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Introduction

In this chapter we will give a brief overview on how the current trend towards re-
newable energy laid the foundation to our project on “Semi-solid flow batteries”.
We outline the workings of a redox flow battery with particular focus on slurry
rheology. Optimization challenges in slurry flow motivated our research topic on
Brownian simulation of non-spherical colloids. We set out to improve the exist-
ing hydrodynamic models and propose newer algorithms geared towards Brownian
simulation of colloidal aggregates in flow-fields.

1.1. Energy storage needs

There is a growing worldwide consensus that the global warming currently taking
place is at least to a large extent caused by human activity. Slowly but steadily more
and more resources are being devoted towards reducing CO, emissions across the
globe, on both a national and an international level. An example of these efforts are
the Europe 2020 targets set by the European Commission, which includes among
others the goal to reduce greenhouse gas emissions by 20% compared to 1990 lev-
els, and to generate at least 20% of the total energy consumption from renewables
by the year 2020 [1]. Another example is the 2015 United Nations Conference
on Climate Change held in Paris, where it was agreed upon by all 195 world na-
tions present to keep global warming below 2 °C between now and the year 2100
[2]. The main requirement for achieving these goals is to reduce and eventually
stop completely the burning of fossil fuels for energy generation, e.g. for trans-
portation and electricity. On the other hand, the worldwide electricity demand is
projected to increase by 70% by the year 2040 [3]. Thus, if the overall CO, emis-
sions are to decrease despite the projected increase in energy demand, rigorous
actions are required. Renewable energy sources such as solar, wind and biomass
will therefore play an increasingly important role in the generation of energy in the
coming decades. For example, the total installed solar power capacity has steadily
increased in the past 15 years reaching a total of 178 GW worldwide, a trend that

1
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is expected to accelerate in the future [4]. Similar trends are observed for wind
energy as well, whose market has been steadily growing for more than a decade
and has seen a 44% growth in 2014 [5].

However the energy generation by renewables such as solar and wind is unpre-
dictable and may strongly fluctuate during the day, as it is strongly dependent on
daily weather conditions. The power consumption on the other hand also fluctuates
significantly at all time-scales since it is dependent on the collective consumption of
millions of households. Thus the power production does not necessarily match the
power consumption, and any excess energy during peak production must be stored
so that it can be used during peak consumption. The timescale over which energy
must be stored varies from seconds and minutes (solar energy for instance, due to
the passing of clouds) to weeks and even months (due to seasonal variations), while
fast discharging may be required due to sudden drops in energy generation. Hav-
ing access to storage technologies that can full-fill these requirements is of equal
importance as the development and deployment of solar cells and wind turbines
they support. In addition to these requirements, the safety aspects, the cyclability
(i.e. the number of charge and discharge cycles the technology can undergo before
displaying deteriorated performance), the flexibility in terms of storage capacity and
power output and the building and operating costs of the storage technology are
also of great importance.

1.1.1. Storage methods

A wide variety of electrical storage methods are in existence such as capacitors,
pumped hydroelectric energy storage, compressed air energy storage and electro-
chemical storage [6].

Capacitors are in essence the most simple way to store electrical energy, involv-
ing no energy conversion but directly storing the electrical energy by polarizing a
dielectric material. Electricity is then recovered by relaxation of the polarization,
bringing about the movement of electrons. Since capacitors involve no energy con-
version and no moving parts other than the separation of charges in the dielectric
material, they are inherently very efficient and have a long life time due to negligi-
ble wear and tear. However, the high device costs, fast self-discharge and low total
energy capacity make capacitors unsuitable for e.g. solar or wind energy storage.

Pumped hydroelectric energy storage (PHES) involves pumping water to higher
elevations, thus converting electrical energy to potential energy. The energy is
recovered by flowing the water through a turbine and the overall process has a
maximum efficiency of about 85%. Furthermore PHES has a high energy capacity
and high power output, but the main disadvantages are the very high investment
costs and the need for elevated terrain, meaning that it is not applicable every-
where, like for example in Netherlands.

Electrochemical storage encompasses a broad array of battery set-ups like standard
lead-acid batteries, flow batteries (aqueous, non-aqueous), solid state batteries, all
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of which store the electrical energy by chemical conversion of atoms or molecules
and the energy is recovered by reversing the reaction. Such methods are in general
very promising due to the flexibility and scalability at reasonable to high efficien-
cies, making them the most suitable candidate for applications like transportation,
electrical grid systems, etc.

1.1.2. The redox flow battery

Redox flow battery (RFB) is one of the most promising candidates for worldwide ap-
plication as a stationary energy storage technology due to good cyclability, flexibility
and scalability. The RFB consists of an anode chamber and a cathode chamber con-
taining a porous electrode, while the chambers are separated by an ion-exchange
membrane, either anionic or cationic. During operation, anodic and cathodic elec-
trolyte solutions containing redox active species (termed the anolyte and catholyte,
respectively) flow through the electrode in their respective chambers and redox
reactions take place. The anolyte and catholyte are stored externally in separate
tanks, and the flow of these solutions through the chambers is achieved by means
of a pump, sometimes aided by gravity. The electrons generated at the anode
during discharge flow through an external circuit, delivering electrical energy. To
maintain charge neutrality in both chambers, ions pass the membrane from the
cathode to the anode (anions) or the other way around (cations). The redox reac-
tions occurring during discharge are reversible, and the battery is recharged simply
by supplying electrical energy, reversing the above process.

An important advantage of the generic RFB design described above is that the
size of the tanks containing the anolyte and the catholyte is independent of the
power conversion section, making RFBs a highly flexible storage technology. Thus
the total energy capacity, which depends on the storage tank size and the redox
active species concentration, and the power output, which depends on the number
of batteries in the stack and the total electrode area, can be chosen separately. As
such, RFBs are suitable for any stationary application, from small scale storage of
solar energy for single households to large scale storage of energy from wind farms.

1.2. Semi solid flow batteries

The charge carriers in RFBs are ions in the electrolyte. Usually simple acids like HCI,
H;PO, are used as electrolytes. Since all the constituents are in liquid state, the ion
concentrations are low in the range of (1M - 2M). Compared to the solid state lithium
batteries which has active material concentration in the range of 20 - 90 M [8]. To
improve the charge density of the flow battery Duduta et al. [9] incorporated the
intercalation materials with a liquid solvent to create a suspension type electrolyte.
This semi-solid flow battery (SSFB) combines the high energy density feature of the
solid state battery and the scalability and flexibility of the flow battery (see Figure
1.1). They hypothesized a solid content of 50% which is a 5-20 times increase in
active material concentration. However a major drawback of the RFB design is the
fact that the anolyte and the catholyte have to be pumped around. Not only does
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Figure 1.1: Semi-solid flow battery: A hybrid between the solid state Li cell and liquid state redox cell
battery (copied with permission from [7]).

this lead to energy losses, but it also places extra restrictions on the anolyte and the
catholyte. Most notably, the maximum concentration of the redox active species is
limited in order to allow the fluid to be pumped around, leading to a lower energy
density of the battery.

1.2.1. Electrolyte material

One of the innovation of semi-solid flow battery was the increase in the density
of the active material concentration. However since the active materials were dis-
persed as micron-sized particles in the solvent the transfer of charge between the
colloidal active particle and the outer circuit was limited. This problem was over-
come by utilizing carbon black (CB) material to establish percolating structures
within the electrolyte [10]. CB has an interesting aggregate structure. The pri-
mary particle is an agglomerate of fine graphite nano-plates sticking to each other.
They minimize their surface energy to form spherical particles in the size range
of few nano-meters. These primary particles aggregate to form larger structures
of several hundred nano-meters. When the aggregates are suspended in a highly
ionic environment like the solvent of the battery electrolyte, the surface charges of
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Figure 1.3: the hierarchical structure of carbon black aggregates (copied with permission from Asahi-
carbon Co. Ltd. [11]).

CB particles are screened and the smaller aggregates can stick to each other due
to Van-der-Waals attraction forming percolating porous network. The network is
fractal in nature and the grow mechanism has been identified as diffusion limited
cluster aggregation (DLCA).

This type of structure when combined with the active Li material leads to highly
effective pathway for the semi-solid flow battery to transfer the charge from the
inner volume of electrolyte bath to the current collectors.

1.2.2. Slurry optimization

The carbon black forms weak gel like structures at very low volume fractions in
the range of 7 x 10~*. As the concentration of CB is increased it forms strong
electrically-percolating clusters. However these percolating networks can deform
and restructure under normal flow conditions. Youssry et al.[10] studied the shear
rate dependent conductivity of the SSFB electrolyte suspension. They identified sig-
nificant shear-dependent trends in the suspension properties. As shown in Fig.1.4,
the conductivity of suspension is high under no-shear condition ( 10~2mS.cm™1).
Since the percolating structure of CB is intact and provides good electronic wiring
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Figure 1.4: Variation of the conductivity and viscosity with the shear rate and schematic drawing of the
several states within the CB suspension, ¢ = 0.021 (copied with permission from Youssry et al. [10]).

in the electrolyte bath, but the viscosity of the suspension is also high (3 x 102 Pa.s).
But as the suspension was flown in the cell, the CB network started to break-up
leading into agglomerates which deteriorated the conductivity of the suspension
and lowered the suspension viscosity. When the flow rate was increased further
the smaller hydroclusters were formed. Hence an optimization of the suspension
is needed since at low shear rates the viscosity is high requiring more energy to
pump the fluid while at the higher shear rates the efficiency is low due to break-up
of CB clusters.

Several alternative approaches has been proposed to improve the electrolyte.
Fore.g. Endo etal. [12], Madec et al. [13] suggested inclusion of carbon nanofibers
could improve the network connectivity and achieve better shear-dependent con-
ductivity. Later experiments confirmed that inclusion of the carbon nanofibers led
to increase in conductivity between the Li-ions [14]. Fongy et al. [15] suggested
this might be due to the nanochannels formed by the fibers in the electrolyte.

1.2.3. Market commercialization and future research direc-

tions of RFBs
Since the SSFBs were a recent innovation, it's still yet to reach market maturity.
However the founders of this battery technology (Duduta and Yet-Ming Chiang)
have established a start-up called 24M Technologies. It was spun out of A123
systems, a company which produced Li-ion batteries but filed for bankruptcy in
2012. Some of the interesting possibilities of the SSFBs listed by the inventors
include the use of these batteries in automobiles. The semi-solid electrolyte can
serve as a fuel which could be re-fueled in gas stations hence utilizing the already
established infrastructure of gasoline. Further stacking of the fuel cells is possible
leading to customized usage of the battery for different applications [16]. The cost
of the active Lithium complex materials are estimated around $10-15 kg~ and
$14 kg~! for non-aqueous electrolyte. There are two types of battery model being
considered. i) small scale setup for transportation purposes costing $250 kWh=!
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Figure 1.5: A working prototype of SSFB from 24M CO., LTD. (copied from www.24-m.com)

and ii) large scale grid level storage systems costing $100 kWh~1. 24M has raised
$50 million in investments so far. Further the start-up has received funding from
the United States Department of Energy’s ARPA-E program to explore the potential
use of the semi-solid electrolyte [17, 18]. 24M claimed they could achieve $100 per
kilowatt-hour by 2017. However as of 2019 they are yet to enter production [19].
The RFB is one of the most promising stationary storage technologies due to the
decoupled power output and energy capacity and the high cyclability, making them
applicable for virtually any stationary application. A significant amount of ongoing
research is currently focused on developing an electrolyte system with a price range
comparable to solid-state Li batteries. Further large advances can be made by
improving the electrode and membrane materials. Should such improvements be
made, RFB will become a truly attractive storage technology worldwide.

1.3. Modelling of flow batteries

Modelling forms an important part of the research process by providing fundamen-
tal insights of a phenomena. To better understand the rheology properties of the
flow battery in particular the formation and aggregation kinetics of CB clusters and
their flow dependent behaviour we resort to computer simulations. Since the size
of carbon black particles (= 100 nm) are orders of magnitude larger compared to
the surrounding solvent molecules (~ 1 nm) conventional techniques like molecular
dynamics (MD) can't be used. Hence we employ a mesoscale simulation technique
called Brownian dynamics (BD) to model the colloidal particles. Further the typical
time-scales in BD range from few milli-seconds to several hours/days which are
roughly time-scales of interest in rheological studies. Hence BD serves as an excel-
lent candidate for simulating colloidal rheology. In the following section we give an
brief overview of the BD simulation method.
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1.3.1. Brownian Dynamics
Consider a colloidal particle of mass m and position  in bath a bath of solvent
molecules. The force acting on a colloid particle i can be written as

m; = FE¢ + FSs (1.1)

where F{¢ is the colloid-colloid interaction force, F;* is the colloid-solvent interac-
tion force and r; colloidal particle acceleration. This represents the explicit solvent
models like MD, Lattice Boltzmann where the solvent interactions are fully resolved.
However the typical time-steps for such models are limited to few femtoseconds
( = solvent molecule velocities). Whereas implicit solvent models in the solvent
interactions are represented by coarse grained fields enabling large time-steps.

In above equation the solvent interaction is replaced by a viscous term —y;r; and
a stochastic term 6F which obeys the fluctuation-dissipation theorem. y is the
damping constant and r; is the colloidal particle velocity. This equation is referred
to as Langevin dynamics with typical timescales in range of nanoseconds (= colloidal
particle velocities). If the size of colloidal particle is considerably bigger than solvent
molecule, Langevin dynamics can be further coarse-grained by neglecting inertia
terms.

I:i = ch/)/l + 8rl = ﬂiFfC + 5rl (1.3)

where y; it the colloidal particle mobility and §¥; is the stochastic velocity obeying
fluctuation-dissipation theorem. This is the BD equation of motion for a spherical
colloidal particle. The equation can be extended for non-spherical particles as well
by considering a tensor mobility matrix rather than scalar one. Typical time-steps
for BD simulation are in milliseconds which enables calculation of experimentally
relevant colloidal properties like diffusion, aggregation rates, shear rheology, etc

It should be noted that even though we can access longer timescales by the
process of coarse-graining we lose information of hydrodynamic interactions. Hy-
drodynamic interactions are a given in explicit solvent techniques while for implicit
solvent models additional effort has to be made. Hence a major theme of thesis will
revolve around incorporating such hydrodynamic properties to the BD system while
still retaining its efficiency. This will enable a more accurate and faster simulations
of colloidal suspensions and their rheological properties.

1.4. Thesis Outline

The ultimate aim of our work is to understand the shear rheology of colloidal sus-
pension with particular focus on carbon black aggregates for flow batteries. Before
modeling the highly complex fractal aggregates we analyze the existing hydrody-
namic models for simpler colloidal shapes like ellipsoids. This will help us in under-
standing the shortcomings of the prevailing models and thereby improving them.
We derive an extended mobility matrix with shear-coupling terms enabling shear
simulations of arbitrary shaped colloids. We also present a new efficient Brownian
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dynamics scheme compatible with the afore mentioned extended mobility matrix in
Chapter 2. We perform simulations on a set of standard non-spherical particles like
ellipsoids, hemi-spherical caps to validate our algorithm against known results. Our
extended mobility calculation enables access to the stresses acting on the body and
thereby the intrinsic viscosity of a dilute suspension of these objects. In Chapter
3 we leverage on our new BD algorithm by performing simulation under various
flow rates. We obtain shear rheology for an array range of non-spherical particles
like ellipsoids, hemi-spherical caps, helices. Viscosities for suspensions of ellipsoidal
particles, for a wide range of aspect ratios and Peclet numbers ranging from the
Brownian-dominated regime to the shear-dominated regime are calculated. We
compare them against theoretical predictions on the shear-thinning behaviour of
these suspensions. In Chapter 4 we show that current theoretical and numerical
approaches with the hydrodynamic (self-)interactions accounted for by the Brown-
ian equation of motion and the stress expression, yield inconsistent values for the
viscosity. This situation is remedied by revising the inclusion of fluctuating hydro-
dynamic stresses on the colloids. Further the fluctuating instantaneous stresses
enable calculation of viscosity via stress auto-correlation and Green-Kubo relations.
We present numerical results on a variety of isolated non-spherical particles, illustrat-
ing the necessity of these corrections to obtaining consistent values of the Einstein
viscosities of dilute solutions of these particles. In Chapter 5 we give the com-
plete derivation of the above mentioned corrections to colloidal Brownian stresses.
Stress contributions from rotational derivatives of the mobility matrix and the ex-
tended fluctuation-dissipation theorem are shown. Further dynamic viscoelastic
analysis of the colloidal suspensions are performed by Fourier transformation of
stress auto-correlations. In Chapter 6 we perform aggregation simulation of the
colloidal particles using a simple hit-and-stick model to study their kinetics. Inclu-
sion of rotational Brownian motion and intra-cluster hydrodynamics results in faster
aggregation and more stringy clusters than previous simulations employing scaling-
based rotational dynamics. Later we extend the model to rod shaped particles mim-
icking carbon nanofibers as conducting colloids. For rod shaped particles the stringy
clustering effect become more pronounced with increasing aspect ratios, suggest-
ing better electrical connectivity for carbon nanofiber based suspensions as seen
in experiments. Further the cluster-size distributions collapse onto a master curve
in the diffusion-limited regime, the deviations observed for more concentrated sys-
tems are in agreement with experiments. The theories and algorithms presented in
these chapters will serve as essential ingredients in studying colloidal aggregation
under shear flow.
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Efficient Brownian
Dynamics of rigid colloids
in linear flow fields

We present an efficient general method to simulate in the Stokesian limit the
coupled translational and rotational dynamics of arbitrarily shaped colloids
subject to external potential forces and torques, linear flow fields and Brow-
nian motion. The colloid’s surface is represented by a collection of spherical
primary particles. The hydrodynamic interactions between these particles,
here approximated at the Rotne-Prager-Yamakawa level, are evaluated only
once to generate the body’s (11 x 11) grand mobility matrix. The constancy
of this matrix in the body frame, combined with the convenient properties of
quaternions in rotational Brownian Dynamics, enable an efficient simulation
of the body’s motion. Simulations in quiescent fluids yield correct transla-
tional and rotational diffusion behaviour, and sample Boltzmann’s equilib-
rium distribution. Simulations of ellipsoids and spherical caps under shear,
in the absence of thermal fluctuations, yield periodic orbits in excellent agree-
ment with the theories by Jeffery and Dorrepaal. The time-varying stress
tensors provide the Einstein coefficient and viscosity of dilute suspensions of
these bodies.

2.1. Introduction

Colloidal suspensions are ubiquitous in nature and in man-made materials. The
dynamics of colloidal particles is therefore of interest to both academia and industry.
Several important analytical results have been derived in the Stokes limit of colloids

Parts of this chapter have been published in Journal of Chemical Physics 148, 194112 (2018) [1].
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moving at low Reynolds numbers, including Stokes’s drag on a spherical colloid,
Einstein’s viscosity of a dilute suspension of spherical colloids and Jeffery’s tumbling
motion of an ellipsoidal colloid in a linear shear flow [2—7]. Solving the mobility
matrix and resulting motions of complex-shaped rigid particles, however, typically
requires a numerical approach. One way is to explicitly solve the flow around the
body using direct numerical simulations, e.g. lattice Boltzmann simulations, but
this is comuptationally demanding and becomes difficult at low Reynolds numbers.
[8, 9]

Building on the work by Oseen [10] and Burgers [11] for the flow field gener-
ated by a point force, Riseman and Kirkwood [12] derive translational and rotational
diffusion tensors for rigid clusters of particles in the Stokesian limit. Bloomfield and
co-workers [13—15] and Goldstein [16], among others, extended this framework
by incorporating the improved hydrodynamic interactions between two spheres de-
rived by Rotne and Prager [17] and Yamakawa [18]. The result is a (6 x 6) mobility
matrix relating the translational and rotational velocities of a colloidal body to the
total force and torque acting on that body, taking into account the hydrodynamic
interactions between the various parts of the body and implicitly solving the con-
straint forces and torques that rigidify the body. Several authors reported on codes
to calculate this matrix [19, 20], while Garcia de la Torre et al. [21, 22] made their
Hydro++ code publicly available. The latter also combined a rotationally averaged
weighted translational mobility matrix with a volume correction to predict intrinsic
viscosities at zero shear rate. [23, 24] Brady and collaborators developed Stoke-
sian Dynamics (SD) to simulate suspensions of (non-connected) spherical particles
[25, 26]. In this scheme, the generalized velocities and forces are supplemented
with stress and strain matrices to improve the accuracy of the hydrodynamic calcu-
lations, to simulate suspensions in linear flow fields, and to calculate viscosities of
quiescent and flowing suspensions.Several authors hinted at and/or have worked
out a generalized mobility matrix for arbitrarily shaped colloids including stress and
strain [20, 27-29], but a detailed description and thorough test of a generic method
appears to be missing in the literature. The aim of the current paper is to describe
the derivation of a generalized (11 x 11) grand mobility matrix, implemented in the
publicly available 0seen11 code, and to compare simulation results obtained with
this matrix against a number of analytic results for validation.

The generalized mobility matrix, obtained by the method outlined above or by
the boundary element method [30, 31], can be used to efficiently simulate the dy-
namics of the body. For a rigid object the mobility matrix in the body-based frame
remains constant, hence it needs to be evaluated only once and its time-varying
counterpart in the laboratory-based frame is readily obtained through rotation. The
literature contains a number of simulations of this type, [19, 32, 33] using quater-
nions to describe the orientation of the body relative the its hydrodynamic center.
We show that this is a fortuitous choice. It is well known that the use of four
quaternion coordinates removes the degeneracy encountered with three rotational
coordinates, like the Euler angles or the components of a rotation vector [34]. In
the simulation of Brownian motion, however, the use of non-Cartesian coordinates
gives rise to an additional metric-related term in the equations of motion. Fur-



2.2. Theory 13

thermore, in the usual It6 representation of stochastic differential equations, the
orientation-dependence of the space-based mobility matrix also gives rise to an ad-
ditional term in the equations of motion [35-37]. Naess, Elgsaeter and co-workers
[38—42] derived expressions for these additional terms for simulations employing
Euler angles and a rotation vector, respectively, assuming a block-diagonal mobil-
ity matrix. Ilie et al.[43] showed that the additional terms vanish identically when
using quaternions, in combination with an exactly solved constraint to preserve the
unit length of the quaternion vector,again assuming a block-diagonal mobility ma-
trix. Their derivation is extended here to general mobility matrices, arriving at the
convenient result that the additional terms cancel out when using quaternions to
represent rotations around the mobility center. Alternatively, Makino and Doi [30]
employed a Fokker-Planck equation to derive an equation of motion using the nine
elements of the rotation matrix as coordinates to describe the orientation of the
object; their time evolution obeys the six orthonormality conditions to a rotation
matrix only in the limit of vanishing time step, and consequently the calculated
motion is subject to a gradual drift.

The outline of this paper is as follows: The derivations of the grand mobility
matrix and the equations of motion are presented in Section 2.2, with details re-
ferred to the appendices, culminating in the central expression of Eq. (2.19). Sim-
ulation results validating the algorithm are presented in Section 2.3, where it is
shown that translational and rotational Brownian Dynamics, as well as the equilib-
rium Boltzmann distribution, are faithfully sampled for colloids in a quiescent fluid,
while colloids in sheared fluids, in the absence of Brownian motion and external
forces, correctly trace the analytical Jeffery orbits of ellipsoidal particles [4] and
spherical caps [44]. We end with a brief summary of the main results.

2.2. Theory

The constant body-based generalized mobility matrix of a rigid colloid fully describes
the response of the colloid to external influences. In the following two subsection,
we derive this matrix for a body consisting of primary spherical particles, and con-
struct the corresponding Brownian Dynamics equation of motion.

2.2.1. Mobility matrix

Consider a collection of N unconnected spherical particles suspended in an incom-
pressible Newtonian viscous fluid. At low Reynolds numbers, the equations of mo-
tion of each particle are solved by balancing the potential-based force and torque
on the particle with the hydrodynamic drag force and torque experienced by the
particle, which in turn depend on the motions of all particles in the system. [7] In
the mobility representation, the translational velocity v; and rotational velocity @;
of the it" particle with position %; are related to the potential-based forces f ; and
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torques z; on all particles j, via the grand mobility matrix,

=v,i =, = vl _
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Here the balance is solved in the presence of a linear background flow field, v{° =
v (%;) with
VOR) =V +E X+ @ XX, 2.2)

where the strain rate £ and angular velocity @* are uniform throughout the sys-
tem and vy denotes the flow velocity at the origin of the laboratory coordinate
system. The vector on the r.h.s. of Eq. (2.1) collects the force, torque and stress,
S;, transmitted by particle j onto the fluid. The deformations of the particles are

obtained by balancing the hydrodynamic stresses on the particle (i.e. —S;) and the
potential-based stresses on the particle with the deformation stresses within the
particle; for rigid particles the latter reduce to Lagrange multipliers that balance
any imposed stress at vanishing deformation of the particle. Approximate analytic
expressions for the grand mobility matrix of two interacting spherical particles are
available in the literature [6, 25] and summarized in Appendix 2.A.1. Our objective
in this subsection will be to derive, starting from Eq. (2.1) or from the equivalent
(inverse) resistance problem in Eq. (2.6), a mobility matrix relating the translation,
rotation and stress of a rigid cluster of N spherical particles to the total potential
force, torque and flow field. Two brief comments on the notation: the number of
bars highlights the rank of a tensor, with each spatial index running over the usual
three dimensions; for tensors with both a subscript and a superscript, the former
denotes the intended multiplication partner and the latter the resulting outcome.

The combination of various ranks in the grand mobility tensor disallows the use
of standard numerical routines for square matrices. We therefore rewrite the strain
rate of the flow field as a linear combination of nine (3 x 3) ‘basis matrices’ éi and
their ‘dual basis matrices’ &,

B Z e, (2.3a)

& E | (2.3b)

where the set of coefficients £ constitute a column vector £~ and the colon de-
notes a double contraction. Since in the context of hydrodynamics it proves conve-
nient to use a non-orthogonal set of basis matrices, the basis matrices in the reverse
transformation differ from those in the forward transformation [6]; we refer to Ap-
pendix 2.A.2 for more details. Because the strain rate is defined as the symmetric
part of the flow field gradient, for any divergence-free flow only five coefficients are
required. If one is not interested in the hydrostatic pressure, the stresses on the
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particles — symmetric by definition — likewise reduce to a five-vector, §;. We then
arrive at

=, =v,i =v,i _
Vi — V7 N[ My Hep Hs fj
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w; —w - z ﬂf‘j ”‘L',J' ﬂg_j Tj ’ (24)
— & — Sg1 =&i =€i S
Jj=1 ]
Brj Heoj Hsj
where
=& =€ :zEi
He;=¢€gilg (2.5a)
-v,i =Vl =S
ﬂS,j = H'S,j €s, (2'5b)
=i z£ zEi:zs
R = €g g €, (2.5¢c)

=€ =S
etcetera, where e; and es denote the third-rank tensor combining the five basis

matrices {é;} and {éi} respectively. Since we have recovered conventional vector-
matrix products in Eq. (2.4), henceforth the bars will be omitted for notational
convenience. Note that particles i and j are now coupled by an (11 x 11) matrix.
Inversion of the (11N x 11N) grand mobility matrix yields the (11N x 11N) grand
resistance matrix in the resistance representation of a collection of unconnected
particles,

fii fii B o
. N . . 3 O
f Sop Sy g \ [ vimVT
T | = Z"j ff;;'j fg"j w; — woo . (2.6)
. - 1 k1 1 _
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The summation results on the r.h.s. can be interpreted as minus the hydrodynamic
force, torque and stress on particle i at given linear and angular velocities of all
particles j in a given flow field. The hydrodynamic interactions remain unchanged
when the particles are connected to form a rigid cluster. The particle velocities in a
rigid cluster are related by

Vi=V+wXrj, (2.7a)
w; = w, (2.7b)

where r; = x; — x denotes the vector connecting particle j to a reference point
on the cluster with spatial position x, henceforth referred to as the position of the
cluster, v = x represents the translational velocity of the cluster and w its rotational
velocity. The background flow velocity experienced by particle j, see Eq. (2.2), is
then readily expressed as the background flow velocity experienced by the cluster,
v®(x), plus a linear transformation of r;.

Given the forces, torques and stresses on the individual particles in a rigid cluster,
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the total force, torque and stress on the cluster follow by the addition rules
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The first two of these equations are readily applied to the potential-based forces and
torques on the particles, whereas in the third equation the stresses on the particles
are still unknown. Applying these addition rules, in combination with Eq. (2.7), to
the r.h.s. of Eq. (2.6) yields the (11 x 11) grand resistance matrix of the cluster,

f g &, & v —v®(x)
T |=| & & & w-w” |, (2.9)
s & & & - &

where the r.h.s. represents minus the generalized hydrodynamic forces on the clus-
ter. Explicit expressions for the nine sub-matrices are provided in Appendix 2.A.3.
The generalized constraint forces acting between the particles in a rigid cluster are
all internal to the cluster and therefore do not contribute to the dynamics of the
cluster. Simulating the dynamics of the cluster requires evaluation of the veloci-
ties for given potential-based generalized forces and a given background flow field.
This is achieved by a partial inversion of the above equation, see Appendix 2.A.4,
to arrive at the grand mobility matrix of the cluster,

v —v?(x) My ouLpg f
®— =( uf u? pg T | (2.10)
s uyoopop —E

While the laboratory-based grand mobility matrix will vary with the orientation of
the rigid cluster, the body-based matrix remains constant. Hence, in principle the
dynamics of the cluster can be simulated based on a single evaluation of the mobility
matrix.

2.2.2. Brownian Dynamics
The laboratory positions of all particles in a rigid cluster can be expressed as
X; = x+A((f)))ri (2.11)

where x denotes the space-based position of the reference point on the cluster that
defines the origin of the body-based coordinate system, r; represents the body-

based coordinates of particle i, and A((f))) is the rotation matrix from the body frame
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(b) to the space frame (s). For numerical convenience, see Section 2.1, the rota-
tion will be described in terms of the four-vector quaternions q, with a constraint
of unit length, |q| = 1. Details on the rotation matrix, and the corresponding trans-
formation matrices for angular velocities, can be found in Appendix 2.A.5. The
generalized mobility matrix to be used henceforth is the matrix evaluated in the
body frame. The objective now is to obtain equations of motion for the position x
and orientation q of the cluster.

For a particle in a quiescent fluid, experiencing a conservative potential @, the
Brownian equation of motion in generalized coordinates Q reads as [35-37]

AQ(t) = Q(t +4t) — Q1)

(2.12)

with AQ(t) the displacement at time ¢ over a time step At, mobility matrix pu,,
free energy Ay, Boltzmann's constant kp, temperature T and random Brownian
displacements §Q. The free energy is defined as

Ap(Q) = —kgT In Py (Q)

1 (2.13)
=®(Q) - EkBTlngQ(Q)’
with the Boltzmann equilibrium probability distribution for a particle experiencing a
potential @ given by

*(Q)

ot ]dQ (2.14)

Po(Q)dQ x g5/*(Q) exp [—

and where the metric g, measures (the square of) the volume in coordinate space
of dQ. The first term on the last line of Eq. (2.12) is akin to Eqg. (2.10), with minus
the gradient of the free energy providing the driving force and a multiplication by At
to turn velocities into displacements. In the third term on the last line of Eq. (2.12),
the components of the Brownian displacements vector §Q have zero average, no
memory of the preceding time steps (i.e. Markovian), and their correlations are
related to the mobility matrix by the fluctuation-dissipation theorem,[35-37]

(6Q ® 8Q) = 2ksTuyAt, (2.15)

where the pointed brackets denote a canonical average. In the It6 representation,
i.e. all terms on the last line of Eq. (2.12) are evaluated at time t, the equation of
motion contains a divergence term (here, the second term on the r.h.s.) accounting
for spatial variations of the mobility. Inclusion of this term, which appears natural
when deriving the first order equation of motion from the second order Langevin
equation [37], ensures that the proper equilibrium distribution is sampled by Brow-
nian systems with coordinate-dependent mobilities, like the non-spherical colloids
in this study. All aforementioned contributions are imperative in simulations using
Euler angles or a rotation vector to represent the orientation of the cluster, along
with Taylor expansions to solve weak singularities at specific orientations [38—42].
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Ilie et al. [43] have recently shown that the equations of motion simplify consid-
erably when using quaternions, which will be the approach followed and extended
here.

For a (6 x 6) mobility matrix, and assuming translation and rotation to be decou-
pled, Ilie et al. [43] derived the Brownian equations of motion for translation and
rotation as

_ A [,70) A

ax = AQ) [ AR @At + 53] (2.16a)
] b b

Aq = BY,) [uel) AL At + 59| + 2q, (2.16b)

respectively. Both equations have the same structure: the force (torque) in the
space frame is rotated to the body frame by the inverse rotation matrix, A =

(A((i)))‘l, the balance with the hydrodynamic friction force (torque) is solved in the
body frame, and the resulting (angular) velocity is rotated back to the space frame
to update the coordinates. The (4 x 3) matrix Bf’b) combines the rotation of a body-
based angular velocity to the space frame with the conversion to time derivatives
of quaternions, see Appendix 2.A.5. The stochastic translations §x® and rotations
sy ® are sampled in the body frame, each with zero mean and each separately
obeying a fluctuation-dissipation theorem akin to Eq. (2.15). These random dis-
placements are easily generated using two independent three-vectors @, and @,
of uncorrelated memory-free random numbers with zero mean and unit variance,
in combination with the symmetric square roots of the (3 x 3) mobility matrices,

1/2

5x®) = \[2ksTA (,u;i?gg) 0, (2.17a)
b\ 1/2

SYp® = \[2k,TAt (,u‘;’(%)))) 0, (2.17b)

The metric and divergence terms in the generalized equation of motion vanish iden-
tically when simulating the translational motion in Cartesian coordinates. Neither
term vanishes in the description of the rotational motion, but both turn out to be
parallel to q and therefore they cancel against the constraint force along V;|q| = q
that preserves the unit length of the quaternion vector [43]. The strength of the
constraint force, i.e. the Lagrange multiplier 4, is solved from the condition of unit
length,

la(t + At)| = [qu(t + At) + 2q(®)| = 1, (2.18)

where q"(t + At) denotes the quaternions following the unconstrained time step.
One readily shows that this condition constitutes a quadratic equation in A.

The above equations of motion can be generalized to (6 x 6) mobility matrices
with coupled translational-rotational motion, i.e. matrices for which the cross-terms
p7 and pf = (u¥)T are non-zero. We present the main results here, and refer the
reader interested in the mathematical details of the derivation to Appendix 2.A.6.
The equations of motion including Brownian noise take their simplest form when
p¢ = puf, which occurs when the origin of the body-based coordinate system co-
incides with the hydrodynamic center of the cluster. We will henceforth adhere to
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this convenient choice and identify x with the space-based position of the hydrody-
namic center — note that the equations of motion in the absence of Brownian noise
will be of the same form for any chosen reference point. Equations to locate this
center, and to subsequently ‘shift’ the cluster mobility matrix to this center without
repeating the calculation of the previous section, are included in Appendix 2.A.7.
Upon adding the displacements due to the linear flow field, the equations of motion
read as

<Ax)_<AE§> 0 ><u;é W )‘” A (29
Ag )\ o B, weow e ﬁ(g:(b) sy
Vo) 0
+< B e )At+< . )
(2.19)

In the first term between square brackets, the forces and torques in the space
frame are converted to the body frame by a single rotation, while the corresponding
conversion of the strain rate involves two rotations followed by a reduction to five-
vector,

7O = et [ADEZ0A) | (2.20)

The generalized velocities are solved from a force balance in the body frame, con-
verted back to the space frame and multiplied by the time step to obtain a displace-
ment. In the second term between square brackets, the stochastic displacements
are calculated using the symmetric square root matrix of the symmetric (6 x 6) top-
left sub-matrix of the grand mobility matrix, in combination with a random six-vector
0, whose elements have zero mean, unit variance and are devoid of correlations,

b)
5x® ﬂv uv
= J2kgTAt Lo

(51/1“” B woHe b

The penultimate term to Eq. (2.19) describes the particle being carried along and
rotated by the flow field. The final term represents the constraint introduced to
preserve the unit length of the quaternion vector, which is solved using Eq. (2.18).
In the absence of Brownian motion, i.e. for T = 0, the mobility matrix gives the
stresses exerted by the body on the fluid, expressed in the body frame, as

1/2

Oy (2.21)
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Conversion to a stress tensor in the space frame is achieved by a vector to tensor
transformation, followed by two rotations,

b b
5@ = AP| ) eis®]a?). (2.23)
K
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Figure 2.1: Probability distributions of the azimuthal angles ¢ and (the cosines of) the polar angles 6,
relative to the space frame, of the three body-fixed eigenvectors of the mobility matrix of an anisotropic
particle performing Brownian rotational diffusion. The solid lines represent the theoretical predictions.

We note that for a non-Brownian cluster the stresses are linearly related to the
velocities of the body and hence to the displacements over a time step At. Extending
this relation to the Brownian case, i.e. assuming that Brownian forces and external
forces that generate identical displacements will also induce identical stresses, one
arrives at

s®) (1) = s®)(0)
-1/2

2kyT (2.24)
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The prefactor At~1/2 in the last term appears because the stress represents the time-
averaged stress over the time step At, while the standard deviation of the Brownian
force, i.e. a series of uncorrelated kicks by the solvent molecules, increases as At'/2,
Since for any given configuration the last term in the above expression averages to
zero, we conclude that in the stationary state Brownian motion affects the stress
only indirectly, i.e. by its impact on the distribution being sampled.

2.3. Simulation results

To validate the proposed algorithm, the various contributions to the equations of
motion were tested, on an individual basis and/or in combinations, by comparison
against known analytic solutions. The units used in the simulation are ¢ for energy,
o for distance and  for time.

2.3.1. Brownian motion
To test the Brownian contributions to the equations of motion, we consider an
anisotropic particle with the body-based diagonal translational and rotational mo-



2.3. Simulation results 21

MSD / &

t/t

Figure 2.2: Mean square displacements along the three space-fixed axes (markers) of a Brownian
diffusing anisotropic particle, along with the theoretical prediction (line).

bility matrices having the diagonal values (5,7,9) o?(re)~! and (0.5,4,10) (te) %,
respectively. The temperature is set at kzT = 1¢, the timestep at At = 1 - 107%7.

The orientational probability distribution of the particle, in an isotropic environ-
ment, is analysed by sampling the orientations of the three body-fixed eigenvectors
ﬁgb) of the mobility matrix, as seen from the space-fixed frame, ﬁES) (t) = A((i)) (t)ﬁgb).
The probability distributions of the polar angles 6, and azimuthal angles ¢, for the
three body-based basis vectors, see Fig. 2.1, agree well with the expected isotropic
distributions.

The dynamic properties are analysed by measuring the diffusional behaviour of
the particle. In an isotropic medium, with all particle orientations equally likely, the
average translational diffusion coefficient along any space-fixed direction is given by
DG = %kBTTr(u;%), where Tr denotes the trace. The simulated time-dependent
mean square displacements along the three space-fixed Cartesian axes overlay the

theoretically expected curves, see Fig. 2.2.
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Figure 2.3: Time-correlation functions of the three body-fixed eigenvectors of the rotational mobility
matrix, as seen in the lab frame, compared with theoretical prediction (lines).

The rotational diffusion is characterized by calculating the time correlation of a
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Figure 2.4: Probability distribution of the angle 6 between the dipole moment of a particle and an
external uniform electric field, for BpE = 5, and the corresponding theoretical result (line).

body-fixed vector a® as seen from the space-fixed frame,

39/, R 2 1
G (® = 3 (@90 - a0 )) - 5, (2.25)
with a® (¢) = A% (©)a®. The time-correlation function has been solved theoreti-
cally as a sum of five exponentials [30, 45],

5

Gaw(®) = ) aget/%, (2.26)

i=1

where the five amplitudes a; and relaxation times 7; are functions of the three
rotational diffusion coefficients of the body and the three body-fixed components
of the vector a®. Figure 2.3 shows good agreement between the time-correlation
functions from the simulations and the theoretical curves.

The aforementioned tests were repeated with an asymmetric body, a helix of
81 nearly-touching particles forming a single 360° turn with a radius of 12.5¢ and a
height of 25¢. The simulation results (data not shown) are again in good agreement
with theory.Taken together, these tests validate the inclusion of the stochastic terms
in the equations of motion.

2.3.2. Potentials

Consider a particle with two point charges q; = +q placed at distances i%d from
the center of the particle along a direction 4(®, creating a constant dipole moment
p® = gda® in the body frame and a variable dipole moment p®(t) = A((?O))(t)p(b)
in the space frame. In the presence of an external electric field E¢, the charges
experience forces fES) = q;E®). The net force acting on the particle is zero, while
the two forces induce a torque (& = p® x E® that tends to align the dipole

with the field. In the presence of thermal noise, the angle 6 between the electric
field and the dipole moment should obey the Boltzmann distribution P(cos ) =
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Table 2.1: Einstein coefficients B,,, for a hollow sphere of 2082 primary particles in an xy shear flow,
calculated using Eq. (2.27), assuming the three definitions of the sphere’s volume discussed in the main
text. The last line shows the effective radius corresponding to the theoretical value B, = 2.5. The
standard deviations result from the rotating spherical shell not being perfectly spherical.

Surface R B,y
centers 32 2.6488+1-107*
centers & bumps 32-33 2.5672+1-107*
circumscribed 33 24152 +1-107*
effective sphere  32.6226 +1-107* 2.5

Z ' exp (BpE cos B), where Z is the normalizing configuration integral, irrespective
of the mobility matrix. A particle with the aforementioned mobilities was simulated
both using a single torque acting on a body-fixed dipole vector and using two forces
acting on two body-fixed charges, obtaining good agreement with theory in both
cases, see Fig. 2.4. These tests validate the implementation of the conservative
and stochastic terms in the equation of motion.

2.3.3. Flow Fields

The flow-induced particle dynamics was tested in the absence of conservative and
stochastic terms, to allow comparison with analytical expressions in the literature.
Simulations of spheres, ellipsoids and hemispherical caps were performed at a shear
rate of y = 0.0177! in a solvent of viscosity n, = (6m) ter/03, using a time step
At = 0.017.

2.3.3.1. Spheres

The simplest body is a rigid sphere. Due to its symmetries the mobility matrix is
block diagonal and the sphere merely translates and rotates along with the back-
ground fluid, v = v®(x) and w = @®. The presence of a rigid body induces stress
in the fluid, which is evaluated by Eq. (2.22) and Eq. (2.23). For ease of comparison,
we convert all calculated stresses into Einstein coefficients,

©
1 Sap

Bug = , (2.27)

e g2

with V. the volume of the colloid. For a rigid sphere all elements of B should be
equal to 5/2 [3, 7]. When simulating the sphere as a single primary particle in a
shear flow with shear rate y, hence v*(x) = )'/yé,(f), the two non-zero elements
of the stress and strain matrices, xy and yx, both yield Einstein coefficients that
approach the theoretical value to within numerical accuracy. Besides shear flow, the
algorithm also permits planar, uniaxial and biaxial extensional flows. In all cases,
the non-zero elements in the stress and strain tensor yield an Einstein coefficient
of 5/2, in agreement with theory.

The simulation of more complex bodies requires the construction of a rigid shell
of primary spheres, such that the collective outer envelope of the primary particles
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Figure 2.5: Impact of truncating the hydrodynamic pair interactions at order n in the reciproke inter-
particle distance, r{jl. For ease of comparison, the calculated translation diffusion coefficient D, rotation

diffusion coefficient D,- and Einstein coefficient B for spherical shells of N = 8 (blue), 102 (green) and
2082 (black) primary particles, have been converted to effective sphere radii R, i using their well-known
theoretical expressions and divided by the radius Ry of the sphere through the centers of the primary
particles.

closely approaches the outer surface of the desired body. To assess the validity
of this approach, a sphere was modeled as a collection of N = 2082 beads of
radius a = 10 forming a hollow shell. The beads were placed on the vertices of a
geodesic spherical dome, created with the DistMesh routine [46] in matlab[47],
and subsequently shifted along the radial direction to place all bead centers at
equal distance R = 320 from the sphere’s center. Table 2.1 collects the Einstein
coefficients obtained from the simulations, with standard deviations resulting from
the time-varying orientation of the near-spherical body relative to the shear flow
(the sphere rotates with an angular velocity w = w*® = y/2 around the vorticity
direction). Since the body’s surface is not uniquely defined, the volume entering
Eqg. (2.27) was calculated based on i) a sphere with radius R matching the distance
between bead centers and sphere center, ii) the former volume augmented with the
collective volume %N7m3 of the hemispherical bumps decorating the former surface,
and iii) the volume of the circumscribed sphere of radius R + a. The second option
yields a B,,, nearest the theoretical Einstein coefficient of 2.5. Assuming the latter
value as given, one may also invert the calculation to determine the effective radius
of the body, as in the last line of Table 2.1. Comparing the calculated translation
and rotation diffusion coefficients with their well-known theoretical counterparts,
D, = kgT/(6mnsR) and D, = kgzT/(8nnsR?), yields relative errors for translation
diffusion of —2.1%, 1.2% and —0.03%, and for rotation diffusion of —5.8%, 3.3%
and —0.02%, when using sphere radii based on the centers of the primary particles,
the circumscribed sphere, and the effective sphere, respectively.

When modelling a body as a shell of nearly touching identical primary particles,
the numerical results depend on the number of particles N as well as on the highest
order ;7™ included in the expansion of the hydrodynamic interactions between pairs
of particles, i.e. the series in Eq. (2.35). Figure 2.5 collects results for the translation
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Figure 2.6: Snapshot of a prolate ellipsoid with aspect ratio p = 5, periodically tumbling clockwise
around the z axis in a linear shear flow v®°(x) = ]'/yégf). The red dots, marking the position of one
tip at equal time intervals, illustrate the non-linear angular velocity ¢ of the particle’s Jeffery orbit, with
6 = /2 throughout.

diffusion coefficient, the rotation diffusion coefficient and the Einstein coefficient of
a spherical body for three values of N and five values of n. To enable comparison, all
coefficients are converted into effective radii using the aforementioned expressions,
and divided by the radius of the sphere containing the centers of the particles.
For the N = 8 cubic representation frequently used in the literature, [24, 48] the
rescaled radii show significant differences that decrease in a non-monotonic way
with increasing order n. With increasing number of particles, the three effective radii
tend to be in better agreement while the radius of the body increases. Consequently,
at N = 102 the standard deviation of the six effective radii for n = 4 and 5 has
reduced to ~1%o0 of the average, while for N = 2082 the nine effective radii for
n > 3 agree to within ~0.3%o0 of the average. Hence, employing more primary
particles appears as the more appealing method to attaining an accurate description
of a complex body, rather than extending the hydrodynamic pair interaction to
higher orders in the distance.

2.3.3.2. Ellipsoids

The second body shape considered is a prolate ellipsoid of revolution, a.k.a. a pro-
late spheroid, which has been studied extensively in the past [4, 11, 49]. Because
of the reduced symmetry relative to the sphere, the block diagonal grand mobility
matrix of the sphere becomes augmented by off-diagonal blocks coupling flow and
rotation, i.e. p¢ and ug. A characteristic feature of an ellipsoid in shear flow is its
non-uniform tumbling motion, see Fig. 2.6, commonly referred to as Jeffery orbits,
while the center of the ellipsoid translates uniformly with the flow. Jeffery [4] de-
rived that ellipsoidal bodies trace periodic orbits with the in-plane rotation angle of
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Figure 2.7: Deviations of the nine unique non-zero components of the resistance matrix of a prolate
ellipsoid, relative to their theoretical values (indicated by a subscript o), plotted against the reciprocal
number of primary particles in the representation of the ellipsoid. The markers denote the corresponding
blocks of the resistance matrix, the straight lines are fitted by imposing a vanishing intercept.

the long axis evolving as

tan ¢(t) = ptan

ypt

DI T (2.28)
where p = L/D denotes the aspect ratio of the ellipsoid, with L and D the lengths
of the long and short axes, respectively. Due to the asymmetric shape, the stress
induced on the fluid varies with the orientation of the ellipsoid. Jeffery also eval-
uated the excess work when shearing a fluid containing an ellipsoid of volume V,,
which for an ellipsoid tumbling at & = /2 translates into an orientation dependent
Einstein coefficient

Byy(¢) = % {Fsin®2¢ + G}, (2.29)
14

where F and G are functions of the aspect ratio.

In the simulations, ellipsoids with an aspect ratio p = 5 are modelled as hollow
shells composed of spherical beads. The positions of the primary particles x; are
generated by triangulation of the ellipsoids surface, again using DistMesh. Each
particle is then displaced along the vector r; = x; — x, with x the center of the
ellipsoid, to ensure that the outer surfaces of all particles touch the circumscribed
ellipsoid of desired aspect ratio. The body’s grand resistance and mobility matrices
are calculated using the method outlined in the previous section, taking the primary
particle’s radius a as (slightly less than) half the minimum distance between two
adjacent vertices. Analysis of the nine unique non-zero matrix elements of the re-
sistance matrix shows that their relative differences from their theoretical values [6]
scale approximately linearly with N~1, see Fig. 2.7. The deviations from the fitted
lines are correlated, especially those of the translational and rotational resistances,
suggesting that the accuracy in describing an ellipsoidal body depends not only di-
rectly on the number of beads but also indirectly via the N-dependent triangulation
of the surface.
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Figure 2.8: Periodic tumbling of an ellipsoid in a shear flow, with ¢ the angle between the long axis
and the velocity gradient direction (mapped to the range [-7/2,7/2]), with a long axis permanently
perpendicular to the vorticity direction, 6 = w/2. The markers, denoting the numbers of primary particles
N, are equally spaced in time and ought ideally have coalesced for the three representations of the same
ellipsoidal body. Agreement with Jeffery’s theory (solid line) is obtained by rescaling the orbits with their
respective periods T, see also Fig. 2.9.

Simulations of the ellipsoidal bodies in simple shear flows yield periodic orbits,
with the long axis rotating in a non-uniform fashion around the vorticity direction
while simultaneously the short axes rotate around the long axis. The magnitudes of
these two motions vary with the angle 8, culminating in a pure tumbling motion for
6 = m/2 and a pure rolling motion for 6 = 0; these are also the only two values at
which 6 remains constant, while all other orientations result in a coupling between
6 and ¢ in excellent agreement with Jeffery’s theory [4]. As an example, Fig. 2.8
shows the pure tumbling motions of an ellipsoidal body when simulated using three
differing numbers of primary particles, as well as the theoretical prediction, with
all four orbits re-scaled by their respective periods 7, for ease of comparison. The
angular velocity ¢ periodically varies between near-zero, when the long axis is flow-
aligned, and w = y = 2w®®, when the particle is oriented along the gradient
direction. In contrast, the center of the body translates at a uniform velocity. The
periods of a dozen realizations of the same ellipsoidal body converge with increasing
N to the theoretical limit, 7, see Fig. 2.9. Over the explored range of 90 < N <
2128, the periods are well described by a power law, (ty — Te)/Teo = 6.6N7073,

The tumbling motion of the body causes the Einstein coefficient B, to vary pe-
riodically too. Simulation results, for three representations of a p = 5 ellipsoidal
body, yield the same characteristic curve as the theoretical prediction,[4, 50] see
Fig. 2.10. The coefficient shows broad minima for nearly flow-aligned orientations,
with B,,, slightly undershooting the value of 2.5 for a sphere, alternating with max-
ima when the particle is at increased angles to the flow velocity; the narrow dip in
this maximum coincides with the particle briefly reaching an angular velocity match-
ing the shear rate of the imposed flow. The largest difference between numerical
and theoretical values, both in relative and in absolute terms, is found at the minima
of the curves. With increasing number of primary particles, the simulation results
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Figure 2.9: Relative deviation in the tumbling periods 7y of p = 5 ellipsoidal bodies, modelled as rigid
shells of N spherical primary particles, in a shear flow. The limiting value, 7, is the period derived by
Jeffery. The line is a power-law fit.

increase to their theoretical values over the entire time range. The effect of the
volume evaluation on the Einstein coefficient is explored in Fig. 2.11. Like for the
spherical body, the volume is calculated based on i) the ellipsoidal body formed by
the centers of the primary particles, ii) the increment hereof by including the col-
lective volume of the half-spheres protruding from this body, and iii) the ellipsoidal
body that circumscribes the primary particles. The analytical result is bracketed
by the latter two volumes over the entire time range, suggesting that the effective
volume of the simulated body lies between these two limits. When using a number
of primary particles in the low hundreds, however, the Einstein coefficients calcu-
lated using these two limiting volumes no longer bracket the theoretical curved over
the entire range (data not shown), indicating that the compound body ceases to
accurately describe the desired ellipsoidal shape for low N.

2.3.3.3. Hemi-spherical caps

A spherical cap, i.e. a fragment of a spherical shell with radius R and top angle 0,
also performs periodic orbits in a linear shear flow, see Fig. 2.12. We again focus on
orbits with the rotational symmetry axis of the body at a constant angle of 8 = 7/2
to the vorticity direction. As shown by Dorrepaal [44], the rotational motion of the
spherical cap is similar to that of an ellipsoid,

2mt
tan ¢(t) = ptan %, (2.30)

where the scaled period yr and the equivalent axis ratio p are functions of the
relative dimensions of the cap. In the simulations, a hemi-spherical cap, 0 = /2,
is modelled by primary particles distributed over the surface by the DistMesh
routine. The minimum distance between any two particles is again used to define
their diameter. Whereas an infinitely thin shell was assumed by Dorrepaal, the
simulated shell will only converge to this limit when the cap’s radius far exceeds
the particle’s diameter, i.e. for N - o. The procedure of the previous section is
used to determine the mobility matrix that enters in the actual simulation of the
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Figure 2.10: Time evolution of the Einstein coefficient B,,, for an ellipsoidal body in a shear flow, as
simulated using differing numbers of primary particles and as derived from Jeffery’s theory. The volume
entering Eqg. (2.27) is that of the ellipsoid enveloping the primary particles [see also Fig. 2.11]. On the
top axis, the interval between successive ticks corresponds to a rotation A¢ = /6.
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Figure 2.11: Influence of the volume calculation on the Einstein coefficient of an ellipsoidal body
approximated by a shell of 2128 primary particles, see Eq. (2.27).

motion, supplemented by a shift of the reference point to the hydrodynamic center
of the cap by the procedure of Appendix 2.A.7. The simulated periods of bodies
of 526 and 2051 primary particles closely approximate the analytical periods, being
shorter by 0.4% and 0.03%, respectively.

Due to the lack of fore-aft symmetry, resulting in a non-zero ug, the hydro-
dynamic center moves periodically [51]. The paths traced by three points on the
symmetry axis of a simulated hemi-spherical cap are shown in Fig. 2.12. Unlike for
points on the ellipsoidal body at & = /2, see Fig. 2.6, the paths are non-circular
and there is no stationary point on the body. For a quantitative comparison with
theory, Dorrepaal’s point Q on the symmetry axis (the red bead in Fig. 2.12) is
selected. The simulated motions of this point, for two caps with differing numbers
of primary particles, agree well with theory, as shown in Fig. 2.13, indicating once
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Figure 2.12: Cross-section of a hemi-spherical cap through its symmetry axis. The coloured dots denote
the positions, equally spaced in time, of three points on the cap’s symmetry axis (arrow starting at the
center of the cap) during the combined rotational and translational motion of this body in a linear shear
flow. The axes system and flow orientation are identical to those in Fig. 2.6; the orientation shown
corresponds with ¢ = 31/2.

more that the rotational and translational motions are simulated correctly. In the
absence of Brownian motion, Eq. (2.19) can be applied using any point in the body
frame as the reference point. Tests with randomly chosen reference points indeed
recovered the orbits depicted in Figs 2.12 and 2.13 (data not shown).

Evaluation of the Einstein coefficient, based on the volume V, = %nR3 enclosed
by the cap, yields a periodically undulating B, akin to that for the ellipsoid (data
not shown). The main differences are a considerable reduction and widening of
the symmetric double peaks flanking the minima at ¢ = +7/2. These minima are
again approximately equally low as the minima attained in the flow-aligned state,
¢ = 0 and ¢ = m, and all minima undershoot the constant value of 2.5 attained for
a sphere.

2.4. Summary and conclusions

The Brownian motion of a rigid arbitrary shaped colloidal body is conveniently sim-
ulated using Cartesian coordinates for the position of the hydrodynamic center and
unit quaternions for the orientation of the body. As shown by Ilie et al.[43], the
use of quaternions — in combination with a unit-length constraint — simplifies the
Brownian equation of motion in the Itd representation by eliminating several terms.
Whereas llie et al. assumed a (6 x 6) mobility matrix consisting of two (3 x 3)
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Figure 2.13: Orbit of the center of free rotation of a hemi-spherical cap in a shear flow, showing
simulations with two differing numbers of primary particles and Dorrepaal’s theory. The markers are
equidistant in time and ideally should have coalesced. The center of the cap (the starting point of the
arrow in Fig. 2.12) coincides with the origin of the coordinate system for ¢ = 0.

blocks for the translational and rotation motion, respectively, the formalism is ex-
panded here to an equation of motion based on a (11 x 11) grand mobility ma-
trix, see Eq. (2.19). The advantages of this expansion are the proper inclusion of
translation-rotation coupling beyond the rotation-dependence of the translational
mobility, the ability to simulate bodies in linear flow fields and access to the body-
induced stress in the fluid. The grand mobility matrix is constructed by representing
(the surface of) the body by a collection of spherical primary particles, followed by
a weighted summation of the hydrodynamic interactions over all combinations of
two primary particles. A code to calculate the grand mobility matrix is available at
www2 .msm.ctw.utwente.nl/Oseenll. Simulation results employing this ap-
proach to differing particles of various complexities yield excellent agreement with
theory, recovering the Boltzmann distribution and Favro’s rotational relaxation [45]
for colloids in quiescent fluids and the periodic orbits derived by Jeffery [4] and Dor-
repaal [44] for ellipsoids and spherical caps, respectively, immersed in shear flows
in the absence of thermal noise. The proposed framework enables computational
studies on the complex dynamics of bodies under the combined effects of potential
forces, flow and Brownian motion, for which only approximate theoretical descrip-
tions exist to date, like the Einstein viscosity of dilute suspensions of non-spherical
colloids [11, 50, 52].
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2.A. Appendices:

2.A.1. Pair mobilities

The generalized mobility and resistance tensors appearing in the various equations
of the main text are of mixed units. With a the radius of the particle, T the unit of
time and 7, the solvent viscosity, the pair mobility problem can be re-expressed as

vi = vP)t/a 1 & fi7/ (nsa?)
(w; — @™)T == Z wi| it/ (nsa®) |. (2.31)
“Eer &\ S ()

All elements of the generalized vectors (between large brackets) on the I.h.s. and
r.h.s. of this expression are dimensionless, and hence all elements of the tensors
uj- are also dimensionless. Following the steps outlined in the main text, the dimen-
sionless mobility problem of the cluster becomes

(v— v‘zfs))r/a 1 f;7/ (nsa?)
(0w — ™)t =-n| 77/ (nsa®) |. (2.32)
8t/ (nsa®) —&®7

The corresponding dimensionless equation of motion is readily obtained.

The tensorial character of the pair mobility matrix uj- imposes the structure of
the hydrodynamic interactions between particles i and j, with difference vector
ri/ = x; —x;, parallel unit vector #/ = r' /z;;, traceless dyadic d/ = Y/ ® #/ — 11
and perpendicular projection p¥/ = 1 - ® #/, where for compactness of notation
the particle-pair label is denoted as superscript to the vectors and matrices. Using
auxiliary functions x, y and z in the dimensionless distance 7;; = r;;/a, the elements
of the mobility matrix read as [1-4]

HpSh = xpitd 15+ v ipas (2.33a)
HErE = VP eapyty (2.33b)
uors = xeitd i + viipag, (2.33¢)
upysl = xfialen + i (v, +7pd,), (2.33d)
ueyy’ = vif (7 epys + 75 €ays) 75 (2.33¢)

Ejiaf _ _Ejiyij 4ij
Hsiys = Xsjdgpdy,s
e Ef[o ) + et
L (2.33f)
AL 1] AlJ AL L] Alj
+ T8 PpyTs + T8 Pgsty ]

+ 25 [Py s + PyPas — PagPys),
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with the remaining elements following from the symmetry relations

Ml’{f M?’,‘Z, (2.34a)
Etaﬁ
ug"/gﬁ uf ;;"3. (2.340)

In the Rotne-Prager-Yamakawa approximation, the auxiliary functions are given by

xpi= 8y +(1-6y) (37 - 77), (2.35a)
v = 8yt (1-6y) (355t + 57 ,3), (2.35b)
y/g)Jl = —(1-6y) 3757 (2.35c¢)
xpf = 36+ (1-6y) 3757 (2.35d)
er11= 36— (1-6y) §75° (2.35e)
X = (1-6) (3752 - 27%5°), (2.35f)
v = (1-6i) 7%, (2.35g)
= —(-8y) 3755 (2.35h)
xf]l = 258 — (1= 6)) (ZT Tij 8?1__.5)’ (2.350)
Vs = 550 + (1= 6y)) (% - 18775), (2.35))
28} = 6 + (1= 8i;) &7° (2.35k)

One may readily substitute these functions with higher-order approximations [3].

2.A.2. The basis matrices

Like the strain rate in Eq. (2.3), the stress is converted between matrix and vector
representations by

S = eiSK, Saﬁ = (e,sc)aﬁS,c, (2368)
S =e5:S, S = (€$)apSap (2.36b)

where the Einstein summation convention is used, with Greek indices from the
start of the alphabet («, 8, ...) running over the three Cartesian directions and Greek
indices from the middle of the alphabet (i, 1) running over 1 through 5. For the five
components defining the symmetric traceless stress tensor, it proves convenient to
select the three shear-stresses, s; = Sy,, S, = Sy, and §3 = §,,,, in combination
with the first and second normal stress differences, §, = S, — S, and S5 =
Syy —S,z, respectively. The corresponding five basis matrices (akin to basis vectors)
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to convert the stress from vector § to matrix S then read as

01 0 0 0 1
eS=1 00| e=(00 0|
0 0 0 100
0 0 0 2 0 0
eS=| 0 0 1 ,eﬁ=%<0—1 0 |, (2.37)
01 0 0 0 -1
1 0 0
e= [0 1 o0
0 0 -2

Since these basis matrices are not orthogonal, in the sense that e : e? # §,, with
& the Kronecker delta, conversion of the stress from matrix S to vector § requires
the reciprocal basis

e =ef, ei=2el el=3ef
1 0 0 0 0 0 538
et=|{ 0 -1 0 |,es=[0 1 0], (2.38)
0 0 0 0 0 -1

as is readily verified using Eq. (2.36).

The particle-particle grand mobility matrices in Eq. (2.1) satisfy a nhumber of
symmetry rules, derivable from the Lorentz reciprocal theorem [3]. Consequently,
when choosing the (dual) basis matrices for the strain rate as

ef = e, (2.39)
ek = ey, (2.39b)

the particle-particle grand mobility matrices in Eq. (2.4) will inherit these sym-
metries, and the cluster’s grand mobility matrix in Eq. (2.10) will be symmetric.
The five elements of the strain rate vector then represent the three shear rates,
EY = 2EY, = vy’ /0y + 0vy’ /0x, EF = 2Ey; and £€3° = 2Ey, as well as the two
extensional rates £° = E) = dvg’/0x and £ = —E;, respectively. The imposi-
tion of symmetry is convenient, but not compulsory, to the approach taken in this
paper.

2.A.3. Grand resistance matrix
In the vectorial representation of the strain rate, the background flow field experi-
enced by particle j can be expressed as a sum of matrix-vector products through

vP(x;) =ve(X) + @E” —gjw”, (2.40)

where use is made of the (3 x 5) matrices

Pjax = (palc(rj) = Z(eg)aﬁrj,ﬁ (2.41)
B
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and the (3 x 3) matrices

Ejap = Sa[)’(rj) = EaypTjy, (2.42)

with € the Levi-Civita tensor. Inserting these velocities in Eq. (2.6) yields minus the
hydrodynamic forces on the particles, which are readily summed, see Eq. (2.8a),
to obtain minus the total hydrodynamic force on the cluster. The force-related
submatrices in the grand mobility of the cluster are then extracted as

N
Z fvp (2433)
i,j=1
]N

eh=> e —eie]. (2.43b)
i,j=1
z |¢£5 + &0iws] (2.43¢)
i,j=1

Similarly, insertion of the hydrodynamic forces into the summation expression for
the torques, see Eq. (2.8b), yields

N
& = Z &5t + e8], (2.44a)
i,j=1
JN
§= ) [~ g — ekl + el (2.44b)
i,j=1
N

§1= > 8 +eiio + el +ekll). (2.44c)

ij=1

In the vectorial representation of the stress, the addition rule of Eq. (2.8c) can be
expressed as a sum of matrix-vector products through

N
S= ) [ +yfi], (2.45)
i=1

with (5 x 3) matrices

1/)i,lca = Yya (ri) = Z ¥ (eg)ﬁa- (246)
B
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Then

&= Z [sz + f (2.47a)

i,j=1

N
S= e - e —wiEls + vl (2:47b)
i,j=1
JN
§1= ) [e8h+ &+ widhio; + wigll]. (247¢)

ij=1

From the symmetry of the (6 x 6) top-left sub-matrix of the particle-based grand
resistance matrices, it readily follows that the (6 x 6) top-left sub-matrix of the
cluster’s grand resistance matrix is also symmetric. Retainment of the symmetries of
the particle-based sub-matrices related to the stress and strain, however, is subject
to the chosen basis matrices, see Appendix 2.A.2.

2.A.4. Partial inversion
To solve B and C in the relation

(5)=(57)(5) @

one first solves C from the top line, followed by substitution of this result in the

bottom line, yielding
c) [ Q1 -Q 'R A
< B >_< SQ! T-SQ 'R )( D > (2.49)

In the context of Eq. (2.9), B and C refer to the five hydrodynamic stresses and the
six generalized velocities of the cluster, respectively, while A and D represent the
six generalized conservative forces on the cluster and minus the strain rate of the
fluid, respectively.

2.A.5. Quaternions

A rotation matrix in three dimensional space can be expressed in terms of the unit
quaternion four-vector, q = (g0, 91, 92, q3) With |q| = 1, where for the conversion
from the body frame (b) to the space frame (s) we use

© a +qi —a3 — a3 24193 = 24043 24143 + 2404z
Apy =| 20192+29095 q6—-91+a2—q3 20293 —24oq:1 _ |. (2.50)
29193 —2q092 24293 +2qoq1 96 —q% — a5 + 43
The conversion from the space frame to the body frame is realised by A((ts’g, which is
simply the transposed (as well as the inverse) of the above matrix. In the simulation
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algorithm, the conversion of angular velocities in the space frame to quaternion

velocities is realized by

Y L —q1 —q2 —q3

j q Qo 93 —q2

BY. = - , 2.51

® 7 dw® " 2¢*| —93 9 @1 ( )
q2 —q1 qo

with ¢ = |q|, and the conversion of angular velocities in the body frame to quater-
nion velocities is realized by

Y L —q1 —92 —q3

j q 9do —q3 Q2

Bly=— =— 2.52

® 7 gw® ~ 2¢* 3 9o —q1 ( )
—q2 41 do

One readily shows that the latter two matrices are related by B(b) B(S)A((b)

2.A.6. Brownian equation of motion
In deriving the rigid-body equation of motion from the generic Brownian equation
of motion, see Egs. (2.12) and (2.19), we start by noting that the intended set of
coordinates, Q = (x",q")T, includes one surplus coordinate relative to the six co-
ordinates needed to describe rigid body translation and rotation. One readily sees
from Eq. (2. 50) that the four quaternions describe rotation as well as enlargement,
((TJ)) (@ = ((TJ)) (q/q). For pure rotations, the quaternion vector must be con-
strained to unlt length, g = 1, throughout the simulation. Furthermore, as noted
by Ilie et al. [5], a Brownian equation of motion using quaternions requires a mo-
bility matrix that decouples enlargement from translation and rotation. Assuming
a quiescent solvent for convenience, we construct the mobility matrix entering the

generic expression as
(b) 9
)(u; uz) (AE% 0 )
w w )]
A S Bl

(s)
Ko = < Ao 2
0 B(b)

where the central matrix on the r.h.s. is the cartesian body-based mobility matrix,
the matrix to its left converts body-based velocities to space-based and quaternion
velocities, and the transposed matrix to its right is dictated by the symmetry of u,.
Since the columns of ng) are orthogonal to q, see Eqg. (2.52), the left-most matrix
in the triple product ensures that this mobility matrix conserves the length of the
quaternion vector (in the limit of At — 0). The restrictions on the use of quaternions
are therefore met.

Upon insertion of the above mobility matrix in Eq. (2.12), it readily follows from

= A(b) that conservative forces in the space frame, f, © = —0®/0Q, =

—0®/0x, W|th a € {1,2,3}, are converted to forces in the body frame before left-
multiplication with the body-based mobility matrix. The generalized forces with

(2.53)

Bl



42 References

respect to the four rotational coordinates, f;’+4 = —0®/0Qp4q = —0P/dq, with

p € {0,1,2,3}, are converted by (B(b)) before left-multiplication with the body-
based mobility matrix. Using the matrices introduced in Appendix 2.A.5, it follows
that

T6<b

(B6) 3¢

IFAORS Ta(b
9P 94 _ ) 0P
(s) q dw® (s 61/1(3)'

(2.54)

where the rotation vector () collects the rotation angles around the three space-
based coordinate axes, with rates of change P = ). The final derivative of
the potential energy with respect to ¥ yields minus the usual torque vector in
the space frame, (). Hence, the above derivation shows that the conservative
potential enters Egs. (2.12) and (2.19) in the same way, with the latter form being

easier to calculate. Note that the rows of (B(b)) are perpendicular to g, hence
conservative forces that strive to enlarge the body, i.e. force components 0®/dq
parallel to q, are eliminated by the third matrix on the r.h.s. to Eq. (2.53).

Using the above mobility matrix p,, we next derive the divergence term in
Eq. (2.12). The derivative of u, with respect to the position x is clearly zero, hence

neither uf nor u¢ contributes to the divergence. A straightforward but laborious

derivation, using the matrices of Appendix 2.A.5 and the symmetry of ﬂf(%b)), yields

the vector

a(l‘Q)ad, =< (A(b))weaﬁy("r((g)))ﬁy ) (2.55)

0Q¢ qU—4Tr(ﬂT(b)))/ (4q8)

where the top line applies to translational coordinates, i.e. o € {1, 2,3}, while the
bottom line applies to rotational coordinates, i.e. ¢ € {4,5,6,7}. Furthermore,
{a,B,v} € {1,2,3}, ¢ € {1,..,7} and Tr denotes the trace. The first three ele-

ments of this vector vanish |dent|caIIy when the matrix ) is symmetric, as is
the case when the mobility matrix is evaluated relative to the hydrodynamic cen-
ter of the cluster, see Appendix 2.A.7. This selection of the body-based origin is
assumed in Eq. (2.19). The last four elements of the vector contribute a displace-
ment parallel to q to the rotational coordinates. Since this displacement is parallel
to the constraint term Aq maintaining the unit length of q, it will be eliminated by
the constraint — thereby removing the need to determine the contribution of the

divergence term to the rotational motion.

The metric g, or Jacobian J, = gy/* is used to measure the (squared) volume

of elements dQ in a general coordinate space. To determine the metric when using
Cartesian coordinates x and quaternions q to describe a rigid body, we switch to the
proportional mass-metric M, = [My|. The latter tensor relates the kinetic energy
K to the generalized velocities, which for a rigid cluster with body-based density
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distribution p® (r) reads as

(s) 2
1. . 1 0A
K=2Q"™MQ =3 f [x+ a((lb) qr] p® (r)dr. (2.56)

2

In the creeping flow limit, the mass distribution is irrelevant for the motion of the
cluster. We therefore select a density such that the center of mass coincides with the
origin of the body frame, the three eigenvectors of the inertia tensor are parallel to
the axes of the body frame, and the three corresponding eigenvalues are identical.
This renders the mass-metric block diagonal, combining a constant translational
block with an orientation-dependent rotational block,

®) ®)
I(A)) s O(AG))

M o , 2.57
( Q)pU aCIp—4 aCIa'—zt ( )

with {p,c} € {4,5,6,7}. After some work follows
9o < My o< |q®. (2.58)

The resulting derivative of the metric entering the equation of motion, see Egs. (2.12)

and (2.13), is parallel to q and therefore is eliminated by the (ng))T in the mobility
matrix, see Eq. (2.53).

The seven coordinates Q require, following Eq. (2.12), seven random displace-
ments 6Q for every time step. But the constraint of a unit length rotation vector
q introduces a dependence that reduces the number of independent random dis-
placements to six. These six are conveniently sampled in the body frame following
Eqg. (2.21), with the rotation and conversion in Eq. (2.19) resulting in seven coupled
random displacements §Q. One readily shows that these §Q obey the fluctuation
dissipation theorem of Eq. (2.15), with the mobility matrix of Eq. (2.53).

The non-cancelling terms that are retained in Eq. (2.19), as well as the flow-
induced alignment term in the penultimate term to that equation, result in rotational
displacements perpendicular to q. The quaternion vector therefore retains its length
under infinitesimal time steps, but this length will gradually drift from the unit value
under finite time steps. A constraint on the length is therefore included as the last
term in Eg. (2.19), with the Lagrange multiplier solved by Eq. (2.18).

2.A.7. Hydrodynamic center

The values of the elements of the generalized mobility matrix will depend on the
reference position x and the reference orientation used in the derivations of Sec-
tion 2.2.1. For the Brownian Dynamics simulations it proves advantageous to iden-
tify the reference point with the hydrodynamic center of the cluster, i.e. the point
that renders p7 and p? = (u¥)T symmetric. A shift of the reference point from x to
x' = x + Ax can be achieved without elaborate recalculation of the grand mobility
matrix: by combining Eq. (2.10) with Egs. (2.2), (2.7) and (2.8), it can be shown
that the blocks of the shifted mobility matrix (on the l.h.s.) are related to their
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non-shifted counterparts (on the r.h.s.) by

HF(X") = pf + puiey — EpnF — EAUTED, (2.59a)
nr(X') = Py — eap7, (2.59b)
Hg(x") = ug — epp? + @(4x), (2.59¢)
uf(x") = pf +pes, (2.59d)
pp(xX') = pg + pies — P(Ax), (2.5%)

with £, = £(Ax), while the remaining four blocks are unchanged. The shift to reach
the hydrodynamic center is solved from

Ax = [p® — Tr(pe )1] (e:u?) (2.60)

with Tr denoting the trace. This equation also locates the hydrodynamic center of
the (6 x6) mobility matrix [6]. Note, however, that the (6x6) and (11x11) mobility
matrices obtained via the sequence of steps in the main text in the absence and
presence of stress and strain terms, respectively, in general result in two distinct
hydrodynamic centers for the same body.
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Einstein viscosities of
non-spherical colloids

A numerical study is presented on the intrinisic viscosity of sheared dilute
suspensions of non-spherical Brownian colloidal particles. Simulations of
oblate and prolate spheroids — with the dual aims of validating recently in-
troduced schemes to simulate the motions and stresses of randomly-shaped
colloids against theoretical predictions and vice versa of comparing theoreti-
cal predictions of the intrinsic viscosities at weak and strong Brownian noise
against numerical results based on the same premises — yield good agree-
ment over a wide range of aspect ratio. Numerical data are provided for
intrinsic viscosities in the intermediate shear-thinning regime. Having estab-
lished the correctness of the simulation approach, we also present numerical
results on less symmetric particles, in particular spherical shells and helices.
Also discussed is the drift of the latter body along the vorticity, due to its
skewedness, with left- and right-handed helices moving in opposite direc-
tions.

3.1. Introduction

In his thesis, submitted in the annus mirabilis 1905, Einstein showed that the vis-
cosity of a dilute suspension of spherical colloids increases proportional with the
colloidal volume fraction at low Reynolds number [1, 2]. The extension of this re-
sult to non-spherical particles has attracted many researchers ever since. Jeffery
analytically solved the periodic tumbling motion of spheroids — ellipsoidal particles
with a rotational symmetry axis — in a simple shear flow, in the absence of Brown-
ian motion [3]. This tumbling motion is common to particles of almost all shapes
[4, 5]. Jeffery also determined the variation of the shear stress with the orien-
tation of the particle, which led him to speculate that the stationary orientation
distribution of the spheroid corresponds with the minimum rate of energy dissipa-

45
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tion [3]. Because the Jeffery orbits are closed, the viscosity of a dilute solution of
non-interacting particles is determined by the initial orientation of these particles.
This peculiar dependence is broken, and memory of the initial distribution is lost,
by deviations from these orbits induced by inertial effects and/or Brownian motion
[6]. The combination of shear flow with Brownian motion involves constructing and
solving a Fokker-Planck equation for the orientation distribution function, followed
by an evaluation of the orientation-averaged stress. Two routes are taken in the
literature, depending on the rotary Péclet number Pe, i.e. the ratio of the shear
rate to the rotational diffusion coefficient. For low Pe, Burgers treated shear as
a perturbation to the orientation Brownian motion, with the latter giving rise to a
uniform distribution on the unit sphere [7]. Closely related expressions for the in-
trinsic viscosities of prolate and/or oblate spheroids were derived by Onsager [8],
Simha [9], Kuhn and Kuhn [10], Giesekus [11] and Hinch and Leal [12]. For high
Pe, Leal and Hinch treated Brownian motion as a perturbation to the Jeffrey orbit
[12, 13] giving rise to a slow diffusion of the orbital coordinate, i.e. the constant
of motion in Jeffery’s solution that determines the shape of the orbit. To the best
of our knowledge, there are no analytic solutions for the intermediate regime, for
Pe of the order of unity, where shear-induced motion and Brownian motion are of
comparable strength.

Experimental measurements on the intrinsic viscosity of suspension of Brownian
particles show a surprising variation between different researchers, with values for
supposedly identical systems varying by as much as an order of magnitude [14-18].
This indicates that the experiments are very sensitive to the prevailing conditions,
including the Péclet and Reynolds numbers, polydispersity of the colloids, interac-
tions between the colloids and interactions between the colloids and the suspending
fluid. For rods and ellipsoidal colloids the quadratic scaling behaviour of the intrin-
sic viscosity B with the aspect ratio p is clearly borne out by the experimental data,
B « p?, while it is difficult to confirm the theoretical pre-factor 4/(15 In p).

Computer simulations provide an ideal testing ground for exploring theoretical
models. The motion of spheroidal and ellipsoidal colloids in shear flows is attracting
attention lately, with authors studying the impact of particle inertia [19, 20], of
fluid inertia [21], or both inertias [22-25], of weak Brownian noise [26], to all of
the above. The hydrodynamic contribution to the motions are either condensed
in a resistance or mobility matrix rotating with the body, or in explicit solutions of
time-varying flow and stress fields. Similar approaches have been applied to more
complex rigid bodies, including two-bladed paddles [27], fractals of sticky particles
[28], curved non-chiral fibers [29] and irregular particles with edges and holes [30].
The emphasis in most of these studies is on the dynamics of the particles, while
some studies also explored the resulting intrinsic viscosities of dilute suspensions
of these particles [26, 31-33].

We have recently shown that Brownian Dynamics simulations of isolated rigid
bodies benefit greatly from describing the rotational motions in terms of unit-quaternions
[34], i.e. a four-vector of unit length that enables expressing all elements of a rota-
tion matrix in quadratic forms [35]. Several authors have exploited quaternions in
BD simulations of colloids to avoid the divergencies occurring when using three ro-
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tational coordinates, like the Euler angles or the components of the rotation vector
[26]. Less appreciated is that quaternions have the additional advantages of elim-
inating both a metric tensor term associated with BD simulations in hon-Cartesian
coordinates and a mobility term associated with the orientation dependence of the
mobility matrix [34, 36]. The latter cancellation occurs only if the orientation of the
colloids are determined relative to the hydrodynamic center in the mobility picture
[34]. This Brownian Dynamics scheme is briefly described in Section 3.2, along
with the procedure to extract shear stresses from the simulations. Both are used in
Section 3.3 to calculate the intrinsic viscosities of dilute suspensions of spheroids.
The algorithm is validated against the aforementioned theoretical predictions at
low and high Péclet numbers, and numerical data are provided covering the en-
tire intermediate shear-thinning region for aspect ratios ranging from 1/100 to 100.
Simulations are also presented of two less symmetric bodies, namely a spherical
cap and a helix, with the former periodically bobbing up and down while tumbling
in a shear flow and the latter converting the flow-induced rotational motion into a
translational drift. The main conclusions are summarized in Section 3.4.

3.2. Theory

3.2.1. Brownian Dynamics

Consider a colloidal particle experiencing a force f and a torque 7 derived from a
potential ® while suspended in a newtonian fluid with a linear flow field,

VO(F) = V9 + EooF + @o, X T, (3.1)

where  denotes position, vg> the flow velocity at the origin of the laboratory co-
ordinate system, and where the strain rate E,, and the angular velocity @,, are
constant throughout the flow. In the Stokes approximation, the velocity v and
angular velocity @ of a colloid at position x are solved from

v =V ~
vV — v (X) 5 M Hg f
_ _ -w =w =0 _
(_1) — Wy = ﬂf ”’T I'l'E ‘E ’ (32)
S =S =5 =S —E_:OO
f T ”E

where S is minus the stress induced on the cluster by the fluid. The velocities result
from a balance between the potential and flow driving the motion and friction —
represented by the generalized mobility matrix y — opposing the motion. The stress
is not the result of a balance, though it can be used in a balance for the deformation
of non-rigid colloids. The generalized mobility matrices u of spherical and ellipsoidal
bodies are tabulated in the literature [37], while those of more generally shaped
rigid bodies can be constructed by either by the boundary element method [27,
38, 39] or by assuming the body composed of primary spherical particles [29, 34,
40, 41]. The latter approach is followed here; Appendix 3.A.1 provides a brief
summary of the method, freely available on line as 0seen11[42]. A brief comment
on notation: the bars in the above expression highlight that the generalized mobility
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matrix combines matrices of various ranks; the bars will be omitted for convenience
henceforth.

For a rigid body composed of multiple beads, the positions of the it bead in the
space frame (s) are related to those in the body frame (b) by

xP = x+ AP, (3:3)
where A((i)) is a rotation matrix and the origin of the body-based coordinate system

maps onto the reference position of the cluster, x. The generalized mobility matrix
of the cluster is constant in the body-based frame and rotates with the body, e.g.

v(s)a _ (s)a v(b)k ,()u

Hesyy = AgycH s ib)uAis)y (3.4a)
Sap _ ,8)a 4(8)B, S(b)kA ,(b)u

sy = ApyAmatzioyn Ay (3.4b)
S()aB _ 4(8)a 4(8)B, S(b)rA ,(D)p 4 (b)v
He(s)yys = AmcAmalemumAsy As)s (3.40)

where the Einstein convention of summing over repeated indices is implied. Hence,
it suffices to perform one computationally intensive evaluation of the hydrodynamic
interactions between all beads to arrive at the generalized mobility matrix in the
body frame, which is then combined with cheap rotations to obtain the mobility of
the body at arbitrary rotation in the space frame.

A colloidal particle suspended in a quiescent fluid will perform a Brownian mo-
tion. In terms of generalized coordinates Q, the discretized equation of motion of
a particle in a potential ® reads as [43—45]

AQ(t) = Q(t + At) — Q(b) (3.5a)

where t denotes time, At the integration time step, kz Boltzmann’s constant, T the
temperature, g, the metric of the coordinate space and §Q the Brownian displace-
ments. The metric is explicitly included as it is required in simulations of the body’s
orientation in terms of Euler angles or a rotation vector [46-50]. In the last term,
the Brownian displacements have zero mean and no memory of preceding steps
(Markovian) while they are correlated by the fluctuation-dissipation theorem,

(6Q ® 6Q) = 2k TyAL. (3.6)

Here it is tacitly assumed that the mobility matrix remains constant over the time
step — for a coordinate-dependent mobility an additional displacement emerges,
which is accounted for by the divergence term in Eq. (3.5b). A dependence of
the mobility matrix on the rotation is evident for non-spherical bodies. Note that
the mobility matrix u, is related to the space- (or body-) based mobility matrix by
a transformation matrix that is derived by expressing the angular velocities in the
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space (body) frame in terms of the generalized velocities Q — this matrix diverges for
certain combinations of Euler angles and requires L'Hopital’s rule for small rotation
vectors. These complications are avoided when describing rotations in terms of
quaternions, i.e. a four-vector q, at the relatively minor effort of a length constraint,
|q] = 1. With this choice the transformation matrix is linear, see Appendix 3.A.2,
while the gradient of the metric lies parallel to q and therefore cancels against the
constraint [36]. Furthermore, if the origin of the body-based coordinate system
coincides with the hydrodynamic mobility center, i.e. the point at which p’() =

u;ﬁ’(%’)), the divergence term vanishes identically from the equation of motion [34].

By combining the above expressions, one arrives at the equation of motion of a
rigid Brownian colloid suspended in a flow and subject to a potential, [34]

(b) ¢(s)
b) A f
ax ) _ (A% o weoulopd & 5x®
aq )7\ o BY pe pe pg AT At sy
b T IO -aeeag
+ v Y aea( O
Bl 0w iq )’

with Ax and Aq the increments of the position and orientation, repectively, over a
time step At at time t. Expressions for the rotation matrix in terms of quaternions,
as well as for the corresponding matrices B?b) and B?S) to convert angular velocities
to quaternion velocities, are provided in Appendix 3.A.2. The random displacements
obeying the fluctuation-dissipation theorem are sampled using

b)

( LA T )

w w

Hy Mz b)
where the square root of a symmetric matrix is again a symmetric matrix, and 0.,
represents a vector of six uncorrelated random numbers without memory. Because
the columns of ng) and BE’S) are all perpendicular to q, the length of the quaternion
vector is conserved in the limit of infinitely small time steps. To conserve the length
for a finite time step, a Lagrange multiplier 1 is included as last term to the equation

of motion. Denoting the quaternion vector after the unconstrained step by q*, the
constraint condition

(3.7)

1/2

Oy, (3.8)

6x(b)

la(t + At)| = |q¥(t + At) + 2q(t)| = 1 (3.9)
yields a readily solved quadratic expression in A.
3.2.2. Stress

The stress in the fluid is derived from Eqg. (3.2), whose bottom line provides an
expression for minus the instantaneous hydrodynamic stress on a non-Brownian
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cluster subjected to a potential and flow. To include the Brownian contribution, the
Brownian displacements in the equation of motion are converted to Brownian forces
and torques, yielding averages over the time step, to be added to the potential
forces and torques in the stress expression. The time-average stress over the time
step then reads as

. -1
5 = i [P+ 1 (143) 000 | - R + k1, Y, G10)
where Q©® = (x®,(®)) represents the six coordinates in the space frame, with
corresponding velocities Q(®), Brownian displacements §Q® and forces F(®). While
the contribution of the Brownian displacements to the stress clearly averages out,
the Brownian motion also gives rise to the non-vanishing last term in the expres-
sion. This subtle term results from correlations, within the timestep At, between the
random displacements and the change of the mobility matric due to these displace-
ments, as shown by Bossis and Brady [51]; their result in the resistance picture is
re-expressed here in the mobility picture using Eq. (3.31). Since the mobilities are
translationally invariant, the divergence reduces to the rotational contribution,

S S
Vo My =R s =GO, (3.11)

where R is the rotational operator [52, 53]. With ufg‘)) expressed in uig and A((Z))

by Eq. (3.4b), the divergence is evaluated as

6® =A%) ™A, (3.12a)
S(b)A, S(b)ai
G(b)aﬁ = ngﬂr((b))xﬁ + efk'u‘r((b))g ’ (312b)

where G® is constant in the body frame; the Levi-Civita symbol effﬁ equals +1 (—1)
when a, B,y is a cyclic (anti-cyclic) permutation of 1, 2,3 and equals zero otherwise.
This result agrees with the Brownian stress traditionally derived from the ‘effec-
tive thermodynamic force’ —V,kpT In P, with P the probability distribution along Q.
Combining the above steps, the stress is now evaluated in the body frame as

A§'§§f<8>
b)
SO = (S u p jb) AP z® + kyTG®

B) () A(S)
—AEx"Ag, (3.13)

R O) sx®
M(,; 1253 X o]
Uy u? b) sp®)

where the displacements are identical to those in Eq. (3.7), followed by the trans-
formation

1 b)
+—(up w2 jb)

$® =AY s AP (3.14)
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to the space frame.

The presence of particles in the fluid affects the stress field in the fluid and
thereby raises the viscosity of the pure fluid, 1o, to the effective viscosity of the
suspension, 7. A convenience way to express this impact is the Einstein coefficient
or intrinsic viscosity B, defined by

ns =no(1+B¢), (3.15)

where ¢ « 1 denotes the volume fraction of particles. For a dilute suspension of
rigid spherical colloids, Einstein derived the seminal result B = 5/2 [1, 2, 54]. By
using that the viscosity is related to the average shear stress, one readily shows
that

1 (s%)

™ Hov 265

(3.16)

where v, denotes the volume of the colloid and 2E5 = y for simple shear.

3.2.3. Spheroids

For a non-Brownian spheroid of aspect ratio p = L/D, where L is the length and
D the diameter, see Fig. 3.1, Jeffery analytically solved the orbit traced out by the
symmetry axes as a function of time [3],

tan g = C (cos? y + p? sin® )()1/2, (3.17a)

tan¢ = ptany, (3.17b)
o 14

X =kt= —p+(1/p)t' (3.17¢c)

where 6 denotes the angle of the symmetry axes relative to the vorticity direction
and ¢ the rotation angle around the vorticity axes, see Fig. 3.2, C is a constant
of the motion determining the orbit, and where the revolution period, T = 2n/k,
is equal for all orbits. A spheroid at € = o is forever tumbling in the 6 = /2
plane, its symmetry axis permanently perpendicular to the vorticity, with a variable
angular velocity ¢ that reaches minima (maxima) when the symmetry axis is parallel
(perpendicular) to the flow direction. A spheroid at ¢ = 0 performs a rotation
around its symmetry axis, which is forever oriented along the vorticity direction.
Intermediate values of C correspond to a ‘kayaking” motion of the symmetry axis,
see Fig. 3.2, with the spheroid simultaneously rotating around its symmetry axis
(not shown). Jeffery also derived expressions for the instantaneous orientation-
dependent Einstein coefficient of a spheroid, based on the excess work required in
shearing the particle-laden fluid [3]. For a particle tumbling at constant 6 = /2,

B(¢p) = 3% (Fsin®2¢ +G), (3.18)

where F and G are functions of the aspect ratio.
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Figure 3.1: Pictorial representations of a prolate spheroid (blue) of length L and diameter o, a hemi-
spherical cap (red) of radius R, thickness a and top angle «, and a helix (pink) of length L, diameter &
pitch d and thickness a.

In the presence of Brownian motion, the orbit parameter C is no longer con-
served. For weak Brownian noise, Pe —» o, Leal and Hinch [12, 13] assumed that
the motion can be described by augmenting Jeffery’s solution with a slow (com-
pared to the tumbling period) diffusion of the orbit parameter C. The stationary
orientation probability distribution then takes the form of a product,

P(C, 1) = P (O)P,(XIC), (3.19)

where P, (¥|C) denotes the conditional distribution of y, mapped to its modulo 7
in the [0,m) interval, as obtained from an unperturbed Jeffery orbit at the given
C. The stationary distribution across these orbits, P-(C), is solved from a Fokker-
Planck equation by demanding that the average flux crossing any closed Jeffery
orbit equals zero. In combination with Jeffery’s expression for the excess work, the
intrinsic viscosity is obtained as [13]

3.183-1.792p for p-0

B = 0315p (3.20)
T hep—15 ' PT®
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Figure 3.2: Orientation of the flow field relative to the coordinate system, with the flow velocity v,
the velocity gradient Vv, and the vorticity w parallel to the x-axis, the y-axis and the (negative) z-
axis, respectively. Also shown are the paths traced on the unit sphere (grey) by the symmetry axis
of a non-Brownian (blue, Pe = =) and a moderately Brownian (red, Pe = 3 - 10%) prolate p = 5
spheroid suspended in this shear flow, with the dots denoting orientations at regular intervals in time.
The symmetry axes moves slowest, and hence the impact of the Brownian motion is largest, when the
axes is nearly flow-aligned.

with the limiting behaviour [12],

3.183 for p-0

B = p (3.21)

0.315— for p — co.
Inp

Since the numerical values in the published equations do not match, we took the

liberty of selecting those values that agree best with the simulation results presented

below.

In the opposite limit of strong Brownian noise, Pe « 1, the orientation distribu-
tion in the angles 6 and ¢ was assumed by Burgers [7] to be nearly isotropic, with
the flow giving rise to a weak perturbation. Onsager [8], Simha [9], Kuhn and Kuhn
[10], Giesekus [11] and Hinch and Leal [12] derived identical limiting expressions
for the intrinsic viscosity,

32 1 p 0
[ -
15 p or b
B= (3.22)
4 p? "
—— oo
15Inp o P7%

To the best of our knowledge, there are no analytic solutions for intermediate Brow-
nian noise, i.e. Pe ~ 1.

3.3. Results

The equations of motion reviewed in the previous section now be applied to spheroids
in Section 3.2.3 and to two more complex bodies — a hemi-spherical cap and he-
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Figure 3.3: Probability distributions of the Jeffery orbit parameter ¢ for prolate ellipsoids, p = 5, in
simple shear flows at various Péclet numbers, see legend, and in a quiescent fluid (Pe = 0). The solid
line shows the theoretical prediction by Leal and Hinch.
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Figure 3.4: Distribution of the polar angles of spheroids in (a) a quiescent fluid, Pe = 0, in sheared
fluids at (b) Pe = 30 and (c) Pe = 3000, and (d) a spheroid in a Jeffery orbit at constant 6 = /2 in
a sheared fluid without thermal noise, Pe = co. The selected projection turns an isotropic distribution
into a uniform P(cos 6, ¢) = 1/(4m).

lices, see Fig. 3.1 —in Section 3.3.2. The units used in these simulation are ¢ for
the energy, o for distance and 7 for time. The imposed simple shear gives rise to
a flow field v, = yyé,, see Fig. 3.2, with a constant shear rate y = 0.01z71. The
solvent viscosity is fixed at ny = (6m) ter/a3. The Péclet number Pe is varied by
changing the thermal energy, kT, and hence the strength of the Brownian noise.

3.3.1. Spheroids

3.3.1.1. Distributions

A typical path traced by an prolate spheroid at low Pe is shown in Fig. 3.2, where
the kayaking motion of the particle is still recognizable while the superimposed
diffusion of the orbit parameter results in a non-closed path. Distributions of the
orbit parameter over long simulations are presented in Fig. 3.3 for a wide range of
Pe, defined as Pe = y/D, where the rotational diffusion coefficient D, is obtained as
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Figure 3.5: The location of the peaks in the orientation distribution, as determined by fitting with
Eq. (3.23), plotted against the Péclet number, for aspect ratios of 5 and 20. The line is a guide to the
eye.

kgT times the degenerate eigenvalue of u%. For large Pe the sampled distribution
closely approximates the theoretical expression for P.(C) derived by Leal and Hinch
[13]. Note, however, that the distribution at high Pe is very similar to that at Pe = 0,
as obtained for a spheroid in a quiescent fluid. The distribution of the polar angles
reveals a much more pronounced impact of flow on orientation, see Fig. 3.4. In
a quiescent fluid the spheroid samples an isotropic distribution, as expected for a
Brownian particle, while a clear preference for the two flow-aligned orientations,
0 =mn/2 and ¢ = {m/2,3m/2}, emerges with increasing Pe. The peaks shift and
sharpen with Pe, as confirmed by fitting the sampled distributions with bivariate
normal distributions,

P (cos®,¢) = a + bye~c108" 6-di($-$1)°

+ hye~c2cos’ B-dz(d=¢2)* (3.23)
The locations of the peaks are plotted in Fig. 3.5 as a function of the Péclet number,
for spheroids with aspect ratios of 5 and 20. At low Péclet the particles are seen
to align along the direction of the elongation component of the flow field, while
at high Péclet the particles align along the flow field itself, in accordance with the
predictions by Burgers [7]. The widths of the peaks, as represented by the standard
deviations o, = (2d;)~'/?, are indicated in the figure by error bars. One clearly
sees a narrowing of the distribution with Péclet. The obtained agreement between
the corresponding parameters of the two peaks (not shown) indicates that the
distributions are well-sampled.

The simulations also permit an assessment of the impact of the Brownian motion
on the tumbling period. Over a range of Péclet numbers, the increments and decre-
ments of the angle ¢ were added up to count the numbers of revolutions during the
simulations. For ease of interpretation, the angle 6 was constrained to the value
of /2. In Fig. 3.6 the average tumbling periods are compared against the periods
calculated by Jeffery’s theory, i.e. in the absence of thermal noise. For Pe = 1
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Figure 3.6: The ratio of the average tumbling period in the simulation to the theoretical tumbling period
in the absence of noise, plotted against the Péclet number, for a spheriod with aspect ratio p = 5.

an excellent agreement is observed, indicating that the systematic tumbling motion
dominates over the erratic Brownian motion. Lower Péclet numbers see a marked
deviation from the theoretical period, with a drop in the average period. Notably,
the Brownian motion consistently makes the particles perform a larger number of
rotations than expected, in stead of merely inducing fluctuations around the ex-
pected number of rotations. This suggests that the flow field biases the Brownian
motion, by acting as a ratchet that promotes rotation in the forward direction and
hinders rotation in the reverse direction.

3.3.1.2. Viscosity
The instantaneous Einstein coefficients in non-Brownian simulations are shown in
Fig. 3.7 to be in good agreement with Jeffery’s expression, Eq. (3.18). The shear
stress is at its lowest when the particle is slowly rotating through the flow aligned
state, resulting in the broad minima in the figure, and when the particle is directed
along the gradient direction and the rotational speed briefly matches the flow veloc-
ity, o = y, at the narrow minima. In these orientations, the value of B drops below
the constant value of 5/2 for a sphere. The short-lived intermediate orientations
are accompanied by a significant rise in the flow resistance, as here the orientation
and velocity of the particle hamper the flow of the fluid around the particle.
Simulation results for the intrinsic viscosities of spheroidal colloids, over a wide
range of aspect ratios and Péclet numbers, are collected in Figs 3.8. Both pro-
late and oblate colloids show pronounced shear-thinning, which increases with the
deviation from the spherical shape, p = 1. The decrease of intrinsic viscosity with in-
creasing Pe reflects the flow-induced alignment of the particles, see Fig. 3.4, which
results in a reduction of the hindrance to the flow by the colloids, see Fig. 3.7. With
increasing Péclet number, shear thinning starts at Pe ~ 1, irrespective of the as-
pect ratio, and finishes at Pe ~ p3 (prolate) or Pe ~ p~2 (oblate). The plateau
values at low Péclet, B,, are plotted in Fig. 3.9 (left) as function of the aspect ra-
tio. A clear minimum is reached for spherical colloids, with B, showing power law
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Figure 3.7: The instantaneous Einstein coefficient of a non-Brownian prolate spheroid (p = 5) tumbling
in a simple shear flow at constant & = /2, as functions of time (bottom axis) and rotation angle (top
axis, with ticks at intervals of A¢ = /6). The simulation results (markers) are in good agreement with
Jeffery’s theory, Egs. (3.17) and (3.18).

behaviour for both smaller and larger aspect ratios. The solid lines represent the
theoretical predictions of Eq. (3.22), which are in excellent agreement with the sim-
ulations for p < 107! and p > 10%. The plateau values of the intrinsic viscosities
at high Péclet, B.,, are plotted in Fig. 3.9 (right) as function of the aspect ratio.
For oblate spheroids a plateau value of about 2.5 is obtained from the fits to the
shear-thinning curves (see below), while the simulations at the highest Pe indicate
a slightly higher plateau value still below 3 — it should be noted that sampling config-
uration space, by diffusion of the orbit parameter ¢, becomes prohibitively slow for
extreme aspect ratios at high Péclet numbers. After a shallow minimum for spheres,
a power law growth of B, with p sets in. The solid lines in the figure represent the
theoretical predictions by Leal and Hinch [13], see Eq. (3.20), which are in good
agreement with the simulations for p < 107! and p > 10*. The dashed lines denote
their asymptotic predictions, Eqg. (3.21), which are a good approximation for oblate
spheroids at the smallest aspect ratios but for the prolate spheroid require aspect
ratios much larger than those considered here.
The intrinsic viscosities in Fig. 3.8 are fitted very well with a variation on the
Carreau model,
By — Beo

B(Pe) = —[1 N (aPe)‘B]y

+ Boo, (3.24)

drawn as solid lines in that figure. The two fit parameters for the plateau heights,
B, and B,,, were discussed before. The obtained values for the scaling factor «
and the powers B and y are presented in Fig. 3.10. For the former a V-shaped
profile is observed, with @« ~ —0.131logp for p < 1 and a = 0.2logp for p > 1,
where the tip of @ = 0 coincides with the absence of shear-thinning for a sphere.
While the three coefficients clearly vary with p, their variations are fairly minor. The
biggest fluctuations are seen for 1/10 < p < 10, where the transition between the
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Figure 3.8: The intrinsic viscosity of dilute suspensions of prolate (left) and oblate (right) spheroids of
various aspect ratios p, see legend, as functions of the Péclet number. The smooth lines are fits with
Eqg. (3.24), yielding the fit parameters plotted in Figs 3.9 and 3.10. Tiny markers for 0.25 < Pe < 60
represent numerical results by Scheraga [55].

two plateau values occurs within a relatively narrow range of Péclet numbers. The
insensitivity to p suggests that the phenomenological formula of Egs. (3.24), upon
inserting B, and B,, read off from Fig. 3.9, a evaluated by the above expression,
along with g = 1.5 and y = 0.3, provides a reasonable approximation of the intrinsic
viscosity for 100™1 < p < 100. The resulting curves agree with the simulation
results to within an order of magnitude in Pe. Of the four parameter variations
on Eq. (3.24), the Carreau model (f = 2) and hemi-Carreau model (8 = 1) both
performing considerably better than the Cross model (y = 1), especially in the sharp
corner at the onset of shear-thinning, with the Carreau and hemi-Carreau models
working best for prolate and oblate spheroids, respectively.

It is suggested in the literature that the intrinsic viscosity in the shear-thinning
region follows a power law, B « Pe % with § = 1/3[5, 12, 52, 56, 57]. Plots of the
local powers extrated from the simulations reveal that, following the onset of shear-
thinning, § rises within one to two orders in Pe to a maximum that increases with p,
barely reaching 0.3 for p = 1/100 and just passing 0.4 for p = 100, followed by a
more gradual steady decay back to zero over many orders in Pe (data not shown).
These peak closely match the products gy of the fitted powers in Eq. (3.24) at these
two extremes, see Fig. 3.10. Since this product has approximately leveled off for
p = 1/100 while it is slowly decaying for p = 100, the proposed § = 1/3 power law
might still appear at far more extreme aspect ratios.

Figure 3.8 also shows the early electronic calculation by Scheraga [55], based
on the theory by Saitd [58] combining a very slowly converging series of spherical
harmonics for the orientation distribution function for near-spheres, due to Peterlin
[59], with Jeffery’s solution of the hydrodynamics around a spheroid. The numerical
results, only available up to Pe = 60, are in excellent agreement with the intrinsic
viscosities from our simulations — for the dozen (Pe,p) combinations where both
values are available — and with the fitted functions to the later.
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Figure 3.9: The plateau value of the intrinsic viscosity B in the low (left) and high (right) Péclet limit, see
Figs 3.8 as a function of the aspect ratio p. The lines represent theoretical predictions, with Egs. (3.22)
and (3.21) as solid lines in the left and right plots, respectively, and Eq. (3.20) as dashed lines in the
right plot.

3.3.2. Complex particle shapes

The methodology applied above to spheroids can also be used to colloids of more
complex shapes. Where the generalized mobility matrix u of a sphere is block di-
agonal, a spheroid adds rotation-strain coupling, u¥ and u3, a hemi-spherical cap
adds translation-strain coupling, uf and uji, and a helix adds rotation-translation
coupling, u? and Uy, thus step by step filling in all nine blocks of the matrix. Ana-
lytic expressions for the generalized mobility matrices of spheres and spheroids can
be found in textbooks; those for the hemi-spherical cap and the helix were deter-
mined numerically by considering the bodies as rigid collections of nearly-touching
unit-radius spherical primary particles, with hydrodynamic interactions at the Rotne-
Prager-Yamakawa level [60, 61], using the publicly available 0seen11 code [42]
as detailed in [34] and outlined in Appendix 3.A.1. We verified that application of
this technique to hollow spheroidal-shaped aggregates yields good agreement with
the intrinsic viscosities discussed above.

3.3.2.1. Hemi-spherical cap

The hemi-spherical cap, see Fig. 3.1, was selected as the first body beyond the
spheroid because Dorrepaal [62] derived analytic expressions for its mobility in a
simple shear flow. He showed that, on top of the spheroid-like tumbling orbits, a
cap also exhibits translational orbits due to a lack of fore-aft symmetry. As shown
in our previous work [34], the employed simulation method accurately capture this
motion (in the absence of Brownian noise). The cap-like aggregate, with a top
angle a = m/2, was constructed by positioning 2051 primary particles on the cor-
nerpoints of a triangulated mesh generated with the DistMesh routine [63] in
matlab [64], resulting in a cap with radius R ~ 47.8¢. Simulation results are pre-
sented in Fig. 3.11. The Péclet number is again defined as Pe = y/D,. where the
rotational diffusion coefficient D, is obtained as kzT times the degenerate eigen-
value of u?, while the colloidal volume is taken as v, = %nR3. The hemi-spherical
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Figure 3.10: The scaling factor a (top-left) and the powers g (top-right) and y (bottom-left) in Eq. (3.24),
as obtained by fitting the intrinsic viscosities in Fig. 3.8, plotted as a function the aspect ratio, along with
the product By (bottom-right).

cap shows a weak shear-thinning because, at a length to width to height ratio of
about 2:2:1, this colloid is fairly close to spherical.

3.3.2.2. Helix
Helices were modeled as a rigid collection of primary particles distributed along a
spiral of diameter @ = 63.30, see Fig. 3.1. A short helix of two revolutions comprised
201 particles, amounting to a length of L = 41.80, a long helix of 7.5 revolutions
and 751 particles reached a length of L = 158.3. For both helices, left and right-
handed versions were created. The simulation results are presented in Fig. 3.11.
The Péclet number is again defined as Pe = y /D, where the rotational diffusion
coefficient D,. is now obtained as kzT times the eigenvalue of u% along the helix’s
long axis, and the volume as v, = %nzzL. Since all four helices share aspect ratios
p = L /@ fairly close to unity, they show modest shear thinning. The low values of
the Einstein coefficients, relative to spheroids of similar aspect ratios, indicates that
the impact of the helix on the surrounding and enclosed fluid is less than that of
similarly-sized spheroids. The handedness of the helix appears to play no role, as
evidenced from the near coalescence of the markers in Fig. 3.11.

The handedness does affect the motion of the helices, however, thereby provid-
ing a means of separation of chircal objects [65-67]. The motion of the mobility
center of our long helix was studied in a simple shear flow without thermal noise,
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Figure 3.11: The Einstein coefficients of a hemi-spherical cap (circles), of two short helices (triangles
pointing left and right for left and right-handedness, respectively) and of two long helices (triangles
pointing up and down for left and right-handedness, respectively) as functions of the Péclet number.

for helices with their axis initially oriented parallel to the velocity, velocity-gradient
and vorticity directions. After a transient time a periodic motion set in, with the
axis typically performing a slight wobble around its original orientation; the curves
in Fig. 3.12 are corrected to (y) = 0, to suppress the motion along the flow direc-
tion. For helices initially oriented with their axes along the vorticity direction, we
observe — as expected — drifts in the positive and negative vorticity direction (i.e.
negative and positive z direction) for the right and left-handed helix, respectively.
The drift velocity, however, is about two orders of magnitude smaller than the drift
velocity for helices oriented in the flow plane and is therefore not discernible in
Fig. 3.12 (bottom). The drift velocities are not constant; the variation is caused
by the wobble of the axis for helices aligned along the vorticity direction and the
tumbling motion of the axis for the helices aligned to the flow plane. Curiously, the
orientations parallel and perpendicular to the vorticity direction result in opposite
signs of the drift velocity, with the right-handed helix moving in the positive vorticity
direction when oriented parallel to the vorticity, but in in the negative vorticity direc-
tion when oriented perpendicular to the vorticity. Simultaneously to this drift, the
helix is periodically moving up and down along the velocity gradient, see Fig. 3.12
(top-right), and back and forth along the velocity direction, see Fig. 3.12 (top-left).

Whereas the axis of the long helix remains oriented approximately parallel to its
initial orientation in a shear flow without thermal noise, the axis of the short helix
fluctuates considerably more. Consequently, the long-term drift velocity along the
vorticity direction gradually evolves, and may even change sign, as illustrated by
two trajectories in Fig. 3.13. The motion periodically oscillates on the short time
scale, as it also did for the long helix.

The dependence of the helix’s drift on its initial orientation vanishes in the pres-
ence of Brownian noise. The averaged motion of the long helix along the vorticity
direction is shown in Fig. 3.14, for a Péclet number near the start of the high Pe
plateau; this value was selected as a computational feasible intermediate between a
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Figure 3.12: Motion of the hydrodynamic mobility center of the long helix under shear flow, in the
absence of Brownian noise, along the flow velocity (x, top-left), velocity gradient (y top-right) and
vorticity direction (w = —z, bottom), for right-handed (solid lines) and left-handed (dashed lines, only
drawn when different from right-handed) helices with their axis initially aligned along the flow (green),
gradient (red) or vorticity direction (blue).

shear-dominated motion along the vorticity direction and a diffusion-dominated mo-
tion along the gradient direction. The mean square displacement along y is linear,
as is characteristic for diffusion. The diffusion coefficient closely matches (within
5%) the body-based translational mobilities u% of the helix for motion perpendicular
to the axis, as is to be expected for a helix that is predominantly flow-aligned. The
mean square displacement along z approaches a quadratic curve, suggesting a sys-
tematic drift along that direction. The mean linear displacement along z indicates a
systematic drift of the right-handed helix in the positive z direction, i.e. opposite to
the vorticity direction, in agreement with the observations in Fig. 3.12 that a helix
moving in the positive vorticity direction drifts far slower than a helix moving in the
negative vorticity direction.

3.4. Summary and conclusions

A recently proposed efficient Brownian Dynamics scheme, utilizing quaternions for
the rotational dynamics and taking advantage of the fixed body-based mobility ma-
trix, has been used to simulate the dynamics of arbitrarily shaped colloids subjected
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Figure 3.13: Motion of the hydrodynamic mobility center of the short helix under shear flow, in the
absence of Brownian noise, along the vorticity direction (w = —z), for left-handed helices with their axis
initially aligned along the flow velocity (green), velocity gradient (blue) or vorticity direction (red). The
inset shows an enlargement of the initial dynamics.
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Figure 3.14: The mean square displacement (MSD, left) along the velocity-gradient y and vorticity z
direction and the mean linear displacement along z (right), for the mobility center of the long right-
handed helix in a simple shear flow, subject to relatively weak Brownian noise (Pe ~ 100).

simultaneously to simple shear and Brownian motion. The calculated intrinsic vis-
cosities for spheroids are in excellent agreement with theoretical predictions in the
limits of high and low Péclet values, providing support for the validity of both the-
ory and the employed simulation methodology. Intrinsic viscosities at intermediate
Péclet values are well fitted with a modified Carreau model, providing a benchmark
for future theories and experiments.

The motion of helices under shear flow was briefly explored. Counter intuitively,
the drift along the vorticity direction is found to be dominated by a sideways motion
of the helix, with the axis in the plane of the flow field, rather then by the screw-like
motion with the axis directed along the vorticity direction. This may help explain the
contradictory results reported in the experimental and simulation literature[68—70].
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3.A. Appendices:

3.A.1. Mobility matrix

This appendix summarizes the derivation of the generalized mobility matrix of a rigid
cluster of N primary identically sized spherical particles, as described in more detail
in our previous work [1]. In the mobility picture, the hydrodynamic interactions
couple every particle i with every particle j,

=v,1 =v,0 = v, _

Vv N\ He R B O
O R N (3.25)

—E, =i -Ei :Ei zEl S]-

By Hej Hsj

Expressions for the various pair mobility matrices can be found in the literature [2—
5]. The combination of variously sized matrices excludes the use of conventional
rank two matrix manipulations, hence it proves convenient to reduce the strain
and stress matrices to vectors. In the current case both the strain and the stress
are symmetric and traceless, and hence can be reducud to five elements. The
conversion of the strain is realized by rewriting the matrix as linear combinations of

five (3 x 3) ‘basis matrices’ &,

= =E
=) &fex (3.26a)
2

&% = &5 : Eq, (3.26b)
where the five parameters £ combine into the vector ., and the second line, with
e : éf = 8% and & the Kronecker-delta, provides the inverse transformation. A
likewise conversion is used for the stress matrices S, yielding the vectors §;. The
basis matrices need not be orthogonal, but it is recommendable to select é,f = &g
in order to retain a symmetric grand mobility matrix. After re-expressing the grand

mobility in terms of the strain and stress vectors, it reduces to a regular rank-two
matrix and can be inverted by standard algorithms to yield

fii fii fii
f; N 8y Sw Sej Vi — Ve (X;)
L WL L
o | = ot g | emee ) (3.27)
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Si j=1 fu,j fw_j fg,j Eoo

where the bars have been omitted. In the vector on the r.h.s., the velocities of and
at the particles are related to the velocities of and at the cluster’s center via the
rigidity of the cluster and the linearity of the flow,

Vi=V+wXrj, (3.28a)
W= w, (3.28b)
Voo (Xj) = Voo (X) + E®Tj + W X T, (3.28¢)
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where r; = x; —x. In the vector on the l.h.s., the forces, torques and stresses on
the particles can be summed into the total force, torque and stress on the cluster,

-
Il

f;, (3.29)

(Ti +r; X fl) , (3-29b)

I
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By combining the above steps [1] one arrives at the grand resistance matrix of the
cluster,

f g & & V= Ve (%)
T = & & & || o-ws | (3.30)
S & & & —€w

A partial inversion of the above expression, bringing the velocities to the left and
the forces to the right, followed by a conversion back to stress and strain matrices,
yields Eqg. (3.2). Note that this partial inversion implies

= 85(85)7, (3.31)
as used in Eqg. (3.10).

3.A.2. Quaternions

Unit quaternions, i.e. a four-vector q = (q¢,91,92,93) of unit length ¢ = |q| = 1,
provide a convenient way to parameterize a rotation matrix in three dimensional
space. The rotation matrix for the conversion from body-based to space-based
coordinates reads as

© a5 +ai—a3—a3 24192 — 29095 24195 +2q0q
Ay =| 2a192+2q095 q5—ai+d3—ai 24293 —2q0q1 |, (3.32)
29193 — 29092 24293 +2qoq1 46 —4i — 45 + 43
while the inverse conversion A((Z; is realized by the transposed of A((i)). A conversion
matrix between angular velocities in the space frame and quaternion velocities is

obtained by evaluating w® x x® = AG) A®)x), which yields

Y 1 —q1 —q92 —q3
j q G0 93 —q2
BZ. = - , 3.33
® " dw® " 2¢*| —95 q 41 (3.33)

q2 —q1 qo
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The conversion from an angular velocity in the body frame to a quaternion velocity
can be derived likewise, yielding

Y L —q1 —q92 —qs3

j q qo —q3 q

Bl = —— = _— , 3.34

® 7 gw® ~ 2¢* 3 9o —q1 ( )
—q2 q1 qo

i 49 _gd A
and can also be obtained from B,y = B(Ap).
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Fluctuating stresslets and
the viscosity of colloidal
suspensions

Theory and simulation of Brownian colloids suspended in an implicit solvent,
with the hydrodynamics of the fluid accounted for by effective interactions be-
tween the colloids, are shown to yield a marked and hitherto unobserved dis-
crepancy between the viscosity calculated from the average shear stress un-
der an imposed shear rate in the Stokesian regime and the viscosity extracted
by the Green-Kubo formalism from the auto-correlations of thermal stress
fluctuations in quiescent equilibrium. We show that agreement between both
methods is recovered by accounting for the fluctuating Brownian stresses on
the colloids, complementing and related to the traditional fluctuating Brown-
ian forces and torques through an extended fluctuation-dissipation theorem
based on the hydrodynamic grand resistance matrix. Time-averaging of the
fluctuating terms gives rise to novel non-fluctuating stresslets. Brownian Dy-
namics simulations of spheroidal particles illustrate the necessity of these
Sfluctuating and non-fluctuating contributions to obtaining consistent viscosi-
ties.

4.1. Introduction

Einstein derived in his thesis that adding rigid spherical colloids to a Newtonian fluid
of viscosity 7, creates a suspension of effective viscosity

ns =mo (1+B¢), (4.1)

with Einstein coefficient B = 5/2, for low colloidal volume fractions ¢ [1, 2]. This
celebrated result, based on the analytic solution of Stokesian straining flow around

73
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a spherical particle [3, 4], is readily reproduced by Brownian Dynamics (BD) simu-
lations of an isolated spherical colloid suspended in a fluid subject to a linear shear
flow. Viscosities can also be determined from quiescent fluids, using the Green-
Kubo formalism of integrating the auto-correlations of the spontaneous stress fluc-
tuations [5]. Rather surprisingly, both the aforementioned theory and BD simu-
lations of an isolated spherical particle then yield B = 0, as will be demonstrated
below. One might argue that this difference is an artefact of studying a one-particle
system, which could be the reason that it appears not to have been discussed be-
fore in the literature, but we are of the opinion that it reveals a deficiency in the
current understanding of stress calculations of suspensions of Brownian particles.
We propose a solution, the inclusion of fluctuating Brownian stresses, that recovers
agreement between equilibrium and non-equilibrium evaluations of the Einstein co-
efficient of a spherical particle, at B = 5/2. By expressing the stochastic equations
for the motion and stress in the Ité form, two novel non-vanishing stress contri-
butions emerge from correlations between the various fluctuations. These terms
affect the Einstein coefficients of isolated non-spherical particles, both in quiescent
fluids and in flowing fluids. The novel terms also contribute to the viscosities of
non-dilute solutions, including suspensions of spherical particles [6, 7].

4.2. Brownian motion

Consider a non-Brownian particle with generalized velocity U = (v, w), where v
and w denote linear and angular velocity, respectively, in an incompressible fluid
subject to a linear flow field characterized by the local generalized velocity u,, and
the strain rate tensor E,,, i.e. the traceless symmetric (3 x 3) velocity gradient
matrix. In the limit of Stokesian flow, the generalized hydrodynamic force Fy, a
vector comprizing three force components and three torque components, and the
deviatoric hydrodynamic stress Sy, a traceless symmetric (3 x 3) matrix, acting on
the particle are given by [3, 4, 8]

FH _ f{] fg U- U
(sH )‘ (fﬁ &)\ -k, ) (4.2)
where ¢ is the grand resistance matrix [3, 4], whose four parts are labeled with a
lower index specifying the multiplication partner and an upper index highlighting
the ensuing result. Upon neglecting inertial effects, the equation of motion for a
colloid experiencing also a generalized potential-derived force F4 and a fluctuating

Brownian force 6F is solved from a balance of forces, Fy + Fy + 6F = 0. A partial
inversion of the above equation then gives [3, 4, 8]

U U
(2)-(5 5= (%)

where u is the generalized mobility matrix, again expressed as a combination of four
labeled parts, and S = —Sy denotes the stress exerted on the fluid by the moving
colloid. It is important to realize that the stress S is not the result of a balance
of stresses, but a direct consequence of the velocity difference between colloid
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and fluid. Should one desire so, for instance when studying easily deformable
particles, a balance must be constructed between the total stress acting on the
colloid — due to the hydrodynamic stress Sy, a potential-derived S and Brownian
contributions (as discussed below) — and the internal elastic stress of the particle
S;; after solving this balance for the unknown S;, the combination thereof with
the elasticity tensor of the colloid yields its deformation. We will here consider rigid
particles instead, and note for completeness that their stress balances are closed by
unspecified Lagrange multipliers for S; at vanishing deformation. The random force
perturbations §F have zero mean, are uncorrelated in time (Markovian) and obey
the classical fluctuation-dissipation theorem derived from the symmetric positive-
definite (6 x 6) force-velocity segment of the resistance matrix [9, 10],

(6F(t) ® SF(t")) = 2kgTELS(t —t), (4.4)

where t and t’ denote times, kg Boltzmann's constant, T the temperature and §
the Dirac delta function. The textbook proof of the fluctuation-dissipation theorem
is its ability, in combination with a second-order Langevin equation of motion, to
reproduce the Maxwell-Boltzmann equilibrium velocity distribution [5, 11]. Follow-
ing the introduction of fluctuating hydrodynamics by Landau and Lifshitz [12, 13],
several authors have shown that the above theorem for a colloid also follows from
the fluctuation-dissipation theorem of the fluid [14—19]. Note that the force pertur-
bations affect the velocity difference between colloid and fluid and thereby give rise
to an indirect Brownian contribution to the stress [20], §Ssr = w3 6F(t), as follows
from Eq. (4.3).

For a free spherical particle of volume v in a linear shear flow, the above expres-
sions give rise to the average stress (S) = —u3E,,, Where the minus sign indicates
resistance to the flow. Inserting the theoretical expression for 3 [3, 4] then yields
B = 5/2, as expected. But applying the Green-Kubo formalism to the spontaneous
stress fluctuations AS(t) = S(t) — (S) in a quiescent fluid [5, 21],

1

yields B = 0 for a spherical particle, as follows from observing that under these
conditions AS(t) = 8Ssp(t) = 0 since uy = 0 for a spherical particle. It is this
disconcerting discrepancy between the B-s that motivates the current research.

4.3. Fluctuating Brownian stress

A suspended colloidal particle experiences a myriad of collisions due to the thermal
motions of the surrounding solvent molecules. The sum over all collisions over a
short time interval — sufficiently short to ignore the motion of the colloid, yet en-
compassing a large number of molecular collisions — gives rise to the fluctuating
Brownian force §F(t) discussed above. Note that this generalized force comprises
a force §f(t) and a torque §7(t), which represent distinct ‘projections’ of the same
molecular noise integrated over the surface of the colloid [4, 8, 22]. Their com-
mon origin implies that the force and torque are correlated, as reflected by the
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fluctuation-dissipation theorem in Eq. (4.4). It is only natural to assume that the
collisions also give rise to a fluctuating Brownian stress on the particle, 68, i.e. a
stress distribution over the surface that would cause a soft particle to deform, which
constitutes a third projection of the same molecular noise. This direct fluctuating
Brownian stress &S is not to be confused with §Ssg, the latter being an indirect fluc-
tuating stress resulting from a velocity difference between colloid and fluid caused
by the first and second projections of the thermal noise. We next need to determine
the strength of the fluctuating Brownian stress &S, which in view of the preceding
discussion does not follow from a stress balance on the particle. To conform with
common practice in the field [3, 4], our interest here will be on the deviatoric parts
of the stresses.

For any (non-Brownian) colloid experiencing a flow field, the hydrodynamic force
acting on the particle is obtained as the zeroth moment of the traction vector integral
over the surface while the torque and the stress or ‘stresslet’ on the particle are
given by (a permutation of) the anti-symmetric and the symmetric first moments
of the traction vector integral over the surface, respectively [4, 8, 22]. If this flow
field is replaced by the fluctuating hydrodynamics of the fluid, the strengths of
the resulting fluctuating Brownian force §f and torque 87, as well as their cross-
correlations, are given by the fluctuation dissipation theorem of Eq. (4.4). We
now hypothesize that the fluctuations of §F and &S, given their common origin as
projections of fluctuating hydrodynamics, are related by a generalized fluctuation-
dissipation theorem based on the grand resistance matrix,

! F F
<( 228 >®< ?283 >> = 2’<BT< ;s‘j % )6(t—t’). (4.6)

Whereas the force correlations in this expression are well established [14-19], the
stress correlations and the force-stress cross-correlations have attracted little atten-
tion. A recent study supports the validity of our assumption for spherical particles,
however without providing an explicit expression [19]. Introducing the fluctuating
stresslet into Eq. (4.3) gives the extended expression for the motion and the stress,

U U
(3)=00 (e (%)

Itis evident that this expression produces identical translational and rotational Brow-
nian motion to the classical expression, even though the fluctuating force is now
correlated to the fluctuating stresslet. With the inclusion of the fluctuating stresslet,
the analytic calculations of the viscosity for an isolated force-free rigid spherical par-
ticle under equilibrium and non-equilibrium conditions are now in agreement, both
yielding B = 5/2 (and this result is unaffected by the full derivation below).

The interpretation of the stochastic differential equation of motion, Eq. (4.7),
requires further attention to resolve an ambiguity: the impact of the Brownian force,
as determined by the resistance matrix in the fluctuation-dissipation theorem and
the mobility matrix in the equation of motion, varies with the coordinates Q of
the particle, while the coordinates change due to this Brownian force. In the It0
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interpretation, i.e. using only parameter values at time t just before the impact of
the Brownian force, the integration of the equation of motion over a time step At
results in coordinate increments [23]

AQ(t) = Q(t +At) —Q(t)
=~V (® — In g/*)At — pYE..At
+ unAt + kpTV, - pf At
+uf [ph0Y (t) + pFOF (1)] VAL,

(4.8)

where g, denotes the metric of the coordinate space, p is the symmetric tensor
solving p? = 2mkzTE, and OY(t) and ©%(t) are random vectors with zero mean,
unit variance and devoid of correlations, containing six and five unique elements,
respectively. The divergence term brings into account the coordinate-dependence
of the hydrodynamic matrices [9, 11, 24, 25]; these additional displacements are
not evident from Eq. (4.7) but are crucial to obtaining the equilibrium Boltzmann
distribution and, as will be shown below, also contribute to the stress. An alternative
interpretation, due to Einstein, gave rise to the name ‘thermodynamic force’ [4, 26,
271].

On a technical note, since in the current context the stress and strain rate tensors
are symmetric and traceless (3 x 3) matrices, it proves convenient to replace both
by five-vectors so the usual mathematical and numerical techniques can be applied
to the resulting symmetric (11 x 11) hydrodynamic matrices [3, 28]. Because the
hydrodynamic matrices and the conservative potential are typically expressed in
terms of Cartesian velocities and Cartesian forces, and in angular velocities and
torques around Cartesian axes, we furthermore take the freedom of evaluating
the r.h.s. of Egs. (4.7) and (4.8) in Cartesian coordinates, henceforth collectively
denoted as X. Since the Cartesian angular velocities are not time derivatives of
angular coordinates, the rotation angle increments still require transformation to
proper generalized coordinates Q describing the orientation of the colloid in terms
of e.g. Euler angles or quaternions, or one may directly update the rotation matrix
between the colloid-based axes frame and the space-based axes frame. The latter
two options have the advantage that they do not require corrections resulting from
the metric. [28-30].

Continuing in the It6 representation, we find by some mathematical manipula-
tions of Egs. (4.6) through Eqg. (4.8) that the average stress exerted by the colloid
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Figure 4.1: Einstein viscosity coefficients B for isolated rigid spheroidal particles of various aspect
ratio p, as deduced from the average stress in simulations at low shear rate (blue circles) and the stress
fluctuations at zero shear (red squares). Simulations based on the classical stress calculation of Eq. (4.3)
show a marked difference between the two approaches (left), while the revisions proposed in Eq. (4.7)
recover agreement (right). The smooth lines are guides to the eye.

on the fluid during a time step At reads as [23]

t+At

) 1
S(t) = EJ S(tHdt'
t
= piFo — u3Eo + Vy - i}
+[(wpd) ol + (VwpE) PE] : ¥ (4.9)
1
v (A LM ORUAHO)
+p50" (0) + pEO° (1)},

The first and second term on the r.h.s. are the two deterministic contributions to
Eqg. (4.7). The third term, usually derived along another route, results here by
combining a term related to the divergence in Eq. (4.8) with a term resulting from
correlations between 6F and 6Ssg, and is referred to in the literature as ‘Brownian
stress’ or ‘diffusion stress’ [7, 20, 31, 32]. The fluctuating terms, collected between
curly brackets in the last term to Eq. (4.9), have zero average and may therefore
be ignored when calculating the time-averaged stress of a system under shear
flow, but their correlations are crucial when applying the Green-Kubo formalism
to a quiescent system. In both non-equilibrium and equilibrium cases, the time-
averaged correlations of the fluctuating forces and the fluctuating stresslets give
rise to two additional non-fluctuating stress contributions, the two Vyp$ terms in
Eg. (4.9), which, to the best of our knowledge, are derived and reported here for
the first time.

4.4. Numerical example

As an illustration of the revised stress calculation, we present numerical simulations
of isolated spheroidal particles. For a rigid particle, the hydrodynamic matrices are
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constant in the body frame and rotate with the body in the space frame, which
permits efficient calculations of the motion and the stress without demanding re-
evaluation of the hydrodynamics [28-30]. With A denoting the body-to-space ro-
tation matrix, the three derivative-containing terms in Eq. (4.9) turn out to be of
the form AGAT, where G is a body-dependent constant (3 x 3) matrix and the su-
perscript T indicates transposition. Simulations of a spherical particle confirm the
theoretical results mentioned above, with the classical approach of Eq. (4.3) yield-
ing Einstein coefficients of 5/2 under shear and zero by the Green-Kubo method,
while the amendments proposed here yield B = 5/2 for both non-equilibrium and
equilibrium simulations. Numerical results for the Einstein coefficients of spheroidal
particles are presented in Fig. 4.1 as function of the aspect ratio p = L/D between
the length L along the symmetry axis and the diameter D in the perpendicular direc-
tion, ranging from disk-like oblate to needle-like prolate. For simulations based on
Eqg. (4.3), applying the Green-Kubo formalism to quiescent systems yields Einstein
coefficients between four (p « 1) and eight (p > 1) times higher than the values
obtained from the average stress in sheared systems, with an intermediate dip of
B approaching zero for near-spherical particles. Simulations based on Eq. (4.7),
however, show consistency between equilibrium and non-equilibrium viscosity eval-
uations, see Fig. 4.1. The biggest difference between the classical and the proposed
methods is in the Einstein coefficients deduced from the thermal stress fluctuations
in quiescent fluids, and mainly results from the inclusion of the Brownian fluctu-
ating stress in Eq. (4.9). The two novel Vyp$ terms in said expression introduce
a relatively modest increase of the Einstein coefficient obtained under shear, by
about 1% at p = 20 and 5% at p = 100. The impact of these terms is larger for
less symmetric bodies, amounting to about +10% for a semi-disk with diameter-
to-thickness ratio of 40 and about —8% for a helix inscribing 7.5 revolutions in a
cylinder with a length-to-diameter ratio of five.

4.5. Conclusions

The perpetual thermal motion of fluids contributes to the viscosity of colloidal sus-
pensions, both by causing the Brownian motion of the colloids and by inducing
flucuating stresses on the colloids. Inclusions of these Brownian stresses, absent in
current theoretical and numerical implicit solvent methods for suspensions, is there-
fore necessary to obtain the correct viscosity. Our theoretical analysis of dilute sus-
pensions of spherical particles and numerical simulations of spheroids illustrate the
validity of the amendments proposed in the Brownian motion and stress calculation
of EqQ. (4.7) and the extended fluctuation-dissipation theorem of Eq. (4.6). Correla-
tions between the various fluctuating terms then give rise to novel non-fluctuating
contributions in the It6 representation of the stress, see Eq. (4.9). A more detailed
exposition of the derivations outlined above, along with additional numerical results
on colloids of various shapes, will be presented elsewhere [23]. The expression for
the time-averaged stresslet on a colloid is readily extended to a collection of N par-
ticles, by enlarging the mobility and resistance matrices to (11N x 11N) matrices
including hydrodynamic interactions between all colloids; the total deviatoric stress
in the system is then obtained by adding up the stresslets of the individual particles,
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the virial term due to generalized conservative forces on the colloids, and the shear
resistance of the suspending fluid.
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Fluctuating Brownian
stress and the colloidal
viscosities

The fluctuating Brownian stress —i.e. random Markovian contributions to the
stress tensors of suspended colloidal particles, related to the random Marko-
vian motions of these particles via a generalized fluctuation-dissipation theo-
rem centering on the grand resistance matrix — is shown to affect the average
stress, and hence the viscosity, of colloidal suspensions. Inclusion of the fluc-
tuating Brownian stress is essential to determining the dynamic viscosity of
a quiescent suspension by means of the Green-Kubo formalism, and cross-
correlations between the Brownian terms are shown to give rise to a novel
stress contribution in suspensions under shear. Brownian Dynamics simula-
tions of spheroidal colloids are presented to show that the proposed revisions
recover excellent agreement between equilibrium and non-equilibrium evalu-
ations of the linear rheology.

5.1. Introduction
The effective viscosity n, of a dilute suspension of rigid spherical colloidal particles,
in a Newtonian fluid of viscosity n,, rises linearly with the colloidal volume fraction
¢,

ns =m0 (1+ B¢), (5.1)

as was famously shown by Einstein [1]. The proportionality constant, [2] B = 5/2,
originates in the stress-strain coupling of Stokes flow around a spherical particle. In
the century since, many researchers have explored the extension of viscosity cal-
culations to higher volume fractions and non-spherical particles. In non-dilute sus-
pensions of rigid spherical colloids, hydrodynamic interactions between the particles
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start to play a role. More subtle, the natural tendency of Brownian motion to homog-
enize suspensions gives rise to a ‘thermodynamic force’ that results in a ‘Brownian
stress’ in the suspension, as well as indirectly affecting the stress by its influence on
the particle distribution [3-5]. Continuing the Taylor expansion in volume fraction
started by Einstein, Batchelor and Green [6] derived the prefactor to the quadratic
term as 7.6. Brownian Dynamics (BD) simulations of suspensions of rigid spheri-
cal particles, based on the first order Langevin equation of motion, have evolved
into Stokesian Dynamics (SD), which combines far-field and near-field expressions
for the hydrodynamic interactions between Brownian particles with coupling to an
imposed flow field to evaluate the dynamics and viscosities of suspensions [7, 8].

For isolated rigid non-spherical particles, methods have been developed to de-
termine their grand mobility and grand resistance matrices [9, 10]. Since these
matrices are constant in the body frame, the motion of these particles in the pres-
ence of Brownian perturbations, flow and external force fields can be simulated effi-
ciently when using quaternions or the rotation matrix as the rotational coordinates
[10, 11]. An analytic expression has been obtained for the rotational mean square
displacement of isolated arbitrarily shaped rigid particles [12], which permitted the
determination of the storage and loss moduli of dilute solutions [13]. In the latter,
the Brownian stress resurfaces as a self-interaction term which is more intuitively in-
terpreted as a hydrodynamic effect originating in the orientation-dependence of the
stress-torque relation (see below) [14]. For non-spherical colloids, the orientation-
averaged Einstein coefficient B tends to exceed that of spherical colloids[15]. An
ellipsoid with a rotational symmetry axis and relatively simple shape facilitated an-
alytical evaluation of their motion under shear [16] and their intrinsic viscosities at
low and high shear rates [15, 17-19]. Vast amount of reviews have been made on
this topic with notable ones like Brenner[20], Guazzelli and Morris[21]. In particular
the work on Intrinsic viscosity for arbitrary Brownian particles by Cichocki et al.[22]
is relevant where they evaluate frequency dependent viscosities in Brownian limit.
Besides the above theories and simulation techniques focusing on the colloids, with
the fluid ‘absorbed’ in the equations motion of the colloids, the exponential rise in
computational power over the last decades has made possible the simulation of
colloids in an explicit solvent. By running LB simulations on a supercomputer, it
is possible to study the flow of hundreds of deformable red blood cells through a
vessel[23].

The theory of stresses in dilute suspensions of rigid colloidal particles subject to
Brownian motion, and the Brownian Dynamics method to simulate colloidal motion,
are well established. Yet they contain a peculiar asymmetry in that the multitude
of random kicks against the colloid’s surface, due to the thermal fluctuations of the
solvent molecules, are assumed to induce random displacements of the colloids
— the celebrated Brownian motion — but not to induce random stresses on these col-
loids. The tacit assumption appears to be that the latter average out, and therefore
do not contribute to the stress, and hence the viscosity, of the suspension. Since
theory and simulations already account for a ‘Brownian stress,” which originates in
the Brownian displacements of the particles, we will refer to the direct noise on
the stress as the fluctuating Brownian stress. It will be shown that this fluctuating
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Brownian stress does average out, while the correlations between this stress and
the Brownian displacements give rise to a non-vanishing stress contribution. These
correlations result from the fluctuation-dissipation theorem, which will be expressed
here in terms of the (11 x 11) grand resistance matrix rather than the common for-
mulation using the (6 x 6) mobility matrix. While both approaches yield comparable
dynamics, reproducing identical translation and rotation diffusion, only the former
recovers agreement between viscosities extracted under shear and those obtained
from quiescent suspensions by means of the Green-Kubo formalism.

The structure of this paper is as follows: In Sections 5.2.1, 5.2.2 we will in-
troduce the new extended fluctuation-dissipation theorem. Followed by a detailed
derivation of the fluctuating Brownian stress in Sections 5.2.3, 5.2.4 and a new
stress term due to rotational derivative of the mobility tensors in Section 5.2.5. We
briefly outline the analysis methods to be employed for our simulation results in
Section 5.2.6. In Section 5.3 we present numerical evaluated complex Einstein vis-
cosities for a variety of particle shapes like ellipsoid, hemi-spherical cap, paddle and
compare them against existing analytical expressions.

5.2. Theory

5.2.1. Conventional Brownian Dynamics
Consider a non-Brownian particle suspended in a homogeneous fluid subject to a
linear flow field, B

Voo (F) = VO + EooF + @y, X T, (5.2)

where F denotes position, v%, the velocity at the origin of coordinate space, E., the
symmetric strain rate tensor, @., the angular velocity, and where the bars denote
the ranks of the various tensors. Combining the position and orientation of the
particle in the generalized coordinates Q, with velocities U, and likewise collecting
the flow velocities V., and @., in @, the generalized hydrodynamic force Fy and
stress Sy; exerted by the fluid on the slowly moving particle take the form

_ E’F EF _

Py U- .,

(&)--[% ¥ )("2%) (53)
Sv Sk

where & is the grand resistance matrix. In the limit of negligible inertial effects, the
velocity of a particle experiencing a conservative generalized force F,, derived from
a potential @, is solved from the force balance

FH + FCD = 0, (5.4)
and its deformation D is obtained from the stress balance

D, (5.5)

W
L
O

H+S¢ =

where §¢ denotes the stress induced by the potential and C the particle’s (orientation-
dependend) elasticity tensor. For rigid particles, as considered here, the product on
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the r.h.s. is finite at vanishing deformation and the deformation stress is solved by
means of Lagrange multipliers. The velocity of the particle and the stress it induces
on the solvent, i.e. § = —Sy, follow by combining the three above equations into

(9)-(5 5 ) )e() e
i, iy )\ 7Ee 0

where u is the generalized mobility matrix.

The resistance and mobility matrices combine tensors of different ranks, which
prohibits the use of standard mathematical manipulations. It therefore proves con-
venient to rewrite the information contained in the stress and strain matrices into
vector form, yielding § and &, respectively. Since in the current context both matri-
ces are symmetric and traceless, the corresponding vectors reduce to five elements
each. The transformation rules are detailed in Appendix 5.A.1. Rewriting the resis-
tance and mobility matrices accordingly yields two (11 x 11) matrices, amenable to
standard manipulations. Henceforth the bars will be omitted for notational conve-
nience.

For a particle subject to Brownian motion, the force exerted by the fluid on the
particle is supplemented by a stochastic Brownian force contribution §F to a total of
Fy; + 8F. The random forces have zero mean, are uncorrelated in time (Markovian)
and obey a fluctuation-dissipation theorem derived from the symmetric positive-
definite (6 x 6) force-velocity segment of the resistance matrix,

i i

(5F(t) ® SF(t")) = 2kyTEES(t — t"), (5.7)

where the pointed brackets denote an average, t and t' are two times, kg the
Boltzmann constant, T the absolute temperature and & the Dirac delta function.
Using p¥ = (&5)~1, see Eq. (5.50), one readily shows that including the Brownian
force in the equation of motion is equivalent to adding Brownian velocities §U with
zero mean and distributed following

(SU) ® 8U(t")) = 2kzTuYs(t — t"), (5.8)

with correlations derived from the symmetric positive-definite (6 x 6) velocity-force
segment of the mobility matrix. Because these velocity fluctuations affect the ve-
locity difference between colloid and fluid, they give rise to an additional stress on
the particle,

8Ssr(t) = —§38U(t) = —ppSF(D), (5.9)

which evidently fluctuates around zero. For clarity of presentation, one displace-
ment term and one stress term — both resulting from correlations between the
fluctuating contributions — have been left out thus far, but they will be included
below; at this point it suffices to note that both terms vanish identically for isolated
spherical particles.

Upon applying the above expressions to a free spherical particle of radius a in a
linear shear flow of shear rate y, v, (r) = yr, é,, the average stress by the particle
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on the liquid is given by [21]
20
(S) = —u3E, = —?na3r]0Em, (5.10)

where use is made of the rotational symmetry of the particle. The minus sign in-
dicates that the colloid resist the shear flow; it is this resistance that raises the
viscosity of the suspension above that of the suspending fluid. The Einstein coeffi-
cient of a dilute suspension of spherical colloids, see Eq. (5.1), is obtained from the
average stress induced by a single particle,

Nov ¥ 2

185 (5.11)

where v is the volume of the colloid and y = 2E%’. An alternative route to the
Einstein coefficient is provided by the thermal fluctuations in an equilibrium system,
following the Green-Kubo formalism [24-28]. The spontaneous stress fluctuations
in a quiescent fluid, AS(t) = S(t) — (S), are auto-correlated to obtain the stress
relaxation function,

1
G(t) = m(AS(t + 1) : AS(T)), (5.12)
where the average is over the time 7. Due to the symmetries of the stress tensor,
each of the six off-diagonal elements in this double contraction contributes the same
average, namely kzTG(t), while each of the three diagonal elements contributes the
average ngTG(t), hence the prefactor 1/(10kgT) to the sum [29]. The intrinsic
viscosity then follows from

1 (oo}
B = no—vfo G(t)dt. (5.13)

For a free spherical particle in a quiescent fluid AS = —§Ssr = 0, since u3 = 0 for
an isolated sphere, hence the Einstein coefficient vanishes identically. Evidently,
the two approaches to the viscosity and Einstein coefficient yield conflicting results,
suggesting a conceptual problem in the equation of motion and/or the stress ex-
pression.

5.2.2. Fluctuating Brownian stress

A colloidal particle in a suspensions is subjected to continuous collisions with the
surrounding solvent molecules resulting from the perpetual thermal motion of the
latter. The cumulative effect of these collisions over a short time interval — short
compared to the time scale of colloidal motion, but long on the time scale of the
collisions — is the origin of the generalized Brownian force Fg(t) = §F(t) acting
on the particle, with zero mean and a temperature-relates variance. This general-
ized force comprises a force 6f(t) and a torque §z(t), both representing distinct
‘projections’ of the same molecular noise. Hence the fluctuating force and torque
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are related, and these correlations are faithfully reproduced by the conventional
fluctuation-dissipation theorem, see Eq. (5.7). The collisions also give rise to a
stress on the particle, which will be called the fluctuating Brownian stress Sg(t).
Note that this stress is a direct effect of the solvent collisions giving rise to a com-
pressive stress on the colloid, while the above discussed stress contribution §Ssg(t)
is an indirect effect of the generalized Brownian force resulting in a generalized
velocity that induces a hydrodynamic stress. Since the fluctuating Brownian stress
and the generalized Brownian force are projections of the same molecular noise,
they will be correlated. Expressing the stress as a vector to reduce the number of
components, one finds that Sg and Fg collectively comprise 11 fluctuating terms.
This suggests extending the fluctuation-dissipation theorem to combine force and
stress fluctuations, thereby naturally leading to the hypothesis

Fg(t) Fe(t) \| _ Eoogk ) -
<< S(t) >®< Su(t) )> = ZkBT< g g JoC-t) (514)

where the matrix on the r.h.s. is the full (11 x 11) grand resistance matrix. The
numerical examples below indicate that this hypothesis recovers agreement be-
tween Einstein coefficients calculated from sheared and non-sheared simulations,
for a variety of colloidal shapes. Further work is required to relate this fluctuation-
dissipation theorem for the colloid to the fluctuating hydrodynamics of the fluid
surrounding the colloid [30-32]. Several authors have shown that fluctuating hy-
drodynamics gives rise to the usual fluctuation dissipation theorem [32-36]. To
the best of our knowledge, only one publication addresses the stress fluctuations;
although that study focusses on spherical particles and does not state explicit ex-
pressions for the stress, it appears to confirm the above hypothesis [37].
Inserting the fluctuating forces and stresses in Eq. (5.6), one arrives at

U\ [ uf u? Fe + 6F U,
BRI E=an Yy .15
where the total stress by the particle on the fluid reads as

S = _(SH + 555]: + ‘SB)' (516)

and 6§ = —S8g. Since the force fluctuations in Eq. (5.14) are identical to those
in Eq. (5.7), while the stress fluctuations do not contribute to the velocities, the
velocity fluctuations still conform to Eq. (5.8).

In the next two subsections, additional terms will emerge from the time inte-
gration of the above stochastic equation. For isolated spherical particles, which are
not affected by these additional terms, the correlations for the spontaneous stress
fluctuations are obtained as

(AS(t) ® AS(t") = (8S(t) ® 8S(t") = 2kpTEE5(t — t), (5.17)

where the displacement contribution §Ssy again cancels because for isolated spheres
& = 0. One may now calculate the Einstein coefficient following the Green-
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Kubo formalism, using the stress correlations provided by the extended fluctuation-
dissipation theorem,

3 3
(AS(t) : AS(0)) = 2KkpT Z Z £598 5(0). (5.18)
a=1p=1

The summation is evaluated using the known &3 of a sphere [38] [despite appear-
ances in Eq. (5.10), & is not a unit matrix], yielding (100/3)mnya®. Inserting this
result in Eq. (5.13) and noting that the integral covers only half the delta peak, the
Einstein coefficient is evaluated as 5/2. Encouraged by this promising result, we
now set forth to derive the general expression for particles of arbitrary shape.

5.2.3. Equation of motion

In the It0 representation of stochastic integrals, i.e. when calculating the coordinate
updates during a timestep At based on information available at the start of the step,
the discretized equation of motion of a colloid in a quiescent fluid reads as [39, 40]

AQ¢ = Qpyar — Q¢

= v, (@ - % In g)At + kTV, - YAt + 5Q.VAL, -19)
where g denotes the metric of the coordinate space. Since the simulations will
be run in cartesian coordinates, i.e. the position of the hydrodynamic center and
quaternions for the rotation around this center, we will henceforth dispense with
metric contributions [10, 41]. The last term in the above expression represents the
Brownian displacements, expressed in this particular form to highlight their square-
root dependence on the time step. Normally these displacements are sampled
using a fluctuation-dissipation theorem derived from Eq. (5.8), with the number of
random terms equal to the dimension of u¥. In the current context, the random
contributions are sampled using

5Q; = pupdF,, (5.20a)
1/2
SF, & & <p5 pé)
= /2kgT 0, = 0, 5.20b
(o5 )=y (§ &) o=(f o )or  c2m

where 0, is a vector of 11 random components of zero mean, unit variance and
devoid of correlations, and where p is the symmetric square root of 2kzTé. The
divergence term in Eq. (5.19) arises when the correlation matrix in the conventional
fluctuation-dissipation theorem, i.e. uY, is a function of the coordinates. This
term can be derived from the second order Langevin equation of motion of the
colloid [42], and is required to recover the Boltzmann distribution as equilibrium.
Because the correlation matrix for the displacements 5Q; is again provided by u¥
in the revised fluctuation-dissipation term, it is this matrix that enters the discretized
equation of motion.
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We follow and extend the route taken by Bossis and Brady [14] to derive the
stress from the continuous equation of motion. Equation (5.15) does not reproduce
the divergence term in Eq. (5.19) and therefore requires amendment for this ob-
jective. Integration of Eq. (5.15) over a time interval At, in the absence of shear,
gives

t+At
20°(t a0 = [ R + IR HON )] e, (5.21)
t

where the Einstein summation convention is used, indices {a, b, c, ...} run over the
six coordinates, indices {4, B, C, ...} over the six coordinates and five stress compo-
nents, the superscript o to pf is to be read as U or € depending on the value of
A, and the random components @(t) are Markovian in continuous time. As a first
approximation to the displacements, to first order in At,

t+At
£QY(t, At) = plE (OFE (DAL + f We@pT ety dr.  (5.22)

Taylor expansion of the non-fluctuating part of the integrand around t and retaining
only terms up to first order in At,

t+At
805(6,00) = W OREOA + ORI @ | 04

K (Dpey () [HHA
aQc¢ .
In the first integral on the r.h.s., the sum of many random contributions is again a
random contribution,

(5.23)
AQS(t, t' — £)O4(t") dt’.

t+At
f OA(t) dt' = OAVALE, (5.24)
t

while the second integral, where only the fluctuating term in AQ{(¢t,t' — t) con-
tributes to first order in At, yields — after averaging — the leading term

t+At
f j uIE (e )L (0P (A de” e = plSpT LBt (5.25)

Combining these partial results gives

a U,a fb

AQ4(t, At) = ups FAL + ug's pry OFVAL + Mggi) 2 udepline, (5.26)

where, just as in Eq. (5.19), all terms on the r.h.s. are evaluated at ¢, i.e. at the
start of the time interval. Using

Ua Fb Uc Fd Fb Ud
”Fl?poAﬂngoA —ﬂFb U.dMFc _MFC' (5.27a)

Ua Fb Uc Fd
a“FI[leoA Uc Fd Ua Fba“FspoA aﬂF,c (5.27b)

2Q° ——c HraPea T UpbPon 20°  ~ 9gc’
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and comparing AQ%(t, At) against the desired result of Eq. (5.19), it follows that
the integrated equation of motion differs by the second term on the l.h.s. of the
last line. Hence, the continuous equation of motion must be corrected by adding
this term,

b aﬂggpr b
Us(t) = upy |FE + pia —agc T CEGIE (5.28)

to recover to first order in At the same trajectory as the discretized equation of
motion, Eg. (5.19). The displacements due to the flow are linear in time and hence
are easily added,

a U,c f,d
U9 = g B + pLf HST A 4 p A0 | +ut — P, (5.29)

where the indices {a, 8,7, ...} run over the three coordinate directions.

5.2.4. Stress

Having established the continuous equation of motion, the resistance picture of
Eqg. (5.3) is used to determine the corresponding instantaneous stress — with the
fluctuating Brownian stress still to be added. The stress over a time step At is
obtained as a time average,

. 1 t+At

SO=5 [ ShOE) -] - ioek - e erar, (530
t

where indices {I,/, K, ...} run over the five components of the stress and strain. Sub-

stituting the velocity difference between square brackets by the continuous equation

of motion gives

& Lt S U F.b a#lF]';pr F.b
§'(t) = E{ [ e B+ o AL 4 pPror )| v
t

t+AL (5:31)
- f |eba(eul + 2] b + pSaenere) dt’},
t

which can be simplified by the matrix relations of Eq. (5.50) to arrive at a stress
expression in the mobility picture. The integrals are again evaluated to first order
in At,

EAGI O]

30° At — pg () ELAL

EE@®) + plA (6)

. 1
S0 = A—t{uizi,(t)
tHat ) s (5.32)
+ f [upji(t’)pf;l " —po,;{(t’)] @A(t)dt’},

t
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where the fluctuating terms are collected in the remaining integral. Rewriting the
integral by Taylor expanding the non-fluctuating part of the integrand around time ¢,
inserting the continuous equation of motion, making use of Egs. (5.24) and (5.25),
and retaining only terms up to first order in At, the stress becomes

.U-Fd(t)p NG )

$1(6) = wzy (©) [ER(O) + pig (©) an — ugy(DEL
5.33

kel - p3ho] o= = (5.33)
0 |urn 0l © - P24 .
+ So° EAGIEA!

The two partial derivatives of mobility matrix segments can be combined into

t ut (e
LAGYAAO “”;();Z (o, % 'b(a()fi 4O e pio = ft)- (5-39)

Reverting to stress and strain in matrix form,

dupe’ (® st (® e

$0(©) = iy (OFS®) — s OEL + o Sor HraOpli(©)
A
+ 12 P52 © = 5P ()] = N
(5.35)

where the subscript 4, for the combined sum over generalized coordinates and
Cartesian directions, is retained for notational compactness. The first term on the
r.h.s. denotes the stress induced by the potential acting on the colloids, the second
term that due to the flow, the third term recovers the conventional Brownian stress
and the last term represents the fluctuating contributions to the stress, resulting
here from Brownian forces as well as from the fluctuating Brownian stress, with
correlations between these fluctuating terms giving rise to the fourth term. While
the fluctuating Brownian stress term averages to zero, and therefore is only relevant
in studies focussing on stress fluctuations, the fourth term does not fluctuate and
therefore makes a contribution to the stress — and hence the viscosity — in colloidal
suspensions under shear. To the best of our knowledge, this contribution has not
been derived before.

The above derivations can be extended to suspensions of N interacting colloids,
by extending the mobility and resistance matrices to (11N x 11N) matrices describ-
ing the hydrodynamic interactions between all colloids. The total deviatoric stress
then follows as the sum of the stresses on the colloids, supplemented by a virial
contribution from the potential interactions between the colloids.

5.2.5. Stress in a dilute suspension
In a dilute suspension one may ignore the hydrodynamic interactions between the
colloids. Our objective here is to deduce the stress induced by an isolated rigid
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colloid, by deriving expressions for the derivatives in Eq. (5.35). Rigidity implies
that any point i on the body will have a fixed position F; in the body frame (over
bar), while its position in the space frame (under bar) reads as

r, =x+Ar, r% =x%+ A%f.ﬁ, (5.36)

where x denotes the position in space of the origin of the body-based coordinate
system, and A is the rotation matrix from body to space frame. Rigidity also implies
that the grand mobility and resistance matrices in the body frame are constant, and
rotate along with the body to give the grand mobility and resistance matrices in the
space frame. Introducing the rotation matrix from space to body frame A, with
42 = AP, the mobility matrix in the body frame, henceforth subdivided into nine

components by splitting the generalized velocity into translation and rotation and
the generalized force into force and torque,

[T T T
p=| B B OB, (537)
[T T

is converted into a mobility matrix in the space frame following

uo = ALy A, (5.38a)
uoe = AR, ALAY, (5.38b)
ol = ALAf it Ar, (5.38¢)
_T’-y

and so on, with identical relations applying for & and p. Since the mobilities are in-
variant under translations, the divergence term in Eq. (5.35) reduces to the rotation
derivative [43] R of the stress-torque coupling,

aHS,aﬁ'
G = 585 = jeyM_TS-:ﬁ = A2AB G, (5.39a)
g'K/l — Egﬂ‘aﬁﬂl + ef}”ﬂﬁjﬁv, (539b)

where the rules for differentiating rotation matrices are summarized in Appendix 5.A.2,
and the Levi-Civita symbol e{fﬁ returns +1 if {a,B,y} is a cyclic combination of
{x,y,z}, —1 for an anti-cyclic combination, and zero otherwise.

Under the aforementioned conditions, the second derivative in Eq. (5.35) also
reduces to the rotation derivative only. Due to the A index to & running over trans-
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lation, rotation and strain, the result is a sum of three terms,

apS,a’ﬁ

R il G [ (5402

= AgAL (Fesh + HIP + 7, (5.40b)
Tt = (efnpii’ + elnpon™ + €l pon’) Ad 5, (5.40c)
TP = (efnPSE + ehapSi + ™ b3 ) it P (5.40d)
= (cknbine + ehnPing + eV Dhmt + £ ENR) A Plvg,  (5.40€)

where €f,, = e{fﬁ . The pattern in these expressions is in the three or four indices

to p3, A5 and p; consecutively being subjected to a Levi-Civita permutation; in the
notation used, the permuted index appears as the single sub- or superscript to the
Levi-Civita symbol.

5.2.6. Simulation methods

Numerical simulations were performed on non-spherical rigid colloids to ascertain
whether the revised stress expression recovers agreement between viscosities de-
rived from equilibrium and non-equilibrium conditions. In the simulations, the po-
sition of the colloid is conveniently identified as the location of its hydrodynamic
center, i.e. the particular point for which uf = p7. The rotation of the colloid
around this center will be described using unit quaternions, i.e. a four-vector
a4 = (90,91,92,q3)" of unit length ¢ = |q| = 1, which are well-known in classical
mechanics to avoid the singularities associated with rotational dynamics in three co-
ordinates [44]. In Brownian Dynamics, the additional features are the cancelation
of the metric term in Eq. (5.19) and — provided x coincides with the hydrodynamic
center — the cancelation of the divergence term in said equation [10, 41]. The
equation of motion then takes the form

B} I Af sf
v v v ol t

(ﬁ’—‘)=<‘3 g)(‘_‘({, e ’_‘f,) At |ac+| &%, |VAt
9 By Ko He —AE A 0

(5.41)

—00

Here the potential forces and strain in the space frame are converted to the body
frame, the force balances are solved for velocities in the body frame, followed by
conversions to increments of the position in the space frame and of the quater-
nions, where the (4 x 3) matrices B = dq/d@ and B = dq/dw are derived in Ap-
pendix 5.A.3. The fluctuating contributions are conveniently sampled in the body
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2]

Figure 5.1: The simulated bodies: a prolate spheroid (blue) of length L and diameter D, a hemi-
spherical cap (red) of radius R, thickness a and top angle «, and a paddle with blades of diameter D
and a top-to-tip length L = 4D.

frame,
_ _ _ _ 1/2
of, g i
=68, & & &

where 0, is a vector of 11 random numbers devoid of correlations. The quaternion
displacements Aq are perpendicular to q, and hence conserve the unit length of q,
in the limit of infinitesimal time steps. For finite At, a constraint force is introduced
to impose unit length; its strenght is determined from the condition

la(t + A0)| = |q¥(t + AD) + 2q(t)| = 1, (5.43)

where q"(t+At) denotes the quaternion vector after an unconstrained step (1 = 0),
which is readily shown to yield a quadratic expression for the Lagrange multiplier
A.

The simulation results are presented using ¢ as the unit of energy, o as the
unit of length and 7 as the unit of time. The suspending fluid had a viscosity
no = let/a® and a thermal energy kzT = 1e. The time step was 0.17. Particles of
several differing shapes were simulated, spheroids ranging from oblate to prolate,
a hemi-spherical cap and a paddle, see Fig. 5.1. The mobility and resistance matri-
ces of the former were obtained from the literature [38], while those of the latter
two were determined by approximating the bodies as rigid collections of ~2000
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non-overlapping identical primary spherical particles of radius o [10]. For a single
particle in a linear shear flow, the intrinsic viscosity was derived from the ratio of the
average stress induced by the particle and the shear rate y, see Eq. (5.11). For a
single particle in a quiescent fluid, the stress relaxation function ¢ was determined
from the auto-correlation of the fluctuating stresses, see Eq. (5.12), employing an
efficient on-the-fly multiple-tau correlator [45, 46] (with 64 elements at every level,
raw data for every step entering at the lowest level, averaging over two elements
when filling the next level, and using up to 50 levels to correlate over the entire
simulation). For a suspension exposed to an oscillatory small amplitude shear of
angular frequency w, the stress is related to the strain rate by the complex viscosity,
n+(w). The corresponding complex intrinsic viscosity was calculated as

B*(w) = B'(w) — iB"(w) = noiv JOOO G(t)e twtdt. (5.44)

Makino and Doi [13] obtained an analytic expression for particles of arbitrary shape
by evaluating to first order the flow-induced perturbation of the isotropic equilib-
rium orientation distribution and the resulting stress. After a long calculation, they
arrived at

5
1 a; 1
B Z—kTZ—J_Z Sap _ ~ Saa ) 4
(@) 10nov | 2 4 ] 2kpTA; + iw , Heap — 3HERR (5.45)
Jj= a,

We refer the interested reader to the original work [13] for the explicit expressions
relating the ten coefficients «; and A; to the elements of the generalized mobility
matrix. Makino and Doi noted that the skewness of the particle, i.e. the matrix
elements g7 and g coupling translation and rotation, were conspicuous by its
absence in the above expression. Further work is required to expand their theory
with the novel stress terms obtained here.

5.3. Numerical results

To validate the theory proposed in the previous section, we here present numerical
results obtained by Brownian dynamics simulations of isolated particles, using the
methodology outlined in Sections 5.2.5 and 5.2.6.

5.3.1. Spheroids

The first non-spherical particle under consideration is a spheroid. The stress relax-
ation function obtained from equilibrium simulations of a prolate spheroid, with an
aspect ratio p = L/D = 10, is presented in Fig. 5.2. A delta peak at t = 0, see
inset, is followed by a shoulder that continues for about 10t before collapsing to
zero. Under the prevalent conditions, the total stress of Eq. (5.35) reduces to three
non-vanishing terms: the mobility-gradient term G evaluated following Eqg. (5.39),
the cross-correlation term term A evaluated following Eq. (5.40), and the Brow-
nian term B combining the direct and indirect random contributions to the stress.
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Figure 5.2: Stress relaxation function G (t) of a prolate spheroid with aspect ratio p = 10 (black lines).
The inset shows the response function on a linear time scale, the main figure shows an enlargement of
the shoulder on a logarithmic time scale. The coloured lines represent the three major contributions to
G(t).

Together these generate nine distinct contributions to the stress relaxation function.
As shown in Fig. 5.2, only three combinations make a significant impact: the delta
peak at t = 0 is dominated by (B(t) : B(0)); the shoulder mainly results from
(G(t) : G(0)), with a small but systematic contribution from (G(¢t) : H (0)). The plot
also shows residual noise from (B(t) : B(0)) for ¢ > 0, which will diminish with
increasing run length, while the six other contributions to G (t) are at least an order
of magnitude smaller than this noise.

Fourier transformation of the stress relaxation function yields the complex in-
trinsic viscosity of Fig. 5.3. The real part, also known as the dynamic intrinsic vis-
cosity, is constant at both low and high angular velocities, with a transition around
4-1072771, At around the same frequency, the imaginary part transits from B” « w
for smaller w to from B” « w™! for larger w. These properties are characteristic
of a Jeffrey fluid with one dominant mode [47] Also shown is the theoretical stress
relaxation curve in the limit of y —» 0, as derived by Makino and Doi [13], see
Eg. (5.45), which agrees well with the simulation results. The small but system-
atic difference between theory and simulation is larger than the contributions to B*
from H, suggesting that it originates instead in the first order approximation of the
theory. Complex intrinsic viscosities calculated using the traditional expressions for
the stress, i.e. in the absence of §S_ and #£, do not recover agreement with the
theoretical curve see Fig. 5.3.

A comparison between the dynamic intrinsic viscosity and the intrinsic viscosity
in simulations under linear shear is presented in Fig. 5.4. Good agreement between
both perspectives on the intrinsic viscosity is obtained for low angular frequencies
and low shear rates, where the intrinsic viscosities are essentially independent of
w and y, as illustrated for spheroids of two differing aspect ratios. The plateaus
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(b)

Figure 5.3: The real (B’, blue) and imaginary (B”, green) parts of the intrinsic viscosity due to a
spheroid with aspect ratio p = 10 , using the conventional (left) and proposed (right) stress calculation.
Markers represent simulation results by Fourier transforming the G(t) of Fig. 5.2, solid lines the theory
by Makino and Doi [13], see Eq. (5.45).

in B'(w) and B(y) give way to decreasing curves at about the same values of w
and y, as predicted by the Cox-Merz rule [47]. But whereas the dynamic intrinsic
viscosity levels off at a second plateau within one to two orders of magnitude in w,
the shear viscosity continues to decay over many orders of magnitude in y, before
reaching a far lower plateau value. This shear-thinning phenomenon — the shear
flow substantially distorts the particle orientation distribution from the isotropic ori-
entation at low and vanishing shear rates — clearly lies outside the domain of the
dynamic intrinsic viscosity, nor is it captured by the first-order perturbation theory
of Makino and Doi.

Direct integration of the stress relaxation function provides access to the intrin-
sic viscosity at low shear rates, B'(w — 0) = B(y — 0). Both approaches have been
used to determine the intrinsic viscosities of dilute solutions of spheroid particles
ranging from disc-like (p = 1072) to needle-like (p = 10%), see Fig. 5.5. By com-
paring simulation results based on the traditional and proposed stress expressions,
depicted on the left and right respectively, it is evident that the former does not
recover agreement between the two perspectives on the intrinsic viscosity while
the later yields excellent agreement. This result once more confirms that the direct
Brownian contribution to the stress makes an essential contribution to the stress in
quiescent colloidal suspension, which hitherto has been overlooked. In the limits of
large and small aspect ratio the intrinsic viscosities approach the theoretical limits
derived by Leal and Hinch [19]. The numerical results indicated that the # term,
absent in said theory, makes only a minor contribution to the total stress under
shear.

5.3.2. Cap and paddle
The mobility matrix of a spheroid os still relatively sparse, containing only the
three diagonal blocks and rotation-strain coupling, g% and ii$. As additional tests
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Figure 5.4: The intrinsic dynamic viscosity (B, green) and the intrinsic viscosity under shear (B, red)
for spheroids of aspect ratios p = 10 and 100. Markers represent simulation results, dashed black lines
the theory by Makino and Doi, [13] and the solid red lines are fits with a Carreau-like model [10].

of our amendments, simulations are presented of a hemi-spherical cap, incurring
translation-strain coupling i} and [132, and of a paddle, adding translation-rotation
coupling 7 and p. The mobility and resistance matrices of these bodies, see
Fig. 5.1, were determined by approximating them as rigid collections of N nearly-
touching primary spheres, with radius 1¢. Evaluating the hydrodynamic interactions
between these spheres at the Rotne-Prager-Yamakawa level [48, 49], the resulting
(11N x 11N) hydrodynamic matrix can be condensed into (11 x 11) hydrodynamic
matrices for a colloid of arbitrary shape [10]. The employed code, Oseenll, is
freely available online [50]. Approaching the spheroids of the previous subsection
as hollow shells of ~2000 particles yielded intrinsic viscosities in good agreement
with the above results. The hemi-spherical cap, with a top angle ¢ = n/2, was
modeled as 2051 primary particles placed on the corner points of a triangulated
mesh generated using the DistMesh routine [51] in MATLAB [52], resulting in a
shell with radius R ~ 47.80 and thickness a = 2¢0. The two blades of the paddle are
constructed as identical discs of 737 particles each, with a radius of R = 37.8a, po-
sitioned at a relatively angle of 90° at the two ends of a connecting rod of length 4R
and negligible thickness, akin to the paddle simulated by Makino and Doi [11, 13].

The stress relaxation functions of the bodies are presented in Fig. 5.6. As seen
from figure, for more asymmetric particles many stress relaxations components
appear (compared to an prolate spheroid in Fig. 5.2). We plot the dynamic intrinsic
viscosity and the viscosity under shear for a cap and a paddle in 5.7. Even though
we see qualitative agreement between the various methods it is not satisfactory
to the level seen earlier for the case of prolate spheroids. Curves generated using
Makino and Doi’s analytical expression also show similar behavior. This is due to
the difficulty in capturing higher order orientational distributions deviating from an
isotropic case and will be a subject of on-going research work.
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Figure 5.5: Einstein viscosity coefficients B for spheroids covering a wide range in aspect ratio p,
as deduced from the average stress in simulations at low shear rate (blue circles) and the from the
stress fluctuations at zero shear (red squares). Simulations based on the classical stress calculation
show a marked difference between the two approaches (left), while the revisions proposed here recover
agreement (right). The smooth lines are guides to the eye.

5.4. Summary and conclusions

The conventional stress calculation in Brownian Dynamics simulations is shown to
yield a marked difference between equilibrium and non-equilibrium evaluations of
the linear rheology of a colloidal suspension. The inclusion of fluctuating Brow-
nian stresses, which are hypothesized to be related to the Brownian forces by a
generalized fluctuation dissipation theorem, solves the discrepancy and recovers
agreement. The fluctuating Brownian stress is essential to studies in equilibrium,
but averages to zero — and can hence be neglected — in non-equilibrium studies.
The derivation in Section 5.2 reveals a non-vanishing stress contribution that ought
to be included in both equilibrium and non-equilibrium; this term turns out to be
fairly small numerically for the systems simulated here. Further research is required
to explore the relevance of this term for non-dilute colloidal suspensions.
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Figure 5.6: Stress relaxation functions G(t) of a paddle. The inset shows the response function on
a linear time scale, the main figure shows an enlargement of the shoulder on a logarithmic time scale.
The coloured lines represent the five major contributions to G (t).
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Figure 5.7: The intrinsic dynamic viscosity (B’, green) and the intrinsic viscosity under shear (B, red)
for a hemi-spherical cap (left) and a paddle (right). Markers represent simulation results, dashed black
lines the theory by Makino and Doi, [13] and the solid red lines are fits with a Carreau-like model [10].
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5.A. Appendices:

5.A.1. Stress and strain vectors

By analogy to a vector being expressed as a weighted sum of non-orthogonal basis

vectors, the stress tensor S can be expressed as a weighted sum of basis matrices
S

eK.'I

SeB = 5% (e5)2h, (5.46a)
S = (el)*BsaB, (5.46b)

where the Einstein summation convention is used. The components §¥*, extracted
from the matrix by the dual basis e¥, constitute the stress vector, §. The strain E,
is likewise converted to a vector, £, on the basis e£. As both stress and strain are
symmetric and traceless in the current context, the vectors can be reduced to five
components by an appropriate choice of the basis matrices [1].

u, U,
( Hel e )_ . ME.Zps(e?“ﬁ (5.47)
, , - ,a . .

HF,Z l‘s.; (e§)*F Hrp (eg)aﬁ”E.ya (eg)ys

Because the grand mobility and resistance matrices introduced in Section 5.2.1
satisfy a number of symmetry rules, it proves convenient to choose

e =ef and ef =ek, (5.48)

as this creates symmetric (11 x 11) matrices. The two ways of expressing stress
and strain are entirely equivalent — the main purpose to introduce the vector form
is to allow recourse to standard numerical techniques.

The generalized mobility and resistance matrices introduced in Section 5.2.1 are
not each-other’s inverses. One readily shows that

np o \_ [ GEDT —(&))1EE )
(ui s )‘( SEDT E - g el ) (5:49)

and consequently

my =@ (5.50a)
ui = §yuz, (5.50b)
HE =82 +&yme. (5.50C)

5.A.2. Rotational derivative of a rotation matrix
The derivative of a function f(r) under a rotation of the point r around an axis &,
of the coordinate system reads as

Raf () = (&g XT) - (5.51)

af(r) - x af (r)
or Jr ’
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A right-handed rotation matrix A can be regarded as a collection of three perpendic-
ular unit columns, A = (a, a, as), related by eﬁlé# = a, xa,, where the Levi-Civita
symbol et; returns +1 if {x, 4, u} is a cyclic combination of {1,2,3}, —1 for an anti-
cyclic combination, and zero otherwise. Defining a function f(r) = r-é,, one readily
shows that
_ a(a,)* _
Rolte = Raf 32) = € @) S0 = e (@) = eyl (5.52)

which is used repeatedly in Section 5.2.5. Another expression used in that section
follows by taking the cross product of two columns of a rotation matrix,

ed ARAY = €2 (2P (3)" = (@ x 8y), = (elya,) = el A%, (5.53)
where use was made of the right-handedness of A.

5.A.3. Quaternions

Unit quaternions are four-vectors, q = (q¢, 91,92, q3), Of unit length, ¢ = |q| = 1,
providing a convenient parameterization of rotation matrices. The rotation from the
body-frame to the space-frame is realized by

) a3 +9i —a3— a5  2010; — 24093 2q1q3 + 2qoq
A=| 2q1q:+2qo93 g} —aqi+aq5—a3 24203~ 24041 |, (5.54)
24193 — 29092 24,93 + 29091 95— 91— 92 t 43

and the inverse rotation by A = A=* = AT, For a colloid rotating around its stationary
center, it follows from Eq. (5.36) that w x r, = Ar; = Agi and therefore

y L —q1 —q9z2 —q3

q qo q3 —q:

B=—=— . 5.55

- Odw 2q*\ 43 90 ¢ (523)
q2 —q1 qo

Futhermore, AAF; = A (9 X gi) = @ x T; and therefore

Iy L —q1 —qz2 —q3

5 q o —93 Q2

B=—=— , 5.56

o  2q* q3 qo —q1 ( )
—q>2 q1 qo

as follows also from B = BA®.
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Aggregation dynamics of
sticky colloids

In traditional simulations of diffusion limited cluster aggregation (DLCA), it
is assumed that the translational diffusional mobilities of aggregates are
related to those of the primary particles by a simple power law and that
the effect of rotations can be ignored. We present Brownian Dynamics (BD)
simulations of DLCA employing mobilities based on intra-aggregate hydro-
dynamic interactions and including rotational motion. Whereas traditional
simulations with spherical primary particles yield aggregates with fractal di-
mensions around 1.75, we find that rotations result in a reduction to 1.65.
The aggregation process also proceeds faster, which is particular noticeable
for rod-like primary particles. The distributions of aggregate sizes still con-
forms with accepted scaling laws, where the relevant powers are no longer
a consequence of the selected scaling law.

6.1. Introduction:

Aggregation of colloidal particles suspended in a fluid is a topic of long standing
interest [1]. In diffusion limited cluster aggregation (DLCA), i.e. for low particle
concentrations and weak long range inter-particle interactions, the aggregation pro-
cess is dominated by the diffusive motions of the primary particles and their aggre-
gates [2]. The simplest form of aggregation is the hit-and-stick collision mechanism
where identical primary particles stick upon contact and remain in a fixed relative
orientation for the remainder of the experiment [3]. One of the characteristics of
the aggregates formed in this manner is their fractal nature, see Fig. 6.1, with the
number of primary particles in an aggregate, s, scaling with the spatial size of the
cluster, R, as s o« R%, where d; is known as the fractal dimension [2]. In a three-
dimensional world, the value of d; ranges from unity for a linear aggregate to three
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Figure 6.1: Snapshot of a cluster consisting of 130 spherical primary particles, formed at t = 6007 in a
¢ = 1073 suspension (left) and a cluster consisting of 34 rod shaped particles, p = 13 (right), formed
att =30t ina ¢ = 21073 suspension simulated with rotational Brownian Dynamics and intra-cluster
hydrodynamics.

for a densely packed aggregate.

Simulations have been instrumental in studying the scaling behaviour of DLCA,
as well as in establishing master curves describing the time evolution of the aggre-
gation process. Early simulations employed particles moving on two-dimensional
lattices [2, 4], which were subsequently extended to three dimensions [5]. In
these studies diffusion is simulated by randomly selecting a particle or an aggre-
gate, moving it to an adjacent lattice cell where it may click to a neighbouring
particle or aggregate, and incrementing the simulation time by an amount scaling
with the size of the moved object. A universality was observed in the fractal di-
mension of the aggregates, with d; = 1.45 in 2D and d¢ ~ 1.8 in 3D. Similar values
were reported for experiments on gold, silica and polystyrene sticky spherical col-
loidal particles, among others, suspended in a 3D bulk fluid or at a 2D interface
[3, 6-8]. Later simulations also include off-lattice methods, with the scalar mobil-
ities of the particles and aggregates typically assumed to follow a simple scaling
law, us = uys, which gives best agreement with experimental DLCA when select-
ing y = 1/d;. The rotational diffusion of the aggregates is typically ignored in
these simulations, probably motivated by the absence of rotation in the pioneering
lattice-based simulations and an early study indicating that rotations are of minor
importance to the aggregation process [9]. While earlier models employed simple
scaling laws some recent simulations started exploring the cluster shape anisotropy
and its effects on aggregation.[10—13] This renewed interest is also due to some
recent experimental results which showed some interesting features like occurrence
of low fractal dimension clusters than predicted by earlier DLCA models[14, 15] We
present simulation results of DLCA addressing the two approximations discussed
above, by including rotational dynamics and by endowing every aggregate with
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a shape-specific tensorial mobility. The simulation method employed is Brownian
Dynamics (BD), using a recently introduced algorithm for the combined translation
and rotation dynamics of rigid colloidal bodies [16]. The diffusive motion of an
aggregate is based on the translation and rotation mobility tensors of that aggre-
gate, which are determined — accounting for hydrodynamic interactions within the
aggregate at the Rotne-Prager-Yamakawa [17, 18] level — using the freely avail-
able hydro++ package of Garcia de la Torre and coworkers [19, 20]. Since the
aggregates are rigid, this hydrodynamic problem is solved only once for every new
aggregate being formed. Our simulations indicate that rotational dynamics does im-
pact the aggregation process of spherical primary particles, resulting in a reduction
of the fractal dimension. A paper that recently appeared confirms this observation,
though the mobilities employed in that study are not based on the hydrodynamic
interactions within the aggregates [13]. The structure of this paper is as follows.
The simulation and analysis methods are described in Section 6.2, simulation re-
sults on spherical and rod-like primary particles are presented in Section 6.3, and
the paper ends with a discussion of the main findings in Section 6.4.

6.2. Methods

6.2.1. Simulation methods
The translational Brownian motion of a rigid colloidal cluster of arbitrary shape is
simulated using the equation of motion

R(t + At) = R(t) + pOFOAt + [ZkpTAt (u®) " 0, (6.1)

where R denotes the position of a reference point on the cluster and At is the integra-
tion time step. All terms on the r.h.s. are evaluated at time t, before the time step,
following the It0 interpretation of stochastic equations. In the second term, F() rep-
resents the total potential-based force acting on the cluster and u'® denotes the
mobility matrix for translational motion (t), both expressed in the space-fixed coordi-
nate system (s). The balance between this force and the Stokesian drag by the fluid
gives rise to a drift velocity linear in F®, and multiplication by the time step yields a
displacement. The last term on the r.h.s. accounts for the stochastic Brownian con-
tribution to the cluster’s motion, with kg Boltzmann’s constant and T the absolute
temperature, and where @' denotes a vector of three random numbers with zero
average, unit standard deviation, no correlations between the Cartesian directions
and no correlations in time (Markovian). The standard deviations of the random
displacements are related to the mobility matrix by the fluctuation-dissipation the-

orem, as incorporated in the last term of the equation of motion, where (ut®)"/”
denotes the symmetric square root of the symmetric mobility matrix.

For a rotating non-isotropic rigid cluster of primary particles, the position of the
ih particle can be expressed as

r® = Aar® + R, (6.2)

where the superscript (b) refers to the body-fixed frame and A is a rotation matrix.
The reference point on the cluster coincides with the origin of the body-fixed frame.
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The mobility tensor is constant in this frame, hence the space-based mobility tensor
and its square root rotate with the cluster following

put® = Aut®AT) (6.3)
(1) = A (ut®)"? AT, (6.4)

The number of time-consuming evaluations of mobility matrices thereby reduces to
once for every newly formed cluster. The equation of motion effectively being used
reads as

R(t + At) = R(t) + A ATFOAL + \[2kpTALA (u'®) 0, (6.5)

where the force balance is solved in the body frame and the random displacements
are assigned in the body frame, with both followed up by rotations to the space
frame.

The orientation of the cluster also follows a Brownian equation of motion. As
one of us has shown recently [16], this motion is readily solved by employing unit
quaternions q as the orientation coordinates [21, 22]. The redundancy of using four
coordinates and a length constraint, |q| = 1, outweigh the complexities encoun-
tered in BD simulations based on three orientation coordinates: the singularities
for certain coordinate values as well as subtle terms accounting for the metric of
the non-Cartesian coordinate space and the coordinate-dependence of the mobility
matrix [16, 23-27]. By virtue of a fortunate cancellation of the latter two terms,
the equation of motion in quaternions takes the deceptively simple form [16]

qQ(t + At) = q(t) + Bw®ATLOAL + [2ksTAB (™) 7?07+ 1q,  (6.6)

which closely copies the structure of Eq. (6.5). Here t® represents the total
potential-based torque acting on the cluster in the space frame and u™® denotes
the rotational mobility tensor in the body-fixed frame. The balance between this
torque and the Stokesian torque by the fluid gives rise to an angular drift velocity
linear in (9, solved from the body’s perspective in the second term on the r.h.s..
Conversion to a quaternion velocity and multiplication by the time step yields a dis-
placement. Explicit expressions for the (3 x 3) rotation matrix A(q) and the (4 x 3)
conversion matrix B(q) are provided in the Appendix. The elements of the random
vector ®" have zero average, unit variance, are uncorrelated, have no memory
(Markovian) and are independent of @t. The last term on the r.h.s. of Eq. (6.6)
imposes the unit length constraint on the quaternion vector, using a Lagrange mul-
tiplier A that can be solved analytically from a quadratic equation [16].

The simulated clusters, ranging in size from one to hundreds of primary particles,
diffuse freely in the absence of potential forces and torques in a quiescent fluid. Any
two clusters merge as soon as a particle of the first cluster overlaps with a particle
of the second cluster. The hydro++ program [19, 20] is then used to determine the
hydrodynamic center and the corresponding mobility matrix of the newly created
cluster. This center defines the reference position R, and all space-based particle
positions rES) can now be converted in their body-based counterparts r§b> by defin-
ing the body-based coordinate axes as momentarily aligned with the space-based
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coordinate axes, i.e. A = 1 for a newly created cluster. The mobility matrices ut®
and p*®™ are extracted as the two (3 x 3) block-diagonal elements of the (6 x 6)
mobility matrix calculated by hydro++. We verified that, for the clusters grown in
the simulations, the elements of the off-diagonal blocks are considerably smaller
than those of the diagonal blocks, and hence that coupling between translational
and rotational Brownian displacements may safely be ignored. During the course of
this work an extended simulation algorithm was developed that can handle cross-
terms in the mobility matrix, i.e. forces giving rise to rotations and torques giving
rise to translations, along with the corresponding coupling between the rotational
and translational random displacements [28]. Several simulations were rerun using
this algorithm, thereby establishing that these contributions indeed are of a minor
importance for the aggregation dynamics in quiescent fluids. For clarity, we stress
that all bonds are permanent: the clusters do not restructure (which tends to result
in compactation), nor do clusters break up.

All simulations were performed using cubic boxes of constant size L, with peri-
odic boundary conditions in all three Cartesian directions. The number of primary
particles was fixed at N, = 16,384 (2'*), except for a few runs to explore system
size dependencies. Typical particle volume fractions ¢ were in the range 10~2 and
1072. The diameter o of the spherical mono-disperse primary particles was taken as
the unit of length, the units of energy and time were ¢ and 7, respectively. In these
units, the thermal energy was set at kgT = 1¢, the solvent viscosity at n = 1et/a3,
and the time step at At = 10737. To facilitate the conversion to experimental
units, for colloidal particles of 100 nm diameter in water at room temperature the
time unit corresponds to T ~ 0.25ms. Initial configurations were prepared by se-
quentially placing primary particles at random positions in the simulation boxes, ex-
cluding those insertions that produced overlap with previously introduced particles.
The system was further equilibrated by a short simulation with a purely repulsive
Weeks-Chandler-Anderson potential interacting between the particles. Production
runs, using the scheme outlined above, were discontinued when the largest inter-
particle distance within a newly formed cluster exceeded half the box size. Most
numerical results presented in the next section are averages over five independent
runs corresponding the same macroscopic parameters but differing in their initial
microscopic configurations; the variation between these runs was used to estimate
error bars on selected data points. In several cases the averaging was extended to
25 runs to enhance sampling.

6.2.2. Analysis methods
Previous studies have shown that the number of clusters ny(t) containing s particles
at time t evolves as

S
ns(0) = 572f (), 6.7)
where f is a master function that depends on the dynamical properties of the clus-

ters, their reaction kinetics and the overall particle density, and likewise for the
power z. The prefactor is dictated by conservation of the number of primary parti-
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cles,
Ny = Z sng(t) ~ fs'lf (tiz) ds = fx‘lf (x) dx, (6.8)

where the last integral, with x = s/t?, clearly is independent of time. The average
number of clusters at time t then reads as

N.(t) = Zns(t) ~ fs—zf(tiz) ds = t‘zfx_zf(x) dx, (6.9)

and therefore, with the last integral being constant, N, « t~%. The evolving average
cluster size S(t) can be calculated from the cluster perspective, i = 0, by running
over all clusters and averaging their sizes, and from the particle perspective, i = 1,
by running over all particles and averaging the sizes of the clusters they belong to,

Zs Siflns(t)  tZ
X stng(t)
Since Sy(t) = Np/N(t), we will henceforth follow the common practice of defin-

ing S = S,. For noise reduction purposes, it proves convenient to introduce the
cumulative size distribution,

Si(t) = (6.10)

N

Ni(©) = D () ~ 57 (), (6.11)

i=1

where the master function g is related to its counterpart by f(x) = xg'(x) — g(x).
One readily confirms that N.(t) = N (t) and N, = N(0).

The stickiness of the primary particles results in the formation of disordered
structures with fractal properties. The radius of gyration R, measures the average
distance between all particles in a cluster and the center of mass of that cluster,
R..m, Which is equivalent to the average distance between any two particles in a

cluster,
S s—1 S

1 2 1 2
R? = ;Z s) - S_ZZ Z ERETRI (6.12)

Iy " — Rcom
i=1 i=1 j=i+1

The expected power-law scaling of the radius of gyration with cluster size yields the
exponent 1/d;.

6.3. Results

6.3.1. Spherical particles

In the simulations, aggregation of the spherical primary particles starts rapidly after
the stickiness of the particles is turned on. Following a transient period, a power-law
growth sets in of the average cluster size, see Fig. 6.2 (left), while simultaneously
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Figure 6.2: Total number of clusters N, (black) and the mean cluster size S (blue) as functions of
time for aggregating suspensions in the standard box of N, = 16, 384 primary particles (left) at colloidal
volume fractions of 1072 (o) and 1072 (0J). The straight lines for S = 10 and N < N,,/10 are power-law
fits, yielding the exponents z plotted in Fig. 6.3. Near coalescence (left) of the normalized number of
clusters (black) and the average cluster size (blue) for four box sizes (see Ly, in legend, in units of o;
the largest of these systems contains 15278 particles) at the same volume fraction, ¢ = 1073.

the number of clusters decays following a power law. In a comparison of equally
dense system of various sizes, see Fig. 6.2 (right), the data for S(t) nearly coalesce
while the data for N (t) coalesce after scaling by N,; this suggests that the system
size used in the production runs is sufficiently large to eliminate system size de-
pendencies. The transient period is shorter, and the growth of the average cluster
size proceeds faster, at higher particle volume fractions. The powers z extracted
by fitting S « t# and N, « t~# are plotted as functions of the particle volume frac-
tion in Fig. 6.3. For the lowest concentrations the power z is slightly above unity,
corresponding to an average cluster size growing almost linearly in time, followed
by a steady rise of the power with volume fraction until a plateau of nearly 1.4
(based on N.) or nearly 1.5 (based on S) is reached for volume fractions exceeding
¢~5-1073,

The simulations were discontinued when the largest span of an aggregate ex-
ceeded half the box length. This termination time scales with the volume fraction
as t « ¢~1%, But since the number of primary particles was kept fixed, the cor-
responding final cluster sizes also vary with the volume fraction. The elapsed time
to grow aggregates of identical sizes was therefore also determined, for which the
radius of gyration was used. The time elapsed to reach a fixed value, selected as
just below the maximum attained R, in the densest system, is shown in Fig. 6.4 to
scale as t o ¢~ 137,

The size distribution ny(t) extracted from the simulations at ¢ = 2 - 1073 is
presented in Fig. 6.5, as a function of time after binning by cluster size (left) and
as a function of cluster size after binning by time (right). Dashed lines indicate
common tangents, and the dotted line the power law scaling of ng at larger times.
It is notable that the common tangent in the right plot does not yield the universal
tangent slope of —2 proposed by Meakin et al. [5], which was argued to ‘provide[s]
a strong support for the scaling form’ of Eq. (6.7). Even though deviating from
this universal tangent, the simulation results still faithfully follow the scaling form,
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Figure 6.3: Scaling exponents for the time, z, extracted from the power law behaviours of the number
of clusters (circles) and the average cluster size (squares), see Fig. 6.2, as well as from the coalescence
of cumulative cluster size distributions onto a master curve (triangles), see Fig. 6.8. The smooth lines
are guides to the eye.

as can be seen in Fig. 6.6 where the master function f(s/t) is pieced together
by overlaying the distributions at various times and sizes. If the size distribution
follows the master function of Eq. (6.7), the two plots in Fig. 6.6 ought to be mirror
images. Superficially they are, but closer inspection reveals that the shallow slopes
(at low s/t) and the steep slopes (at s/t) do not fully agree. These deviations are
attributed to the limited amount of data to analyse, the resulting use of bins to
compensate, and the inaccuracies in visually overlaying the various curves. The
resulting aggregate size distribution, shown in Eq. (6.7), agrees with theoretical
predictions [29], experimental observations [3] and simulations with scaling-law
diffusion dynamics [30]: the number of clusters varies relatively weakly with s up to
a time-dependent maximum, close to the mean cluster size S, (t), and subsequently
decays rapidly.

Cumulative size distributions were extracted at regular intervals during the sim-
ulations. Size-weighted cumulative distributions, see Eq. (6.11), are presented in
Fig. 6.8 for two volume fractions. Plotted as functions of t/s, the scatter plot looks
like a wide line. But upon rescaling time to t#, using a distinct z for every volume
fraction, the data coalesce to an appreciably thinner line, confirming the existence
of a master curve g(s/t?) (which could, though, still depend on ¢). The powers z
obtained at ten volume fractions are included in Fig. 6.3; the are distributed around
z ~ 1.2 and show a weak tendency to rise with ¢. The master curve g(s/t%)
provides an alternative route to the cluster size distribution g(s/t?), as discussed
in Section 6.2.2. As this route requires differentiation, the coalesced data points
were fitted [31], see Fig. 6.8, to allow numerical differentiation. The resulting curve,
shown in Fig. 6.6, has the same global shape as the master curves that were pieced
together. The slope of 2.17 at low s/t? nearly matches with the pieced-together
curve in the left panel, but is slightly lower than that of the pieced-together curve
on the right. A steep decay sets in for s/t? > 10~27~%, with a slope that is sensitive
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Figure 6.4: The time taken till the largest radius of gyration of the growing aggregates reaches a fixed
value, close to the maximum R, attained by the densest system, across a range of volume fractions.
The solid line is a power-law fit with an exponent of -1.37.

to the details of the fit of g(s/t%). The deviations between the various approaches
to f are attributed to the binning procedures, the limited amount of data to analyse,
and the inaccuracy in overlaying the various curves by the eye.

As can be seen in Fig. 6.8, the master curves g (s/t”) of the size-weighted
cumulative size distributions vary with volume fraction but have a similar shape.
They can be made to coalesce into a single master function by introducing a scaling
parameter a(¢) that varies with the volume fraction. Defining the f; at the lowest
volume fraction as the reference, a(1073) = 1, the values for other volume fractions
are obtained by overlapping the various data sets (by visual inspection). For low
volume fractions «a is inversely proportional with the volume fraction, and hence
with the number density, indicating the existence of a master function

N(t) 0(5—1h<ﬁ> (6.13)

in this regime the existence of a master function. It is tempting to speculate that
the deviation from ¢~! scaling at higher volume fractions originates in the non-
negligibility of the volume of the particles.

The fractal dimension of the collection of aggregates is deduced from the power-
law relation between cluster size and radius of gyration, as shown in Fig. 6.10,
excluding monomers since their R, is undefined. Evaluation of the power as a func-
tion of elapsed time yields the curves in Fig. 6.11. The fractal dimension is seen
to steadily rise with time, indicating that the aggregates gradually become com-
pacter. It appears that the fractal dimension has not converged at the termination
of the simulations. Extrapolation of the data, however, is not likely to reach the ac-
cepted limit for DLCA of d¢ ~ 1.75. Since this value was established for aggregates
performing translational motion only, additional simulations were performed with
disabled rotational dynamics leaving all other properties unchanged. As shown in
Fig. 6.11, the absence of rotations results in a substantial increase of the fractal
dimension of the aggregates, which now approaches the accepted limiting value.
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Figure 6.5: The cluster size distribution ng(t) as function of time at several sizes (left) and as function
of size at several times (right), averaged over 20 simulations at ¢ = 2 - 1073, In the left (right) plot,
with increasing size (time) the distribution is represented by triangles pointing up (blue), left (green),
down (purple) and right (red), with intermediate lines in grey. The intervals between the curves grow
exponentially, i.e. are equally distributed on a logarithmic scale, with sizes ranging from 1 to 150 (left)
and times ranging from 307 to 65007 (right). For statistical purposes, averages are taken over all sizes
within the exponentially growing bins, thus including every cluster in the plotted curves. In the left plot
the slope of the dashed line is —2, in the right plot the slopes of the dashed and dotted lines are —1
and 2/3, respectively.

It is also notable that eliminating the rotations more than doubles the average time
required to reach the termination condition of the simulations, i.e. an intra-cluster
span exceeding half the box length.

The impact of the aggregates’s mobilities on the aggregation process is fur-
ther explored by comparing the hydrodynamics-based mobilities employed thusfar
against the commonly used scaling law of the translation mobility u, = s~ in the
absence of a rotation mobility. Figure 6.12 indicates, as expected, that a reduction
of the diffusive motion of aggregates — by increasing y from unity, as in the Rouse
model for polymers, to 1.8, i.e. equating y to the expected d; — results in a slowing
down of the aggregation process and hence in a lower power z. It is notable that
the system with hydrodynamics and rotation aggregates faster than either of these
purely translational systems.

6.3.2. Rods

The shape of the primary particles affects the aggregation process, as elongated
particles are known to form percolating networks at lower volume fractions than
spherical particles[32, 33]. The shape selected here is a cylinder of diameter D = 1o
capped by two hemispheres of the same diameter, resulting in a tip-to-tip length
L and an aspect ratio p = L/D. Detection of overlap of two of these particles is
fairly straightforward. Mobility matrices are obtained by approximating the rods as
linear chains of touching spherical particles of diameters equal to those of the rods;
with this substitution in mind, only integer aspect ratios are selected. The same
substitution is also used when determining fractal dimensions, where the monomers
are now included in the scaling law. Since the phase diagram of a suspension of
rods is not determined by the volume fraction but by (L/D)¢, the latter product will
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Figure 6.6: Reconstruction of the master function f(s/t). The coloured and grey curves on the left
and right are obtained by shifting the data on the left and right in Fig. 6.5 along the horizontal axis
through division by s and t#, respectively, assuming z = 1.2, followed by shifting each curve vertically
to attain approximate coalescence (by visual inspection). The two plots resemble mirror images, as
they should be if they follow the same master function; note that the two horizontal axes are mirror
images, In (t/s) = —In(s/t). Also shown, as solid black lines, is the master function extracted from
the cumulative size distribution of Fig. 6.8.

appear frequently in the analysis.

The evolution of the number of cluster and their average size for spheres and
rods of two aspect ratios, for the three systems sharing (L/D)¢ = 1072 and L,, =
2750, is depicted in Fig. 6.13. With increasing aspect ratio the mobilities of the
rods decrease and consequently the aggregation slows down. But the size of the
aggregate still benefits from the aspect ratio, hence the largest intra-aggregate
span reaches half the box size for a considerably lower average aggregate size
— it even appears that p = 5 and 17 reach this size at about the same time. The
termination times of simulations at constant (L/D)¢ show less variation for nominal
aspect ratios (p <= 30) with a sharp drop for (p = 45), see Fig. 6.14. Simulations at
constant volume fraction show a much stronger dependence, t = 0.75 — 0.211np.
A dependence on the logarithm of the aspect ratio was predicted on theoretical
grounds [34], with the logarithm originating in the diffusion constant of the rods.
The negative termination times upon extrapolation of the current data to higher
aspect ratios suggest that the random depositions of rods produces a percolating
network under those conditions.

The fractal dimension of aggregates of rods increases with time, see Fig. 6.15,
reminiscent of the aggregates of spheres. The values at the end of the run are
again below the classical DLCA limit, the more so as the rods are more elongated;
these final values are collected in Fig. 6.16. By switching to larger box sizes, this
time using a constant number of particles and a constant volume fraction, it is found
that the aggregates at the end of the simulation exceed the DLCA limit for spheres,
for aspect ratios around ten and higher. The fractal dimension at first increases
approximately linear with p, while leveling off at higher p, as was also observed in
experiments [33].
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Figure 6.7:
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Figure 6.8: Size-weighted cumulative size distributions for volume fractions ¢ = 1072 and 1072. The
horizontal axis on the left denotes s/t, the axis on the left is rescaled to s/t? with the employed values
of z — one for each volume fraction — selected to maximize the overlap of the data (by visual inspection).
The legend indicates elapsed time intervals since the start of the aggregation process, with an interval
5.4 -1037 for ¢ = 1072 and 60t for ¢ = 1073, The cyan line in the right panel is a fit.

Figure 6.9: The master curves of Eq. (6.8) coalesce to a master curve that is independent of the volume
fraction, by shifting along the horizontal axis (left). The volume fractions are indicated in the legend, as
multiples of 1073, The scaling parameter a, which maps the individual master functions onto that of
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Reconstructed aggregate size distributions as function of size, with the size s rescaled
relative to the elapsed time (bottom axis) and the mean cluster size (top axis), with So(t) = Np/Nc(2).
The distributions are normalized to unit area on a linear scale.
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Figure 6.10: Scatter plot of the radius of gyration, R, versus the number of primary particles, s, for all
clusters present at t = 5 - 1037 into the aggregation process at ¢ = 2 - 10~3. Monomers are excluded
from the graph. The fractal dimension d; extracted from the power-law fit evolves in time, see Fig. 6.11.
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Figure 6.11: The fractal dimensions d;, as extracted from power-law fits to the radius of gyration, see
Fig. 6.10, as a function of time. Simulations at three volume fractions (left, with values of 103 ¢ indicated
in the legend) struggle to reach the accepted limiting value of d; ~ 1.75 in DLCA (dashed bar). The
error bars indicate standard deviations over 5 to 25 uncorrelated simulations. Disabling the rotational
dynamics of the aggregates (right, ¢ = 2 - 1072) results in a marked increase of the fractal dimension.
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Figure 6.12: Total number of clusters N (black) and the mean cluster size S (blue) as functions of time
for simulations including internal hydrodynamic interactions and rotational dynamics (filled markers),
and simulations with non-rotating clusters (empty markers) assuming diffusion coefficients scaling as
us = pys~1 (triangles) and as ps = u;s~/18 (circles), for volume fractions of 2 - 1073 (left) and 1072
(right).
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Figure 6.13: Total number of clusters N, (black) and the mean cluster size S (blue) as functions of
time for aggregating suspensions of spheres and rods at (L/D)¢ = 1072 and Ly, = 2750. Aspect ratios
p = L/D are indicated in the legend.
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Figure 6.14: The time taken till the largest span within an aggregate of rods reaches half the box
size, versus the aspect ratio p of the rods, at constant volume fraction ¢ = 2 - 1072 and at constant
(L/D)¢ = 1072, in boxes of the same size. The solid line is a fit.
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Figure 6.15: Fractal dimensions as functions of time during the aggregation of rods of various aspect
ratios (see legend), at (L/D)¢ = 1072 and Ly, = 2750. The error bars indicate standard deviations over
5 runs. The dashed line represents the classical DLCA limit.



6.3. Results 123

2-2 ] | T Ll T T T
2.0 B
: 5t {
_18F G F i ! g
=) ®3 ¥
o i
‘_661.6- { { § -
1.4r o const. ¢ il
r o const. (L/D)¢
1.2 H
010207300 30 60 70

p

Figure 6.16: Fractal dimensions at the termination of the simulation, in simulations of rods, plotted
against the aspect ratio of the rods. One set of simulations was performed at at (L/D)¢ = 1072 and
L, = 2750 (black circles, see also Fig. 6.15), the other set uses 16,384 rods at ¢ = 2 - 1073 (blue
squares).
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6.4. Discussion and conclusions

Rotational diffusion dynamics reduces the fractal dimension of aggregates formed
by diffusion limited aggregation, and increases the rate of the aggregation process.
Adding rotational diffusion to translational diffusion increases the displacements of
the primary particles in an aggregate, and thereby increases the probability of an
aggregate coming into contact with another aggregate, resulting in their permanent
fusion. We speculate that rotational diffusion enables these contacts to occur at
larger distances between the centers of the aggregates, and thereby results in
aggregates that are more elongated and posses a lower fractal dimension. It should
be noted that the fractal dimension steadily increases with the elapsed time since
the onset of aggregation. Hence, it can not be ruled out that aggregates subject to
rotational motion may eventually recover the traditional fractal dimension on time
scales far longer than considered here.
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6.A. Appendix

A rotation matrix A can be parameterized with a unit length quaternion vector q
following

a5 + 93 — 95 — 43 ZZQM% - 2‘210513 , 24143 + 2904
A= 29192 + 29093 95— q1+t 93 —q5 29293 —2q0q: |,  (6.14)
24193 — 24042 24293 + 2901 95 — 93 — 4% + 43

where the four elements of the quaternion have been labelled with ordinal numbers
zero to three. In Eq. (6.6), the matrix

) —q1 —q92 —q3
9o —q3 qz
B=—- 6.15
2 qs Q0 —q1 ( )
—q2 q1 9o

is used to convert angular velocities in the body-fixed frame to quaternion velocities.







Conclusion and Outlook

The aim of thesis was development of computer model to better understand the
shear rheology of colloidal aggregates for flow batteries. We started by focusing on
the aggregation kinetics of carbon black colloidal particles. A simple aggregation
model was created by employing Brownian dynamics and rigid multi-bead hydro-
dynamic model. We performed equilibrium simulations and observed the effects
of rotational diffusion on aggregation, detailed in Chapter 6. However we were
unable to study cluster aggregation under shear due to lack of shear-to-translation
mobilities in literature. This led to the development of an quaternion-based Brow-
nian algorithm in Chapter 2. We had extended the mobility calculations to include
shear-to-translation coupling terms thereby enabling simulation of arbitrary shaped
particles in flow-fields. As a by-product we obtained the stress experienced by the
Brownian particles enabling estimation of suspension viscosities. We created an
open-source version of our mobility calculation method, 0seen11 available here:
www2 .msm.ctw.utwente.nl/Oseenll. In Chapter 3 we showcased the versa-
tility of our algorithm by performing shear rheology on various shaped particles
and comparing them against existing analytical results and shear-thinning models.
The probing of shear-viscosities led to the curiosity of evaluating viscosities from
equilibrium simulations via Green-Kubo relations. We identified the shortcomings of
existing stress evaluation schemes and improved them by incorporating fluctuating
stresslets, in Chapter 4. In particular the extended fluctuation-dissipation theorem
presented in Chapters 4, 5 is a first of its kind and would go a long in improving the
stress calculation from Brownian simulations. Since equilibrium viscosity analyse
are orders of magnitude faster compared to non-equilibrium shear computations.
A combination of our new Brownian dynamics algorithm in Chapter 2 with stress
evaluation schemes in Chapters 4, 5 and analyze methods in Chapters 3, 6 will form
the necessary toolkit for simulation and analysis of any arbitrary shaped particles
under external force fields, linear flow fields and Brownian motion.
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Outlook

There are several possible avenues of research that could be established by building
upon the conclusions from the thesis. We enumerate a couple of them below

1. The extended hydrodynamic mobilities derived by us are currently limited to
a single arbitrary shaped particle. Even though this could be easily extended
for particle-particle interactions by constructing bigger grand mobility matri-
ces for multiple particles, it will be extremely memory intensive, limiting the
system size to a few hundred particles. A coarse-grained way of incorporating
leading order particle interactions will be an interesting and essential aspect
of research.

2. The theories on fluctuating stresslets and BD / aggregation algorithms devel-
oped in thesis can be seamlessly combined to model complex phenomena.
For e.g. simulating aggregation process under flow and computing the sys-
tem viscosities which can serve as an universal modelling platform in areas
like colloidal suspensions, flow batteries, bio-macromolecular flows, etc.

3. The colloidal clusters in our simulations were rigidified for the sake of compu-
tational efficiency. However real-life systems are not bound by such restraints,
thus trying to incorporate cluster flexibility like restructuring, breakup can be
a challenging line of study in future.
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Summary

Brownian simulations are used to study colloidal dynamics in the Stokes or low
Reynolds number regime. The solvent is modeled implicitly with stochastic noise in
terms of random forces and torques obeying fluctuation-dissipation theorem. Typi-
cally rigid multi-bead models are used to calculate the mobility matrix of arbitrarily
shaped bodies with hydrodynamic self-interaction (like the HYDRO++ package by
de la Torre et al.). However this approach is limited to translational, rotational and
translational-rotational coupling terms, and therefore can not be applied to bodies
in a shear flow. We have extended the formalism to include coupling between the
rate-of-strain and the translational and rotational motions, yielding a single square
11x11 matrix describing the full hydrodynamic mobility tensor of the rigid body.
This extended mobility calculation provides access to dynamic stresses acting on
the body and thereby the intrinsic viscosity of a dilute suspension of these objects.
In combination with a recently developed rotational Brownian dynamics scheme
by Ilie et al., this enables direct simulation of arbitrarily shaped rigid bodies in the
presence of flow fields. The new algorithm was used to study the shear-thinning
rheology of ellipsoids of various aspect ratios. And shear rheology of more asym-
metric objects like hemi-spherical caps, helices were considered. In Chapters 4,
5 we focus on the fluctuation-dissipation theorem. Even though this theorem has
been used extensively in simulating dynamics of a colloid, little attention is made
to stress fluctuations. We have derived an accurate evaluation of colloidal Brown-
ian stresses by including rotational derivatives of the mobility matrix and extended
the fluctuation-dissipation theorem to include stress fluctuations. The inclusion
of fluctuating stresses which has neglected in all the previous Brownian dynamics
formulaisms enables auto-correlation of stress at the pure Brownian limit (Pe=0).
Combined with the Green-Kubo relations the auto-correlation functions yield viscos-
ity of the colloidal suspensions. We see agreement between the Einstein viscosity
coefficients evaluated from our auto-correlation estimates and low Peclet shearing
simulations. Storage and loss moduli were also obtained by performing Fourier
transforms of the auto-correlation function. In the last Chapter we performed clus-
ter aggregation simulations to see the effect of our improved simulation and mo-
bility calculation algorithms on aggregation kinetics. This will facilitate us in the
simulation of colloidal aggregation under shear flow, with the aim of improving the
understanding and efficiency of flow batteries.
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Samenvatting

Brownse simulaties zijn gebruikt om colloidale dynamica te bestuderen in het Sto-
kes of lage Reynoldsgetallen regime. De vloeistof is impliciet gemodeleerd met
stochastisch ruis in termen van aselecte krachten en koppels die voldoen aan het
fluctuatie-dissipatie theorema. Typisch zijn starre veel-deeltjes modellen gebruikt
om de mobiliteitsmatrices te berekenen van willekeurig vormgegeven objecten met
hydrodynamische zelf-interactie (zoals in het hydro++ pakket van de la Torre et al.).
Maar deze methode is beperkt tot translatie, rotatie en translatie-rotatie koppeling
termen, en kan daarom niet gebruikt worden voor objecten in een afschuifstroming.
We hebben het formalisme uitgebreid door koppeling tussen de deformatiesnelheid
en de translatie en rotatie bewegingen op te nemen, leidend tot een enkele 11x11
matrix die de volledige hydrodynamische mobiliteitstensor van het starre object be-
schrijft. Deze uitgebreide mobiliteitsberekening geeft toegang tot de dynamische
spanningen die op het object werken en daarmee tot de intrinsieke viscositeit van
een ijle suspensie van deze objecten. In combinatie met een recent ontwikkeld rota-
tionele Brownse Dynamica schema by Ilie et al. maakt dit directe simulaties moge-
lijk van willekeurig vormgegeven objecten in de aanwezigheid van stromingsvelden.
Het nieuwe algoritme werd gebruikt om de ‘shear-thinning’ rheologie te bestuderen
van ellipsoides met gevarieerde aspect ratios. En de afschuifrheologie van asymme-
trischere objecten, zoals een halve bolkap en helixen, zijn beschouwd. In hoofdstuk-
ken 4 en 5 richten we de aandacht op het fluctuatie-dissipatie theorema. Alhoewel
dit theorema al uitgebreid gebruikt wordt in simulaties van colloidale dynamica, is er
weinig aandacht besteed aan spanningsfluctuaties. We hebben een nauwkeurige
evaluatie van colloidale Brownse spanningen afgeleid door de rotationele afgelei-
des van de mobiliteitsmatrix mee te nemen en het fluctuatie-dissipatie theorema
uit te breiden met spannings fluctuaties. De inclusie van fluctuerende spanningen,
die genegeerd werden in alle voorgaande Brownse dynamica formalismes, maakt
zelf-correlaties van de spanningen in de puur Brownse limiet (Pe = 0) mogelijk.
Gecombineerd met de Green-Kubo relaties leveren de zelf-correlatiefuncties de vis-
cositeit van de colloidale suspensies. We zien overeenstemming tussen de Einstein
viscositeitscoéfficiénten geévalueerd met onze zelf-correlaties en laag Pécletgetal
afschuifsimulaties. Opslag- en verliesmoduli zijn ook verkregen door het uitvoeren
van Fouriertransformaties van de zelf-correlatiefunctie. In het laatste hoofdstuk
voerden we cluster-aggregatie simulaties uit om het effect te zien van onze verbe-
terde simulatie- en mobiliteitsberekeningsalgoritmes op de aggregatiekinetiek. Dit
maakt het ons makkelijker in de simulatie van colloidale aggregatie in afschuifstro-
mingen, met als doel het verbeteren van het begrip en de efficiéntie van stromings-
batterijen.
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