, axial
and azimuthal direction. The assumption in the axi-symmetric coordinates is that all
derivatives with respect to θ are not present. This implies that all variables in the θ-
direction are constant and the 3D equations can be solved in the 2D z − r -plane. The
steady state momentum equations are,

ρ

[
ur
∂ur

∂r
− u2

θ

r
+uz

∂ur

∂z

]
=−∂p

∂r
+ ∂τr r

∂r
+ τr r

r
− τθθ

r
+ ∂τr z

∂z
, (6.8)

ρ

[
ur
∂uz

∂r
+uz

∂uz

∂z

]
= ρg − ∂p

∂z
+ ∂τzr

∂r
+ τzr

r
+ ∂τzz

∂z
, (6.9)

ρ

[
ur
∂uθ
∂r

+ ur uθ
r

+uz
∂uθ
∂z

]
= ∂τθr

∂r
+ τθr

r
+ τrθ

r
+ ∂τθz

∂z
. (6.10)

Here ur , uz and uθ are the radial, axial and azimuthal velocity, respectively, p is the fluid
pressure and τ is the (deviatoric) shear stress tensor. The gravitational acceleration g
only acts in the z-direction. The conservation of mass is satisfied by the continuity equa-
tion,

∂ur

∂r
+ ur

r
+ ∂uz

∂z
= 0. (6.11)

The shear stress tensor τi j is defined as

τi j = 2ηγi j , (6.12)

where γi j are the elements of the shear rate tensor given by

γ̇=


∂ur
∂r

1
2

[
∂ur
∂r + ∂uz

∂r

]
1
2

[
∂uφ
∂r − uφ

r

]
1
2

[
∂ur
∂r + ∂uz

∂r

]
∂uz
∂z

1
2
∂uφ
∂z

1
2

[
∂uφ
∂r − uφ

r

]
1
2
∂uφ
∂z

ur
r

 . (6.13)

The viscosity η is defined by the granular rheology, see section 6.2.3. The norm of the
shear rate tensor is given by

|γ̇| =√
γi jγi j . (6.14)

Note that Eq. (6.12) assumes that τ and γ̇ are co-linear.
No-slip boundary conditions are applied to the walls. The axial and radial velocities

are always set to zero, uz = ur = 0. The azimuthal velocities are give by

uθ(r = Ri , z) = 0, (6.15)

uθ(r, z = 0) =
{

r < Rs , 0

r ≥ Rs , ωr
(6.16)
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,
uθ(r = Ro , z) =ωRo , (6.17)

The free surface is modeled as a traction free boundary,

σ ·ns = 0. (6.18)

Here σ is the total stress tensor and ns is the outward normal vector of the surface, i.e.
ns = ez .

6.2.3. RHEOLOGY
To complete the governing equations in section 6.2.2 closure relation for η in equation
Eq. (6.12) has to be provided. For the µ(I )-rheology family the viscosity is defined as

η= µp

|γ̇| , (6.19)

where the bulk friction µ is a function that depends on the specifically chosen rheology.
The classical µ(I )-rheology describes the friction µ in Eq. (6.19) by a phenomenological

expression based on the inertial number I = |γ̇|dpp
p/ρ

. Experimental results [22] show that

µ(I ) =µs

[
1+ ∆µ/µs

I0/I +1

]
, (6.20)

where µs , ∆µ and I0 are material properties. The validity of this rheology lies in the
moderately inertial regime with inertial number in the range of 10−3 < I < 1, depending
on the material parameters. The flow is in the quasi-static regime (I < 10−3), outside
the shear band, where the µ(I )-rheology is ill-posed [23]. An extended model has been
proposed in [15] adding an empirical stretched exponential [24],

µe (I ) =µ(I )

[
1−e

−
(

I
I∗

)α]
. (6.21)

Here I∗ is a new material parameter, but possible dependencies on other fields are ne-
glected here. The exponential ensures that limI→0

µ
γ̇ <∞ in similar spirit as the rheology

proposed in [25].
Although I is the dominating parameter of theµ(I )-rheology, other non-dimensional

parameters have been investigated [15]. The softness number pk is defined as the ratio
of pressure forces and the stiffness related to elastic forces between particles,

pk = pdp

k
, (6.22)

where k is the stiffness of the particle. Furthermore, the surface number pg is defined as
the ratio of pressure forces and gravity forces,

pg = 6p

πρp dp g
, (6.23)
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where g is the gravitational acceleration. As p ∝ ρp g (H − z) this number essentially is
height of the flow divided by the particle diameter. Close to the free surface of the flow
pg becomes important. The general rheology with these parameters is

µ f (I , pk , pg ) =µe (I )

[
1−

(
pk

p0

)β][
1−a′e

− pg
pg 0

]
. (6.24)

Here p0, β, a′ and pg 0 are material parameters. Unless otherwise stated the material
parameters are given by Table 6.2. These material parameters were obtained from DPM
simulations using a mean particle diameter of db = 0.0022 [mm], a particle density ρb =
2000 [kg/m3], a solids fraction of φ= 0.64 and a particle stiffness of kp = 120 [N/m] [15].

rheology coefficient value
µ(I ) µs 0.16

∆µ 0.24
I0 0.07

µe (I ) α 0.48
I∗ 4.85×10−5

µ f (I ,Pk ,Pg ) β 0.5
p∗

0 0.90
a′ 0.75

p∗
g 0 2.30

Table 6.2: Rheology parameters for the corresponding rheologies in Eq. (6.20), Eq. (6.21) and Eq. (6.24). Values
adopted from [15].

6.3. METHODS

The granular rheology introduces non-linear behaviour w.r.t. γ̇ and p. Recent work has
focussed on benchmarking a Couette cell in 2D with a simplified µ(I )-rheology [14]. In
these simulations the pressure was taken as constant as many standard solvers have
problems with the pressure dependence of theµ(I )-rheology. Often incompressible fluid
solvers use a segregated solution procedure based on the Semi-IMplicit Pressure Linked
Equations (SIMPLE) algorithm [26]. The SIMPLE algorithm is an iterative procedure that
does not solve the continuity equation but a pressure Poisson equation instead. This
pressure equation is not yet adapted to granular rheologies. In order to tackle the pres-
sure dependency of the rheology, a monolithic approach is taken here, where the pres-
sure acts as a Lagrange multiplier for the continuity equation.

The open-source physics library oomph-lib (http://www.oomph-lib.org, [27]) is used
to solve the set of equations with a Finite Element Method (FEM) approach. The solution
method is discussed in section 6.3.1 and regularisations and modifications necessary for
the granular rheology and discussed in section 6.3.2
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6.3.1. SOLUTION METHOD
A standard Galerkin method is used to approximate the solution to the physical problem.
The simulation domain is tessellated into rectangular elements. Within an element the
solution of a state variable u(x) is approximated as

uh(xi ) =
M∑

j=1
U jψ j (xi ), (6.25)

where i is an integration point of the element, ψ j is a basis function in this element and
M is the number of basis functions used to approximate u(x). The elements used in
this setup are rectangular Taylor-Hood elements [28]. The velocity is approximated by
bi-quadratic basis functions (M = 9) and the pressure bi-linear (M = 4). The vector of
unknowns within an element is denoted as U .

Using the weak (integral) formulation, a residual vector R(U ) can be derived such
that the approximated solution is the exact solution if

R(U ) = 0. (6.26)

Due to the non-linear behaviour of the Navier-Stokes equations this system can not be
solved directly and a Newton-iteration method is used. For a given set of unknowns U n

at iteration n, an updated solution can be computed,

U n+1 =U n +δU . (6.27)

Here δU is the increment. The increment is calculated by solving the following system
of equations

JδU =−R(U n), (6.28)

with the Jacobian matrix

J = ∂R

∂U
. (6.29)

Calculation of J is done analytically, with possibly a regularisation to accommodate the
unusual rheology as discussed in section 6.3.2.

The split-bottom shear cell geometry has a discontinuity at the split. For accurate
solutions a non-uniform grid is generated such that there is improved accuracy at the
split. Adaptive mesh generation in oomph-lib is performed using a spatial error estima-
tor which estimates if an element has to merge with another element or if they have to
split up. For the current problem the Navier-Stokes equations are first solved using a
constant viscosity of unity, with up to 6 grid refinements. After the final level grid is ob-
tained, the viscosity is changed from constant viscosity. The solution on the finest grid
is used as initial guess for the solution of the full rheology.

6.3.2. REGULARISATION
The classical µ(I )-rheology requires a regularisation for the regions where the shear rate
approximates zero, as Eq. (6.19) diverges. Many regularisation techniques have been
proposed in the literature such as e.g. in Ref. [10]. Here the regularisation of Ref. [14] is
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adopted such that a comparison can be made with the benchmark results. The regulari-
sation replaces Eq. (6.14) with

|γ̇| =
√
γi jγi j +ε2

γ̇
, (6.30)

where ε=
√
ε2
γ̇

/Ω2 is the non-dimensional regularisation parameter. Note that µe (I ) and

µ f (I , pk , pg ) do not require such regularisation.

When computing the Jacobian, Eq. (6.29), precautions have to be taken in order to

ensure that the terms ∂η
∂|γ̇| and ∂η

∂p do not diverge. To ensure the Newton-method from
converging, these divergent derivatives are set to zero, yielding a slow but robust conver-
gence. Convergence could be improved by implementing weighting strategies for these
terms [29].

Pressure at the surface of a granular flow generally should vanish if there is no force
applied. However, to avoid zero pressure, a small pressure limit is implemented pr eg =
p +pε with pε = 1.0×10−8.

6.3.3. BENCHMARK

To verify the implementation of the rheology, the solver is compared to the recent bench-
mark of the µ(I )-rheology [14]. In this benchmark a standard Couette shear cell is sim-
ulated with a moving inner wall and static outer wall. The benchmark test uses a 2D
setup simulating the whole shear cell. Here we take the axi-symmetric approach so the
numerical performances can not be compared, however it serves as a good validation
tool to see if the rheology is implemented correctly. In Fig 6.2 the results of this bench-
mark test are shown for a grid of nr = 40,nz = 20, nr = 40, nz = 10 and a grid for nr = 80,
nz = 20. Note that all grids collapse very well on the benchmark curves, except around
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Figure 6.2: Velocity profile, shear rate and viscosity as function of the standard shear cell coordinate from the
inner boundary to the outer boundary. Results are compared with a benchmark test.

ε/ε0 = 0.5. The inset in Fig. 6.2 shows a small discrepancy, which is resolved as the grid is
refined. As the split-bottom ring shear cell is in the same regime of I as the benchmark
it is concluded that a grid with nr = 80 is sufficient.
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6.4. RESULTS
Before the various granular rheologies can be compared, the best possible regularisa-
tion parameter needs to be determined for the classical µ(I )-rheology. Simulations for
different parameters of εγ̇ are performed with H/Rs = 0.24, the symmetric regime. The
resulting function ωtop (r ) is fitted with Eq. (6.1) yielding the symmetric coordinate λS ,
Eq. (6.2), and the numerical equivalent is

λ= erf−1 (
2ωtop −1

)
. (6.31)

The results for various εγ̇ are shown in Fig. 6.3. For reasonably small values of εγ̇ the shear
band is captured well. In the tails εγ̇ plays an important role, but none of the values
can capture the tails accurately. The best result is obtained with values close to εγ̇ ≈
1.0×10−2. Larger values show solutions that have no resemblance with an error function
and smaller values show over/undershoot. All simulations henceforth use εγ̇ = 7.0×10−3

for the classical µ(I )-rheology.

0.02 0.04 0.06 0.08 0.1
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-2
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Figure 6.3: Symmetric coordinate at H/Rs = 0.24 for various regularisation values of εγ̇ = 1.0−α with α =
1,2, ..,7. λs is obtained by fitting ωtop . The black line corresponds to Eq. (6.1).

For all rheologies the angular velocity of the left-side of the shear band is shown in
Fig. 6.4 together with corresponding symmetric fit functions. The rheologies appear to
be very comparable, capturing the centre of the shear band, but the tails of the shear
band show clear deviation from the error function. This can be seen more clearly by
plotting λ, see Fig. 6.5. Surprisingly, the best possible regularisation for the classical
µ(I )-rheology is very comparable to µe (I ). The regularisation of the µ(I )-rheology is not
physically based, but the µe (I )-rheology is inspired by DPM simulations and has a more
physical base. All presented rheologies are lacking the physical mechanism that can cap-
ture the tails, but the shear band is captured well by all.
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Figure 6.4: Left side of the shear band for different rheologies with H/Rs = 0.24. Dashed lines are obtained by
fitting ωtop to Eq. (6.1).
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Figure 6.5: Measured coordinate for all rheologies at H/Rs = 0.24, computed using Eq. 6.31. Dashed lines
indicate the theoretical coordinate for a symmetric error-function.
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A detailed comparison of these rheologies is done by investigating the shear band
characteristics W (z) and Rc (z) in Fig. 6.6(a) and Fig. 6.6(b), respectively. The change in
width of the shear band as a function of height is captured reasonably well by all rhe-
ologies. The rheologies of µ(I ) and µe (I ) are very comparable, but µ f (I , pk , pg ) seems to
perform slightly better. Deviations from the measured curve are most-likely related to
the tails of the shear band not being fully captured.

The centre of the shear band is very well captured by µ(I ) and µe (I ) which are quite
comparable. A significant deviation is observed for µ f (I , pk , pg ) by introducing gravity
and stiffness effects. These effects are both investigated separately to determine their
influence. The effect of pk shows a downwards deviation in Rc /RS . While the µ(I )-
rheology is valid for stiff non-cohesive flows, the extension including particle soft par-
ticles pk shows only a minor effect. An upward, more profound trend is observed on
Rc /RS when only pg is considered. This upwards trend has not been observed in ex-
periments and points out different observations between the DPM coefficients and the
experiments.

In Fig 6.7 the friction correction functions are given for both pk and pg . Note that as
the pressure is constant in radial direction these friction corrections only depend on the
z-direction. The stiffness correction clearly depends linearly on the pressure and only
has a minor impact. The gravity correction has great effect on the friction and especially
close to the free surface, confirming the observations in Fig. 6.6(b).
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Figure 6.6: Simulations with H/Rs = 0.24 showing (a) Non-dimensional shear band width for a simulation
with H/Rs = 0.24. The dashed line is Eq. (6.5) observations from DPM simulations. (b) Non-dimensional shear
band centre, with the dashed line the observation from experiments, Eq. (6.3).

Another important characteristic of the flow is the transition between the symmet-
ric regime and asymmetric regime which is governed by the parameter H/Rc , see sec-
tion 6.2.1. The behaviour of the different rheologies with respect to H/Rc is shown in
Fig. 6.8. All rheologies show the transition between symmetric velocity profile at low
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Figure 6.7: Simulations with H/Rs = 0.24 showing the friction correction functions of non-dimensional num-
bers pk and pg for a simulation of µ f (I , pk , pg ).

H/Rs to the asymmetric regime at high H/Rs . Note that the simulations use a no-slip
boundary condition on the left side, inducing an additional shear band at the bound-
ary for large H/Rs . Experimental results show that the symmetric regime is valid to
H/Rs ≈ 0.45, however all rheologies show asymmetric solutions at this value. A possi-
ble explanation could be that the tails are important in this transition, which are not
captured accurately by either rheology. This is supported with the observation that for
H/Rs = 0.45 a distinct difference is observed betweenµ(I ) andµ(I )e , while the difference
betweenµ(I )e andµ f (I , pk , pg ) is barely observable. Theµ(I )-rheology shows, especially
around H = 0.45 a distinct change in behaviour between the shear band and the tail, at
approximately r /Ro = 0.6. The other rheologies show a smoother transition. Reason for
this is the dependence of the tails on I from Eq. (6.21), while the µ(I )-rheology becomes
independent when γ̇¿ εγ̇.

6.5. CONCLUSION & DISCUSSION
This work presents a solution method for the classical µ(I )-rheology and its generalised
descendants. In the former case the implementation is successfully compared with a
benchmark [14]. An important difference is the axi-symmetric approach taken in this
work in contrast to a Cartesian approach used in the benchmark. Although the axi-
symmetric approach solves a different set of equations, the solution converged with
great accuracy to the benchmark solution.

After this verification of the implementation, the µ(I )-rheology is then investigated
together with more advanced rheologies. The two extended rheologies are µe (I ), see
Eq. (6.21), which extends the µ(I )-rheology to very low values of I , and a more advanced
µ f (I , pk , pg )-rheology, see Eq. (6.24), which includes effects from particle stiffness pk
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Figure 6.8: Angular velocity of (a) µ(I ), (b) µe (I ) and (c) µ f (I , pk , pg ) for changing parameter H/Rs . Red lines
indicate H = {0.015,0.045,0.065}.

and surface effects pg [15]. A constant density is assumed as simplification, since com-
pressibility effects, see [30], are not yet implemented in the rheologies considered in
this work. Alternative rheologies do already include compressibility effects [31–33]. The
validation is done in the same setup as was used for the development of the advanced
rheologies, a 3D split-bottom ring shear cell, but on its axially-symmetric 2D grid.

Similar to experiments, a shear band is observed in the simulations. All rheologies
show good agreement within the shear band, and poor agreement in the tails of the shear
band. This includes the extended rheology for low I in µe (I ), although a small improve-
ment can be observed. The greater added value of µe (I ) is the removal for arbitrary reg-
ularisation, as the best possible regularisation of the µ(I )-rheology used in this work is
similar to the extended rheology. In addition, the extended rheology contains extra pa-
rameters that have been taken constant in the current work, but could depend on flow
parameters such as the granular temperature.

The characteristic shear band width in the bulk non-dimensionaled by the top-width
W /Wtop is captured well by all rheologies and the extra effect of pk and pg do not have
a strong qualitative influence. The non-dimensional shear band center Rc /Rs for the
µ(I )-rheology is comparable to the experimental results for stiff frictional particles and
the softness of the particles only moves the centre a bit outwards, in the rather limited
range of pk studied here. The extended rheology µe is only weakly moving the centre
outward. However, the shear band center is influenced significantly by the free surface
effect. This effect is quantified by pg , the non-dimensional distance from the bulk to
the surface. The shear resistance drops from the bulk to the surface, within a bounding
layer, by 50%. A curious observation, as this has not yet been observed in experiments
which could be due to the low friction (µ≈ 0.01) of the particles in the DPM simulations.
Future investigations could focus on the effect of friction on the shear band center in
simulations and the experimental validation of this phenomenon.

Experiments show a symmetric flow profile characterised by an error-function for
low filling heights and an asymmetric flow for larger filling heights. This transition is
also observed for all rheologies considered here. However, the transition between the
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two regimes is happening at lower fill heights in the simulations. The observations in
Fig. 6.8 show a difference in transitional behaviour between µ(I ) and µe (I ), where the
low I extension of µe (I ) influences the behaviour in the tails. In contrast, the difference
between µe (I ) and µ f (I , pk , pg ) is barely observable, suggesting that the rheology of the
tails play a crucial role in this transition.

To proceed with a comparison between simulations of rheologies, particle scale DPM
and experiments, the shear band tails need to be understood better such that the cor-
rect transition between symmetric and asymmetric flow is obtained. Besides this, the
present rheologies are missing two important ingredients. Granular temperature has
been suggested to play a key role in low I flows [16, 34, 35]. Another possible reason for
qualitative and quantitative differences between simulations, DPM and experiments is
the compressibility effect of the bulk density ρ [25, 30]. The compressibility effect seems
to be small (∆ρ < 1−2%), but might have an enormous effect on the overall rheology. In
particular, at small confining stresses (as studied here) the relative distance to jamming
is the relevant control parameter [4, 36].
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7
CONCLUSIONS AND OUTLOOK

In this thesis fundamental mechanisms of segregation in dense granular flows have been
investigated. In particular, the focus was on a large intruder particle in a monodisperse
flow. The research objective to describe the intruder behaviour with a hydrodynamic
force model has lead to new fundamental insights in the mechanisms of segregation.
The research questions related to this objective, as posed in the introduction, are briefly
discussed and concluded before the outlook and recommendations are given.

In Chapter 2 a novel approach was taken to study the direct analogy between an in-
truder in a dense granular fluid and a particle in a classical Newtonian fluid. A New-
tonian flow is considered which is comparable to the granular flow (similar Reynolds
number). A particle in such a Newtonian flow experiences a Saffman lift force: a lift force
which is directly proportional to a lag in the particle velocity in the flow-direction. To
test the direct analogy the following question was posed:

• Q1 Does the intruder experience a lag velocity in flow-direction and is it related to
a lift force on the intruder?

By performing DPM simulations in a chute flow setup, it was shown that an intruder does
indeed lag in the flow-direction. The implication of this observation is that segregation
is not simply a 1D problem, as often posed. The observation of a velocity lag reveals
a newly discovered lag force in the stream-wise direction; the origin of this lag force is
discussed in Q4. The relation between the measured lift force and the velocity lag was
shown to be similar to the Saffman lift force in a chute flow, although it could not be
(thus far) validated for other types of dense granular flow configurations.

To describe the behaviour of the intruder with a hydromechanical force model, a
good definition of the buoyancy force is required. The classical buoyancy force on an
intruder in a fluid is proportional to the fluid volume displaced by the intruder, however
for an intruder it is not clear how to define the displaced volume due to the void spaces
between particles. The research question in Chapter 3 therefore is:

• Q2 What is the buoyancy force on an intruder particle?
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Two buoyancy force definitions have been discussed: (i) a Voronoi volume approach and
(ii) a micromechanical approach. In the Voronoi volume approach it is assumed that the
displaced fluid of the intruder is described by its Voronoi volume. The micromechani-
cal approach has shown that the average number of bulk particle contacts per intruder
surface area reduces, as the intruder increases in size. Effectively, this mechanism re-
duces the buoyancy force on the intruder. The Voronoi volume-based correction cap-
tures this mechanism well. A wider implication of this structural mechanism is that all
other model forces such as lift and drag forces also require a size ratio-dependent cor-
rection.

To obtain a more detailed understanding of the segregation lift force a visual ap-
proach was taken:

• Q3 What is the effect of the intruder size, density and friction on the granular flow?

High fidelity continuum density, velocity and stress fields have been obtained by coarse
graining the discrete particle data. By investigating the density and velocity fields it was
shown that the shear flow around the intruder introduces compressional and tensional
directions. The flow remains attached to the intruder in the compressional direction
while in the tensional direction flow separation occurs. Furthermore, layer formations
of flowing bulk particles in the flow-direction are observed.

The origin of segregation has been visualised through observing both the velocity
and stress profiles simultaneously; a larger intruder does not fit within a layer of bulk
particles and hence the bulk particles of neighbouring layers have to move around the
intruder, introducing an anisotropic stress increase in the compressional direction. This
increase in stress happens in an asymmetric manner, however it could not be directly
understood where the asymmetry came from. The investigated range of density only
shows limited influence on this process, while friction significantly changes the velocity
and stress fields and affects the lift force on the intruder.

Capturing the lager intruder behaviour in a force model is the ultimate goal of this
thesis and hence:

• Q4 Can the segregation force on an intruder be captured by a force model?

In Chapter 4 the lift force mechanism has been observed, but the asymmetry in the
anisotropic stress could not be directly explained. Therefore a systematic study was per-
formed in many different flow configurations, focusing on flow gradients which could
explain this asymmetry. The gradient in viscosity was the only gradient that correctly
determined the segregation direction in all configurations. To test whether the lift forces
scale with this gradient, a 2D sheared granular flow configuration with many different
boundary conditions was simulated to measure the lift force. Both the lift force perpen-
dicular to the flow as in the newly discovered force in the flow-direction (see Q1) scaled
directly with the shear rate and gradient in viscosity, uncovering the origin of segrega-
tion. The new lift force scaling also works for a chute flow, implying that the Saffman lift
relation found in Chapter 2 could have been a coincidence.

A force model was derived based on the fundamental mechanisms observed in this
thesis. The model takes gravity, drag, lift and reference forces into account, where ref-
erence forces are a generalisation of the buoyancy force by including forces in the flow-
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direction. This model has the potential to capture reverse segregation for large intruders
due to the curvature mechanism discussed in Q2 and Chapter 3.

In order to apply the force model, the shear rate and the viscosity gradient of the
undisturbed flow are necessary. It is therefore required to simulate the reference granu-
lar flow, preferably with continuum methods for computational efficiency:

• Q5 Can a continuum model using a generalised µ(I )− rheology simulate granular
materials in a split-bottom ring shear cell?

A granular flow solver was developed and validated which can handle a pressure- and
shear rate-dependent viscosity. The generalised rheology shows potential for high accu-
rate flow solutions in quasi-static flow regions by incorporating stiffness and surface ef-
fects on top of the well-knownµ(I )-rheology. For almost-static flow regions it was shown
that there is room for improvement, before experimental and DPM comparison can be
performed.

OUTLOOK
This thesis has presented novel insights on segregation in dense granular flows. How-
ever, further research is required for a more complete understanding of segregation and
for the development of useful tools for industrial problems. A few points are mentioned
here as outlook.

• A. Experimental validation
Developing a segregation model from an experimental setting is very challeng-
ing, if not impossible. Instead, it is recommended to validate the DPM-derived
lift force experimentally. One possibility is to measure the segregation velocity of
a single intruder in a experimental shear box setup [2]. In this experiment differ-
ent shear rates can easily be obtained and by increasing the (bulk) particle density
different viscosity gradients can be obtained.

• B. Lift and drag coefficients
The size ratio dependence of the lift coefficient is different between sheared flows
with vertical and horizontal gravity. The mechanism behind this difference is un-
known and requires further investigations. Concerning the drag coefficient, it is
not clear whether it depends on the size ratio or if varies with the velocity direc-
tion of the intruder. Therefore it is recommended to perform simulations where
an intruder is pushed in many different directions for a given granular flow.

• C. Advanced Intruder model
The force model of the larger intruder derived in this thesis depends only on the
size ratio and density ratio, although the range of validity of the density ratio has
not been verified. Additionally, it was shown that friction can have a tremendous
impact on the lift force. Future investigations could focus on incorporating the
friction and density into the drag and lift coefficients. The development of ad-
vanced models with more realistic properties such as different shapes will require
an extended force model due to the introduction of orientation-dependencies.
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Moreover, angular velocities might also become important in such a model. An-
other crucial extension of the model is to incorporate flows with a more compli-
cated shear rate tensor. By developing more advanced models it might be possible
to engineer granular mixtures with reduced segregation by balancing size, density,
friction, cohesion and other realistic particle properties.

• D. Small particle force model
The current thesis has focused on an extreme situation with only one larger parti-
cle in a monodisperse flow. For a more complete understanding of segregation the
other extreme, with a single small particle in a monodisperse flow, should also be
investigated. This is is a challenging problem as a small particle does not partic-
ipate in a granular flow like a larger particle. Moreover, obtaining good statistical
data on small particles requires serious computational efforts. Whether a fluid-
based force model can be obtained for a small particle in a granular fluid remains
to be seen.

• E. Segregation models
Current continuum segregation models could be improved with the newly ob-
tained insights of segregation in the extreme dilute limit. An important step to-
wards a more complete model requires to couple the dilute limit with the 50/50
mixtures. This can be done by investigating the collaboration of multiple intrud-
ers.

• F. Segregation prediction tool
A segregation prediction tool might be developed by combining a continuum gran-
ular flow solver together with the intruder force model. When the gradient in vis-
cosity of a granular flow is known, it might be possible to determine the segregated
equilibrium state. Whether reverse segregation could be predicted by such tool re-
mains to be seen. The development of such a tool could be useful in industrial
engineering for reducing segregation.

• G. New particle simulation method
A bottleneck of DEM is the incredibly small time step required for accurate and sta-
ble simulations. By combining C. and D. it might be possible to predict the direc-
tion of any sized particle if the average flow state is known. Such a complete force
model might be used in combination with the powerful coarse graining method [1]
to develop a new particle simulation method for granular materials.
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A
A GRANULAR SAFFMAN EFFECT:

SUPPLEMENTARY MATERIAL

A.1. HORIZONTAL FORCE BALANCE AND VELOCITY LAG
Here we introduce a scaling for the lag velocity λx based on the horizontal force balance.
Note that by our definition the lag velocity is negative, i.e., the intruder is moving slower
than the bulk material at its height. The aim is to show what parameter dependencies are
present in the fitting parameter a in Eq. (2.2), which we show here again for convenience:

λx = a(1/S −1)/η, (A.1)

where η = µp/γ̇ is the granular viscosity, with µ the bulk friction, p the pressure, and
γ̇= ∂z ux the shear rate.

When the size ratio equals one (S = 1) we have the following horizontal force balance
on the intruder:

Fr (S)+Fgx (S) = 0, (A.2)

where Fgx = ρp gxVp is the horizontal component of the gravitational force (with gx =
sinθ), and Fr is the (negative) net horizontal contact force, resembling a “frictional"
buoyancy force caused by the shear stress, that cancels gravity.

When the size ratio becomes larger than one (S > 1) and the intruder starts to ex-
perience a velocity lag λx , we propose that the horizontal force balance can be written
as:

Fd (S,λx )+Fr (S)+Fgx (S) = 0 (A.3)

where the “frictional" buoyancy force Fr become bigger than the downslope gravity force
Fgx , which causes a lag that is damped by Fd , a Stokesian-like drag working in the same
direction as Fgx with a dependence on the lag velocity. Note that combined, Fd and Fr

form the contact force, in the x-direction, experienced by the intruder,

Fcx = Fd +Fr . (A.4)
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Figure A.1: (a) The measured lift force FL (red triangles) and the buoyancy force Fb (blue squares) as a func-
tion of the chute inclination angle θ, for S = 2.4. The data are normalised by the vertical component of the
gravity force on the intruder Fgz . (b) The measured net contact force Fc (blue circles) and the lift force FL (red
triangles) on an intruder, as a function of depth, for S=2.4, normalised by the gravity force. The solid black line
is a fit of Eq. (2.9) using the functional form for the lag Eq. (2.2), with a = 0.24 and b = 130.0, while the dashed
line uses the raw velocity lag data from Fig. 2.2(a). Near the bed (zp < 8) a boundary effect occurs, likely due to
layering [2].

In steady state, when the lag is constant in time, there is likely a drag force proportional
to the lag velocity, acting in the opposite direction to it, to prevent the intruder from
accelerating. The granular Stokes drag introduced by Tripathi and Khakhar [1] is a good
candidate for this role:

Fd =−cd (S)πηλx dp . (A.5)

Here cd (S) is a coefficient, and dp is the diameter of the intruder. Tripathi and Khakhar
[1] obtained this drag force for a heavy (higher density) mono-disperse intruder in a
chute flow, where they measured the vertical velocity of the sinking intruder. Note that
a dependence of Fd on S is a possibility, because the drag force appears to be a function
of the volume fraction [1] and locally the experienced volume fraction by the intruder
changes as function of S (see Fig. 4(a)).

The sum of Fr and Fgx in Eq. (A.3), which we denote as∆F (S) = Fr (S)+Fgx (S) (analo-
gous to FL in the main-text), can be understood as the upslope directed—in the negative
x-direction—force causing the intruder to lag. Swapping Fd for −∆F (S) in Eq. (A.5) and
using dp = Sdb we obtain an expression for the lag:

λx = 1

πdb

1

η

∆F (S)

cd (S)S
, (A.6)

where the first factor is constant, the inverse viscosity represents the second factor, and
the S-dependence is condensed into the third factor. Hence, the dimensional fitting
parameter a in Eq. (2.2) and Eq. (A.1) accounts for the dependency on the bulk particle
diameter and unknown dependencies of cd (S) and ∆F (S).

In order to fully determine λx an assumption needs to be made about the functional
form of ∆F (S). If we would assume that ∆F (S) is proportional to the shear gradient ∂|τ|

∂z
and the volume of the particle Vp we can write:

∆F (S) = f (S)
∂|τ|
∂z

Vp , (A.7)
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where f (S) is some S-dependent function. This would yield for the lag velocity:

λx = Vp

πdb

∂|τ|
∂z

1

η

f (S)

cd (S)S
= vbn(S), (A.8)

where vb = ∂|τ|
∂z

d 2
p

η and n(S) = f (S)
6cd (S) . This would render the S-dependent term n(S) di-

mensionless, while the factor vb is a situation dependent constant with units of velocity,
proportional to the viscosity, the gradient in shear stress and the particle diameter. The
connection between vb and the constant coefficient a in Eq. (2.2) can be found by writing
vb = aS2. This reveals that a ∝ ∂τ

∂z d 2
b . We could proceed in this matter, however, Eq. (A.7)

is an assumption that we are not willing to make, so that we use instead Eq. (A.6) in the
main text.

A.2. INCLINATION ANGLE DEPENDENCE OF THE LIFT FORCE
Here we show the dependence of the lift force FL , as well as the buoyancy Fb , on the
inclination angle θ of the chute, for S = 2.4. These data are plotted in Fig. A.1(a) where
we see that the lift force and the buoyancy force are independent of the inclination angle,
within the fluctuations.

A.3. DEPTH DEPENDENCE OF THE LIFT FORCE
Here we show the dependence of the lift force FL , as well as the net contact force Fc = FL+
Fb on the depth of the intruder. These data are plotted in Fig. A.1(b) where we see that the
lift force and the contact force are independent of the depth. This is in agreement with
the findings reported by Guillard et al. [3]. There is an increase of both forces close to the
bed, but we attribute this to a boundary effect where the intruder particle experiences
a greater force due to layering of particles near the bed, as reported by Weinhart et al.
[2]. Two fits of the lift force model, Eq. (2.9), are shown in Fig. A.1(b), one using the
functional form of the lag λx = a(1/S −1)/η and a second using the raw velocity lag data
from Fig. 2.2(b).
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B
FORCE MODEL FOR A LARGE

INTRUDER: SUPPLEMENTARY

MATERIAL

B.1. FLOW GRADIENTS
In this appendix the non-dimensional parameter α defined as

α= η
∂γ̇xz
∂z

∂η
∂z γ̇xz

, (B.1)

is derived for different flow configurations. First some useful definitions and relations
are discussed. The flows considered here only have one shear component, γ̇xz . The
shear stress can therefore be expressed as

τxz = ηγ̇xz , (B.2)

where η is the viscosity. The viscosity is defined as

η= µp

|γ̇xz |
, (B.3)

where µ is the bulk friction and p is the pressure. Substituting the viscosity definition in
Eq. (B.2) gives an alternative expression for the shear stress,

τxz =µpsgn(γ̇xz ). (B.4)

Two useful relations between the the shear gradient and α are

∂τxz
∂z

∂η
∂z γ̇xz

= 1+α (B.5)
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and
∂τxz
∂z

η
∂γ̇xz
∂z

= 1

α
+1. (B.6)

The rheology of a dense granular flow is determined by a bulk friction µ and therefore
an assumption is required. Here we assume that µ is purely a function of the inertial
number [1, 2],

I = |γ̇xz |dp√
p/ρp

. (B.7)

A useful relation is the derivative of I with respect to z,

∂I

∂z
= sgn(γ̇xz )

dp√
p/ρp

∂γ̇xz

∂z
− |γ̇xz |dp

2
√

p/ρp

∂p

∂z
= sgn(γ̇xz )

I

|γ̇xz |
∂γ̇xz

∂z
− I

2p

∂p

∂z
. (B.8)

SHEARED FLOW WITH gx = 0
The gradient of the shear stress vanishes in a sheared system with gravity perpendicular
to the flow [3]. Expressing the derivative as

∂τxz

∂z
= η∂γ̇xz

∂z
+ ∂η

∂z
γ̇xz = 0 (B.9)

and dividing this equation by ∂η
∂z γ̇xz gives

α+1 = 0, (B.10)

yielding α = −1. Note that this value is independent of z. Therefore, given the value of
τxz , the velocity profile could be analytically derived.

SHEARED FLOW WITH gz = 0
The gradient of pressure vanishes in a sheared system when gravity is aligned with the
flow [3]. Using Eq. (B.4) the gradient of shear stress is

∂τxz

∂z
= sgn(γ̇xz )

∂µp

∂z
= sgn(γ̇xz )p

∂µ

∂z
. (B.11)

The derivative of µ can be rewritten by performing the chain rule,

∂µ

∂z
= dµ

d I

∂I

∂z
. (B.12)

Substituting Eq. (B.8) and noting that ∂p
∂z = 0 yields

∂µ

∂z
= dµ

d I
sgn(γ̇xz )

I

|γ̇xz |
∂γ̇xz

∂z
. (B.13)

Substituting this result into Eq. (B.11) gives

∂τxz

∂z
= I p

|γ̇xz |
dµ

d I

∂γ̇xz

∂z
. (B.14)
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Figure B.1: Estimation of Eq. (B.16) using realistic material coefficients.

Divide both sides by η ∂γ̇xz
∂z and using Eq. (B.6) gives

1+ 1

α
= I

µ

dµ

d I
. (B.15)

Therefore,

α= 1
I
µ

dµ
d I −1

. (B.16)

This is a general result without making further assumptions on the specific shape of µ.
In order to estimate the sign of α, the µ(I )-rheology is adopted [1, 2],

µ=µs + ∆µ

I0/I +1
, (B.17)

where µs , ∆µ and I0 are constants. With this definition it can be shown that

lim
I→0

α=−1 (B.18)

and
lim

I→∞
α=−1. (B.19)

Realistic values for the rheology are µs = 0.15, ∆µ= 0.24 and I0 = 0.07 [4]. In Fig. B.1 α is
shown. From this estimation it is assumed that α< 0.

CHUTE FLOW

In a chute flow, the friction is constant [5]. Therefore, using Eq. (B.4), the gradient in
shear stress can be expressed as

∂τxz

∂z
= sgn(γ̇xz )µ

∂p

∂z
(B.20)
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Dividing by η ∂γ̇xz
∂z and substituting Eq. (B.6) yields

1+ 1

α
= sgn(γ̇xz )

µ
∂p
∂z

η
∂γ̇xz
∂z

(B.21)

The constant friction in a Bagnold profile implies a constant inertial number. Hence,by
using Eq. B.8, the shear rate can be expressed as

sgn(γ̇xz )

|γ̇xz |
∂γ̇xz

∂z
= 1

2p

∂p

∂z
. (B.22)

Multiplying both sides with sgn(γ̇xz )µp and using Eq. B.3 yields

η
∂γ̇xz

∂z
= sgn(γ̇xz )

µ

2

∂p

∂z
(B.23)

substituting this in Eq. B.21 yields

1+ 1

α
= sgn(γ̇xz )µ ∂p

∂z

sgn(γ̇xz )µ2
∂p
∂z

= 2 (B.24)

and therefore in a Bagnold profile α= 1. Note that Eq. (B.23) is constant in z and there-

fore by extension γ̇xz
∂η
∂z .

SHEAR BOX

In a shear box the parallel walls enforce a flow with ∂γ̇xz
∂z = 0 and a presence of gravity in

the z-direction yields ∂p
∂z < 0. Substituting this directly in Eq. (B.1) yields α= 0. However

this does not imply that the gradient of viscosity is absent. The gradient in viscosity can
be expressed as

∂η

∂z
= ∂

∂z

µp

|γ̇xz |
= µ

|γ̇xz |
∂p

∂z
+ p

|γ̇xz |
∂µ

∂z
(B.25)

The derivative of the friction can be rewritten by performing the chain rule and inserting
Eq. (B.8),

∂µ

∂z
= dµ

d I
sgn(γ̇xz )

(
I

|γ̇xz |
∂γ̇xz

∂z
− I

2p

∂p

∂z

)
. (B.26)

Substituting this result back into Eq. (B.25) and using ∂γ̇xz
∂z = 0 yields

∂η

∂z
= 1

|γ̇xz |
(
µ− I

2

dµ

d I

)
∂p

∂z
= 1

|γ̇xz |
β
∂p

∂z
, (B.27)

with

β=µ− I

2

dµ

d I
. (B.28)

To determine the sign of β, assume the µ(I )-rheology and note that

dµ

d I
= ∆µI0

(I0 + I )2 (B.29)
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and
d 2µ

d I 2 = −2

I0 + I

dµ

d I
. (B.30)

The limit of β for I → 0 can then easily be estimated,

lim
I→0

β=µs . (B.31)

The gradient of β is
dβ

d I
= dµ

d I
− 1

2

dµ

d I
− I

2

d 2µ

d I 2 . (B.32)

Using Eq. B.30 this can be simplified to

dβ

d I
=

(
1

2
+ I

I0 + I

)
dµ

d I
. (B.33)

Note that by definition I is positive and Eq. (B.29) is also positive. The gradient of β is
there fore always positive. Combining this with Eq. (B.31) shows that β > 0. Therefore,
the gradient in viscosity, Eq. (B.27), is always negative in a shear box.
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C
PARALLEL PARTICLE SIMULATIONS

IN MERCURYDPM

This work presents a parallel computing algorithm for the discrete particle method (DPM)
simulations using MPI, implemented in the open-source software package MercuryDPM.
The algorithm is described in great detail such that it can be used as guide for future Mer-
curyDPM developers. The algorithm can handle complex boundaries such as periodic
boundaries, insertion/deletion boundaries and maser boundaries (a set periodic bound-
aries which emits particles into a simulation). The weak scaling of the algorithm shows
a 40% reduction for the first 60 cores used. However, for simulations with more cores the
efficiency stays constant. Future recommendations are to implement automatic load bal-
ancing and efficient data generation by employing coarse grained continuum fields.

C.1. INTRODUCTION
Many industrial sectors require handling of granular materials such as the food, phar-
maceutical and mining industry. Designing efficient equipment is a primary target for
the industry to reduce energy consumption and operation costs. The quest for optimal
designed equipment is hampered due to a lack of understanding of granular materials.
Computer simulations such as particle simulations can aid in a cheaper and more flexi-
ble design processes.

A drawback of particle simulations is the shear amount of time required to simu-
late industrial scale problems. There are many possibilities to reduce the simulation
time. One approach is by up-scaling the physical model, such as the use of meso-scale
particles [1] or continuum models [2]. A multi-scale approach combines the particle
simulation methods and up-scale methods and applies the appropriate method where
necessary [3]. Alternatively, the simulation time of particle simulations can be reduced
by means of parallel computation. In this appendix the latter method is designed and
implemented in the open source software package MercuryDPM [4].

Simulations have been performed by W.M. den Breeijen.
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MercuryDPM uses the discrete particle method (DPM) [5] to simulate particles. An
advanced hierarchical grid is used to efficiently deal with polydisperse systems [6, 7].
It can handle complex geometries including axially symmetric, polyhedral and helical
screw walls. Furthermore MercuryDPM contains specialised boundaries such as a mass
laser (maser) boundary [8] and angled periodic boundaries [9]. The implementation of
a parallel algorithm in MercuryDPM requires compatibility with these features.

An overview of parallel methods is given in section C.1.1 and an overview of the DPM
algorithm used by MercuryDPM is given in section C.1.2. In section C.2 the implementa-
tion structure and details are discussed. Scaling results are shown in C.3 and conclusions
and discussions are given in section C.4.

Figure C.1: A parallel simulation of a rotating drum in MercuryDPM using 36 cores. The drum contains a
bidispersed mixture of large (red) and small (blue) particles with some degree of polydispersiy. The light blue
particles are the particles on a single core.

C.1.1. PARALLEL METHODS
Parallel methods can be applied to algorithms which can be split into smaller simulta-
neously executed processes. There are generally two parallelisation strategies: shared
memory and distributed memory. Shared memory implies that the simulation is per-
formed over many different cores or threads, but the memory is accessible to all the
processes. Distributed memory means that processes don’t have access to all memory
and therefore have to communicate information.

For relative small particle simulations (∼ 1.0×106 particles) the shared memory ap-
proach is a common choice. Most DPM software have implemented this type of paralli-
sation of particle methods [10–13]. The shared memory approach is generally performed
on a Graphics Processing Unit (GPU), due to the large amount of cores on these cards
and their fast memory. A limiting factor of this approach is the finite amount of memory
and cores on a single GPU. State of the art GPU’s have a computational power of up to
100 Central Processing Units (CPU) [14]. For more demanding simulations a distributed
memory approach is required.

When applying the distributed memory approach to a DPM algorithm, not all sim-
ulation information is readily available for each process. Therefore the simulation is
geometrically divided into a grid of domains. These domains will perform the simula-
tion locally and require additional simulation information at the domain boundaries by
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communicating with their neighbour domains. The standard communication protocol
for the distributed approach is called message passing interface (MPI) [15]. This inter-
face allows to implement a communication strategy which is independent of the com-
puter architecture. The actually implementation of the MPI protocol depends on the
computer architecture and therefore offers various choices. Examples of implementa-
tions are openMPI [16] and MPICH [17]. As the interface definitions of the MPI protocol
do not change, the code is very maintainable. The distributed approach is less common
for DPM software packages as only a handful have take this approach [18].

An alternative approach is a hybrid distributed/shared approach, where locally a do-
main applies the shared memory approach. This approach has also been implemented
and investigated in [18]. Here MPI is used as general domain decomposition and load
balancing is done by local threads. The results show that for low number of cores the
distributed approach outperforms the shared memory and hybrid approach. However,
as the number of cores increase the hybrid approach becomes more feasible as load
balancing is improved in the hybrid approach. Implementing a full hybrid approach
with load balancing is an interesting approach for MercuryDPM. As a first step an MPI
approach is implemented, because this removes the hardware constraints of a shared
memory approach.

The design of the parallel code can be split up into two distinct problems which are
different in communication style. The first problem consists of decomposing the simu-
lation in smaller sub domains. Each domain communicates only with its neighbouring
domains. This communication is called local communication as the domains only com-
municate locally. The second communication problem is termed global communication
where a-priori it is unknown which domains have to communicate. Examples of global
communication are periodic boundaries and insertion boundaries. The local commu-
nication structure is discussed in section C.2.1 and the global communication structure
in section C.2.2.

C.1.2. MERCURYDPM SIMULATION METHOD

The implementation of the DPM algorithm greatly influences the implementation of a
parallel code and is therefore explained in detail in this section.

The trajectory of each particle is solved by employing Newton’s equation of motion,
F = ma, where F are the forces on the particle, m is the mass of the particle and a the
acceleration. The angular motion is solved in a similar manner, T = I ·α, with torque
T , moment of inertia I and the angular acceleration α. The forces on a particle are
caused by contacts with other particles, body forces such as the gravity force, or long
range forces.

The numerical scheme that approximates the equations of motion in MercuryDPM
is the velocity Verlet scheme [19]. This scheme consists of a three step process. Note
that both the translational and rotational motions are solved using this scheme, but the
explanation is given by only considering the translational properties. The first part com-
putes the half-time step velocity and the next time step position,

v n+ 1
2 = v n + 1

2
an∆t , (C.1)
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xn+1 = xn +v n+ 1
2∆t , (C.2)

where x ,v ,a indicate, respectively, position, velocity and acceleration of the particle and
n indicates the current time step. The second part of velocity Verlet computes the new
acceleration on the particles,

an+1 = F n+1
p (xn+1, v n+ 1

2 )/mp , (C.3)

with the total force on the particle at the new time step F n+1
p and the mass of the particle

mp . During this step interactions between particles are evaluated and the resulting con-
tact forces are computed based on a specified contact law. Examples of commonly used
contact laws are the linear viscoelastic contact law [20], and the Hertz-Mindlin contact
law [21]. These laws require the (angular) position and (angular) velocity of the inter-
acting particles, and history parameters of the interaction. Note that at this point of the
simulation all particles require the most recent information of neighbouring particles,
implying communication between processes in case of a distributed parallel approach.
All real particle have obtained new positions in the first step, that implies that new par-
ticles might have to be communicated to neighbour domains.

Finally, in the third step the velocity at the time step is computed

v n+1 = v n+ 1
2 + 1

2
an+1∆t . (C.4)

The considered particle does not depend on neighbouring particles to perform this up-
date, so no communication is required.

C.2. PARALLEL ALGORITHM
In this section the parallel algorithm is explained. First the local communication is ex-
plained which deals with neighbouring domains communication with each other. sec-
tions C.2.1 and C.2.2 introduce concepts and definitions of the algorithm and the de-
tailed implementation into MercuryDPM is elaborated in section C.2.4.

C.2.1. LOCAL COMMUNICATION STRUCTURE
Each particle simulation in MercuryDPM has a simulation box size which specifies the
approximate size of the simulation. This simulation box is not enforced on the particles,
enabling the possibility of particles traveling outside the simulation box. This is particu-
larly useful for 1D-decompositions with free surfaces. Based on this simulation box the
simulation is subdivided into a Cartesian grid of nx ×ny ×nz domains. An example of a
2D hourglass simulation is sketched in Fig C.2. In this specific example the total amount
of domains is 9. Each domain is linked to a process and particles located inside the do-
main belong to that specific domain and are handled by that domain only. The domain
edges of domains that are located at the boundary of the grid extend into infinity. The set
of all domains is D and Dn(Di ) ⊆ D are all domains that are neighbours of domain Di .
Particles that are located precisely on a domain boundary always belong to the domain
on the right side in their respective axis.

Particles located close to the boundary of a neighbouring domain can have interac-
tions with particles located in a neighbouring domain. To compute the contact force
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Figure C.2: Decomposition of a 2D hourglass simulation using a Cartesian grid of 3× 1× 3, with a total of 9
cores. The decomposition is based on the simulation box which is given as user input in MercuryDPM, as are
the number of cores in each Cartesian direction. Domain edges on the boundary of the simulation box extend
towards infinity. All particles located inside a domain are only known on that particular domain, generating 9
parallel simulations.
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with these particles, see Eq. (C.3), ghost particles are introduced. The domain is ex-
tended into the other domains and ghost particles are introduced in this extended re-
gion. A sketch of two domains communicating which each other is shown in Fig C.3.
The size of the overlapping region is called the interaction distance I which is always two
times the largest interaction radius. This can be observed by considering the largest pos-
sible constant distance between particles if one of them is located on a domain bound-
ary. Generally the interaction distance is twice the largest particle radius, but in case of
long range forces it becomes twice the longest interaction radius.

Introducing a communication domain also introduces a CFL-like condition [22]. The
speed at which a particle travels through the domain should be smaller than the overlap-
ping zone. This poses the following constraint on the particle velocity,

max(|vp |)∆t < 1

2
I , (C.5)

where |vp | is the maximum absolute velocity of a particle in the domain and ∆t is the
time step of the simulation. Generally this does not pose problems for simulations, be-
cause if these kind of velocities are obtained, the simulation can’t even simulate particle-
particle contacts correctly and hence this criteria will always be satisfied in a sensible
simulation.

The communication between domains introduce various different particle types. For
the local communication between neighbouring domains the particles are distinguished
into three types. An R-particle is a real particle located on domain Di and is far away
from any domain boundary. If an R-particle moves within a distance of I of a domain
boundary it is flagged as an M-particle. This implies the particle needs to communicate
its properties to the neighbouring domain. The neighbouring domain D j of Di has a
copy of this M-particle, but has no control over it and hence it is called the ghost of the
M-particle, or in short MG-particle. The MG-particles receive their particle properties
from the corresponding M-particles. A list of particle types is used in the communica-
tion is given in Table C.1.

Two approaches can be taken with regard to constructing MG-particles. The first ap-
proach creates MG-particles every time step and after the forces between M-particles
and MG-particles have been computed, the MG-particles are destroyed. The second
approach does not delete the MG-particle, but instead updates the position and veloc-
ity every time step. Based on the new position the status of the particle can be changed
to an M-particle or it can be deleted. The downside of the second approach is that a
positional check is required to see if the type of a particle has changed. The downside
of the first approach is an increased amount of data that has to be communicated us-
ing MPI routines, including history parameters of interactions between particles. The
number of parameters that have to be communicated in the first approach can increase
dramatically when considering spherical particles [23] or complex interaction laws such
as Hertz-Mindlin [21]. The second strategy is therefore chosen for MercuryDPM.

Keeping track of all M- and MG-particles requires efficient bookkeeping. The ex-
ample in Fig. C.3 only considers two neighbouring domains such that each M-particle
corresponds to one MG-particle, however in a Cartesian mesh an M-particle located in
a corner of a domain has to be copied to multiple neighbouring domains. To describe
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Figure C.3: Sketch of communications between domains. Active particles on a domain are R-particles and
become M-particles if their distance towards the domain boundary is smaller than the interaction distance I .
The neighbouring domain contains ghost particles (MG-particles) of these M-particles.

this process a communication index C is introduced. This number indicates how the
particle is interacting with neighbour domains

C = i +3∗ j +9∗k +13 (C.6)

where
{
i , j ,k

}
is the local coordinate see Fig C.4 for a 2D sketch. This uniquely defines the

possible interactions of the particle with neighbour domains. If this number changes it
implies that the interaction with neighbour domains also changes. To indicate with how
many domains a particle is interacting with, an absolute communication complexity is
defined,

|C | = |i |+ | j |+ |k|. (C.7)

In the 2D mesh of Fig C.4 the maximum value of |C | is 2, which corresponds to a particle
that has ghosts on three neighbour domains (2 sides and one rib). In 3D the maximum
|C | is 3. The corresponding neighbours are 3 sides, 3 ribs and one corner, a total of 7
neighbours.

Each domain Di contains lists that keep track of M-particles and MG-particles on
its own domain. The boundary particle list Bi j keeps track of the M-particles on do-
main Di that have a corresponding MG-particle on domain D j . Domain Di also keeps
a list of all MG-particles in its own domain, Gi j , where D j is the domain that has the
corresponding M-particle. Operations on these lists are designed in such a way that the
following statement can be guaranteed,

Bi j =G j i . (C.8)

When MG-particles are updated with the properties of the corresponding M-particles,
no particle search step is required, because the position in the receiving data structure is
already known. Note that with this implementation it can occur that an M-particle with
|C | = 3 located on domain Di is listed 7 times in B and the corresponding MG-particle
is located 7 times in G .
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Figure C.4: Each communication zone has a specific local coordinate {i , j ,k} which can be converted into
a unique communication index C . The value |C | indicates the complexity of interaction. With |C | = 1 the
communication zone is only interacting with one neighbour domain. In a 2D Cartesian mesh the maximum
complexity is two, corresponding to ghost particles on three neighbouring domains.

Particle type Definition
R-particle A normal particle away from any parallel communication zones.
M-particle An R-particle that is in the MPI communication zone.
MG-particle A ghost of an M-particle located on another domain.
P-particle An R-particle that is in the periodic communication zone.
PG-particle A ghost of a P-particle at the corresponding periodic boundary.
P M-particle Particle located in a P and M boundary at the same time
P MG-particle An MG ghost particle of a P M-particle
PGM∗-particle A PG-particle and an M-particle, but not listed in B.
PGMG∗-particle A PG-particle and an MG-particle, but not listed in G .

Table C.1: Definition of types of communicating particles.
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The local communication structure now fully describes the communication between
domains. Ghost particles are introduced in a communication zone of I from the bound-
ary. Bookkeeping lists B and G keep track of communicating particles. Based on the
particle type and complexity coordinate C a particle can be assigned to the correct lists
and due to the symmetry between B and G , see Eq. (C.8), quick communication and
processing of information is possible. The detailed implementation of the algorithm is
given in section C.2.4, however first the structure for global communication needs to be
introduced as these two structures affect each other.

C.2.2. PERIODIC BOUNDARY COMMUNICATION STRUCTURE

Periodic boundaries are a set of boundaries that are used to teleport particles from one
boundary to the other boundary when crossed. There are various different types of pe-
riodic boundaries used in DEM simulations. One example is the maser boundary, see
Fig. C.5 [8]. Other examples are angled periodic boundaries used in shear cells [9] and
compaction cubes [].

Although the idea of periodic boundaries is very similar in these examples, they differ
in a subtle way. Angled periodic boundaries require not only a positional change of the
particle, but also a switch in velocity direction. In most flows all particles are within the
periodic boundaries which is not the case with the maser. In case of a compaction cube,
the periodic boundaries are compressed by moving the periodic boundaries. To develop
a parallel algorithm that can take all these differences into account it is not feasible to
couple periodic boundaries to domain boundaries.

Figure C.5: A maser inflow boundary. Red particles belong to a periodic box. Red particles moving over the
right periodic boundary get both copied back to the left boundary and escape the periodic box, creating an
outflow with chute flow characteristics. Figure created by I.F.C. Denissen.

Similar to the local communication, communication zones are introduced at peri-
odic boundaries with a similar interaction distance of I , twice the largest interaction ra-
dius in the simulation. A periodic particle P-particle is defined as a real particle that is lo-
cated in the communication zone of a periodic boundary, see Fig. C.6. Here a P-particle
is located at the top of a periodic boundary and a PG-particle, a ghost of a P-particle
is therefore generated at the bottom. Note that in this particular case the PG-particle
resides on the same domain, but this is generally not the case.
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Figure C.6: Sketch of communication with periodic boundaries (green lines) and domain boundaries (red
lines). Dashed lines indicate the communication zone with respect to the boundary. Particle types and ex-
planations are listed in Tab. C.1.

It is possible that a particle seems to be an R-particle w.r.t. a certain periodic bound-
ary, but a P-particle w.r.t. to another. To keep track how a particle is related to all sets of
periodic boundaries, a periodic complexity is introduced, Cp . This periodic complexity
is not a scalar, in contrast to C , but a vector with the size of the number of sets of periodic
boundaries. This is because in the local communication a fixed domain shape is taken,
while the number of periodic boundaries is never fixed. Each entry in Cp describes how
the particle is related to this boundary, see Table C.2. A visual representation of the pe-
riodic complexity is given in Fig. C.7. Extra flexibility is introduced in this complexity to
enable boundary specific interactions. In the specific case of a maser boundary, parti-
cles with value 3 are disabled from interacting with the maser boundary. The relation
between Cp and the type of particle can be determined as follows. If all values of Cp are
positive and at least one value equal to 1, then the particle is a P-particle. If the particle
contains any negative value then the particle is a PG-particle.

Cpi Definition
2 A particle that does not interact with the boundary.
1 A real particle in the communication zone of the boundary.
-1 A ghost particle in the communication zone of the boundary.
-2 A ghost particle outside the communication zone of the boundary.
3 Special case of a P-particle, requires a boundary specific action.
-3 Special case of a PG-particle, requires a boundary specific action.

Table C.2: The definition of the periodic complexity values with respect to a given periodic boundary i . The
value 3 and −3 are a special cases that enable boundary specific actions such as the Maser.
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Figure C.7: Examples of the periodic complexity Cp for a situation with horizontal periodic boundaries and
vertical periodic boundaries. Note that the ghost of the R-particle is flagged as "PG"-particle, because it should
not exist.

By introducing the periodic complexity, particles are aware of what type their type.
However, the connection between PG-particles and P-particles still need to be made, es-
pecially because a P-particle can have ghosts in different domains as depicted in Fig. C.6.
Therefore bookkeeping lists P and H are introduced. The list P keeps track of all P-
particles located on the current domain Di . If a P-particle has a ghost on domain D j it is
listed in P i j . Similarly, if a PG-particle is located in domain Di and the original particle
is located in D j , it is listed in H i j . Operations on both P and H are designed such that

P i j =H j i , (C.9)

removing any need to perform a particle search. Note that particle with periodic com-
plexity {1,1} in Fig. C.7 has three ghosts and is therefore listed three times in P . Genera-
tion of ghost particles is relatively, given the periodic complexity of a P-particle. Obtain-
ing all ghost particles is done by finding all permutations of values 1 in Cp to negative
values −1. As example see Fig. C.7 where a P-particle with complexity {1,1} has three
ghosts, {−1,1}, {1,−1} and {−1,−1}.

One particular problem with introducing PG-particles is the shift in position. Con-
sider a periodic boundary with the left boundary located at xl = 0 and the right boundary
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located at xr = 100. Now if a P-particle p1 has a position of xp = 1×10−16 then the ghost
position of this particle would be xpg = xr + xp . Due to a finite numerical precision this
would be rounded off to xpg = 100. Implying the ghost particle is a P-particle. It is there-
fore crucial for a stable algorithm that the position with respect to the periodic boundary
is always computed with the original position of the P-particle. The periodic complexity
of the PG-particles is therefore always updated using Cp of the P-particle and not based
on the position of the ghost particles.

With the introduction of M-particles and P-particles, P M-particles are also intro-
duced, particles that are both interacting with a periodic boundary and with a commu-
nication boundary, see Fig. C.6. This introduces a problem in which order the system
is flagging particles and who is taking control of the particles. In this algorithm the
local communication first performs a new particle check resulting in a list of M- MG-
particles, both listed in B and G respectively. Next, the periodic communication yields
P- and PG-particles, listed in P and H , respectively. Considering a P M-particle, the
first step generates P M- and P MG-particles listed in B and G . The periodic step lists
PGM∗- and PGMG∗-particles in lists P and H . Note that these particles are not listed
in B and G , although they are interacting with a communication boundary. Therefore,
the periodic communication algorithm needs to deal with the local communication of
these particles. Note that if the evaluation of particle type is done in the alternative or-
der, P∗MG- and PG∗MG-particles are introduced, i.e. periodic particles not listed in
P and G . These particles are considerably harder to update than PGM∗-particles and
PGMG∗-particles, due to shift in position.

This section has introduced a mesh-independent periodic communication structure
that allows a wide variety of periodic boundaries. The structure of communication is
very similar to the structure of the local communication. Ghost particles and commu-
nication zones, and bookkeeping lists P and H are introduced. A difference is the pe-
riodic complexity Cp which is vector instead of a scalar. Furthermore flexibility is build
into this periodic complexity that allows for special actions which are boundary depen-
dent. The communication of PGM∗- and PGMG∗-particles is solely done by the peri-
odic communication. Detailed algorithm of the implementation of this structure can be
found in section C.2.4.

C.2.3. INSERTION AND DELETION

One of the most important operations in a DPM simulation is insertion and deletion
of particles. There are many ways particles are added to the simulation: manually by
the user at the start up of the simulation, insertion boundaries or the communication
boundaries that add ghost particles. A clear distinction between the former two options
and the latter option can be made. A ghost particle is not a unique particle, but a copy
of a unique particle and more importantly, a ghost particle will always be added locally.
When adding a unique particle, the location of this particle might be generated randomly
and each core might generate a different set of random positions. To make sure only one
particle is generated, the root generates a particle and sends the data of this particle to
the other processors. Based on the location all processors evaluate if they have to add the
particle. If they have to add the particle then they will add the particle, otherwise they
will ignore the request. When a particle is added which increases the largest interaction
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radius the communication zones need to increase their interaction distance I , triggering
an evaluation step that looks for new M- and P-particles. Another important difference
is that when adding a unique particle, it also generates a unique ID. This is not the case
for a ghost particle.

Deleting particles generally is done with a deletion boundary. This boundary checks
any particle, including ghost particles, if they need to be destroyed based on their po-
sition. The particles, however, will not be destroyed directly, in case they are close to a
communication boundary. These particles first need to be flushed from the communi-
cation lists to avoid memory problems. After flushing them from the bookkeeping lists
the particles are destroyed.

C.2.4. PARALLEL ALGORITHM IMPLEMENTATION
This section focuses on the the details of the implementation in MercuryDPM using the
structure and definitions discussed in section C.2.1 and section C.2.2.

The communication procedure takes place after the positions and velocity of real
particles have been updated and it consists of a seven-step process, see Alg. 1. The first
step is to update the positions and velocities of all MG-particles. The second step is to
evaluate the particle type of all M- and MG-particles and take the proper actions. The
third and fourth step updates the PG-particles and the the particle type of all PG- and
P-particles, respectively. Sometimes it is necessary to delete particles, however deletion
can not be done straight away. Some ghost particles are both located in the data structure
of the periodic boundaries and the data structure of the local communications. Instead,
particles that have to be removed are flagged for removal and deletion is postponed until
all particles are updated and, if necessary, removed from the bookkeeping lists. Deleting
these particles is straightforward so no details are given. The last two steps introduce
new M- and MG-particles and new P- and PG-particles. At the end of Alg. 1 all particles
now have neighbours which are up to date such that the contact interactions can be
computed in Eq. (C.3). The algorithms for updating particles and finding new particles
will be discussed in detail in order.

Algorithm 1 Update Ghost Particles

1: Update MG-particles (Alg. 2)
2: Update M- and MG-particle status (Alg. 3)
3: Update PG-particles (Alg. 4)
4: Update P- and PG-particle status (Alg. 5)
5: Delete ghost particles
6: Add new M- and MG-particles (Alg. 6)
7: Add new P- and PG-particles

UPDATE MG -PARTICLES

The procedure for updating the position and velocities of MG-particles follows Alg. 2.
Consider domain Di and the set of neighbouring domains Dn(Di ). For each neighbour

domain D j ∈ Dn(Di ) a data structure data_ij is generated that contains v n+ 1
2 and xn+1

of all M-particles in Bi j . After the data has been collected a communication step is
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required. Communication using the MPI protocol requires a sending and a receiving
action. The standard send and receive requests are called "blocking" communications,
because all other communications are blocked until that specific send and receive re-
quest has been resolved. This is highly inconvenient when multiple domains have to
talk to many other domains and hence a different type of communication is used, asyn-
chronous communication. In this type of communication a send or receive request is
made, and it will be pending until a resolve request is made. When all send and receive
requests of data_ij are made, a synchronise step is called where these pending requests
are resolved simultaneously. After the synchronisation step the receiving data can then
be used to update the corresponding MG-particles in Gi j . Note that because of Eq. (C.8),
no particle search has to be performed.

Algorithm 2 Update MG-particles

1: given: Di ∈ D
2: for each: D j ∈ Dn(Di )
3: for each: p ∈Bi j

4: Collect v n+ 1
2 , xn+1 in data_ij

5: end for
6: Send request data_ij to D j

7: Receive request data_ji from D j

8: end for
9: Synchronise

10: for each: j ∈ Dn(Di )
11: for each: pg ∈Gi j

12: Update v n+ 1
2 , xn+1 from data_ji

13: end for
14: end for

UPDATE M - AND MG -PARTICLE STATUS

After the MG-particles have received their new position and velocities, the status of all
M- and MG-particles require a re-evaluation. Each domain checks the particles in the
lists G and B for any type changes. The algorithm that updates the lists is given in Alg. 3.
First the list of M-particles is considered, B. There are two options that can occur. Firstly
the particle might have moved out of the domain, if that is the case the particle needs to
be deleted. Secondly the complexity of the particle might have changed. This could be
because the particle moved away from the boundary, or because the particle moved into
a new boundary. This particle is then flagged as R-particle and removed from the list. If it
is still in the communication zone it will be reintroduced when finding new M-particles
(see Alg. 1). The boundary list of MG-particles, G is updated in a slightly different man-
ner compared to B. First a check is done to see if the ghost particle still belongs to the
neighbour domain D j . If that is not the case then either the ghost particle moved to Di ,
or it moved away from D j to another domain. In the first case the MG-particle becomes
an R-particle and in the latter case the MG-particle needs to be removed. Finally, if the
complexity of the corresponding real particle on domain D j changes, the real particle
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will be removed from the communication lists and reintroduced in a later step. There-
fore, the ghost also has to be removed from G .

Algorithm 3 Update M- and MG-particle status

1: given: Di

2: for each: D j ∈ Dn(Di )
3: for each: p ∈Bi j

4: if xn+1 6∈ Di

5: Flag M-particle for deletion, remove from Bi j

6: else if C n 6=C n+1

7: Change M-particle to R-particle, remove from Bi j

8: end if
9: end for

10: for each: p ∈Gi j

11: if (xn+1 6∈ D j )
12: if xn+1 ∈ Di

13: Change MG-particle to R-particle, remove from Gi j

14: else
15: Flag MG-particle for deletion, remove from Gi j

16: end if
17: end if
18: if C n 6=C n+1

19: Flag MG-particle for deletion, remove from Gi j

20: end if
21: end for
22: end for

UPDATE PG -PARTICLES

Updating the PG-particles is similar to updating MG-particles with a few exceptions.
The algorithm is given in Alg. 4 gives an abstract of the implementation. First the posi-
tional data is collected from all P-particles. However, the P-particles on a given domain
which have a PG-particle on the same domain can skip this step. No communication is
required in this case as the domain can already access the information. After all data has
been collected and all send and receive requests have been queued, the communica-
tion is synchronised and the actual PG-particle update can take place. The PG-particles

with a corresponding P-particle on the same domain can access v n+ 1
2 and xn+1 of the

periodic particle listed in P i j . Based on the periodic complexity of the PG-particle, the
velocity and position of the original particle can be shifted to the correct position and ve-

locity of the ghost, v
n+ 1

2
g , xn+1

g . After shifting these values to the velocity and position of
the ghost the PG-particle can receive its update. Similar update is required for all other
ghost particles, with the exception that the data is not directly from P i j , but from the
received data data_ij.
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Algorithm 4 Update PG-particles

1: Given: Di ∈ D
2: for each: D j ∈ D
3: if (D j 6= Di ) AND (size(P i j ) > 0)
4: for each: p ∈P i j

5: Collect v n+ 1
2 , xn+1 in data_ij

6: end for
7: Send request data_ij to D j

8: end if
9: if (D j 6= Di ) AND (size(H i j ) > 0)

10: Receive request data_ji from D j

11: end if
12: end for
13: Synchronise
14: for each: D j ∈ D
15: if Di == D j

16: for each: pg ∈H i j

17: Shift v n+ 1
2 , xn+1 from p ∈P i j to v

n+ 1
2

g , xn+1
g

18: Update pg with v
n+ 1

2
g , xn+1

g
19: end for
20: else
21: for each: pg ∈H i j

22: Shift v n+ 1
2 , xn+1 from data_ji to v

n+ 1
2

g , xn+1
g

23: Update pg with v
n+ 1

2
g , xn+1

g
24: end for
25: end if
26: end for
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UPDATE P - AND PG -PARTICLE STATUS

Updating the type of particles is shown in Alg. 5. The periodic complexity of all real
particles listed in P is computed based on the position. Next, the periodic complexity
of all real P-particles is evaluated. If a change is detected w.r.t the previous time step
then either the particle remains real, or becomes a ghost. In the former case the particle
is flagged as R-particle and a boundary specific action can be performed, required i.e.
in the maser boundary. If the particle becomes a ghost it will be flagged for deletion.
At the same time the P-particle could be an M-particle. If the particle switches from
P M-particle to P MG-particle then Alg. 2 will flag the particle for deletion and hence this
particle has to be removed from P . Alternatively, the P-particle could be an MG-particle
that has moved out of the communication zone of the domain. Then Alg. 3 will flag the
particle to be deleted and therefore this particle will also be removed from P .

Ghost particles compute C n+1
pg

based on the current periodic complexity of the cor-
responding real particle and the periodic complexity of both ghost and real particle of
the previous time step,

C n+1
pg ,i = |C n+1

p,i |sign(C n
p,i C

n+1
p,i C n+1

pg ,i ). (C.10)

Here |C n+1
p | gives the magnitude of the new value, see Tab. C.2. If the real particle crossed

a periodic boundary it switches sign, captured by the term C n
p,i C

n+1
p,i . Multiplying this by

the sign of the current ghost particle gives the new periodic complexity of the ghost.
If the ghost particle has become real, there are two options. Either the particle is an
MG∗-particle, in that case the particle will be flagged for deletion as this is not actually
a real particle, otherwise it truly is a real particle and it will be flagged as R-particle and
removed from H i j . The last update step consists of updating the PGM∗-and PGMG∗-
particles. If their status change they will be flagged for deletion.

FIND NEW M - AND MG -PARTICLES

As the status of all particles are now updated, it is time to introduce new M-particles and
their corresponding MG-particles that either have entered the communication zone, or
have been removed in the status update. For that reason two new lists are introduced,
Si j and Ii j . The first list contains newly found particles and the second structure con-
tains interactions between the newly found particles and their neighbour particles. The
full algorithm is shown in Alg. 6. Particles that have been flagged as R-particles but have
a position within the communication zone of the boundary are considered to be new
particles. Newly found interactions are interactions in which either p1 or p2 is in Si j

and the other particle is in either Si j , Bi j or Gi j . The next step is to add the correspond-
ing ghost particles. First the receiving domains need to know how many particles and
interactions they are going to receive, which is the start point for sending the actual par-
ticle and interaction data. After the synchronise step the strictly necessary particle and
interaction data are copied to Sdata and Idata, respectively. After all data is gathered into
a data that MPI can communicate, the send and receive requests are made and resolved
at the synchronisation step. The ghost particles can now be created together with their
interactions. Note that the interactions only contain the ID’s of the interaction particle.
It is a-priori not clear where the second particle is located in memory and therefore each
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Algorithm 5 Update P- and PG-particle status

1: Given: Di ∈ D
2: for each: D j

3: for each: p ∈P i j

4: Compute C n+1
p from xn+1

p

5: if C n+1
p 6=C n

p

6: if C n+1
p is real

7: Change P-particle to R-particle, remove from P i j

8: Perform boundary specific action (See Table C.2)
9: else

10: Flag P-particle for deletion, remove from P i j

11: end if
12: end if
13: if p is M-particle
14: if p Changes from P M-particle to P MG-particle
15: Remove p from P i j

16: else if p is P MG-particle AND leaves the domain communication zone
17: Remove p from P i j

18: end if
19: end if
20: end for
21: for each: pg ∈H i j

22: Compute C n+1
pg

from C n+1
p , C n

p , and C n
pg

23: if C n+1
pg

6=C n
pg

24: if C n+1
pg

is real
25: if MG∗-particle
26: Flag PGMG∗-particle for deletion, remove from H i j

27: else
28: Change PG-particle to R-particle, remove from H i j

29: end if
30: else
31: Flag PG-particle for deletion, remove from H i j

32: end if
33: end if
34: if pg is M∗-particle OR MG∗-particle
35: if PGM∗-particle to PGMG∗-particle
36: Flag PGM∗-particle for deletion, remove from H i j

37: else if PGM∗-particle moves out of local communication domain
38: Flag PGMG∗-particle for deletion, remove from H i j

39: end if
40: end if
41: end for
42: end for



C.2. PARALLEL ALGORITHM

C

139

interaction requires a particle search. This search is based on the hierarchical hGrid [6]
similar to finding contacts in the general simulation.

Algorithm 6 Add New M- and MG-particles

1: given: Di

2: for each: p ∈ Di

3: if p 6∈Bi j and |C n+1| > 0
4: Add p to Si j

5: end if
6: end for
7: for each: p ∈Si j

8: for each: I (p, p2)
9: if p2 ∈Si j or p2 ∈Bi j or p2 ∈Gi j

10: Add I to Ii j

11: end if
12: end for
13: end for
14: for each: D j ∈ Dn(Di )
15: Send si j = size(Si j ) and li j = size(Ii j ) to D j

16: Receive s j i and l j i from D j

17: end for
18: Synchronise
19: for each: j ∈ Di

20: for: si j

21: Collect Sdata_ij from Si j and Idata_ij from Ii j

22: Send Sdata_ij and Idata_ij to D j

23: Receive Sdata_ji and Idata_ji from Di

24: end for
25: end for
26: Synchronise
27: for each: D j ∈ Dn(Di )
28: for: s j i

29: CreateMG-particles from Sdata_ji, add to Gi j

30: end for
31: for: l j i

32: Add I from Idata_ji
33: end for
34: end for

FIND NEW P - AND PG -PARTICLES

Finding new P- and PG-particles is done in a similar manner as Alg. 6 with a few notable
implementation differences. When a P-particle is found on Di , all possible PG-particles
positions are generated. Based on these ghost positions, the target domain D j is com-
puted which is a-priori not known. It is possible that the target domain is the same as
Di which would not require a communication step, instead ghosts can be directly cre-
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ated. Before communicating the newly found P-particles, all domains need to know how
many particles which domain is receiving and sending, this global communication step
is significantly different from the local communication in Alg. 6, where the domains only
communicate with neighbour domains.

C.3. RESULTS
Estimation of the algorithm’s performance is done by investigating the weak scalability.
Weak scaling is determined by increasing the overall problem size, while keeping the
problem per core constant. A rotating drum, see Fig C.1, is therefore an ideal setup as it
is trivial to extend the simulation in axial direction.

Simulations are performed with a bidisperse mixture with a fractional polydisper-
sity of 5%. The ratio between the mean particle diameters of the large and small parti-
cles is dl /ds = 1.5. The scaling of the contact detection algorithm is influenced by poly-
dispersity [6]. Therefore, single core simulations are performed to estimate the scaling
law between simulation time Ts and number of particles Np . The results are shown in
Fig. C.8(a), yielding a power law of

T S
s (Np ) = aN b

p (C.11)

where subscript S implies the simulation time on a single core. The coefficients in the
power law are a = 1.0818 and b = 1.17.

The efficiency of the parallel code is defined as the ratio between the estimated sim-
ulation time on one core, compared to the cumulative simulation time of the parallel
simulation,

E = T S
s /(Ts Nc ) (C.12)

where Nc is the number of cores used. The efficiency of simulations on a single node
with 36 processors (up to 72 when hyperthreading is used) is shown in Fig. C.8(b). As
the number of cores increases, the efficiency reduces. An apparent linear trend can be
observed up to roughly E ≈ 0.6. When enabling hyperthreading, the efficiency even low-
ers to E ≈ 0.4. However, it does seem to be independent of the number of cores in this
regime. In Fig. C.8(c) the efficiency is shown when simulating on multiple nodes without
hyperthreading, where different colours indicate a different number of cores per node.
As expected there is an initial linear downwards trend up till roughly 60 cores. For higher
number of cores the performance seems to stabalise around an efficiency of E ≈ 0.6. A
constant efficiency implies the algorithm scales similar to a single core simulation (with
a prefactor of E).

A possible explanation for the observed decrease in efficiency could be due to ineffi-
cient load balancing. The particles in the rotating drum can move freely between cores.
Specifically, in long rotating drums particles move away from the centre towards the wall
of the simulation, increasing the computational cost on these cores [24].

C.4. CONCLUSION AND DISCUSSION
A parallel algorithm has been developed and implemented in the open-source software
MercuryDPM. A user specified 3D Cartesian mesh decomposes a DPM simulation into
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Figure C.8: (a) Single core simulations of different drum lengths, parameters of scaling fit are a = 1.0818 and
b = 1.17 (b) Efficiency of the parallel algorithm on a single node with a maximum of 36 physical cores and 72
cores including hyperthreading. (c) Efficiency of the parallel algorithm on more than 1 node without hyper-
threading. Different symbols indicate the number of cores per node.

equally sized domains. The local communication between neighbouring boundaries is
done by employing ghost particles, which contain up-to-date information of real par-
ticles on neighbouring domains. Ghost particles are also used for specialised bound-
aries such as periodic and maser boundaries. However, these boundaries perform global
communication, as the target domain in these cases is not know a-priori. Both the local
and global communication algorithms are discussed in great detail, such that this work
can be used as manual for future developers of MercuryDPM.

The weak scaling of the algorithm is investigated to estimate its performance. This
scaling shows an initial decrease in performance of 40% up to 60 cores, while simulations
with more cores show no further decrease. Therefore, the algorithm performs very effi-
cient for large simulations. The decrease in efficiency could be caused by inefficient load
balancing which could be tested by placing walls inside the drum at each core interface.
The walls prevent particles from traveling to other domains, but keep communication
between domains. It is recommended to investigate the strong scaling of the algorithm
such that the optimal ratio between domain volume and communication area can be
determined. Furthermore, the performance of periodic and maser boundaries has yet
to be determined.

The current implementation works well for evenly distributed particle systems. How-
ever, for different systems load balancing between cores could become an issue. To op-
timise the algorithm for all systems, automatic load balance is mandatory. One possi-
bility to enhance load balancing is by implementing an adaptive mesh of different sized
domains. Another option is to combine the current MPI implementation with a local
openMP implementation [18]. The implementation uses a fixed interaction distance at
domain boundaries for local communication. This interaction distance is defined as
twice the largest particle in the system. The algorithm could be improved by making this
distance depend on the hierarchical contact detection grid.

The data generated by massively parallelised systems could become a burden to
analyse. As a recommendation, the output of MercuryDPM in these cases should switch
from discrete particle data to coarse grained continuum fields, for details see Ref. [25].
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As an additional option, user specified regions of interest should still be able to output
discrete data.
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