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Introduction

The study of sound wave propagation in granular materials brings together two

large fields of research: (i) the propagation of vibrations, sound, or more generally

mechanical waves, in disordered heterogeneous media and (ii) the behavior and

phenomenology of discrete and nonlinear granular materials in general.

In the following, a general introduction to granular matter is given. Then the

effect of several granular material peculiarities, like heterogeneity, multiple-scales,

particle rotations, tangential elastic forces and friction, history, etc ... on the wave

propagation behavior will be discussed. Some characteristics of mechanical waves

in disordered heterogeneous media like attenuation, dispersion and several non-

linearities are introduced.

Finally an outline of the thesis will be given.

1.1 Granular matter

The term “granular matter” describes a large number of grains or particles acting

collectively as an ensemble. Many examples for this material can be found in our

daily life. Food grains like cereals or sugar, pharmaceutical products like powders

or tablets, but also many examples in nature like sand, snow, or even “dust”

clouds in space. In this thesis we consider static, solid-like situations where the

particles are confined, i.e. they are held together by external forces.

According to the definition in [28], the name “granular material” is given to

collections of particles when the particle size exceeds 1µm. Particles smaller than

1µm are significantly sensible to Brownian motion and the system behavior starts

to be driven by temperature, which implies a totally different physical description.

In general, classical thermodynamic laws are not sufficient for granular materials.

As an illustration, a representative energy for granular materials is the potential

energy of one grain mgd, with m its mass, d its diameter and g the gravitational
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1.1 Granular matter

acceleration. For a sand grain with d = 1mm and a density ρ = 2500kg/m3,

this energy is about 13 orders of magnitude larger than the classical thermal

agitation kBT . Even if a granular temperature can be defined analogously to the

classical temperature, i.e., proportional to the root mean square of grain velocity

fluctuations, the granular materials are a-thermal, because thermal fluctuations

are negligible.

The particularity of granular matter [11,12,34,38–40,43–45,60,94,99] is that it

consists of solid particles, while at the same time being able to realize, depending

on the boundary conditions, the three different states, solid, liquid, and gas.

Indeed, it behaves as a solid when we walk on the sand at the beach, as compacted

granular material at rest can sustain relatively large stresses if the grains can not

escape to the sides. It can behave as a liquid: the sand flows in the hourglass, as

does snow in an avalanche. Also, a gas-like behavior can be observed when the

particles are sustained in the air by the wind during sand storms.

The difference with a usual liquid or gas is that, to be maintained in a certain

equilibrium state, a constant input of energy from outside the system is needed

as granular materials are highly dissipative. The inelastic and frictional collisions

between particles are such that granular materials exhibit a very short relaxation

time when they evolves towards the state of zero-energy without external input of

energy. Shaking a granular bed under different conditions allows to determine a

phase diagram where all the different states are present [29]. These experiments

are closely related to the mixing behavior of granular materials, which, under

certain conditions (amplitude and frequency for the shaking bed or the mixing

method in a mill), can show segregation or mixing, the former is the well-known

Brazil-nut effect which brings the large parts in breakfast cereals to the top.

Wet granular materials, as well as cohesive, frictional, fine powders, show a

peculiar flow behavior [18, 64, 67, 89, 114]. Adhesionless powder flows freely, but

when inter-particle adhesion due to, e.g., van der Waals forces is strong enough,

agglomerates or clumps form, which can break into pieces again [51,108,109,111].

This is enhanced by pressure- or temperature-sintering [65] and, under extremely

high pressure, tablets or granulates can be formed from primary particles [69–72].

Applications can be found, e.g. in the pharmaceutical industry.

One more specific property of granular matter is dilatancy. A highly com-

pacted granular material must expand (or dilate) before it can deform. The dry

area left by a foot when walking on wet sand close to the water is an illustration

of this phenomenon. The shear stress exerted by the foot on the sand results in

a dilatation of the compacted bed with increase in volume. By drainage under

gravity, the water at the surface is forced into the created voids and leaves a dry

surface.
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Introduction

1.2 Peculiarities of granular materials and wave

propagation

Mechanical waves are disturbances that propagate through space and time in a

medium in which deformation leads to elastic restoring forces. This produces

a transfer of momentum or energy from one point to another, usually involving

little or no associated mass transport. Probing a material with sound waves can

give useful information on the state, the structure and the mechanical properties

of this material. Therefore, it is important to study, preferably separately, how

each of the characteristics of granular materials influences the wave propagation

behavior. Concerning this, the main issues are described in the following.

Multi-scale

In granular materials, four main scales are present. (1) The contact scale, also

denoted as the micro-scale, where a typical length can be for example the size of

imperfections at the surface of a grain. (2) The particle scale, where the radius

or the diameter of the particles are the typical lengths. (3) The length of force

chains (described later in the introduction), typically around 10 to 20 particles

diameters. The so-called “meso-scale” can be placed between the particle and

the force chain scale. (4) The system scale, or macro-scale can vary from a few

grain diameters (meso- and macro-scale are then overlapping) in a laboratory ex-

periment with a chain of beads, to an almost infinite number of grain diameters

in seismic applications.

In practice, the size of the granular sample as compared to the particle size de-

termines the degree of scale separation in the system. On the other hand, it

is not completely clear whether the particle size or the length of (force-chains)

correlated forces - which is proportional to the particle size - is the appropriate

control parameter. In some applications, when system and particle size are of the

same order the material does not allow for scale separation, i.e. it is not possible

to distinguish between the micro- and the macroscopic scale.

The difficulty in describing wave phenomena in granular materials in large-

scale applications with a theoretical continuum approach is that the micro- and

meso-scale phenomena are very complex and hard to describe with few para-

meters.

Many studies [13, 20, 35, 83, 104] try to improve the continuum (large-scale) de-

scription of the material by including discrete (micro-scale) features like micro-

rotations (Cosserat-type continuum). However, there is still a long way to go as
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1.2 Peculiarities of granular materials and wave propagation

the complexity of the mathematical description increases exponentially with the

number of parameters. More generally, the problem faced can be formulated very

simply: How to describe very complex phenomena with only a few parameters.

One hopes that the answer lies in a pertinent choice of a few critical relevant

parameters. However, complexity seems to be self conservative. As consequence,

a remarkable contrast is observed between some very advanced theoretical ap-

proaches (cited above) trying to bridge at once macro- and micro-scale, where

the level of description is such that the mathematics becomes unsolvable or very

time consuming numerically, and some very simple laboratory experiments with

regular arrangement of spherical monodisperse beads [5, 22, 50, 75, 84, 90], where

the meso- and the micro-scale are studied in detail, leaving the extrapolation to

the macro-scale as the open issue.

Heterogeneities

The heterogeneous nature of a granular material can be illustrated by the con-

cept of force chains. Force chains are chains of particles that sustain a large

part of the (shear) stress induced by a given load due to geometrical effects.

Therefore, force chains are partly responsible for the heterogeneities (neighboring

contacts/particles can have forces different by orders of magnitude) and for non-

isotropic distribution of stress in a granular packing [12]. The chains are fragile

and susceptible to reorganization and their irregular distribution in the material

means that granular materials exhibit a strong configuration and history depen-

dence [42]. Those chains usually have a length of a few grains to few tens of grain

diameters.

A recurrent and very interesting issue concerns the interactions of those force

chains with a wave propagating in the material. It seems that in contradiction to

early intuitions [58], the wave does not propagates preferentially along the force

chains [102]. However, there are indications that the wave is traveling faster along

it [25]. Many open questions are remaining like whether the wave preferentially

travels along force chains or if those chains form a barrier to transmission. An

important issue bringing together multi-scale behavior and heterogeneity, is the

length scale at which the system is probed. Some experimental and numerical

studies [5, 48, 49, 102, 118] showed that at the scale of the force chains, no plane

waves were propagating. Indeed, the wave-lengths and the heterogeneity length-

scale are of the same order. The waves are thus scattered in the system. As a

result, different wave velocities are observed whether the system is probed at the

scale of the force chains or at the long wavelength limit scale (very large systems).

Scattered waves are propagating slower as their traveling path is not the shortest

one.
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Rotations, tangential elastic forces and friction

Usually neglected in a first approximation, rotational degrees of freedom are very

important in the description of granular materials [96]. The description of particle

rotations is relatively straightforward. However, their role in the determination

of tangential contact forces, which are directly linked to energy loss or to rheology

for example, is hard to determine. The normal restoring forces can directly be

related to the usual continuous elastic parameters of the grain material like bulk

and shear modulus and to the stress or strain path history of the system. For

the tangential elastic forces, it is much more complex. They do not only depend

on the above mentioned parameters and history, but also on the surface state

at the contact. This state can exhibit a strong plastic behavior with possibly

several phases involved, in case of wetting [17], with large and short time-scale

variation depending on temperature, breakage, etc. Those phenomena need to be

described at a micro- (contact-) scale at least a few orders of magnitude smaller

than the meso- (grain-) scale.

Closely related to this, the frictional behavior of granular materials, in case

of dry grains is responsible for stick-slip behavior. Two grains in contact that are

sheared can stick or slide, depending on the ratio between tangential and normal

forces. The critical value for the ratio is called the Coulomb friction coefficient

µ. Related, are also the rolling and torsion friction, but those will not be further

addressed in this thesis, we rather refer to Ref. [71].

All those issues related to rotations and friction are crucial in the description of

the wave propagation behavior [23,83,96,104,121], as they imply different transfer

modes of momentum and energy. Rotations are responsible for the coupling

between shear and rotation acoustic modes and must be taken into account when

measuring the attenuation of a shear wave, for example. Friction is, for example,

responsible for the conversion of a part of the mechanical energy of a wave into

sound or heat.

History

The multiplicity of possible equilibrium states (more unknown than equations

with frictional degrees of freedom) makes the history of the state of the material

crucial for the description of its future evolution. As a consequence, the prepara-

tion procedure in the case of a laboratory experiment is crucial. Usually, several

techniques are tested in order to get, at least on the level of macro-quantities

as density, a fair reproducibility. At the particle level, or even at the contact

level, the effect of different initial configurations can only be averaged out by

doing statistics over many samples. The frictional nature of granular materials
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1.2 Peculiarities of granular materials and wave propagation

is mostly responsible for this. As the state of the media directly influences the

wave passing through it, and vice versa, the importance of history is obvious.

Dispersion

When the wave-number, which describes the propagation behavior of a wave in a

given material, is frequency-dependent, this is called dispersion. Frequency, group

or phase velocity and wave-number are related to each other, vg(ω) = dω(k)/dk

for the group velocity and vp(ω) = ω/k(ω) for the phase velocity, with ω the

frequency and k the wave number. As a consequence, different frequencies prop-

agate at a different wave speed and a wave packet containing many frequencies

tends to broaden, to disperse itself as the wave is traveling. In many materials,

mechanical waves do show dispersive behavior. This phenomenon is directly re-

lated to the range of frequencies considered. In most applications one can define

a long wave-length limit, where the wave-length is much larger than the grain

size and a short wave limit, where the wave-length is of the order of the grain

size. In the latter case, the dispersion is highest as comparable wavelengths can

correspond to a different small number of particles. A simple illustration of this

phenomenon is the dispersion relation of a one-dimensional chain of beads (1D

spring-mass system) [6,30]. Dispersion is thus a real issue in the wave propagation

in granular materials, as the material acts as a filter for the frequencies [20, 48],

letting the low frequencies (large wave-lengths) pass through. In addition to dis-

persion, the material can delay or block the high frequencies (short wave-lengths).

For shear modes and their coupled rotational modes, the dispersion relation can

exhibit band gaps where no propagation is observed for some range of frequen-

cies [23, 35, 75, 83, 96, 104, 121,124].

Attenuation

Wave attenuation is one of the key mechanisms. It is caused by particle displace-

ments and rotations, with energy transfer from one mode to the other, by friction,

with energy losses (heat or sound), but also by viscous effects at the contact (wet

bridges, water saturation). It is in particular important for geophysicists, who

analyze the time signals of seismic waves, in order to determine the composition

of the subsurface. The magnitude of attenuation is giving precious information

on the nature of the material the wave has passed through. One can distinguish

between the extrinsic attenuation arising from the wave source characteristics,

source-material interface, geometrical spreading, etc., and the intrinsic attenu-

ation related to the material (state) itself, viscous effects at the contact, mode

conversions, etc. A well-known measure for the intrinsic attenuation is the “Q”
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factor [115], defined as Q = Re(k)/2 Im(k) with k the wave number, used by

geophysicists in their study of the subsurface.

Non-linearity

Wave propagation in granular materials involves non-linearities of different types.

The first two non-linearities are found in the contact description between two

particles.

At the contact: In the absence of long range forces, or water bridges and for

a strong enough wave amplitude, a two-particle contact may open and close sev-

eral times while the wave is passing through. The influence of the non-linearity

due to the “clapping contacts” non-linearity has been studied in Ref. [119]. In

addition, the contact between two spherical beads can be described by the Hertz

contact law, where the normal force |f | = kHδ3/2 (with kH a stiffness coefficient)

depends non-linearly on the one dimensional equivalent geometrical interpene-

tration (overlap) δ. The question of the relevance of this contact law for wave

propagation in granular material has been discussed, e.g., in Refs. [21, 93].

Wave amplitude and confining pressure: A third non-linearity, related to

the previous ones, is that the response to an excitation could be non-proportional

to the amplitude of this excitation [59]. A strong excitation may open or close

contacts (see above), create sliding contacts, and also changes the local configu-

ration possibly on scales much larger than the particle size. This might increase

the wave attenuation, as acoustic modes and energy conversion are enhanced. A

second consequence is that the local effective stiffness and/or density is changed,

implying a different wave velocity.

Related to this is the wave velocity dependence on the confining pressure. A

different scaling at low confining pressures for the incremental elastic moduli, p1/2

instead of the expected p1/3 scaling for higher confining pressures derived from

the Hertz contact law [118] (or p1/4 instead of p1/6 for the wave velocity), has

been reported in various studies [22, 33, 49, 57, 100].

Whether it can be attributed to a variation in the number density of Hertzian

contacts, due to buckling of particle chains [33], or interpreted in terms of pro-

gressive activation of contacts [22], is still an open issue. Numerical studies [100]

have also helped to derive this velocity dependence for granular columns with

different void fractions.

For almost zero confining pressure, the so-called jamming state of granular

materials is realized and wave propagation in granular material near the jamming

point constitutes a new and interesting field of research [102].
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1.3 Thesis goal and overview

When the confining pressure is very low and the excitation amplitude is very

high, one can have additional non-linearities like shock-waves propagating in the

granular material. This is a field of research in itself [36, 50, 85, 90, 124]. This is

not the subject of this thesis where we focus on strongly confined situations at

rather high stresses.

1.3 Thesis goal and overview

The goal of this thesis is to investigate the role and the influence of micro proper-

ties at the contact and the meso-scale (such as friction, particle rotation, contact

disorder) on the macro-scale sound wave propagation through a confined granular

system. This is done with help of three-dimensional discrete element simulations,

theory, and experiments that are introduced in chapter 2. The reader should not

be surprised by the presence of some redundancy, as this thesis contains three

published full papers included in chapters 4.1, 4.2 and 5.1, as well as three draft

papers in chapters 2, 3, and 5.2.

In the second chapter, in addition to experiments, a data analysis technique,

the spectral ratio technique (SRT), is presented. It is a tool used to analyze sound

wave records in order to estimate the quality “Q” factor, which is a measure for

the wave attenuation. One strength of this technique is that it gives an objec-

tive estimation of the intrinsic frequency dependent attenuation of the material

(attenuation due to the interaction between the wave and the material) and it dis-

regards the extrinsic attenuation due to the source and/or subsurface geometry.

The technique is first derived in detail, followed by a discussion on the advantages

and the limits of its applicability. The SRT is then applied to some numerical

simulation, for which plenty of additional information is easily accessible, in order

to judge the technique. Furthermore, it is applied to preliminary experiments in

order to extract, in addition to the “Q” factor, the phase and the group velocity.

Finally, a new experimental set-up, designed to better understand attenuation,

phase and group velocities in a granular material, will be proposed.

The third chapter deals with the effect of tangential contact elasticity on the

dispersive behavior of regular granular packings by comparing numerical simula-

tion results to theoretical predictions. The latter are derived in the first part of

the chapter, based on a single particle unit-cell periodic system and its harmonic

wave description. Then, independently, numerical results on the dispersion rela-

tion are obtained by the analysis of different transient waves through a regular

FCC (Face Centered Cubic) lattice granular material with rotational degrees of
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Introduction

freedom and tangential elasticity. The dispersion relations obtained with both

approaches are compared and discussed for a better understanding of rotational

waves.

In the fourth chapter, the implementation of advanced contact models involv-

ing adhesion and friction in a discrete element model (DEM) is described for

regular and fully disordered structures.

In the first part, the influence of dissipation and friction and the difference be-

tween modes of agitation and propagation (compressive/shear) in a regular three-

dimensional granular packing are detailed. The wave speed is analyzed and com-

pared to the result from a continuum theory approach. The dispersion relation is

extracted from the data and compared to theoretical predictions. Furthermore,

results on the influence of small perturbations in the ordered structure of the

packing (applying a tiny-size distribution to the particles) on the wave propaga-

tion are presented.

In the second part, a hysteretic contact model with plastic deformation and ad-

hesion forces is used for sound propagation through fully disordered, densely

packed, cohesive and frictional granular systems. Especially, the effect of fric-

tion and adhesion is examined, but also the effect of preparation history. The

preparation procedure and a uniaxial (anisotropic) strain display a considerable

effect on sound propagation for different states of compression and damage of the

sample.

In the fifth and last chapter, the wave propagation properties are examined

for a regular structure, starting from a mono-disperse distribution and slowly

increasing the amount of disorder involved. The system size and the amplitude

are varied, as well as the non-linearity and friction, in order to understand their

effect on the wave-propagation characteristics.

In the second part of this chapter, a novel multi-mode theory for wave evolution

in heterogeneous systems is presented. Wave-mode conversion, or wavenumber

evolution is studied in a weakly polydisperse granular bar using DEM (Discrete

Element Method) simulations. Different single (or double) discrete wavenumbers

are “inserted” as initial condition for the granular packing and the system is then

free to evolve. From the simulation results, parameters are extracted that are then

used as input for the new theory. A better insight in the relation between the

packing dimension and structure on one hand and the wave propagation behavior

on the other hand is gained by calculating the eigenmodes of the packings.

Finally, the thesis is concluded by a summary, conclusions, and recommendations

for further work.
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Wave signal analysis by Spectral

Ratio Technique

A detailed study of the dispersive behavior of a material provides much infor-

mation, however difficult to extract in practice, on both the particular material

itself, like the structure, the composition, etc., and the wave propagation behav-

ior. This becomes clear as the different types and causes of dispersion - geometry,

material, scattering, dissipation, and nonlinearity - are directly related to the ma-

terial properties and their effect on the frequency-dependent wave propagation

behavior. Experimentally, one way to characterize this dispersive behavior is to

extract the frequency-dependent phase, group velocities, and attenuation effects

from wave-signal records. This study is intended to explain and discuss how the

Spectral Ratio Technique (SRT) can provide such a characterization and how an

experimental set-up allowing for the study of a granular material like glass-beads

or sand can be designed.

2.1 Introduction

The Spectral Ratio Technique (SRT), described in section 2.2, was first introduced

[10] in order to extract the intrinsic attenuation, the one due to the interaction

between the wave and the material only. Applied to materials that compose the

different layers or strata, in an ideal description of the earth subsurface, it allows

to determine their nature: rock, sandstone, sand, water, oil, etc. The objectivity

of the technique, by taking a ratio and hence realizing a kind of normalization,

allows to disregard the extrinsic attenuation due to the source or subsurface

geometry.

In order to simplify the analysis and the treatment of the data, only a certain

frequency band is considered, usually the low frequencies that correspond to large

15



2.1 Introduction

wavelengths. As a first approximation, the intrinsic attenuation is assumed to

be frequency-independent. Among the several ways to define the attenuation,

the one mostly used is the quality factor Q as defined in Refs. [14, 107] and in

section 2.2. Geophysicists are mostly interested in two numbers, the time-of-

flight velocity and the quality factor Q. However, it is possible to extract more

information like frequency-dependent quantities from the signals by applying the

SRT [52,53]. Note that other techniques, like the amplitude spectrum method [86]

or the phase spectrum method, which were successful to obtain group and phase

velocities [91], should be described and compared to the spectral ratio technique

in future work.

The goal is to determine frequency-dependent phase and group velocities and

intrinsic (or specific) attenuation properties as the Q factor. This gives a way

to understand in more detail the dispersion mechanisms of sound propagation in

granular materials from an elegant analysis of experimental data. The interest in

SRT, or in general of a detailed study of the dispersive behavior of a material, is

justified by the amount of information on the material and propagation behavior

that can be extracted from it. According to Sachse et al. [91], there are multiple

causes of dispersion:

(1) the presence of specimen boundaries, called geometric dispersion.

(2) the frequency-dependence of effective material parameters, such as mass

density, elastic moduli, dielectric constants, etc, called material dispersion.

(3) the scattering of waves by densely distributed fine inhomogeneities in a

material, called scattering dispersion.

(4) the absorption or dissipation of wave energy into heat or other forms of

energy in an irreversible process, called dissipative dispersion.

(5) the dependence of the wave speed on the wave amplitude called non-linear

dispersion.

Most of these phenomena are enhanced in the high-frequency range, i.e., for

wavelengths which are of the order of the microstructure (grain diameter), where

the dispersion and the attenuation is maximal. Thus, by studying a broad fre-

quency band, it becomes possible to extract the characteristics at low frequencies,

i.e. in the quasi-static limit, and the behavior at high frequencies, which is highly

dispersive. The frequency range depends largely on the application and equip-

ment. Hence, frequencies of about 1Hz are considered in seismic applications,

while frequencies in the high-sonic and ultrasonic range (≥ 1kHz) are considered

in laboratory experiments.

To apply the SRT, we need at least two time signals or two parts of a time signal,

which are obtained differently according to the application:

A) In laboratory experiments, the signals can be obtained from two tests with
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exactly the same conditions for a reference sample and the sample of interest

[98, 113].

B) From the same source for two reflections separated in the time domain.

This is applied for example in oil recovery applications, where the reflections at

the top and at the bottom of an oil reserve are separated in time.

C) From the same sample or material where the transmitting wave is recorded

at (at least) two different distances from the source, as sketched in Fig. 2.1. For

example, in the field, geophysicists make use of vertical seismic profiles (VSP),

which are collections of seismograms recorded from the surface to the bottom of

a borehole, as input for the spectral ratio technique.

sample

R1 R2 Rnsource

Figure 2.1: Sketch of a source and receivers (R1, R2, ..., Rn) in a configuration allowing

for the application of the spectral ratio technique.

The SRT is most efficient for high quality signals with a large signal to noise

ratio [115, 116] and also for highly lossy and dispersive materials [98]. Note that

for the latter, success depends on the range of frequencies considered for the study.

In laboratory experiments, the normalization has the advantage of minimizing the

characteristic effects of the transducers, the transducer-sample interface and the

electronic data acquisition system [98]. Tonn [115,116] reports that the reliability

of the SRT increases by enlarging the width of the investigated frequency band.

Also, it is reported that, as the method is relatively fast, it allows statistical stud-

ies and hence increases the quality of the results. Finally, even if for all methods

in general the reliability is decreasing with increasing noise level, the SRT seems

to be more robust than other methods with respect to noise.

The advantages of the SRT cited above encourage us to use this technique in our

numerical and physical experiments, even if there are some drawbacks [37]:

- In application B), described above, one needs to be able to isolate the re-

flections in the time domain which might not be straightforward.

- The temporal localization for the treatment of the data, even if the rectangu-
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2.2 The Spectral Ratio Technique (SRT)

lar window seems to be the best, introduces a bias and, and possibly inconsistent

zeros.

- The quality of the signal on the frequency range might be irregular, as the

amplitude of higher frequencies might get close to the noise level.

- The choice of the distance between the receivers is important. A larger

spacing improves the accuracy of the estimate for the attenuation, for example,

by increasing the magnitude of the effect that is being measured. But this is at

the expense of the spatial resolution.

In the present investigation, we are considering laboratory experiments. In

this case, the configuration sketched in Fig. 2.1 is not relevant as the size of the

receivers and the wavelength are of the same order. This set-up has the drawback

that the measured wave field at Ri+1 is influenced by the disturbance of the

receivers Ri, Ri−1, etc. Therefore we consider in our study for each measurement

a new sample with the desired length. The possible drawback of this set up will

be discussed in section 2.4.

In the following, the SRT will be first reviewed in detail. The wave-number, the

phase and group velocities and the quality factor Q are calculated. Afterwards the

SRT is applied to numerical simulations results. Then it will be applied to some

preliminary experimental results with sand and an outline for future experiments

will be presented. Finally, some conclusions are given.

2.2 The Spectral Ratio Technique (SRT)

In a homogeneous medium the propagation of a plane harmonic wave, in the

one-dimensional space x ∈ R
1, can be described by

a(x, t) = A exp[i(k x − ω t)], with ω = 2 π f, (2.1)

with angular frequency ω and wavenumber k.

The complex amplitude A can be regarded as a constraint depending on various

quantities like receiver/source functions, instrumental response etc., see [115,116].

However, it is not related to intrinsic attenuation [107]. If a certain form of

attenuation is involved in the material, the wave-number k becomes complex and

can be expressed as:

k = Re(k) + i Im(k). (2.2)

The quality factor Q can be introduced as a measure of specific (also called

intrinsic) attenuation

Q :=
Re(k)

2 Im(k)
, or Im(k) =

Re(k)

2 Q
=

ω

2 Q vp
=: α(k), (2.3)
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with the phase velocity vp = ω/Re(k). The group velocity is defined as vg =

∂ω/∂[Re(k)].

Applying the Fourier transform F in time of the signals we obtain

F [a(x, t)] = ã(x, ω) = Ã(ω) exp(i k(ω) x) (2.4)

Next, we investigate two signals a1 and a2 at two different spatial positions x1

and x2 away from the source. The difference in the spatial distance is defined as

∆x = x2 − x1. The ratio of the signals in frequency space can be written as

ã2(x2, ω)

ã1(x1, ω)
=

Ã2

Ã1

exp(i k x2)

exp(i k x1)
=

Ã2

Ã1

exp(i k ∆x), (2.5)

The function g is defined as

g(ω) := ln

(

ã2(x2, ω)

ã1(x1, ω)

)

= ln

(

Ã2

Ã1

)

+ i k ∆x. (2.6)

Note that if the source is the same for the two signals, then the coefficient

ln(Ã2/Ã1) is a constant in frequency space.

2.2.1 Phase and group velocity

Substituting equation (2.2) into equation (2.6), we obtain

i k = i Re(k) − Im(k) =
1

∆x

[

g(ω) − ln

(

Ã1

Ã2

)]

=:
R(ω)

∆x
. (2.7)

From equation (2.7) we are able to calculate the attenuation Im(k) and the phase

velocity vp

Im(k) = −Re(R)/∆x,

Re(k) = Im(R)/∆x,

vp =
ω∆x

Im(R)
,

vg =
∂ω

∂[Im(R)/∆x]
.

(2.8)

2.2.2 Phase velocity and specific attenuation Q

Starting from Eq. 2.7 and using Eq. 2.3, we observe

i
ω

vp

−
ω

2 Q vp

=
1

∆x

[

g(ω)− ln

(

A1

A2

)]

. (2.9)
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Assuming the special case that vp and Q are frequency-independent, which holds

for materials showing a non-dispersive behavior in a certain frequency band, the

derivative of Eq. 2.7 with respect to the frequency ω becomes:

i
1

vp
−

1

2 Q vp
=

1

∆x

∂g

∂ω
. (2.10)

Splitting this into a real and imaginary part, leads to

1

vp
= Im

[

1

∆x

∂g

∂ω

]

and

1

Q
= −2 vp Re

[

1

∆x

∂g

∂ω

]

,

(2.11)

which allows us to compute vp and Q from the spectral ratio.

2.3 Numerical simulations

The SRT is now applied to time signals obtained from numerical simulations,

where rather idealized conditions should lead to high-quality results. Indeed, the

issues encountered in real experiments as source-receivers characteristics, source-

sample and receiver-sample coupling, transfer between electrical and mechanical

energy, or noise, are not relevant in the simulations. However, the relevance of

the model with respect to reality is, of course, another issue.

In the following, a DEM (Discrete Element Model), see section 4.1.2, is used in

order to simulate sound waves through a dense regular packing of grains. The

wave agitation and the signal recording procedure are both described in detail in

section 4.1.3. We will now discuss the results of two different types of waves. First,

P- and S-waves in a purely elastic (frictionless) granular packing and secondly a

P-wave in an inelastic packing with contact viscosity (dashpot model), see section

4.1.3.

For the P-wave, several graphs are plotted in Fig. 2.2. The two time signals

are recorded at 10 and 30 layers (d ∼ 14 and 42 cm) from the source, see Fig. 2.2

a). Their power spectra are calculated with an FFT algorithm using Matlab, see

Fig. 2.2 b). The power spectra, identical for both signals, indicate the “relevant”

frequency range. That is, from the lowest frequency allowed by the time window

width, ∼ 1 kHz, to the frequency where both spectra have a significant amplitude,

∼ 50 kHz. The latter corresponds to the highest possible frequency in the system

in the considered propagation direction (z), based on the oscillation of a layer.

The SRT is then applied, using both spectra. This gives the real part of the
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Figure 2.2: a) the time signals, b) the power spectrum, c) the real part of the wave-

number and d) the phase and group velocities, for a P-wave. The time signals are

recorded at 10 and 30 layers (d ∼ 14 and 42 cm) away from the source.

wave-number Re(k) as function of frequency, see Fig. 2.2 c). This relation is

nothing else than another way to describe the dispersion behavior of the packing

considered. This result is identical to the dispersion relation obtained elsewhere

by different methods from detailed simulation data, see Sec. 4.1.3. From Re(k),

using the definitions given in section 2.2, (vp = ω/Re(k) and vg = ∂ω/∂[Re(k)])

it is possible to extract the phase vp and the group velocity vg, see Fig. 2.2 d).

Those velocities are identical to the theoretically calculated velocity in the quasi-

static limit vsl (dotted line in Fig. 2.2 d)), see section 4.1.3 for low frequency,

as expected. The deviation from the large wavelength limit (low frequency) is

clearly visible for shorter wavelengths (high frequencies). The most powerful

aspect of this method is that only two time signals were needed to obtain the

same information as derived in section 4.1.3 with numerous time signals. As no

attenuation is present in this numerical simulation, the imaginary part of the

wave-number Im(k) and the inverse quality factor Q−1 are negligible.
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Figure 2.3: a) the time signals, b) the power spectrum, c) the real part of the wave-

number and d) the phase and group velocities, for a S-wave. The time signals are

recorded at 11 and 30 layers (d ∼ 15 and 42 cm) away from the source.

For the S-wave, the same type of graphs are plotted in Fig. 2.3. The dif-

ferences with the P-wave are the same as observed in Sec. 4.1.3. The relevant

frequency range is smaller, from ∼ 1 kHz to ∼ 35 kHz. This is a consequence of

a smaller effective tangential stiffness as compared to the normal effective stiff-

ness for this propagation direction (z). Both phase and group velocities, vp and

vg, are smaller (≈
√

2 times, see section 4.1.3) than for the P-wave. Otherwise,

no other qualitative differences are observed. It is however remarkable that for

low frequencies the results obtained for Re(k) are quite unstable in regard to the

choice of the distance to the source for the time signal (data not shown here). A

more detailed study should determine the exact causes for this effect.

The frequency-dependence of the viscous damping, which was introduced in

the third simulation (P-wave with damping), shows an increasing attenuation

for increasing frequencies. In Fig. 2.4 a), one can observe in the time signals

the absence of the coda, which contains the high frequencies as observed in the
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Figure 2.4: a) the time signals, b) the power spectrum, c) the real part of the wavenum-

ber, d) the phase and group velocities, e) the imaginary part of the wavenumber and

f) the inverse quality factor Q−1, for a P-wave with damping. The time signals are

recorded at 15 and 30 layers (d ∼ 21 and 42 cm) away from the source.

23



2.4 Physical experiments

simulations without damping. In Fig. 2.4 b) the power spectra lead to the same

observation. For low frequencies the spectra of the two signals are identical. They

deviate from each other from five kHz on. Also, as a consequence of damping, the

highest relevant frequency is reduced to ∼ 30 kHz. Indeed, from that frequency

on, the amplitude of the second signal spectrum is too low to be significant. With

respect to that, within the reduced frequency range, one can see from Fig. 2.4

c) and d) that Re(k), vp and vg are similar to those in the simulation without

damping (Fig. 2.2). Finally, the fact that the high frequencies are more strongly

damped than the lower ones is qualified and quantified by both Im(k) and Q−1 in

Fig. 2.4 e) and f). While Im(k) shows a clear non-linear increase of the damping

for increasing frequencies, this non-linearity is almost not visible for the inverse

quality factor Q−1.

Unfortunately, the application of the SRT on the slightly polydisperse pack-

ings as used in section 4.1 and 5 did not lead to results with a comparable quality

to those in the regular case. It seems that the influence of the source on one

hand and a too short time window on the other hand are responsible for large

scattering in the data. A longer packing, allowing to record the signals at a far

enough distance away from the source and for sufficiently long time, should im-

prove the results. Also, a larger packing section (x−y), and averaging the signals

for many different polydisperse packings (with respect to the random assignment

of radii to the particles), would lead to much better statistics. Therefore, further

investigations are needed in order to improve the numerical set-up and procedure,

and to obtain the desired quality of results.

2.4 Physical experiments

2.4.1 Preliminary investigations

With the goal of first understanding the dispersive behavior of dry granular ma-

terial (dry sand or glass beads) and later soils in general, many preliminary in-

vestigations have been done, with the use of the SRT. Some aspects of the results

are discussed below.

Several types of piezoelectric transducers were tested in several configura-

tions. The elementary set-up used for the tests is a rectangular box filled with

loose river sand or glass beads. First, Panametrics ultrasonics piezoelectric trans-

ducers (V101) with a central frequency of 500 kHz were tested. As a first observa-

tion, the results (data not shown here) showed a large shift in frequency between

the source spectrum, around 500 kHz, and the spectrum of the received signals,

around 20 kHz after the wave traveled through a few centimeters of the material.
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This typical phenomenon, due to the highly dispersive behavior of (loose) (dry)

granular materials, is also reported elsewhere [58]. In view of the application

of the SRT, two signals recorded at two different distances from the source are

needed, as explained in section 2.1. However, to do so, the transducers (source

and receiver) have to be placed at different distances from each other, implying

emptying and refilling the box. This manipulation, especially in granular mate-

rials, needs to be extremely well controlled with respect to the material density

and the confining stress, for example, to obtain a good reproducibility of the mea-

surements. Placing at the same time two (at least) pairs of transducers in the

box allows us to avoid this manipulation. However, this does not help if statistics

over several measurements are needed, as new sample configurations are needed

anyway. Also, the asymmetry present in the box increases the inhomogeneity of

the system and hence the objectivity of the measurements with respect to each

pair of transducers.

As a general remark, the shift in frequency, described above, lead to a very

high noise level of the received signals, as not enough energy is transferred from

the source to the receiver. This makes the results practically useless for the

spectral ratio technique. One solution to this problem is to use transducers that

emit and receive lower frequencies.

Computer

Data
acquisition

Generator
Frequency

Amplifier
Power

Loose river sand (~1mm diameter) 

Distance: 1 to 6 cm 

Hydrophones
Bruel & Kjaer T8103

Pre−amplifier

Oscilloscope
GPIB

Figure 2.5: The set-up used for the preliminary experiments
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Figure 2.6: a) Two time signals at distance d1, and d2, b) their power spectrum, c)

the real part of the wave-number, d) the phase and group velocities, e) the imaginary

part of the wave-number and f) the inverse quality factor Q−1. The time signals are

recorded at distances d = 31.5 and 55.7 mm away from the source.

26



Wave signal analysis by Spectral Ratio Technique

2.4.2 Results from the actual set-up

In the results presented in the following, finger-like hydro-phones, Bruel & Kjaer

T8103, with a wide band around ∼ 10 kHz, were tested.

As in the preliminary investigations, the simple set-up consists of two hydro-

phones immersed in a box filled with loose river sand with a sharp size distri-

bution, around 1mm diameter, see Fig. 2.5. The transducers are opposing each

other in a frontal way. A set of measurements has been performed placing the

transducers at different distances (d = 14, 22.5, 31.5, 45 and 55.7 mm). For

each distance, the source signal is a sinusoidal pulse of one period with a chosen

frequency (ω = 3, 4, ... , 12, 13, 15 and 20 kHz).

The SRT has been applied to the different signals and the two signals recorded

at d = 31.5 and 55.7 mm away from the source are presented, see Fig. 2.6. The

time signals, Fig. 2.6 a) are “cut” after the first oscillation in order to exclude

any reflections. This arbitrary choice, which leads to the flat part (padding with

zeros) in Fig. 2.6 a) in order to keep a fixed time window, might introduces un-

desirable effects. However, this choice was preferred to the one where reflections

can be present. From the frequency spectrum, Fig. 2.6 b), it can be observed

that the relevant frequency range, where the amplitudes are significantly high,

is: 2 to 5 kHz and 8 to 12 kHz. The real part of the wave-number, Fig. 2.6 c),

allows to extract approximate phase and group velocities, which are about 100

m/s. Attenuation, see Fig. 2.6 e) and f) can not be interpreted with respect to

the signal to noise level.

2.4.3 A proposed improved set-up

The outcome of those preliminary experimental results is only a partial success.

Even though encouraging, the room for improving the set-up is very large. The

sample preparation needs to follow a strict procedure allowing for a good homo-

geneity of stress and density in the packing. Taking the transducers out of the

sample would facilitate this. The boundary conditions must be controlled seri-

ously. The contact interface between sand and transducers must be enhanced.

Considering all these points and also useful discussions with A. Merkel, V. Tour-

nat and V. Gusev during a one-week stay at the laboratory of Acoustics in Le-

Mans in France led to a design for an improved set-up and sample preparation

procedure.

The use of low frequency piezoelectric transducers with a central frequency of

100 kHz (Panametrics contact transducers V1011), seems to offer many advan-

tages. A nice and large contact interface between the transducers and the sand is
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Glass beads,
sand, ....

V1011, 100KHz
Panametrics transducers

Figure 2.7: Sketch of a set-up for future experiments, see Ref. [55] for more details.

needed for a good coupling, especially crucial for loose sand or tests with a small

confining pressure. The flexibility of the transducers allows to emit with high

enough energy and precision signals with frequencies up to 200 kHz and down to

one kHz. Inspired by other experimental set-ups [48, 118], a cylindrical cell will

be used in order to better control the boundaries, see Fig. 2.7. The challenge in

those experiments will be to avoid reflections, to achieve a high reproducibility of

the samples and to accurately control the distance between the two receivers. The

sample reproducibility seems to be the most critical point. Averaging over many

sample configurations will filter out the high-frequency configuration-dependent

effects. The objective is that this procedure will allow us to extract a general

trend in the dispersion behavior beyond the range of the large wavelength limit.

2.5 Conclusions

The SRT has been presented and discussed. Interest in the technique is based on

the objective to gain a better understanding of dispersion in granular materials in

general and in sand in particular. Especially the possibility to extract frequency-

dependent phase and group velocities and attenuation properties of the material

is attractive.
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The SRT has been successfully applied to numerical DEM simulation results

for regular granular packings. In order to obtain the same high-quality results for

polydisperse packings extra investigations are needed. For example, the packing

size must be increased, in order to avoid source effects and too short time win-

dows.

Promising experimental results have been presented, allowing us to propose the

design of an improved set-up for which intensive investigations will be performed

in near future, see [55].

29



2.5 Conclusions

30



3

Dispersion with rotational

degrees of freedom

The goal of this chapter is to investigate the influence of rotational degrees of

freedom on the dispersion behavior of acoustic waves in regular granular pack-

ings with tangential elasticity at the inter-particle contact. The study includes

both theoretical and numerical approaches.

3.1 Introduction

The theoretical analysis of lattices with respect to vibrational (or acoustical)

modes is quite common and can be found in many studies on crystals [6,30,76,79],

Fewer studies are found that are related to the dispersion relation in frictional

granular materials with tangential elasticity. Schwartz et al [96] derive the disper-

sion relations for regular and disordered packings including rotational degrees of

freedom, which according to them should be treated on an equal footing with the

translational degrees of freedom. As an illustration, their results obtained with a

spin set to zero show an un-physical behavior in the static limit: the compressive

and the shear wave have the same velocity, which is in that case in contradiction

with continuum elasticity theory.

Mühlhaus et al [83] derived the dispersion relations for compressive and shear

waves in a granular material within a continuum model framework including

micro-rotations (Cosserat type continua). They observe that the rotational de-

grees of freedom allow the existence of two coupled branches (modes) in the

dispersion relation where in one mode the main carrier of the energy are the

displacements (shear) and in the other mode the main carrier are the grain rota-

tions.
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3.2 Harmonic wave analysis of a lattice

Some more recent theoretical work by Suiker et al, [104, 105] shows dispersion

relations in a two-dimensional hexagonal lattice with sliding and also rolling re-

sistance. It is shown that the results match with both Cosserat and high-order

gradient continua approaches in the static limit.

Some other theoretical and experimental works on regular structures of grains, de-

riving dispersion relations and considering non-linear contact laws (Hertz-Mindlin)

can be found in Refs. [23, 75, 121].

In this study, the modeling of tangential contact elasticity is examined with

respect to its effect on the dispersive behavior of regular granular packings by

comparing numerical simulation results to theoretical predictions. The latter are

derived in section 3.2 of this chapter. In section 3.3, the numerical simulation

results are obtained by the analysis of different transient waves through a regular

FCC (Face Centered Cubic) lattice granular material with rotational degrees of

freedom.

3.2 Harmonic wave analysis of a lattice

In this section, the vibrational modes of a three-dimensional lattice are deter-

mined. First, some definitions are given. Then, starting from Newton’s equa-

tions of motion and the balance of angular momentum, which are realized for

each particle in the lattice, a harmonic wave solution is considered. This leads

to a generalized eigenvalue problem, which is solved numerically. Finally, the

eigenvalues of the lattice are then presented via the so-called dispersion relation.

3.2.1 Inter-particle contact elasticity

Particle geometry and kinematics In the following, spherical particles of

radius a are considered with a mass m, and a moment of inertia I = qma2

(with q = 2/5 for a spherical particle in three dimensions). In the coordinate

system (x, y, z), the position of particle p is given by the vector rp. Particles are

considered to be rigid bodies with translational and rotational degrees of freedom.

The translational movement of the center of mass of particle p in time is

described by the displacement vector up. In the following u̇p and üp, with the dots

denoting the time derivative, are the velocity and the acceleration of particle p,

respectively. The rotation of the particle around its center of mass is characterized

by the vector ϕp, where ϕp = ϕp(ϕ̂p
x, ϕ̂

p
y, ϕ̂

p
z), with ϕp = |ϕp|, and the unit vector

ϕ̂p denotes the corresponding axis. The magnitudes of rotation are chosen to
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0

rp

ϕp

a

up

y

z

x

Figure 3.1: Particle geometry and kinematics.

be zero at time zero. In the same way as for the translational movement, ϕ̇p

and ϕ̈p designate the angular velocity and the angular acceleration, respectively.

Those definitions are graphically represented in Fig. 3.1, where the curly arrow

indicates that ϕ̂p points into the plane in direction of view and the particle rotates

clockwise (negative rotation).

Contact geometry We now consider two particles, p and q in contact with

each other at the point c. The translational and rotational movements of the

particle in contact are described by uq and ϕq. The vector that connects the

center of particle p and the contact point c is called the semi-branch vector,

which also defines the normal direction at contact c. As all particles have the

same radius a, one has lpc = −lqc = lc for the particles p and q, see Fig. 3.2.

0

rp

rq

c

up

uq

y

x

z

ϕp

ϕq

lpc

lqc

0

P

tc
1

tc
2 nc

y

z

x

Figure 3.2: Contact interaction between two particles (left) and tangential plane P

(right)
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3.2 Harmonic wave analysis of a lattice

Relative displacements at the contact The vectors up and uq are the parti-

cle center displacements, and their difference contributes to the relative displace-

ment at the contact,

∆c = ∆pq = (uq − ϕq × lc) − (up + ϕp × lc) (3.1)

which is here defined as the motion of q relative to p (with ∆qp = −∆pq). In the

same spirit, the particle rotations contribute to the tangential displacement.

Particle interactions The contact law defines the interaction between the

two particles by relating the force to the relative displacement. The chosen law

here is linear elastic, meaning that no particle rearrangement, separation, or

irreversible sliding is allowed (which is equivalent to a mass-spring system). Note

that therefore stiff particles, with point wise contact, are considered and only

very small deformations are allowed. The contact force acting on particle p at

contact c can be written as:

f c = Sc · ∆c, (3.2)

with the stiffness matrix as:

Sc = knncnc + kt1t
c
1t

c
1 + kt2t

c
2t

c
2. (3.3)

Using the expression for the unit tensor I3 = ncnc + tc
1t

c
1 + tc

2t
c
2, where nc is the

unit vector in the normal direction (colinear to the branch vectors), and tc
1 and tc

2

(orthogonal to each other) are tangential unit vectors in the plane P orthogonal

to nc, see Fig. 3.2 and choosing an isotropic tangential stiffness kt1 = kt2 = kt we

obtain:

Sc = ktI
3 + (kn − kt)n

cnc (3.4)

where kn is the stiffness in the normal direction and kt the tangential stiffness.

Those stiffnesses can be obtained from the particle properties and some mechan-

ical tests with two particles.

3.2.2 A generalized eigenvalue problem

Equations of motion: The starting point are the conservation laws for linear

momentum (Newton’s second law) and angular momentum

müp =
C
∑

c=1

f c , and Iϕ̈p =
C
∑

c=1

τ c (3.5)

with τ c = lc × f c the torque created by the force f c.
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Dispersion with rotational degrees of freedom

Forces and torques are now formally expressed in a single equation

M · Ü =

C
∑

c=1

F c (3.6)

with M the generalized mass-inertia matrix, F c the generalized force-torque

vector and U the generalized displacement (translation/rotation) vector. These

are given by:

M =

(

mI3 03

03 II3

)

, U =

(

u

ϕ

)

and F c =

(

I3

R×c

)

· f c (3.7)

with I3 the identity matrix in three dimension (3x3) and R×c
, also a (3x3) matrix,

such that R×c · v = lc × v, ∀ vectors v:

R×c
=





0 −lc
z lcy

lc
z 0 −lc

x

−lc
y lcx 0



 . (3.8)

Harmonic wave solution: Assuming that the generalized displacements of

the particles, U(r, t), are harmonic oscillations, U(r, t) is given by

U(r, t) = U 0 · ei(ωt−k·r) =

[

u0

ϕ0

]

· ei(ωt−k·r) (3.9)

with u0 and ϕ0 the translational displacement and rotational spin amplitudes, k

wave vector, ω frequency and t time.

The relative displacement at contact c, together with equations (3.1) and (3.9)

and using r = rp and rq ≈ rp + 2anc (true for high kn), becomes:

∆c = −
[

(1 − e−i2ak·nc

)u0 − (1 + e−i2ak·nc

)lc × ϕ0

]

ei(ωt−k·rp) (3.10)

which can be rewritten as:

∆c = −Dc · U 0 · ei(ωt−k·rp) (3.11)

where the (3x6) matrix Dc is defined as

Dc = [(1 − e−i2ak·nc

)I3 − (1 + e−i2ak·nc

)R×c
]. (3.12)

The sum of all force-torque vectors, using (3.2), (3.7) and (3.11), reads:

C
∑

c=1

F c = −
C
∑

c=1

[(

I3

R×c

)

· Sc · Dc

]

· U 0 · ei(ωt−k·rp) (3.13)
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3.2 Harmonic wave analysis of a lattice

Using (3.9), the generalized acceleration, Ü , equals

Ü = −ω2 · U 0 · ei(ωt−k·rp), (3.14)

Finally, using (3.13), (3.14),

K =
C
∑

c=1

[(

I3

R×c

)

· Sc · Dc

]

, (3.15)

and the equation of motion (3.6), we obtain,
[

K − ω2M
]

· U 0 = 0 (3.16)

This is a generalized eigenvalue problem with eigenvalues ω2 and corresponding

eigenvectors U 0. Note that K(k) explicitly depends on the wavenumber k, via

Eq. (3.12).

3.2.3 Results

The obtained generalized eigenvalue problem (3.16) can be solved numerically.

This problem can also be solved analytically, for special cases. Different symme-

tries of a lattice can make it possible to find an analytical solution. However, fur-

ther investigations are needed before such analytical solutions can be presented.

0

z

x
y

Figure 3.3: Detail of the Face Centered Cubic (FCC) lattice: square layers are piled

up in a A-B-A-B sequence with the B-layer being shifted by (a, a,
√

2a) as compared

to the A-layer.

Lattice The first step is to choose a lattice. As we wish to compare directly the

analytical and the simulation results (Sec. 3.3), the same Face Centered Cubic

lattice (FCC) is chosen. The structure of the FCC lattice is described in Fig. 3.3.

Each particle represents a unit-cell with 12 contacts. It has four contacts in the

x-y-plane and four above and below.
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Dispersion with rotational degrees of freedom

Material parameters The material parameters are chosen identically to those

of the simulations (Sec. 3.3). The radius a = 0.001 m, the normal stiffness

kn = 105 kg/s2 and the material density ρ = 2000 kg/m3. The tangential stiffness

is given by the ratio kt/kn, for which different values are considered. The wave-

vector chosen is quantified by k = (0, 0, k).
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Figure 3.4: Dispersion relation f(k), frequency as function of the wavenumber for two

different kt: (left) kt/kn = 1 and (right) kt/kn = 1/5. Six modes are observed, one

purely translational compressive, two with strong shear and three with strong rotation

amplitudes.

Dispersion relation The numerical result provides six eigenfrequencies and

six eigenvectors for each given wavenumber k. The value six corresponds to the

number of degrees of freedom present in the problem, three translations and three

rotations. By plotting the obtained eigenfrequencies against the corresponding

wavenumbers, we get the dispersion relation, see Fig. 3.4. Each branch corre-

sponds to a mode. We observe one compressive (purely translational), two shear

and three rotation modes. Due to the x − y lattice symmetry, two shear modes

and two of the rotation modes are identical (degenerate modes).

The compressive mode is given by the thin solid line and the two identical shear

modes (x and y polarization) are given by the thin dotted lines. While for

kt/kn = 1, the branches are relatively well separated, except for the smallest

k, in the case of kt/kn = 1/5 the branches clearly cross each other as the tangen-

tial stiffness is five times lower. Hence, the corresponding eigenvalues are smaller

too.

Also, a qualitative difference is observed as the degenerate shear and rotation

modes (thin and thick dotted lines) are distorted for large wavenumber (small

wavelength). The distortion in both cases (shear and rotation) starts (inflexion

point) at around k = 225 m−1. This underlines the expected strong coupling
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3.3 Comparison with simulations

between shear and rotation modes. Indeed, for example the x-polarized shear

mode corresponds to a movement of the particles in the x-direction and if the

displacements from layer to layer are different, particles rotate around the y-axis.

An examination of the eigenvectors allows us to characterize the different modes

as, for example, the coupling between the shear and rotation modes. However

further investigations are needed for a complete understanding. In Fig. 3.4, the

rotation modes are plotted with a thicker line. The thick solid line shows the

rotation mode where the particles rotate around the z axis, and the two super-

imposed thick dotted lines show the rotation modes where the particles rotate

around the x- and y-axis.

In the next section, these results are compared to the simulation results.

3.3 Comparison with simulations

A discrete element method (DEM) is used in order to simulate wave propagation

through a dense packing with the same characteristics as theoretically investi-

gated in the previous section. The method, the packing, the wave excitations

and the signal analysis are described. Finally the results are compared to those

of the previous section.

DEM model The model is based on solving the balance equations, for transla-

tional and rotational degrees of freedom, for each particle at each time-step of the

simulation. The forces are determined by contact laws. In this case, the normal

contact follows the simple linear spring model: |f | = knδ (δ = ∆c
n in the previ-

ous section), with kn the contact stiffness and δ the particle overlap. Tangential

elasticity is introduced at the contacts between particles according to ft = kt∆t,

with ft the contact force in the tangential direction. The chosen friction coeffi-

cient µ = 0.5 is large enough to avoid sliding at the contact as the imposed wave

amplitude is very small. The system is first prepared without friction such that

ft = 0 at t = 0. As soon as displacements and deformations occur, ft can become

non-zero. More details concerning the model are given in Sec. 4.1.2.

Initial packing The wave propagation simulations are performed on a dense,

static packing of grains arranged in a Face Centered Cubic (FCC) structure (den-

sity ≈ 0.74), where square layers in the x − y plane (4x4 particles) are stacked

densely in the z-direction (200 layers), see Fig. 3.5. More details concerning the

packing configuration are given in Sec. 4.1.2.
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Dispersion with rotational degrees of freedom

Figure 3.5: Face centered cubic (FCC) packing, thin (4x4 particles, periodic) in the

x − y directions, and elongated (200 layers, non-periodic) in the z-direction. Due to

the length of the system relative to the particle size, only half of the system is showed.

Material parameters As stated before, radius a = 0.001 m, normal stiffness

kn = 105 kg/s2 and material density ρ = 2000 kg/m3 are chosen. The tangential

stiffness is given by two different ratios: kt/kn = 1 and kt/kn = 1/5.

Wave agitation In order to agitate a plane wave in z-direction, an initial

velocity v is given to all the particles that make up the source, i.e., the second

x-y-layer, in contact with the first layer (fixed particles). Note that this initial

condition, which is constant in the x-y-plane and is only variable in the z direction,

determines the wave unit vector k̂ = (0, 0, 1). In order to obtain all different

modes observed in the previous section, three different simulations are needed.

First a compressive (P) wave is simulated by choosing a velocity v that points in

the z-direction, v = vzẑ. In the second simulation the chosen velocity v points

in the x-direction, v = vxx̂, creating a x-polarized shear (S) wave. Finally, a

last simulation is performed by giving an angular velocity to the first layer, for

the z component (rotation around the z axis), ϕ̇ = ϕ̇zϕ̂z. Note that in order to

realize an x-y-invariant perturbation, the same rotation direction is given to all

the particles. This creates frustrated rotations. The rotation (R) wave propagates

in the z-direction. A velocity v = 0.01m/s is used for the P and S waves, while

an angular velocity ϕ̇z = 10 rad/s is used for the R wave.

Results All displacements, velocities and angular velocities in all directions are

recorded with a sufficient output frequency at each layer of the packing. The ob-

tained space-time signals are analyzed by performing a double Fourier transform.

The transform gives the dispersion relation: f(k), see Sec. 4.1.3 for more details.
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Figure 3.6: Dispersion relation f(k), frequency as function of the wave number for the

compressive mode (top), the coupled degenerate shear and rotation modes (middle)

and the last rotation mode (bottom). Data from two different kt: kt/kn = 1 (left)

and kt/kn = 1/5 (right) are presented. A comparison is made between the theoretical

results (open circles) and the simulations results (gray-scaled image), the other modes

are indicated by the dotted lines as predicted by theory and discussed above.

The double Fourier transform of the velocity signal in the z-direction (vz) for

the P wave gives a branch which is a sinus over a quarter of a period, see Fig. 3.6

(top). This P-wave dispersion behavior is described in more detail in Sec. 4.1.3.

The analysis of the velocity signal in the x-direction (vx) and the angular velocity
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Dispersion with rotational degrees of freedom

signal around the y-direction ϕ̇y for the S wave gives by superposition the full

two branches of the degenerate shear and rotation modes, see Fig. 3.6 (middle

graphs). In the following, this rotation branch will be designated by Rs (s for

shear). In order to present the two branches together, the part with negative k of

the double Fourier transform where the Rs branch was present has been flipped

over to the positive k, see Sec. 4.1.3. The fact that the Rs branch was initially

in the negative k part can be interpreted such that the rotation wave associated

to this branch is traveling in the opposite direction to the S wave. Our interpre-

tation so far is that the shear wave creates and ejects the rotation wave in its

opposite direction.

Finally, by looking at the angular velocity signal around the z direction ϕ̇z for the

R wave, we get another rotation branch that we call Rp, see Fig. 3.6 (bottom).

Note that this branch has been flipped as well over from the negative k part. We

do not have a clear explanation for that yet.

3.4 Conclusion

In this chapter, the full dispersion relation of an FCC lattice has been calculated

from a theoretically derived generalized eigenvalue problem involving translations

and rotations. In parallel, wave propagation simulations with a DEM method in-

cluding a elastic tangential contact law have been performed. The Fourier analysis

of time signals for different translational and angular velocities for three different

wave modes, P, S and R waves, lead to several dispersion relation branches which

are in perfect agreement with the theoretical predictions.

Further investigations are needed in order to interpret in detail the eigen-vectors

obtained in the theoretical derivation. Also, the addition of rolling and torsion

resistance to the contact interaction will be studied deeper. Note that in ref. [104]

it is shown that by adding rolling resistance, the rotation branch Rs can be flipped

upwards and hence changes the dispersion behavior for this rotation mode.

Finally, it would be interesting to consider non-Bravais lattices as the Hexagonal

Closed Packing (HCP) lattice where optical and rotational modes should co-exist.
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4

Effect of contact properties on

wave propagation

4.1 Regular systems

This article, with the original title “Sound wave acceleration in granular materi-

als” by Orion Mouraille, Wim Mulder and Stefan Luding, has been published in

the Journal of Statistical Mechanics [79].

Abstract

The goal of this study is a better understanding of the numerous sound propaga-

tion mechanisms in granular materials. In a static, regular (crystal), 3D packing,

a small perturbation is created on one side and examined during its propagation

through frictionless and frictional packings. The perturbation can be applied in

longitudinal and shear direction in order to excite different modes of information

propagation, including rotational modes as well. Wave speed and dispersion re-

lation derived from simulation data are compared to those given by a theoretical

approach based on a micro-macro transition. The detailed analysis of the wave

velocity reveals an interesting acceleration close to the source. Finally a step to-

wards real packings is made by introducing either friction or a tiny (but decisive)

polydispersity in the particle size.

4.1.1 Introduction

The mechanisms of wave propagation through a given, possibly random, dis-

ordered material are strongly related to the properties of this material. These

include the stiffness and the structure, where anisotropy comes into play, but

also phenomena like dissipation or friction at the “micro-” or contact-level, see
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4.1 Regular systems

Refs. [32, 48, 58]. Due to friction, particles rotate and hence the rotational de-

grees of freedom can also play an important role. Such “micro” phenomena can

be modeled with a discrete approach [102,104], but applications such as oil field

exploration and the treatment of seismic data in general, involve larger (“macro”)

scales and hence do not allow us to view the material in such detail. A continuum

description [30] is therefore needed and this leads to the issue of a “micro-macro”

transition for information propagation in granular materials.

In the following, section 2 describes the discrete MD (Molecular Dynamics)

model used, in particular, the implementation of contacts and friction, and the

granular packing structure as well. Section 3 details the influence of dissipa-

tion and friction and the difference between modes of agitation and propagation

(compressive/shear). The wave speed is analyzed and compared to the contin-

uum theory approach. Also, the dispersion relation is extracted from the data

and compared to theoretical predictions. In the last paragraph the influence of

small perturbations in the ordered structure of the packing (applying a tiny size

distribution to the particles) on the wave propagation is examined.

4.1.2 Description of the model

Discrete Particle Model

The elementary units of granular materials are mesoscopic grains, which deform

under the stress developing at their contacts. Since realistic modeling of the in-

ternal deformation of the particles is much too complicated, we relate the normal

interaction force to the overlap δ of two spherical particles. If the sum of all forces,

f i, acting on particle i, either from other particles, from boundaries or from ex-

ternal forces, is known, the problem is reduced to the integration of Newton’s

equations of motion for the translational and rotational degrees of freedom:

mi
d2

dt2
ri = f i , and Ii

d2

dt2
ϕi = ti , (4.1)

with the mass mi of particle i, its position ri, its moment of inertia Ii, its angular

velocity ωi = dϕi/dt and the total torque ti. Note that the above equation is

only valid for isotropic bodies, like spheres as used in this study. The force acting

on particle i from particle j can be decomposed into a normal and a tangential

part.

Linear normal contact law:

If elasticity and dissipation are desired, the simplest force law in normal direction,

n = (ri−rj)/|ri−rj |, is a linear spring and a linear dashpot fn
i = kδ+γ0δ̇, with
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Effect of contact properties on wave propagation

spring constant k and some damping coefficient γ0. The half-period of a vibra-

tion around the equilibrium position leads to a typical response time tc = π/ω,

with the eigenfrequency of the contact, ω =
√

(k/mij) − η2
0 , the reduced mass,

mij = mimj/(mi + mj), and the rescaled damping coefficient, η0 = γ0/(2mij).

The energy dissipation during a collision, as caused by the dashpot, leads to a

restitution coefficient r = −v′
n/vn = exp(−η0tc), where the prime denotes the

normal velocity after a collision.

Tangential Contact Model:

The force in the tangential direction, f t is implemented in the spirit of Ref.

[24], where a tangential spring was introduced to account for static friction. For

related literature, see Refs. [16, 63, 66]. In the static case, the tangential force

is coupled to the normal force via Coulombs law, i.e., f t ≤ µsfn, whereas for

the sliding case one has dynamic friction with f t = µdfn. The dynamic and the

static friction coefficients follow generally the relation µd ≤ µs. The static case

requires an elastic spring, related to the tangential displacement, to allow for a

static restoring force, i.e., a non-zero tangential force in static equilibrium due to

activated Coulomb friction.

If a contact exists with non-zero normal force, the tangential force is active

too, and we project (rotate) the tangential spring, with deformation ξ, into the

actual tangential plane (this is necessary, since the frame of reference of the

contact may have rotated since the last time-step)

ξ = |ξ′|t∗ , with t∗ = ξ∗/|ξ∗| , and ξ∗ = ξ′ − n(n · ξ′) , (4.2)

where ξ′ refers to the tangential spring at the previous iteration, ξ∗ is the spring

projected into the tangential plane, and n (t) are the normal (tangential) unit

vectors. This action is relevant only for an already existing spring; if the spring

is new, the tangential spring-length is zero anyway, however, its evolution is well

defined as shown below. The tangential velocity,

vt = vij − n(n · vij) , (4.3)

is computed from the total relative velocity of the surfaces of the two contacting

particles,

vij = vi − vj + ain × ωi + ajn × ωj . (4.4)

Next, we calculate the tangential test-force as the sum of the tangential elastic

and viscous forces (in analogy to the normal force model),

f t
o = −kt ξ − γtvt , (4.5)
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4.1 Regular systems

with the tangential spring stiffness kt and a tangential dissipation parameter γt.

As long as |f t
o| ≤ f s

C , with f s
C = µsfn, one has the static friction case (1) and, on

the other hand, if |f t
o| becomes larger than f s

C , the sliding, dynamic friction case

(2) is active with the (possibly lower) Coulomb limit fd
C = µdfn. Sliding case (2)

is active as long as, in the next steps, the test force remains |f t
o| > fd

C . If the

tangential force drops below the dynamic Coulomb limit, |f t
o| ≤ fd

C , static friction

becomes active again, with the (possibly larger) Coulomb limit f s
C , giving rise to

stick-slip behavior. Typically, a contact starts with finite tangential velocity

and ξ = 0; during the first time-steps, the spring is stretched and the velocity

decreases.

In the static case (1), the tangential spring is incremented

ξ′ = ξ + vt δtMD , (4.6)

with the time step δtMD of the DEM simulation. The new value of ξ′ is to be

used in the next iteration in Eq. (4.2), along with the tangential force f t = f t
o

as defined in Eq. (4.5).

In the sliding case (2), the tangential spring is adjusted to a length, which is

consistent with the Coulomb condition,

ξ′ = − 1

kt

(

fd
C t + γtvt

)

, (4.7)

with the tangential unit vector, t = f t
o/|f t

o|, defined by the direction of the force

in Eq. (4.5). Note that this guarantees that the force magnitude does not exceed

the Coulomb limit: Inserting ξ′ into Eq. (4.5) leads to f t
o ≈ fd

Ct, where f t
o and vt

are not necessarily parallel to each other in 3D. In short notation the tangential

force on particle i reads

f t
i = min

(

fC , |f t
o|
)

t , (4.8)

where fC follows the selection rules described above.

Model system

The configuration considered here is a dense, static packing of grains contained

in a cuboid. In the following, mono-disperse, structured (crystal) packings are

studied, and a few results obtained by introducing a small polydispersity in the

particle size of 0.2%, is presented. A more detailed study where both (large)

polydispersity and disorder are considered, will be presented elsewhere [78]. The

mono-disperse structured packing used here is a Face Centered Cubic (FCC)

packing: square-layers in the x-y-plane are stacked on top of each other (in z-

direction), such that each layer fits into the holes of the one below, and each
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second layer is just a z-shifted copy of the original. The distance between square

layers is l0 = d/
√

2 for a particle diameter d. In Fig. 4.1 a part of a packing

with 3200 particles is displayed, with 4 times 4 particles in the x, y-planes (lx =

ly = 4d) and 200 layers in z-direction (lz = 200l0 – only about 90 layers are

shown). Based on a particle-centered square in the first layer, a unit-cell (cuboid)

therefore has a volume Vu =
√

2d3 and contains 2 particles with volume 2Vp =

(π/3)d3 such that the volume fraction is ν = 2Vp/Vu = π/(3
√

2) ≈ 0.74. Each

particle has four contacts inside each square-layer, and eight with particles in

both neighboring layers, corresponding to a coordination number C = 12. This

structure will not change in the simulations described below (except for the results

with polydispersity), i.e., the case of small amplitude perturbations is considered.

Note that the packing is invariant by translation in the x- and y-directions, but

different in the z-direction, hence it is an anisotropic system (see Fig. 4.1).

Polydisperse packings are obtained by using the regular structure where a tiny

size distribution is given to the particles. The volume is kept constant, and since

the deformations are tiny the polydisperse packings are still ordered.

Figure 4.1: Snapshot of a part of the typical system used (long FCC packing). The

dark particles belong to the fixed layer.

The packing is treated as piece of a larger sample via periodic boundaries,

i.e., if a particle exits the simulation volume at one side, it enters at the oppo-

site side at a corresponding position with the same velocity; particles feel each

other across the periodic boundaries. While creating the regular structure, the

position of particles is chosen such that the overlap is the same at all contacts

in the system, hence giving an anisotropic stress, σ0
xx = σ0

yy 6= σ0
zz due to the

anisotropic structure. The contact overlaps are chosen much smaller than the

particle diameter, δ/d ≈ 10−3. Before a small amplitude sound wave is excited

(2), the system must be relaxed (1) first to a reasonable static equilibrium state.

(1) One possible criterion for a relaxed static state is the ratio of kinetic to

potential energy. When this ratio becomes smaller than a given limit (10−7 in this

study), the packing is said to be in a static state. For the regular, homogeneous
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4.1 Regular systems

packings used in the following, the system can be prepared immediately in a static

configuration, whereas for the polydisperse packing (last paragraph) the system

has to be relaxed. Note that such a relaxation typically takes much longer than

a typical wave propagation simulation.

(2) Waves are excited by applying a small perturbation at one side of the

system, i.e., by shifting a layer of particles. The wave vector, k, and thus the

wave propagation direction are perpendicular to the excited layer. Compressive

(P) and shear (S) modes can be triggered by directing the perturbation parallel

or perpendicular to the wave propagation direction, respectively. The typical

packing used is long in the z-direction (200l0 with l0 the distance between two

layers), which allows to study the wave for a long time and large distances. We

checked that the results do not depend on the extension in x- and y-direction by

comparing simulations with different size lx, ly. Therefore lx = ly = 4d was used

in order to reduce the number of particles. Such a long but thin system contains

only N = 3200 particles with radius a = d/2 = 0.001 m. The mass of a spherical

particle is m = ρ0(4/3)πa3, with the material density ρ0 = 2. 103 kg m−3. The

total mass of the system is thus M ≈ 0.027 kg. The stiffness material parameters

in normal and tangential direction are k = 105 Nm−1 and kt, given in units of k,

e.g., kt = 0.2k. Dissipation γt = γ0 = 0 is used if not explicitly specified. This

leads to a typical (two-particle) contact duration tc = 2.033 10−5 s and collision

frequency ωc = 150 kHz, (the equations used to calculate these values are given

in section 2.1). Note that the oscillation frequency of a particle in a crystal, with

more than one contact, is higher than the collision frequency based on only one

contact. For reliable numerical results, the criterion for the integration time-step

is δtMD < tc
50

≈ 4.10−7 s.

4.1.3 Simulation results

In this section, a typical wave propagation simulation is presented. Then the

effects of dissipation and friction are discussed. Also the wave propagation speed

and the dispersion relations are determined and, finally, some irregularity is in-

troduced in the crystal lattice.

A typical wave propagation simulation

As result of the strain-controlled perturbation of a layer, as described above in

section 2.2, a plane compressive stress pulse (P wave) is created and propagates

in the system in z direction, see Fig. 4.2. More specific, a x, y-layer is shifted by

∆z/d = 10−4. This displacement amplitude, ∆z, that excites the wave is still

small as compared to the typical overlap ∆z/δ = 10−1. The traveling plane wave
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Figure 4.2: Normal stress (σzz) scaled by the equilibrium stress (σ0
zz) as function of

time at different positions z/l0 = 10, 80, and 150, with the distance from the source,

z, and the layer distance l0.

can be observed in various quantities like stress, displacement, kinetic energy, etc.

Since the system is made of layers, it is possible to “record” the pulse at each

layer as a function of time. Fig. 4.2 shows the scaled normal stress versus time

at different positions along the wave propagation direction. The advantage of

periodic boundaries is that all particles are embedded in the same environment.

As consequence, two opposite ends of the system are connected, and a tensile wave

would travel in the direction opposite to the compressive pulse. The two waves

will interfere after having traveled through half of the system. In order to avoid

this, and to maximize the distance that can be traveled by a pulse, two layers

of particles at the opposite ends of the system (z-direction) are fixed – the other

two directions remain periodic. This avoids the tensile pulse, but not boundary

reflections that lead to an oscillating “coda” traveling after the primary pulse,

see Fig. 4.2. The alternative way of driving by specifying an initial velocity as

perturbation of the layer (without controlling its displacement further on) excites

a wave of the same nature and with the same properties, but a weaker primary

pulse relative to the coda is observed.

With increasing distance from the exciting “source” layer the particles expe-

rience an increase in stress with a time delay and also with smaller amplitude

and a slower rate of change, see Fig. 4.2. When the wave arrives at the other

side, it is reflected from this “receiver” layer and travels back and forth between

source and receiver several times, ever decreasing in amplitude (data not shown

here). Modulations of the stress, much smaller than the agitation peak-stress,

persist throughout the whole simulation. The analysis presented in the following
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considers only the initial, undisturbed wave, since interference with the reflected

wave would disturb the signal. The shape of the signals and the wave speed will

be examined next.

Signal shape and damping

The pulse in Fig. 4.2 consists of two parts. The first strong peak corresponds to

the increase of stress when the wave front arrives at the recording position. The

second part, the “coda” of the signal, consists of secondary wave fronts created

by the oscillation of the layer closest to the shifted layer (that stays fixed after

the shift). During propagation, the first peak’s amplitude decreases and its width

increases. Note that there is no active dissipation, so that the described signal

behavior is caused by the frequency-dependent nature of the wave (dispersion),

and the particular boundary condition.

When two real particles interact or collide with each other, a part of the kinetic

energy is transformed into thermal energy, due to the local plastic deformation at

the contact. It is not clear whether this phenomenon can be described properly

by a linear spring-dashpot model. However, it appeared relevant for the sake of

completeness, to study the influence of the dissipation model parameter on our

results. More advanced contact models will be studied elsewhere [78].

As result of dissipation in the contact law (setting γ0 > 0 and r < 1, where γ0

and r were defined in section 2.1), both the amplitude of the first wave front and

of the coda decrease, see Fig. 4.3 (Left). Note that the first pulse is affected much

less than the coda, i.e., for a strong enough dissipation γ0 > 0.1 kg s−1, the coda

has almost disappeared after ten layers, while the first peak continues traveling.

Fig. 4.3 (Right) shows the dependence of the peak amplitude evolution on

dissipation. The strongest decay rate is observed when the dissipation time-

scale tγ = mij/γ0 and a typical contact duration time-scale (oscillation period)

become comparable: tγ ≈ 2tc. In summary, the wave is not affected by very

weak dissipation. Stronger dissipation, however, lets the coda vanish but hardly

changes the wave speed of the first peak, as discussed in the following paragraph.

The wave speed in frictionless packings

One way to define the wave speed is to measure the time it takes the peak

of the first pulse to travel a certain distance. Plotting the z-position of the

peak against the time t when it reaches that position (not shown here) gives

an almost straight line. The slope of this line then gives the speed Vp during

propagation, see Fig. 4.4. Just assuming a constant speed (a linear fit to the

z, t-data) leads to Vp1 ≈ 216m/s. This disregards the interesting acceleration
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of the pulse early during propagation. In Fig. 4.4, the wave speed is compared

to the simply fitted Vp1 and to the theoretical prediction Vpz as obtained from a

micro-macro transition next. Note that in the article by Somfai et al [102], such

an acceleration is also observed.

In order to compare the measured propagation speed with existing theories, it

is assumed that the granular material behaves like an elastic continuum [30,122].

The anisotropic relation between stress- and strain-increments involves a material

tensor C of rank four. In symbolic and index notation (Einstein convention with

summation over double indices) this reads in incremental form:

σ̇ = C : ė , or σ̇ij = Cijklėkl , (4.9)

with the stress- and strain-rates on the left and right, respectively. This describes

the response of our packing to large wavelength perturbations and implies the

assumption of a constant, time-invariant material tensor, which can hold only for

small deformations, and does not allow for opening or closing of contacts or even

large scale rearrangements. In our regular system, neither of these conditions is

violated. The stiffness tensor of the material can be derived from the potential

energy density via virtual displacement, see Refs. [64, 66],

Cαβγφ =
1

V

∑

p∈V

(

k

C
∑

c=1

(l2/2)nc
αnc

βn
c
γn

c
φ + kt

C
∑

c=1

(l2/2)nc
αtcβn

c
γt

c
φ

)

, (4.10)
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Figure 4.3: (Left) Two wave signals are plotted at z/l0 = 10 and 80, as in Fig. 4.2,

without damping (dashed line) and with damping (solid line). The dissipation strength

is γ0 = 0.1 kg s−1, which corresponds to a restitution coefficient r = 0.78 and a contact

duration tc = 2.039 10−5 s, comparable to the viscous damping time scale tγ = mij/γ0 =

4.19 10−5 s.

(Right) The first peak amplitude at different positions (z/l0 = 10, 45, 80, 115, and 150

from top to bottom) is plotted against the dissipation strength, displaying the decay

of the wave amplitude with increasing dissipation and traveling time. The strongest

decay rate is the point with the largest (negative) slope.
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Figure 4.4: From the simulation without dissipation, see Fig. 4.3, the speed of the

first peak maximum, Vp, is plotted as a function of the distance from the source. (A

center-weighted average over five layers is used here. Also a higher output frequency

was needed to obtain reliable data.) The dashed line indicates the average speed, Vp1,

and the solid line is the theoretical prediction, Vpz.

with the branch vector l ≈ d and a representative volume V , e.g., the volume of

the unit cell Vu. For a frictionless packing the second term involving kt is of course

disregarded. From continuum theory, the P wave speed in z-direction is expected

to be Vpz
2 = Czzzz/ρ and, e.g., the S wave speed in the same direction is Vsz

2 =

Czxzx/ρ. In Ref. [77] the prediction for the ratio (Vpz/Vsz)
2 ≈ Czzzz/Czxzx = 2

was confirmed.

Inserting the contact normal and tangential vectors into Eq. (4.10), one can

compute, e.g., Czzzz, which leads to Vpz = 218.5m/s close to the linear fit estimate

Vp1 ≈ 216m/s (see above section 3.3). This holds also for the plane S-wave

propagating in the same direction (either polarized in the x or y direction), for

which the theory gives Vsz = 154.5m/s and the linear fit Vs1 ≈ 153m/s.

We performed a set of simulations exploring the anisotropy in the frictionless

packing with P- and S-waves in other directions for the propagation and for the

particle movements and obtained similar agreement concerning the wave speeds.

The anisotropy is summarized by the ratios of coefficients of the material tensor,

Cxxxx/Czzzz = 1.25, Czxzx/Cyxyx = 2 and Czzzz/Czxzx = 2.

Dispersion relation for frictionless packings

The frequency dependence of the waves in our system can be studied by perform-

ing a Fourier analysis in time and space. From a (t, x) data set in a system of

length lz = 200 l0, with spacing ∆z = l0 = d/
√

2, every layer position is taken into
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account, i.e., 200 points in x-space are available. The time-window 0 ≤ t ≤ tmax

(with time step ∆t = 10−6 s and tmax = 1199∆t, i.e., 1200 data points), is chosen

such that the wave has not yet arrived at the end of the system, so that reflections

are not included in the signal. The dispersion relations are obtained for P and
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Figure 4.5: Dispersion relations (grey-scale corresponds to the amplitude, absolute

value, of the Fourier coefficients) for P wave (Left) and S wave (Right) propagating in

z direction in the anisotropic packing.

S waves propagating in z direction, see Fig. 4.5. The MATLAB function fft2

has been used, which returns the Fourier coefficients in an indexed (ω, k)-field

F (ω, k) of the same size as the input (t, x) data. Transformation to frequency

and wave-number is performed by multiplying the index with ∆ω = 2π/tmax and

∆k = 2π/lz. Special care has to be taken that the indices corresponding to ω = 0

and k = 0 are properly shifted to zero.

In order to obtain a sine fit ω(k) = ω0 sin(kl0
2

) to the Fourier data, the loca-

tions of the maximal Fourier coefficients on the frequency axis are determined by a

power-law weighted average, ωmax(k) = ΣF (ω, k)φ ω/ΣF (ω, k)φ, with φ = 4. The

quality of the fit is impressive with respect to both shape of the curve and mag-

nitude of ω0. The sine function is consistent with the theoretical work by Suiker

et al. [104], where the dispersion relation for 2D lattices is discussed. According

to the fits, the maximal frequencies are ωpz
0 = 309132 s−1, ωsz

0 = 218437 s−1,

and the minimal wavelength is 2l0. The largest wave speed is obtained for

V ω
pz(k = 0) = dω

dk
|
(k=0)

= ω0l0/2 = 218.59m/s, and V ω
sz(k = 0) = 154.45m/s.

These values have to be compared to the prediction based on the micro-macro

transition: Vpz = 218.50m/s and Vsz = 154.50m/s, respectively, in order to ap-

preciate the perfect agreement between an effective continuum theory and the

discrete simulation.
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The acceleration of the wave observed above can now be quantitatively re-

lated to an increasing wave-length during propagation. As crude approximation,

the duration T of the first oscillation of a signal (based on first-arrival time –

one per-cent peak level), see Fig. 4.2, at a given position (z), multiplied by the

corresponding speed V , see Fig. 4.4, gives an estimated wavelength λ = V T , for

this part of the signal at the given position. We obtain λ/l0 ≈ 8, 9, 10, 16, and

19, with error-margin ±1, at z/l0 = 10, 15, 20, 80, and 150, respectively.

Using the dispersion relation, a typical wave-number can be related to a local

wave propagation speed. In subsection 3.3, the wave is excited with a minimal

wave-length and rapidly adapts to a speed of V ω
pz(z/l0) ≈ 208m/s at z/l0 ≈

20, and accelerates further on, see Fig. 4.4. The dispersion relation leads to a

prediction of the wave-number as function of the local wave-speed at position

z/l0,

k

(

z

l0

)

=
2

l0
arccos

V ω
pz(z/l0)

V ω
pz(k = 0)

,

an expression that works well for short and intermediate distances. At different

positions one finds the wavelengths λ = 2π/k with λ10 ≈ 8.3 l0, λ15 ≈ 9.2 l0,

λ20 ≈ 10.1 l0, λ80 ≈ 13.9 l0, λ150 ≈ 17.0 l0, consistent with the crude average

obtained from the oscillation duration of the signal for the shorter distances.

At longer distances from the source, the strong fluctuations and the fact that

the slope of the dispersion relation only weakly changes for small k, leave the

prediction with too large error margin to be useful.

The typical wavelength is increasing while the wave (slightly) accelerates. The

dispersion relation acts such that low-frequency/long wavelength components are

faster than the high-frequency wave components with smaller wavelength. With

other words, narrow pulses can not travel fast, and high frequency perturbations

(ω ≈ ω0) will practically not propagate at all, so that the larger wave-lengths

remain traveling after long distances.

This detailed quantitative study of the classical dispersion relation in a crys-

tal (see literature in solid state physics) is only the reference basis for more de-

tailed research on sound propagation in polydisperse, disordered, frictional and

anisotropic granular media.

The influence of friction

Friction is now introduced in the same system as described previously. The new

parameters are µ, the friction coefficient, which is kept constant to µ = 0.5

and kt the tangential stiffness for which we performed a parameter study with

the following values: kt/k = 0, 0.2, 0.5, 1, 1.5 and 2. Since there are no sliding
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contacts, due to the small amplitude perturbation, neither are differences of static

and dynamic friction coefficients, or different magnitudes of µ, relevant here (data

not shown). Of course by choosing an artificially low value for µ (µ = 0.001),

see [77], sliding contacts occur and influence the results. This was checked by

performing several simulations with µd 6= µs and different magnitudes. Since

details of the friction model are not relevant here, we use µd = µs = µ = 0.5 in

the following.
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Figure 4.6: Wave velocities as function of the ratio kt/kn, with the normal stiffness,

kn = k, as introduced in section 2 (simulation and theory as described in the text).

The system is prepared without friction such that ft = 0 (ft is the contact

force in the tangential direction) at t = 0 and ft 6= 0 as soon as displacements

and deformations occur. Note that a different preparation procedure (data not

shown) will lead to a different initial condition, with contacts close to the sliding

limit, and thus to different observations and conclusions.

The same analysis is performed as before (without friction) for both P- and

S-waves. In both cases (P- and S-wave) the first peak amplitude decreases as the

tangential stiffness (kt) is increasing. Also the “coda” tends to decay stronger and

vanishes. The velocity increases with kt increasing and it is pretty well predicted

for the P-wave by using Eq.(10) for the stiffness tensor and using the simulation

data in order to get the direction of both contact normals and tangential springs,

see Fig. 4.6 (theory). However for the S-wave it is not possible to use the same

formula for the stiffness tensor, since the influence of rotations is strong and ir-

regular in the tangential direction of contacts and renders Eq. (10) inappropriate.

A more complete model like introduced in [104, 105] is needed in order to take

rotations into account.
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Figure 4.7: Dispersion relation (grey-scale corresponds to the amplitude of the Fourier

coefficients) for the S-wave with kt/kn = 2. The solid line gives the best fit to the

P-wave dispersion relation from the system without friction, as discussed earlier.

The same agreement as in section 3.4, between theory and simulations, is

obtained for the dispersion relation for the P-wave with friction. For the S-wave,

a new branch appears in the ω(k) picture for negative wave numbers, see Fig. 4.7,

and the original branch deviates from the sine shape towards higher frequencies

and higher wave velocities. Larger wave numbers (smaller wavelength) modes can

propagate with higher speed (slope of the dispersion relation), dependent on the

magnitude of kt. The frequency range of the new branch is tuneable, i.e., smaller

kt leads to smaller frequencies. The positive trend of this branch indicates that

it is related to a wave traveling in the same direction as the S-wave. However, we

still have no clear interpretation for this branch. Presumably it is a trace of the

rotational degree of freedom of the particles. A more quantitative study of wave

propagation in frictional, rotating systems will be presented elsewhere [78].

Frictionless, slightly polydisperse and ordered systems

Some polydispersity is now introduced in the crystal structure, by applying a size

distribution to the particles. The distribution is homogeneous, centered at the

original monodisperse value of the radius (a = 0.001m) and has a width (2∆a)

of the order of the overlap (δ/a = 10−3).

More precisely we studied three different cases with ∆a = δ
2
, δ and 2δ. The

simulations are performed with the same parameters as in the ordered, elastic

case (section 3.1). The difference is that a preparation-simulation is needed in
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Figure 4.8: Normal stress (σzz) scaled by the equilibrium stress (σ0
zz) as function of

time at different positions z/l0 = 10, 80, and 150, with the distance from the source, z,

and the layer distance l0. Comparison between the monodisperse system (see Fig. 4.2)

and the polydisperse system with ∆a = 2δ.
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Figure 4.9: (Left) P-wave velocities as function of polydispersity (simulations and the-

ory). (Right) Dispersion relation (grey-scale corresponds to the amplitude of the Fourier

coefficients) for the P-wave in the polydisperse system, ∆r = 2δ. The solid line corre-

sponds to the dispersion relation from the monodisperse, ordered system.

order to relax the system, as mentioned in section 2.2. As one can see from Fig.

4.8, the signal is strongly affected for ∆a = 2δ. For ∆a = δ/2, the signal is

practically unchanged, and for ∆a = δ we obtained something in between the

two other cases (data not shown). In the case of ∆a = 2δ, the size variation is

0.2% of the radius but 200% if related to the overlap (δ).

The fact that polydispersity has to be related to the overlap rather than the

particle size was already reported in [62]. As consequence, strong non-linear

57



4.1 Regular systems

effects at the contacts, such as opening and closing, are evidenced. Note that the

coordination number of the relaxed, disordered packing (∆a = 2δ) is C ≃ 9.975.

This represents a loss of 17% of the contacts as compared to the ordered system

(C = 12). During the wave propagation the coordination number is oscillating (as

result of opening and closing of contacts), by less than 0.01%. In this non-linear

context, the linear theory used to predict the wave velocity fails (discrepancies

up to 9% for ∆a = 2δ). For a theoretical approach on the moduli, that considers

random arrays, see Ref. [47]. Also the dispersion relation is much broader, more

noisy, and random gaps seem to appear, although the sine shape is still visible

(see Fig. 4.9).

4.1.4 Conclusions

Wave propagation was examined in three dimensional regular (crystal) monodis-

perse packings of spheres, for compressive (P) and shear (S) propagation modes.

Different dissipation strength and friction coefficients were used and an interest-

ing acceleration of the wave during propagation was observed for both P- and

S-waves in frictionless systems.

For the wave speeds, quantitative agreement was obtained between simula-

tions and theoretical predictions based on a micro-macro computation of the

stiffness material tensor for the anisotropic lattice. Also the dispersion relation

agrees perfectly well with theory and the observed acceleration of the traveling

wave can be related to the dispersion and widening of the pulse: the initially

narrow pulse travels slower than the wider, more developed pulse. Close to the

source, the major wave number (wave length) can be well predicted as function

of the wave speed.

The study of frictional packings indicates the importance of rotations, and

also the limitations of the proposed theory for the wave speed. In the dispersion

relation, the S-wave branch becomes steeper and more straight (the sine-shape is

lost), and a second branch at higher frequencies occurs.

Finally in the last paragraph, weak polydispersity was introduced and more

generally, non-linearity effects are evidenced already for rather small disorder.

The dispersion relation becomes more noisy but the shape is maintained.

All this shows that by capturing already a certain amount of relevant and in-

teresting features of wave propagation in granular materials, the model proposed

seems to be an appropriate starting point in order to investigate quantitatively

and more deeply the phenomenon of wave propagation in polydisperse, inhomo-

geneous, anisotropic, dense, frictional granular materials.
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4.2 Cohesive, frictional systems and prepara-

tion history

This article, with the original title “Sound propagation in isotropically and uni-

axially compressed cohesive, frictional granular solids” by Orion Mouraille, Olaf

Herbst and Stefan Luding, will be published (in press) in Engineering Fracture

Mechanics [82].

Abstract

Using an advanced contact model in DEM simulations, involving elasto-plasticity,

adhesion, and friction, pressure-sintered tablets are formed and prepared for un-

confined tests. Sound propagation in such packings is studied under various fric-

tion and adhesion conditions. Small differences can be explained by differences

in the structure that are due to the sensitivity of the packing on the contact

properties during preparation history. In some cases the signals show unexpected

propagation behavior, but the power-spectra are similar for all values of adhesion

and friction tested. Furthermore, one of these tablets is uniaxially and unconfined

compressed and the sound propagation characteristics are examined at different

strains, (i) in the elastic regime, (ii) during failure, and (iii) during critical flow.

Similarly, the results do vary astonishingly little for packings at different exter-

nally applied strains.

4.2.1 Introduction

Granular Materials in general [11, 12, 34, 38–40, 43–45, 60, 94, 99] and especially

cohesive, frictional, fine powders show a peculiar flow behavior [18,64,67,89,114].

Adhesionless powder flows freely, but when adhesion due to van der Waals forces

is strong enough, agglomerates or clumps form, and can break into pieces again

[51,108,109,111]. This is enhanced by pressure- or temperature-sintering [65] and,

under extremely strong pressure, tablets or granulates can be formed [69–72] from

primary particles. Applications can be found, e.g. in the pharmaceutical industry.

The basic question is how to understand such cohesive, frictional, fine powders

and whether one can use sound propagation measurements from simulations to

gain additional insight.

In contrast to crystalline materials [77, 79], information propagation in dis-

ordered and inhomogeneous granular media is far from well understood, espe-

cially when friction and other realistic contact mechanisms are taken into ac-

count [66,80,81]. Understanding better the sound propagation in granular media

60



Effect of contact properties on wave propagation

will improve the interpretation of ultrasound measurements in soil as a non-

intrusive way to detect and measure underground structures. This has appli-

cations in archeology, seismology and – because of its cost efficiency – for the

discovery and exploitation of natural resources such as ores, coal, or oil

Stress-wave or sound propagation through dense granular matter is the su-

perposition of many complex phenomena, which are caused by the discrete, inho-

mogeneous, anisotropic and dissipative structure of this class of materials. The

properties of such waves are strongly affected by phenomena like attenuation,

scattering, and dispersion [49]. Ballistic pulse propagation co-exists with slower,

multiply scattered coda-like signals [48,49]. The stress- and frequency-dependence

of the wave propagation features are subject of ongoing discussion [42,49] in static

and shaken packings as well.

Many-particle simulations methods like discrete element models (DEM) [9,24,

40,92,110,112,122] complement experiments on the scale of small “representative

volume elements” (RVEs) [122]. Deep and detailed insight into the kinematics and

dynamics of the samples can be obtained since the information about all particles

and contacts is available at all times. Discrete Element Models require the contact

forces and torques as the basic input, to solve the equations of motion for all

particles in a granular system. From this, the macroscopic material properties

as, among others, elastic moduli, cohesion, friction, yield strength, dilatancy, or

anisotropy can be measured from such RVE tests.

The macroscopic properties are controlled by the “microscopic” contact forces

and torques [19,42,49,58,101]. Non-linear contacts [92,106], frequency-dependence

[85,118] and also scattering and attenuation in other “particle type” materials [27]

have been reported.

Research challenges involve not only realistic DEM simulations of many-

particle systems and their experimental validation, but also the transition from

the microscopic contact properties to the macroscopic flow behavior [1, 64, 67,

122, 123]. This so-called micro-macro transition [64, 67] should allow to better

understand the collective flow behavior of many particle systems as a function of

the particles’ material and contact properties. A continuum description (“macro-

scopic”) of (dense) granular materials can be highly useful for field applications

(like oil discovery), since particle simulations (“microscopic”) are not applicable

due to the huge system sizes. Some empirical descriptions are available also for

dynamic and possibly non-linear deformation and propagation modes [42,49,120].

The paper is organized as follows. After introducing the simulation method

in section 2, the preparation of our samples is discussed in section 3. Sound

propagation through densely packed granular systems and its dependence on

friction and adhesion is examined in section 4.1, while sound propagation for
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different states of compression and failure is reported in section 4.2. Summary

and Conclusions are given in section 5.

4.2.2 Discrete Particle Model

To simulate packing, failure and sound propagation in a granular material we use

a Discrete Element Model (DEM) [9,24,40,56,71,110,112]. Such simulations can

complement experiments on small scale by providing deep and detailed insight

into the kinematics and dynamics of the samples examined. In the following

we briefly introduce the method that allows us to simulate wave propagation

in (damaged) packings. The numerics and algorithms are described in text-

books [2, 87, 88], so that we only discuss the basic input into DEM, i.e., the

contact force models and parameters. More details on the the contact model can

be found in Ref. [71] and references therein.

The pairwise inter-particle forces typically used are based on the overlap and

the relative motion of particles. This might not be sufficient to account for the

inhomogeneous stress distribution inside the particles and possible multi-contact

effects. However, this simplifying assumption enables us to study larger samples of

particles with a minimal complexity of the contact properties, taking into account

phenomena like non-linear contact elasticity, plastic deformation, and adhesion

as well as friction, rolling resistance, and torsion resistance. In the following we

will neglect rolling and torsion resistance however.

Normal Contact Forces

Realistic modeling of the deformations of two particles in contact with each other

is already quite challenging. The description of many-body systems where each

particle can have multiple contacts is extremely complex. We therefore assume

our particles to be non-deformable perfect spheres. They shall interact only when

in contact. We call two particles in contact when the distance of their centers of

mass is less than the sum of their radii. For two spherical particles i and j in

contact, with radii ai and aj , respectively, we define their overlap

δ = (ai + aj) − (ri − rj) · n > 0 (4.11)

with the unit vector n := nij := (ri − rj)/|ri − rj| pointing from j to i. ri and

rj denote the position of particle i and j, respectively.

The force on particle i, labeled f i, is modeled to depend pairwise on all

particles j with which particle i is in contact, f i =
∑

j f c
i|j, where f c

i|j is the force

on particle i exerted by particle j at contact c. The force f c
i|j can be decomposed

into a normal and a tangential part, f c
i|j = fn

i|jn + f t
i|jt, where n · t = 0.
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Figure 4.10: Spring part of the normal component of the contact force fn, i.e. the part

that is a function of the overlap δ. (The viscous normal forces are not included in this

plot.) k1, k2, kc, and δmaterial are material constants. δmax is the maximum overlap

this contact has encountered in the past and accounts for the history dependence of

the contact law. δ∗ is the (history dependent) overlap at which the force becomes zero

when loading or unloading with the current (history dependent) stiffness k∗. δf is the

overlap at which the force vanishes when the stiffness constant k2 is used (at large

overlaps).

To model the force f c
i|j we use an adhesive, elasto-plastic, history-dependent

contact law that depends on three variables only and is described in more detail

in Ref. [71]: The force between two spheres is modeled to depend only on their

overlap δ, the relative velocity of their surfaces, and the maximum overlap δmax

this contact has suffered in the past. We will leave out the index i|j from now

on.

For the normal force fn we apply a modified spring-dashpot model: The

dashpot part is, as usual, a viscous damping force that depends on the normal

component of the relative velocity. The spring “constant” k, however, is only

temporarily constant and depends on the history of the contact, changing the

force from linear in the overlap to piecewise linear: The repulsive force during
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initial loading is governed by the initial loading stiffness constant k1, see Fig.

4.10. When the contact is unloaded the maximal overlap δmax is kept in memory

as a history variable. The forces during un- and reloading can be either repulsive

or attractive and are determined using a linear interpolation k∗ between the

initial loading stiffness constant k1 and the maximal elastic stiffness constant k2.

For overlaps greater than δmaterial the stiffness constant k2 is used. When re-

loading starts after unloading δmax is reset to the then current value of δ and it

is subsequently increased again during loading. If a contact breaks δmax is set to

zero. Each contact can be unloaded into the attractive regime with the current

stiffness k∗. This models adhesion. The attractive forces are limited by −kcδ,

with the adhesion “stiffness” constant kc.

Tangential Contact Forces

In the tangential direction, the forces and torques depend on the tangential dis-

placement and the relative rotations of the particle surfaces. Dynamic (sliding)

and static friction depend on the tangential component of the relative velocity of

the contact points,

vt = vij − n(n · vij) , where vij = vi − vj + a′
in × ωi + a′

jn × ωj (4.12)

is the relative velocity of the particle surfaces at contact. Here a′
α = aα − δ/2, for

α = i, j, is the corrected radius relative to the contact point. vi, vj, ωi, and ωj

are the linear and rotational velocities of particles i and j, respectively.

Tangential forces f t acting on the contacts are modeled to be proportional

to the accumulated sliding distance of the contact points along each other with

a (tangential) stiffness constant kt, i.e. f t = kt

∫

vtdt, where vt is the tangential

component of the relative velocity of the contact point. Including also a viscous

damping constant, γt, the tangential force is limited by the product of the normal

force and the contact friction coefficient µ, according to Coulombs law, f t ≤ µfn.

For more details see Ref. [71].

Background Friction

Viscous dissipation as mentioned above takes place localized in a two-particle

contact only. In the bulk material, where many particles are in contact with each

other, this dissipation mode is very inefficient for long-wavelength cooperative

modes of motion, especially when linear force laws are involved [61]. Therefore,

an additional damping with the background is introduced, such that the total

force f i and torque qi on particle i are given by

f i =
∑

j

(

fnn + f tt
)

− γbvi and qi =
∑

j

qfriction − γbra
2
i ωi , (4.13)
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where the sums take into account all contact partners j of particle i, and γb and γbr

are the (artificial) background damping viscosities assigned to the translational

and rotational degrees of freedom, respectively. The viscosities can be seen as

originating from a viscous inter-particle medium and enhance the damping in

the spirit of a rapid relaxation and equilibration. Note that the effect of γb and

γbr should be checked for each set of parameters: it should be small in order to

exclude artificial over-damping.

Contact model Parameters

In the following we measure lengths in units of millimeters (mm), masses in mil-

ligrams (mg) and times in units of one hundred microseconds (100 µs). Note that

only a few parameters have to be specified with dimensions, while the others are

expressed as dimensionless ratios in Tab. 4.1.

Property Symbol Value dimensional units SI-units

Time unit tu 1 100 µs 10−4 s

Length unit xu 1 1mm 10−3 m

Mass unit mu 1 1mg 10−6 kg

Particle radius a0 0.005 5µm 5.10−6m

Material density ρ 2 2 mg/mm3 2000 kg/m3

Max. load/unload stiffness k2 5 5mg/(100µs)2 5.102 kg/s2

Initial loading stiffness k1/k2 0.5

Adhesion “stiffness” kc/k2 0.2

Tangential stiffness kt/k2 0.2

Coulomb friction coefficient µ = µd = µs 1

Dynamic to static friction φd = µd/µs 1

Normal viscosity γ = γn 5.10−5 5.10−5 mg/100µs 5.10−7 kg/s

Tangential viscosity γt/γ 0.2

Background viscosity γb/γ 4.0

Background viscous torque γbr/γ 1.0

Fluid overlap φf 0.05

Table 4.1: Microscopic material parameters used (third column), if not explicitly spec-

ified. The fourth column contains these values in the dimensional units, i.e., when the

time-, length-, and mass-units are 100 µs, mm, and mg, respectively. Column five con-

tains the parameters in SI-units. Energy, velocity, force, acceleration, and stress have

to be scaled with factors of 10−4, 10−1, 10−1, 105, and 105, respectively, for a transition

from reduced to SI-units.
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A maximal stiffness constant of k2 = 5, as used in our simulations, corre-

sponds to a typical contact duration (half-period) tc ≈
√

m/(2k) ≈ 6.5 × 10−4,

for a normal collision of a large and a small particle with γ = 0. Accordingly,

an integration time-step of tMD = 5 × 10−6 is used in order to allow for a “safe”

integration of the equations of motion. Note that not only the normal “eigenfre-

quency” but also the eigenfrequencies for the rotational degrees of freedom have

to be considered, as well as the viscous response times tγ ≈ m/γ. All of the (in-

verse) eigenfrequencies should be considerably larger than tMD, while the viscous

response times should be even larger, so that tγ > tc ≫ tMD. A more detailed

discussion of all the effects due to the interplay between the model parameters

and the related times is, however, far from the scope of this paper. Details can

be found in Ref. [71] and references therein.

4.2.3 Tablet preparation and material failure test

Tablet preparation

Having introduced the model and its parameters in the last section here we de-

scribe the experimental idea and the steps of our simulations. We prepare a

“tablet” (granule) consisting of primary particles that behave according to the

contact force laws mentioned above. A four-step process is applied:

• creation of a loose initial sample

• pressure sintering by isotropic compression

• removal of the pressure

• relaxation

On the resulting unconfined “tablet”, or material sample, tests can be performed,

e.g. controlled compression or tensile tests as well as sound wave propagation

tests. Care has to be taken to perform first the preparation and later the tests in

a symmetric way (see below) to avoid artifacts.

Initial sample: Before sintering the first step is to create a loose configuration

of N = 1728 spherical (granular) particles with a Gaussian distribution of radii

with average a = 0.005. The tails of the distribution are cut off at 0.003 and

0.0075 to ensure that all particles are comparable in size [26], i.e. neither too

large nor too small particles are desired. For the situations presented in this

paper, the half-width of the distribution is wa =
√

〈a2〉 − 〈a〉2 = 0.0007213. In

addition, the initial velocities are drawn from a Gaussian distribution in each

direction.
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Figure 4.11: Kinetic energy Ekin (left) and coordination number [number of contacts

per particle] (right) as a function of time t during isotropic pressure sintering with final

pressure ps = 10. Here the particle contacts are adhesionless, kc = 0, while the other

parameters are given in Tab. 4.1

In the initial preparation stage the particles are arranged on a regular cubic

lattice with wide spacing so that particles are not in contact – neither with each

other nor with a wall – and have space to move and become disordered. Then the

system is compressed with a pressure of p1 = 0.5 to create a loose initial packing

with a coordination number C = 5.89 and volume fraction, ν =
∑

i V (ai)/V =

0.607, with the particle volume V (ai) = (4/3)πa3
i .

Pressure sintering: The second step is pressure sintering: The system is com-

pressed by keeping one wall in each spatial direction fixed while applying a con-

stant pressure of ps = 10 to the other (three) walls. During compression, the

particles are frictional with a friction coefficient µ = 1, and have zero adhesion

amongst each other, i.e. kc = 0. Four of the six walls are frictionless µwall = 0

and cohesionless (kc = 0). The remaining two (opposing) walls are already pre-

pared for the tests to come. These two walls define the uniaxial direction and are

strongly adhesive, with kwall
c /k2 = 20, so that the sample sticks to them, while

all other walls can be easily removed in the third step. The wall-adhesion has no

visible effect here, since the sample is strongly confined. In contrast, friction has

an effect, i.e. friction with the walls would hinder the pressure to be transferred

completely to its opposite wall. Frictional walls carry part of the load – an effect

that is known since the early work of Janssen [46, 103].

During the compression the kinetic energy first increases and then decreases,

see the left graph of Fig. 4.11, due to the energy dissipation in the system. We

keep the pressure constant until the kinetic energy has very well reached a small

constant value, within fluctuations, determined only by the numerical accuracy.
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The right graph of Fig. 4.11 shows the mean coordination number as a function

of time. The number of contacts increases during pressure sintering, overshoots,

and finally settles to a constant value of C ≈ 7.17. Not surprisingly, a rather high

volume fraction, ν = 0.6754, is reached during the pressure sintering. After stress-

relaxation (see below), these values decrease considerably to ν ≈ 0.626 ± 0.005

and C ≈ 6.2 ± 0.2, depending on the material parameters used.

Pressure release: Using this pressure sintered sample, the third step is to re-

move the pressure from the walls. Before we do so both kc and µ are set to the

desired values (kc/k2 = 0.2 or 1.0 and µ = 1.0, 0.1, or 0.0). The combination of

material parameters and their identification codes are summarized in Tab. 4.2.

Type A B C D E F

kc 1 5 1 5 1 5

µ 1 1 0.1 0.1 0 0

ν 0.6270 0.6280 0.6296 0.6294 0.6273 0.6216

C 6.097 6.183 6.020 6.191 6.122 6.454

Table 4.2: Adhesion and friction parameters used during stress-release and for the

further tests of the samples A-F. The densities and coordination numbers are realized

after relaxation, after stress-release, before the subsequent compression and/or sound

tests.

The control pressure is smoothly released from the walls in a co-sinusoidal

way, starting from its sintering value, ps = 10, down to a residual value, p0, that

is five orders of magnitude lower, i.e. p0/ps = 10−5. The half period of the co-

sinusoidal pressure release is t0 = 12.5, but relaxation is continued further until

the kinetic energy is dissipated and reaches tiny values, see Fig. 4.12. The small

residual pressure keeps single particles from leaving the sample and also keeps the

walls in place. This is important in order to not spoil the efficiency of our linked

cell algorithm, where the cell size is a fraction of the system size between the

walls. However, this confining stress p0 is not big enough to affect the dynamics

of the tests performed, it is just a convenient way to keep the walls rather close

to the sample. (p0/ps = 10−3 leads to very similar results.)

There are qualitative differences for the short time behavior between the sam-

ples A and B on the one hand and samples C – F on the other hand. In the latter

samples the friction coefficient is suddenly reduced from µ = 1 to smaller values

just before the walls are removed. As an example, in Fig. 4.12 samples A and

C are compared, which have µ = 1, and 0.1, respectively. The kinetic energy of

sample C increases instantaneously due to the “failure” of several contacts and
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Figure 4.12: Kinetic energy Ekin (top) and coordination number [number of contacts

per particle] (bottom) as a function of time t during stress-removal from the walls and

subsequent relaxation. The material parameters are given in Tab. 4.1, for sample A

(left), with µ = 1, while the friction is reduced to µ = 0.1 for sample C (right). The

markers (top) show the the changes discussed in the text at times 12.5, 200, and 250.

subsequent dynamic reorganization. During this reorganization also the coordi-

nation number, see bottom panels in Fig. 4.12, increases slightly, as well as the

density (data not shown). For sample E, the increase in kinetic energy, coordina-

tion number and density is larger, since the friction is reduced to an even smaller

value µ = 0 (data not shown).

A comparison of samples B, D, and F leads to qualitatively similar observa-

tions as did the comparison of samples A, C, and E discussed above. The sudden

reduction of friction has the same effect when kc = 5 instead of kc = 1. The

increase in adhesion from kc = 1 to kc = 5 does not show a strong effect initially.

Only for larger times, i.e. lower pressure, the effect of contact adhesion manifests

itself in slightly shorter relaxation times. All densities are very similar, only the

coordination number is systematically slightly larger for stronger adhesion.
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Final relaxation: The fourth preparation step is the final relaxation of the

system. This is done in three sub-steps. First, immediately after the control

pressure on the wall has reached its low residual value, the system is relaxed

further until time tr1 = 200 with three fixed walls and three walls with the

residual pressure reached at the end of the wall removal procedure. Second, after

the kinetic energy has reached a small value, within fluctuations, for a long time,

the system is further relaxed and symmetrized with the same pressure of 10−4

applied from all sides for another time interval of tr2 = 50. In the final relaxation

step, again a time interval of tr3 = 50, the two walls in the x-direction are fixed

and the other four walls are kept at the residual pressure. We now have an

unconfined sample with fixed walls in the x-direction and negligible stresses in all

directions. The tests to be performed are uniaxially deforming the walls in the x

direction only.

The prepared sample can now be used for all sorts of further tests. In this

paper we will show compression tests in the next subsection 4.2.3 and sound wave

propagation on different samples in section 4.2.4, as sketched in Fig. 4.13.

Strain controlled
perturbation

X

Y

Z

ε

Source wall

Receiver wall

0

Applied Strain ε

Applied Strain ε

/2

/2

Figure 4.13: Sketches of the compression (left) and the wave propagation (right) tests

Compression test

In this section we describe an uniaxial unconfined compression test, starting from

the final configuration of sample A from the previous subsection. This test re-

sembles a direct measurement of the unconfined yield-strength, as applied in

mechanical engineering and particle technology, see [97]. However, we apply the

strain in several rather small steps. After each small step we relax the system
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in the compressed state, i.e. we run the simulation for a while without changing

the pressure (y- and z-directions) on and positions (x-direction) of the walls. We

later perform tests on these “relaxed” states. This must not be confused with a

test performed after the stress has been removed.

Instead of applying the target-strain of ǫmax = 0.0217 in one sweep, the de-

formation is divided into 10 steps, with ǫs ≈ 0.00217 each (measured relative

to the initial system size). This leads to states with ǫm = mǫs, with integer

m = 0, 1, 2, ..., 10. During each of the ten strain-steps, the system is compressed

in a co-sinusoidal way for one half-period, during a time interval of tǫ = 0.5,

and then relaxed for a time interval of tǫr = 4.5. Note that the results are rate

dependent (where the rate is proportional to 1/tǫ). A small enough rate has to

be chosen in order to stay in the quasi-static regime. Fig. 4.14 gives a compar-

ison with a ten times higher rate (left graph). A four times higher rate does

not change qualitatively the stress-strain behavior (data not shown here). The

“relaxed” sample (which is still under anisotropic pressure) is then further de-

formed and relaxed and this is repeated again and again. The reason for this

intermediate relaxation is that we want to perform sound wave propagation tests

on well-defined “relaxed”, static samples after those have suffered from different

levels of deformation.
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Figure 4.14: Normalized axial stress σ/σ0 plotted against the axial strain ǫ from a

step-wise uni-axial compression test. The reference stress, σ0 = k2/a, is used to get a

dimensionless stress. The left graph shows the results for a rate ten times faster than

the one used in the following (right graph). The points indicate the configurations on

which sound propagation tests are performed in Sec. 4.2.4.

The stress-strain diagram of this compression test is shown in Fig. 4.14. The

initial stress-strain relation is very close to linear, with a slope of D = ∂σ/∂ǫ =

225.6. The maximal stress in is approximately 1/4 of the previously applied
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4.2 Cohesive, frictional systems and preparation history

sintering pressure ps. Additionally, we see that relaxing the system in the elastic

regime, at intermediate strains of ǫ1−4, leads to samples very close to the elastic

branch. Thus up to a strain of about one percent the system behaves almost

like an elastic solid. Tab. 4.3 summarizes the strains, coordination numbers, and

volume fractions for all ǫm investigated.

ǫ0 ǫ1 ǫ2 ǫ3 ǫ4 ǫ5 ǫ6 ǫ7 ǫ8 ǫ9 ǫ10

ǫ 0 0.22 0.43 0.65 0.87 1.09 1.30 1.52 1.74 1.95 2.17

C 6.097 6.098 6.093 6.090 6.086 6.001 5.810 5.592 4.679 4.612 4.556

ν 0.627 0.627 0.627 0.624 0.620 0.613 0.594 0.578 0.546 0.537 0.526

Table 4.3: Strain steps ǫm and corresponding coordination numbers and volume frac-

tions. The round-off error for the given values is ±10−3

At larger deformation, ǫ5, the sample starts to fail: Here the stress is close to

its maximum and during the relaxation the stress decreases, i.e. we have left the

elastic regime. The coordination number and density decrease considerably when

the sample starts to fail. At the next strain levels, ǫ6, and ǫ7, the stress remains

large but the stress decreases more and more during relaxation. At ǫ8 ≈ 0.017

the system fails and becomes almost fluid-like with an enormous decay of stress

during relaxation. Also for later compression steps the stress is significantly

reduced, relative to the maximum, during the relaxation process, though it never

reaches zero.

4.2.4 Sound wave propagation tests

The goal of this section is to characterize how the propagation of sound waves

is influenced by, on the one hand, the “microscopic” parameters such as the

inter-particle cohesion and friction and, on the other hand, the material state

(uncompressed, uniaxially compressed in the elastic regime, close to failure, or in

the fluidized softening regime). This is done by analyzing the wave propagation,

phase velocities, damping, and Fourier spectra of the sound waves propagating

through the system.

The “microscopic” inter-particle interaction laws (material properties) have

an influence on the propagation of sound. Therefore we first probe packings

with different “microscopic” adhesion and friction parameters. When a tablet

undergoes strain, both microscopic (contact scale) and macroscopic (multi-grain

scale) changes occur in the structure. In order to investigate the change of the

macroscopic material properties due to these reorganizations we probe the pack-

ing at various externally applied uniaxial strains, corresponding to the different
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Effect of contact properties on wave propagation

regimes mentioned above. Note that a piecewise linear contact law with history-

dependent stiffness (see Sec. 4.2.2) allows to decouple the non-linearity of the

contact forces (as in the case of the Hertz contact model for example) from the

influence of reorganizations and opening or closing of contacts.

For the sound propagation tests we start with the tablets prepared as described

in Sec. 4.2.3. The tablet has two fixed walls in the x− direction and virtually free

boundary conditions in the other two directions. Now a signal is sent through

the sample by applying a time-dependent variation of the position (according to

the desired signal) to one of the two walls, see left sketch of Fig. 4.13. After some

time the opposite wall will feel a stress variation which we analyze and interpret,

right sketch of Fig. 4.13. The wave form is a full period of a co-sine, moving the

wall in and out, with an amplitude, A = 10−7 and a time period T = 3. 10−3.

This stress amplitude is much smaller than the maximum stress in Fig. 4.14.

Influence of cohesion and friction on sound propagation

In this subsection the influence of the microscopic parameters adhesion and fric-

tion on the sound propagation of an uncompressed tablet is studied. In Tab. 4.2

the values used for inter-particle adhesion kc and friction µ are given along with

the sample names A, B, C, D, E, or F. In Fig. 4.15, the source (left) and receiver

(right) signals (stress at the wall) are plotted versus time. Tab. 4.4 gives the

wave velocities, calculated for different reference points as specified below, and

the damping ratios between the source and receiver signals.
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Figure 4.15: Stress variation σ(t)−σ(0) as function of time t at the source and receiver

walls for the samples prepared in Sec. 4.2.3. Here σ(0) denotes the pressure at the wall

just before the sound propagation test started. Note the different vertical axes. The

signal for sample F has been cut off as it oscillates strongly later on.
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4.2 Cohesive, frictional systems and preparation history

A B C D E F

v5 19.6 19.63 19.6 19.69 20.23 20.24

v10 18.89 18.94 18.91 18.99 19.52 19.55

vm 15.99 16.05 15.95 16.07 16.62 16.7

v0 14.94 15.04 14.84 15.03 15.71 15.86

σd 2.49 2.37 2.65 2.35 10.59 7.67

Table 4.4: Velocities, v, as defined in the main text and damping σd.

Wave velocities are deduced from the time of flight (TOF). Therefore a ref-

erence point is chosen at the maximum of the peak (leading to the velocity vm),

at 5% of that maximum (v5), at 10% of that maximum (v10) or finally when the

signal reaches for the first time zero amplitude after the peak (v0). The ratio of

the distance between the two walls (source and receiver) and the time difference

between the two signals gives the desired wave velocities. Note that since the

medium is dispersive, the calculated velocities are an approximation of the group

velocity for the range of propagating frequencies.

The damping ratios σd are calculated by dividing the maximum of the peak of

the source signal by the corresponding peak of the receiver signal. Those ratios

depend on the distance between the two walls and on the dispersion.

The results show a clear difference between the specimens with friction (A,

B, C, and D) and the frictionless cases (E and F) concerning both damping and

velocities. The damping (as defined above) is significantly stronger for cases

E and F. This may be due to the fact that friction strengthens the specimen

and hence enhances the wave transmission, i.e. reduces damping in accordance

with previous results [79]. The strong reduction in the peak amplitude of the

frictionless samples might also be related to the different configuration structure

of the samples. For the frictional specimens (A – D) the damping is lower for

higher adhesion (B and D). The same is observed for frictionless specimens, which

means that stronger adhesion enhances the wave transmission as well.

Concerning the velocities, for the same inter-particle adhesion, A, C & E

and B, D & F, all velocities are systematically lower in the frictional cases (A

– D) than in the frictionless samples (E and F). In a previous study [79] the

velocity of sound was higher in the frictional case, where identical samples were

prepared without friction before activating the desired friction coefficient. This

is in contrast to our results, where all samples are different. However, a complex

interplay between frictional and cohesion effects might be the explanation for this

unexpected result. Finally, when comparing specimens A and C with specimens

B and D, there is a slight increase of velocities with higher cohesion. The same is
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Effect of contact properties on wave propagation

observed when comparing specimens E and F. This suggests again that adhesion

increases the effective stiffness of the material and thus the wave speed. The fact

that adhesion increases the tensile strength was examined and reported in [71,72].

Note that the increase of velocity is correlated with the increase of coordination

number for increasing contact adhesion and thus depends on the history of the

sample.
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Figure 4.16: Power spectrum from (left) source- and (right) receiver-signals, taken

from the simulations in Fig. 4.15 in arbitrary units (a.u.). Only signals E and F behave

differently from the others, reflecting their higher damping rates (see right graph).

From the power spectra, obtained by applying the Fourier transform to the

time signals, the dispersive and filtering behavior of the system can be identified

by the observed significant shift of the main frequency from about 330 down

to 150 (corresponding to 33 kHz and 15 kHz in SI-units), see Fig. 4.16. The

granular, and hence inhomogeneous and discrete, nature of the system leads to its

dispersive behavior. High frequencies are very sensitive to the details at the grain

scale because their wavelengths are small, and hence they travel more slowly and

less far than lower frequencies. The latter ones are less sensitive to the details

at the grain scale because their wavelengths are much larger and average over

many grains. Note that the main frequency at around 330 comes from the chosen

period for the wave form, T = 3. 10−3, see the beginning of Sec. 4.2.4. Besides the

evidently strong damping of signals E and F, no further striking differences are

observed for the different specimens’ spectra. Even though there are differences

in the power law tail of the spectra (data not shown), we could not correlate those

to the different parameters.
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4.2 Cohesive, frictional systems and preparation history

Uncompressed versus compressed states

In the following, the compressed specimen A (uniaxially, from both sides) is used.

In that special direction the wall movement is strain controlled and the other two

directions are virtually free boundaries, see Sec. 4.2.3 for details. At each step of

the compression test, after relaxation, see Fig. 4.14, a sound wave is sent through

the system the same way as in the previous subsection. Fig. 4.17 shows the signals

at the source and receiver walls.
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Figure 4.17: Stress variation σ(t)−σ(0) as function of time t at the source and receiver

walls, where the ǫ3 and ǫ7 signals display a different coda. Note the different vertical

axes.
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Figure 4.18: Power spectra from source- and receiver-signals, taken from the simulations

in Fig. 4.17 in arbitrary units (a.u.).
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Effect of contact properties on wave propagation

ǫ0 ǫ1 ǫ2 ǫ3 ǫ4 ǫ5 ǫ6 ǫ7 ǫ8 ǫ9 ǫ10

v5 19.6 19.59 19.6 20.00 19.58 19.56 19.55 19.45 19.26 19.24 19.14

v10 18.89 18.89 18.89 19.31 18.88 18.87 18.85 18.74 18.55 18.52 18.45

vm 15.99 16.01 16.03 16.13 16.05 16.06 16.04 15.84 15.66 15.58 15.54

v0 14.94 14.99 15.05 15.22 15.10 15.14 15.14 14.81 14.56 14.46 14.39

σd 2.49 2.47 2.47 3.47 2.37 2.37 2.45 2.76 4.21 4.68 5.11

Table 4.5: Velocities, v, as defined in the main text and damping σd

Regarding vm and v0, see Tab. 4.5, the velocities seem to increase a little as

the system is further compressed until state ǫ3. Then they slightly decrease until

state ǫ6 and finally the decay is stronger until the last state ǫ10. This variation

correlates with the three regimes observed on the stress-strain curve, see Fig. 4.14,

i.e. first the close-to-linear regime, second, the start-of-failure regime, and finally

the critical-flow regime. The damping strongly increases for the last steps, ǫ8 to

ǫ10, as the sample is not really a solid any more. These observations correlate

with the given coordination numbers C and the density ν, see Tab. 4.3. Similar

observations are made concerning the power spectra of those signals, see Fig.

4.18, noting a stronger damping at steps ǫ8 to ǫ10. Additional studies are needed

to determine whether the sound pulse method could allow for a sensitive material

state characterization at all.

4.2.5 Conclusions

We have performed particle simulations of sound propagation in isotropically

pressure sintered powder samples at very small confining stress. Using a re-

cently proposed piecewise linear contact model for particle-particle interactions

we probed different values of friction and adhesion during preparation. In partic-

ular, we applied a P-wave on one end of the sample and measured and analyzed

the signal on the opposing receiver wall. Surprisingly we found only very weak

differences except for the frictionless case, where the velocity of sound was higher

and the damping was stronger. Even though the samples were prepared using

the same preparation protocol they evolved to different initial configurations due

to different values of the contact parameters. The material behavior is history

dependent but mostly determined by the sintering pressure ps rather than by

those material parameters varied here.

In addition, one of the samples was subjected to strain-controlled uniaxial

unconfined compression and the sound propagation properties were studied at

various levels of strain: In the elastic regime, at the onset of and during failure,
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4.2 Cohesive, frictional systems and preparation history

and in the softening and flowing regimes. Even though in the elastic regime we

found astonishingly little variation in the wave propagation velocity as a function

of the strain, one particular sample behaved qualitatively different. In the soft-

ening regime all samples were unstable even though the amplitude of the probing

pulse was 100 times smaller than the typical particle-particle overlap.

Having observed rather small differences between the different uniaxial strain

states, the expected dependence of sound propagation on the uniaxial anisotropic

stress states studies was not observed.

The quantitative tuning of the DEM model to real experimental data remains

a challenge for future research. The results presented here have units that are

not supposed to mimic a real material. Some tuning can be done by re-scaling,

but a real fine-adjustment will require a more systematic study of other contact

model parameters.
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5

Effect of disorder on wave

propagation

5.1 Systems with tiny polydispersity

This article, with the original title “Sound wave propagation in weakly poly-

disperse granular materials” by Orion Mouraille and Stefan Luding, has been

published in the Journal Ultrasonics [81].

Abstract

Dynamic simulations of wave propagation are performed in dense granular media

with a narrow polydisperse size-distribution and a linear contact-force law. A

small perturbation is created on one side of a static packing and its propagation,

for both P- and S-waves, is examined. A size variation comparable to the typically

tiny contact deformation already changes sound propagation considerably. The

transmission spectrum becomes discontinuous, i.e., a lower frequency band is

transmitted well, while higher frequencies are not, possibly due to attenuation

and scattering.

This behavior is qualitatively reproduced for (i) Hertzian non-linear contacts,

for (ii) frictional contacts, (iii) for a range of smaller amplitudes, or (iv) for larger

systems. This proves that the observed wave propagation and dispersion behavior

is intrinsic and not just an artifact of (i) a linear model, (ii) a frictionless packing,

(iii) a large amplitude non-linear wave, or (iv) a finite size effect.

5.1.1 Introduction

The stress-wave (sound) propagation through dense granular matter is the su-

perposition of many complex phenomena, which are caused by the discrete, in-
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5.1 Systems with tiny polydispersity

homogeneous, anisotropic and dissipative structure of this class of materials on

the microscopic, contact scale [20, 42, 49, 58, 101]. Non-linear contacts [92, 106],

force-chains [66], frequency-dependence [85, 118] and also scattering and attenu-

ation in other “particle type” materials [27] are reported. Ballistic pulse prop-

agation can co-exist with a slower multiply scattered, coda-like signal [48, 49],

and the stress- and frequency-dependence of the wave propagation features are

subject of ongoing discussion [42, 49] in static and shaken packings as well.

A continuum description of granular materials is generally needed in field

applications (like oil recovery) due to the huge system-size. On this macro-

scopic scale, the properties of such waves are strongly affected by phenomena

like attenuation, scattering, and dispersion [49]. Starting from simulations at

the particle level, which are necessary to gain insight into the role of the micro-

parameters, a “micro-macro” transition [1, 63] can provide a continuum, macro-

scopic description (at least for quasi-static deformations). The ultimate goal is

to find micro-based macroscopic constitutive relations, superior to the empirical

ones typically used, also for dynamic and possibly non-linear deformation and

propagation modes [42, 49, 120].

The use of a three-dimensional discrete element method (DEM) [24,71,77,79,

80,92] allows the study of the role of various micro-parameters in detail. Except

for a regular crystal structure of exactly equal sized particles, geometrical (and

hence contact) disorder is intrinsic to granular systems. The wave propagation

properties are examined in the following, starting from a regular structure and

slowly increasing the amount of disorder involved. The system size and the am-

plitude are varied as well as the non-linearity and friction in order to understand

their effect on the wave-propagation characteristics.

5.1.2 Simulation setup

Discrete particle Model

The elementary units of granular materials are mesoscopic grains, which deform

locally under the forces/stresses acting at their contacts. Since the realistic mod-

eling of the internal deformation of the particles is too expensive, the normal

interaction force is only related to the “overlap” of two (spherical) particles,

while the tangential forces involve an elastic and a frictional element. If the sum

of all forces, fi, acting on particle i, either from other particles, from bound-

aries or from external forces, is known, the problem is reduced to the integration

of Newton’s equations of motion for the translational and rotational degrees of

freedom:

mi
d2

dt2
ri = f i , and Ii

d

dt
ωi = ti , (5.1)
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with the mass mi of particle i, its position ri, its moment of inertia Ii, its angular

velocity ωi, and the total torque ti. Note that the above equation is only valid

for isotropic bodies, like spheres as used in the following [71, 79].

A simple linear spring model is used for the normal force |f | = kδ, with the

contact stiffness k (=105 N/m), corresponding approximately to the stiffness of

a Plexiglas bead, detailed below (Wave agitation paragraph). If the overlap is

positive, the force acts, if the overlap is negative the force is f ≡ 0. For the

simulations where friction is active, the force in the tangential direction, f t, is

implemented in the spirit of Ref. [24] and in section 3.1.2, where a tangential

spring (with stiffness kt = 0.2k) was introduced to account for static friction [71].

The tangential contact forces are related to the normal forces via Coulomb’s law,

i.e., f t ≤ µfn, with µ = 0.5 for both sliding and sticking. In some simulations,

a non-linear spring model (according to Hertz) was used, with the normal force

|f | = kH

(

δ3/2
)

, with kH = 4.5 107 N/m3/2.

Particle packing

The geometrical configuration considered in this study is a dense, static packing

of grains, with radii a0 (=0.001m), arranged in a Face Centered Cubic (FCC)

structure (with density, i.e., volume fraction of ν ≈ 0.74), where square layers

in the x-y-plane (4×4 particles) are stacked in the z-direction (200 layers), see

Fig. 5.1 for a snapshot of a part of the system. The larger systems examined are

double-sized in the cross-section (8×8 particles). This regular, ordered system

is rather thin but elongated in the z-direction in order to allow the wave to

propagate for some time, before it hits the wall on the opposite side. Each

particle has four contacts inside each square-layer, and eight with particles in the

neighboring layers (4 each), corresponding to a coordination number of C = 12.

All particles have the same overlap δ/a0 ≈ 10−3 and (due to periodic boundaries)

“see” the same environment (except those in the first and last mobile layer).

Polydisperse packings are obtained by randomly changing the particle sizes

according to a narrow size distribution, which is homogeneous, centered at a0,

and has a width 2(∆a) of the order of the mean overlap δ and then allowing the

system to relax to a new, slightly disordered equilibrium configuration with the

same volume. More precisely four different cases, with (∆a) = 0, δ/2, δ and 2δ

are compared. Note that the polydisperse systems conserve their original FCC

structure at the grain scale (almost), since the radius variation is much smaller

than the particle sizes. However, strong differences are observed at the contact

level. This is because a radius variation of (∆a) = 2δ, represents only a small

change of 0.2% at the grain level, but a large change of 200% at the contact level.

This has a direct influence on the coordination numbers, which drop down from
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Figure 5.1: FCC-structured packing, thin (4×4 periodic) in the x- and y-directions, and

elongated (non-periodic) in the z-direction; the black particles indicate the “zero-th”

layer of fixed particles that make up the z = z0 boundary.

C = 12 to C ≈ 11.99, 11.22, and 9.97, for the three (∆a), respectively. For the

last case this means a non-negligible reduction of about 17% of the total contacts

of the monodisperse system. Since the effect of this “tiny” radius variation is so

strong, polydispersity should be seen as related to the overlap rather than the

particle size, as noted already in Ref. [62].

In order to examine the effect of more realistic contact models, one packing

with (∆a) = 2δ was relaxed with friction active, leading to an even smaller

coordination number of C ≈ 9.64. Another packing, also with (∆a) = 2δ was

relaxed using the Hertz contact-model, see section 5.1.2, so that, the coordination

number was C ≈ 9.77, somewhat lower than for the packing with the linear model

(C ≈ 9.97). Note that all these packings are still much more coordinated and

denser than the theoretical isostatic limit cases of C = 6 and C = 4 for frictionless

and frictional packings, respectively.

Wave agitation

In order to agitate a plane wave in z-direction, an initial velocity v is given to all

the particles that make up the source, i.e., the first x-y-layer with z = z1, in con-

tact with the fixed particles at z = z0. This velocity either points in z-direction,

v = vzẑ, or in x-direction, v = vxx̂, creating a compressive (P), or a x-polarized

shear (S) wave, respectively. If not mentioned explicitly, vz = vx = 0.01m/s are

used, which create a maximum particle displacement umax ≈ 5 10−8 m during the

simulations. Relating the layer distance lz = z1 − z0 =
√

2a0 and the “contact

duration” (Ref. [71]) tc ≈ 2.03 10−5 s, leads to a velocity vc = lz/tc ≈ 70.7 m/s.

The chosen contact stiffness, k (=105 N/m), as mentioned earlier, corresponds to

the stiffness of a Plexiglas bead. Meaning that this value is close to the stiffness
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of the non-linear spring model (using Plexiglas elastic constants), calculated at

the packing overlap in the monodisperse case, here δ/a0 ≈ 10−3. At this overlap,

the stiffness and the contact duration of a particle-particle collision appear to be

of the same order for both linear and non-linear model.

5.1.3 Results

In the following, the stress-time response to the initial perturbation is recorded

at each layer with a large binning rate, ∆t = 10−6 s, in a time-window of T =

0.0015 s, to be further analyzed for all systems described above in section 5.1.2.

Note that even though the boundary conditions and the excitation method both

influence the stress-time signal shape (data not shown), we only use the velocity-

pulse method in this study for convenience; a detailed study of different pulse

methods will be published elsewhere.

Linear model

From order to weak disorder:

The stress-response – ten layers from the source – is plotted against time in

Fig. 5.2 (Left) for the monodisperse and the polydisperse situation with (∆a) = 2δ

(for more details see Refs. [77,79,80]). Only these two last cases will be shown in

this study, since the case (∆a) = δ/2 resembles the monodisperse system, and the

case (∆a) = δ behaves similar to the case (∆a) = 2δ. Qualitatively, signals arrives

later in the polydisperse system, which is consistent with a lower propagation

speed (see Ref. [80]) due to the smaller coordination number, as compared to

the monodisperse system. The signal amplitude is smaller in the polydisperse

system, which indicates that some energy has been transferred (scattered) to

other types of motion (waves of different nature, like shear waves, and/or with

different propagation direction). Finally, the coda of the signal in the polydisperse

packing is clearly irregular, while it is periodic in the monodisperse case.

In order to analyze the two signals in more detail, the frequency content is

examined from the Fourier power spectrum in time, see Fig. 5.2 (Right). The

monodisperse system shows a smooth spectrum, while in the polydisperse system,

due to the disorder present at the contact level, some frequencies seem to be

filtered stronger than others, i.e., the spectrum shows peaks and valleys.

In order to understand the propagation properties of the wave-components

with different frequencies, the frequency power spectra are plotted (vertical)

against the position in z-direction (horizontal) in Fig. 5.3 in grey-scale.

In the monodisperse case (Left), frequencies above about 49 kHz are immedi-

ately attenuated, since the packing cannot transmit frequencies higher than the
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Figure 5.2: (Left) Normal stress (σzz) scaled by the equilibrium stress (σ0
zz) as function

of time at a distance of 10 layers from the source for the monodisperse (dashed line)

and a polydisperse (solid line) system. (Right) Fourier power spectrum of the two

stress-time signals from the left figure.

(largest) eigen-frequency of a single layer. From the third layer on, the range

of frequencies present in the time signal is conserved during the propagation.

Note that the bending observed, beginning at about 50 layers from the source,

is only due to the limited time window of the collected data, i.e., for larger time

windows, the bending starts later. This bending, top right, is consistent with a

smaller propagation speed of higher frequency wave components.

In the polydisperse case (Right), the power spectrum shows a strongly re-

duced range of transmitted frequencies as the wave propagates away from the

source. Frequency transmission over large distances is observed under about

8 kHz and the higher frequencies (about 8− 46 kHz), present near the source, de-

cay exponentially (data not shown) between layers 20-40. Note that some special

frequencies propagate deeper into the system than others, as the band around

35 kHz (eigen-frequency of a double layer) for example.

In order to understand possible relations between frequencies and wave-numbers,

the two-dimensional Fourier transform in time and space is calculated from the

same data as before. The dispersion relation in the monodisperse packing (angu-

lar frequency ω = 2πf versus angular wave-number k = 2πk = 2π/λ) has a per-

fect sine-shape ω(k) = ω0 sin(lzk/2), with layer-width in z-direction, lz =
√

2a0,

and P-wave speed, VP = ω0(lz/2) ≈ 219m/s, where ω0 = 2πf0, with f0 ≈ 49 kHz,

see Fig. 5.4 and Refs. [79, 80]. The minimal wave-length can be obtained from

the maximum of the dispersion relation, lzkmax/2 = (πlz)/λmin = π/2, so that

λmin = 2lz.

For the polydisperse packing, with (∆a) = 2δ, the dispersion relation has

generally smaller intensity, is smeared out much broader, and is more noisy, even

though the sine-shape is still visible. Some band gaps appear, and one of them
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Figure 5.3: Frequency-space diagram (darkness corresponds to the amplitude, absolute

value, of the Fourier coefficients, black is large and white is small) for a P-wave propa-

gating in z-direction in the monodisperse (Left) and the polydisperse (Right) packing

from Fig. 5.2.

indicates the definite end of the linear behavior (with a corresponding wave speed

VP ≈ 174m/s) in the “low frequency/large wavelength” regime, somewhat smaller

than for the monodisperse packing.

In order to analyze this peculiar dispersion relation, the mean wave-number

corresponding to a certain frequency, weighted only above a suited cut-off (here

six times the average value of all Fourier-coefficients), is plotted on top of the

dispersion relation as white dots in Fig. 5.4 (Right). The dots underline the linear

regime, corresponding to the transmission-band at small frequencies, and also

indicate the band-gaps in the cases where all Fourier coefficients corresponding

to one frequency are smaller than the cut-off value. In the frequency range from

2 − 8 kHz the dots are nicely linear, with a slope VP ≈ 174m/s. At higher

frequencies, the dots (mean wave-numbers) are no longer falling on a straight line

and band gaps as well as transmission bands appear. The clear band gap observed

between 18 − 21 kHz is also visible in Fig. 5.3 in so far that these frequencies

penetrate least into the system.

System size:

In order to study the influence of the system size on the wave propagation,

simulations have been performed in systems with a four times larger area in

the x-y-plane. The z-system size determines the smallest wave-number (largest

wavelength) present in the system: kmin−z = 1/λmax ≈ 1.77 m−1 with λmax = 2Lz,

where Lz is the length of the system. The x-y-system-size (Lx = Ly = 8a0 or 16a0)

corresponds to the wave-numbers kmin−x = 1/(2Lx) ≈ 62.5m −1 and ≈ 31.25m
−1 for the small and large systems, respectively. If the x-y system size has an

85



5.1 Systems with tiny polydispersity

Wavenumber in m−1

F
re

qu
en

cy
 in

 k
H

z

50 100 150 200 250 300 350

10

20

30

40

50

60

Wavenumber in m−1

F
re

qu
en

cy
 in

 k
H

z

50 100 150 200 250 300 350

10

20

30

40

50

60

Figure 5.4: Dispersion relation (darkness corresponds to the amplitude, absolute value,

of the Fourier coefficients, black is large and white is small) for the same data as in Fig.

5.3, for the (Left) monodisperse, and the (Right) polydisperse cases. The amplitude of

the left sine is 49 kHz, while the slope for small frequencies and large wave-lengths, is

VP ≈ 219 m/s. The white dots in the right figure indicate the cut-off-weighted averaged

wave-number per frequency, and their slope from 2-8kHz is VP ≈ 174 m/s.

effect, one should expect special features at these wave-numbers, or the shift of

features to smaller wave-numbers when the system size is increased. However, the

results obtained with the larger system are much similar to those obtained with

the smaller system, see Fig. 5.5. The band of transmitted frequencies is about the

same, up to 8 kHz, and also the band-gap around 18 kHz is obtained independent

of the system-size. Most differences are observed in the higher frequency range,

where the signal is more noisy anyway. Due to the better statistics, the plots

look smoother and less noisy for the larger system. In conclusion, changing the

system size by a factor of two should reveal finite size effects of the dispersion

relation: transmission bands and band-gaps should be found at different wave-

numbers, however, the size of the system perpendicular to the P-wave propagation

direction has no visible effect.

P- and S-waves:

The propagation of a S-wave in the (classical) monodisperse system was dis-

cussed in Ref. [79]. The ratio of P- to S-wave speeds was found to be VPz/VSz ≈√
2 – as expected from wave mechanics in crystals. The frequency range of pos-

sible S-waves ends at about 35 kHz (eigen-frequency of a single particle in the

x-direction) and, for a given wave-number, the corresponding frequency is higher

for the P-wave than for the S-wave (data not shown).

The propagation of a S-wave in the polydisperse system, with (∆a) = 2δ,

leads to the same dispersion behavior as observed for the P-wave. The band of
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Figure 5.5: Frequency-space diagram (Left) and dispersion relation (Right), (darkness

corresponds to the amplitude, as in Figs. 5.3 and 5.4) of a P-wave for the polydisperse

packing (∆a) = 2δ with a larger section area of 8×8 particles. The slope of the

dispersion relation leads to VP ≈ 174 m/s in agreement with the smaller system from

Fig. 5.4.

transmitted frequencies is also below 8 kHz and the higher frequencies are limited

by 35 kHz, like in the monodisperse case. More explicitly, the wave speeds are

VS ≈ 125m/s and VP ≈ 175 m/s for S- and P-waves, respectively, which is

consistent with VP/VS ≈
√

2; thus no surprises are evidenced for S-waves in

slightly polydisperse systems.

Finally, mode conversion was observed in the simulations, where S- to P-wave

conversion appeared to be stronger than the P- to S-wave conversion. Since wave

conversion contributes to the attenuation behavior (especially of the S-wave), a

future more detailed study is needed to analyze this issue further, including a

possible frequency-dependence.

Frictional packing

When the particle contacts are frictional, i.e., a tangential spring, kt = 0.2k, with

Coulomb friction criterion, µ = 0.5, is added, see section 5.1.2 and Ref. [71],

the overall frequency spectrum extends to higher frequencies, around 54 kHz, as

a consequence of the tangential spring at the contact, which induces a higher

particle (or layer) “eigenfrequency”. However, the higher frequencies of the wave

vanish earlier than in the frictionless case (between layers 15-25), while the re-

maining low frequency band is broader and extends until about 12 kHz, see Fig.

5.6 (Left). The linear regime of the dispersion relation corresponds to a wave

speed of VP ≈ 200m/s, i.e., somewhat slower than in the monodisperse case.
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Figure 5.6: Frequency-space diagram (Left) and dispersion relation (Right), (grey-scale

and symbols as in Fig. 5.5), for a P-wave in the polydisperse packing (∆a) = 2δ with

friction.
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Figure 5.7: Frequency-space diagram (Left) and dispersion relation (Right), (grey scale

and symbols as in Fig. 5.5) of a shear wave for the polydisperse packing with (∆a) = 2δ.

The presence of friction, see Fig. 5.6, seems to extend or stabilize the linear

dispersion regime for P-waves. The non-linear, non-propagating regime with

friction, is characterized by a relatively weaker signal. This might be due to

the fact that in addition to the geometrical dispersion, which is also present in

the frictionless case, friction enhances the compressive- to shear-mode conversion

and also activates rotational modes to which part of the energy is lost. For shear

waves in the monodisperse packing, in Ref. [79], an additional branch (rotational

modes) in the dispersion relation was found (data not shown here), however, for

the polydisperse packing (∆a) = 2δ this could not be confirmed – thus remaining

an issue for future studies.
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Effect of disorder on wave propagation

The Hertz contact model

As is reported in Refs. [92, 93], the choice of the contact model has an influence

on the frequency-dependent response of the system. Therefore, a simulation with

another packing, prepared with the Hertz contact model, is performed. Quali-

tatively, the same wave propagation characteristics is observed as for the linear

model. However, as a consequence of a different initial state and due to the

different nature (non-linear) of the contact model, the results obtained are quan-

titatively different. Due to a somewhat lower coordination number, C ≈ 9.77,

and thus some decreased packing stiffness in the z-direction, the wave travels a

little slower, both for the P-wave, VP ≈ 156m/s, see Fig. 5.8, and for the S-wave

VS ≈ 106m/s (data not shown). Whether the ratio, VP/VS ≥
√

2, has a meaning,

cannot be evidenced from our data. A more detailed study of the shape of the

wave-front and coda, e.g., under different stress conditions is far beyond the scope

of this study.
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Figure 5.8: Frequency-space diagram and dispersion relation (grey-scale and symbols

as in Fig. 5.5), for a polydisperse packing with (∆a) = 2δ and the Hertz contact model.

Discussion of non-linearity and disorder

The attenuation of frequencies, when the wave is propagating in a slightly poly-

disperse system, is a consequence of the change of the geometry and the cor-

responding material properties. The polydisperse systems are characterized by

two main features: (i) a local (contact level) geometrical disorder, and (ii) the

presence of clapping contacts, opening and closing while a wave is passing by.

This strong non-linearity at the contact level is specific to granular materials. It

has, according to Ref. [119,120], its signature in the frequency content of the wave,
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5.1 Systems with tiny polydispersity

closing contacts can generate high frequency signals, but opening contacts also

interfere. In order to study the influence of the clapping contacts on the wave-

propagation, in parallel to the polydisperse simulation from Figs. 5.3 (Right) and

5.4 (Right), two additional simulations have been performed. Everything was

identical, only a 10 and 100 times smaller initial velocity vz was used, leading to

fewer clapping contacts. In the case of the smallest velocity, only two contacts

are clapping in the whole system, while for the largest velocity it is about 20

contacts (0.1%).

The analysis of the frequency-space diagrams of these simulations shows no quali-

tative difference for the dispersion, as compared to the previous simulations. The

smaller vz, the larger are (relatively) the lowest frequency and lowest wave-number

Fourier coefficients, so that the cut-off averaging is applied in the range f > 3 kHz

and k > 12m−1 only. The corresponding cut-offs used are proportional to the

velocity amplitude and lead to cut-off weighted wave-numbers per frequency that

are slightly decreasing with the initial velocity. However, this effect is very weak

(comparable to the spacing between the data) and the dispersion curve (dots)

always remains below the envelope of the monodisperse case. Thus, even though

clapping contacts contribute to the non-linear response of the system, they do

not play a key role in the observed attenuation of the higher frequency bands,

given the present conditions (small amplitude umax/δ ≈ 5 10−2 with only 0.1% of

clapping contacts).

Having reduced the non-linearity due to clapping contacts by using smaller ampli-

tudes and also having used linear as well as non-linear contact laws, the conclusion

is that the geometrical disorder at the contact level is responsible for the atten-

uation of the higher frequencies of waves in weakly polydisperse packings. Since

more strongly disordered (polydisperse or not) packings would imply this same

local (contact level) geometrical disorder, similar results are expected for such,

more realistic, packings – as to be studied in future.

5.1.4 Summary and Conclusions

Wave propagation was examined in three-dimensional ordered (crystal) packings

with monodisperse, and with slightly polydisperse packings of spheres. The latter

involve contact level geometrical disorder, but are still close to a crystal structure.

Compressive (P) and shear (S) waves were examined with and without friction;

the system size and the initial agitation amplitude were varied and a non-linear

Hertz type contact law was applied.

In all disordered cases (with size variation comparable to or larger than the typi-

cal contact deformation), a low frequency band transmits waves well, while most

higher frequencies are attenuated or scattered within several tens of layers.
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Effect of disorder on wave propagation

Disorder (fewer contacts) leads to a reduced propagation speed of the wave,

whereas friction (due to tangential elasticity) leads to an increased wave speed –

and also to a broader transmission band. Also, the confining pressure, directly

related to the static deformation of the contacts, should have an influence on the

results. This will be analyzed in a future study.

Having started with monodisperse situations and slowly increasing polydis-

persity, the natural next step is to confirm these observations also in the case of

full disorder and wider size-distributions. The interesting transmission behavior

in such more realistic granular packings can then be studied concerning friction,

cohesion and rotational degrees of freedom.
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5.2 Mode conversion in the presence of disorder

5.2 Mode conversion in the presence of disorder

A novel multi-scale theory for non-linear wave propagation in inhomogeneous sys-

tems is presented. Wave-mode conversion, or wavenumber evolution, is studied

in a weakly polydisperse granular bar using DEM (Discrete Element Method)

simulations. Different single (or double) discrete wavenumbers are “inserted” as

standing wave initial condition in the granular packing and the system is then

free to evolve. For large wavelengths (small wavenumber), the original stand-

ing wave remains, oscillating in time. For shorter wavelengths the original wave

disappears as it is converted to other wavelength modes. The insight on this

wavenumber (wavelength) evolution, i.e., the non-linear transfer of energies from

the agitated wavenumber to all others, will lead to a novel theoretical model

based on a Master-equation in wavenumber-space.

This non-linear energy transfer is mainly due to the inhomogeneous nature of the

particulate material, in this case the contact disorder in the weakly polydisperse

packing. Indeed the effect of large amplitude non-linearities, like the opening of

contacts, is reduced by using very small amplitudes in the simulations. Additional

non-linearities, like the cross-talk between two waves with different wavenumbers,

are another issue to be examined.

5.2.1 Introduction

In the field, usually, only low frequency modes are observable and open questions

concern the non-linear nature of wave-propagation in general, and the mecha-

nisms of momentum- and energy-transfer in particular. In a linear medium, at

small wave-amplitude, the spectral components of a wave would propagate inde-

pendently from each other. Dispersion occurs due to the faster propagation of

lower frequencies and larger wavelengths. Small inhomogeneities and the partic-

ulate nature of the medium mostly affect the short wavelengths, while the large

wavelengths propagate across a quasi-homogeneous medium. Effects like atten-

uation and scattering also influence the characteristics of the measured signals.

However, even for small amplitudes, the classical theories are not able to explain

the non-linear wave propagation in real materials.

Why low frequency components are stronger in signals observed in granular

materials is still an open question: There is an ongoing discussion whether the

low frequency component of the signal is linear (ballistic/coherent propagation),

according to Jia et al. [49], or if it is due to a non-linear effect of self-demodulation,

according to Tournat et al. [118] where the interaction between higher frequencies

(those sent in), lead to a low frequency component as the result of the difference
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of two high frequencies (see Ref. [118] for more details). The coda, corresponding

to the high frequency part of the signal, arriving after the main pulse, is non-

coherent (due to scattering) and only recordable at short distance from the source

and under relatively high pressure. One possible reason for the difference in

the above interpretations is that in some experiments [49], low frequencies are

already present at the source and hence behave linearly as their wavelengths

are large enough to “see” the sample as a homogeneous medium. The second

interpretation deals with nonlinear effects and frequency- (wave-mode-) mixing:

These are also observed in the field: Shell has recently performed exploratory

studies in which the nonlinear mode originating from wave mixing of two sources,

with different frequency and location, were found to propagate anomalously far.

Inspired by previous numerical results on the dispersive behavior of the wave

propagation in weak polydisperse granular packings, see section 5.1.3, the pur-

pose of this study is to understand how each single wavelength or wavenumber

evolves in time and explore the wavenumber space. In other words, how energy

is transfered between different frequency- (or wavenumber) bands.

In the following, an adapted Master equation theory will be presented first.

Then, the granular packing and the simulation procedure will be described. The

results for a single or “mono-chromatic” wavenumber insertion are analyzed and

discussed in detail. A simulation with a “bi-chromatic” wavenumber insertion,

leading to non-linear cross-talks between the bands, is also studied. Finally, the

eigen-mode analysis of the packing will be discussed with respect to the dispersion

effects observed in the simulations.

5.2.2 Theory

The linear Master Equation, derived from the framework of population balance,

is adapted for sound propagation without considering position or propagation-

speed, only assuming an energy probability distribution. The quantity q(ki) =

e(fi)/E, with E =
∑B

i=1 q(ki), describes the probability that the band i with

wavenumbers around ki contains a fraction of energy q(ki) of the total energy,

E. The time evolution of the energy spectrum, divided in i = 1, ..., B bands, is

described by:

d

dτ
q(ki) = −biq(ki) +

∑

j 6=i

bi
jq(kj) with bi =

∑

j≥1

bi
j (5.2)

where the rate bi
j quantifies how much energy from band (j), during time interval

dτ , is dispersed/attenuated/transferred into band i. This implies that energy is

distributed from one band (i) to the other bands, independently of the energy in

the other bands, i.e., a simplifying assumption which has to be tested. Note that
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τ is not time, but equivalent to time with τ = t2, as it will be discussed below.

In experimental practice, it is impossible to find the rates bi
j , however, using

discrete particle simulations, as described below, one can directly measure the

rates using the following procedure: Agitate the system by a single wave with

wavelength λ and examine, e.g., the wavenumber spectrum evolution after short

time intervals. The change of the spectrum allows for the determination of the

rates bi
j and to test and, if necessary, improve the assumptions made.

In a more general framework, it is possible to generalize the approach to a

non-linear Master Equation with terms of the form

d

dτ
(km) =

∑

j,k

ai,j
m q(ki)q(kj) ± ... (5.3)

with the rates ai,j
m at which energy from bands i and j interact constructively

and feed energy into band k, during time dτ . Note that the product of q makes

the terms non-linear, because energy from both bands has to be present, in order

to allow for the constructive interference. An implicit assumption for this first-

order non-linearity is the “pair-wise” interference - which has to be tested by

future simulations.

Furthermore, the master equation also can contain energy-dissipation and -

source terms, as well as different additional energy densities for standing waves,

propagating waves, and scattering (change of direction). However, this is beyond

the scope of this study. Before we can discuss the Master equation and its solution,

we first present the simulation results.

5.2.3 Simulations

Particle packing

The geometrical starting configuration considered in this study is a dense, static

packing of grains, with radii a0 (=0.001m), arranged in a Face Centered Cubic

(FCC) structure (with volume fraction of ν ≈ 0.74), where square layers in the

x-y-plane (4×4 particles) are stacked in the z-direction (L = 200 layers), see

Fig. 5.9 for a snapshot of a part of the system. Note that periodic boundary

conditions are chosen in order to avoid wall effects. Based on the regular packing,

weak polydisperse packings are obtained by randomly changing the particle sizes

according to a narrow size distribution, which is homogeneous, centered at a0,

and has a width 2(∆a) of the order of the mean overlap δ ∼ ∆a. Then the system

is allowed to relax to a new, slightly disordered equilibrium configuration with

the same volume but with a significantly lower coordination number C ∼ 9.8.

More detailed information about these packings is given in section 5.1.2.
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Figure 5.9: FCC-structured packing, thin 4×4 in the x- and y-directions, and elongated

in the z-direction (200 particles).

Wave mode agitation

Standing plane waves in z-direction with different wavenumbers k = L/λ = 1,

2, 4, 5, 8, 10, 15, 20, 25, 33, 40, 50, 60, 75 and 100 are agitated, with L = 200

layers the system length and λ the wavelength. For this an initial velocity vz

with a sinusoidal profile, vz sin((2πzlayer)/λ), with zlayer the layer position in the

z-direction is given to the particles in the system as shown in Fig. 5.10.

For the analysis of the data it is important to avoid or reduce any “numerical”

noise. Therefore, the amplitude of the velocity for the particles must be chosen

carefully, even though the disorder present is rather small. The maxima and

minima of the sine are chosen to fall exactly on the center of a layer. Moreover

the particle velocity is assigned according to the average position of a layer and

not to the single particle positions, as this leads to cleaner signals. Since the

positions of the particles in a pseudo-layer are only slightly dispersed, the overall

wavelength shape is well conserved.

Results

In both regular and polydisperse packings, several simulations have been per-

formed for different wavenumbers k = L/λ, where the system length L = 200

layers and λ the wavelength.

The time evolution of the space signals, in this case the average velocity of the

(x − y) layers, is analyzed by considering their Fourier transform (wavenumber

space). Hence the wavenumber content evolution of an “inserted” “monochro-

matic” wavenumber can be followed in time.

For the regular packing nothing astonishing is observed as the modes (wavenum-

bers) stay stable in time (data not shown here). In fact, a standing wave has been

created. Due to the regular structure of the packing and the absence of attenua-

tion, the initial wave form is conserved. It shows a nice and regular “breathing” of
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λ = 100 layers

λ = 10 layers
System length

λ = 50 layers

λ = 200 layers

Figure 5.10: Schematic of the inserted wavelengths in the system for k = L/λ = 1, 2, 4

and 20 with corresponding wavelengths of λ = 200, 100, 50 and 10 layers, respectively,

and system length L = 200 layers.

the wave form in time with the frequency corresponding to this wavenumber, ac-

cording to the dispersion relation in Sec. 4.1.3. These results are consistent with

the good propagation characteristics for all frequencies, as reported in section

5.1.3.

In the case of a slightly polydisperse system more interesting results are ob-

served. In figure 5.11 the wavelength (or its corresponding wavenumber) spectrum

is plotted against time. For large wavelengths, λ ≥ 40 layers, the inserted wave

form is more or less conserved in time. This is visible by the clean black line

over the whole time window while the rest of the spectrum remains almost white.

For λ = 20, the line resembling the input wavenumber remains sharp, but more

energy is transferred to the other modes. In contrast, for smaller wavelengths,

as for example λ ∼13.34, 8, and ∼6.06 layers, two main features are observed.

First, the energy from the inserted wavenumber is transformed rapidly into ad-

jacent bands. The shorter the wavelength the faster this occurs. Second, the

energy of these adjacent bands is then rapidly transferred to the small wavenum-

ber bands λ ≥ 40. The inserted wavelength λ = 2 is a remarkable case as the

above described energy transfer is occurring somewhat later.

From those observations it is clear that probing the weakly disordered packing

with different wavelengths in a quasi-standing-wave procedure reveals the disper-

sive nature of such a material. We consider the contact disorder to be the main

cause for the dispersive behavior, since it is by far the most significant source of

dispersion and attenuation in this system, see section 5.1.2.
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Figure 5.11: Wavelength (vertical, in units of layers) as function of time (horizontal,

in units of ms). The inserted “mono-chromatic” wavelengths λ = L/k = 200, 100,

50, 40, 25, 20, ∼13.34, 10, 8, ∼6.06, 5, 4, ∼3.34, ∼2.67 and 2 layers, from top-left to

bottom-right. White, gray, and black correspond to low, medium and high intensity

(absolute value of the Fourier components).

97



5.2 Mode conversion in the presence of disorder

The simulations were performed at rather small amplitudes, so that amplitude-

related non-linear effects should not play a too important role in these observa-

tions. However the occurrence of opening and closing contacts is not excluded

completely here. Neither the amplitude nor the randomness and material param-

eter dependence has been studied in detail yet.

The observed decay of the intensity for the inserted wavenumber can be ex-

tracted from these data and provides the input-parameters, bi, for the theoretical

model. The other input-parameters, bi
j , are provided by the increase of the in-

tensity for the other, initially not inserted wavelengths. This will be described in

the next section after a short look at the dispersion relation.

Applying a second time a Fourier transform to the data shown in Fig. 5.12, leads

to a frequency-wavenumber relation. In Fig. 5.12, left graph, the dispersion for a

single inserted wavenumber, ki = 10 (λ = 20 layers) is shown. It is also possible

to extract the “full” dispersion relation from these data, by applying the Fourier

transform to all the inserted k simulations and subsequent superposition. Fig.

5.12, right graph, reproduces nicely the same dispersion relation obtained previ-

ously by a single dynamical pulse propagation simulation in the same system, see

section 5.1.3.
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Figure 5.12: (Left) The Fourier transform in time of the data shown in Fig. 5.11, for

the inserted “mono-chromatic” wavelength λ = 10 layers, with the frequency (vertical,

in kHz) as function of wavelength (horizontal, in layers). White, gray, and black corre-

spond to low, medium and high intensity (absolute value of the Fourier components).

(Right) Superposition of the Fourier transform in time of all the data shown in Fig.

5.11.
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Effect of disorder on wave propagation

Energy transfer rates

The theoretical approach described in section 5.2.2, the Master Equation, requires

transfer rates for all wavenumbers for each inserted wavelength. This matrix of

transfer rates can be determined from the simulations. The first step is to examine

the signals in the wavenumber-time space by applying a Fourier transform to the

space-time signals obtained from the simulations.

Several signal amplitudes have been examined. The average potential energy,

the average displacement, and the average velocity per layer. For unknown rea-

sons, only the latter gives the most suitable results for the following analysis, as

the peak for the inserted wavenumber in the wavenumber space is the highest rela-

tive to the initial noise ratio, and thus well detached from the other wavenumbers.

Also, the first term of the Fourier transform, the integral of the signal over space,

is lowest with respect to the signal integral over space and thus gives unperturbed

amplitudes for the low wavenumbers. Those choices lead in the following to data

that are nicer to fit, and that give the most objective parameters.

In the following, for each inserted wavenumber, the Fourier transform is ap-

plied to the average velocity per layer vz(z, t). The obtained spectra are expressed

in terms of wavenumbers, Ai(k), with A the amplitude of the Fourier transform,

k = 1, 2, ..., 100 the wavenumber and i =1, 2, 4, 5, 8, 10, 15, 20, 25, 33, 40, 50,

60, 75 and 100, the indices over the inserted wavenumbers. The wavenumber

amplitudes can be separated in two categories:

(1) the “diagonal” elements, the Ai(ki) := Ai(k = i) = Ai
i, which correspond to

the decreasing wave-modes, giving energy to the other modes.

(2) the other elements, the Ai(kj) := Ai(k = j) = Ai
j for j 6= i, which correspond

to the wave-modes that are increasing, getting energy from the inserted mode ki.

This description is only true for very early times when the interactions between

the modes are still negligible.

Figure 5.13 (left) shows the Fourier transform of the space signal for the in-

serted wavenumber ki = 15 at three different times, t1 = 0, t2 = 1 and t3 = 40

timesteps (with dt = 2.10−7s), A15(k). A large peak amplitude is visible for the

inserted wavenumber ki = 15, and very small amplitudes for the other wavenum-

bers. However, those are increasing by orders of magnitude within a few simula-

tion timesteps. Furthermore, the wave-form in the system is clearly “breathing”,

as described earlier. Fig. 5.13 (right) shows the time evolution of the spectral

amplitude for the wavenumber k = 15, A15(k = 15, t). As the kinetic energy

transforms to potential energy and vice-versa (and so on) with a frequency cor-

responding to the inserted wavenumber (k = 15 in the figure), the time evolution

shows an oscillating behavior with a frequency of ∼10 kHz. Therefore, in order

to eliminate of the “breathing”, the time evolution of the spectral amplitudes,
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5.2 Mode conversion in the presence of disorder
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Figure 5.13: (Left) The power spectrum, wavenumber-space, of the average velocity

signal for the the inserted “mono-chromatic” wavenumber ki = 15, or wavelength λ =

L/k ∼ 13.34 layers, at very short times t1 = 0, t2 = 1 and t3 = 40 time-steps with

dt = 2.10−7, (A15(k)). (Right) The long time evolution of the wavenumber amplitude,

A15(k15), displays the “breathing”.

Ai(k = j, t), needs to be scaled by the total amount of “power” related to the

total particle velocity present in the spectrum. The quantity realizing this is

the sum of the amplitudes of the spectrum,
∑B

j=1 Ai(kj, t). This gives the time

evolution of the scaled spectral amplitudes:

Ãi(k, t) =
Ai(k, t)

∑B
j=1 Ai(kj, t)

. (5.4)

Now, in order to extract the desired rates for the Master equation, the Ãi(kj 6=i, t)

are fitted by a power law, bi
j t2 = bi

j τ . The power 2 seems to be consistent over

all the data and has been fixed in order to keep the fitting-approach most simple

in a first step. The bi
j quantify the energy transferred from mode i to mode j 6= i.

In the case of the inserted and thus decreasing modes (for i = j), the fitted rate

bi, comes from Ãi(ki, t) = 1− bi t2 = 1− bi τ . If not mentioned explicitly, the fits

are performed for the first 50 times-steps only, with dt = 2.10−7s.

For the complete picture the unscaled bi, thus also including the early “breath-

ing” effects are plotted as well. Figure 5.14 (top-left), shows the unscaled bi

as function of wavelength λ. A non-linear increase of the rates for increasing

wavenumbers ki is observed as could be expected from Fig. 5.11. Small wavenum-

bers transfer little energy to other modes and “breath” quite slowly. With increas-

ing wavenumber the transfer to other modes becomes stronger and the decrease

due to breathing becomes stronger, simultaneously leading to non-linear bi(ki).
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Figure 5.14: (Top-left) The “unscaled” bi, (top-right) the bi after scaling according to

Eq. (5.4) with the linear fit bi = b̂iki with b̂i ∼ 1.9 108. (middle-left-right) and (bottom

left) Fourier transform amplitudes scaled by the time to the power two, Ai(kj)/t
2 at

t = 10 which are in fact the bi
j = bi(kj) := bi(k = j), for i = ki = 10, 20 and 75

and k = 1, 2, ..., B = 100. The dashed line gives the linear fit: bi
j = cikj . (Bottom-

right) The ci for the 15 inserted wavenumbers, where the ci with i =10, 20 and 75 are

highlighted by circles. The dashed line gives the fit ci ≈ ĉki with ĉ ∼ 3.5 104.
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5.2 Mode conversion in the presence of disorder

The scaled bi, objective with respect to the “breathing”, are plotted in figure

5.14 (top-right). Here the increase with wavenumber is close to linear. As a check

of consistency, the bi and bi
j must fulfill the relation bi =

∑

j 6=i b
i
j as indicated by

the circles.

Figure 5.14 (middle-left/right and bottom-left) shows the rates bi
j 6=i for the

full range of wavenumbers for ki = 10, 20 and 75. The scaled amplitudes are

divided by time squared, bi
j = Ãi(kj, t)/t

2, at a time-step, t/dt = 10, within the

fit time-window (5 ≤ t/dt ≤ 50). Note that the amplitudes strongly fluctuate

within one graph and from one graph to the other for a given kj. A linear fit,

bi(kj) = cikj , is proposed to capture the apparent monotonic linear increase of

bi
j 6=i for increasing j. The set of ci is plotted in figure 5.14, (bottom-right) also

showing a linear increase.

From all these data, we conclude

bi
j = ĉkikj, (5.5)

with ĉ ≈ 3.5 104 in the framework of a linear growth assumption, bi
j = cikj =

ĉki

∑

kj. Note the symmetry bi
j = bj

i from Eq. 5.5. The consistency relation

bi =
∑

j 6=i b
i
j is nicely fulfilled and leads to bi =

∑B
j 6=i c

ikj = ci(B(B + 1)/2 − i),

see the dotted line in Fig. 5.14 (top-right).

The same simulation and analysis procedure has been performed for eight

different initial packings. Namely a different random number sequence has been

chosen for the distribution of radii among the particles. The analysis results for

each different packing are compared to the average over the packings in figure

5.15. Note that the average is performed on the data after applying the Fourier

transform to the signals. Averaging the signals before the Fourier transform leads

to different results, since the absolute value used for the power spectra is non-

linear and makes it impossible to compare objectively the single results with the

average. Averaging the signals before the Fourier transform in general smoothes

out the out-of-phase high frequency components.

In general, the observations and the trends are the same for all the different

packings and for the average. The latter however, shows a nice narrowing in

the scatter of the data, see Fig. 5.14 (middle-left/right and bottom-left), which

points out that a larger statistical study with 100 or even 1000 different packings

may give even better and sharper results. The discussion of another possible

functional behavior (e.g. a sine function) replacing the linear growth assumption,

bi
j = cikj, is postponed until more simulations lead to better statistics.
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Figure 5.15: Comparison between the data for eight different packings (dotted lines or

plus signs) and the average (solid lines or solid squares). (Top-left), the “unscaled” bi,

(top-right), the bi after scaling according to Eq. 5.4, (middle-left-right) and (bottom

left), the bi(k), for i = ki = 10, 20 and 75 and k = 1, 2, ..., 100. This together with a

linear fit, bi(kj) = cikj . (Bottom-right) The ci for the 15 inserted wavenumbers.
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5.2 Mode conversion in the presence of disorder

“Bi-chromatic” mode mixing nonlinearity

In order to study the non-linear effects due to the interactions between the wave-

numbers, some simulations have been performed using the same wave agitation

procedure as described in section 5.2.3, but this time with two inserted wavenum-

bers superimposed initially. The wave-form given as initial condition is then:

vz (sin((2πzlayer)/λ1) + sin((2πzlayer)/λ2)),

as sketched in Fig. 5.16.

λ
1
, λ

2
 and λ:  25, 20 and 100 layers respectively

Figure 5.16: Schematic graph of the inserted superimposed wavelengths k8 = L/λ =

200/25 and k10 = L/λ = 200/20 (solid line) and the created or amplified wave-number

k2 = k10 − k8 corresponding to the wavelength λ = 100 (dotted line).
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Figure 5.17: (Left) Wavelength (vertical, in units of layers) as function of time (hor-

izontal, in units of ms). The inserted “bi-chromatic” wavelengths λ = 25 and 20 (in

units of layers) from top-left to bottom-right (white, gray, and black correspond to low,

medium and high intensity for the absolute value of the Fourier components). (Right)

The time evolution of the amplified/created wavelengths (λ = 100 layers) for the “bi-

chromatic” agitation given by the solid line, labeled as poly-double. The sum of the

contributions from the “mono-chromatic” agitations from the previous section, is given

by the dotted line, labeled as poly-sum. And the ‘bi-chromatic” agitation in a fully

regular packing is given by the thick solid line, labeled as regular-double.
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Effect of disorder on wave propagation

In the presented results two wave-numbers k8 = L/λ = 200/25 and k10 =

L/λ = 200/20 are “beating” (constructive interference) with each-other amplify-

ing significantly the wave-number k2 = k10−k8 corresponding to the wavelengths

λ = 100 as Fig. 5.17 (Left) nicely shows it. The term amplified has been used

here as Fig. 5.17 (Right) shows that this wavelength is also present in the single

inserted wavelengths λ = 25 and λ = 20 simulations from the previous section

(the sum of the contributions have been plotted). Also for the regular packing,

Fig. 5.17 (Right, thick solid line) a tiny but clear “beating” is observed. How-

ever for the “bi-chromatic” excitation of the weakly polydisperse system the low

wavelength λ = 100 is clearly stronger. This interesting result allows, in a fu-

ture study, to use the simulation results as input for the generalized non-linear

problem dealing with the mixing of modes, see Eq.(5.3).

5.2.4 Solution of the Master-Equation

In this section, we numerically solve the Master-Equation (ME) using the values

extracted from the simulations.

bi
j = ĉkikj , (5.6)

with ĉ = 3.4 104 s−2, which implies the linear growth assumption ci = ĉki.

Note that τ in Eq. (5.2) had to be replaced by t2 in order to capture the

functional behavior of the early time evolution Ai
j ∝ t2. With other words, the

ME is solved with τ , but then t =
√

τ is plotted on the time axis. There is no

physical explanation for this re-scaling of the time-axis so far.

In Fig. 5.18 the wavenumber intensity q(kj) is plotted against time for four

inserted wavenumbers. Like in the simulations, the intensity remains rather long

in the inserted bands for small i =2. It remains for some time, before it is

transferred to all other bands for intermediate bands i =10 and 20. And it

remains for some short time, before it is also transferred to all other bands for

i =75.

In Fig. 5.19 the wavenumber intensity q(kj) is plotted against time for two

pairs of inserted wavenumbers i1 = 8 & i2 = 10, and i1 = 10 & i2 = 15. Like

in the particle simulations, the intensity remains in the inserted bands for some

time before it is transferred to all other bands. In the solution of the linear

Master-Equation, there is no trace of the constructive interference observed in

the particle simulations.

In conclusion, the Master-Equation (ME) predicts qualitatively the early stage

evolution of monochromatic standing waves with time. The Fourier components

intensity of the inserted wavenumber is slowly transferred to other modes.
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Figure 5.18: Wavenumber spectrum as function of time obtained from Eq. (5.2) using

ĉ = 3.4 104 s−1, for different inserted wavenumbers ki, with i =2, 10, 20 and 75. Dark,

grey and white correspond to high, medium and low intensity.
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Figure 5.19: Wavenumber spectrum as function of time obtained from Eq. (5.2) using

ĉ = 3.4 104 s−1, for two pairs of simultaneously inserted wavenumbers ki, with i1 = 8

& i2 = 10, and i1 = 10 & i2 = 15. Dark, grey and white correspond to high, medium

and low intensity.
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Effect of disorder on wave propagation

The linear ME cannot predict the cross-talk between bands and therefore the

long-time behavior from simulations, i.e., the fact that energy is mainly present

in the low bands, is not reproduced. Instead, the linear ME predicts a constant,

homogeneous distribution of energy qi = const. = 1/B, with B the number of

bands, among all bands after sufficiently long time.

5.2.5 Eigenmodes of a slightly polydisperse packing

It is possible and interesting to calculate the eigenmodes (eigenvalues and eigen-

vectors), from the previously considered packings, both regular and polydisperse.

This gives additional insight on the packings and can explain the way they react

under dynamic pulses, as in section 5.1.3, and the standing waves, as earlier in

this chapter, see section 5.2.3, in the discrete element simulations.

Eigenvalue problem

The calculation of the eigenmodes of a packing based on different configurations,

using the particle positions and masses and the contact stiffness employ a similar

approach as in section 3.2, but in this case without tangential elasticity and

hence without rotational degrees of freedom. Those could be included in future

investigations.

Particle interactions The contact law defines the interaction between the

two particles by relating the force to the displacement. In contrast to the “one-

sided” particle contact law, for which contacts can open, the chosen law here is

“two-sided” linear-elastic, meaning that no particle rearrangement, separation or

irreversible sliding is allowed (which makes the particle system equivalent to a

mass-spring system with fixed topology). Note that therefore stiff particles, with

point-contacts, are considered and only very small deformations are allowed. The

contact force f c
i acting on particle i at contact c can be written as:

f c
i = −Kc · (ui − uj) (5.7)

with ui the displacement vector of particle i. The particles i and j form the pair

of particles interacting with each other at contact c. The stiffness matrix related

to particle i as:

Kc = knn
cnc. (5.8)

with kn the normal contact stiffness and nc the normal vector at contact c from

particle i to j. Note that no tangential stiffness is included.
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5.2 Mode conversion in the presence of disorder

Balance of momentum The conservation laws for linear momentum (New-

ton’s second law) states:

miüi =

Ci
∑

c=1

f c
i , (5.9)

with mi the mass of particle i and Ci the total number of contacts of particle i.

We define now U , the displacement (translation) vector of dimension 3N of

all particles:

U = (ux
1 , u

y
1, u

z
1, u

x
2, u

y
2, u

z
2, ..., u

x
N , uy

N , uz
N)T . (5.10)

with ux
i , u

y
i , u

z
i the x, y, z displacements of particle i and N the number of particles.

The combined conservation laws for all particles then can be written as:

M · Ü = F (5.11)

with M the mass matrix and F the force vector.

The mass matrix

M =











m1I
3 0 0 0

0 m2I
3 0 0

0 0 ... 0

0 0 0 mNI3











(5.12)

is diagonal of dimension 3N × 3N . and I3 the 3x3 identity matrix in three

dimensions.

The generalized force vector F of dimension 3N is expressed as:

F = (

C1
∑

c=1

f c
1,

C2
∑

c=1

f c
2, ...,

CN
∑

c=1

f c
N)T (5.13)

Equation (5.11) can be rewritten as

M · Ü + K · U = 0 (5.14)

with K the positive-definite global stiffness matrix, of dimension 3N × 3N , such

that F = −K · U
A harmonic wave solution in time is assumed for the particle displacements.

Thus

U(t) = A0 exp (iωt) (5.15)

with A0 the translational displacement amplitudes, ω frequency and t time.
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Effect of disorder on wave propagation

Finally, equation (5.14) becomes:

(

K − ω2M
)

· A0 = 0 (5.16)

Solving this generalized eigenvalue problem numerically leads to 3N positive

eigenvalues λe = ω2
e , (e = 1, ..., 3N) and 3N eigenvectors Ae.

Dispersion relation and density of states

For both the regular and the weakly polydisperse packing, using the same radii,

masses and stiffness as simplification, see section 5.2.3 for more details, the eigen-

modes have been calculated.

A histogram of the eigenvalues λe gives the density of states for the considered

packing. Fig. 5.20 shows the density of states for both the regular (left) and the

polydisperse (right) packing.

The finite and non-cubic dimension of the regular packing is clearly visible from

the many isolated peaks. The peak at ∼35 kHz corresponds to the oscillation of

two layers together in the z-direction, as this frequency correspond to a wave-

length of two layers in the z direction according to the dispersion relation, see

Fig. 5.21 (left). The second largest peak at ∼24 kHz corresponds to a wavelength

of four layers in the x (or y) direction, according the dispersion relation, see Fig.

5.21 (left), which is exactly the dimension of the packing in that direction.

As a consequence of contact disorder (mainly) the density of state for the weakly

polydisperse packing, Fig. 5.21 (right), is much smoother than for the regular

one. However the peak at ∼35 kHz is still visible.

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Frequency in kHz

N
um

be
r 

of
 m

od
es

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Frequency in kHz

N
um

be
r 

of
 m

od
es

Figure 5.20: Density of states from the eigenmode calculation in a regular (left) and a

polydisperse (right) packing

From the results it is also possible to derive the dispersion (frequency-wavenumber)

relation. The latter is derived for both longitudinal and transversal modes in the
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5.2 Mode conversion in the presence of disorder

long z-direction (see Sec. 5.2.3). Therefore, the components of each eigenvector,

Az
e for the longitudinal modes and Ax

e , for the transversal modes (Ay
e would give

the second transversal relation, data not shown here) are fitted in the z-direction

by the function:

R1 cos(2πNlz(i)/L) + R2 cos(2πNlz(i)/L) (5.17)

for each wavenumber Nl =1,...,100, where L is 200.

Note that the coefficients R1(Nl, λe) and R2(Nl, λe), depend on the wavenumber

Nl and eigenvalue λe. They are chosen by a least-square approach such that they

minimize the residual of the actual displacement and the assumed wavenumber

dependent form.

(
N
∑

i=1

(Ae(i) − (R1 cos(2πNlz(i)/L) + R2 sin(2πNlz(i)/L))))2. (5.18)

Afterward R(Nl, e) =
√

R1(Nl, e)2 + R2(Nl, e)2 is calculated.

The obtained (Nl × Nl) matrix R(Nl, e) is plotted in Fig. 5.21 where the second

dimension (frequency) has been mapped in 100 frequency bins.
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Figure 5.21: Dispersion relations from the eigenmode calculation for both normal-

and tangential-displacements in the z-direction in the regular packing (left) and in the

polydisperse packing (right)

As expected for the regular packing, see Fig. 5.21 (left), the dispersion relation

is a perfect sine function for both longitudinal and transversal modes. This result

was also obtained elsewhere from detailed simulation data, see Sec. 4.1.3. For the

weakly polydisperse packing, a less sharp dispersion relation is obtained, also

similar to previous results, see sections 5.1.3 and 5.2.3. While this calculation

does only confirm the already known behavior, the interesting potential of this
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method is the possibility to explicitly write down the time evolution of an initial

wave-form expressed as a sum of eigenmodes. The results can then be compared

to the simulation presented in section 5.2.3. This study, however, is not part of

this work.

5.2.6 Summary and conclusions

Inspired by previous numerical results on the dispersive behavior of the wave

propagation in weakly polydisperse granular packings, see section 5.1.3, the pur-

pose of this section was to understand how single wavelengths or wavenumbers

evolve in time. In other words, the central question is how is energy transferred

between different frequency- (or wavenumber) bands? More generally, the idea is

to model the energy density of waves in a disordered system by a linear Master

equation and test this approach by comparison with simplified model systems

with discrete particle simulations. The only parameter for the Master equation, ĉ

was extracted from the simulations. In future, the observed non-linear effects can

be translated into the adapted Master Equation for energy-transport and evolu-

tion. Both linear and non-linear terms can be determined from the simulations

involving, e.g., energy-transfer between the bands, but also frequency mixing.

Several simulations with different inserted initial wavenumbers have been per-

formed for eight different weakly polydisperse packings. The results show a low

source and target energy transfer rate, from the inserted wavenumber to the

others, increasing with wavenumbers. These strong fluctuations have been ap-

proximated by a linear growth assumption and all results have been checked for

self consistency. Future statistical studies with averaging over many more pack-

ings should be able to increase to quality of the results and to investigate the

validity of the linear growth assumption. The simulation results have been used

as input parameters for the adapted Master equation. The results show a similar

qualitative behavior for the transfer of energy. However, no non-linear cross-talk

between inserted wavenumbers has been obtained as observed in the simulations.

The Master equation must be improved in order to take into account those effects

as well.

Finally, the eigenmodes of both a regular and a weakly polydisperse packing

have been calculated. This gives a better insight on their behavior concerning

the dispersion relation as already, probed by dynamic wave propagation simula-

tions. The influence of the packing dimension and structure is revealed and the

foundation for a more detailed study of the eigenmode shapes is provided.
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Conclusions and Outlook

Conclusions: In this thesis sound wave propagation through different types

of confined granular systems has been studied. In particular, the role and the

influence of several micro contact properties: friction, particle rotation, contact

disorder, and dissipative contacts on the macro-scale sound wave propagation

have been investigated. This has been done with help of three-dimensional dis-

crete element simulations, theory and experiments. Besides results on regular

lattice structures and some results on fully disordered systems, the main focus of

this thesis is on systems with strong contact disorder (contact forces) and inho-

mogeneity but weak geometrical disorder (system structure). Sound propagation

was examined in one direction, i.e. the “long” direction of the system, where

the two perpendicular ones are “short”. In various configurations and with many

different contact properties, the goal was to better understand the different mech-

anisms of wave propagation as introduced in chapter 1 and summarized in the

following.

The attenuation of a wave due to inter-particle viscous damping, linear veloc-

ity dependent, has been studied with the goal to better understand real damping

in experiments. The results show that the strongest effect is observed when the

contact relaxation (dissipation) time and the contact duration time are similar

(see Sec. 4.1.3). The “coda” (oscillations following the first main oscillations) of

the time signals, that is to say the high frequencies (short wavelengths), are most

affected by damping. This observation was confirmed by the frequency analysis

done with the spectral ratio technique. For larger frequencies nonlinear, increas-

ing damping is observed (see Sec. 2.3). The combination of two methods used to

analyze the attenuation made it possible to describe in detail the characteristics

and the influence of the contact damping on the wave propagation. It would be

very interesting to use this analysis to test different models for attenuation in the
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system in parallel with simple and precise experiments, and possibly even to add

interstitial fluids with different viscosities.

The theoretical predictions on the dispersive nature of sound waves in a regular

granular packing were confirmed and accurately reproduced by the simulations.

Taking as reference the maximum of the first oscillation peak of time signals,

the results show an interesting acceleration of the pulse near the source. This

effect is due to the strong dispersion of the wave near the source when the high

frequencies (wavelength of the order of the particle size) are much slower than the

lower frequencies (longer wavelength) that need time and space to fully develop.

When the first oscillation’s main frequency is low enough (after few tens of particle

diameters when the pulse has broadened) the wave propagation reaches a more

stable state. Those results were obtained, for both P- and S-waves.

A single Fourier transform of the space, or time signals, gives information on the

wave-number or frequency content of the wave and its evolution in time or space

respectively. For example, the frequency content can be visualized as function of

distance from the source. The double Fourier transform of the space-time signals

gives the dispersion relations which are rich in information about the important

and complex frequency dependence of wave propagation in granular materials.

Dispersion relations for regular lattices are perfectly understood, while those for

the slightly disordered systems resemble the first step towards understanding fully

disordered systems.

The results obtained from the inclusion of rotational degrees of freedom to-

gether with tangential restoring forces at the contact show additional modes with

energy conversion between them. This confirms the necessity to include the rota-

tional degrees of freedom into the description of wave propagation in real granular

materials. The obtained dispersion relations show that a part of the energy of a

shear wave is converted to a rotational wave. The wave propagation speed, the

wave dispersion and the frequency filtering behavior are all affected by the tan-

gential stiffness, as it is clearly visible in the results. Simulations and theory are

in perfect quantitative agreement for regular lattices, providing the foundation

to understand also disordered systems with tangential elasticity and rotations.

Starting from a regular lattice, a first small step towards disorder is made

by introducing a controlled weak disorder in size. Doing this, allows to separate

the contact disorder from structural disorder which allows to isolate and study

different issues one by one. The results show clearly that contact disorder is

responsible for an important feature of wave propagation in granular materials,

which is frequency filtering.

Another aspect related to the weak polydispersity is the dispersion with re-

spect to the evolution in time of single wavenumbers (or wavelengths). A detailed
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study of how energy is transfered between different wavenumber bands has shown

low energy transfer rates, from the inserted wavenumber to the other ones, for

small wavenumbers. The energy transfer rates are increasing linearly for increas-

ing source and target wavenumbers. Inserting the simulation results in an adapted

Master equation approach leads to quantitative agreement for short times, qual-

itative agreement for intermediate times, and incorrect predictions for the long

time limit due to the lack of non-linear terms in the Master Equation to be added

in the future.

Making an even bigger step up in complexity by probing a realistic tablet

made of a sintered frictional and cohesive powder has shown the potential of the

numerical simulation method, together with the necessity to consider large enough

systems in order to capture with sufficient contrast the studied wave phenomena.

Future research is needed to investigate more carefully the effects of increasing

disorder together with all its further implications.

The numerical part of the study has clearly shown the usefulness of discrete

element simulations for a better understanding of wave propagation in granular

materials. It allows a detailed analysis and description of granular packings and of

the propagating waves in both space-time and wave-number as well as frequency

space based on high resolution space-time signals. In addition, one of the main

advantages is the possibility to separately tune each parameter of the model and

study in detail their role and influence on the wave propagation by reducing the

complexity. Particle simulations are a valuable tool to complement theoretical

and experimental approaches in order to enhance the understanding of complex

phenomena as sound propagation in (dry) granular materials.

Outlook: In the following several remarks and recommendations are given for

subsequent studies.

The main part of this work concerns the study of different wave agitation

types, as dynamic pulses and standing waves, in an elongated weakly polydis-

perse packing. This is an intermediate case with many advantages half-way be-

tween regular perfectly ordered and fully disordered systems. Evidently, the fully

disordered system remain a challenge for future research.

It is also important to complete the study of this relatively simple system by

considering different, more realistic contact models and contact properties. The

results obtained in this work should be tested and quantitatively compared to ex-

periments with respect to different frictional contact models, as for example those

based on the Hertz-Mindlin model. Also the influence and competition of sliding,

rolling and torsion should be studied in more detail in order to determine their

role in the wave propagation dynamics. The theoretical study of the rotational
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branches related to rotational degrees of freedom should be extended for this

purpose. Future investigations should interpret and understand the eigen-vectors

obtained by the theoretical derivation. Also, it would be interesting to consider

non-Bravais lattices as the Hexagonal Closed Packing (HCP) lattice where optical

and rotational modes should co-exist.

This point could get a high priority, especially as rolling friction is often intro-

duced in the literature within theoretical approaches, but it is not clear whether

their role is crucial.

Special attention should be given to modeling attenuation. The linear velocity-

dependent viscosity introduced in the simulations is a rather simple way to obtain

energy loss in the system and does not necessarily reproduce the attenuation ob-

served in real experiments. In particular, energy losses due to local breakage and

heat losses should be considered too. The study of cohesive powders should be

continued in larger samples where the effects of contact adhesion on the general

wave propagation behavior should be more visible.

The weak disorder introduced in the granular packings, at the contact level

mainly, should be gradually increased up to a fully disordered packings. This

would allow to compare the results with more realistic granular materials such as

polydisperse glass beads or even sand. The challenge, however, lies in the limita-

tion of the number of particles with respect to computation time. A compromise

between a large enough representative sample and a reasonable computation time

allowing extensive parameter studies should be found. Note that an increasing

size distribution width for the particles can lead to an overwhelming increase of

computation time. Also, in the case of full disorder, we recommend to give ex-

tra attention to the sample preparation procedure. A balance must be realized

between sample density, confining pressure and realistic contact deformation. A

too large confining pressure could lead to unrealistic overlap between the parti-

cles and hence violate the assumption of tiny deformations. Even if simulations

offer many advantages as compared to real experiments, the sample preparation

always remains the first important issue to be addressed.

The new Master equation theory proposed for the linear time evolution of

single (double or multiple) wavenumbers in a granular packing should be improved

in order to take into account the non-linear effects seen in the simulations, as the

cross-talk between wavenumbers. The relation between eigenmodes in an elastic

system and the energy-band evolution must be worked out.

In general, for the simulations, a more systematic statistical study involving

many different initial packings should be done. This would increase the quality

of the results and filters out the configuration-dependent effects that might be

present.
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Finally, for experiments, the Spectral Ratio Technique introduced in the second

chapter, should be applied to better experimental results. The experimental set-

up and the sample preparation procedure have to be especially planned and tuned

with the perspective to apply the method. A strict quality control is needed for

the material state and a reproducible and objective coupling between the sample

and the transducers is crucial.
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Summary

In this study sound wave propagation through different types of dry confined

granular systems is studied. With three-dimensional discrete element simulations,

theory and experiments, the influence of several micro-scale properties: friction,

dissipation, particle rotation, and contact disorder, on the macro-scale sound

wave propagation characteristics are investigated.

Experiments, analyzed with the “Spectral Ratio Technique”, make it possible

to extract frequency-dependent propagation velocities and attenuation. An im-

proved set-up for future investigations is proposed in order to better understand

dispersion and propagation of sound in granular materials.

The full dispersion relation of a Face-Centered-Cubic lattice is derived from a

theoretical analysis that involves translations, tangential elasticity, and rotations.

The additional displacement and rotation modes and the energy conversion be-

tween them is studied using discrete element simulations. Simulations and theory

are in perfect quantitative agreement for the regular lattices examined.

As a first small step away from order, systems with weak geometrical disor-

der (system structure) but strong contact disorder, i.e. with an inhomogeneous

contact force distribution, are studied next. They reveal nicely the dispersive na-

ture of granular materials and show strong frequency filtering. Low frequencies

propagate, whereas high frequencies vanish exponentially. A more detailed study

of how energy is transfered between different wavenumber bands shows linearly

increasing transfer rates for increasing wavenumbers. A first theoretical approach

using a linear Master Equation leads to a quantitative prediction of the energy

evolution per band for short times.

A bigger second step in complexity is made by investigating the sound propa-

gation in a realistic tablet made of a sintered frictional and cohesive polydisperse

powder and prepared in different ways. These simulations nicely display history

dependence and the effect of different material parameters.

As a conclusion, simulations were found to be a valuable tool to complement

theoretical and experimental approaches towards the understanding of complex

phenomena, such as sound propagation in (dry) granular materials. However,

many open issues, in particular concerning the modeling, still remain.
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Samenvatting

In dit werkstuk wordt geluidsgolf voortplanting in verschillende droge granu-

lair systemen bestudeerd. De invloed van verschillende microschaal eigenschap-

pen als wrijving, dissipatie, deeltjes rotatie en contact wanorde op de geluidsgolf

voorplanting wordt met behulp van experimenten, theorie, en driedimensionale

discrete elementen simulaties, onderzocht.

Experimenten zijn geanalyseerd met de “Spectral ratio technique” waarmee

het mogelijk is om de frequentieafhankelijke golfvoortplantingssnelheid en dissi-

patie te bepalen. Een verbeterde experimentele opstelling is voorgesteld om het

begrip van dispersie in granulair materialen te verduidelijken.

De dispersie relatie van een “Face-Centered-Cubic” rooster is afgeleid vanuit

een theoretische analyse, die translaties, rotaties, en tangentiele elasticiteit bevat.

De extra verplaatsingsmodes en de energie omzetting tussen hen is onderzocht.

Simulaties en theorie komen zeer goed overeen waneer het de regelmatige roosters

betreft.

Als eerste kleine stap weg van regelmaat, worden systemen met een zeer kleine

geometrische ontregeling, maar met een grote contact ontregeling, bestudeerd.

De dispersie relatie van granulair systemen wordt getoond samen met een sterke

uitfiltering van frequenties. Lage frequenties kunnen zich voortplanten, terwijl

hoge frequenties exponentieel worden gedampt. Een gedetailleerd onderzoek van

hoe energie wordt overgedragen tussen verschillende golfgetallen laat zien dat

de overzetting verhouding lineair toeneemt met het golfgetal. Een eerste the-

oretische benadering met een lineaire Master Vergelijking leidt tot een goede

voorspelling voor korte tijden. Een grotere stap richting complexiteit is gemaakt

met simulaties van golfvoortplanting in een realistische tablet gemaakt van een

samengedrukt, wrijvend, cohesief poeder.

Als conclusie, er werd getoond dat simulaties een volwaardige methode vormen

om samen met theorie en experimenten complexe fenomenen als golf voortplant-

ing in droge granulair materialen te kunnen begrijpen. Echter, er zijn nog vele

open vragen, in het bijzonder betreffende de modellering.
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