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Overview

This dissertation describes an investigation of systems of polydisperse smooth
hard spheres. This includes the development of a fast contact detection algo-
rithm for computer modelling, the development of macroscopic constitutive
laws that are based on microscopic features such as the moments of the par-
ticle size distribution, and the development of new analysis techniques to
study microstructure in such systems with different physical behaviour, i.e.,
gaseous, liquid, glassy and crystalline states.

The first chapter gives a general introduction to the themes and topics
treated in this dissertation.

In the second chapter I deal with the numerical problem of contact detec-
tion among arbitrarily polydisperse objects. I present a new efficient algo-
rithm for contact detection which even increases performance with increasing
degree of polydispersity. The performance of the algorithm is theoretically
analyzed for various particle size distributions and volume fractions, and
recommendations are given concerning the choice of optimal algorithm pa-
rameters.

The third chapter focuses on the theoretical prediction of the equation of
state and the jamming density. The equilibrium equation of state of a fluid
mixture of polydisperse hard spheres is well described by considering only
the first three moments of the size distribution function. Consequently, the
(thermodynamic) properties of a polydisperse fluid can be reproduced by a
well-chosen “equivalent” bidisperse fluid with the same three moments. In
this study I ask the question: How many moments are needed to predict the
pressure and the jamming density of polydisperse mixtures in compressed
non-equilibrium glassy states? I find that five moments suffice to describe
the properties of polydisperse mixtures for all densities, including glassy, non-
equilibrium states and the maximal jamming density. Hence, as proposition,
polydisperse mixtures can be modelled by a well-chosen tridisperse system.

In the fourth chapter I suggest a new way to characterize the microstruc-
ture in mono- and polydisperse hard-sphere systems, based on the local cor-
relation of four particle positions. This analysis allows to distinguish between
gaseous, liquid, partially and fully crystallized, and glassy (random) jammed
states. A common microstructural feature is observed in crystalline and
glassy jammed states, suggesting the presence of “hidden” two-dimensional
order in polydisperse random close packings of three-dimensional spheres.

Finally, conclusions and outlook close the dissertation.
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Samenvatting

Dit proefschrift doet verslag van een onderzoek naar systemen van poly-
disperse (verschillend in grootte) gladde, harde bolletjes. Onderdelen hier-
van zijn de ontwikkeling van een snel algorithme voor contact detectie in
computersimulaties; de ontwikkeling van macroscopische constitutieve wet-
ten die zijn gebaseerd op microscopische kenmerken zoals de momenten van
de verdeling van de deeltjesdiameters; en de ontwikkeling van nieuwe analyse
technieken voor het bestuderen van de microstructuur in zulke systemen met
verschillend fysisch gedrag, namelijk de gasvormige, vloeibare, glas-achtige
en kristallijne aggregatietoestanden.

Het eerste hoofdstuk is een algemene inleiding in de thema’s en onderw-
erpen die in dit proefschrift worden behandeld.

In het tweede hoofdstuk behandel ik het numerieke probleem van contact
detectie tussen willekeurig polydisperse objecten. Ik presenteer een nieuw
efficint algorithme voor contact detectie, waarvan de performance zelfs ver-
betert bij een toenemende graad van polydispersiteit. De performance van
het algorithme is theoretisch geanalyseerd voor verschillende deeltjesdiame-
ter verdelingen en volume fracties, en er worden aanbevelingen gegeven met
betrekking tot de keuze van optimale parameters voor het algorithme.

Het derde hoofdstuk spitst zich toe op de theoretische voorspelling van de
toestandsvergelijkingen en de ”jamming” dichtheid (blokkeringsdichtheid).
De evenwichts toestandsvergelijking van een vloeibaar mengsel van polydis-
perse harde bolletjes wordt goed beschreven in termen van de eerste drie
momenten van de verdelingsfunctie van deeltjesdiameters. Dientengevolge
kunnen de (thermodynamische) eigenschappen van een polydisperse vloeistof
worden gereproduceerd door een welgekozen ”equivalente” bidisperse vloeistof
met dezelfde drie momenten. In dit onderzoek stel ik de vraag: hoeveel
momenten zijn nodig om de druk en ”jamming” dichtheid van polydisperse
mengsels in de samengeperste niet-evenwichts glas-achtige toestanden te voor-
spellen? Ik concludeer dat vijf momenten volstaan om de eigenschappen van
polydisperse mengels te beschrijven voor alle dichtheden, ook de glazen, niet-
evenwichtstoestanden en de maximale ”jamming” dichtheid. Daardoor, als
een voorspelling, kunnen polydisperse mengsels door een goedgekozen tridis-
pers systeem worden gemodelleerd.

In het vierde hoofdstuk stel ik een nieuwe methode voor om de microstruc-
tuur van mono- en polydisperse systemen van harde bolletjes te karakteris-
eren, gebaseerd op de locale correlatie van de posities van vier deeltjes. Met
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deze analyse kunnen gasvormige, vloeibare, gedeeltelijk en volledig kristal-
lijne, en glazen (wanordelijke) ”jammed” toestanden worden onderscheiden.
Een gemeenschappelijk microstructureel kenmerk is waargenomen in kristal-
lijne en glas-achtige ”jammed” toestanden, wat duidt op de aanwezigheid van
een ”verborgen” twee-dimensionale orde in polydisperse wanordelijke dichte
pakkingen van drie-dimensionale bolletjes.

Het proefschrift eindigt met conclusies en een vooruitblik.
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Chapter 1

Introduction

1.1 General motivation

This dissertation presents the results of combined computational and the-

oretical studies on systems of frictionless impenetrable objects, henceforth,

hard particles. In a three-dimensional Euclidean space, the particles occupy

a certain volume (or packing) fraction ν of the total volume. We focus on

systems where all particles have the same spherical shape, but may be very

different in size. This variation in size is referred to as polydispersity. We

study such polydisperse systems for very different volume fractions, start-

ing from the dilute gaseous state up to the dense jammed packings, where

the particles are packed so tightly that they cannot move freely due to the

impenetrability constraint.

1.1.1 Why hard spheres?

Systems of hard particles interacting only with infinite repulsive pairwise

forces on contact are models of more complex many-body systems when re-

pulsive interactions are the primary factor in determining their structure.

In dense matter the structure is determined first of all by impenetrability of

particles (e.g., atoms), and ultimately comes from geometric properties of the

packing-structure of nonoverlapping spheres in three-dimensional space [1–4].

Hard-particle systems are therefore widely used as models for colloids [5],

granular materials [6–8], glasses [9], liquids [2], and other random media [4].

The hard-sphere model successfully reproduces the main structural properties

of the condensed phase, such as crystallization or melting of liquids [10–12]

and amorphous-to-solid phase transition [13, 14]. Furthermore, hard-sphere

packings have inspired mathematicians and been the source of numerous

challenging (many still open) theoretical problems [15–18], such as the iden-

tification of packing structures with extremal properties (e.g., the lowest or
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highest density jammed packings), the quantification of disorder via order

metrics, and others. The results we obtain can have practical applications

such as for the production of advanced high-performance materials (ceram-

ics, metals, plastics, composites, concrete, etc.) [4], helping to develop better

constitutive equations for the mechanical behavior of granular media, and

other particle based materials.

The simplicity of the hard sphere model allows to focus on its most funda-

mental aspect, which is essentially geometrical, due to the excluded volume.

It is hard to think of a simpler physical system which displays all the phe-

nomenology analogous to that of simple gases and fluids, as also jammed,

glassy and solid states [19].

Systems of frictionless and hard spheres cannot be realized experimen-

tally. However, colloids and granular materials are very good approximations

of hard spheres. They can be synthesized either by tuning the interaction po-

tential between the colloidal particles, by e.g. coating colloidal spheres with

poly-12-hydroxystearic acid [20], or by using manufactured particles such as

ball bearings, marbles, beads, etc., to make them hard [21]. The larger the

confining stress, the worse the assumption “hard” becomes. Furthermore,

friction can be reduced by lubrication as in colloids or wet granular media.

1.1.2 Why polydisperse?

In a sample of pure water all molecules of H2O are identical. This is usu-

ally not the case for particles in soft matter. A collection of mesoscopic

particles will almost always exhibit some continuous variation in properties

such as size, charge, shape or chemical makeup. The majority of particle

systems found in industrial and natural processes are composed of particles

of a broad range of particle sizes. This variation hugely complicates their

study, introducing additional peculiar phenomena and necessitating a more

sophisticated theoretical treatment, when compared to ideal monodisperse

(i.e., non-polydisperse) systems.

Whether colloidal or granular particles are artificially prepared or not,

in the best case the particle size distribution is still a narrow distribution

around an average size. It is obvious that even such a narrow polydispersity

can influence the physics and mechanical properties of these systems. By the

use of polydisperse mixtures, it is possible to create systems with a behavior

that cannot be described by the simple monodisperse-like approximation.

For example, polydispersity induces the shift of the critical temperature and

density, as was illustrated for a polydisperse generalization of the van der

Waals model [22].

In theoretical studies polydispersity is often ignored, as solving the single-

sized or monodisperse problem is quite complicated. However, as real exper-
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iments are always performed on at least slightly polydisperse systems, it is

essential to take the effects of polydispersity properly into account.

1.1.3 Types and effects of polydispersity

The effect of polydispersity on the phase behavior of hard spheres has been

investigated by experiments, computer simulations, density functional theo-

ries, and simplified analytical theories.

Conceptually, in literature, two types of polydispersity can be distin-

guished [23]: One is present in multi-component mixtures and the other one

in self-assembling systems. The first, “intrinsic polydispersity”, arises from

the fact that the particles present in the system are different by construc-

tion (in size, charge, or any other feature) and their characteristics are not

changed by the interaction with other particles. This kind of system is like

multi-component mixtures in which, at least in principle, the composition can

be externally imposed. Significant size polydispersity should destabilize the

crystal phase [24], because it is difficult to accommodate a range of diameters

on a lattice structure. Experiments have indeed shown that crystallization

is suppressed above a terminal polydispersity δt ≈ 0.12 in 3D [25, 26], de-

fined as the standard deviation of the diameter distribution normalized by

its mean, as supported by numerics [27]. Since then, much theoretical work

has focused on estimating δt; for details see Ref. [28].

Another new phenomenology has its origin in fractionation into phases

with different compositions, e.g., sizes [29–32] and their coupling with other

phenomena already present in a monodisperse system [33,34]. Fractionation

can lead to solid-solid coexistence [28–30,35], where a broad diameter distri-

bution is split into a number of narrower ones, separated in space. This occurs

because the loss of entropy of mixing is outweighed by the better packing

efficiency, and therefore the reduction in excess free energy, of crystals with

narrow size distribution [28, 35]; accordingly, as the overall polydispersity of

the system grows, the number of possible coexisting solid phases is expected

to increase. This rich behaviour is suggested already by Gibbs’ phase rule,

where with an infinite number of particle species present there is a priori no

limit for the number of phases.

Extensive computational and experimental research has shown that, com-

pared to the monodisperse case, hard-sphere systems with sufficient size poly-

dispersity tend to remain amorphous over a broad range of volume fractions.

Emergence of order by crystallization (i.e., crystal nucleation) is strongly

suppressed [21, 27, 36]. For polydisperse systems with a continuous distribu-

tion of particle radii, the phase diagram and the existence and structure of

thermodynamic crystal and glassy phases is still actively debated.

In Ref. [28], Fasolo et al. discuss the reentrant melting found by Bartlett
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and Warren [33]: for polydispersity δ just below δt they predict that com-

pressing a crystal might transform it into a fluid. While in the monodis-

perse case the solid has the lowest free energy at all volume fractions above

ν ≈ 0.55, the fluid can become preferred again at larger ν, if polydispersity

is large enough. Polydispersity reduces the maximum volume fraction in a

crystal (since a range of diameters need to be accommodated on uniformly

spaced lattice sites), whereas it could increase the maximum volume fraction

in the disordered fluid state, where smaller spheres can fill “holes” between

larger particles.

In granular materials, the degree of polydispersity strongly influences

their mechanical response to external loads during shear [37] or compaction

[38–40], as well as segregation and flow behaviour during mixing [41,42] and

discharge processes [43]. (Note that in Ref. [41] also binary and ternary

mixtures were studied using both experiments and simulations – we discuss

them later in Chapter 3.) Microstructural characterization of polydisperse

particulate media is critical to understand and predict macroscopic properties

of soft and granulate systems [4].

Blaak et al. [23] describe the second kind of polydispersity, which can be

found in self-assembling systems [44] (surfactants forming micelles/vesicles,

monomers forming chains or structures like agglomerates, etc.) as follows:

The aggregates present in such systems can be identified as polydisperse par-

ticles, each with different size, shape, conformation, etc. The difference with

the intrinsically polydisperse systems is that the composition is determined

by the chemical equilibrium between the constituents of the aggregates, which

can be identical: for example, polydisperse agglomerates can be composed

of identical, monodisperse primary particles. As a consequence, no fraction-

ation is to be expected, since it would lead to new equilibrium. In principle,

the system can compensate losses of entropy by adjusting its composition.

There are, however, other constraints in the system (the number of primary,

small constituents, for instance), and these may induce new kinds of transi-

tions characterized by the appearance of one or a few macroscopic aggregates.

Such are phenomena as the appearance of lamellar and columnar phases in

surfactant solutions [45], emulsification failure in micro-emulsions [46], or

long chain formation in polymer solutions [47].

1.2 Challenges

1.2.1 Numerical simulations

A study of polydisperse mixtures is far from trivial. In the case of intrinsic

polydispersity there is the experimental problem of how to fabricate colloidal
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particles according to a desired particle size distribution. Although in sim-

ulations this seems to be somewhat under better control, one could easily

run into the problem of finite size effects due to an insufficient or inadequate

sampling of particle sizes. (This is not the case in self-assembling systems,

although, experimentally, their polydispersity cannot be easily controlled and

characterized since it can change.) If a particle mixture is highly polydis-

perse, the simulation of a packing needs a very large sample of particles from

the given grain size distribution in order to reproduce the size relations of

the mixture within the sample. For example [48], in a typical concrete mix-

ture particle sizes vary from less than 0.1 µm up to 200 µm with even larger

particles up to a few centimeter if aggregates such as gravel are added. A

representative sample must contain many millions or even billions of small

particles surrounding a single big particle. Highly efficient algorithms and

data structures, for, e.g., fast contact detection, are needed to simulate sys-

tems of such huge particle numbers, even if we restrict ourselves to simple

spherical particles of different sizes. We address this challenge in Chapter 2.

1.2.2 Theory

Theoretical descriptions of polydisperse systems are mainly based on a small

set of moments of the particle size distribution [31, 32, 49–54]. In order to

reduce the strictly infinite number of equations for polydisperse systems to

a finite set, Sollich, Cates and Warren [50, 51] have assumed that the excess

free energy in a polydisperse hard-sphere mixture depends only on a limited

set of moment densities of the diameter distribution. The price for this sim-

plification is that only approximate results for phase coexistence are obtained

if finite amounts of several phases coexist [35]. Within scaled particle theory

the pressure of a mixture of hard spheres may be shown readily to be an ex-

plicit function of just three diameter moments [55]. The same simplification

is evident also in the approximate equation of state obtained from the Percus-

Yevick closure for a system of polydisperse hard spheres [56]; also in the case

of the “improved” equation of state obtained by Boublik [57] and Mansoori

et al. [58] from an interpolation between the Percus-Yevick virial and com-

pressibility equations; and also in A. Santos et al.’s approaches [59–61].

One of the promising features of a “finite moment” assumption is that

is allows the properties of a polydisperse system to be “mapped” onto those

of a much simpler e.g. binary mixture. This seems to be a rather successful

approach for equilibrium fluids and slightly polydisperse crystals [49,52]. It is

not known if the finite moment approximation is reasonable at all densities

and can be applied to very polydisperse or dense, glassy, non-equilibrium

mixtures. We address this challenge in Chapter 3.
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1.2.3 Microstructural description

First studies of disordered hard sphere packings were performed by Bernal

on mechanical packings of steel balls [1]. He noted that a disordered pack-

ing has a limiting (critical) density, i.e., a packing with higher density in-

evitably contains crystalline regions. Physical experiments give an estimate

of 0.637–0.64 for this density [1,62,63], computer simulations provide 0.637–

0.649 [13, 14, 64–67]. This density is substantially lower than the maximum

packing fraction attainable in the densest crystalline structures, and depends

on history [68], and other material parameters. The origin of this critical den-

sity for disordered packings and its precise value are unknown today. It is

unclear which geometrical principles are at work in disordered packings and

why density is limited at about 0.64. This problem still remains a challenge

for both physicists and mathematicians [1, 69, 70].

Another open question is what microstructural properties in glasses (i.e.,

amorphous random dense packings) are different from those found in liquids

[71]. How these structural properties are involved in the glass transition?

Why glasses get so viscous? Might there be some hidden structure? If so,

questions are how to determine that structure and what size and type is that

structure [72]?

One of the most widely used tools to investigate the structure of isotropic

random packings is the pair-correlation function, which is the Fourier trans-

form of the experimental wavelength-dependent x-ray- (or neutron-) scat-

tering intensity [73, 74]. This quantity gives interesting information on the

sphere correlations, but is averaged too much to describe in detail the topol-

ogy of the local structure; other methods to get local information are mainly

based on the Voronoi tessellation [14,69,70,75]. We suggest that answers to

these questions can be sought in the study of the local multi-particle struc-

ture of mono- and polydisperse systems of hard spheres. We address this

challenge in Chapter 4.

1.3 Computer simulations

As the experimental methods do not provide all the essential insight into the

micromechanical properties of particulate assemblies, theoretical and compu-

tational approaches are used to understand colloids or granular media. The

use of computer simulations has since long helped to study where the exper-

iments cannot go. In mechanics and physics two ways to describe and model

particulate, inhomogeneous materials like powders or grains may be distin-

guished [76]. The first approach, based on continuum theory, relies on em-

pirical assumptions about the constitutive macroscopic material behaviour.

The macroscopic approach can be complemented by a second microscopic
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description of the material, where the particles and their interactions are

modelled one by one. The former approach involves stress, strain and plastic

yield conditions, whereas the latter deals with local interaction laws for each

contact. In this thesis we focus on the microscopic approach and aim to

provide macroscopic constitutive laws that are based on microscopic features

such as the moments of the particle size distribution.

There are mainly two methods for the microscopic simulation of colloids

and granular matter. The first assumes perfectly rigid spheres that interact

via instantaneous collision, realising the assumption of binary interaction as

in kinetic theory. This method is known as event-driven since the simulation

advances through the events, such as collisions.

On the other hand, one can model the grains as soft particles that interact

via a given interaction force. This thesis addresses both approaches. We

use the event-driven method to study the role of various wide particle size

distributions on the equation of state and the jamming density. The elastic

soft-sphere model is used to test our new contact detection algorithm. Next,

we introduce both models and the codes we have used in this thesis.

1.3.1 Event-Driven Molecular Dynamics

Discrete infinitely steep potentials have played a major role in the develop-

ment of early molecular dynamics simulation methods. The very first molec-

ular dynamics simulations were performed with discrete potentials because of

their relatively high computational efficiency. Recent advances in the simula-

tion of discrete potential systems have allowed the construction of molecular

dynamics algorithms that scale linearly with the system size [77], allowing

access to large system sizes and long time scales. Discrete (multi-step) poten-

tials can even accurately approximate soft potentials, with possible savings

in computational cost and time. The simplest discrete potential is the hard-

sphere model: the interaction energy is zero if particles are not in contact,

and infinite if they are, hence creating instantaneous and binary collisions. A

collision is called an event, since the state (velocity) of the particles changes

discontinuously.

Event-driven means that the state of the system evolves in time from

one event to the next. Since the dynamics between events can be solved

analytically, the integration of the equations of motion is processed as a

sequence of events rather than by fixed, small time-steps. After each event,

the time of the next event in the system is calculated and then the system

correspondingly advances to this time. In brief, the algorithm consists of:

1. Given the times, positions and velocities of all particles in the system,

2. predict the time of the next collision,
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3. advance the time of the involved partners to that instant,

4. carry out the collision with a given collision rule, and

5. update the velocities of the particles that collided;

6. repeat from 1.

For the details of the algorithm, we refer the reader to Chapter 3 together

with standard papers and books, see e.g. Refs. [78–80].

In this thesis, we use a modification of A. Donev’s code [21] to account

for different particle size distributions. This code implements a modifica-

tion of the Lubachevsky-Stillinger algorithm [81], which allows the diam-

eter of the particles to grow in time with a constant rate, conserving the

size-distribution, while the kinetic energy is kept constant using a re-scaling

thermostat procedure [82].

1.3.2 Discrete Element Method

When spherical particles are modelled as soft, they can “overlap”. Depending

on the material model of the particles, the interaction force can be computed.

The spring-dashpot model is the simplest example, where there is a repulsive

force proportional to the overlap, and a dissipative force proportional to the

relative velocity [83, 84]. For a given contact law, the resulting Newton’s

equations of motion are integrated, usually with a fixed time-step, and the

temporal evolution of the system is obtained, for details see Refs. [85, 86].

The author of the thesis wrote his own discrete element method code, us-

ing the C++ programming language. This code implements several different

data structures for efficient contact detection in polydisperse systems, which

are discussed in Refs. [87–91] and in Chapter 2. For an open-source code for

soft particle simulations that is based strongly on this code (C++ classes),

we refer the reader to the MercuryDPM code [92].

1.4 Thesis structure

The thesis is organised into three parts. The first part deals with the nu-

merical problem of contact detection among arbitrarily polydisperse objects

(Chapter 2). We present a new efficient algorithm for contact detection whose

performance even increases with increasing the degree of polydispersity, un-

like most other methods. The performance of the algorithm is theoretically

analyzed for various particle size distributions and volume fractions, and rec-

ommendations are given concerning the choice of optimal algorithm param-

eters. Alternative methods were studied in Ref. [87], but are not addressed

further.
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The second part, Chapter 3, focuses on the theoretical prediction of the

equation of state, i.e., the relation between the volume fraction and pressure

of hard-sphere systems with various particle size distributions. The equilib-

rium equation of state of a fluid mixture of polydisperse hard spheres is well

described by considering only the first three moments of the size distribution

function. Consequently, these (thermodynamic) properties of a polydisperse

fluid can be reproduced by a well-chosen “equivalent” bidisperse fluid with

the same three moments. In this study we ask the question: How many

moments are needed to predict the pressure and the jamming density of

polydisperse mixtures in compressed non-equilibrium glassy states? We find

that five moments suffice to describe the properties of polydisperse mixtures

for all densities, including glassy, non-equilibrium states and the maximal

jamming density. Hence, polydisperse mixtures can be modelled by a well-

chosen “maximally equivalent” tridisperse system. Astonishingly, the volume

fraction of rattlers is well matched between maximally equivalent systems,

and their behavior is shown to be controlled by the non-rattlers.

In the last part, Chapter 4, we suggest a new way to characterize the

microstructure in mono- and polydisperse hard-sphere systems, based on the

local correlation of up to four particle positions. Our microstructural analysis

was shown to be very useful in distinguishing between gaseous, liquid, par-

tially and fully crystallized, and glassy (random) jammed states. A common

microstructural feature is observed in crystalline and glassy jammed states,

suggesting the presence of “hidden” two-dimensional order in polydisperse

random close packings of three-dimensional spheres.

Finally, the conclusions and outlook close this work in Chapter 5.
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Chapter 2

Contact detection of arbitrarily

polydisperse objects

2.1 Algorithm description∗

An efficient algorithm for contact detection among many arbitrarily sized ob-

jects is developed. Objects are allocated to cells based on their location and size

within a nested hierarchical cell space. The choice of optimal cell sizes and

the number of hierarchies for best performance is not trivial in most cases. To

overcome this challenge, a novel analytical method to determine the optimal

hierarchical cell space for a given object size distribution is presented. With

this, a decision can be made between using the classical linked-cell method

and the contact detection algorithm presented. For polydisperse systems with

size ratios up to 50, we achieved 220 times speed-up compared to the classical

Linked-Cell method. For larger size ratios, even better speed-up is expected.

The complexity of the algorithm is linear with the number of objects when

the optimal hierarchical cell space is chosen. So that the problem of contact

detection in polydisperse systems essentially is solved.

2.1.1 Introduction

Collision detection is a basic computational problem arising in computer

simulations of systems consisting of many discrete objects such as particles

or atoms. The particle based modeling methods like the Discrete Element

Method (DEM) [85] or Smoothed Particle Hydrodynamics (SPH) [93] play

an important role for physics-based simulations in various fields. The perfor-

mance of the computation relies on several factors, which include the physical

∗Based on V. Ogarko and S. Luding, “A fast multilevel algorithm for contact detection
of arbitrarily polydisperse objects,” Comput. Phys. Commun., vol. 183, no. 4, pp. 931–936,
2012.
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model, on the one hand, and the contact detection algorithm used, on the

other. The collision detection of short-range pairwise interactions between

particles in DEM and SPH coupled to DEM is usually one of the most time-

consuming tasks in calculations [94].

The most commonly used method for contact detection of nearly mono-

sized particles with short-ranged forces is the Linked-Cell method [95, 96].

Due to its simplicity and high performance, it has been utilized since the

beginning of particle simulations, and is easily implemented in parallel codes

[97, 98].

Nevertheless, the Linked-Cell method is unable to efficiently deal with

particles of greatly varying sizes [99]. This can effectively be addressed by the

use of methods based on hierarchical grids [99–105]. Most of these methods

can be assigned to two groups. In the first, the contacts between particles

from different hierarchy levels are detected in the coarse grid [100–102, 104,

105], while in the second group the detection is done in the fine grid [99];

our method corresponds to the latter group. An extensive review of various

approaches to contact detection is given in [106]. The performance difference

between them is studied in Refs. [48, 87, 107].

Even though various other methods using hierarchical grid structures have

been suggested, we improve upon these methods by (i) reducing the range of

the contact search, and (ii) using two freely adjustable parameters: the num-

ber of hierarchy levels and the cells’ size at each level. An analytical method

to select these parameters is also developed. This method (for choosing pa-

rameters) is designed to improve the performance of the algorithm and can be

used for an arbitrary polydisperse particle size distribution. We confirm our

theoretical predictions by means of DEM simulations of homogeneous and

isotropic systems of elastic spherical particles, even though the algorithm is

not limited to these ideal cases.

The chapter is organized as follows. section 2.1.2 outlines the algorithm.

We then present the method how to choose the optimal parameters in sec-

tion 2.1.3. section 2.1.4 presents the performance results of the numerical

simulations. Finally, the results are summarized and discussed, with some

conclusions in section 2.1.5.

2.1.2 Algorithm

The present algorithm is designed to determine all the pairs in a set of N

spherical particles in a d-dimensional Euclidean space that overlap. Every

particle is characterized by the position of its centre ~xp and its radius rp.

For differently-sized spheres rmin and rmax denote the minimum and the

maximum particle radius, respectively, and ω = rmax/rmin is the extreme

size ratio (size distribution functions used are explained in section 2.1.4).
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The algorithm is made up of two phases. In the first “mapping phase” all

the particles are mapped into a hierarchical grid space. In the second “con-

tact detection phase” for every particle in the system the potential contact

partners are determined, and the geometrical intersection tests with them

are made.

Mapping phase

The d-dimensional hierarchical grid is a set of L regular grids with different

cell sizes. Every regular grid is associated with a hierarchy level h ∈ [1, L],

where L is the integer number of hierarchy levels. Each level h has a different

cell size sh ∈ R, where the cells are d-dimensional cubes. Grids are ordered

with increasing cell size so that h = 1 corresponds to the grid with smallest

cell size, i.e., sh < sh+1. For a given number of levels and cell sizes, the

hierarchical grid cells are defined by the following spatial mapping, M , of

points ~x ∈ R
d to a cell at specified level h:

M : (~x, h) 7→ ~c = (⌊x1/sh⌋ , ..., ⌊xd/sh⌋ , h), (2.1)

where ⌊x⌋ denotes the floor function.† The first d components of a (d + 1)-

dimensional vector ~c represent cell indices (integers), and the last one is the

associated level of hierarchy. The latter is limited whereas the former are

not.

It must be noted that the cell size of each level can be set independently,

in contrast to contact detection methods which use a tree structure for parti-

tioning the domain [48,101,108], where the cell sizes are taken as double the

size of the previous lower level of hierarchy, hence sh+1 = 2sh. The flexibility

of independent sh allows one to select the optimal cell sizes, according to

the particle size distribution, to improve the performance of the simulations.

How to do this is explained in section 2.1.3.

Using the mapping M , every particle p can be mapped to its cell:

~cp = M(~xp, h(p)), (2.2)

where h(p) is the level of insertion to which particle p is mapped to. The level

of insertion h(p) is the lowest level where the cell is big enough to contain

the particle p:

h(p) =

{

min
1≤h≤L

h : sh ≥ 2rp

}

. (2.3)

In this way the diameter of particle p is smaller or equal to the cell size

in the level of insertion and therefore the classical Linked-Cell method [96]

†The largest integer not greater than x.
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Figure 2.1: A 2-dimensional two-level grid for the special case of a bi-disperse
system with cell sizes s1 = 2rmin = 3 (a.u.), and s2 = 2rmax = 8 (a.u.). The
first level grid is plotted with dashed lines while the second level is plotted
with solid lines. The radius of the particle B is rB = 4 (a.u.) and its position
is ~xB = (10.3, 14.4). Therefore, according to Eqs. (2.10) and (2.11), particle
B is mapped to the second level to the cell ~cB = (1, 1, 2). Correspondingly,
particle A is mapped to the cell ~cA = (4, 2, 1). The cells where the cross-level
search for particle B has to be performed from (1,3,1) to (5,6,1) are marked in
grey, and the small particles which are located in those cells are dark (green).
Note, that in the method of Iwai et al [99] the search region starts at cell
(1, 2, 1), i.e., one more layer of cells (which also includes particle A).

can be used to detect the contacts among particles within the same level of

hierarchy.

Figure 2.7 illustrates a 2-dimensional two-level grid for the special case

of a bi-disperse system with rmin = 3/2, size ratio ω = 8/3, and cell sizes

s1 = 3, and s2 = 8. Since the system contains particles of only two different

sizes, two hierarchy levels are sufficient here.

Contact detection phase

The contact detection is split into two steps, and the search is done by looping

over all particles p and performing the first and second steps consecutively

for each p. The first step is the contact search at the level of insertion of p,
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Figure 2.2: The grey colored cells correspond to cells ~c start (left bottom)
and ~c end (right top) for particle B from the hierarchical grid shown in Fig.
(2.7). The two diagonal vectors with length α, directed to these cells from
the center of particle B, are the vectors ~x −

c and ~x +
c respectively.

h(p), using the classical Linked-Cell method [96]. The search is done in the

cell where p is mapped to, i.e., ~cp, and in its neighbour (surrounding) cells.

Only half of the surrounding cells are searched, to avoid testing the same

particle pair twice.

The second step is the cross-level search. For a given particle p, one

searches for potential contacts only at levels h lower than the level of inser-

tion: 1 ≤ h < h(p). This implies that the particle p will be checked only

against the smaller ones, thus avoiding double checks for the same pair of

particles. The cross-level search for particle p (located at h(p)) with level h

is detailed here:

1. Define the cells ~c start and ~c end at level h as

~c start := M(~x −
c , h), and ~c end := M(~x +

c , h), (2.4)

where a search box (cube in 3D) is defined by ~x ±
c = ~xp ± α

∑d
i=1 ei,

with α = rp + 0.5sh and ei is the standard basis for Rd. Any particle

q from level h, i.e., h(q) = h, with center ~xq outside this box can not

be in contact with p, since the diameter of the largest particle at this

level can not exceed sh. In Fig. 2.2 the grey colored cells correspond

to the cells ~c start (left bottom) and ~c end (right top) for particle B from

the situation shown in Fig. 2.7.
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2. The search for potential contacts is performed in every cell ~c = (c1, ..., cd, h)

for which

cstarti ≤ ci ≤ cendi for all i ∈ [1, d], and cd+1 = h < h(p), (2.5)

where ci denotes the i-th component of vector ~c. In other words, each

particle which was mapped to one of these neighbour cells is tested for

contact with particle p. In Fig. 2.7, the level h = 1 cells where that

search has to be performed (for particle B) are marked in grey.

To test two particles for contacts, first, the axis-aligned bounding boxes

(AABB) of the particles [109] are tested for overlap. Then, for every particle

pair which passed this test, the exact geometrical intersection test is applied.‡

Since the overlap test for AABBs is computationally cheaper than for spheres,

performing such test first usually increases the performance.

Summary

The two steps of the algorithm, mapping and contact detection were designed

for spherical particles. However, other shapes can also be accommodated

using bounding spheres; for an overview of methods to compute a bounding

sphere see Ref. [101]. Nevertheless, this can affect the performance when

particles are rather elongated.

Parallelization of the algorithm and implementation of periodic boundary

conditions are straightforward and can be done in almost the same way as

in the Linked-Cell method [110, 111]. Finally, to reduce the memory usage

related to storing the cells, we use the hash table approach [99, 101, 103].

This means that the hierarchical grid is not stored explicitly, instead a hash

function is used to map only occupied grid cells into a finite 1D hash table.

For bi-disperse particle systems with wide size distributions, for example,

ω ≥ 10, the use of a two-level grid can lead to a significant improvement

as compared to the Linked-Cell method, as we show below in section 2.1.4.

Nevertheless, we are interested in finding the optimal grid parameters (L and

sh) for arbitrarily polydisperse particle systems, which will lead to the best

performance. In the next section we present a method how to achieve this.

2.1.3 Selection of the optimal grid parameters

The algorithm from the last section is applicable to arbitrary systems (in-

homogeneous), whereas for the following analysis, we restrict ourselves to

almost homogeneous situations. This does not harm/ affect the algorithm,

only the performance might be sub-optimal.

‡Particles p and q collide only if ‖~xp − ~xq‖ < rp + rq, where ‖·‖ is Euclidean norm.
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Bi-disperse systems

For bi-disperse particle systems the cell sizes of the two-level grid can be

easily selected as the two diameters of each particle species. For some situ-

ations this may be not as efficient as the use of the single-level Linked-Cell

method. In section 2.1.4 we show some performance results for bi-disperse

size distributions.

Polydisperse systems

In polydisperse systems all the particles’ sizes are different. This is the case

when a particle sample is drawn from a continuous particle size distribution

(PSD), for example using a systematic sampling approach [112,113]. It guar-

antees an evenly spread sample, i.e., always includes some of the possibly rare

largest particles in a sample, see Fig. 2.3. For such systems the parameters

of the algorithm (the number of levels L and cell sizes sh) can be chosen

in different ways. The performance of the hierarchical grid algorithm then

strongly depends on the selected parameters.

For example, consider different numbers of hierarchy levels L. The fewer

levels are used, the larger the number of particles per cell. This implies that a

larger amount of particles pairs will be found in the contact search, affecting

the CPU time dramatically when the system has a large number of small

particles. Increasing the number of hierarchy levels will decrease the number

of particle pairs found in the contact search. However, this will increase

the number of cross-level tests, and hence the number of cells which have

to be accessed, negatively affecting the CPU time. To obtain the optimal

performance it is important to balance the number of particle pairs found

with the number of cells to be checked.

Assume the following hypothesis holds:

Hypothesis. Let mh be the average number of particles per cell at level h,

that is, mh = Nh/N
c
h, where Nh is the number of particles at level h, and N c

h

is the number of cells at this level. Then the optimal distribution of particles

by levels satisfies the following condition:

m := mi = mj , for all i, j ∈ [1, L]. (2.6)

The detailed discussion of this is given in the next section.

If the particles are mapped to the levels, such that Eq. (2.6) is approxi-

mated, it can be shown that the CPU time spent for contact detection, TCD,

scales as

TCD ∼ NL(m +K), (2.7)
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where K is a constant corresponding to the “overhead” of the algorithm, i.e.,

the time spent to access cells to be tested, and m = m(L,PSD) is the number

of particles per cell. To compute m for a given L and for the particle system

at hand, one needs to choose cell sizes sh so that Eq. (2.6) is approximately

satisfied. How to do this is explained in 2.1.5. Derivation of Eq. (2.7) is

beyond the scope of this paper. Here, the comparison of the performance

results with the prediction of Eq. (2.7) will be shown.

As obtained from numerical experiments in section 2.1.4, the value of K

varies in a narrow range [0.2, . . . , 0.45], depending on the size distribution,

and is set to 0.3 with sufficient accuracy. For more details, see Ref. [88].

We propose to use as the optimal number of levels (ONL) the one that

minimizes the right hand side of Eq. (2.7). It must be noted that in general

the ONL is relatively small. For example, in the system below with ω = 50

with uniform volume distribution, see Fig. 2.4(d), ONL = 7.

2.1.4 Numerical experiments

The aim of this section is to test the presented algorithm in physically real-

istic, dilute to dense polydisperse gas- and fluid-like systems. For these we

verify experimentally the analytical prediction from Eq. (2.7). More specifi-

cally, we use homogeneous and isotropic disordered systems of colliding elas-

tic spherical particles in a unit cubical box with hard walls. The motion of

particles is governed by Newton’s second law with a linear elastic contact

force during overlap. For simplicity, every particle undergoes only transla-

tional motion (without rotation) and gravity is set to zero.

Particle size distributions

The following types of particle size distributions are used: (i) monodisperse,

i.e., all sizes are equal; (ii) bi-disperse (Bi), i.e., two different sizes, where the

volume of all small particles and the volume of all big particles are equal,

which is also used in [114]; (iii) uniform size distribution (US), i.e., the distri-

bution of radii of the particles is constant; (iv) uniform volume distribution

(UV), i.e., the distribution of the volumes of the particles is constant. Fig-

ure 2.3 shows the relative frequencies of the particle radii appearing in some

realizations of the aforementioned particle size distributions, as displayed as

snapshots in Fig. 3.5.

We believe that these types of distributions cover the most important

cases to check the efficiency of the presented algorithm. Systems with monodis-

perse size distributions are widely used since kinetic theory predicts their

physical behaviour [2, 115, 116], and it is the natural benchmark against

which to compare. Bi-disperse size distributions are often used for theo-
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Figure 2.3: The relative frequencies of radii of particles of size distributions
described in section 2.1.4 with N = 125001, ν = 0.62 and ω = 50, see
Figs. 2.4(c) and 2.4(d) for snapshots of these systems. The filled circle cor-
responds to the monodisperse system (ω = 1) with the same ν. The number
of equidistant bins used is 100.

retical models [114, 117, 118], and can often be a good approximation to

physically realistic size distributions. Uniform size and uniform volume dis-

tributions are selected in order to check the speed-up of the multilevel grid

for polydisperse systems with relatively few small particles (uniform size), or

rather many small particles (uniform volume). The uniform volume distribu-

tion approximates the experimentally obtained size distribution of a concrete

mixture [113].

Figure 3.5 shows the particle systems with different particle size distribu-

tions for N = 125001 and volume fraction (the ratio between the volume of

the particles and the volume of the system) ν = 0.62. Note, that particles of

the monodisperse case are ordered (near to walls), since the volume fraction

is above 0.55 [116, 119, 120].

Experimental setup

The systems are prepared in two stages. Starting from a random uniform

distribution of points in a cubical box, the radius of the particles grows

linearly with time. We use non-overlapping spheres [81], with an Event-

Driven code [67], whose growing rate conforms to and conserves a prescribed

size distribution. Initial velocities are set randomly in order to keep the

system dynamic and random, for details see Ref. [67]. When the target
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volume fraction is reached, the growth process is stopped.

With the final configuration from the first step, the simulation switches

to the relaxation stage with “soft” particles, i.e., particles move according

to interparticle forces [85]. The linear elastic normal contact force model is

used [84], which leads to a certain contact duration. The integration time

step is computed according to the smallest contact duration [84,121]. At the

beginning of this stage the velocities of the particles are scaled in a way that

a collision between two of the smallest particles would reach an average max-

imum overlap of one percent of their radius. We let the simulations run for

a few collisions per particle for equilibration before making the measurement

of the performance, in order to have contacts (overlaps) between particles in

the system.

Experimental results

To verify the prediction of Eq. (2.7) we perform two series of experiments,

one for varying number of hierarchy levels, and one for different numbers

of particles. In the first series, we want to confirm that the multiplier next

to N is L(m + K). For this, using a fixed N , we calculate the value of m

for each L ∈ [1, 50] utilizing the method given in 2.1.5, and measure the

total CPU time of simulations where the hierarchical grid is used with L

levels, and the cell sizes sh are computed in accordance with Eq. (2.6). To

present the total CPU time, we use the slowdown factor SF, that is the total

CPU time divided by the smallest CPU time for a given system. In Fig.

2.5 the results of this experiment are shown for systems with uniform size

(US) and uniform volume (UV) distributions with N = 125001, ν = 0.62

and ω = 50. The analytical prediction (2.7) is also plotted with K = 0.3,

scaled in such a way that SF = 1 corresponds to the minimum of the right

hand side of Eq. (2.7). Note that even though the prediction (2.7) is for

CPU time spent only for contact detection, TCD, the total CPU time for

fixed N also scales as TCD. This is because the CPU time spent in the force

calculation and integration does not depend on the grid parameters used.

From the experimental results shown in Fig. 2.5 it can be seen that: (i)

for the system with uniform size distribution the optimal number of levels

is L = 3, and the speed-up compared to the Linked-Cell method (L = 1)

is about 30%, so it does not present a major advantage; (ii) in the case of

uniform volume distribution the fastest CPU time is achieved using L = 8,

and the speed-up over the Linked-Cell method (L = 1) is of about 220 times.

This brings us to the conclusion that for particle systems with relatively

few small particles, the use of hierarchical grid algorithm is not essential;

however, for the systems with rather many small particles the hierarchical

grid algorithm is highly advantageous. Furthermore, it can be seen that the
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(a) (b)

(c) (d)

Figure 2.4: Particle systems with N = 125001 and ν = 0.62 with (a)
monodisperse size distribution, (b) bi-disperse size distribution, ω = 10,
where the volume of all small particles is almost (±2%) equal to the volume
of all big particles, (c) uniform size distribution, ω = 50, and (d) uniform
volume distribution, ω = 50. Colour is by relative size for the cases (c) and
(d).

analytical prediction (2.7) is in very good agreement with the experimental

results. We have also performed the same type of experiment for systems

with different volume fractions, namely, ν = 0.1 and ν = 0.4, and in all these

cases the prediction matches very well with the experimental results [88].

In the second series of experiments we confirm that the CPU time spent

for contact detection scales linearly with the number of particles. Figure

2.6 shows the total CPU time relative to the monodisperse case, T rel. Poly-

disperse systems with uniform volume distribution are considered, since it

was shown above that for uniform size distributions the use of hierarchical
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grid algorithm is not essential. The results for bi-disperse systems are also

shown, with L = 2 and cell sizes equal to the diameters of the each kind

of particles. It can be seen that the CPU time scales as O(N), since Trel

is approximately constant (±10%) for each type of system, and because the

Linked-Cell method for monodisperse particles is O(N). Secondly, the CPU

time is close to the monodisperse case (T rel = 1), and the largest difference is

about 50% in the polydisperse case with ω = 10. Furthermore, the CPU time

decreases with increasing ω at constant volume fraction. This is since the

mean free path of the system decreases with ω, which determines the number

of contact neighbors found, hence the computation time. It must be noted

that for large ω we cannot create representative samples with few particles,

so we cannot compare all the systems for every N used in the monodisperse

case.
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Figure 2.5: Slowdown factor for different numbers of levels for systems with
N = 125001, ν = 0.62 and ω = 50 with uniform volume (UV) and uniform
size (US) distributions. The prediction of Eq. (2.7) is used with K = 0.3
for plotting solid lines. Note that the data can be obtained only for integer
values of L.

2.1.5 Summary and Conclusions

A multilevel algorithm for contact detection in systems with arbitrarily poly-

disperse objects’ sizes was developed. DEM simulations were carried out to
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Figure 2.6: The total CPU time scaled by the total CPU time of a monodis-
perse system with the same number of particles and volume fraction, simu-
lated for the same number of iterations. We show results for bi-disperse (Bi)
and polydisperse uniform volume (Poly) size distributions. Extremely wide
size distributions cannot be properly realized for too small N .

assess the performance of the algorithm, which contains as adjustable param-

eters the number of hierarchy levels and the cell sizes at each level. A method

to find the optimal parameters for an arbitrary polydisperse size distribution

of objects was suggested and confirmed by numerical experiments. With the

optimal parameters our simulations can run orders of magnitude faster than

when using the (single level) Linked-Cell method. With this algorithm we

are able to simulate objects which have large size ratios with almost the same

computational time as in the monodisperse case. With parameters selected

using our method the performance of the algorithm scales linearly with the

number of particles for any width of the size distribution tested. Our work

opens the door to simulate realistic polydisperse systems, making possible a

complete new range of simulations.

Having solved the problem of fast contact detection for largely different

particle sizes, the challenge due to strongly different time-scales (contact

durations) of small and large particles remains: the smallest particles are

critical, since they are the fastest to react / accelerate given the same force.

In a future study, we will build on the observation, see Fig. 2.3, that the

smallest particle size in the US case is smaller than in the UV case, which
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is smaller than the bi-disperse case [27]. We will propose equivalent bi-

disperse systems that have the same equation of state as polydisperse ones,

but have a narrower size-distributions, including larger minimal particles.

These equivalent bi-disperse systems involve a larger minimal time-scale and

are thus (at least computationally) advantageous.

Appendix

Calculation of m(L,PSD)

Assume that particles are sorted by size in increasing order, so that ri > rj
for i > j. We iteratively increase the value of m by δm ≪ 1 starting from

zero. Then for every m we distribute particles by levels as following: Starting

with the first level, i.e., h = 1, and from the smallest particle, i.e., i = 1, we

allocate the i-th particle at level h. We increase the level index h if for some

i the number of particles per cell at current level exceeds m:

Nh(i)

N c
h(i)

> m, (2.8)

where Nh(i) is the number of particles already allocated at level h (including

the particle i) and N c
h(i) is the number of cells at level h. The number of cells

N c
h(i) is calculated from the size of particle i, e.g., for a d-dimensional cube

with size of S, N c
h = [S/(2ri)]

d. This process is finished when all particles are

allocated. Therefore, we obtain the number of levels for a given m. Different

m can lead to the same L value. In this case, we select m(L,PSD) with

the minimum value, so the last level contains more particles. For numerical

experiments in section 2.1.4 the use of δm = 10−3 for the system with ω = 50

with uniform volume distribution and L = 7 led to about ±2% variation of

the number of particles per cell at different levels.
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2.2 Performance analysis§

The objective of this section is to find the optimum cell-sizes and the num-

ber of hierarchy levels for contact detection algorithms based on a versatile

hierarchical grid data structure, for polydisperse particle systems with arbi-

trary size distribution of radii. These algorithms perform as fast as O(N)

for N particles, but the prefactor can be as large as N for a given system,

depending on the algorithm parameters chosen, making a recipe for choosing

these parameters necessary. We estimate theoretically the calculation time

for two distinct algorithms for particle systems with various packing frac-

tions, where the sizes of the particles are modelled by an arbitrary probability

density function.

We suggest several methods for choosing the number of hierarchy levels

and the respective cell-sizes, based on truncated power-law radii distributions

with different exponents and widths. The theoretical estimations are then

compared with simulation results for particle systems, with up to one million

particles.

The proposed recipe for selecting the optimal hierarchical grid parameters

allows to find contacts in arbitrarily polydisperse particle systems as fast as

the commonly-used Linked-Cell method in purely monodisperse particle sys-

tems, i.e., extra work is avoided in presence of polydispersity. Furthermore,

the contact detection time per particle decreases with increasing polydispersity

or decreasing particle packing fraction.

2.2.1 Introduction

Collision detection is a basic computational problem arising in systems that

involve spatial interactions among many objects such as particles, granules

or atoms in many diverse fields such as robotics, computer graphics, physical

simulations, cloth modelling, computational surgery, crowd simulations, etc;

which all have rather short-ranged interactions in common. The particle sys-

tems modelling techniques like the Discrete Element Method, (Event-Driven)

Molecular Dynamics, Monte-Carlo simulations and Smoothed Particle Hy-

drodynamics, to name a few, play an important role for physically based

simulations of powders, granular materials, fluids, colloids, polymers, liquid

crystals, proteins and other materials. The performance of the computa-

tion relies on several factors, which include the physical model, on the one

hand, and the contact detection algorithm used, on the other. The contact

§Based on D. Krijgsman, V. Ogarko, and S. Luding, “Optimal parameters for a hi-
erarchical grid data structure for contact detection in arbitrarily polydisperse particle
systems.” Accepted in Comp. Part. Mech., 2014. The contribution of the first two authors
to this work was equal in relation to the performance analysis and writing the manuscript.
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detection of pairwise interactions between particles can be one of the most

time-consuming tasks in calculations when no suitable contact detection al-

gorithm used. Because the number of objects treated in simulations is often

large, contact detection can become a computational bottleneck. For this

reason, the development of efficient contact detection algorithms is crucial to

the overall performance of simulations.

With the straightforward “all-to-all” approach each pair of particles is

checked for collision. This requires O(N2) collision checks for N particles,

which is computationally prohibitively expensive. More efficient contact

detection methods use a two-phase approach to reduce the computational

costs [122]. The problem of contact detection is then split into two phases:

a broad phase and a narrow phase. The broad phase determines pairs of ob-

jects that might possibly collide. It is frequently done by dividing space into

regions and testing if objects are close to each other in space. Because objects

can only intersect or interact if they occupy the same region of space, the

number of pairwise tests can be reduced to O(N). The pairs that “survive”

the broad phase test are passed to the narrow phase, which uses specialized

techniques to test each candidate pair for a real contact [123–125]. The latter

is trivial for spherical particles, where one has to compare the distance be-

tween particle centers with the sum of particle radii, and can be very costly

for particles of arbitrary shape. For example, if there are S surface points

per particle, a naive scheme may take order O(S2) operations. More sophis-

ticated schemes, such as the discrete function representation scheme, require

on average O(S1/2) operations [123]. Since the broad phase basically acts as

a filter for the narrow phase, choices for the two algorithms can usually be

made independently.

We distinguish three types of broad phase contact detection methods/data

structures: (i) based on coordinate sorting (or spatial sorting), e.g., sweep

and prune, (ii) based on Delaunay triangulation, and (iii) based on spatial

subdivision, e.g., (hierarchical) grids (or cell-based methods) and trees (e.g.,

Octrees in 3D and Quadtrees in 2D). Below we briefly describe the above

methods and their advantages and weaknesses, while for the detailed analysis

see Refs. [48, 87, 101, 106, 107, 122, 126] and references therein.

Contact detection algorithms based on coordinate sorting imply maintain-

ing particles in a sorted structure along each axis [127, 128]. These methods

are not sensitive to the particle sizes (i.e., radii for spherical particles) and

consume O(N) memory; but they require sorting, which can range in effort

from O(N) to O(N2), depending on the sorting method used, volatility of

the sorting lists over time and spatial distribution of objects.

The Delauney triangulation data structure consumes O(N) memory and

it is not sensitive to the particle sizes when weighted triangulation is used
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[129]. However, it has the disadvantage that building (or re-building) the

tree has a high computational cost, especially for moving particles. The use

of flipping algorithms for maintaining and only incrementally updating the

triangulation allows decreasing the overhead of re-building the triangulation

[87], but unfortunately in three-dimensional system flipping can get “stuck”

[130]. Furthermore, its parallelization and maintaining of periodic boundary

conditions (which are frequently used in particle simulations) is complicated.

The tree data structure for contact detection does not allow to choose

cell size at every level of hierarchy independently, therefore, leaving no room

for its optimization for various distribution of particle sizes [108, 131, 132].

Moreover, accessing neighbour sub-cubes in the tree is not straightforward

since they can be nodes of different tree branches; no more details are given

here since this method is not used any further.

The single-level grid-based contact-detection methods, like for example

the Linked-Cell method [95, 96, 133], are straightforward, widely used and

perform well for similarly sized objects. The problem of such methods is

their inability to efficiently deal with particles of greatly varying sizes [99]. If

the particles within the system are polydisperse, the cell size of a grid would

have to conform to the largest particle size. Then many small particles may

occupy the same cell which increases the number of pairwise checks, and

therefore affects the computational performance a lot.

This size problem can effectively be addressed by the use of multi-level

hierarchical grids [89, 99, 101–105, 122]. Particles are positioned at different

levels (according to their size) and collision checks are performed in two steps:

(i) within the level of insertion (which is usually performed in the same way

as in the Linked-Cell method), and (ii) cross-level checks. The cell size at

each hierarchy level can be selected independently, therefore one can adapt

grid cells according to a given particle size distribution. Several algorithms

based on the hierarchical grid data structures were employed, which differ in

the way in which the above two steps are implemented.

The hierarchical grid data structure performs O(N) for arbitrary poly-

disperse system and uses O(N) memory. This data structure is robust, can

be easily parallelized, allows straightforward handling of periodic boundary

conditions and can easily deal with unbounded systems. Moreover, it pro-

vides O(1) access to the particle data and to all particle nearest neighbours,

and, more importantly, allows for O(1) particle insertion and removal from

the system, which is often needed in modelling of dynamical systems, like for

example hopper or granular flows. Finally, it provides a natural multi-scale

framework as particles from different hierarchy levels usually have different

physical properties besides their size. For example, small particles are often

fast (i.e., have higher velocity/energy) and big ones are slow, so they can
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have different time scales at different hierarchy levels. These are the reasons

why we chose the hierarchical grid as our primary data structure for con-

tact detection and analyse how to optimize it for fastest contact detection in

widely polydisperse particle mixtures.

The hierarchical grid data structure has many parameters to configure,

i.e., an arbitrary choice of the number of hierarchy levels plus an arbitrary

choice of the cell size at every level of hierarchy (the cell sizes are, as conven-

tion, increasing with increasing level of hierarchy). The choice of parameters

affects the number of contact checks and the overhead of the algorithm, i.e.,

the number of times the cells are accessed. Due to the many parameters

involved, finding the optimal ones, i.e., those which minimize an average

number of calculations, T , is a non-trivial problem. This involves multidi-

mensional optimization where the optimum dimension is unknown. We are

not aware of any study where this question was fully addressed, except for

the study by Ogarko et al. [89] in which the authors tried to address this

problem by providing a hypothesis on the optimal choice of the hierarchical

grid parameters, and then comparing their theoretical predictions with the

simulation results.

In this study we theoretically analyse the performance complexity of the

hierarchical grid data structure for contact detection in polydisperse par-

ticulate systems. We provide detailed analysis on the average number of

calculations, T , for two distinctive algorithms based on the hierarchical grid

data structure as applied to polydisperse systems of spherical particles with

a power-law distribution of radii, for various power-law exponents, and for

various particle volume fractions. We compare several ways (methods) of

choosing the hierarchical grid parameters (i.e., the number of levels and the

cell sizes at each level) and present the optimal parameter choice. We provide

instructions on which hierarchical grid contact detection algorithm should be

used and how to choose the optimal parameters for a given arbitrary distri-

bution of particle radii. Finally, we compare our theoretical predictions with

simulation results for realistic particle systems generated using a Molecular

Dynamics code [134].

In the next section we outline the two different algorithms based on the

hierarchical grid data structure that are used in this study. We then analyse

the performance of the described algorithms and derive general estimates

for the number of contact checks per particle in section 2.2.3. section 2.2.4

presents the types of particle size distributions considered in this study. In

section 2.2.5 we compare several ways of choosing the hierarchical grid pa-

rameters and check our analytical estimates by comparing them with real

discrete particle simulations, using the MercuryDPM code [92]. Finally, the

results are summarized and discussed in section 2.2.6.
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2.2.2 Algorithm

The hierarchical grid (HGrid) algorithm is designed to determine all pairs

of particles, in a set of N particles in a d-dimensional Euclidean space, that

overlap or interact. The split between local particle geometry and global

neighbour searching is achieved through the use of a bounding volume. This

way, the contact detection algorithm is able to treat all particle shapes in the

same, simplified way. While any bounding volume can be used, the sphere is

chosen for this implementation since it is represented simply by a position of

its center ~xp and its radius rp, and is rotationally invariant. For differently-

sized spheres, rmin and rmax denote the minimum and the maximum particle

radius, respectively, and ω = rmax/rmin is the extreme size ratio.

The algorithm consists of two phases. In the first “mapping phase” all the

particles are mapped into a hierarchical grid-space. In the second “contact

detection phase” the potential contact partners are determined for every

particle in the system. This list of potentially contacting particle pairs is

the output of the algorithm. With this list one can perform geometrical

intersection tests to check if particles are really in contact, i.e., if they overlap.

However, for non-spherical particles, this is beyond the scope of the present

algorithm

Requirements for the algorithm are:

• All pairs of particles that are in contact must be in the list of potential

contacts, i.e., the algorithm is not allowed to miss any pair.

• The list of pairs of particles must be unique, i.e., no pair of contacts

may appear twice in the list.

• The list of pairs of particles should be as small as possible.

• The computational time of the algorithm should be as small as possible,

and thus must scale linearly with the number of particles, i.e., O(N).

• The memory consumption of the algorithm must be proportional to

the number of particles, i.e., O(N).

Mapping phase

The d-dimensional HGrid is a set of L regular grids with different cell sizes.

Every regular grid is associated with a hierarchy level h ∈ [1, L], where L

is the integer number of hierarchy levels. Each level h has a different cell

size sh ∈ R, where the cells are d-dimensional cubes. Grids are ordered with

increasing cell size so that h = 1 corresponds to the grid with smallest cell

size, i.e., sh < sh+1. For a given number of levels and corresponding cell sizes,
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the hierarchical grid-cells are defined by the spatial mapping, M , of points

~x ∈ R
d to a cell at specified level h:

M : (~x, h) 7→ ~c = (⌊x1/sh⌋ , ..., ⌊xd/sh⌋ , h), (2.9)

where ⌊x⌋ denotes the floor function.¶ The first d components of a (d + 1)-

dimensional vector ~c represent cell indices (integers), and the last one is the

associated hierarchy level.

It must be noted that the cell size of each level can be set independently,

in contrast to contact detection methods which use a tree structure for parti-

tioning the domain [101,108,131], where the cell sizes are taken as double (or

triple) the size of the previous lower level of hierarchy, hence sh+1 = 2sh (or

3sh). The flexibility of independent sh allows one to select the optimal cell

sizes, according to the particle size distribution, to improve the performance

of the contact detection algorithm.

Using the mapping M , every particle p can be mapped to its cell:

~cp = M(~xp, h(p)), (2.10)

where h(p) is the level of insertion to which particle p is mapped to. The

level of insertion h(p) is the lowest level, where the cell is big enough to

contain the particle p:

h(p) =

{

min
1≤h≤L

h : 2rp ≤ sh

}

. (2.11)

In this way the diameter of particle p is smaller or equal to the cell size at the

level of insertion and therefore the classical Linked-Cell method [96] can be

used to detect contacts among particles within the same level of hierarchy.

Figure 2.7 illustrates a 2-dimensional two-level grid for the special case

of a bi-disperse system with rmin = 3/2, size ratio ω = 8/3, and cell sizes

s1 = 3, and s2 = 8. Since the system contains particles of only two different

sizes, two hierarchy levels are sufficient here.

Contact detection phase

After all particles are mapped to their cells, the contact detection phase is

able to calculate all potential contacts. The contact detection is performed by

looping over all particles p and searching for possible contacts with particles

at the same hierarchy level h and for possible contacts at different hierarchy

levels.

Searching for contacts at the same hierarchy level is performed using the

¶The largest integer not greater than x.
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Figure 2.7: A 2-dimensional two-level grid for the special case of a bi-disperse
system with cell sizes s1 = 2rmin = 3 (a.u.), and s2 = 2rmax = 8 (a.u.). The
first level grid is plotted with dashed lines while the second level is plotted
with solid lines. (Top) The Top-Down case: The radius of the particle B
is rB = 4 (a.u.) and its position is ~xB = (10.3, 14.4). Therefore, according
to Eqs. (2.10) and (2.11), particle B is mapped to the second level to the
cell ~cB = (1, 1, 2). The cross-level cells that have to be checked for possible
contacts with particle B range from (1,3,1) to (5,6,1), and are marked in
grey. (Bottom) The Bottom-Up case: A particle C is mapped to the cell
~cC = (4, 4, 1). The cross-level cells that have to be checked for possible
contacts with particle C range from (1, 1, 2) to (2, 2, 2), and are marked
in grey. The particles located in the marked (grey) cells are coloured dark
(green).

classical Linked-Cell method [96]. The search is done in the cell where p is
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mapped to, i.e. ~cp, and in its neighbouring (surrounding) cells. Only half

of the surrounding cells are searched, to avoid testing the same particle pair

twice.

Searching for contacts at other hierarchy levels can be performed in two

ways. The first one is the Top-Down method, illustrated in Fig. 2.7(top). In

this method one searches for potential contacts only at levels j lower than

the level of insertion: 1 ≤ j < h. This implies that the particle p will be

checked only against smaller particles, thus avoiding double checks for the

same pair of particles. The second method, the Bottom-Up method, sketched

in Fig. 2.7(bottom), does exactly the opposite. Here potential contacts are

only searched for at hierarchy levels j higher than the level of insertion:

h < j ≤ L. This implies that the particle p will be checked only against

larger particles, thus avoiding double checks for the same pair of particles.

The details for both methods are actually quite similar. The algorithm to

find potential contacts for particle p at hierarchy level h with other particles

at hierarchy level j is as follows:

1. Define the cells ~c start and ~c end at level j as

~c start := M(~x −
c , j), and ~c end := M(~x +

c , j), (2.12)

where a search box (cube in 3D) is defined by ~x ±
c = ~xp ± β

∑d
i=1 ei,

with β = rp + sj/2 and ei is the standard basis for R
d. Any particle

q from level j, with center ~xq outside this box can not be in contact

with particle p, since the diameter of the largest particle at this level

can not exceed sj.

2. The search for potential contacts is performed in every cell ~c = (c1, ..., cd, j)

for which

c start
i ≤ ci ≤ c end

i for all i ∈ [1, d], (2.13)

where ci denotes the i-th component of vector ~c. In other words, each

particle which was mapped to one of these cells is tested for contact

with particle p.

In the Top-Down method, the small cells, defined in Eq. (2.13), which

are almost fully covered by big particles (i.e., no small particles can reside

in those cells) can be excluded from the contact search, like for example the

cells (3, 4, 1) and (3, 5, 1) in Fig. 2.7(top). However, we do not know how

to identify such cells efficiently, and therefore, have not implemented this

optimization.
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2.2.3 Performance analysis

The algorithm is applicable to arbitrary systems, however, to estimate the

performance of the algorithm, we restrict ourself to systems that are homo-

geneous in time and in space. In such a system accurate estimates can be

obtained and optimal HGrid parameters can be found theoretically.

To analyse the algorithm two time consuming effects are considered:

1. T cd (collision detection effort) The number of possible contacts that

have to be examined more closely. The output of the HGrid-algorithm

is a number of possible contacts. Optimum HGrid parameters lead to a

low number of possible contacts, because for all these possible contacts

a computationally expensive exact geometrical intersection test has to

be performed to check if the particles really are in contact.

2. T ca (cells access effort) The number of times information is retrieved

from a cell. While the goal of the HGrid is to obtain a list of all possible

contacts, it comes at a (computational) cost. This cost is estimated by

the number of times information is obtained from a single cell.

To calculated estimates for T cd and T ca, consider a system of N polydisperse

particles with:

• Random positions ~xp within a d-dimensional box at packing fraction ν

(without excluded volume effects).

• Random radii between rmin and rmax = ωrmin, according to a nor-

malized probability density function f (r) (for more details see section

2.2.4).

With these properties the expected mean volume per particle Vp can be

calculated using:

Vp = Vd

∫ rmax

rmin

rdf (r) dr, (2.14)

where Vd is the volume of a d-hypersphere of unit radius, i.e., V2 = π and

V3 = (4/3)π. So the total volume V of all particles becomes:

V = NVp. (2.15)

Given this volume and the packing fraction ν, the size A of a d-dimensional

box can be calculated as:

A =

(

V

ν

)
1

d

. (2.16)
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Now define Nh as the expected number of particles at level h and N c
h as the

number of cells at this level:

Nh = N

∫

1
2
sh

1
2
sh−1

f (r) dr, (2.17)

N c
h =

(

A

sh

)d

= N
Vp

ν

(

1

sh

)d

, (2.18)

where s0 = 2rmin and sL = 2rmax. So the expected average number of

particles per cell at level h, mh, becomes:

mh =
Nh

N c
h

=
νsdh
Vp

∫

1
2
sh

1
2
sh−1

f (r) dr. (2.19)

It must be noted that the number of particles per cell mh is independent of

the total number of particles N .

As described in section 2.2.2, the algorithm checks for possible contacts

at the level of insertion and at the other levels. For both types of contacts

estimates of the number of possible contacts and the number of cells that

have to be accessed for are made in the following two sections.

Level-of-insertion search

At the level of insertion h, Nh particles are randomly distributed over N c
h

cells. Therefore, the number of particles in a specific cell at this level (Xh) is

binomially distributed with Nh the number of trials and 1/N c
h the probability

of success. With this assumption the expected number of potential contacts

within a single cell is obtained (see Appendix). The number of cells that have

to be processed is just equal to the number of cells at this level. Therefore,

we obtain:

T cd1
h =

1

2
N c

h

Nh

N c
h

Nh − 1

N c
h

=
1

2
mh (Nh − 1) ≈ 1

2
mhNh, (2.20)

T ca1
h = Nh, (2.21)

where in the last step of Eq. (2.20) it is assumed that the number of par-

ticles at level h is much greater than unity. For possible contacts between

neighbouring cells one just has to square the expected numbers of particles

in a cell, mh, and multiply it by the number of neighbouring cells that have
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to be checked, nc, and the total number of cells at the current level, N c
h:

T cd2
h = ncN

c
hm

2
h = ncNhmh, (2.22)

T ca2
h = ncN

c
hmh = ncNh, (2.23)

with nc =
1
2

(

3d − 1
)

, i.e., nc = 4 in 2D and nc = 13 in 3D. We obtain that

T cd1
h , T ca1

h , T cd2
h and T ca2

h are all linearly dependent on the number of particles

Nh at level h.

Cross-level search

To estimate the number of potential contacts for the cross-level search, first

an estimate of the number of cross-cell checks between particles at hierarchy

level j 6= h with particles at level h has to be made. In Appendix, the number

of cells at level j that have to be scanned for potential contacts with particles

at level h is found to be:

b (j, h) =

∫

1
2
sh

1
2
sh−1

(

2 r
sj
+ 2
)d

f (r) dr

∫

1
2
sh

1
2
sh−1

f (r) dr

, (2.24)

with (expected) lower and upper limits:

blower (j, h) =

(

2 +
sh−1

sj

)d

, (2.25)

bupper (j, h) =

(

2 +
sh
sj

)d

. (2.26)

The expected number of cross-level checks and the number of cells that have

to be accessed within a cross-level check can easily be calculated.

For the Top-Down algorithm:

T cd3
h = Nh

h−1
∑

j=1

mjb (j, h) , (2.27)

T ca3
h = Nh

h−1
∑

j=1

b (j, h) , (2.28)
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and for the Bottom-Up algorithm:

T cd3
h = Nh

L
∑

j=h+1

mjb (j, h) , (2.29)

T ca3
h = Nh

L
∑

j=h+1

b (j, h) . (2.30)

Just as for the level-of-insertion search, we obtain that T cd3
h and T ca3

h are

linearly dependent on the number of particles Nh at level h, for both algo-

rithms.

Total computational work

The total computational work per level can now be calculated by just sum-

ming of its components.

For the Top-Down algorithm:

T cd
h = Nh

(

(

1

2
+ nc

)

mh +
h−1
∑

j=1

mjb (j, h)

)

, (2.31)

T ca
h = Nh

(

1 + nc +
h−1
∑

j=1

b (j, h)

)

, (2.32)

and for the Bottom-Up algorithm:

T cd
h = Nh

(

(

1

2
+ nc

)

mh +

L
∑

j=h+1

mjb (j, h)

)

, (2.33)

T ca
h = Nh

(

1 + nc +
L
∑

j=h+1

b (j, h)

)

. (2.34)

Note that both T cd
h and T ca

h are linear in the expected number of particles at

level h, Nh, for both methods, because it was shown in Eq. (2.19) that mh

is independent of the number of particles. This means that the complexity

of the total algorithm is linearly dependent on the total number of particles

N , for any number of levels L used. However, depending on the packing

fraction and the particle radii distribution function a huge pre-factor in front

of N , even larger than N , can appear when choosing inappropriate HGrid

parameters (i.e., cell sizes and number of hierarchy levels).

To find the optimal number of hierarchy levels and their cell-sizes, an esti-

mate of the required computational time that is associated with both types of

effects, i.e., collision detection work and cell access work, is required. There-
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fore, the ratio K of time required for a single geometric contact detection

over the time required to retrieve information from a cell is introduced. From

simulations it is found to be close to K = 0.2 for spherical particles and not

dependent on the particle volume fraction [88]. Therefore, an estimate of the

total time required for a contact detection step is found to be:

T =

L
∑

h=1

(

T cd
h +KT ca

h

)

. (2.35)

This result is general in the sense that it describes every possible particle

system. However to get a feel for the optimal HGrid parameters, we limit

ourself to a single type of particle size probability distribution function.

2.2.4 Particle size probability distribution functions

In order to estimate the performance of the HGrid-algorithm, the distri-

bution of particle radii has to be known. To account for all possible radii

distributions the previous section used a normalized probability distribution

function f (r). The probability to find a particle with radius between r and

r + dr is equal to f (r) dr. This requires that:

∫ ∞

0

f (r) dr = 1. (2.36)

No general strategy has been found to determine the optimal HGrid-parameters

for a general particle radii probability distribution function. Therefore,

throughout the remainder of this paper a (truncated) power law size dis-

tribution with a constant exponent α is used:

f (r) = Crα for rmin ≤ r ≤ rmax, (2.37)

with

1

C
=

∫ rmax

rmin

rαdr. (2.38)

Different values of α have different physical significance, for three-dimensional

systems they represent (see also Fig. 2.8):

• α = 0: Uniform size (rectangular) distribution, i.e., same number of

bigger as smaller particles in intervals dr.

• α = −2: Uniform area distribution, i.e., the total surface area of parti-

cles with radii between r1 and r1+ dr is equal to the total surface area

of particles with radii between r2 and r2 + dr, etc.
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Figure 2.8: Probability density function, Eq. (2.37), for different values of α
with rmax/rmin = 3.

• α = −3: Uniform volume distribution, i.e., the total volume occupied

by particles with radii between r1 and r1 + dr is equal to the total

volume occupied by particles with radii between r2 and r2 + dr, etc.

In general, α > 0 (not used further) implies that there are more bigger

particles whereas α < 0 implies that there are more smaller particles, while

α = 0 corresponds to the same number of small and big particles.

2.2.5 Cell-sizes distribution

Having defined the HGrid algorithm, the last thing to do is to decide about

the number of hierarchy levels L and the sizes associated with these levels sh.

In this section four different cell-size distributions are introduced, discussed

and compared in order to find optimal HGrid parameters. In the end, the

predicted performance of the algorithm is compared against real discrete

particle method (DPM) simulations.

Single-level grid

As a simple reference, we consider the case of a single hierarchy level (L = 1),

i.e., the Linked-Cell method, and compute the total work T as a function

of volume fraction ν, size ratio ω, exponent of the size distribution α and

dimension d. Due to L = 1, we have N1 = N and s1 = sL = 2rmax = 2ωrmin.

Using the definition of the number of particles per cell mh from Eq. (2.19)
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and inserting the average particle volume of Eq. (2.14) we obtain

m1 = (2ωrmin)
d ν

Vd

∫ ωrmin

rmin
f (r) dr

∫ ωrmin

rmin
rdf (r) dr

. (2.39)

Now substituting the particle radii probability function of Eq. (2.37) and

evaluating the integrals results into (for α 6= −1 and α 6= −1− d)

m1 = (2ω)d
ν

Vd

1 + d+ α

1 + α

ω1+α − 1

ω1+d+α − 1
. (2.40)

We are interested in what happens when the polydispersity ω increases, and

thus take the limit of ω going to infinity:

lim
α→∞

m1 =















2d ν
Vd

1+d+α
1+α

α > −1

−2d ν
Vd

1+d+α
1+α

ω−1−α −1− d < α < −1

2d ν
Vd

1+d+α
1+α

ωd α < −1− d

. (2.41)

Eq. (2.41) shows that for α < −1 the number of particles per cellm1 increases

with increasing ω. This means that the efficiency of the Linked-Cell algorithm

is heavily dependent on ω. This result is also shown in figure 2.9, where the

required computational effort per particle is plotted for different exponents

α. All curves except for α = 0 diverge. In general this is true for α > −1,

meaning that the single-level approach is only appropriate for these values

of α. In the following sections different distributions of the HGrid cell-sizes

using multiple hierarchy levels are tested to find parameters that lead to

minimal computation effort.

Multi-level cell-size distribution

Linear cell-size distribution The easiest method to define the HGrid

cell-sizes is to use a linear distribution:

sh = 2rmin

(

1 + h
ω − 1

L

)

. (2.42)

Using this cell-size distribution the total work T as a function of the number

of HGrid levels L can be calculated. The number of levels where the required

computational effort is minimal is chosen as the optimal level and is denoted

by L∗. The minimal work T and the optimal number of levels L∗ are shown

in figure 2.10 for uniform size (α = 0) and uniform volume (α = −3) particle

size distributions. Comparing the work in figure 2.10(a) with the work for the

Linked-Cell method (figure 2.9), it becomes immediately clear that the HGrid

algorithm reduces the work significantly. For α = 0 the improvement is less
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Figure 2.9: Computational effort of the HGrid algorithm using a single-
level grid (i.e., the Linked-Cell method) as a function of the width of the
particle size distribution, ω, for various exponents α using d = 3, ν = 0.7
and K = 0.2.

significant, but still the computational effort is reduced by approximately

60%, while for α = −3 a speed-up of several orders of magnitude is achieved.

Furthermore, while for α > 0 the Bottom-Up algorithm works slightly better,

for α < 0 the Top-Down algorithm is preferred (data for other values of α not

shown). However, in figure 2.10(b) the disadvantage of using a linear cell-

size distribution becomes clear. For the α = −3 case, the optimal number of

levels increases significantly with increasing ω. Therefore, a different cell-size

distribution might give better results, as we show in the following sections.

Exponential cell-size distribution To reduce the optimal number of

required levels for the HGrid algorithm an exponential cell-size distribution

is tested. This distribution stems from the hierarchical tree data structure,

where the cell-sizes are usually taken as double the size of the previous lower

level of hierarchy. This can be generalized by taking cell-sizes which are

defined as

sh+1 = qsh, (2.43)

with q > 1, to make sure that higher level cell-sizes are larger. If one sub-

stitutes the boundary conditions (s0 = rmin and sL = ωrmin), the system of
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Figure 2.10: Computational effort and optimal number of levels for the HGrid
algorithm with a linear cell-size distribution as a function of the width of the
particle size distribution, ω, for various exponents α, for both the Top-Down
and the Bottom-Up algorithms using d = 3, ν = 0.7 and K = 0.2.

equations can be solved analytically:

sh = 2rminω
h
L . (2.44)

As for the linear cell-size distribution, the total work as a function of the

number of HGrid levels is calculated and the optimum values are selected and

plotted in figure 2.11 for different values of α and ω. For α = 0 the Bottom-

Up algorithm works better, while for α = −3 the Top-Down algorithm is

preferred. Data for other values of α (not shown here), indicate that in

general for α ≤ −2 the Top-Down algorithm is preferred. The optimal

number of levels is not that strongly dependent on ω as the linear cell-size

distribution, when the Top-Down approach is used. However, there is still

a trend in that the optimal number of levels increases with increasing ω for

the Bottom-Up algorithm.

Constant ratio of the number of particles per cell Another approach

originates from the idea that it may be beneficial to keep the number of

particles per cell fixed at every hierarchy level [89]. This simple idea can

easily be extended to a rule where the ratio of particles per cell over two

adjacent levels is fixed

mh+1 = qmh. (2.45)

This implies that for q < 1 the number of particles per cell is decreasing with

increasing a hierarchy level, for q > 1 increasing, and for q = 1 constant.

Using the definition of mh from Eq. (2.19) we can rewrite Eq. (2.45) as
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Figure 2.11: Computational effort and optimal number of levels for the HGrid
algorithm with an exponential cell-size distribution as a function of the width
of the particle size distribution, ω, for various exponents α, for both the Top-
Down and the Bottom-Up algorithms using d = 3, ν = 0.7 and K = 0.2.

follows:

sdh+1F (r)
∣

∣

∣

sh+1/2

sh/2
= qsdhF (r)

∣

∣

∣

sh/2

sh−1/2
, (2.46)

where

F (r) =

∫

f(r)dr, (2.47)

s0 = rmin and sL = ωrmin. This system of equations can be (at least nu-

merically) solved in terms of sh, once a size distribution function f(r) is

specified.

Using this cell-size distribution we reduce the problem of selecting the

number of levels and their sizes to just choosing the number of levels L and

the ratio of particles per cell for different hierarchy levels q. In Ref. [89]

the hypothesis was given that it is optimal to keep the number of particles

per cell at each level constant, or equivalently using q = 1. To check this

hypothesis the computational effort for different values of q as a function of

the number of levels L is shown in figure 2.12 for a system with the uniform

volume radii distribution (α = −3) using ω = 100, ν = 0.7, d = 3 and

K = 0.2. We observe that for values for q of 1, 2 and 5 the minima in the

required computation effort are roughly equal. This is more clearly visible in

the inset, where the minimum computational effort is plotted against q. The

optimal value is somewhere between q = 1 and q = 2. The range and number

of different levels, for which the computational effort is acceptable, are much

bigger for q = 1 than for q = 2 and thus it is advised to use q = 1, for the

sake of simplicity. This is also confirmed for different systems parameters

and the Bottom-Up algorithm (data not shown).

Using q = 1, the optimal work and optimal number of levels L∗ is shown
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Figure 2.12: Computational effort of the HGrid algorithm with a cell-size
distribution, where the ratio of the numbers of particles per cell, q, is constant
as a function of the width of the particle size distribution, ω, for different
number of levels L for the Top-Down method using ω = 100, α = −3, d = 3,
ν = 0.7, K = 0.2. In the inset the minimum computational effort is shown
for different values of q.

in figure 2.13. For all values of α the Top-Down algorithm is preferred (data

for other values of α not shown).

Optimal cell-size distribution In order to check if the constant number

of particles per cell method indeed gives a close-to-optimal result, a numeri-

cal optimization method is used to minimize Eq. (2.35) in terms of L and sh
under the conditions that sh+1 ≥ sh, s0 = rmin and sL = ωrmin. This is per-

formed using the MATLAB [135] iterative optimization function “fmincon”.

In this function, a quadratic programming subproblem is solved at each it-

eration, where the Hessian of the Langrangian at each iteration is calculated

using the BFGS algorithm.

The minimal required computational effort T and the optimal number of

levels L∗ for this method are shown in figure 2.14. Note that the results are

quite comparable to that of the constant number of particles per cell method

in figure 2.13.

Comparison of the cell-size distribution functions

In this section the four different cell-size distributions are compared and

best practices are given. From figure 2.9 and the analysis of the single-

level reference case it becomes clear that the HGrid algorithm is essential for
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Figure 2.13: Computational effort and optimal number of levels for the HGrid
algorithm with a cell-size distribution, where the number of particles per
cell is the same at each level as a function of the width of the particle size
distribution, ω, for various exponents α, for both the Top-Down and the
Bottom-Up algorithms using d = 3, ν = 0.7 and K = 0.2.
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Figure 2.14: Computational effort and optimal number of levels for the HGrid
algorithm with an optimal cell-size distribution as a function of the width of
the particle size distribution, ω, for various exponents α, for both the Top-
Down and the Bottom-Up algorithms, using d = 3, ν = 0.7 and K = 0.2.
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α ≤ −1, however, the required optimal parameters are yet to be determined.

The required computational effort for different particle distributions using the

four cell-size distribution functions is shown in figures 2.9-2.14. All of the

used algorithms show a significant decrease in computational effort over the

single-level reference case for all parameters of the particle size distribution

functions. Even more important, all but one (the Bottom-Up algorithm

using a linear cell-size distribution for α = 0) of the test cases show that

for large polydispersities (i.e., high values of ω) the optimal efficiency of the

algorithm is independent on ω. Also the choice of the cell-size distribution

functions is not too important as long as the other HGrid parameters are

chosen optimally. However, in practice it is often difficult or impossible to

calculate optimal parameters in advance, due to changing particles, density or

geometries. Therefore, the sensitivity of the algorithm to different parameters

becomes important.

The required work for all previously discussed cell-size distributions is

shown in figure 2.15 for the case ω = 100 and α = −3 using the Top-Down

algorithm. Again we see clearly that the minima of the four curves are

roughly equal (12.40, 11.57, 11.60 and 11, 58 respectively), however, the lo-

cation of the minimum L∗ and the sensitivity of the work to using suboptimal

parameters differ quite a lot. For the linear cell-size distribution the location

of the minimum is at L∗ = 43 (outside the domain of the figure), which is

significantly higher than for the other distributions. Such a high number

of levels results in additional overhead, especially for particles with complex

geometries, therefore it is not advised to use the linear cell-size distribution.

For the exponential cell-size distribution the minimum is located at L∗ = 4,

however choosing L = 3 or L = 6 already decreases the performance by 43%

and 24% respectively. For the constant number of particles per cell distri-

bution the optimum is located at L∗ = 12 and choosing L = 8 or L = 19

reduces the performance just by 10%. So, it is advised to either use the

constant number of particles per cell or the optimal cell-size distributions,

which is even less sensitive to L 6= L∗.

The values of the cell-sizes sh and the numbers of particles per cell mh

for the different cell-size distributions are shown in figure 2.16. We observe

that in most cases mh < 1 is a good choice.

Comparison with simulations

The estimated computational efficiency of the HGrid algorithm is compared

against DPM simulations to check the assumptions used in the derivation.

Therefore, different packings of particles are generated, using a combination

of event-driven and soft particle methods, for different packing fractions,

particle size distributions and number of particles. More specific, we use
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Figure 2.15: Computational effort of the HGrid algorithm as a function of
the number of levels, L, for different cell-size distributions, using α = −3,
ω = 100, d = 3, ν = 0.7 and K = 0.2.
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Figure 2.16: Cell-sizes and number of particles per cell for the four different
cell-size distribution methods with optimal HGrid parameters, using α = −3,
ω = 100, d = 3, ν = 0.7 and K = 0.2.
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homogeneous and isotropic disordered systems of colliding elastic spherical

particles in a cubical box with hard walls or periodic boundary conditions (for

more detail see Ref. [89]). In MercuryDPM (mercurydpm.org) [92,136,137] a

contact detection step has been run using the optimal cell-size distribution,

where the number of times a cell is accessed and the number of narrow phase

contact detection steps has been counted to compare against the theoretical

predictions.

In figure 2.17 the results are shown for one million particles using different

packing fractions ν and different widths ω of the particle size distribution

function. For lower packing fractions the results are extremely accurate, but

for higher volume fractions the required work in real simulations becomes

slightly higher than expected, however, the overall trend is captured nicely.

The main reasons for this deviation we attribute to the excluded volume and

finite size effects. In the model derivation the particle centers are assumed

to be randomly distributed throughout the domain, whereas in real DPM

simulations particles are not allowed to have large overlaps. This is already

seen in figure 2.7(top), where large particle B is so big that it completely

covers the small grid cells (3, 4, 1) and (3, 5, 1). So the numbers of cells where

the small particles can be distributed is significantly reduced by the presence

of large particles. In the test case for α = −3 and ω = 100 the percentage of

cells on the lowest hierarchy level where two or more particles reside is 2.26%.

For randomly distributed particles (with arbitrary overlaps), however, this

would only be 1.26%, so a significant increase due to the excluded volume

effect. This effect is less pronounced at lower packing fractions because there

is more free space.

The same conclusion holds for different number of particles and different

shapes of the particle size distribution function, as shown in figure 2.18. The

required computational effort is estimated quite nicely. In real DPM simula-

tions for a small number of particles, the real computational work is slightly

less than expected from the model. This is due to the fact that a system of

infinite size is assumed for the model. When only a finite number of particles

is used there will be particles at the boundary of the domain, which will

have less neighbouring particles than particles in the middle of the domain.

When using more particles, the ratio of particles at the boundary compared

to particles in the central part will become lower and thus increasing the

computational effort. This dependence has been tested by creating and test-

ing systems with periodic boundary conditions (solid circles in figure 2.18).

47



Contact detection of arbitrarily polydisperse objects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
5

10

15

20

ν

T
/N

 

 

ω=10
ω=50
ω=100

Figure 2.17: Comparison of the estimated HGrid computational effort (lines)
versus that for a real DPM system (markers) for different packing fractions
and different polydispersities, using α = −3, N = 1000001, d = 3, K = 0.2
and Optimal cell-size distribution.
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Figure 2.18: Comparison of the estimated HGrid computational effort (lines)
versus that for a DPM system (markers) for different packing fractions and
different exponents of the particle size distribution function, using ω = 10,
ν = 0.62, d = 3, K = 0.2 and Optimal cell-size distribution. Open symbols
correspond to simulations using solid walls, filled symbols represent systems
with periodic boundary conditions.

48



Performance analysis

2.2.6 Summary and Conclusion

Contact detection is a fundamental problem that occurs in many different

kind of simulation methods. This process is often computationally expensive,

usually taking up a considerable proportion of CPU time, especially for non-

uniform (polydisperse) particle size systems.

In this paper, we studied analytically the computational effort of two al-

gorithms for contact detection (i.e., Bottom-Up and Top-Down), based on

the multi-level hierarchical grid data structure. The basic idea of these al-

gorithms is the fact, that usually there are lots of particles in the system,

which cannot be in touch, as they are too distant. The presented methods

save a lot of time by excluding such particles from a detailed and time con-

suming contact examination and evaluation. The scaling performance of the

neighbour searching algorithm based on both the number of particles and

the width of the particle size distribution, is of great importance.

As an input for the algorithm, the number of hierarchy levels and their

cell-sizes are required, to achieve optimal performance. Therefore, we tested

four methods for choosing the hierarchical cell-size distribution (i.e., linear,

exponential, constant number of particles per cell and optimal) and com-

pare their theoretical performance for a power law particle size distribution

function with exponent α. For almost all methods the performance of the

algorithm becomes independent of the width of the particle size distribution

ω, in contrast to the Linked-Cell method. Even better, the computational

effort using the algorithm decreases with increasing ω, or with decreasing α,

at constant system packing fraction. In general, with optimal parameters,

the algorithm is able to find contacts in arbitrarily polydisperse particle sys-

tems as fast as the Linked-Cell method finds contacts in purely monodisperse

particle systems, i.e., no extra work is required due to polydispersity.

For the linear cell-size distribution the optimal number of hierarchy lev-

els is huge for systems with large polydispersity and α < 0 (i.e., the systems

dominated by small particles). Therefore, for this kind of system, the linear

cell-size distribution has high computational overhead and in general does

not perform well, especially for particles with complex geometries. The ex-

ponential cell-size distribution performs better, however it is very sensitive

to the number of hierarchy levels used. So it is not appropriate to use this

method in dynamical systems, where the particle size distribution, density

or system geometry is changing over time. Both the constant number of

particles per cell and the optimal cell-size distribution methods perform well

and are not too sensitive to the number of levels, and have low overhead.

For α ≤ −1 the use of a multilevel grid becomes extremely efficient (i.e.,

several orders of magnitude faster) as compared to the single level Linked-

Cell method, if optimal parameters are used. On the other side for α > −1

49



Contact detection of arbitrarily polydisperse objects

the use of a multilevel grid does not present a major advantage (but can

improve performance slightly). The contact detection time is estimated to

be T ≤ 30N for three-dimensional spherical systems (where a unit of time

is defined as the time required for a two-sphere overlap test). Our analysis

technique allows to investigate further how the algorithm performs for other

size distributions, e.g. log-normal.

2.2.7 Recommendations

In this section recommendations are given for setting the HGrid parameters.

• Use the Top-Down algorithm.

• If possible, perform your own minimization using your exact system

and appropriate overhead factor K to obtain the optimal number of

levels and their cell-size distribution.

• Otherwise, use a cell-size distribution where the number of particles

per cell is approximately the same at each level. For the number of

levels L we refer to figure 2.13.

Appendix

Estimated number of contacts within a cell

To calculate the estimated number of potential contacts within a cell, we

assume that at level h there are Nh particles randomly divided over N c
h cells,

such that the probability that a certain particle goes to a certain cell is 1/N c
h.

The number of particles in cell i, Xi, follows the binomial distribution with

parameters Nh and 1/N c
h such that the probability of finding n particles in

cell i is equal to:

P (Xi = n) =

(

Nh

n

)(

1

N c
h

)n(

1− 1

N c
h

)Nh−n

, (2.48)

where
(

Nh

n

)

=
Nh!

n! (Nh − n)!
(2.49)

is the binomial coefficient. If n particles reside in a certain cell, we have to

check for n (n− 1) /2 potential contacts in that cell and thus we can calculate

the estimated number of potential contacts within a single cell by calculating

its weighted average. However, we are interested in the potential contacts
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within cells for the whole hierarchy level h and thus have to multiply this by

the number of cells at this level N c
h to obtain T cd1.

T cd1 =
N c

h

2

Nh
∑

n=0

n (n− 1)P (Xi = n) . (2.50)

First, note that for n = 0 and n = 1 the right-hand side equals zero, and

thus we can change the summation domain:

T cd1 =
N c

h

2

Nh
∑

n=2

n (n− 1)

(

Nh

n

)(

1

N c
h

)n(

1− 1

N c
h

)Nh−n

. (2.51)

Furthermore, by using the definition of the binomial coefficient we obtain:

(

Nh

n

)

=

(

Nh − 1

n− 1

)

Nh

n
. (2.52)

And we can rewrite Eq. (2.50) as:

T cd1 =
N c

h

2

Nh

N c
h

Nh − 1

N c
h

Nh
∑

n=2

(

Nh − 2

n− 2

)(

1

N c
h

)n−2(

1− 1

N c
h

)Nh−n

. (2.53)

Substituting n = a+ 2 and Nh = b+ 2 gives

T cd1 =
N c

h

2

Nh

N c
h

Nh − 1

N c
h

b
∑

a=0

(

b

a

)(

1

N c
h

)a(

1− 1

N c
h

)b−a

=
N c

h

2

Nh

N c
h

Nh − 1

N c
h

, (2.54)

where in the second step the definition of a probability density function is

used.

Number of cells for cross-level search

To estimate the number of potential contacts for the cross-level search, first

an estimate of the number of cells that have to be checked for possible cross-

level contacts has to be made. Therefore, consider a particle p at position

~xp with radius rp such that it resides at hierarchy level h and we want to

calculate the number of cells at hierarchy level j that have to be checked for

possible contacts. This can be calculated from Eq. (2.12), which reads for
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the x-direction (note that the directions are statistically independent):

c start
1 =

⌊

xp − rp − sj/2

sj

⌋

=

⌊

xp − rp
sj

− 1

2

⌋

, (2.55)

c end
1 =

⌊

xp + rp + sj/2

sj

⌋

=

⌊

xp + rp
sj

+
1

2

⌋

. (2.56)

So the number of cells that have to be checked in the x-direction is, see Eq.

(2.13),

a (j, xp, rp) =

⌊

xp + rp
sj

+
1

2

⌋

−
⌊

xp − rp
sj

− 1

2

⌋

+ 1. (2.57)

This result holds for a special particle p at position ~xp with radius rp at level

h. However, we want to calculate the average number of checks. Therefore,

we have to integrate a (j) over all possible positions and all possible radii:

b (j, h) =

∫

1
2
sh

1
2
sh−1

(

∫∞

−∞
a (j, x, r) g (x) dx

)d

f (r) dr

∫

1
2
sh

1
2
sh−1

(

∫∞

−∞
g (x) dx

)d

f (r) dr

. (2.58)

where g (x) and f (r) are the probability density distribution functions for

position and radius, respectively. First, note that Eq. (2.58) is periodic with

respect to the position of the particle (x) with a period sj . So, without loss of

generality, we can assume that x is uniformly randomly distributed between

0 and sj :

b (j, h) =

∫

1
2
sh

1
2
sh−1

(

∫ sj
0

a (j, x, r) 1
sj
dx
)d

f (r) dr

∫

1
2
sh

1
2
sh−1

f (r) dr

. (2.59)

To evaluate this integral we rewrite Eq. (2.57) by splitting r
sj
+ 1

2
into a+ n,

with n =
⌊

r
sj
+ 1

2

⌋

and 0 ≤ a < 1:

a (j, x, r) =

(⌊

x

sj
+ a

⌋

−
⌊

x

sj
− a

⌋

+ 2n + 1

)

. (2.60)
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Note that the following holds

⌊

x

sj
+ a

⌋

=

{

0 x
sj

< 1− a

1 xp ≥ 1− a
, (2.61)

⌊

x

sj
− a

⌋

=

{

0 x
sj

≥ a

−1 xp < a
, (2.62)

such that we can integrate Eq. (2.59)

b (j, h) =

∫

1
2
sh

1
2
sh−1

(2a+ 2n+ 1)d f (r) dr

∫

1
2
sh

1
2
sh−1

f (r) dr

, (2.63)

and substitute a+ n = r
sj
+ 1

2
back:

b (j, h) =

∫

1
2
sh

1
2
sh−1

(

2 r
sj
+ 2
)d

f (r) dr

∫

1
2
sh

1
2
sh−1

f (r) dr

. (2.64)

Without knowing the exact particle size distribution function this integral

can not be calculated. However, its upper and lower bounds are:

blower (j, h) =

(

2 +
sh−1

sj

)d

, (2.65)

bupper (j, h) =

(

2 +
sh
sj

)d

. (2.66)
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Chapter 3

Equation of state and jamming

density

3.1 Poly- versus bi-disperse systems∗

We study bi- and polydisperse mixtures of hard sphere fluids with extreme

size ratios up to 100. Simulation results are compared with previously found

analytical equations of state by looking at the compressibility factor, Z, and

agreement is found with much better than 1% deviation in the fluid regime.

A slightly improved empirical correction to Z is proposed.

When the density is further increased, excluded volume becomes impor-

tant, but there is still a close relationship between many-component mixtures

and their binary, two-component equivalents (which are defined on basis of

the first three moments of the size-distribution). Furthermore, we determine

the size ratios for which the liquid-solid transition exhibits crystalline, amor-

phous or mixed system structure.

Near the jamming density, Z is independent of the size distribution and

follows a −1 power law as function of the difference from the jamming density

(Z → ∞). In this limit, Z depends only on one free parameter, the jamming

density itself, as reported for several different size distributions with a wide

range of widths.

3.1.1 Introduction

The hard-sphere model can be applied with some success for various phys-

ical phenomena and systems, like e.g., disorder-order transitions, the glass

transition, dense granular flows and simple gases and liquids [2,116,138–142].

∗Based on V. Ogarko and S. Luding, “Equation of state and jamming density for
equivalent bi- and polydisperse, smooth, hard sphere systems,” J. Chem. Phys., vol. 136,
no. 12, p. 124508, 2012.
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Kinetic theory describes the behavior of such particle systems, assuming that

the particles are infinitely rigid and collisions are instantaneous [138, 143],

like in the hard-sphere model. In this paper we study the high density limit,

where the caging-effect, that is, particles captured by their neighbors, be-

comes important in the dynamics of the global system and thus a free-volume

theory needs to be formulated [144–150]. There exists no unique equation

of state, valid for the intermediate densities, where the system changes from

the disordered to the ordered state, since the system displays hysteresis and

rate-dependence; for various theoretical approaches see Refs. [116, 151–160]

and references therein.

In this study systems of particles of many different sizes are investigated

in the high-density limit using theory and simulations. Fluid and jammed

configurations of hard sphere mixtures are examined for various size distri-

butions at slow compression rates [66,67,161,162]. Several authors proposed

theories to compute the amorphus jamming density of binary and polydis-

perse hard sphere mixtures, see Refs. [163–167] and references therein. We

construct a simple but physically reasonable model that relates the behavior

of different hard sphere mixtures, even for metastable states. Additionally,

we give accurate data for the jamming density as a function of size polydis-

persity, which is important for e.g. experiments on non-monosized colloidal

or granular systems.

In section 3.1.2, the theoretical ideas are introduced, which are needed

to analyze the numerical results presented in section 3.1.3, before the results

are summarized in section 3.1.4.

3.1.2 Theory

We consider a s-component thermalized mixture of N elastic smooth spheres,

homogeneously placed in three-dimensional (3D) systems of volume V . Spheres

are located at positions ri with velocities vi, radii ai and masses mi. The

kinetic energy Ek = (1/2)
∑N

i=1miv
2
i is dependent on time via the particle

velocities vi. For rigid spheres that do not interact except via an infinite

repulsion on contact, i.e., with zero interaction / contact duration, the total

energy is given by E = Ek, whereas for soft spheres the potential energy

also has to be considered. The temperature in equilibrium hard-sphere sys-

tems is not a relevant parameter, since it does not affect the equilibrium

configuration [67], it only scales time (or the free energy [28]). As a conse-

quence, there is only one independent thermodynamic state variable, which

can be either the reduced (dimensionless) pressure (so-called compressibility

factor) Z = PV/NkBT or the density (volume fraction) ν = 4π
∑

a3i /(3V ),

related through the equation of state (EOS), where kBT = 2E/(3N) with

the Boltzmann constant kB.
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Bidisperse systems

Let us consider a binary (s = 2) mixture of spheres with radii a1 and a2,

with N1 and N2 the number of particles of each kind, and N = N1 + N2.

Thus the mixture can be classified by only two parameters, the composition

n1 = N1/N and the size ratio R = a1/a2. The total volume fraction ν =

ν1+ν2 is the last relevant system parameter, since the partial volume fractions

ν1,2 = 4N1,2πa
3
1,2/(3V ) can be expressed [158] in terms of n1 and R, using

the dimensionless moments

Ak = n1 + (1− n1)R
−k =

〈

ak
〉

/ak1, (3.1)

where
〈

ak
〉

= n1a
k
1 + n2a

k
2. With this, one has ν1 = n1ν/A3 and ν2 =

(1− n1)ν/(R
3A3).

A calculation in style of Jenkins and Mancini, see Refs. [118, 168], leads

to the partial translational pressures pti = 2niE/(3V ) for species i and to

the collisional pressures pcij = πN1N2gijaij(1 + rij)T/(3V
2) with the particle

correlation function gij evaluated at contact, and aij = ai + aj. In the

following, for simplification the inter-species restitution coefficients rij are

set to unity (elastic case), r11 = r12 = r22 = 1. The particle correlation

functions gij from Ref. [57,118,169,170], are here expressed in terms of A2,3,

R and ν:

g11 =
1

1− ν
+

3ν A2

A3

2(1− ν)2
+

(ν A2

A3
)2

2(1− ν)3
, (3.2)

g22 =
1

1− ν
+

3ν A2

RA3

2(1− ν)2
+

(ν A2

RA3
)2

2(1− ν)3
, (3.3)

g12 =
1

1− ν
+

3ν A2

(1+R)A3

(1− ν)2
+

2(ν A2

(1+R)A3
)2

(1− ν)3
. (3.4)

Thus, the global pressure in the mixture is:

pm = pt1 + pt2 + pc11 + 2pc12 + pc22

=
2E

3V

[

1 +
ν

2 〈a3〉(g11a
3
11n

2
1 + 2g12a

3
12n1n2 + g22a

3
22n

2
2)

]

=
2E

3V
[1 + 4νgeff(ν)] .

(3.5)

Like done for 2D systems in Ref. [158], the effective correlation function

geff(ν) can be expressed in term of the dimensionless moments:

O1 =
〈a〉 〈a2〉
〈a3〉 and O2 =

〈a2〉3

〈a3〉2
(3.6)
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so that (see Appendix)

geff(ν) =
(1− ν)2 + 3O1(1− ν) +O2(3− ν)ν

4(1− ν)3
. (3.7)

Then the equation of state for mono- and bidisperse systems reads:

Z = 1 + 4νgeff(ν). (3.8)

Note that in the monodisperse case all gij and geff(ν) are identical to the pair

distribution function at contact gCS(ν) = (1 − ν/2)/(1 − ν)3, proposed by

Carnahan and Starling (CS) [171], since R = 1, Ak = O1,2 = 1 (using the re-

lation ZCS = 1+4νgCS (Ref. [57])). The Carnahan-Starling pair distribution

function is quite accurate at low and moderate volume fractions, but does

not show the reported divergence due to excluded volume effects at the close

packing volume fraction [172, 173].

Polydisperse systems

In the case of a polydisperse mixture (s = N → ∞) in which the sphere

radius is distributed according to some probability density function f(a),
〈

ak
〉

≡
r
akf(a)da is the k-th moment of the size distribution. By just using

these moments, the function geff(ν) from Eq. (3.7) is well defined also for

multi-component systems of spheres. It turns out that the equation of state

(3.8) coincides with the well-known Boubĺık, Mansoori, Carnahan, Starling,

and Leland (BMCSL) equation of state proposed for mixtures [57, 58]:

ZBMCSL =
1

1− ν
+O1

3ν

(1− ν)2
+O2

ν2(3− ν)

(1− ν)3
. (3.9)

There are several modified equations of state for multi-component mixtures

in the literature, which require the knowledge of the equation of state for a

one-component system [155]. First, we consider Santos et al.’s equation of

state, based on the Carnahan-Starling equation of state:

ZSCS = ZBMCSL + (O1 − O2)
ν3

(1− ν)3
. (3.10)

Second, following Santos et al.’s procedure based on the Carnahan-Starling-

Kolafa (CSK) equation of state, ZCSK = [1+ ν + ν2 − 2ν3(1 + ν)/3]/(1− ν)3

[174], one gets

ZSCSK = ZSCS + (O1 +O2)
ν3(1− 2ν)

6(1− ν)3
. (3.11)
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Third, Boubĺık extended the CSK equation of state to mixtures [175], yield-

ing:

ZBCSK = ZBMCSL +O2
ν3(1− 2ν)

3(1− ν)3
. (3.12)

Although we could consider the extensions of other equations of state

[176], for the sake of simplicity we will restrict our analysis to the above

mentioned equations of state.

Discussion

It is interesting to observe that all the equations of state considered in section

3.1.2 are functionals of the particle size distribution (PSD) only through its

dimensionless moments O1 and O2. Therefore, we study and discuss the

properties of O1 and O2. It can be shown that 0 < O1 ≤ 1 and O2
1 ≤ O2 ≤ O1

for any size distribution function (see Appendix). This property makes it

convenient to characterize a size distribution by a point on the O1O2 plane.

We can see that O1 is the ratio of the arithmetic mean diameter to the

Sauter mean diameter, and it is a measure of the broadness of the PSD [177],

i.e., O1 = D10/D32, with Dpq = 2(
r
apf(a)da/

r
aqf(a)da)1/(p−q). Corre-

spondingly, O2 = (D20/D32)
2 is another measure for shape and width of the

PSD. Those combined size-descriptors were already used as early as 1979 to

model systems like polydisperse sprays [178].

In the bidisperse case the system of equations (3.6) can be solved an-

alytically in terms of the variables n1 and R, yielding a unique solution:

nbi
1 (O1, O2) and Rbi(O1, O2) (see Appendix). This means that for any given

polydisperse system we can construct an “equivalent” bidisperse system,

which has the same equation of state in the fluid regime. We use this in sec-

tion 3.1.3 to check how the compressibility factor and the jamming density

of polydisperse systems are related to those of their bidisperse equivalents.

Earlier, equivalent binary mixtures were used to investigate a slightly poly-

disperse hard sphere crystal in Ref. [52], while here we will show that they

can be used to model widely polydisperse fluids and glasses at all densities,

which is in the spirit of what Santos et al. call the “universality” ansatz, see

Refs. [60, 61, 179] and references therein.

3.1.3 Comparison with simulations

Since we are interested in the behavior of rigid particles, we perform event-

driven molecular dynamics simulations using the modification of the Lubachevsky-

Stillinger algorithm [81] as the primary tool for our investigations [67, 134,

180]. The system consists of a cubic cell, with periodic boundary condi-

tions, which are imposed to simulate an infinite system, i.e., a statistically
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homogeneous medium. The compressibility factor is calculated from the to-

tal exchanged momentum in all interparticle collisions during a certain short

time period ∆t, given by 400 events per particle. By growing the size of the

particles linearly in time with a growing rate Γ one can change the volume

fraction (for details see Appendix). Over time the additional energy created

during collisions would accelerate the particles, but this is avoided by peri-

odic rescaling of the average particle velocity to hold the mean temperature

constant [180], such that the total change in kinetic energy of the system is

kept small (below 1%). If the growing is sufficiently slow, the system will

be in approximate equilibrium during the densification and one can rather

efficiently gather quasi-equilibrium data as a function of density [116, 181].

The number of particles N used in most simulations is 163 = 4096, if not

explicitly stated otherwise. In order to improve the performance of neigh-

borhood search the ideas of a multilevel contact detection algorithm [89] can

be used, but were not implemented here.

Particle size distributions

The following types of particle size distributions are used: (i) uniform size

distribution; (ii) uniform volume distribution, i.e., the probability distribu-

tion of the volume of the particles is constant; (iii) systems constructed by

mapping the aforementioned polydisperse systems to bidisperse ones (see

section 3.1.2 for details).

For a given size distribution, we denote the ratio between the maximum

and the minimum particle radius as ω. Therefore, ω = 1 corresponds to the

monodisperse case, i.e., all sizes are equal, and in our convention ω ≥ 1.

Further in the paper when we use ω for bidisperse systems we mean the

extreme size ratio of the equivalent polydisperse system, while for the true

size ratio we use Rbi. Examples and analytical expressions for O1 and O2 as

function of ω for the considered size distributions are shown in Appendix.

The use of a single variable, i.e., the size ratio ω, excludes continuous

distributions like log-normal, for which one has to use O1 and O2 for classi-

fication, see Appendix. The size-distributions used here, due to their sharp

edges with well defined ω, could be obtained by ideal sieving from wider,

smooth continuously distributed realistic distributions.

The sizes of particles of polydisperse systems are drawn from the particle

size distribution function using the systematic sampling approach [112,113].

It guarantees a more evenly spread sample, i.e., there will always be large

particles, even if they are rare, like in the case of the uniform volume distri-

bution.
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Equation of state in the fluid regime

In Fig. 3.1 we show the compressibility factor Z from simulations scaled by

the BMCSL, SCS, SCSK and BCSK equations of state for different densities

and for different size distributions. Note, that in the monodisperse case

(O1 = O2 = 1) ZCS = ZBMCSL = ZSCS and ZSCSK = ZBCSK.
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Figure 3.1: The quality factor, i.e., the numerical Z scaled by the theoretical
predictions for different densities and for different size distributions (a, top
left) monodisperse, and polydisperse with (b, top right) uniform size, ω = 5,
(c, bottom left) uniform size, ω = 100, and (d, bottom right) uniform volume,
ω = 4. The growth rate for all data is Γ = 16×10−6. The error bars indicate
the standard deviation of the quality factor within an averaging bin. The
error bars are shown only for the BMCSL EOS since in the other cases they
have the same trend and magnitude.

We observe for monodisperse systems that the deviation of the compress-

ibility factor from all considered theories is below 0.3% (a) in the volume

fraction region of 0 < ν < 0.54. The deviation is well below 1% in the vol-

ume fraction region of 0 < ν ≤ 0.6 for polydisperse systems: for uniform

size, with ω = 5 (b), uniform size, with ω = 100 (c), and uniform volume,

with ω = 4 (d), distributions, respectively. This indicates that the number
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of particles is large enough to realistically represent the respective size distri-

butions to suppress possible effects of finiteness of the system. The uniform

volume distribution does not allow to properly realize wider distributions,

due to the small sample size, N = 4096.

Based on all these results, we propose a more accurate equation of state

for the fluid regime, which is simply the arithmetic average of Santos et al.’s

and Boubĺık’s extensions:

ZOL =
1

2
(ZSCS + ZBCSK). (3.13)

Equation (3.13) is more accurate at intermediate volume fractions 0.20−0.60

and is almost identical to the other forms for lower volume fractions. For all

systems, with ν ≤ 0.60, presented in Fig. 3.1, ZOL performs better than 0.2%

except for the monodisperse case data, for ν > 0.54, due to crystallization.

Our simulations also confirm that for ν < 0.54 the agreement in the

compressibility factor between the considered polydisperse systems and their

bidisperse equivalents (defined in section 3.1.2) is of order of 0.1% for ω ≤ 50

(data not shown).

In the following we show what happens at higher volume fractions.

How much disorder is necessary to avoid order?

According to Alder et al. [10,67], monodisperse hard-sphere systems undergo

a first-order fluid-solid phase transition, characterized by a melting point, i.e.,

the density at which the crystal thermodynamically begins to melt, and a

freezing point, i.e., the density at which the fluid thermodynamically begins

to freeze. In this section, we investigate how much polydispersity is needed

to avoid partial crystallization, complementing an earlier study in 2D (Ref.

[159]) and 3D (Ref. [182]) as also studied in experiments on colloids [183].

Since the compressibility factor increases very rapidly at densities higher

than the freezing point, we plot the estimated jamming density φJ = ν/(1−
d/Z) instead of the compressibility factor, inspired by [67], as shown in Fig.

3.2, since φJ(Z → ∞) = ν. The estimated jamming density φJ here is

derived from the free-volume EOS for a d-dimensional system [147]:

Zfv =
d

1− ν/φJ

. (3.14)

In Fig. 3.2, φJ is plotted against ν for different systems with uniform size

distribution. Data agree perfectly with the fluid theory before the particle

system changes from the fluid state to the state of coexistence of fluid and

solid, as indicated by a sharp increase (jump) above the fluid prediction,

see Fig. 3.2(a). The jumps are due to partial crystallization observed for size
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ratios 1 ≤ ω . 1.2 but not for larger ω. (It must be noted that for the system

with ω = 1.2, partial crystallization is observed not for every run, as shown

in Fig. 3.2(a) for two runs with random initial velocities, i.e., from six runs

we found that four systems exhibit partial crystallization, while two systems

do not.) Near the critical size ratio, ωc ≈ 1.20± 0.02, where ordering effects

disappear, also the history and fluctuations of the system play an important

role.

For the critical polydispersity, a simple model which agrees with our

findings was proposed [24], inspired by Lindemann’s melting criterion: a

crystal melts when the thermally-induced root-mean-square displacement of

an atom or particle reaches a characteristic fraction of the typical interparticle

spacing [2]. Our findings also agree with the criterion for stability of the

polydisperse crystal based on free energy minimization [35].

It should be noted that it is possible to observe a polydisperse crystal also

for large size ratios, if the particles are allowed to redistribute for very long

time [28, 184]. In this case, different annealed phase behavior is expected at

high densities [35]. Self-diffusion can occur and spheres can crystallize into

multiple crystal phases (domains) each containing spheres of a different size.

In the monodisperse case the metastable freezing point, i.e., the density

of partial crystallization of the densified fluid, is very close to 0.54, which

is in good agreement with data from Refs. [67, 116, 186]. This should not

be confused with the freezing point, which implies the stable thermody-

namic point and occurs at about 0.49 as determined from a number of

different simulations [11, 187] and free energy calculations [86]. While a

metastable freezing point depends on the compression rate, the freezing point

does not. The location of the metastable freezing point, νf , is shifted to

higher density with increasing polydispersity. Taken from a few represen-

tative simulations, values are νf = 0.540, 0.548, 0.556, 0.557, 0.565, 0.573 for

ω = 1, 1.1, 1.12, 1.14, 1.16, 1.2, respectively, fluctuating with different runs

(±0.005). The latter trend reverses (decreasing νf ) for another type of crys-

tallization which we observe in the bidisperse systems with (relatively) large

size ratios, see Fig. 3.3. In contrast, there is no strong dependence of the

(final) jamming density on ω for partially crystallized systems, since crys-

tallization is a stochastic nucleation process, i.e., different runs of the same

system with random initial particle velocities will lead to different jamming

densities (data not shown). The trends in Fig. 3.2(b) show that the larger ω,

the larger the density at which disordered systems (not crystallized) deviate

from the fluid theory (the sharp increase of φJ relative to the fluid theory

turns to a smooth decrease). In addition, for such systems the jamming den-

sity is increasing with ω. Finally, all curves end at the identity line φJ = ν at
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Figure 3.2: The estimated jamming density φJ as a function of volume frac-
tion ν for systems with uniform size distribution. Shown are systems of 4096
spheres with various size ratios ω. In (a, top) ω, given in the inset, corre-
sponds to decreasing φJ (top-to-bottom), and in (b, bottom) increasing ω
corresponds to bottom-to-top. Also plotted are the fluid theory (BMCSL
EOS) and the approximation for the crystal phase [185]. The used growth
rate here is Γ = 8× 10−6. For ω = 1.2 data for two different runs are shown,
marked with 1.2 and 1.2∗.

densities well below the perfect crystal EOS [185], for which φJ = ν ≈ 0.74

would be expected (for mono-disperse systems).

We checked (data not shown) that the jumps in φJ vanish around ω ≈ 1.2

(Rbi ≈ 1.1) also for other size distributions, which are defined in section 3.1.3.

We only remark that the bidisperse systems – equivalent to systems with

uniform volume distribution – show some fine structure around the jumps,
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which we do not discuss here for the sake of brevity.

In Fig. 3.4, systems with uniform size distribution shown for different

size ratios ω. It can be seen how the ordering disappears as the size ratio

increases.

In Fig. 3.5 bidisperse systems corresponding to uniform size distributions

are shown for different size ratios, i.e., with (relatively) small size ratios just

below the crystallization ratio, Fig. 3.5(a), just above, Fig. 3.5(b), and with

(relatively) large size ratios just below and above partial (single species)

crystallization in Figs. 3.5(c) and 3.5(d), respectively. Note that changing

of the polydispersity from 10% (a) to 11% (b) changes the physical state of

the system a lot, so that we can see the difference even by the eye, which

is quite remarkable. This is consistent with results from Ref. [188], where

for a binary mixture with a size ratio 1.111 and n1 = 0.5 crystallization was

almost totally suppressed.
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Figure 3.3: The estimated jamming density φJ as a function of volume frac-
tion ν for bidisperse systems corresponding to uniform size distribution. In-
creasing ω corresponds to bottom-to-top, with growth rate Γ = 16 × 10−6.
The (metastable) freezing density is decreasing with increasing size ratio.
The BMCSL EOS are shown by dash-dotted lines.
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(a) (b)

(c) (d)

Figure 3.4: Particle systems with uniform size distribution with different size
ratios at densities very close to jamming. Size ratios are ω = 1 (a), ω = 1.12
(b), ω = 1.18 (c), and ω = 1.22 (d). The order-disorder transition can be
clearly seen as the size ratio increases. Color is by relative size, i.e., yellow
(light) corresponds to small particles, and blue (dark) corresponds to big
ones. The used growth rate to reach these configurations was Γ = 8× 10−6.

Bidisperse versus polydisperse

The aim of this section is to compare the equation of state of polydisperse

systems and their bidisperse equivalents at volume fractions where fluid the-

ory is not valid, i.e., in their “glassy” states or in coexistence of fluid and

solid phases. Figure 3.6 shows φJ as a function of volume fraction for a

few systems with uniform size distribution and their bidisperse equivalents,

3.6(a), and for systems with uniform volume distribution and their bidisperse

equivalents, 3.6(b).
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(a) (b)

(c) (d)

Figure 3.5: Particle systems with bidisperse size distribution corresponding
to a uniform size distribution, i.e., n1 = 1/2, with different size ratios at
densities very close to jamming. Size ratios are Rbi ≈ 1.100 (ω = 1.18)
(a), Rbi ≈ 1.111 (ω = 1.2) (b), Rbi ≈ 2.060 (ω = 4) (c), and Rbi ≈ 2.404
(ω = 6) (d). The order-disorder transition can be clearly seen. Note that
in (d) also some signs of segregation / clusterization of small particles can be
seen, though investigation of this is beyond the scope of this paper.

While for small size ratios, ω . 1.2, ordering / crystallization occurs, see

Fig. 3.2(a), for moderate size ratios, 1.2 . ω . 4, the estimated jamming

density of the considered polydisperse systems and their respective bidisperse

equivalents are within 1%, where the bidisperse data are slightly below. Thus,

one can reduce mixtures to two-component (binary) systems, which have

similar physics, even when the system densities are above the fluid-regime.

The equivalency of two- and many-component mixtures breaks down in

the case of uniform size distribution as polydispersity (width) increases, e.g.,
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for ω = 6 (Rbi ≈ 2.4, nbi
1 = 1/2), due to partial crystallization of the big

particles in the bidisperse system, as it can also be seen in Fig. 3.5(d). This

is consistent with results from Ref. [189], where the structure of binary hard

sphere mixtures is studied in more detail. This kind of partial crystallization

happens since the small particles fit into interstices of a crystal made of the

large particles [24]. Such “colloidal alloy” structures have been observed both

in naturally-occurring opals [190] and synthetic colloids [191, 192].

In the case of bidisperse distributions corresponding to uniform volume

distributions, we did not observe strong evidence of partial crystallization

in the 1.18 ≤ ω ≤ 10 (1.10 . Rbi . 3.89) range, even though a bit of

restructuring for ω ≥ 5, see Fig. 3.6(b), seems to happen.

In the inset of Fig. 3.6(b) the zoomed data for ω = 8 are plotted, showing

that the (final) jamming density can change (jump) also very close to the

identity line φJ = ν, indicating considerable re-structuring even very close

to jamming.

In the following section we determine more precisely the range of size

ratios for which systems show crystallization and/or partial single-species

ordering.

Towards the jamming density

In this section, we investigate the maximum density νmax as a function of

polydispersity. By maximum density we mean the density obtained after

long-term (slow) compression, i.e., further compression for a time period

about 4× 105 events per particle does not increase the density, possibly due

to numeric limits. The average compressibility factor of the final (jammed)

systems is typically Z ≥ 1013.

In the amorphous regime φJ decreases (Z increases) relative to the fluid

prediction, due to excluded volume effects. In Figs. 3.2 and 3.6, order-

ing / crystallization was characterized by an increase of φJ above the fluid

prediction (i.e. a decrease of Z below). Now, we also relate this to the

change of behavior of νmax, which is consistent with Ref. [162].

Figure 3.7 shows the maximum density νmax as a function of the inverse

size ratio ω−1 for different size distributions and for different compression

rates. The size ratio ω corresponds to polydisperse systems, while equivalent

bidisperse ones are constructed using formulas (3.20) and (3.21). Firstly, we

see that for small polydispersity ω−1 & 0.85, i.e., ω ≤ 1.18 (Rbi . 1.100),

all the considered systems display (partial) crystallization or ordering effects,

characterized by a jump (discontinuous increase) in νmax with ω−1. Note that

the bidisperse systems corresponding to uniform volume distributions do not

crystallize for ω = 1.18 (checked for three different runs), but for slightly

smaller ω ≤ 1.17 (Rbi . 1.095). Partial crystallization of this type (small ω)
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Figure 3.6: The estimated jamming density φJ as a function of volume frac-
tion ν for systems with (a, top) uniform size distribution and their bidisperse
equivalents, using Γ = 8 × 10−6, and for systems with (b, bottom) uniform
volume distribution and their bidisperse equivalents, using Γ = 16 × 10−6.
Size ratios ω and Rbi are displayed in the inset, where the latter is given in
brackets. Also plotted are the fluid theory (BMCSL EOS) and the approxi-
mation for the crystal phase [185]. Data for polydisperse systems in (b) are
shown for ω ≤ 4. In the inset of (b) the zoomed data for ω = 8 are shown.

can be seen by the eye in Fig. 3.5(a).

In the 1.22 ≤ ω ≤ 4 range there is no (partial) crystallization observed

for any of the considered systems. Furthermore, the maximum density of

polydisperse systems is just slightly larger (within 0.5%) than for their bidis-

perse equivalents, see the inset in Fig. 3.7(b). Note that in the case of

uniform volume distributions, larger ω cannot be properly realized for too
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small N = 4096, so we do not show results for ω > 5.

For larger ω, i.e., ω ≥ 5, bidisperse systems corresponding to uniform size

distributions undergo partial crystallization of the large species (Rbi & 2.25),

which was discussed in the previous section.

As already evident in Fig. 3.6, the system with uniform volume distri-

bution and their bidisperse equivalents pack “better” and reach much larger

νmax, see Fig. 3.7(b), when compared to 3.7(a), even without apparent partial

(species) crystallization [194].

In contrast to their bidisperse counterparts, polydisperse systems with

uniform size distribution do not show any signs of crystallization for ω ≥
1.22, and the maximum density converges with increasing polydispersity to

ν∞
max ≈ 0.6828 ± 0.0004, seemingly not changing much even for extremely

wide distributions.

From our data, for uniform size distribution νmax can be fitted by a func-

tion of ω:

νmax(ω) = ν∞
max − (ν∞

max − φRCP)(3ω
−2 − 2ω−3), (3.15)

where the random close packing density φRCP is taken to be 0.65, as also

predicted by cell theory [195]. The deviation is within ±0.5% for all data

ω & 1.2, see the inset in Fig. 3.7(b), and we enforced the derivative ν ′
max ≡ 0

for ω−1 → 1.

The maximum density of systems with uniform volume distribution and

their bidisperse equivalents can be fitted by a function of ω in the range

1.2 ≤ ω ≤ 10:

νmax(ω) = ν∞
max − (ν∞

max − φRCP)(ω
−1 − ω−2 + ω−3)(1− logω−2), (3.16)

where φRCP = 0.647 and ν∞
max = 0.859, with deviation within ±1%, see the

inset in Fig. 3.7(b), and we enforced the derivative ν ′
max ≡ 0 for ω−1 → 1. The

bidisperse equivalents deviate from Eq. (3.16) for ω > 10 due to increasing

relative volume of the large spheres with increasing ω [163]. Remarkably, in

this range Eq. (3.16), with swapped values of φRCP and ν∞
max, fits the data well,

as can be seen in Fig. 3.7(b). The two distinct regimes of νmax of bidisperse

systems with moderate to large size ratios are predicted by a number of

recently published theories [163–166]. A few checks of our bidisperse data

with theoretical curves shown in Figure 6 in Ref. [163] show consistency. For

a more comprehensive study of the densest binary packing of hard spheres

see also Ref. [196].

The reported high-density limit for random close packings [197] is 3%

greater than that of Bernal packings [198] and still higher than our φRCP

values, and can be approached for extremely fast compression [66, 162]. For

estimates of φRCP for random close packings of hard spheres see Ref. [199].
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Note that the analytical expressions for O1 and O2 for two of the consid-

ered polydisperse size distributions shown in Appendix involve power laws

and logarithmic functions as in Eqs. (3.15) and (3.16), respectively. This

suggests that the jamming density in general could be expressed through O1

and O2, though we did not investigate this possibility in detail and leave it

for further research.

Different growth rates

The effect of using different growth rates Γ on the maximum density is shown

in the inset of Fig. 3.7(a) for two size distributions. We observe that the max-

imum density slightly increases (within 1%) with decreasing the growth rate.

There are no signs of saturation for Γ → 0, which indicates a quite inter-

esting slow dynamics, leaving plenty of questions open for further research.

The effect of using various expansion rates is more comprehensively studied

in Refs. [66,67,161,162,200], so that we do not display more of our data. We

did not study extremely slow rates and rate-dependence systematically. We

only note that different growth rates can lead to different metastable freezing

points [67].

Super dense limit

In this section we show that sufficiently close to the jamming density, the

compressibility factor is independent of the size distribution and depends on

only one parameter, the jamming density itself, complementing an earlier

study of monodisperse systems [181]. Figure 3.8 shows the compressibility

factor scaled by equation (3.14) for systems with uniform size distributions.

The jamming densities φJ used in Fig. 3.8 are determined using Eq. (3.14)

by mapping the diverging compressibility factor to finite values, as suggested

by Torquato et al. [181, 201]. It must be noted that all φJ differ from νmax

obtained in simulations by at most 10−13, which confirms that we are close to

the infinite pressure limit. We see from Fig. 3.8 perfect agreement with the

free volume theory for all considered systems at the densities (φJ−ν) . 10−8.

Only one free parameter is required for the free volume theory, φJ, even

though in other studies two fitting parameters are used [159, 162]. In order

to capture the deviation of the compressibility factor from the free volume

theory as the density difference increases, theories which take into account

the geometry and structure of the free volume should be developed. The

point where data collapse with the free-volume theory is the point where

cages are established and do not change any more [202].

It must be noted that the results of Fig. 3.8 are obtained using numerical

double type (8 bytes). We used also long double type (16 bytes) for a few
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simulations and (while the data in Fig. 3.8 did not change) could reach perfect

agreement with the free-volume theory Eq. (3.14), using raw data (without

φJ mapping), even for 10−15 . (νmax − ν) . 10−8, i.e., over seven orders of

magnitude, which is quite remarkable.

Finally, we remark that even though the free volume theory presented

in Eq. (3.14) is designed for monodisperse systems, we observe a very good

agreement for polydisperse systems as well (see Fig. 3.8). We also confirmed

Eq. (3.14) for two-dimensional systems, and for systems with uniform vol-

ume and bidisperse size distributions (data not shown), and for different

compression rates.

3.1.4 Summary and Conclusions

In this study we have shown analytically that for any given polydisperse

system an equivalent bidisperse system can be constructed with the same

equation of state in the fluid regime, using Eqs. (3.20) and (3.21). In order

to confirm this result simulation data of the measured compressibility factor

are compared to previously found equations of state and agreement was found

with less than 1% deviation. Based on the simulation data a slightly more

accurate equation of state (3.13) was proposed for the fluid regime.

Surprisingly, for densities higher than the freezing (or glass transition)

density, beyond the fluid regime, our simulations show that a polydisperse

system and its bidisperse equivalent have similar equations of state, i.e., the

estimated jamming density is within 1%, as long as the bidisperse systems

do not show either (partial) crystallization or (theoretically predicted [163])

change in maximum-density-behavior due to the overwhelming presence of

the major species.

We have observed three distinct types of liquid-solid organization / behavior

in the bidisperse systems with equal number of small and big particles, de-

pending on the size ratio Rbi. First, for Rbi . 1.1 the crystalline phase

formed at high densities consists of a crystal made of both small and big

particles; second, in the range 1.1 . Rbi ≤ 2.06 we do not observe any signs

of ordering effects, i.e., an amorphous solid is formed; finally, at moderate to

large size ratios Rbi & 2.40, we observe an ordered structure that consists of a

crystal of predominately large particles. We confirm this using two different

criteria to quantify partial crystallization, i.e., the compressibility factor and

the jamming density. Note that above results are obtained using (relatively)

slow density growth rates, while for extremely fast compression it is possible

to avoid partial crystallization. For the polydisperse systems tested, we find

partial crystallization only for (relatively) low size ratios ω, i.e., ω . 1.2, but

not for larger ω.

Sufficiently close to the jamming density the compressibility factor is in-
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dependent of both size distribution and compression rate and depends only

on one free parameter, the jamming density itself. The free volume equation

of state (3.14) is in very good agreement with our simulation results for all

considered systems in two- and three-dimensions. We provide analytical (em-

pirical fits) equations for the jamming density as function of the extreme size

ratio for uniform size and uniform volume radii distributions to be confronted

with theory and experiments.

The result with potential for applications is the fact that polydisperse sys-

tems can be modeled [203] by their bidisperse equivalents and their jamming

(packing) density can be predicted from the moments O1 and O2. Further-

more, the results of this study can be used for better understanding the equa-

tion of state for mixtures of fluids and thus, to predict mixing / segregation.

Finally, our predictions concerning the size ratios for which crystallization

happens can be useful for experiments on colloids and granular media, to

either avoid or establish ordering effects.

We would like to stress that this is a preliminary study that considers

mostly relatively slow growth rates for a few size distribution function shapes.

Whether our predictions also hold for very differently shaped and much wider

size distribution functions is open as well as questions about much slower or

faster growth rates.

In a future study we will introduce an equivalent tridisperse system and

show that with this it is possible to suppress partial crystallization of binary

systems also for large size ratios. Comparison with experiment is another

subject of future research.
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Figure 3.7: The maximum density νmax as a function of the inverse size ratio
ω−1 for different size distributions and for different compression rates, in the
inset subscript 1 corresponds to the reference growth rate Γ = 8 × 10−6,
and subscript 2 corresponds to Γ = 16 × 10−6. Size distributions are (a,
top) uniform size distribution (US) and their bidisperse equivalents (BUS),
or (b, bottom) uniform volume (UV) and their bidisperse equivalents (BUV).
The size ratio ω corresponds to the polydisperse systems, while bidisperse
ones are constructed using 3.1.4. Results for BUV systems with N = 8192,
using Γ = 16 × 10−5, are shown as pluses in (b), which are fitted for ω ≥
10 by Eq. (3.16) with swapped values of φRCP and ν∞

max (dash-dotted line).
The left most point (+, ω = 30) is higher than expected because of partial
crystallization, setting in also here at very large ω. Results from Ref. [193]
obtained by compression of soft frictionless particles with a uniform size
distribution are shown as crosses in (a). In the inset of (a), νmax is plotted
for different growth rates Γ for the uniform size distribution (ω = 2) and
their bidisperse equivalent (Rbi ≈ 1.48). In the inset of (b), the deviation of
data from the fits is shown with corresponding symbols.
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Appendix

Derivation of the effective correlation function

In order to express the compressibility factor in the 3D mixtures, using di-

mensionless moments, plug Eqs. (3.2), (3.3) and (3.4) into the expression in

brackets of Eq. (3.5):

g11a
3
11n

2
1 + 2g12a

3
12n1n2 + g22a

3
22n

2
2

≡ 1

1− ν
(a311n

2
1 + 2a312n1n2 + a322n

2
2)

+
3ν A2

A3

2(1− ν)2
(a311n

2
1 +

4

1 +R
a312n1n2 +

1

R
a322n

2
2)

+
(ν A2

A3
)2

2(1− ν)3
(a311n

2
1 +

8

(1 +R)2
a312n1n2 +

1

R2
a322n

2
2)

≡ 6 〈a〉 〈a2〉+ 2 〈a3〉
1− ν

+
6ν(〈a〉 〈a2〉 〈a3〉+ 〈a2〉3)

(1− ν)2 〈a3〉

+
4ν2〈a2〉3

(1− ν)3 〈a3〉 .

(3.17)

Using the expression (3.17), and inserting Eqs. (3.6), one obtains:

Z − 1 = (1 + r)
ν

4 〈a3〉(g11a
3
11n

2
1 + 2g12a

3
12n1n2 + g22a

3
22n

2
2)

= (1 + r)2ν
(1− ν)2 + 3O1(1− ν) +O2(3− ν)ν

4(1− ν)3

= (1 + r)2νgeff(ν),

(3.18)

where r is the restitution coefficient.

Bounds of dimensionless moments

In order to show that O1 ≤ 1, find the extrema of g({ai}) = NO1 =
∑

ai
∑

a2i /
∑

a3i , i ∈ [1, N ] on the interval ai ∈ (0,∞). For this solve the

system of k = 1, ..., N equations:

∂g({ai})
∂ak

=

[

2ak
∑

ai +
∑

a2i
∑

a3i
− 3a2k

∑

ai
∑

a2i
(
∑

a3i )
2

]

= 0. (3.19)

The system (3.19) has one (trivial) solution ai = a = const, which cor-

responds to the monodisperse case. By looking at the sign of the second

derivative of g(ai = a) it can be checked that this extremum is the local

maximum gmax = N . Therefore the local maximum of O1 is equal to unity.

By analogy, considering the extrema of the function f(ai) = O2/O1, it

76



Poly- versus bi-disperse systems

can be shown that O2 ≤ O1.

Finally, to show that O2
1 ≤ O2, note that O2

1/O2 = A, where A =

〈a〉2/ 〈a2〉 ≤ 1. This yields O2
1 ≤ O2, where equality is reached only in

the monodisperse case (O1 = O2 = 1).

Equivalent bidisperse systems

In order to find a bidisperse system that has the same dimensionless mo-

ments O1 and O2 as a given polydisperse one, solve analytically the system

of equations (3.6) in terms of the variables n1 and R. This yields a unique

solution (O1 6= O2):

nbi
1 =

1

2
+

3O1O2 −O2 − 2O3
1

2λ
, (3.20)

Rbi =
2O3

1 + 2O2
2 +O2 − 4O1O2 − O2

1O2 + (1− O1)λ

2(O2 −O1)(O2
1 −O2)

, (3.21)

where λ =
√
O2

√

4O3
1 +O2 − 3O1(2 +O1)O2 + 4O2

2 and nbi
1 corresponds

here to the number fraction of large particles, i.e., Rbi ≥ 1. Inserting

these values into Eq. (3.8) leads also to the same compressibility factor

Zbi(nbi
1 , R

bi) = Zpoly(O1, O2).

Growth rate

In order to maintain the size distribution during the growing process, the

radius ai of the particle i changes with time as:

dai
dt

= Γ
ai

amax(t)
, (3.22)

where amax(t) is the radius of the largest particle (which depends on time)

and Γ is the growth rate with units of velocity. In this convention, we have

amax(t) = Γt and amin(t) = Γω−1t, where amin(t) is the radius of the smallest

particle and ω is constant, as desired. This ensures that the relative distri-

bution of radii and thus sphere volumes around the mean is constant over

time, but the mean sphere volume increases uniformly with time.

Dimensionless moments for different size distributions

Assume a polydisperse distribution of particle radii with probability f(a)da

to find the radius a between radii a and a + da, and with
r ∞

0
f(a)da =

1. Using the definition of the k-th moment of the size distribution f(a),
〈

ak
〉

≡
r
akf(a)da, it is straightforward to calculate dimensionless moments
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O1 = 〈a〉 〈a2〉 / 〈a3〉 and O2 = 〈a2〉3/〈a3〉2 for any given polydisperse size

distribution.

For the uniform size distribution, with ω = amax/amin, we obtain:

O1 = 1− 2

3

ω2
0

1 + ω2
0

, O2 =
1

27

(3 + ω2
0)

3

(1 + ω2
0)

2
, (3.23)

where ω0 = (ω − 1)/(ω + 1), and 2ω0 〈a〉 is the width of size distribution

function f(a). It must be noted, that plugging Eq. (3.23) into Eq. (3.20)

yields nbi
1 = 1/2. Therefore, a bidisperse system which is equivalent to a

polydisperse system with uniform size distribution has the same number of

small and large particles for any ω.

For the uniform volume distribution, we have (ω > 1):

O1 =
2ω

ω2 − 1
lnω, O2 =

2ω2

(ω − 1)3(ω + 1)
ln3 ω. (3.24)

For examples of numerical values see Table 3.1.

The moments of the log-normal distribution (not used in our present

simulations) can be computed from the moment generating function of the

normal distribution [204]. If X has the log-normal distribution with param-

eters µ and σ then E(Xn) = exp[nµ + (1/2)n2σ2], n ∈ N. Therefore, we

obtain:

O1 = exp(−2σ2), O2 = exp(−3σ2). (3.25)

In a number of studies [28,35,184] the magnitude of the spread of sphere

radii is conveniently characterized by the parameter δ, which is often also

referred to as polydispersity and measures the standard deviation of the radii

distribution normalized by its mean: δ = (〈a2〉 − 〈a〉2)1/2/ 〈a〉. Therefore we

also provide an expression for δ as function of O1 and O2: δ = (O2/O
2
1−1)1/2,

which is directly related to the parameter A used in Ref. [159], A = 1/(δ2+1).
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Distr. Figs. ω O1 O2 Rbi nbi
1 δ

US 3.1, 3.2, 3.3, 1.0 1.0 1.0 1.0 0
3.4, 3.5, 3.6(a), 1.2 0.995 0.992 1.11 0.05

3.7(a), 3.8 1.4 0.982 0.973 1.21 0.10
2 0.933 0.903 1.48 0.19
4 0.824 0.760 2.06 0.35
5 0.795 0.725 2.25 1/2 0.38
10 0.733 0.657 2.79 0.47
20 0.700 0.624 3.19 0.52
50 0.680 0.605 3.49 0.55
100 0.673 0.599 3.61 0.57

∞ 2/3 16/27 2+
√
3

√
3/3

UV 3.1(d), 3.6(b), 1.0 1.0 1.0 1.0 1/2 0
3.7(b) 1.2 0.994 0.992 1.11 0.453 0.05

1.4 0.981 0.972 1.21 0.413 0.10
2 0.924 0.888 1.49 0.327 0.20
4 0.739 0.632 2.24 0.190 0.39
5 0.671 0.543 2.56 0.156 0.46
7 0.568 0.418 3.13 0.114 0.55
8 0.528 0.373 3.40 0.100 0.58
10 0.465 0.304 3.90 0.080 0.64
100 0.092 0.020 17.83 0.006 1.16
∞ 0 0 – – –

Table 3.1: Given are size ratios ω and dimensionless moments O1 and O2 for
a few polydisperse systems with uniform size (US) and uniform volume (UV)
radii distributions and Rbi with nbi

1 for their bidisperse equivalents.
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3.2 Poly- versus tri-disperse systems†

How many state-variables are needed to predict the equation of state and

the jamming density of polydisperse mixtures in glassy, non-equilibrium com-

pressed states? We propose to define equivalent and maximally equivalent

systems as those that match three and five moments of a given polydisperse

size distribution, respectively. Fluids can be represented well by an equivalent

system with only s = 2 components (bidisperse). As little as s = 3 com-

ponents (tridisperse) are enough to achieve a maximally equivalent system.

Those match macroscopic properties in glassy states, but also the volume frac-

tion of rattlers, suggesting strong microstructural equivalency too. For many

soft and granular systems, tridisperse, maximally equivalent systems allow

for a closed analytical treatment and well-controlled industrial applications,

while our proposal waits for experimental validation.

The hard-sphere model is one of the simplest representations of soft con-

densed matter systems where strong repulsions dominate the weak, or neg-

ligible attractive forces. It can be applied with some success for studying

disorder-order transitions, the glass transition, colloids, granular materials,

amorphous metals, and phase transitions or nucleation in simple gases and

liquids [2, 138–140]. Despite its simplicity, more complicated (soft) interac-

tions of spheres can be approximated with the hard-sphere model [205,206].

In many experimental or industrially relevant circumstances, the partic-

ular components (spheres) of a system are not uniform in size but rather

display some distribution of sizes or “polydispersity” [164]. Interesting phe-

nomena arise in the presence of a wide polydispersity [25, 34, 207], but due

to the wide size distribution across many scales, it is difficult to provide

simple accurate statistical models [208,209] for such systems. In many fluid-

based theories, for example, Percus-Yevick integral equation theory [210,211],

scaled-particle theory [55], Boubĺık, Mansoori, Carnahan, Starling, and Le-

land (BMCSL) equation of state (EOS) [57, 58], Rosenfeld’s fundamental

measure theory [212], A. Santos’ approaches [59–61], and others [49,52,213],

it is assumed that the dependence of the polydisperse pressure of N hard

spheres on the N degrees of freedom (volume fraction plus N − 1 size ratios)

can be encapsulated into the dependence of only three parameters, i.e., the

volume fraction and the second and third scaled moments (divided by the

first moment, with appropriate power). In this case, the equivalent map-

†Based on V. Ogarko and S. Luding, “Prediction of polydisperse hard-sphere mixture
behavior using tridisperse systems,” Soft Matter, vol. 9, no. 40, pp. 9530–9534, 2013.
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ping polydisperse-to-bidisperse is enough, because in order to match the first

three moments of any radii distribution requires only two differently sized

components. At the same time, the two-species kinetic theory is particularly

simple, since two coupled equations for each species can be written down

explicitly, whereas the multi-species theory is much less convenient.

A bidisperse equivalent mapping, while being very useful over a wide

range of fluid volume fractions, νf . 0.56, has limitations for extremely large

densities in glassy, metastable states near the jamming transition. Equiva-

lent bidisperse systems show (partial) crystallization for densities around νf
already and, in general, do not perform well for ν > νf , due to the over-

whelming presence of one species [27]. The open question is whether another

mapping polydisperse-to-finite-number of components works, starting from

as little as a three-component mixture.

We consider s-component mixtures of Ni hard spheres of radius ai en-

closed in a volume V , with i = 1, ..., s. In the case of a polydisperse size

distribution, s = N and each sampled ai can be different from the others.

The composition of such mixtures is quantified by the radii ai and the par-

tial volume fractions, νi = (4/3)πNia
3
i /V , i.e., one has 2s degrees of freedom

(dof). The total volume fraction ν =
∑s

1 νi and the arbitrary unit of length,

leave 2s−2 independent dof. We define equivalent systems as those that have

the same first two scaled moments, k = 2, 3, with Mk =
〈

ak
〉

/〈a〉k, with mo-

ments,
〈

ak
〉

=
∫

akf(a)da, of their normalized size distribution functions

f(a). Furthermore, maximally equivalent systems are those that have the

same first four scaled moments, k = 2-5, of their size distribution functions.

Without loss of generality, it can be more convenient†, [52] to use central

moments µk =
〈

(a− 〈a〉)k
〉

.

The larger s, the more moments of the size distribution can be adjusted,

and due to more efficient packing it is possible to reach considerably higher

jamming densities as compared to mono- or bidisperse cases. Perfectly space-

filling (e.g., Apollonian) packings are beyond the reach of tridisperse packings

[214], as well as infinitely slow routes to equilibrium states ‡, due to finite

simulation times.

We perform Event-Driven molecular dynamics simulations using systems

of hard spheres with periodic boundary conditions. Starting from zero vol-

ume fraction we compress the system towards a jammed state using a mod-

ification of the Lubachevsky-Stillinger algorithm [81, 134], which allows the

diameter of the particles to grow linearly in time with a dimensionless rate

Γ §, while the kinetic energy, E, is kept constant using a re-scaling thermo-

stat procedure [27]. An alternative growth method would decrease Γ with in-

‡Thermodynamically, the polydisperse system fractionates in phases separated accord-
ing to the particle size, but this eutectic freezing-transition is kinetically suppressed and
practically unreachable [215].
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creasing density [216]. However, the used compaction process is well-defined

nevertheless, and the resultant (non-equilibrium) states too – as confirmed by

some different initial configurations – albeit subject to statistical fluctuation

and ensemble averaging for small finite systems. The growth rate used in

most simulations is slow, Γ = 16× 10−6, if not explicitly stated otherwise. A

few runs with ten times smaller Γ are consistent. The compressibility factor

Z ≡ pV/NkBT (dimensionless combination of pressure p and kinetic tem-

perature kBT = 2E/3N), is calculated from the total exchanged momentum

in all interparticle collisions during a short time period. The following types

of particle size distributions are used: (i) uniform size (rectangular); (ii) uni-

form volume, i.e., the total volume occupied with those particles with radii

between a1 and a1 + da is equal to the total volume occupied by particles

with radii between a2 and a2 + da, etc; (iii) tridisperse systems, equivalent

to the aforementioned polydisperse systems. The considered polydisperse

distributions are characterized by their width, i.e., the ratio ω between the

maximum and the minimum particle radius. (For details see section 3.3,

where the log-normal distribution is also discussed.)

Our simulations confirm that in the fluid regime, i.e., at volume fractions

ν < 0.54, the agreement in the compressibility factor Z between all consid-

ered systems and the BMCSL equation of state is better than 1% (data not

shown) [27]. When the density is further increased, the compressibility factor

deviates from the fluid theory prediction, that involves a maximum volume

fraction of unity due to the density expansion involved, while the maximum

solid volume fraction has to be lower due to excluded volume. Z increases

very rapidly at densities higher than the freezing point, so that we instead

plot the estimated jamming density φest
J (ν) = ν/[1 − 3/Z(ν)] [27], since it is

limited, i.e., φest
J (ν) = ν for Z(ν) → ∞. Figure 3.9(a) shows φest

J as a func-

tion of volume fraction for a few systems with uniform size distribution (dark

curves, e.g., blue) and their tridisperse, maximally equivalent counterparts

(light curves, e.g., cyan), i.e., with matched first four scaled moments. While

for small size ratios, ω < 1.2, ordering/crystallization is expected†, [27], for

1.2 ≤ ω ≤ 3 the estimated jamming density of the considered polydisperse

systems and their respective tridisperse counterparts are in perfect agree-

ment and still within 1% for the widest studied size distributions of width

ω = 100. We measured crystallinity¶ and found that maximally equivalent

tridisperse systems do not show signs of crystallization for ω ≥ 1.4 (data are

shown in section 3.3), while equivalent bidisperse systems partially crystal-

lize for ω & 5, since then, the small particles fit into interstices and thus

do not hinder crystallization of the large particles [27]. We also confirmed

¶Particles in a crystalline environment were identified using a method based on spherical
harmonics given in [217]; the bond network was determined using a weighted Delaunay
tessellation [129], effectively taking into account the strongly different radii of the particles.
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Figure 3.9: Estimated jamming density, φest
J , plotted against volume frac-

tion, ν, (a, top) for systems with N = 4096 and uniform size distribution
(dark curves – dark-green, dark-orangered, dark-magenta, etc.) and their
tridisperse maximal equivalents with the same N (light curves – green, or-
angered, magenta, etc.), and (b, bottom) for the system with uniform size
distribution with ω = 3 (dark blue) and some tridisperse equivalents with
different β2. Given in the legend of (a) are the size ratios ω corresponding to
curves with increasing φest

J . The values of β2 in (b) are marked with arrows
(for β2 = 1.8 both tri- and polydisperse data are practically overlapping).
In the inset of (b) the maximal reached volume fraction is plotted against
the kurtosis β2, where the error bars indicate the standard deviation of three
different runs with random initial particle positions and velocities. The fluid
theory (BMCSL EOS) is plotted as dot-dashed line.

that systems with uniform volume distribution and their tridisperse maximal

equivalents have close equations of state in the range 1.2 ≤ ω ≤ 10 (data not
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shown).

In Fig. 3.9(b) φest
J is plotted as a function of volume fraction for the

uniformly polydisperse system with ω = 3 (top curve) and its tridisperse

equivalents. We fix the scaled moments k = 2, 3, 5 ‖ and vary the k = 4-

moment, i.e., the kurtosis β2 = µ4/µ
2
2, which describes both tailedness and

peakedness of the size distribution function [218]. At high volume fractions,

ν ≥ νf , for glassy, metastable states, the higher-order moments, e.g, the

kurtosis, play an important role. Even though the agreement is good for all

equivalent systems with different β2, it is close to perfect for the maximally

equivalent system (with β2 = 1.8), in both fluid and glassy regimes, including

almost identical jamming densities ∗∗. In the inset of Fig. 3.9(b), the maximal

reached volume fraction is plotted against the kurtosis β2 (in general, β2 ≥ 1).

The observed non-linear behavior can be explained by the vanishing presence

of one species: for values of β2 close to unity the system becomes nearly

bidisperse due to vanishing concentration of the medium species, and for

values of β2 close to 12 the radius of the smallest species approaches zero

(and becomes negative for β2 > 12, so no physical solutions exist for this type

of size distribution). Similar non-linear behavior of the jamming density was

predicted and observed in Ref. [163].

A small mismatch in jamming densities (such with Z > 1013) can be seen

in Figure 3.10(a), in the range ω & 5, where uniformly polydisperse systems

jam at an about 0.5% higher density than their tridisperse maximal equiva-

lents. We explain this deviation by linking the macro-scale jamming density

with a micro-scale system property like “rattlers”, i.e., particles that are free

to float in the cage made by their jammed neighbors. Due to particle growth

(or, equivalently, compression of the system), the velocity of all particles

increases at each collision, for details see section 3.3. Therefore, in denser

situations, the velocity of the rattlers, which collide much less frequent, van-

ishes compared to the velocity of the jammed particles, due to the thermostat

that simply rescales all velocities by the same factor ††. The simplest way

to identify rattlers is to look at their speed, which is close to zero, whereas

the scaled speed of jammed particles is close to unity. The rattler criterion

is chosen as vr ≤ 10−4 and we confirmed that changing the above criterion

in the range 10−3 ≤ vr ≤ 10−6 does not affect the results.

Figure 3.10(b) shows the volume fraction of rattlers νr for many different

‖µ5 ≡ 0 for the uniform size distribution.
∗∗The importance of the fourth and fifth moments is also supported by estimates for

the contact number density of static, soft granular packings, see Ref. [219] and references
therein.

††With this thermostat, the jammed network of non-rattlers equilibrates itself, while
the rattlers are artificially “cooled” down. Alternative thermostats would “heat” rattlers
without changing the system behavior since those would still collide much less than the
jammed non-rattlers due to their larger mean free path.
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Figure 3.10: (a, top) Jamming density plotted against ω for systems the uni-
form size (US, N = 4096) and uniform volume (UV, N = 8192) distributions
and for their tridisperse maximal equivalents (TUS and TUV, respectively).
Solid lines are fits from Ref. [27] with parameters φ = 0.647, ν∞

us = 0.679 and
ν∞
uv = 0.86. (b, bottom) Volume fraction νr of rattlers plotted against ω for
systems considered in (a). The solid line is the same fitting function as in (a)
for the US data, but with different parameters φ = 0.014 and ν∞

r = 0.052.
The error bars indicate the standard deviation of three different runs with
random initial particle positions and velocities. The kurtosis of the US/TUS
systems is plotted in the inset with rattlers (β2 = 1.8, dashed line) and with
rattlers excluded (symbols).

size ratios, for the uniform size and uniform volume distributions and for

their tridisperse maximal equivalents. Surprisingly, for ω ≥ 1.2, νr is very

similar for poly- and the respective tridisperse systems. This shows that

the maximal equivalent systems also have a very similar microstructure in
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that respect. (We also found that the poly- and the respective tridisperse

structure factors have very similar low-wavenumber behavior, see section

3.3.) Moreover, νr correlates with the jamming density in Fig. 3.10(a), i.e.,

larger νmax correlates with larger νr. Interestingly, νr for the US/TUS sys-

tems is described by the same functional form as the jamming density in

Fig. 3.10(a). Note that when rattlers are excluded, the size distributions are

not equivalent anymore, as quantified by the kurtosis in the inset of Fig.

3.10(b). The kurtosis considering of non-rattlers only deviates from β2 = 1.8

for both systems already for ω > 2. The tridisperse and polydisperse data

develop differently from each other at ω & 4, and reach plateaus for ω ≥ 10.

In the TUS system, number fractions ni change from their original values

(with rattlers) 5:8:5 to 0:5:5, i.e., all small particles and about 40% of the

medium particles become rattlers. The strong decrease of β2 for the tridis-

perse systems (in contrast to a small increase for the polydisperse systems)

explains the small but systematic differences between their νmax-values for

ω & 4. The non-rattlers form the jammed system [220] and their size dis-

tribution (and moments) are relevant for the jamming density. With other

words, tridisperse systems are equivalent to polydisperse systems if the size

distribution moments of the fraction of non-rattlers are matched. A-priori

this is impossible, but observations that (i) the volume fractions of rattlers

are almost identical and (ii) νr has the same functional form as the jamming

density (for the US/TUS systems at least) provide a first step towards truly

maximally equivalent tridisperse systems.

In conclusion, starting from different polydisperse systems, we defined

equivalent and maximally equivalent hard sphere systems on the basis of

identical first two and four scaled moments of their size distribution func-

tions, respectively. By means of Event-Driven molecular dynamics simula-

tions we confirmed that equivalent (bidisperse) systems match and predict

the behavior of the polydisperse system in the fluid regime. Interestingly,

maximally equivalent tridisperse systems match/predict polydisperse ones

for much higher densities – in non-equilibrium, glassy states. Tridisperse

systems do not suffer from partial crystallization, as observed for large size

ratios in equivalent bidisperse systems [27], and even allow to predict the

maximal jamming density within about 0.5% accuracy.

We identified the rattlers in glassy systems as the reason for this small but

significant discrepancy. The size distribution of poly- and (maximally equiv-

alent) tri-disperse systems with rattlers excluded are considerably different

from the original one and from each other, as quantified by the kurtosis.

The maximally equivalent tridisperse systems have almost the same volume

fraction of rattlers as the polydisperse ones they mimick, which indicates a

very strong similarity in the microstructures, with respect to caging, perco-
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lation, and volume fraction of non-rattlers. Thus, truly maximally equivalent

systems are those with four identical scaled moments of the non-rattlers.

Important consequences of our research are: (i) a tridisperse theory is still

analytically treatable (like for bidisperse systems, without further assump-

tions), whereas an arbitrary polydispersity would require arbitrarily many

species and coupled equations; (ii) other transport coefficients (like heat-

conductivity, viscosity etc.) can be computed analytically in the framework

of a tridisperse theory (which goes beyond the scope of this study) and it

should be checked if the 4-moments equivalency postulate holds for them too;

(iii) experimentally, three species are much easier to control and (according

to our prediction) should resemble multi-disperse systems; (iv) the multi-

scale nature of wide polydispersities (continuous from very small to very

large sizes) could be replaced by a discrete (three-scales only) picture (model

system) that covers a narrower range of particle sizes – thus representing a

working multi-scale theory with enormous reduction of complexity.

In future studies, the effect of the growth rate and especially the limit

Γ → 0 should be studied further and a comparison with experiments should

be carried out with the goal to validate the present theoretical predictions and

establish their relevance in the presence of more realistic contact interactions

like friction.
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3.3 Supplementary materials

3.3.1 Details on the event-driven simulations

In our event-driven molecular dynamics simulations we used a modification

of the Event-Driven C++ code written by A. Donev et al. [67, 134], which

is available for download at http://cherrypit.princeton.edu/Packing/

C++/.

In our work we consider, in the style of A. Donev [21], Molecular Dynamics

in a simple bounded simulation domain embedded in a Euclidean space of

dimensionality d, defined by the lattice vectors, λλλ1,..., λλλd. The simulation

domain, or unit cell, is a collection of points with d relative coordinates r in

the interval [0,1], and corresponding Cartesian coordinates

r(E) =
d
∑

k=1

rkλλλk = ΛΛΛr, (3.26)

where ΛΛΛ is a square invertible matrix representing the lattice, and contains

the lattice vectors as columns. The volume of the unit cell is given by the

positive determinant V ≡ |ΛΛΛ|. In particular, we consider a cubic unit cell in

3D (d=3) with lattice vectors λλλ1 = (1, 0, 0), λλλ2 = (0, 1, 0) and λλλ3 = (0, 0, 1).

Additionally, we use periodic boundary conditions (BCs) which are im-

posed to mimic an infinite system, i.e., a statistically homogeneous medium.

One can interpret periodic systems as being “infinite” and covering all Eu-

clidean space with identical copies of the unit cell and the particles in this

unit cell, however the system size λλλk defines the minimum possible wavenum-

ber (largest wavelength). Periodic BCs are handled by considering the unit

cell of the packing and considering each contact between an original i and an

image particle j̃ to be a contact between particles i and j. The vector of d

integers nij specifies how many unit cells the contact {i, j} crosses over [21].

This way the relative position between particles i and j is

rij = ri − rj +ΛΛΛnij , (3.27)

with the positions ri and rj of the centers of particles i and j, respectively.

Given velocities of the particles just before the contact, v1 and v2, and

their masses m1 and m2, the velocities after the collision are derived [83] from

conservation of linear momentum and definition of the restitution coefficient,

en, yielding:

v′
1 = v1 +∆p/m1, (3.28)

v′
2 = v2 −∆p/m2, (3.29)

where ∆p is the change of momentum. In the case of smooth (frictionless)
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particles only the normal component of the change of momentum ∆p(n) is

affected during the collision (i.e., no angular velocity), and it is calculated

as [83]:

∆p(n) = −m12(1 + en)v
(n)
c , (3.30)

with the reduced mass m12 = m1m2/(m1 +m2), and the normal component

of the relative velocity of the contact-point of the particles v
(n)
c . The latter

is calculated taking into account the expanding sphere surfaces (for growing

particles) as:

v(n)
c = n̂ [(v1 − v2) · n̂− (vgr1 + vgr2 )] , (3.31)

with the unit vector in the normal direction n̂ = rij/ ‖rij‖, and the growing

speed of radius ai of particle i

vgri :=
dai
dt

= Γ
ai

amax
v0, (3.32)

where amax is the largest particle radius at time t, and v0 :=
√

2E
3M

is the

thermal velocity, defined via the total fluctuation kinetic energy, E, and the

total system mass, M , and Γ is the dimensionless growth (compression) rate.

The compressibility factor Z ≡ pV/NkBT , with kinetic temperature

kBT = 2E/3N , is calculated from the total exchanged momentum in all

interparticle collisions during a short time period ∆t:

Z = 1−
∑

‖∆pij‖ lij
2E∆t

, (3.33)

where the bar lij = ‖rij‖ accounts for the distance over which momentum

(force) is transmitted. The time period ∆t is chosen so that the total change

in the kinetic energy due to growth stays below 1%.

3.3.2 Size distribution parameters

In order to facilitate the process of finding a maximally equivalent tridisperse

system, we consider, in the style of Bartlett [49], the tridisperse distribution

detailed in Table 3.2. This distribution has been chosen so that varying

the number fractions n1,2, and the non-dimensional radii weighed by number

fractions, δi = niai/ 〈a〉, i = 1, 2, allows the mixture composition and volume

fraction to change, while the total number density ρ = N/V and mean radius

〈a〉 are fixed. Note that any tridisperse mixture can be expressed in this form,

since this distribution has six degrees of freedom as desired (i.e., 2s for s = 3

species): ρ, 〈a〉, δ1,2 and n1,2. This is equivalent to the set ν, 〈a〉, 〈a2〉,...,
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〈a5〉, as used in Ref. [82], and these two sets are related as:

〈

ak
〉

=
3
∑

i=1

nia
k
i = 〈a〉k

(

δk1
nk−1
1

+
δk2

nk−1
2

+
(1− δ1 − δ2)

k

(1− n1 − n2)k−1

)

, k ≥ 1, (3.34)

ν = ρ
4π

3

〈

a3
〉

. (3.35)

Species 1 Species 2 Species 3
Number density ρi ρn1 ρn2 ρ(1 − n1 − n2)

Radius ai 〈a〉 δ1
n1

〈a〉 δ2
n2

〈a〉 (1− δ1 − δ2)

(1− n1 − n2)

Table 3.2: Specification of a tridisperse mixture of hard spheres with fixed
values for the total number density of particles, ρ, and mean radius 〈a〉.
The properties of the mixture are then uniquely defined by the variables
δi = niai/ 〈a〉 and ni = Ni/N .

Consider polydisperse systems with a uniform size distribution of radii

(e.g., same number of bigger spheres as smaller spheres in intervals da),

characterized by its extreme size ratio ω = amax/amin, i.e., the ratio between

the maximum and the minimum particle radius. The radius of the particles

in such systems is distributed uniformly between amin = (1 − ω0) 〈a〉 and

amax = (1 + ω0) 〈a〉, where ω0 = (ω − 1)/(ω + 1), and 2ω0 〈a〉 = amax − amin

is the width of the (normalized) size distribution function f(a):

f(a) =
1

2ω0 〈a〉
Θ(amax − a)Θ(a− amin), (3.36)

with the Heaviside step function Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 else-

where. For the uniform size distribution, due to its simplicity, maximally

equivalent systems can be found analytically. We do it by solving a system

of four equations that matches the first four central scaled moments with the

tridisperse system from Table 3.2. Central scaled moments are very simple

for the uniform size distribution:

M c
2 = (1/3)ω2

0,

M c
3 = 0,

M c
4 = (1/5)ω4

0,

M c
5 = 0,

(3.37)
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with M c
1 = 0, due to the definition:

M c
k =

〈

(a− 〈a〉)k
〉

〈a〉k
. (3.38)

Therefore, maximally equivalent tridisperse systems to the uniform size dis-

tribution (with parameter ω) can be obtained analytically (e.g., using Math-

ematica software):

n1 =
5

18
, n2 =

8

18
, (3.39)

δ1(ω) =
1

18
(5 +

√
15ω0), δ2 =

8

18
. (3.40)

Note that here and further we pick a unique solution (for a given ω) with

a1 ≥ a2 ≥ a3 (sorted radii). Furthermore, equivalent systems (with matched

k = 2, 3, 5 scaled moments) to a system with uniform size distribution with

ω = 3, considered in Ref. [82] in Figure 1(b), are detailed below for different

kurtosis β2 = M c
4/(M

c
2)

2:

n1 =
1

2β2
, n2 =

β2 − 1

β2
, (3.41)

δ1 =
6 +

√
3β2

12β2
, δ2 =

β2 − 1

β2
. (3.42)

Consider systems with uniform volume distribution of radii in the sense

that the total volume occupied with those particles with radii between a1
and a1 + da is equal to the total volume occupied by particles with radii be-

tween a2 and a2 + da, etc. These systems can be also characterized by their

extreme size ratio ω = amax/amin. This is a truncated power law size distri-

bution, which due to its sharp edges with well defined ω, could be obtained

by ideal sieving from wider, smooth continuously distributed realistic distri-

butions. Power law distributions appear in a diverse range of natural and

man-made phenomena [221]. The radius of the particles in such systems is

distributed between amin = ω+1
2ω

〈a〉 and amax =
ω+1
2

〈a〉 and the (normalized)

size distribution function f(a) is expressed as:

f(a) =
〈a〉2
2ω0

a−3Θ(amax − a)Θ(a− amin). (3.43)

Tridisperse maximally equivalent systems to polydisperse ones with uniform

volume radii distribution, as considered in Ref. [82] in Figure 2, are detailed

in Table 3.3. First four raw scaled moments Mk =
〈

ak
〉

/〈a〉k for the uniform
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volume radii distribution are:

M2 =
lnω

2ω0

,

M3 =
(1 + ω)2

4ω
,

M4 =
(1 + ω)4

16ω2
,

M5 =
(1 + ω)4(1 + ω + ω2)

48ω3
.

(3.44)

To avoid possible confusion, we note that in the distribution detailed in

Eq. (3.43), what is actually uniformly distributed is the inverse area z = a−2:

f(z)|dz| = f(a)|da|, dz = −2a−3da. (3.45)

Therefore, f(z) = f(a)/(2a−3) = const for a−2
max ≤ z ≤ a−2

min. Accordingly, a

proper nomenclature for this type of size distribution is uniform inverse area

distribution (per inverse-area interval). However, we stick to the uniform

volume size distribution in the sense defined above Eq. (3.43), in order to

talk about size distributions only.

ω n1 n2 δ1 δ2
2 0.1427 0.4054 0.1988 0.4337

3 0.08923 0.3544 0.1593 0.4181

4 0.06189 0.3118 0.1345 0.4034

5 0.04582 0.2777 0.1173 0.3902

6 0.03548 0.2502 0.1044 0.3785

8 0.02331 0.2086 0.08630 0.3584

10 0.01661 0.1789 0.07400 0.3419

Table 3.3: Specification of tridisperse mixtures of hard spheres maximally
equivalent to polydisperse systems with uniform volume distribution of radii
for various extreme size ratios ω.

Log-normal distributions appear in studies of emulsions, granular mate-

rials, such as sediments [222] and particle growth processes [223]. Therefore,

we also study this size distribution of sphere radii, which has the form [222]:

f(a) =
1

σ
√
2πa

exp

{

− [ln(a/a0)]
2

2σ2

}

, (3.46)
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Figure 3.11: (top left) A polydisperse system with uniform size radii distri-
bution with ω = 10 and N = 4096 particles and (top right) its maximally
equivalent tridisperse counterpart, and (bottom left) a polydisperse system
with uniform volume radii distribution with ω = 10 and N = 8192 particles
and (bottom right) its maximally equivalent tridisperse counterpart. Color
is by relative size, where darker grey particles are bigger – in color blue.

where a0 is a reference radius setting the length scale:

a0 = (1/2)(D32D43)
1/2(D32/D43)

3, (3.47)

and σ is the dimensionless geometric standard deviation:

σ =

√

ln

(

D43

D32

)

, (3.48)

with (often experimentally accessible) the volume-weighted mean diameter

D43 and the surface-weighted mean diameter D32 defined in terms of the
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Figure 3.12: Jamming density plotted against σ for systems with log-normal
(LN) radii distribution and for their tridisperse maximal equivalents (TLN),
using N = 16384. In the inset, the behavior of the fitting equations beyond
the range of data is shown for larger values of σ, using the same axis and
symbols. The deviation between LN and TLN data is due to the fact that
the rattler-removed packings have highly different moments and thus being
not true maximally equivalent anymore.

moments via:

D43 ≡ 2
〈

a4
〉

/
〈

a3
〉

, (3.49)

D32 ≡ 2
〈

a3
〉

/
〈

a2
〉

. (3.50)

The log-normal moments
〈

ak
〉

are given by

〈

ak
〉

= ak0 exp(k
2σ2/2). (3.51)

Eq. (3.48) can often be used to estimate σ for a real log-normal distribu-

tion of particle radii, using experimental sizing data, for example from light-

scattering [222]. Note that while uniform size and uniform volume radii dis-

tributions are having sharp edges at amin and amax, the log-normal distribu-

tion is smoothly increasing and decreasing. Tridisperse maximally equivalent

systems to polydisperse ones with log-normal radii distribution, considered
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in this report in Fig. 3.12, are detailed in Table 3.4. Note that the number

fraction n1 of large species decreases very fast with increasing σ. This means

that to have in the system, e.g., more than 10 large particles for σ = 1, one

has to use large total numbers of particles N ≥ 106 (no data shown), which

is computationally expensive.

σ n1 n2 δ1 δ2
0.05 0.1330 0.6620 0.1457 0.6653

0.1 0.1040 0.6480 0.1263 0.6611

0.15 0.07972 0.6255 0.1083 0.6543

0.2 0.05980 0.5952 0.09197 0.6448

0.25 0.04384 0.5585 0.07722 0.6329

0.3 0.03138 0.5167 0.06405 0.6186

0.35 0.02190 0.4713 0.05245 0.6021

0.4 0.01488 0.4238 0.04236 0.5836

0.45 0.009833 0.3758 0.03371 0.5634

0.5 0.006306 0.3285 0.02639 0.5416

0.55 0.003918 0.2832 0.02032 0.5186

0.6 0.002355 0.2407 0.01535 0.4945

0.65 0.001367 0.2017 0.01137 0.4695

0.7 0.0007643 0.1666 0.008247 0.4440

0.75 0.0004110 0.1357 0.005847 0.4180

0.8 0.0002121 0.1090 0.004046 0.3920

0.85 0.0001048 0.08627 0.002729 0.3659

0.9 0.00004951 0.06731 0.001792 0.3401

0.95 0.00002231 0.05177 0.001143 0.3147

1.0 0.000009572 0.03923 0.0007078 0.2899

Table 3.4: Specification of tridisperse mixtures of hard spheres maximally
equivalent to polydisperse systems with log-normal distribution of radii for
various σ.

Figure 3.12 shows the maximum density νmax as a function of σ for sys-

tems with log-normal radii distribution and for their tridisperse maximal

equivalents (with rattlers). A relatively fast compression rate, Γ = 16×10−3

was used to achieve these configurations, i.e., a monodisperse system (with
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σ = 0) does not crystallize and reaches a random close packing. From our

data, the jamming density νmax can be fitted by a function of σ:

νmax(σ) = ν∞
max − (ν∞

max − φRCP) exp(−2σ2), (3.52)

where the random close packing density φRCP = νmax(0) is 0.6373 (taken from

data) and the maximum density, ν∞
max = 0.7990, in the limit of σ → ∞. Note

that Eq. (3.52) has a similar form as previously reported equations for the

jamming density for the uniform size and uniform volume radii distributions

[27], i.e.,

νmax(x) = ν∞
max − (ν∞

max − φRCP)F (x). (3.53)

Based on this observation, we speculate that this is a general form for the

jamming density of some large class of polydisperse radii distributions, where

a function F (x) can be expressed in terms of moments of the size distribution.

Particularly, for the log-normal radii distribution F (x) can be expressed as

(this is an arbitrary choice out of many):

Fln(σ) ≡ exp(−2σ2) =

(

D32

D43

)2

. (3.54)

The deviation of Eq. (3.52) is within ±0.7% for all data 0 ≤ σ ≤ 1.

Nevertheless, we found that the jamming density for the log-normal radii

distribution can also be fitted by another function, which is very close to Eq.

(3.52) in the range 0 ≤ σ ≤ 1, but differs for larger σ:

νmax(σ) = ν∞
max + c1 exp(−σ2) + c2 exp(−σ3), (3.55)

with ν∞
max = 0.8583, c1 = −0.3516 and c2 = 0.1332. The deviation of Eq.

(3.55) is within ±0.4% for all data 0 ≤ σ ≤ 1.

In Figure 3.11 we show final snapshots (near jamming) of polydisperse

systems and their maximally equivalent tridisperse ones, which are considered

in Ref. [82] in Figure 2.

3.3.3 Measuring bond-orientational order

In order to distinguish particles that are part of the crystal from those that

belong to fluid or glass we utilize a method which is independent of the

specific crystal structure and does not require the definition of the refer-

ence frame (i.e., rotationally invariant), provided by the following algorithm

based on spherical harmonics [217,224,225]. The idea is to calculate for each
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particle i a set of complex numbers

q̄lm(i) =
1

Nb(i)

Nb(i)
∑

j=1

Ylm(r̂ij), (3.56)

where Ylm are spherical harmonics with components m ranging from −l ≤
m ≤ l, evaluated for the normalized direction vector r̂ij connecting the cen-

ters of mass of particles i and j. The components of q̄lm(i) depend on the

relative orientation of particle i with respect to its Nb(i) neighboring par-

ticles [5]. For determining neighboring particles we utilize a weighted De-

launay tessellation [129] (otherwise called regular triangulation), effectively

taking in account radii of particles. These triangulations provide information

about inter-particle distances among a set of spheres. The CGAL external

library was used for the construction of the triangulation. In order to ac-

count for periodic boundaries, we periodically repeat the simulation box in

all three directions. We use l = 6 because it allows to detect hcp clusters

and clusters with cubic symmetry (fcc, bcc, and sc) but also clusters with

icosahedral symmetry, which can have nonzero spherical harmonics only for

l = 6, 10, 12, ... [224]. To this end, we construct a normalized complex vector

q6(i), with components q̃6m(i) proportional to the q̄6m(i).

In a second step a dot product of the vectors q6 of neighboring particles

i and j is computed:

d6(i, j) = q6(i) · q6(j) ≡
6
∑

m=−6

q̃6m(i)q̃6m(j)
∗, (3.57)

where the * indicates complex conjugation. Here, d6(i, j) is a normalized

quantity correlating the local environments of neighboring particles [5]; it is

a real number and is defined in the range −1 ≤ d6(i, j) ≤ 1. By construction,

d6(i, i) = 1. For example [5], in a perfect face-centered-cubic crystal, all the

particles have the same environment and, therefore, the dot product between

the vectors associated with any pair of particles is unity. The dot product

decreases when thermal vibrations are present but, on average, it is close to

unity if particles have a solid-like environment and around zero if particles

have a liquid-like environment.

Now particles i and j are considered to be “connected” if q6(i) · q6(j)

exceeds a certain threshold, in our case 0.65. A particle is labeled as solid-like

if it has at least six connections. Finally, we define the degree of crystallinity

pc, or simply crystallinity, of a sample as the number of solid-like particles

divided by the total number N .

Figure 3.13 shows the crystallinity pc as function of size ratio ω for systems

with uniform size distribution characterized by its extreme size ratio ω and for
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Figure 3.13: Crystallinity plotted against ω for systems with uniform size
distribution (US), for their maximally equivalent tridisperse systems (TUS),
and for equivalent bidisperse systems (BUS) previously considered [27]. In
the inset we zoom into the low ω behavior using the same axis and symbols.

their maximally equivalent tridisperse systems (see section 3.3.2 for details)

as well as for equivalent bidisperse systems considered in previous study [27].

Crystallinity data show that maximally equivalent tridisperse systems do

not show any signs of crystallization for ω ≥ 1.4, while equivalent bidisperse

systems partially crystallize for ω > 5.

3.3.4 Structure factor and spectral density

Recently S. Torquato and colleagues [226] have studied the small wavenumber

k behavior of the structure factor S(k) of over-compressed amorphous hard

sphere configurations for a wide range of densities up to the maximally ran-

dom jammed state. They have found that a precursor to the glassy jammed

state was evident long before the jamming density was reached as measured

by a growing nonequilibrium length scale extracted from the volume integral

of the direct correlation function. Their results are extended to different
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systems and to mixtures [227]. While the structure factor S(k) measures

local-number -density fluctuations, local-volume-fraction fluctuations provide

the appropriate structural description of non-monodisperse packings because

they account correctly for the size distribution of the particles. The analog

of the structure factor in this context is the so-called spectral density, ξ(k).

We investigate if the polydisperse and the respective maximally equivalent

tridisperse S(k) and ξ(k) are equivalent too.

Both structure factor and spectral density are numerically obtained using

discrete Fourier transforms [228] according to

S(k) =

∣

∣

∣

∑N
j=1 exp(−ik · rj)

∣

∣

∣

2

N
(k 6= 0), and (3.58)

ξ(k) =

∣

∣

∣

∑N
j=1 exp(−ik · rj)m̂(k;Rj)

∣

∣

∣

2

V
(k 6= 0), (3.59)

where

m̂(k;R) ≡
∫

Rd

exp(−ik · r)Θ(R− ‖r‖)dr, (3.60)

is the Fourier transform of the indicator function for a d-dimensional sphere

of radius R. To calculate Eq. (3.60) we used results from Ref. [229]. Note

that the shape of the domain, defined by a set of lattice vectors {λλλi}, restricts
the wave vectors such that k · λλλi = 2πn for all i, where n ∈ Z. To obtain

spherically symmetric forms of the structure factor and spectral density, we

angularly average over all wave vectors within a spherical shell of thickness

2π/ ‖λλλi‖ in reciprocal space. The wave number k is the magnitude of the

wave vector k, i.e., k = ‖k‖.
Figures 3.14, 3.15, 3.16, 3.17 show the structure factor S(k) and the

spectral density ξ(k) for several polydisperse systems with uniform size and

uniform volume radii-distributions, and for their maximally equivalent tridis-

perse systems (with rattlers). (D = 2 〈a〉 is an effective length scale, taken

here to be the average diameter.) An exhaustive study of these quantities is

well beyond the scope of the present study. Nevertheless, we observe that for

low ω ≤ 3 the polydisperse and the respective maximally equivalent tridis-

perse S(k) and ξ(k) are in good agreement for all k-values. With increasing

ω the agreement gets worse for high k-values, but still the low k behavior is

similar, especially in the case of the uniform size distribution. This observa-

tion confirms that maximally equivalent systems are indeed very similar in

their microstructure.
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Figure 3.14: Structure factor as function of the scaled wavenumber for sys-
tems with uniform size distribution (circles) and for respective maximally
equivalent tridisperse systems (crosses) for different ω given in the legends.
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Figure 3.15: Spectral density as function of the scaled wavenumber for sys-
tems with uniform size distribution (circles) and for respective maximally
equivalent tridisperse systems (crosses) for different ω given in the legends.
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Figure 3.16: Structure factor as function of the scaled wavenumber for sys-
tems with uniform volume distribution (circles) and for respective maximally
equivalent tridisperse systems (crosses) for different ω given in the legends.
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Chapter 4

Structure characterization of

hard sphere packings∗

The channel size distribution in hard sphere systems, based on the local neigh-

bor correlation of four particle positions, is investigated for all volume frac-

tions up to jamming. Every three particle combination of neighbors defines

a channel, which can be relevant for the concept of caging. The analysis of

the channel size distribution is very useful in distinguishing between gaseous,

liquid, partially and fully crystallized, and glassy (random) jammed states. A

common microstructural feature is observed in crystalline and glassy jammed

states, suggesting the presence of “hidden” two-dimensional order in three-

dimensional random close packings.

4.1 Introduction

The hard-sphere particle interaction limit is a tremendously versatile physical

model, being widely used for structural studies of liquids [2], glasses [10,230],

colloids [231], granular materials [232], and many others [233, 234]. Its rele-

vance in such a variety of physical systems suggests that many macroscopic

properties arise by the fundamental fact of impenetrability of the systems

constituents [3]. The ultimate goal then becomes to establish relations be-

tween physical properties and the geometry of the arrangement of hard bodies

in two or three-dimensions. Many decades of research, heavily driven by nu-

merical experiments [10], have lead to various geometrical structure variables,

with different levels of success in either uniquely characterizing each state or

in deriving macroscopic physical properties from them [4].

Our study is motivated by the structural phase transitions observed in

molecular fluids and also replicated in hard-sphere systems under compres-

∗Based on V. Ogarko, N. Rivas, and S. Luding, “Structure characterization of hard
sphere packings in amorphous and crystalline states.” Submitted, 2014.
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sion [120]. We also consider the analogous phenomena observed in granular

materials, where the hard-sphere approximation is commonly used to success-

fully model complex rheological behaviours [232]. As the volume fraction is

increased, hard-spheres enter an entropy minimization driven phase where

glass formation competes with the nucleation and growth of the crystalline

phase [235]. Hard-sphere models are known to successfully reproduce the

main structural properties of these states for various physical systems, either

for crystallization [11,12], or the amorphous solid phase transition [14]. One

of the main reasons for using the hard-sphere model over classical condensed

matter systems is that simulations – as also colloidal suspensions experi-

ments, which are a very good approximations of the hard-sphere model [5,12]

– have particle-size spatial resolution, and thus the statics and dynamics can

be studied from a microscopic perspective. Furthermore, due to the lack of

long-range or non-binary interactions, and the simple geometry of the con-

stituents, hard-sphere models are theoretically tractable [11, 61, 236].

Inspired by the highly ordered and easily describable crystalline phase,

many researchers have searched for inherent geometrical relations in disor-

dered (amorphous) packings. The straightforward approach is to analyze the

static structure factor, which is a direct measure of the local microstructure

of particles [73]. The pair correlation function g(r) is also a popular quantity

for the analysis of non-crystalline materials [181, 237]. The problem with

such quantities is that the detailed three-dimensional information is lost as a

result of statistical averages, as also by considering only pair of particles. In

particular, they do not provide much information about the topology of the

local structures in the particle-size scale, which are believed to distinguish

different kinds of amorphous arrangements. It therefore becomes highly sig-

nificant to exploit some other methods of three-dimensional characterization

of these structures. Many attempts have already been made to quantify lo-

cal or long-range ordering, providing further characterization of disordered

packings [69, 70, 238–246].

In the following we analyze local arrangements of particles recognizing

the importance of caging and voids in the overall structure and properties

of the arrangement. Here we extend the previous studies [238, 239, 242] by

considering all particle triples in the particles neighbourhood that do not

include the central particle. The distribution of voids allows us to clearly

distinguish between the different structural phases, as also between different

kinds of crystals and the relative number of each specific ordering, in systems

presenting partial or many types of crystallization. Our analysis shows that

in amorphous states there is a preferred local structure of four co-planar

particles.
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4.2 Method of analysis

We consider systems of N non-overlapping spheres arranged in a three-

dimensional cubic space of volume V . The spheres are located at posi-

tions xi and have radii ri, with ri ≡ r for monodisperse systems, and for

polydisperse systems radii probability density functions s(ri), which will be

specified. Our main parameter is the sphere volume fraction, defined as

ν = (4/3)π
∑N

1 r3i /V .

To determine the neighbors of a particle, we first compute the weighted

Delaunay triangulation of the set of points corresponding to the centers of

the particles, {xi} [129]. Neighboring particles are then defined as those

particles connected by the edges of the triangulation. For each particle we

consider every possible combination of three neighbors, that is, all possible

triangles that can be formed by the centers of any three of its neighbors.

We refer to these triangles as neighbor-triangles. Notice that the neighbor-

triangles do not contain the central particle. We then proceed to quantify

the overall mobility of the particle by defining all channels through which the

particle can go through. A channel is defined as the area in the plane of a

neighbor-triangle by which the central particle could move. This is computed

by considering the Apollonius circle, i.e, the circle which is simultaneously

tangent to all other three circles defined by the projection of the three spheres

in the neighbor-triangle plane. There are at most eight possible Apollonius

circles for each case, which are obtained analytically by solving a system

of three quadratic equations [247]. From the set of eight possible solutions

we choose the one which correspond to the circle that does not contain any

particle center of the neighbor-triangle, as it is the only one that corresponds

to our definition of channel †. The radius of the respective channel is then

defined as the radius of this circle, Rj , as shown in Fig. 4.1.

Having obtained Rj for all neighbor-triangles of every particle, we then

compute the normalized probability distribution function of (scaled) chan-

nel sizes, f(Rj/ri). The ratio Rj/ri is calculated for all neighbor triples j

with channel size Rj of every particle i. Note that Rj/ri has a direct physi-

cal interpretation, as less than unity corresponds to a closed channel, while

greater than unity corresponds to an open channel, through which eventually

the central particle could escape. Furthermore, the function f is well defined

for spheres with any size distribution, since the radius of the central particle

i is scaled out. We analyze both the individual structure of f as also its

evolution with volume fraction, for various particle systems, in mono- and

poly-disperse cases.

In order to refine our definition of channels, we consider f(Rj/ri) for

†It may happen that no such circle exists, which was occasionally observed for polydis-
perse systems. In this case, we skip the corresponding neighbor-triangle from the statistics.
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Figure 4.1: (left) The central particle (white) is shown together with its
nearest neighbours, defined by Delaunay-edges. The channels for neighbour-
triangles DBA (middle) and ABC (right) are shown in the neighbor-triangle
plane. The particles A, B and C are lying almost on the same plane with
the central particle and are practically touching it, so the channel almost
coincides with the central particle. This is not the case for the BDA triangle.
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Figure 4.2: Normalized distribution of the channel sizes scaled with the parti-
cle radius in the gas regime (ν ≈ 0.0014) using full statistics (red pluses) and
with non-acute neighbor-triangles excluded (green crosses). The solid line
is a Gaussian fit g(x) = (σ

√
2π)−1 exp [−(x− µ)2/(2σ2)] with parameters

σ ≈ 4 and µ ≈ 15.9. The bin-size used here is 0.01.
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very low volume fractions, where no structure is expected (see Fig. 4.2).

When considering all triangles the distribution presents a recognizable wide

tail structure, but after excluding from the distribution the channels sizes

that correspond to non-acute neighbor-triangles, i.e., those where one of the

angles is greater than 90 degrees, the distribution becomes Gaussian, with

high accuracy over three orders of magnitude ‡. The exclusion of non-acute

triangles makes physical sense considering that channels defined by them

cannot block the central particle, thus conflicting with our initial definition

of a channel. For the rest of the analysis, non-acute triangles are never

considered.

4.3 Simulation details

We use an event-driven molecular dynamics algorithm, as it is fundamentally

suited for the simulation of hard sphere systems. The number of particles is

by default N = 163 = 4096, unless stated otherwise. Given the large amount

of possible neighbor-triangles for each particle, the statistical significance

rapidly increases with the number of particles in the system. We observed

that 4096 particles was an adequate quantity, as increasing the number of

particles did not produce any noticeable change in any of the results. Peri-

odic boundary conditions are imposed to mimick an infinite system, i.e., a

statistically homogeneous medium.

Starting from zero volume fraction, we compress the system towards a

jammed state using a modification of the Lubachevsky-Stillinger algorithm

[81,134], which allows the radius of the particles to grow linearly in time with

a dimensionless rate Γ § (while conserving the size distribution s(ri)). The

kinetic energy, E, is kept constant using a re-scaling thermostat procedure

[27, 82].

If the growing is sufficiently slow, Γ < 0.0007 [226], the monodisperse

system stays in a gas-fluid state in approximate equilibrium during the den-

sification phase, and exhibits a fluid-solid transition (crystallization) for vol-

ume fractions between νf ≈ 0.492 (freezing point) and νm ≈ 0.543 (crystal

melting point), and finally reaches a stable solid (crystalline) phase νm and

the close-packing fraction νcp ≈ 0.7405, corresponding to face-centered close

packing. This corresponds to a thermodynamically stable branch in the hard

sphere phase diagram [120]. On the other hand, for fast compression rates

‡We use the following test to check if a triangle with edge lengths a, b and c is acute:
(a2 + b2 > ǫc2)&(c2 + b2 > ǫa2)&(a2 + c2 > ǫb2), where ǫ = 1 − 10−12 is used to account
for numerical error.

§The growth rate is defined as Γ = dai

dt
amax

ai

√

3M
2E

, with largest particle radius, amax,

and total system mass, M .
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the system enters a metastable state for ν > νm, which extrapolates continu-

ously from the fluid branch and is conjectured to end at some random close

packing state, around νrcp ≈ 0.64, the interpretation of which is beyond the

scope of this study, as its value depends on the details of the procedure [68].

4.4 Results and discussion

We now observe f(Rj/ri) for each of the previously described compression

cases, first for monodisperse systems, and then extending our interpretations

to polydisperse systems.

4.4.1 Crystallization path

As the volume fraction increases, the distribution of channel radii fundamen-

tally changes, see Fig. 4.3 (a). The distribution changes to non-Gaussian for

fluid densities above ν ≈ 0.15 − 0.25. We speculate that this change corre-

sponds to the percolation gas-to-fluid transition observed by Woodcock [216]

at similar packing fractions, although we did not investigate this in detail. As

the volume fraction increases, two smooth humps continuously grow, that at

higher ν > 0.5 evolve into two well defined peaks, centered above Rj/r ≈ 0.15

and near Rj/r = 1. These values can be understood in terms of the geometry

of the local arrangements: Rj/r ≈ 0.15 ideally corresponds to the size ex-

pected for three touching equal spheres, and thus the appearance and growth

of this peak shows the appearance of triples in contact as well as the relative

importance of density fluctuations. It is also the absolutely smallest possible

channel size for equally sized spheres. The peak at unity, on the other hand,

is obtained for three particles lying on the same plane with the central par-

ticle and practically touching it, i.e., when the channel essentially coincides

with the central particle; we confirmed that the majority of particles cor-

responding to the peak at unity are indeed practically touching the central

particle (data not shown).

As expected for very slow compression, Γ = 16×10−6, the system exhibits

(partial) crystallization near the melting point νm ≈ 0.54; crystallization at

the freezing point is kinetically suppressed [215]. The distribution is able to

capture the crystallization transition by the development of two split peaks.

This was confirmed for many runs with different initial particle velocities and

positions. The peak at Rj/r ≈ 0.15, after crystallization, with increasing

volume fraction, splits into two peaks at Rj/r ≈ 0.15 and at Rj/r ≈ 0.41,

where the latter value corresponds to a square crystalline arrangement.

Finally, as the maximum volume fraction is reached (i.e, as the pres-

sure diverges), the distribution is mostly dominated by steep peaks, see
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Figure 4.3: Normalized distribution of the channel sizes scaled with the par-
ticle radius for slow compression (Γ = 16 × 10−6) of a monodisperse system
with various volume fractions given in the legend. The bin-size used here is
0.01.
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Fig. 4.3 (b). In analogy with Bragg peaks from common diffraction tech-

niques, these peaks can be traced to the crystal structures present in the

particles’ arrangement. We also confirmed that the obtained distribution

allows to distinguish between FCC, HCP, BCC and SC crystal structures

(data not shown).
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Figure 4.4: Normalized distribution of the channel sizes scaled with the par-
ticle radius for fast compression (Γ = 16 × 10−3) of a monodisperse system
with various volume fractions ν given in the legend. The region of low Rj/r
is zoomed in the inset for the curve with ν = 0.637. The data with non-
Delaunay neighbour-triangles excluded for the system with ν = 0.637 are
shown in the inset with green pluses. The bin-size used here is 0.01.

4.4.2 Glassification path

Let us now focus on the case of fast compression, Γ = 16 × 10−3, for which

crystallization is never reached. The channel size distributions for different

volume fractions are shown in Figure 4.4. For volume fractions below ν ≈ 0.2,

there is no appreciable difference with the slow compression case described

in the previous section. For values above ν ≈ 0.2, the same peaks at Rj/r ≈
0.15 and unity can be observed, but no other peaks are developed. The lack

of defined peaks in the distribution, as in the previous slow compression cases,

is a clear signal that the system remains, to very high degree, amorphous.

Nevertheless, there exists partial order, as suggested by the high values of
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Figure 4.5: Normalized distribution of the channel sizes scaled with the cen-
tral particle radius for random close packings of polydisperse systems from
Ref. [82]. The data with non-Delaunay neighbour-triangles excluded for the
system with ω = 2 are shown with green pluses. The width ω and the jam-
ming packing fraction ν are shown in the legend. The number of particles is
8192 and the compression rate used to achieve these systems is Γ = 16×10−6.
The bin-size used here is 0.01.

the peak at unity. While the peak at 0.15 can be interpreted in the same way

as in the slow compression rate case, the peak at unity, on the other hand,

is not as easily interpretable. While present in both crystalline and glassy

configurations, its relative importance and shape are considerably different.

The unity value corresponds to those configurations where three neighboring

particles all touch the central particle and lie on the same plane with it. There

are of course other cases where the value of Rj/ri could be one. By looking

at the distribution of distance of each neighbor-triangle particle to the center

particle, we confirm that by far the most common case is when the three

particles are indeed touching the central one. This suggests the existence of

“hidden” local order in random close packings that cannot be easily measured

by order parameters because such local planes, corresponding to Rj/r ≈ 1,

are not oriented with respect to each other as in a periodic crystal structure.

We have no explanation for this preference of the system structure, suggesting

a direction of future research.

Let us now take a look at the structure of f for values close to the minimal
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channel size, shown in the inset of Figure 4.4. The high values between the

two ideal cases, corresponding to the three touching spheres (Rj/r ≈ 0.15)

and a square arrangement (Rj/r ≈ 0.41), signals a significant presence of

“intermediate” configurations. The drop at Rj/r ≈ 0.41 is due to exclusion

of non-acute neighbor-triangles from the statistics. A similar distribution of

channel sizes, up to Rj/r ≈ 0.41, was obtained in the studies of interstitial

holes in random close packings of spheres [238, 239, 242]. They concluded

that for monodisperse packings the spread in the channel sizes between 0.15

and 0.41 cannot be reduced to lead to a single distribution of channel sizes

allied with mechanical stability.

4.4.3 Polydisperse systems

We now consider systems with the size distribution function

s(a) = Θ(a− a0)Θ(a0ω − a)(a/a0)
−n(n− 1)/a0(1− ω−n+1), (4.1)

so that the distribution decays in the interval a0 < a < a0ω as an inverse

power law of order n, where Θ is the Heaviside step function. We confirmed

the existence of the peak at unity also for random close packings of poly-

disperse systems (using n = 3), as shown in Fig. 4.5. The peak at unity, as

in the monodisperse case, corresponds to the most probable configuration of

three neighboring particles where they all touch the central particle and lie

on the same plane with it. At low Rj/ri-values, the decreasing hump with

increasing ω corresponds to the lower value of the minimal possible channel

size for higher degrees of polydispersity, as the radii of the small particles are

relatively smaller. If the channel size is scaled with the average particle ra-

dius, instead of the central particle radius, then structures (peaks) disappear

and no relevant information on the local particle order is observed.

Finally, we tried to exclude from the channel statistics those neighbour-

triangles that are not present in the Delaunay triangulation, i.e., only Delau-

nay triangles are considered. The results are shown in Figures 4.4 and 4.5

with green pluses. While for Rj/ri . 0.4 the data almost identical to the one

considering all neighbour-triangles, for larger values the data drops quickly

to zero, so that all relevant information on the structure is lost. This shows

that for the analysis of hard sphere packing microstructure it is not suffi-

cient to consider Delaunay triangles alone, and new methods, like the one we

presented here, are required to understand local neighborhood multi-particle

structures.
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4.5 Conclusions

The analysis of channel size distributions was shown to be able to distin-

guishing between gaseous, liquid, partially and fully crystallized, and glassy

(random) jammed states. Unlike the usually computed pair-distribution

functions or structure factors, the channel size distribution is highly sen-

sitive to changes in volume fraction, and presents unique features for each

phase. States of partial crystallization can be recognized and characterized

by the development and position of specific peaks, which can be traced to

specific crystalline configurations, and could be used to quantify the degree

of crystallization of the system. On the other hand, we confirm that random

glassy configurations of isotropically (rapidly) grown hard particle systems

present a common structural feature, as shown by looking at the channel size

distributions. This corresponds to many three neighboring particles lying in

the same plane as a central particle, almost touching it, which could be con-

sidered a first microscopic trace of crystals in a plane. As different planes

are not oriented with dominant relative angles as in a crystal, there is no

appreciable global crystal ordering.
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Chapter 5

Conclusions and Outlook

In this dissertation I have studied systems of polydisperse smooth hard

spheres. In particular, I studied how to find contacts between particles

in highly polydisperse systems and developed a fast and efficient contact

detection algorithm for computer modelling; developed the macroscopic con-

stitutive laws that are based on microscopic features, such as the moments

of the particle size distribution; and developed a new analysis technique to

study the microstructure in mono- and polydisperse systems with different

physical behaviour, i.e., gaseous, liquid, glassy and crystalline states.

General conclusions are:

1. The developed contact detection algorithm based on the hierarchical

grid data structure is very useful in finding contacts in particle sys-

tems with arbitrary polydispersity; and its optimal performance even

increases with increasing the degree of polydispersity.

2. The nearly optimal parameters for best performance for the hierarchical-

grid-based contact detection algorithm can be obtained by using a sim-

ple rule: keep the same number of particles per cell at every level of

hierarchy.

3. In the fluid regime, the theoretical BMCSL equation of state is in very

good agreement (within 1%) with the simulation results for many dif-

ferent systems tested (i.e., mono-, bi-, tri-, and polydisperse systems

with various size distribution functions).

4. “Mapping” arbitrary polydisperse systems of hard spheres onto “equiv-

alent” binary mixtures with the same first three moments of the particle

size distribution function is very accurate concerning the equation of

state of both systems being identical in the fluid regime.

5. In dense, glassy, non-equilibrium states one needs to consider at least

the first five moments of the particle size distribution function. This
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allows “maximally equivalent” ternary mixtures, with identical five mo-

ments as a polydisperse one, to predict well the polydisperse systems’

equation of state and, notably, also the jamming density.

6. The maximally equivalent tridisperse systems have almost the same vol-

ume fraction of rattlers as the polydisperse ones they mimic, which in-

dicates a very strong similarity in their microstructures; the behaviour

of such systems near jamming is controlled by the non-rattlers.

7. The maximally equivalent tridisperse systems have very similar struc-

ture factors and spectral density as the polydisperse ones they mimic:

for all wave numbers in case of low and moderate polydispersity and

for low wave-numbers for high polydispersity. Together with item 6

this confirms strong similarity in their microstructure.

8. Sufficiently close to the jamming density the equation of state is in-

dependent of the size distribution function and depends only on one

free parameter, the jamming density itself. The free volume equation

of state of Salsburg and Wood is in very good agreement with our sim-

ulation results for all considered systems in two and three dimensions.

9. We provide practically useful analytical (empirical fit) equations for the

jamming density for three types of continuous size distribution func-

tions. All equations have only two free parameters, i.e., the random

close packing density of a monodisperse system and the jamming den-

sity at extreme (infinite) polydispersity.

10. All obtained equations for the jamming density have a similar form; we

suggest that the jamming density for systems with arbitrary size dis-

tribution can be expressed using only two free parameters (see item 9)

and a few moments of the size distribution function. This was recently

supported by theory and simulations [248].

11. We present new analysis technique to characterize the multi-particle

microstructure in mono- and polydisperse hard-sphere systems, based

on the local channels between particles. This analysis allows to dis-

tinguish between gaseous, liquid, partially and fully crystallized, and

glassy (random) jammed states; it is highly sensitive to changes in

volume fraction.

12. Using the analysis of item 11 a common microstructural feature is ob-

served in crystalline and glassy jammed states, suggesting the presence

of “hidden” two-dimensional order in random close packings of mono-

and polydisperse three-dimensional spheres.
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13. (preliminary research) With a Lubachevsky-Stillinger type protocol

complemented by a random driving force, we reach volume fractions

up to random close packing for strongly inelastic particle systems. Up

to moderate volume fractions the equation of state is in good agree-

ment with the inelastic version of the theoretical BMSCL equation of

state; the volume fraction above which data start to deviate from the

theory decreases with decreasing the coefficient of restitution [249].

14. (preliminary research) The random close packing volume fraction weakly

decreases with decreasing the coefficient of restitution that quantifies

the degree of inelasticity. The trends are such that the glass phase

becomes very small for strongly inelastic particles [249].

In the different subjects we studied there are a few lines of research that

could be continued. In what follows we give an account of the ones we

consider the most important.

1. To investigate if the efficiency of the hierarchal grid algorithm for con-

tact detection can be improved by combining it together with sorting-

based methods (i.e., sweep and prune). The latter have a built-in

bounding box overlap check, which might increase the performance of

the existing algorithm.

2. To investigate more cache-friendly data structures than hash-tables for

storing the hierarchical grid data. Good cache-friendly data structures

are important for high performance and parallelization.

3. To study the full phase-space diagram for the jamming density and

the physical state (i.e., glass, crystal or a coexistence) of ternary mix-

tures. This should help in understanding the limits of the five-moment

approximation of polydisperse-by-tridisperse systems.

4. To study the equation of state of polydisperse systems at volume frac-

tions above the glass transition density, especially for extremely low

compression rates, which (at least theoretically predicted) may lead to

fractionation. This can help in better understanding and prediction of

some of the behaviors found in glassy materials.

5. To study what continuous size distributions lead to higher jamming

density, i.e., 0.8 and above. More efficient packings may lead in prac-

tical applications to higher mechanical stability or strength in some

materials.

6. To study the general accurate equation for the jamming density of arbi-

trary polydisperse mixtures, that can be described in terms of moments
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of the size distribution function. This should involve only moments and

other physically easily accessible (or already known) parameters, like

for example, the random close packing density of monodisperse system.

7. To study weather the physical behavior of soft overlapping spheres

above the jamming can be predicted using hard non-overlapping spheres.

This is important in bridging the gap between statistical kinetic theory

for fluids with, e.g., mode-coupling theory for glasses, or solid state

theory for solids.

8. To study the influence of normal and tangential restitution coefficients

on the equation of state and the jamming density of polydisperse mix-

tures. This is important since many real particulate materials are dis-

sipative.

9. To continue studying the microstructural features observed in our new

analysis of the micro-channel size distribution. This should eventually

lead to understanding the nature of glass transition and the structure of

the random close packings. The latter is important for understanding

the geometrical principles at work in disordered packings and why den-

sity is limited at about 0.64 (in the monodisperse case). Furthermore,

the channel sizes are a relevant microscopic property that determines

the permeability for fluid flow through packings.

10. Since many realistic particles have various different non-spherical shapes,

the issues above can be studied for non-spherical particles. This is a

big challenge at least due to the existence of multiple shapes, which

are difficult to characterize by a single function, unlike the case of dif-

ferent sizes which are described by a single size distribution function.

Combining different sizes and different shapes is one of the biggest

challenges for future research.

The reader of this dissertation will be able to find many other open ques-

tions, since they are naturally coming in the process of understanding some,

and asking new questions.
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2. A. Santos, S. B. Yuste, M. López de Haro, G. Odriozola, and V. Ogarko,

“A simple effective rule to estimate the jamming packing fraction of

polydisperse hard spheres.” Submitted, arXiv:1402.3443, 2014.

3. D. Krijgsman, V. Ogarko, and S. Luding, “Optimal parameters for

a hierarchical grid data structure for contact detection in arbitrarily

polydisperse particle systems.” Accepted in Comp. Part. Mech., 2014.

4. V. Ogarko and S. Luding, “Prediction of polydisperse hard-sphere mix-

ture behavior using tridisperse systems,” Soft Matter, vol. 9, no. 40,

pp. 9530–9534, 2013. This research was featured on the inside cover.



Curriculum vitae

5. A. R. Thornton, T. Weinhart, V. Ogarko, and S. Luding, “Multi-scale

methods for multi-component granular materials,” Comput. Meth. in

Mater. Sci., vol. 13, no. 2, pp. 197–212, 2013.

6. V. Ogarko and S. Luding, “Equation of state and jamming density

for equivalent bi- and polydisperse, smooth, hard sphere systems,” J.

Chem. Phys., vol. 136, no. 12, p. 124508, 2012.

7. V. Ogarko and S. Luding, “A fast multilevel algorithm for contact de-

tection of arbitrarily polydisperse objects,” Comput. Phys. Commun.,

vol. 183, no. 4, pp. 931–936, 2012.

8. V. Ogarko, S. Luding, and W. T. Kranz, “Rapidly quenched inelastic

hard spheres: Glass transition and jamming.” In preparation, 2014.

Proceedings

1. A. R. Thornton, D. Krijgsman, A. te Voortwis, V. Ogarko, S. Luding,
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