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1

Introduction:
Granular matter, an inland problem

Such simple things,
And we make of them something so complex it defeats us,
Almost.

—John Ashbery

The Waldseemüller map, published in 1507 by German cartographer Martin
Waldseemüller, is known for being the first map that uses the name “America” for
the then newly recognized continent. It is wonderful to look at; beautiful not only
for its intricate illuminated borders and detailed illustrations, but also for the sci-
entific accomplishment that lies behind, and the spirit of knowledge that must have
inspired it. It might make us laugh, at first sight, for its easily comical imprecision.
But on second thought, after a quick reflection on what would it have taken to make
a map of the world in the XVI century, it may reveal to us as an Herculean feat. It is
the collection of small fragments of information, taken from thousands of travellers
and sent by ship and land for years, summarized and arranged in one careful illus-
tration. After years of coming back to this map, by chance and purpose, the feature
that now most deeply calls my attention is the marked difference on the level of de-
tail between coast and inland. While names of ports and sites populate the coast of
America, inland the map is basically empty; no names, no rivers, not even monsters,
just a honest depiction of lack of information.

Just as classic cartography, physics struggles with the middle lands. Curiosity
hints that it is precisely there, in these unexplored no-man’s lands, where richness
usually lies. It is these blank patches and the drive for knowledge what sets the pace
of determined research. But the path is difficult. Full of illusions, every student
quickly learns in the first hard years of their training that physics is, in its more fun-
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Figure 1.1: Depiction of America in the Waldseemüller map, by German cartographer Martin
Waldseemüller, 1507.

damental aspect, a science of approximations. Reality is far too complex, varied and
overwhelming to be captured by any mathematical description; it is even so for our
brain. Thus, the researcher finds himself with no other way to progress than simpli-
fication; to focus on those limits where things can be solved: vacuum, two-particle
interactions, perfectly-rigid, isotropic, homogeneous, and so many other common
physics idioms. Relax any of those, venture away from the coast, and things quickly
start getting complicated.

1.1 Granular materials definition

Granular materials, the object of study of this thesis, lie in the midst of many worlds.
If physics is like the Waldseemüller map, granular materials would lie somewhere in
the middle of the Amazons. They are, to begin with, a collection of particles, which
immediately brings difficulties, as Newtonian dynamics quickly become analytically
intractable as the number of bodies increases. This is not a theoretical problem of,
for example, not knowing the governing equations of motion, but more a practical
problem, of not being able to solve them within a reasonable time. Classical physics
excelled in describing systems with a huge number of independent or weakly inter-
acting particles, as the theories of fluids, solids and gases demonstrate; or systems
with just a few constituents, as for example the motion of bodies in planetary sys-
tems. But grain collections lie somewhere in between, where individual tracking
of the particle trajectories and contact forces was impossible before the advent of



Granular materials definition 13

electronic computers, and statistical physics methods are to be applied with care,
as such crucial assumptions as molecular chaos may no longer be valid. The num-
ber of particles involved is the first challenge to overcome in the study of granular
materials.

Grains –the constituent particles of granular media– are usually considered to lie
in between 1µm and the size of asteroids, that is, in the 105m range. Even though
common behaviours have been observed in this wide range of length-scales, most
of the research has centred on micro- to centimetric particles, as they can be manu-
factured and handled with precision, to be used in various experiments. These are,
also, the scales most relevant for practical applications. The lower size limit is set by
the influence of thermal fluctuations: granular materials are defined to be athermal,
in the sense that fluctuations due to temperature do not have a relevant influence
in their movement [1]. This has a fundamental physical consequence, as the (in-
land) phase space of possible configurations is not explored unless the material is
externally excited [1]. Granular materials thus exhibit metastable states which are
far from global equilibrium, affecting the reproducibility of phenomena and mak-
ing classical thermodynamic arguments inapplicable. The size of the grains is thus
situated in a complicated mid-range, big enough so that external fluctuations and
cohesive effects are negligible, but small enough so that self-gravity does not yet
kick-in.

In fact, the characteristic of granular materials that is most relevant for the de-
scription of their behaviour stems from their size. Disregarding other effects [2, 3],
the fundamental interaction of grains is through the contact forces present in every
grain-grain collision. Being macroscopic, grains posses a large enough number of in-
ternal degrees of freedom such that at every collision, momentum and energy can be
irreversibly converted into heat, or lost in deforming their internal structure, effects
which generally have no influence on the macroscopic dynamics. Thus, granular me-
dia is said to be a dissipative system: energy is being constantly “lost” due to grain
collisions. This should come as no surprise, as we intuitively know that sand dunes,
rice grains or Lego-brick collections quickly come to a rest after being pushed, tilted
or vibrated: that is, externally excited. The dissipative nature of granular media
makes it an excellent candidate for the study of out-of-equilibrium systems, as will
be shown in one of the chapters of this thesis, and provides another spectacularly
hard property to take into account when trying to model their behaviour.

Summing up, we reach the usual definition of granular materials: conglomer-
ations of solid, macroscopic and dissipative particles. Granular matter is studied
in many different scenarios: flowing or static, from dry hard-sphere collections to
soft polygons immersed in fluids. The variety of phenomena, applications and mod-
elling challenges makes them a vast area of research. In particular, this thesis inserts
itself in the multidisciplinary and decades long effort to answer one question: how
do granular materials flow? We will study the movement of grains when externally
excited through vibrations, and try to understand the origin of their unexpected be-
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haviour. This is done using simulations, continuum modelling, and collaborations
with fellow experimental researchers. Before we dwell into the specifics of our work,
a general overview of the context of our research is given. First, the general chal-
lenges of granular flow are described, followed by a revision of previous research on
the particular scenario considered, and finally introducing the numerical tools used.

1.2 Granular flow

Without an external energy source grains will quickly come to a rest, and settle
into mechanically stable configurations. The mechanical properties of such arrange-
ments are complex and present strong deviations from classical elastic theory, due in
great part to the inhomogeneity and anisotropy of their structure [4]. Modelling such
properties has proven to be an exceptional challenge for both physical and mechani-
cal engineering research [5], as theories must take into account both the microscopic
and macroscopic scales.

In this thesis we will avoid the static packing scenario, keeping grains in move-
ment by constantly injecting energy into the system. Body forces, usually grav-
ity, can also sustain granular flows, as for example in the case of avalanches, al-
though in our work we will focus on excitation through boundary forces. In gen-
eral, grain flows are also particularly difficult to predict, due in part to ubiquitous
phase-coexisting scenarios, as well as deviations from the usual distributions of ve-
locity [6, 7]. Furthermore, they critically depend on the form and strength of energy
injection [7, 8]. Notice how hard it usually is to pour sugar or salt from one container
to another; we struggle with the amount of tilting needed to trigger the movement,
and then the direction and strength of flow is not easy to predict. An enormous
amount of research has been done, inspired in part by the relevant presence of gran-
ular flows in industry, as well as by the variety of interesting complex phenomena
they exhibit.

After observing how sand falls through our hand, or pasta flows from the pack-
age to the pot, it naturally comes to mind that granular flow should be describable in
terms of a continuum theory not so different from the one describing regular fluids,
that is, the Navier-Stokes equations. In fact, most of the theoretical approaches to de-
scribe granular flow consist in reinterpreting the hydrodynamic fields and determin-
ing the appropriate constitutive relations, while the general form of the equations is
borrowed from Newtonian classical fluids. It would be easy to conclude that this is
to be expected, as closed granular systems also obey the basic laws used to derive the
Navier-Stokes equations, that is, the conservation of mass and momentum [9]. Nev-
ertheless, the questionable point of granular hydrodynamic theories resides not on
the conservation laws, but on the assumption that the continuum hypothesis holds
for granular flows [10]. That is, for a continuum description to be valid, we would at
least demand that there exists something as a representative volume element, as also
separation of scales. But inhomogeneous and anisotropic arrangements are the norm
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in granular materials, making the definition of a unit cell complicated, especially at
high packing densities. This is the fundamental reason for the need of micro-macro
theories which can relate particular arrangements to universal macroscopic quan-
tities. Furthermore, the Knudsen number quickly becomes greater than unity with
increasing packing fraction, as the relevant length scale of the problem, that is, the
size of the particles, is greater than the mean-free path [11]. The continuum approx-
imation of this discrete medium is therefore, at first sight, not expected to be valid
for all densities.

Surprisingly [9], even though the continuum hypothesis could be expected to fail
for granular materials [10], granular hydrodynamics has had great success in de-
scribing flows in a number of different scenarios [12, 13, 14, 15, 16, 17, 18]. The
success of such theories is in itself an interesting point and subject of ongoing re-
search [15, 16]. Nevertheless, microstructures, correlations between fields, and non-
Gaussian velocity distributions cannot be ignored in most cases, especially for higher
densities and moderate to high dissipation. The development of granular contin-
uum theories continues to be an active area of research [17, 19, 20, 21]; although
significant progress has been made, researchers are far from a universal granular
hydrodynamic theory, and even the existence of it is heavily questioned [9, 10].

Contrary to the continuity and momentum conservation equations, which in
most cases keep their general form from classical systems, the energy conservation
condition must account for the dissipative interaction of the grains. This is usually
done by adding a sink term, the specific form of which depends on the particles’
properties [9, 22]. On the other hand, energy injection is usually included in the
boundary conditions; this imbalance between dissipation at the bulk and injection
at the boundaries turns out to be crucial for the behaviour of many granular systems.

Most of the granular hydrodynamic theories start from the Boltzmann-Enskog
extension of kinetic theory [23, 24, 25]. The solution to those equations involves
finding an expression for the velocity distribution function, for which many ap-
proximation methods have been proposed [26, 27]. No closed form of the trans-
port coefficients or the dissipation term exists for a general granular flow, although
several expressions model the low-density, high elasticity limit. In these cases, theo-
ries show a remarkable agreement with numerical simulations and experiments. At
some points in this thesis we will also make use of these expressions, and study the
limits of their validity as a function of the number of particles involved. As will be
seen, the constitutive relations are somewhat involved, and depend on parameters
which are not straightforward to measure in experiments. Still, and even though the
approximations made by kinetic-theory are far from realistic models of grains, these
results are highly relevant, as continuum solutions can be scaled with no extra com-
putation cost, while the discrete simulation of the amount of particles involved in
many practical applications remains impractical. Again we recognize here a similar
image: the limits have been resolved –of low densities and highly elastic particles—
but things quickly become obscure going inland.
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1.3 Granular matter as a complex system

Granular materials have not only been studied in the context of complex fluids.
Considered as a dissipative, out-of-equilibrium many-body system, excited granu-
lar matter is an excellent scenario for the study of complex dynamic phenomena.
Typical behaviour of highly nonlinear dynamical systems is observed, such as pat-
tern formation and hydrodynamic-like instabilities [28, 29]. Basic self-organization
is also observed in a variety of different setups, and its study yields further insight
into the influence of individual particle interactions on collective behaviour [29].
Broadly speaking, understanding the dynamics of these phenomena is relevant for
many areas of active scientific research of far from equilibrium complex systems,
such as colloids, foams, suspensions and biological self-assembled systems.

The observed complex behaviour of granular matter usually shares many char-
acteristics with other condensed matter, molecular systems. Thus, the respective
theories can often be applied to granular media, with varying degrees of success.
The effort yields further insight into the universality of such theories, as granular
materials usually relax or even violate some of their derivation conditions. It also
explores further the relation between classical continuum fields and their granular
equivalents, specially regarding the temperature field and its correct definition in
macroscopic athermal systems. As an example, consider a vertically agitated two-
dimensional granular monolayer. It has been shown that as energy is increased,
grains go from a highly ordered crystalline state to a two-dimensional fluid-like be-
haviour. This process was observed to be very similar to the scenario described by
the Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY) theory, that is, the
melting of two-dimensional molecular solids in equilibrium conditions [30]. Inter-
preting the validity of such a classic equilibrium theory for a far-from-equilibrium
system presents a challenge, and suggests new definitions for granular hydrody-
namic or thermodynamic fields [31, 32].

Much knowledge has been gained on non-equilibrium phase transitions from
granular studies. The low number of constituents of granular media, when com-
pared to molecular fluids, provides a unique way of studying the role of noise in
phase transitions [33, 34, 35]. It is known that fluctuations in macroscopic fields are
proportional to the number of particles involved in the system, and thus the differ-
ence of noise intensity between molecular and granular systems is expected to be
enormous. For example, only by including additive noise terms to the appropriate
universal amplitude equations it has been possible to follow the growth and satura-
tion of the relevant modes in pattern formation scenarios [34, 35]. It then becomes
possible to establish an analogy with systems with the same amplitude equations,
sometimes for quite different physical phenomena [36, 37]. The advantages that
granular media offer, such as individual particle tracking and visible experiments,
become an opportunity to understand the dynamics close to the transition for harder
to visualize, e.g. molecular systems. The whole process is, in part, a classification
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scheme that shows what is relevant and what is not in the critical dynamics of many
transition scenarios. In this thesis we study fluctuations at the onset of a convective
transition, and suggest a new interpretation of the transition based on the best suited
amplitude equation.

1.4 Vibrated granular materials

Granular flow depends on the existence of an external source of energy. A common
way of keeping grains fluidized is by vibrating the container that holds them. En-
ergy is thus injected through collisions with the grains and the moving walls, and
dissipated by grain-grain collisions. A direct consequence of this is the creation of
spatial inhomogeneities in the temperature field, which produces all sorts of non-
equilibrium effects. This particular case of energy injection has in great part been
favoured by its practical experimental implementation: electromagnetic shakers can
be used to vibrate the container in a specified waveform and with accurate amplitude
and frequencies. High-speed cameras are then commonly used to track the grains.
Nevertheless, we wish to remark that the experimental setup does involve several
complications, as the accumulation of static charges and the precise alignment of
the container, among many others.

The plethora of phenomena present in vibrated granular systems is outstanding.
Spontaneous phase-separation in vertically vibrated monolayers inspired a whole
range of experiments, theory and simulations [30, 31, 38, 39, 40, 41, 42, 43]. Emerg-
ing patterns and localized structures yielded interesting relations with general dy-
namics based on the amplitude of the observed patterns [44, 29, 45, 46]. The correct
explanation of the Brazil-nut effect, whereby particles which differ in size, mass or
other properties migrate to the surface or bottom of a shaken container, continues
to be a subject of debate, although a consensus on the involved effects seems to have
been reached [47, 48, 49, 50, 51, 52]. When subject to horizontal vibrations, grains
also present phase transitions [53], segregation [54] and pattern formation [28]. Sud-
den expansions, or sublimation-like phase transitions, are also observed either in ini-
tially crystalline configurations [55], or self-segregating ones [56]. Recently, standing
waves and other patterns were observed in vibrated spheres filled with grains [57].
Overall, a wide range of complex phenomena has been reported, presenting both
similarities and fundamental divergences from regular fluids. For general overviews
we refer the reader to available reviews that treat the subject [29, 58, 59].

This thesis deals extensively with one specific geometry: a vertical quasi-two-
dimensional (quasi-2D) box, whose height and length is much larger than its depth.
Quasi-2D geometries are popular experimental setups, as most of the grains can then
be easily visualized and tracked. When subject to vertical vibrations, grains inside
the vertical quasi-2D container develop several distinct stable states. For low energy
injections and a high enough number of particles, the granular bed bounces in sync
with the vibrating box, and its behaviour is analogous to that of a single particle
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bouncing on a moving plate [60, 61]. This occurs after the maximal acceleration of
the bottom plate has exceeded the acceleration of gravity by a considerable amount,
providing enough energy for the bed of grains to detach from the moving plate. As
energy is increased, the bed goes through a period-doubling instability, eventually
giving rise to a pattern [61, 62]. Depending on the amplitude, filling height, and
particle factors, the granular bed can develop sub-harmonic surface-wave-like mod-
ulations, or spikes, both of which switch their peaks and valleys every two oscillation
cycles [61, 63, 64, 65, 66]. The wavelength of such states roughly decreases as the
energy is increased, and seems to depend heavily on dissipation, both due to the
filling height and the restitution coefficient [64, 65, 66]. If, on the other hand, the
number of particle layers is low, a gaseous state is found where particle motion is
essentially uncorrelated [60].

For very high number of layers and low energy injections heaping can occur,
whereas grains migrate to a specific sections of the container, forming one or sev-
eral heaps of grains. Also in the high number limit but for higher energy injections,
convection rolls are observed [67]. Convection or, more generally, average circula-
tory motion, seems to be present in almost all previously described states, although
the driving factors and its dynamics change considerably [68]. We have ignored
so far the role of air in the dynamics of the bed, which is known to be relevant
[69]. Although a general quantification of the effects of interstitial air remains elu-
sive [69, 70], they can be estimated from considering the relative importance of the
forces exerted on the particles due to viscous drag (Stokes-type forces), and/or the
forces from pressure gradients and the ensuing flow of air through the grains, a situ-
ation modelled by Darcy’s law or relevant extensions [69]. In our study we consider
the container to be in vacuum, as it significantly simplifies simulations. A non-
exhaustive review of all these states can be found in [71]. In it, a density-inverted
and a buoyancy driven convective state are described for even higher energy injec-
tions, both of which will be the focus of this thesis.

The granular Leidenfrost effect

Experiments and simulations suggested that there were new behaviours to be seen
in the narrow box beyond undulations, for even higher energy inputs [72, 73]. In the
narrow box, it was observed that the modulated surface pattern is suddenly lost, and
a density inverted state is reached [15]. In it, a gaseous, highly agitated region near
the bottom boundary of the container sustains a solid or fluid-like upper region.
This state was then referred to as granular Leidenfrost effect due to the analogous
water-over-vapour phenomena [74]: if a droplet of water hits a surface with a suffi-
ciently high temperature, it does not evaporate immediately, as a cushion of vapour
is formed below it that prevents it from touching the plate. The moving plate in
our system is analogous to the high temperature surface in the classical system. The
molecular Leidenfrost effect continues to be an active area of research, partly due to
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its many practical applications in industrial processes [75, 76, 77, 78].
Eshuis et al. carried further the experimental study of the granular Leidenfrost

effect in a strictly 2D setup [79]. They confirmed that the appropriate order param-
eter to capture the transition was the dimensionless shaking strength S ≡ a2ω2/gd,
where a and ω are the amplitude and angular frequency of oscillation, d the par-
ticle size and g the acceleration of gravity. They were also able to obtain a match-
ing density profile from a granular hydrodynamics model, considering the moving
boundary as a temperature boundary condition, in analogy with [15]. In a subse-
quent study, carried out in a slightly deeper, quasi-2D setup, Eshuis et al. increased
further the energy injection until the Leidenfrost state lost its stability and gave
rise to a buoyancy driven convective state [71]. It was then shown that this tran-
sition can be captured by a linear stability analysis over a granular hydrodynamics
model, with good agreement on the critical points for both experiments and simula-
tions [80]. They took as initial stable state the vertical density profile, obtained from
simulations and experiments, and studied its stability against a modulation of the
hydrodynamic fields with a given wave number kx. The critical wave number was
found to coincide with the observed density profiles in simulations and experiments.
Part of this thesis explores further the precursor states of the granular Leidenfrost to
convection transition, and looks at the critical behaviour in the context of bifurcation
theory, further deepening the understanding of this transition.

1.5 Simulation of granular materials

Original research on granular materials was limited to phenomenological observa-
tions mainly by the experimental resources available [81]. The development of mod-
ern imaging techniques and the use of computers for data analysis at the middle of
the previous century is certainly one of the factors that explains the explosion of
granular research. Suddenly it became possible to observe and track the individual
trajectory of grains in various different scenarios, providing a unique opportunity
to link macroscopic behaviour with particular dynamics [82]. Another determinant
factor for the growing interest on granular media was the rise of computer simula-
tions, which from the start could correctly reproduce and predict many behaviours,
permitting an until then impossibly detailed analysis of their structure and dynam-
ics. If, as history hints, scientific revolutions are associated with technical advance-
ments, then the science of granular matter is in great measure part of the computing
revolution that took place in the second half of the past century.

Algorithms that simulate the motion of a collection of particles are usually re-
ferred to as particle simulations. There are many different methods, with different
ranges of applicability and validity [83, 84]. The most widely used one consists of a
straightforward solution of the equations of motion: given the total force acting on
each particle, Newton’s second law is integrated in time. Time is advanced in small
enough time-steps so as to resolve with good enough resolution the duration of the
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contacts. After moving the particles accordingly, forces are recomputed, and the
process is repeated. These types of implementations are referred to as discrete par-
ticle methods (DPM). Critical optimizations can be done in the computation of the
total force acting on each particle by dividing the system in cells and using appro-
priate data structures [85]. This method has proven accurate in a number of physical
cases, and is now widely used for both academic and industrial purposes.

Event-driven algorithm

In this thesis we use the event driven (ED) discrete particle method [86, 87, 88].
The fundamental difference between an ED and plain DPM algorithms lies in the
handling of the time evolution: ED does not possess a fixed time step, as DPM sim-
ulations, but a variable one, given always by the next event. An event is either the
collision of two particles, or the collision of one particle with a boundary. ED sim-
ulations are usually orders of magnitude faster than their plain DPM equivalents,
as collisions are resolved in a lower number of computational steps, and the undis-
turbed free-flight motion of the particles is not computed. Nonetheless, it is im-
portant to remark that the ED algorithm is not easily parallelized [88], with the
computational gain as a function of the particles number (N ) being less than opti-
mal, at most proportional to

√
N . This is a highly relevant aspect for today’s overall

computing efficiency.
The simplified model of collisions used in event-driven simulations allows for a

much faster treatment of collisions than plain DPM simulations. Velocities are up-
dated instantly, according to rules based on momentum conservation and energy
balance. For two smooth spheres of radius a, and masses m1 and m2, the post-
collisional velocities ~v′ in their centre of mass reference frame are given, in terms
of the pre-collisional velocities ~v, by

~v′1,2 = ~v1,2 ∓ (1 + r)~vn /2 , (1.1)

with ~vn ≡
[
(~v1 − ~v2) · ~n

]
~n, the normal component of the relative velocity ~v1−~v2, paral-

lel to ~n, the unit vector pointing along the line connecting the centres of the colliding
particles from 2 to 1. The restitution coefficient, r ∈ [0,1], is a measure of the level of
inelasticity in every collision, with r = 1 corresponding to the elastic case. Most of
the results of this thesis will depend heavily on r, especially when comparing with
hydrodynamic theories, which are valid in different regions of r. Roughly speak-
ing, higher dissipations lead to more strongly correlated dynamics, and thus are
harder to model by continuum theories. This simple collision model is used exten-
sively throughout this thesis, and serves as the starting point for more involved ones.
Rough hard-spheres that include rotational degrees of freedom are also considered,
as friction is known to play a determinant role in many phenomena [89, 17].

Once the collision rule has been specified, the algorithm is then completely de-
fined. The main cycle consists of, first, the determination of the most immediate
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event from the set of all possible future events. Specific computations are performed
for each type of event; in the case of a collision, the velocities of the particles are
properly updated. Events can also be any other physical or not physically relevant
action, including measurement routines. The last step consists in advancing time
and updating the system accordingly, after which the whole process is repeated. ED
simulations are thus extremely efficient when the time of the upcoming events can
be analytically and easily computed. This is the case for particles subject to constant
and homogeneous external fields (usually gravity) and step-wise constant interac-
tion potentials. In this scenario the solution for the time of collision between two
particles is actually given just by the intersection of their relative linear trajectories.
Walls, on the other hand, involve the solution of quadratic equations. Nevertheless,
let us remark that although analytic determination of the collision times highly sim-
plifies the algorithm, the possibility of numerically solving the intersection of the
equations of motion is also possible [90].

One clever source of optimization involves the updating process after a collision.
Classic ED algorithms updated the whole system after each event, a method which is
straightforward but inefficient for large numbers of particles. Modern ED algorithms
assign a local time to every particle, and only update the events in which the two
particles involved in the last collision participate[86], as the rest of the predicted
events will be unmodified. This so called “asynchronous” algorithm saves time by
not having to cycle and update the position of every particle in the system after every
event, an expensive routine for large numbers of particles.

The critical optimization point for serial ED algorithms is in the determination
of the forthcoming collision times. The introduction of cells, which define virtual
boundaries, greatly increases the efficiency of this process. Virtual boundary colli-
sions have no effect on the particles motion, but are only introduced to keep track
of which particles belong to which cell. If the particles in a given cell and its neigh-
bours are known, then the search for possible collision partners can be done locally,
greatly reducing the time for the determination of the next collision for any given
particle.

The process can be further optimized using appropriate data structures. The
times which indicate the next event for a certain particle are stored in an ordered
heap tree, such that the next event is found at the top of the heap with a computa-
tional effort ofO(1). Changing the position of one particle in the tree from the top to
a new position needs O(logN ) operations. In total, optimizations yield a numerical
effort ofO(N logN ) for N particles. For a more detailed description of the algorithm
we refer the interested reader to [86].

Using all these optimizations it is possible to simulate the evolution of 106 par-
ticles within reasonable time on a normal desktop computer [91]. Throughout this
thesis we will be interested in long transient behaviour, especially when studying
dynamics near transitions. Moreover, as we have seen, some of the states involved
in our study require high energy inputs, which translate into very high frequen-



22 Granular matter, an inland problem

cies of oscillation of the container. In order to resolve these oscillations, plain DPM
methods would have to adjust their time-step to be a fraction of the oscillation pe-
riod, which together with the expected long transient behaviours render the use
of such methods infeasible. As an example, the longest simulations in our studies
took around two months of continuous computation; considering that DPM meth-
ods where seen to be anywhere between one to two orders of magnitude slower, ED
simulations clearly emerged as the most practical alternative.

Hard-sphere model

Physical collisions between particles are a very hard problem to model, as they in-
volve the inner structure of individual grains, and surface impurities are also known
to play an important role [92, 93, 94, 95]. Simplistic models are usually preferred,
as in collisional many-particle systems the details of the interactions are usually av-
eraged out, and thus irrelevant. The most straightforward simplification consists
of impenetrable, infinitely hard particles. In the following work we will only con-
sider the hard-sphere model of particles, in the spirit of simplicity and generality of
results. Furthermore, as we mostly consider highly agitated systems, the specific in-
teraction between particles or higher order effects, as ternary contacts, are expected
to become negligible.

It could be argued that the hard-sphere model does not capture the physical be-
haviour of particle-particle collisions. Collisions are known to take a finite time,
involve deformation of the particles [96], be affected by attractive interactions [97],
as well as other factors, all of which are not captured in the hard-sphere limit. The
choice of this model is based on the observation that dense matter properties are to
first order determined by the impenetrability of its constituents. In abstract terms,
it is the arrangement of non-overlapping spheres in three-dimensional space that
dominates the properties of dense materials. The study of what properties can and
cannot be captured by considering only packings of hard-spheres is important, even
if overly simplistic, as it allows the determination of which are the relevant fac-
tors on any phenomena that arises when using more elaborate constituent mod-
els. It is somehow a reductionist argument: only by studying the simple limits
are you able to properly identify the causes in more complex models. Knowledge
has been gained on a wide range of physical systems by using hard-sphere models,
such as colloids [98], glasses [99, 100], liquids [101], and of course granular mate-
rials [102, 103, 104], among others [105, 106]. The model is surprisingly successful
in reproducing several phenomena of condensed matter physics, such as the crystal-
lization or melting of liquids [107, 108], decompaction of grain piles [103, 109], and
amorphous-to-crystal phase transitions [110].
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1.6 Thesis outline

The thesis is organized into six sections. Overall, we follow a path of increasing
energy injection and effective dimensionality, from the Leidenfrost state in quasi-
one-dimensional (quasi-1D) geometries to the transition to convective states in wide,
quasi-2D geometries. Moreover, as the thesis progresses the emphasis roughly goes
from phenomenological descriptions to continuum modelling of the studied phe-
nomena. General conclusions and an outlook of future work are presented at the
end.

Chapter 2 describes the collective oscillations observed in vertically vibrated,
density inverted granular beds. We call these oscillations low-frequency oscillations
(LFOs), as their characteristic period is much larger than the period of oscillation
of the container. Chapter 3 delves deeper into the nature of LFOs, presenting an
experimental observation of the phenomena by using the Positron Emission Particle
Tracking (PEPT) technique. We also report two observed convective phenomena in
similar setup configurations which resist an interpretation by previously known re-
sults. In Chapter 4 we do a simulational study of the transition from the granular
Leidenfrost to the buoyancy-driven convective state. We characterize both density
and velocity fluctuations of the precursor state and interpret their behaviour in the
context of bifurcation and criticality theories. Fluctuations are studied in a more
general aspect in Chapter 5, as a function of the total number of particles involved
in a granular system. A definition is given of hydrodynamically equivalent systems,
and a scaling is found for the steady-state and no-flux conditions in the granular
Leidenfrost state which leaves the equations invariant. The last section, Chapter 6,
studies the possibility of describing the granular Leidenfrost state and its transition
to buoyancy-driven convection using granular hydrodynamic models. The equations
are numerically solved under different physical approximations, and then compared
to particle simulations in order to analyse the deviations and understand the rele-
vant physical factors. Finally, general conclusions are presented in Chapter 7, fol-
lowed by brief discussions about possible future work.





2

Low-frequency oscillations in narrow
vibrated granular systems1

In the following chapter simulations and a theoretical treatment of ver-

tically vibrated granular media are presented. The systems considered are con-

fined in narrow quasi-two-dimensional (quasi-2D) and quasi-one-dimensional

(column) geometries, where the vertical extension of the container is much

larger than both horizontal lengths. The additional geometric constraint present

in the column setup frustrates the buoyancy-driven convective state observed

in wider geometries. This makes it possible to clearly recognize collective os-

cillations of the grains with a characteristic frequency that is much lower than

the frequency of energy injection. The frequency and amplitude of these oscil-

lations are studied as a function of the energy input parameters and the size of

the container. We observe that, in the quasi-2D setup, low-frequency oscilla-

tions are present even in the convective regime. Two models are also presented;

the first one, based on Cauchy’s equations for continuum media, is able to pre-

dict with high accuracy the frequency of the particles’ collective motion. This

first principles model depends on a first order approximation of the vertical

density profile, and shows that a sufficient condition for the existence of the

low-frequency mode is an inverted density profile with distinct low and high

density regions, a condition that may also apply to other systems. The second,

simpler model just assumes an harmonic oscillator like behaviour and, using

thermodynamic arguments, is also able to reproduce the observed frequencies

with high accuracy.

1. With minor corrections, from: N. Rivas, S. Luding, A.R. Thornton, New Journal of Physics
15 (11), 113043, 2013.
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2.1 Introduction

Vibrated beds of granular materials present a wide range of different behaviours:
phase separation [38, 40], Faraday-like pattern formation instabilities [111, 64], heap
formation and convection [112, 113], segregation [114, 59], clustering [91] and peri-
odic cluster expansions [56], among many others. These systems generally present
a remarkable collection of distinct nonequilibrium inhomogeneous stable states for
relatively small changes in the energy injection parameters. Hence, they are spe-
cially suited for the study of nonequilibrium phase transitions, as well as non-linear
phenomena in general. Careful analysis of the microscopic mechanics behind the
different transitions improves the comprehension of the complex dynamics present
in driven granular systems. This gives further insight into when, and until what
point, granular media behave like classical gases, fluids or solids, or whether they
require an altogether different theoretical approach.

As can be seen in the aforementioned studies, the geometry of the system plays
a fundamental role in determining the phenomena. Just by reducing the effective
dimensionality of the system it becomes possible to observe behaviour not easily
identifiable in fully three dimensional systems. The natural approach of study is
then confining the grains to quasi-two-dimensional (quasi-2D) systems, where also
particle-tracking methods become possible. Our study is inspired by one specific
quasi-2D geometry that presents several distinct states in the energy injection pa-
rameter space: a vertical narrow box. That is, we focus on a vertically vibrated
Hele-Shaw cell with the walls parallel to gravity, inside which the grains are located.
The first reported classification of the different states present in this geometry was
realised by Thomas et al. [60], in what would now be considered the low energy in-
jection limit. Research then focused on the wave-like dynamics of the granular bed,
and its variations with the frequency and the amplitude of oscillation [61, 63]. It was
with simulations that the energy input was considerably increased, and the existence
of a density inverted state was first reported [15]. This state, named Leidenfrost after
the analogous water-over-vapour phenomena [115], was then experimentally stud-
ied in depth by Eshuis et al. [79, 71], as well as the buoyancy driven convection
regime that is observed for higher energy inputs.

In the following simulational study the dimensionality of the vertical, narrow
box is progressively reduced until both the width and depth are only five particle
diameters wide, making the system effectively quasi-1D (see Figure 2.1). More pre-
cisely, at this limit there are no significant macroscopic inhomogeneities of any hy-
drodynamic field in the horizontal directions. We refer to this setup as the granular
column. The first direct consequence of this further confinement is the frustration of
the horizontally inhomogeneous states present in the wider geometries. Particularly,
the suppression of convection makes it possible to directly observe the grains col-
lectively oscillating at a much lower frequency than the energy injection frequency.
Appropriately, we call these oscillations low-frequency oscillations (LFOs). Effective
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lx = 100d
~ ~

lx = 20d
~ ~

lx = 5d
~ ~

Figure 2.1: Snapshots of three vertical and narrow containers with the same number of filling
layers F =Nd̃2/ l̃x l̃y = 12, with N the total number of particles, d̃ the (dimensional) diameter of
the spherical particles, and l̃x and l̃y = 5d̃ the (dimensional) width and depth of the container,
respectively; and energy injection parameters, but different widths l̃x. From left to right,
l̃x = 100d̃, l̃x = 20d̃, and l̃x = 5d̃. The rightmost corresponds to the column geometry. Particles
are coloured according to their kinetic energy, with red for higher energies.

frequencies and amplitudes are defined and studied in the container length and en-
ergy injection parameter space. We then argue that LFOs are an essential feature of
the dynamics of the narrow vibrated geometry, but it is only in the quasi-1D column
setup that they can be easily isolated from the other collective grain movement of
convection. Simulational measurements confirm this, as well as a continuum de-
scription of the system, which captures the correct frequency response for high en-
ergy inputs. The frequency behaviour is actually analogous to a forced harmonic os-
cillator, and is obtained mainly by considering a vibrated media with a high density
region suspended over a low density one. This density inverted situation is indeed
present, to different extents, in both the Leidenfrost and the convective regimes.

2.2 Simulations

Simulations are performed using an event-driven molecular dynamics algorithm
[86]. In this approach, particles move freely under the effect of gravity until an event
take place, namely, a collision with another particle or a wall. The motion of the par-
ticles in between successive events does not have to be simulated: if their trajectory
equation is known, time can be advanced in variable steps. This makes event-driven
simulations considerably faster than usual soft-particle simulations, where time is
advanced at constant steps, independent of particle interactions. However, the need
of having an analytical expression for the particle motion is a strong condition that
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limits the possible interaction between particles. In the following, we consider the
most common approach: perfect hard-spheres, which imply binary collisions and no
overlap or long-range forces between particles. This is a first order approximation of
real particle-particle collisions, which is known to be a fairly complex phenomena
dependent on shape, surface roughness, ambient conditions, as many other factors.
It captures, nevertheless, the dominant effects of the simple geometrical constraint
of no significant overlap between particles. In our case, dissipation is modeled by a
set of four parameters, normal and tangential restitution coefficients, εn = εt = 0.95,
as also static and dynamic friction coefficients, µs = µd = 0.1 [116]. The tangential
restitution and friction coefficients model the coupling of linear and rotational de-
grees of freedom, εt setting the threshold for either sliding or sticking behaviours.
The explicit form of the collision law is given in the Appendix. These particular
values are known to reproduce complex behaviour observed in similar vibrated se-
tups using stainless-steel spheres of d̃ = 1 mm to d̃ = 5 mm in diameter [56, 42], and
where picked based on previous experimental measurements [117]. In order to avoid
inelastic collapse we use the TC model [87], with a constant value tc = 10−6(d̃/g̃)1/2,
with d̃ the (dimensional) diameter of the spheres, and g̃ the (dimensional) gravity.
(In the following, quantities without a tilde are dimensionless). That is, collisions
between two entities are considered elastic if they occur more frequent than 10−6

gravity timescale units.
The setup consists of an infinitely tall container of width l̃x and depth l̃y inside

which the grains can move. The boundaries of the container are considered solid,
and have the same collision parameters as particle-particle collisions. The whole box
(both the bottom and the side walls) is vertically vibrated in a bi-parabolic, quasi-
sinusoidal way with a given frequency ω̃f and amplitude Ãf , given by:

z =


8Ãf
T̃ 2
f

(
2t − T̃f

)
t 0 ≤ t < T̃f

2

8Ãf
T̃ 2
f

(
2t − T̃f

)
(T̃f − t)

T̃f
2 ≤ t < T̃f

with T̃f ≡ 2π/ω̃f . The use of a quadratic instead of a sine function gives a consid-
erable speed advantage in simulations, as the prediction of collision times with the
moving walls becomes substantially faster. Test simulations were performed using
a sine function for exemplary cases, and no significant differences were observed
[118]. Furthermore, we considerably varied the collision parameters and found the
essential phenomena to be robust. Friction was observed to be relevant, mostly
by triggering convective flows near the side-walls for lower energy injections than
without friction, as a consequence of the increased inhomogeneity of energy dissi-
pation. The relation is nevertheless not straightforward, as increasing friction also
increases the overall bulk dissipation, which is expected to rise the energy needed
to obtain steady convective flows. Eliminating friction completely quantitatively
modifies the phase space, but all studied states were still observed. We remark that
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the role of friction and dissipation in analogous experiments is a matter of ongoing
research [119].

We now introduce dimensionless variables, which will be used for the rest of the
text. The depth of the box is fixed, ly ≡ l̃y /d̃ = 5, and the horizontal width lx ≡ l̃x/d̃
is varied in the [5,100] region. N is always taken so that the number of filling layers
F ≡ Nd̃2/ l̃x l̃y = N/lxly = 12, which implies that N varies in the [300,6000] range.
Three different oscillation amplitudes are considered, Af ≡ Ãf /d̃ ∈ {0.4,1.0,4.0}.
This allows us to compare with previous results, obtained for Af = 4.0, as also to
extrapolate to lower amplitudes, where the vibrating bottom wall can be considered
as a spatially fixed source of energy (i.e. a temperature boundary condition).

The dimensionless gravity timescale is given by tg ≡ t̃/ t̃g , with t̃g ≡ (d̃/g̃)1/2. Cor-
respondingly, the dimensionless oscillation frequency ωf is scaled as ωf ≡ ω̃f t̃g =
ω̃f (d̃/g̃)1/2. Nevertheless, it is almost always more meaningful to measure time in
periods of box oscillations, T̃ = 2π/ω̃f , and thus we use t ≡ t̃/ T̃ . In order to compare
simulations with different energy injection parameters the dimensionless shaking
strength is used, S ≡ Ã2

f ω̃
2
f /g̃d̃ = A2

f ω
2
f . Finally, the mass scale m = m̃/m̃p is set to

unity by taking m̃ as the mass of one particle, m̃ = m̃p.
Simulations are generally run for 105T = 105(2π/ωf ), unless otherwise stated.

Particles are initially arranged in a low density hexagonal crystalline packing, with
significant perturbations on the positions with regard to the perfect crystal and ran-
domized initial velocities, in order to avoid any relevant correlation. We confirmed
that this initial configuration has no influence on the steady dynamics by running a
few simulations using the end state of the previous simulation as the initial configu-
ration. Contrary to the experiments realised in [71], where the frequency of shaking
is continuously increased, the energy injection parameters are kept fixed during any
given simulation.

Phase Space

In order to validate our simulations, and explore further previous research, we first
focus on the Af = 4.0 case, where the comparison with previous experiments and
soft-particle simulations undertaken by Eshuis et al. [71] is straightforward. Event-
driven simulations are able to reproduce all previously observed states, as can be
seen in the phase diagram in the {lx,S} space presented in Figure 2.2. Furthermore, a
quantitative comparison is possible by looking at the transition points in the lx = 100
case, where the experiments were realised. There is excellent quantitative agree-
ment, within 5%, for the bouncing bed-undulations and the Leidenfrost-convection
transition points, but a 30% error in the undulations-Leidenfrost one. The devi-
ations could in part be explained by the nature of the transitions, as they are not
sharp and are seen to present wide ranges of metastability. This makes it harder to
define a precise transition point value, and motivates the use of transition regions,
which we show in gray.
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As can be seen from Figure 2.2, for lx > 20, and as S is increased (keeping Af =
4.0), the system goes through a sequence of different non-equilibrium stable states:
bouncing bed, bursts, undulations, Leidenfrost, convection and gaseous (S > 400,
not shown). Some of these states disappear or appear as lx and Af are varied, but
their relative order remains. Our study is focused on the Leidenfrost and convective
states, where LFOs take place; nevertheless, in what follows a brief description of
the other states is given.

The bouncing bed state originates when the maximum acceleration of the moving
box is high enough for the bed of grains to detach from the bottom and go through
a period of gravity driven free-flight. The granular bed slightly expands during this
period, until it collides again with the moving bottom plate, compresses, and moves
together with the box, completing the cycle at the next detachment point. That is,
the dynamics of the whole bed is analogous to that of a solid with coefficient of
restitution zero [60]. The sudden loss of energy due to the impact with the bottom
wall has been referred to as granular damping [120]. In this state, the movement of
most of the particles is directly coupled with the box oscillation, and no horizontal
inhomogeneity is observed beyond the expected fluctuations.

As S is increased, the bouncing bed state becomes unstable to periodic pertur-
bations in the horizontal direction, leading to the bursts and undulations states. In
these states high density regions expand and collapse every one or two oscillation cy-
cles, alternating between valleys and peaks at fixed positions. These standing wave
patterns oscillate at twice the shaking period, and are therefore usually referred to
as f /2 waves [71]. In both cases the phenomena is produced by shock-waves trig-
gered by the sudden dilation of the bed as it hits the moving bottom boundary. High
density regions expand and propagate until they collide with another shock-wave
going in opposite direction. The main difference between the two states is the phase
at which the high density regions impact the moving bottom, which leads to dis-
tinct pattern shapes. Undulations present overall less density inhomogeneities in
the horizontal direction, while for bursts the contrast is higher, producing stronger
shock-waves and thus sharper peaks.

Increasing the energy input further leads to a density inverted, horizontally ho-
mogeneous state referred to as granular Leidenfrost state. Its name comes from the
analogous liquid-over-vapour phenomena, where a thin layer of vapour over a hot
surface significantly slows the evaporation of the droplet above it, by keeping it
floating over the hot surface [74]. Figure 2.3 shows the packing fraction φ and the
granular temperature Tg as a function of z, for different amplitudes and frequencies
of oscillation, all in the Leidenfrost state. The granular temperature is defined as
twice the fluctuating kinetic energy per degree of freedom: Tg = 2

3
∑
i(~vi − ~V (ri))2,

where ri is the position of particle i, vi its velocity, and V the average velocity field.
Indeed, a low temperature, high density region is suspended over a low density,
high temperature one. Notice that the difference in density between the solid and
gaseous regions is greater for higher ωf (blue vs. red), but lower for higher Af (solid
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Figure 2.2: Phase diagram of the vertically vibrated system in the dimensionless container
width (lx) and shaking strength (S) space, for fixed box oscillation amplitude Af = 4.0. The
equivalent box oscillation frequency (ωf ) is shown on the right axis. All previously reported
states are seen: bouncing bed (b.b, yellow), bursts (green), undulations (purple), Leidenfrost
(blue) and convection (red). Transition regions are shown in gray, and are defined by the re-
gions of bistability of every pair of states. Transition points from previous experimental work
are shown as white dots for lx = 100. The borders between different numbers of convective
rolls (R = 1,2,3 and 4) is also delimited (dashed lines).

vs. dashed): these features will be relevant in our model discussion for the validity
regions of a density profile approximation.

When S is further increased, the density of the solid region is seen to progres-
sively decrease, leading to a buoyancy driven convective state (see Figure 2.1). Hor-
izontal homogeneity is lost, leading to low density regions where particles go up
and circulate around high density regions, where particles agglomerate and move
mainly in the horizontal directions, towards the low density regions. The number of
convection rolls (R) diminishes with increasing ωf , until the energy input is so high
that particle motion is essentially uncorrelated and the system enters the gaseous
state (S > 400, data not shown).

We now turn our attention to the lower amplitude regions. Figure 2.4 shows a
phase diagram again in the {lx,S} parameter space, for different shaking amplitudes
Af . As observed previously [71], and confirmed here for a wider range of parame-
ters, the dimensionless shaking strength S is a better parameter than the dimension-
less acceleration, Γ ≡ Ãf ω̃f 2/g̃ = Af ω

2
f for the characterisation of the Leidenfrost-

convection transition. On the other hand, the transition points of bouncing bed-
Leidenfrost (or undulations-Leidenfrost for Af = 4.0) vary significantly with S, but
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Figure 2.3: Packing fraction φ (left) and granular temperature Tg (right) vertical profiles, for
the exemplary frequencies shown in the inset, and lx = 50, for Af = 1.0 (solid) and Af = 4.0
(dashed). All cases are in the Leidenfrost state.

stay within 5% when compared in Γ . In general terms, the most significant influ-
ence of reducing Af is the disappearance of the bursts and undulations states; the
large amplitude of the box oscillation plays a dominant role in the dynamics of these
states.

We briefly remark that simulations were done until lx = 400, and no new states
were observed, except for the coexistence of convection and Leidenfrost states for
lx ≥ 200. The possibility of this coexistence provides new insight into the nature of
the Leidenfrost-convection transition; further details are given in Chapter 4.

If the length is reduced further, below the lx = 20 limit, the frequency needed
to trigger convection progressively increases, until at lx ∼ 10 (a value slightly de-
pendent on Af , see Figure 2.4) no convection was observed even for S = 104. For
Af = 4.0, undulations and bursts are also frustrated by the small size of the con-
tainer. It is in this geometry that it becomes possible to observe the Leidenfrost state
for higher S, where low-frequency oscillations (LFOs) can be directly observed and
eventually, as S is increased, dominate the collective dynamics of the system.

Low-Frequency Oscillations (LFOs)

Finally, we reach the column limit, where lx = ly = 5. In order to study LFOs the
evolution of the vertical centre of mass of the particles is considered, zcm(t). Figure
2.5a shows zcm(t) for fixed Af = 1.0 and several different S. For comparison, non-
stroboscopical and stroboscopical zcm(t) are shown for the S = 64 and S = 400 cases:
the distinct high and low frequencies become immediately recognisable. The ampli-
tude of the oscillations is seen to increase from the ∆zcm ≈ 1 to the ∆zcm ≈ 10 order,
and present an appreciable regularity in time. While at S = 64 both oscillations are
comparable in amplitude, and thus very hard to identify from direct observation,
at S = 400 they have become clearly differentiable. Although LFOs are seen to be
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Figure 2.4: Phase diagram of the vertically vibrated narrow box in the shaking strength (S)
and container width (lx) space, for different oscillation amplitudes, as shown in the legend.

fairly chaotic (recall that there are only 300 particles in the column geometry, hence
fluctuations play a leading role), we characterise them by a constant amplitude A0
and a single frequency ω0, as an initial first order description.

First, let us focus on the frequency of the LFOs, ω0, which is clearly recognisable
from the power spectra of zcm(t), presented in Figure 2.5b. The spectra are obtained
by taking the discrete fast Fourier transform of zcm(t) over 20000T after an initial
transient of 1000T , with a sampling rate of 0.05T . An average is then taken over
10 simulations with identical parameters but different initial conditions; although
the shape and peaks are already recognisable from single simulations, the ensemble
averaging reduces the noise considerably. The time window, the sampling rate and
the transient time were varied and no significant differences were observed.

All spectra present two main features: the expected delta-like peak at ωf and its
harmonics, and a broad peak one to two orders of magnitude lower, corresponding
to the LFOs. The LFO frequency, ω0, is defined as the frequency of the maximum
of this broad peak. After observing the different spectra it becomes evident that ω0
depends on the energy injection parameters. Figure 2.6a shows ω0(S) for different
lx and Af , remarkably scaling all LFO data. Notice that ω0 decreases as S increases,
i.e., the collective grain movement becomes slower as the shaking gets faster. The
decay is faster than inverse linear, and can be fitted by a −1

3 power with a 5% error
(not shown). Let us also notice that the length of the container makes no discernible
difference, as long as the system stays in the Leidenfrost state; the decreased data in
the lx = 20 case are due to the Leidenfrost-convection transition. The collapse of the
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Figure 2.5: (a) Centre of mass evolution, zcm(t), for Af = 1.0 and different dimensionless

shaking strengths S = ω2
f , as a function of time in gravity timescale units tg = t̃ (g̃/d̃)1/2. The

light colour data are taken with sub-period resolution, while dark colour data are taken every
oscillation cycle at the point of maximum wall amplitude. (b) Fast Fourier transform of the
centre of mass of the particles, zcm(t), for Af = 1.0 and several different S. The arrow indicates
the direction of increasing S. Different amplitudes, not shown, present the same qualitative
behaviour.

different amplitude curves is very good for Af = 0.4 and Af = 1.0, while for Af = 4.0
data slightly deviates. We interpret this decrease as the influence of the undulations
state in the Leidenfrost regime; notice that for S ∼ 64 and Af = 4.0 the system is
almost at the boundary between both states (see Figure 2.2).

In order to quantify the relevance of the LFOs, we define the relative intensity of
theω0 peak, I0, as the normalised distance from the low frequencies asymptotic limit
to the maximum of the broad peak. Figure 2.6b shows I0(S) for different lx and Af .
Although the dependency is not straightforward, it can be seen that LFOs become
increasingly distinguishable from other movements until S ∼ 144, after which there
is a decline, except for the highest amplitude case. Already at S = 25 oscillations
should be discernible in the spectra as a peak twice as big as the low-frequency
asymptotic limit. Af is seen to have a pronounced effect on I0; higher amplitudes of
oscillation lead to more pronounced LFO peaks.

Finally, we define the amplitude of the LFOs, A0, as the standard deviation of
zcm(t): A0 ≡ σ (zcm(t)). Data is considered only after t = 1000, to disregard transient
states. Figure 2.6c shows A0(S) increasing in an almost linear way. The curves co-
incide, within their error, for Af = 0.4 and Af = 1.0, while for all other cases A0 is
consistently smaller. Nevertheless, S makes all curves comparable, further confirm-
ing its relevance for this system.
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Figure 2.6: (a) LFO frequencies, ω0, as a function of S, for different container lengths lx, and
shaking amplitudes Af , as given in the inset. (b) Intensity of ω0, I0, defined as the height
from the assymptotic low-frequencies value of the zcm(t) spectra to the broad peak, for the
same data as (a). (c) Amplitude of the LFOs, defined as the standard deviation of zcm(t), as a
function of S, for the same data as (a).

LFO’s in convective state

We now consider in detail the peculiar change of behaviour of ω0(S) and A0(S) for
S ∼ 144 in the lx = 20 case. This is a sign of the Leidenfrost-convection transition,
still present at this container length (see Figure 2.2). During convection, zcm becomes
a less relevant quantity, as there is no longer horizontal homogeneity. Nevertheless it
is still possible to identify LFOs, even if the oscillations are entangled with the con-
vective flow. The presence of LFOs in the convective regime should not be surprising
if one notices that it also presents the essential feature of the Leidenfrost state: a
high density, low temperature region suspended over a low density, highly agitated
one, although there is an additional low density, highly convective zone above. Our
model, derived in Section 3 below, suggests that when density inversion is present,
LFOs exist. Figure 2.7 presents several different fields and snapshots that show that,
indeed, density inversion is present in the convective regime, in addition to the hor-
izontal inhomogeneity. All data is taken from the same simulation, and fields are
time-averaged over 100T after an initial transient of 1000T , with data taken every
0.05T . The average velocity field, Figure 2.7a, clearly shows the presence of con-
vective flow, with a small downwards band and a wider upwards region. Particles
agglomerate at the bottom of the downwards flux side, as can be seen from the aver-
age density field (Figure 2.7b), and the two snapshots (Figures 2.7d and 2.7e). This
happens when downwards and upwards particles collide, leading to a high granu-
lar temperature region (Figure 2.7c). Note, then, that both sides correspond to low
density, high temperature regions sustaining high density, lower temperature ones,
although the density and temperature profiles vary considerably from left to right.
The profile is more similar to the Leidenfrost case in the upwards flow region (left in
the shown figures), as in the downwards flow region the high density area presents
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Figure 2.7: (a) Averaged velocity field of an lx = 20 system in the convective state, forAf = 1.0
and S = 144 (ωf = 12). The colour of the arrows corresponds to the average speed, increasing
from blue, green, yellow, until red. (b) Average density field of the system in (a). Colour scale
from blue (low densities) to red (high densities). (c) Average granular temperature field, as
defined in main text. (d, e) Two snapshots of the system taken at the minimum (d) and maxi-
mum (e) of a low-frequency oscillation. Colour corresponds to the particles kinetic energy.

a comparable, although lower temperature to the low density region below.

Summary

Having possible experimental realisations in mind, the general picture is that LFOs
are easier to observe for higher amplitude and frequencies of oscillation of the box,
while keeping lx = ly small; it is at these configurations that LFOs have the highest
amplitudes and better defined frequencies, as quantified by A0 and I0, respectively.
Let us now remember that at this limit we also observed the most clear phase sep-
aration in the Leidenfrost state, with distinct low and high density regions. In our
model, presented next, the separation of the phases and the confinement of the sys-
tem to a one-dimensional geometry implies the existence of LFOs, and the frequency
is essentially determined by the ratio of the low and high densities.

2.3 Continuum model

After observing the collective movement of the particles in the column geometry,
an oscillator-like description naturally comes to mind. The two coexisting frequen-
cies observed in the spectra suggest a forced oscillator model, with clearly defined
forcing and response frequencies. In the following we derive such frequency be-
haviour from a continuum description of the granular media. We begin by consider-



Continuum model 37

ing Cauchy’s equations for mass and momentum conservation:

Dtρ+ ρ(∇ · ~u) = 0, (2.1)

Dt(ρ~u) = ∇ · σ̂ − ρgẑ, (2.2)

where ρ corresponds to the material density, ~u = {u,v,w} is the velocity vector, σ̂ the
stress tensor and g the gravitational acceleration in the downwards direction, −ẑ.
Furthermore, the material derivative is defined as Dt ≡ ∂t + ~u · ∇. We consider the
same scaling as in simulations, with length scales in units of particle diameters d̃,
time units given by gravity t̃g = (d̃/g̃)1/2, as also ρ̃p, taken as the mass density of a
single particle, ρ̃p = m̃p/Ṽp, with Ṽp = 1

6πd̃
3.

As has been observed in simulations, the dynamics of the system in the column
limit is effectively one-dimensional. This immediately suggest the consideration of
ρ = ρ(z, t), ~u = w(z, t)ẑ and σ̂ = σzz(z, t). Substituting in (2.1) yields

∂tρ+w∂zρ+ ρ∂zw = 0. (2.3)

Furthermore, expanding (2.2), and using (2.3), one reaches a one-dimensional mo-
mentum conservation equation

ρ∂tw = ∂zσzz − ρg. (2.4)

Two phases approximation

In order to solve (2.4) it would be necessary to know both the density and the velocity
profiles, ρ(z, t) and w(z, t). Our approach consists in eliminating the z-dependence
from (2.4) by integrating in the vertical direction, and taking a first order approxima-
tion of the density profile ρ(z, t), and average values for the vertical velocity profile
w(z, t). We begin by integrating (2.4) in the vertical direction∫ s(t)

b(t)
ρ∂twdz =

∫ s(t)

b(t)
∂zσzzdz − g

∫ s(t)

b(t)
ρdz, (2.5)

with the bottom boundary, b(t), and top boundary, s(t), dependent on time, due to
the movement of the bottom wall and the free surface at the top.

The approximation of ρ(z) consists in dividing the system in two separate, con-
stant density regions, inspired by the measured Leidenfrost state density profile.
Let us remember that this approximation becomes increasingly better as S increases
and Af decreases, as shown in Figure 2.3. Consequently, a low density region is de-
fined where ρ(z, t) = ρg (t), for z < ξ; and a high density region where ρ(z, t) = ρs(t),
for z > ξ, with ξ = ξ(t) the position of the interface between the two regions. Fig-
ure 2.8 shows a schematic representation of this approximation, and the origin of its
motivation. It then follows that the first integral in (2.5) can be expanded as∫ s(t)

b(t)
ρ∂twdz = ρg

∫ ξ(t)

b(t)
∂twdz+ ρs

∫ s(t)

ξ(t)
∂twdz. (2.6)
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Analogously, the third integral in (2.5) becomes

g

∫ s(t)

b(t)
ρdz = gρg

∫ ξ(t)

b(t)
dz+ gρs

∫ s(t)

ξ(t)
dz = gρghg + gρshs, (2.7)

with hg (t) ≡ ξ(t) − b(t) the height of the gaseous region, and hs(t) ≡ s(t) − ξ(t) the
height of the solid region.

Notice that the second integral in (2.5), corresponding to the stress term, is a
perfect integral, and thus only the stress boundary conditions are needed for its
evaluation. We assume the stress through the system to be continuous in z, and thus
it is not necessary to evaluate σzz at the interface position ξ(t). Thus, from (2.5) we
finally obtain:

ρg

∫ ξ(t)

b(t)
∂twdz+ ρs

∫ s(t)

ξ(t)
∂twdz = σzz(z = s)− σzz(z = b)− gρghg − gρshs. (2.8)

Boundary conditions

It now becomes necessary to specify the boundary conditions. The shaking of the
container implies that b(t) = Âfm sin(ωfmt), with Âfm and ωfm the amplitude and fre-
quency of energy injection in the model. At the top, s(t), we consider a free surface,
and thus the kinematic boundary conditions are given by

w(b(t), t) = vb = Âfmωfm cos(ωfmt) (2.9)

w(s(t), t) = ∂ts (2.10)

Furthermore, the stress at the bottom and top of the granular media are needed.
The free surface at the top is straightforward: σzz(z = s) = 0. At the bottom, on the
other hand, we divide the stress contribution in two: mean (σ0

b ) and fluctuating (σb)
terms, where the mean term is straightforward: σ0

b = Mg/η, with M the total mass
of the system, M =Nm; and η the area of the base of the container, η = lxly .

For the fluctuating part of the stress, σb, we first consider the force applied to the
granular medium by the moving bottom:

σb =
Fb
η

= dt(mbvb) (2.11)

with mb the mass being pushed by the bottom wall. In order to obtain mb, let us
consider a moving platform of surface area η pushing an ideal, incompressible gas of
density ρg , in analogy to the moving box and the low density region observed in our
system. Accordingly, the mass pushed by the box in time is given by dmp = ρgηvbdt.
Notice that this is valid for high S, where gravity effects on the dynamics of the
particles can be ignored. Integrating, we directly get that mp = ρgηÂfm sin(ωfmt).
Substituting in (2.11):

Fb = dt(mpvb) = ρgηÂ
2
fm
ω2
fm

cos(2ωfmt). (2.12)
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Notice that we have naturally obtained Â2
fm
ω2
fm
≡ Smg as the amplitude of the force

applied by the oscillating bottom, further suggesting that the shaking strength is the
relevant parameter for the system in the high S limit. It then follows, from (2.11),
that:

σb = gρgSm cos(2ωfmt). (2.13)

Finally, substituting the stress boundary values in (2.8), we obtain:

ρg

∫ ξ(t)

b(t)
∂twdz+ ρs

∫ s(t)

ξ(t)
∂twdz = gρgSm cos(2ωfmt) + g

M
η
− gρghg − gρshs. (2.14)

Height averaging

The remaining two integrals in (2.14) involve the velocity profile, w = w(z, t), which
varies in the vertical direction. In order to solve these integrals we height-average,
that is, for a given quantity f (z), we consider its average value

f̄ ≡ 1
h

∫ s(t)

b(t)
f dz =

1
hg

∫ ξ(t)

b(t)
f dz+

1
hs

∫ s(t)

ξ(t)
f dz. (2.15)

Notice that, from the first integral in (2.14), f would correspond to ∂tw. Thus, before
applying (2.15), we express the integral as a total time derivative. Considering that
the boundaries are time dependent, it becomes necessary to use Leibniz integration
rule, and thus the first integral in (2.14) can be expressed as∫ ξ(t)

b(t)
∂twdz = gSm cos2(ωfmt)−w(z = ξ)dtξ + dt

∫ ξ(t)

b(t)
wdz (2.16)

Analogously, the second integral in (2.14) becomes, after using (2.10),∫ s(t)

ξ(t)
∂twdz = w(z = ξ)dtξ − (dts)

2 + dt

∫ s(t)

ξ(t)
wdz, (2.17)

Substituting (2.16) and (2.17) in (2.14), and using (2.15), we finally obtain:

−ρgw(z = ξ)dtξ + ρgdt(hgw̄g ) + ρsw(z = ξ)dtξ − ρs(dts)2 + ρsdt(hsw̄s) =

1
2gρgSm(3cos(2ωfmt) + 1) + g

M
η
− gρghg − gρshs (2.18)

Based on the behaviour observed in simulations, we now assume that the high
density region is incompressible. This implies that dths = 0, as also that the velocity
of the continuum media at the interface position is equivalent to the velocity of the
interface, and hence to the velocity of the surface, that is, w(z = ξ) = w̄s = dts = dtξ.
Thus (2.18) becomes

−ρg (dtξ)2 + ρgdt(hgw̄g ) + ρshsdttξ = 1
2gρgSm

(
3cos(2ωfmt) + 1

)
+g
M
η
− gρghg − gρshs. (2.19)
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Figure 2.8: From left to right, snapshots from simulations showing an LFO period, at phases
0, π/2, π, 3π/2 and 2π; the corresponding time averaged density profile, a representation
of the two phases approximation made for the continuum equations, and finally a schematic
representation of the model. The dashed line shows the position of the centre of mass, zcm,
which in the model corresponds to the position of the interface between the two phases, ξ,
which also corresponds to the position of the mass of a forced harmonic oscillator.

Furthermore, we now use the fact that hg (t) = ξ(t) − b(t). Thus, substituting and
dividing by ρs, we obtain

−
ρg
ρs

(dtξ)2 +
ρg
ρs
dt(ξw̄g )−

ρg
ρs
dt(Âfm sin(ωfmt)w̄g ) + hsdttξ =

gρg
2ρs

Sm(3cos(2ωfmt) + 1) +
gM

ηρs
−
gρg
ρs
ξ +

gρg
ρs
Âfm sin(ωfmt)− ghs (2.20)

First order approximations

It now becomes relevant to consider the relative importance of each of these terms,
in the region of phase space where simulations show that LFOs are present, that is,
for S � 1. First, we consider that ρg /ρs ∼ O(ε), a condition that holds better for S � 1
and low Af , as shown in Figure 2.3. On the other hand, ξ ∼ 10 ∼ O(1/ε), as can be
seen from Figure 2.5. Furthermore, we measure from simulations that δtξ ∼ 0.2 ∼
O(ε) and δttξ ∼ 0.1 ∼ O(ε), meaning that the dynamics of the LFOs are considerably
lower than the typical velocity of grain diameters per gravity timescale, as can also be
deduced by the previously obtained frequencies ω0. Let us also notice that hs ∼ hg ∼
8 ∼ O(1/ε), again, from Figure 2.3. Finally, from simulations we obtain that w̄g ∼
0.2 ∼ O(ε), and dtw̄g ∼ 0.02 ∼ O(ε2). Taking into account all these considerations, it
becomes straightforward to see that the first term in (2.20) is O(ε3), the second term
is at most O(ε2), the third is then O(ε), and the fourth term is O(1). Moreover, all
terms on the right side are O(1), except for the fourth term, which is O(ε). Thus,
disregarding small terms in (2.20), after dividing by hs, we obtain
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dttξ +
gρg
ms

ξ =
gρg
2ms

Sm(3cos(2ωfmt) + 1) + g
mg
ms

(2.21)

where we have defined the mass of the solid region per unit base area η, ms ≡ hsρs,
and the equivalent of the gaseous region, mg = hgρg . Equation (2.21) corresponds to
a forced harmonic oscillator equation of the form:

dttξ +ω2
0m
ξ = F0 cos(2ωfmt) +C, (2.22)

with natural frequency

ω2
0m

=
gρg
ms

, (2.23)

amplitude of forcing F0 = 3
2gρgSm/ms, and constant C = 1

2gρgSm/ms + gmg /ms.

Model and simulations comparison

We have shown that, considering Cauchy’s equations for continuum media, and mak-
ing assumptions in concordance to the observed granular Leidenfrost state, the sys-
tem becomes equivalent to a simple forced harmonic oscillator, expressed by (2.22).
In this case, ξ is the displacement of the centre of mass around the equilibrium po-
sition at 0, ω0m the natural frequency of the system, and F0 and ωfm the amplitude
and frequency of the forcing. The analogy of the forcing with the granular column
is straightforward: ω0m and A0m would be equivalent to ω0 and A0, respectively.
Furthermore, we choose ξ to correspond to zcm, in order to directly compare with
previous measurements.

Notice that the natural frequency ω0m does not explicitly depend on the forcing
frequency ωfm , as can be seen in (2.23). The implicit dependence comes from the
variation of ρg and ms with ωfm , as observed in simulations, where, for fixed S,
ρg /ρs increases with ωf , giving the correct inverse proportionality of ω0m with ωfm .
Therefore, in order to obtain a frequency from the model, only ρg and ms need to be
specified, which we measure from simulations.

Both quantities can be obtained from ρ(z), the density in the granular column
as a function of height. In order to obtain an accurate average, we consider ρ∗ ≡
ρ(z−zcm(t), t), which makes all profiles directly comparable. This is analogous, in the
model, to centering the profiles at the interface between the two distinct regions. It
is then straightforward to compute ρg as the average value of the density for z < zcm.
On the other hand, ms we take as the total mass for z > zcm, taking care not to count
particles that are in free flight above the solid region, as they do not have influence
on the oscillator dynamics. This implies that although the center of our profiles is
zcm, mg is not equal to ms.

The comparison between the frequencies obtained in simulations and from the
model is presented in Figures 2.9a-c. For low amplitudes, Af ≤ 1.0, and high fre-
quencies, S ≥ 144, the agreement between the frequencies is within the error bars.
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Figure 2.9: Low-frequency oscillation frequencies ω0, as a function of the dimensionless
shaking strength S, for different box oscillation amplitudes: A = 0.4 (a), A = 1.0 (b) and
A = 4.0 (c). All systems have lx = 5, F = 12. Simulation (black) corresponds to frequencies
obtained from fast-Fourier transform of the simulation data, while continuum and thermo-
dynamic/kinetic theory data points (blue and red, respectively) are obtained from models
presented in sections 2.3 and 2.4, respectively, using data acquired from simulations.

For lower S, or higher amplitudes, the assumption of two distinct phases, as also
the approximation of ξ ∼ 1/ε, become less justified, resulting in the model consis-
tently underpredicting the frequencies, with more than 50% disagreement at the
point of the bouncing bed-Leidenfrost transition for A = 4.0. We believe that the
prediction could be improved by considering more complex density profiles, as also
by including terms of lower orders, although this exceeds the scope of our work. In
general terms, the resulting one-dimensional model turns out to be a remarkable
well approximation for high ωf and low Af , showing that this many-particle, out-
of-equilibrium system actually behaves as a regular forced harmonic oscillator when
confined in a column, in the corresponding energy injection region.

2.4 Thermodynamic model

Remarkably, it is possible to obtain another accurate expression for ω0 using a com-
pletely different approach, considering basic concepts from thermodynamics. As-
suming a spring-like behaviour, the natural frequency of our medium is given by
ω2

0 = k/ms, with k the stiffness constant of the spring-like medium, and ms the mass
sustained by the spring. We also know that k = ηB/hg , with B the bulk modulus, η
the area of the spring, and hg it’s height at rest. Assuming an adiabatic ideal gas, it is
possible to relate the bulk modulus with the pressure, B = γP0, with γ the adiabatic
index. Notice that the ideal gas approximation is being used only for the gaseous
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region of the Leidenfrost regime, where densities are low and no significant correla-
tion of the particles is observed. We then obtain:

ω2
0 =

γηP0

hgms
. (2.24)

The pressure P0 is taken as the force caused by the solid mass the spring sustains,
ms, divided by the area of the container: P0 =msg/η. Thus, we finally reach:

ω2
0 =

γg

hg
. (2.25)

This significantly simple expression is remarkably accurate when compared with
simulation measurements. Figures 2.9a-c also show ω0(S) for this model, taking hg
to be the same as in the previous section, zcm. The adiabatic index is considered as
γ = 1.67, the theoretical value for an ideal monoatomic gas. The agreement is again
within error bars for high frequencies, and deviates considerably for lower frequen-
cies, except for theA = 1.0 case, where low frequencies are also captured. Essentially,
we have calculated the natural frequency of a vertical spring-mass system where the
spring is actually an ideal gas, a situation analogous to that existing in the Leiden-
frost state. We have assumed here that P0 is constant, a situation that in our case
is possible only by heating the gaseous region (due to the loss of energy through
collisions), but it is not necessary to know the form of energy injection to compute
the natural frequency ω0. Relating the two obtained LFOs frequencies, equations
(2.23) and (2.25), one obtains γ = mg /ms; the interpretation of this result remains a
challenge.

2.5 Conclusions

A vertically vibrated bed of grains presents low-frequency oscillations (LFOs) due to
the decoupling of the driving frequency and the dynamics of a high density region
suspended by a lower density one. The relevance of these oscillations increases as
the distinction between the two densities increases, that is, proportional to the fre-
quency and inversely to the amplitude of oscillation of the system container. The
LFO frequencies are inversely proportional to the driving frequency, and follow a
common power law for a range of amplitudes. The amplitude of the oscillations, on
the other hand, increases in an almost linear way with the frequency.

Event-driven simulations give an overall excellent qualitative and quantitative
agreement with experiments and soft-particle simulations done in wider systems,
although they show discrepancies in some critical transition values. We remark
that the hard-sphere approximation can be meaningful even in systems with very
high-density regions, as present in the Leidenfrost state. The considerable speed ad-
vantage makes it extremely useful, and sometimes the only means to systematically
study high dimensional parameter spaces.
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Starting from Cauchy’s equations for conservation of mass and momentum, in-
tegrating in the vertical direction and assuming two distinct low and high constant
density regions, it is possible to reproduce the frequency behaviour observed in sim-
ulations. That is, a forced harmonic oscillator, with the natural frequency propor-
tional to the ratio of the densities. This simple model is able to predict the natu-
ral LFO frequency for high excitation frequencies, where in fact the two phases are
well separated. The non-linear terms, discarded in our analysis, should provide the
necessary corrections for lower frequencies, as well as the consideration of a more
realistic density profile. A second approach, using thermodynamic arguments, also
gives a remarkably accurate expression for the frequencies, although in this case just
a simple mass-spring system behaviour was assumed. The quantitative agreement
of both models is nevertheless remarkable, taking into account the low number of
particles involved, and the presence of very high and low density regions.

Further insight could be gained by appropriately coarse graining the granular
medium in order to obtain stress fields, which would directly relate both models.
A point of interest, not studied here, is how well do kinetic theory predictions hold
in such a system, taking into account the reduced container size, the small number
of particles and the presence of considerably different densities. Current work is
being done on verifying the consistency of macroscopic fields obtained by theoretical
arguments and coarse-grained simulational data.

We suggest that LFOs, here shown to be ubiquitous to vertically vibrated density
inverted systems, could play a fundamental role in the Leidenfrost-convection tran-
sition. More specifically, LFOs could be the primary source of density fluctuations
observed before convection is triggered, when one region of the system oscillates at
a different phase than another. Understanding this will need further simulation and
experimental research.

Appendix: Collision law

Let us consider the collision between two perfectly hard and spherical particles.
Hard-spheres interactions can be understood by a Heaviside potential energy func-
tion with its limit set by the particles radius. Known are the initial position of both
particles ~ri (with i = {1,2} the index of the respective particle), the lineal velocities
~vi , the angular velocities ~ωi , the masses mi and the diameters di . Considering linear
and angular momentum conservation, ~p′ = ~p + ∆~p, ~L′1 = ~L + ∆~L, with primed vari-
ables denoting post-collision quantities, the linear and angular velocities are then
given by:

~v′1 = ~v1 +∆~p/m1 ~ω′1 = ~ω1 −
d1

2I1
n̂×∆~p (2.26)

~v′2 = ~v2 −∆~p/m2 ~ω′2 = ~ω2 −
d2

2I2
n̂×∆~p (2.27)
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with n̂ = (~r1 −~r2)/ |~r1 −~r2| the unitary vector in the direction defined by both particles
centers, Ii the moment of inertia of the particles (Ii = qim(di /2)2, with q = 2/5 for
spheres), and ∆~p the change of momentum of particle 1 due to the collision. In
general, a collisional model is an specification of ∆~p(~v, ~ω,m,d). In what follows we
give the specific forms used in this work. The problem can be greatly simplified
by decomposing the vectorial quantities in normal and tangential directions with
respect to n̂, such that ~p = ~p(n) + ~p(t).

In the normal direction, the change of momentum is taken to be

∆~p(n) = −m12(1 + εn)~v(n)
c , (2.28)

with εn the normal restitution coefficient (εn = v′(n)
c /v

(n)
c ), m12 =m1m2/(m1 +m2) the

reduced mass, and ~vc the relative velocity at the contact point,

~vc = ~v1 − ~v2 −
(
d1

2
~ω1 +

d2

2
~ω2

)
× n̂. (2.29)

That is, energy loss is taken to be proportional to the velocity of impact. For sim-
plicity, we consider εn to be independent of the relative velocity of impact or, what
is equivalent, we take εn to be the average of the in reality broad distribution of εn in
the space of impact linear and rotational velocities. We expect that this first-moment
approximation is valid in the highly fluidized cases we consider.

The tangential component of the change of momentum, ∆p(t), can be obtained
by Coulomb’s law in its momentum form, |∆~p(t)| ≤ µs |∆~p(n)|. The condition is imple-
mented by computing:

∆~p(t) =

 m12

(
q

1+q

)
(1 + εt)~v

(t)
c |∆~p(t)| ≤ µs |∆~p(n)|

µd~v
(n)
c |∆~p(t)| > µs |∆~p(n)|

(2.30)

where the first expression is computed and then the condition tested. With ∆~p
known, the post-collisional velocities can now be computed. The set of variables
needed is {~ri , ~vi , ~ωi ,mi , Ii ,di}, and the parameters are {εn,εt ,µs,µd}.
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Low-frequency oscillations and convective
phenomena in a vibrated granular system1

Low-frequency oscillations (LFOs) are thought to play an important role

in the transition between the Leidenfrost and convective states of a vibrated

granular bed. This work details the first experimental observation of LFOs,

which are found to be consistently present for a range of driving frequen-

cies and amplitudes, with particles of varying material and using containers

of differing material properties. The experimentally acquired results show a

close qualitative and quantitative agreement with both theory and simulations

across the range of parameters tested. Strong agreement between experimental

and simulational results was also observed when investigating the influence

of sidewall dissipation on LFOs and vertical density profiles. This chapter

additionally provides evidence of two phenomena present in the Leidenfrost

state which are previously unobserved in experiment, simulation or theory: a

circulatory motion over extended time periods in near-crystalline configura-

tions, and a Leidenfrost-like state in which the dense upper region displays an

unusual ‘inverse’ thermal convection.

1. Based on: C.R.K. Windows-Yule, N. Rivas, D.J. Parker, A.R. Thornton, Physical Review E,
90 (6), 062205, 2014.
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3.1 Introduction

Granular materials, large collections of discrete, macroscopic particles, have been
the subject of considerable research for over two centuries, due largely to their ubiq-
uity in nature and industry [1], and the plethora of interesting phenomena they
exhibit [28, 29]. They can exist in numerous states, many of which are analogous to
those of a molecular material. Examples include convection [121], phase separation
[38, 40], Faraday-like patterns [61], and the granular Leidenfrost state [15], wherein
a dense region of grains is supported from below by a dilute, energetic gaseous
region, in direct analogy to the eponymous state observed in classical fluids [74].
Although the vertically vibrated narrow box geometry has been extensively stud-
ied [60, 79, 71, 122], recent simulational and theoretical work [123] has suggested
the presence of a previously unobserved phenomenon: low-frequency oscillations
(LFOs). This term refers to the periodicity observed in the motion of a granulate in a
density-inverted state, i.e. in the Leidenfrost or convective regimes. The name LFO
comes to the fact that the frequency of this oscillatory motion is considerably lower
than that of the vibrating plate exciting the granular bed.

In this chapter we provide experimental evidence of the existence of LFOs in a
vibrofluidised granular bed. In addition to our confirmation of previous theoretical
and simulational results, presented in the previous chapter, we also report the ob-
servation of two new phenomena which are, to the best of the authors’ knowledge,
previously unobserved either in experimental or simulated granular systems. The
role of dissipation at the horizontal boundaries of the system is also explored; side-
walls have previously been shown to significantly affect the behaviour of both two-
[124] and three-dimensional [119] systems, and as such are likely to have a signif-
icant impact on the phenomena observed in the quasi-one-dimensional (quasi-1D)
and laterally constrained three-dimensional systems such as those used here.

The chapter is structured as follows: we begin by describing our basic experi-
mental setup, specifying the manner in which data is extracted from the system and
how this setup is recreated in simulations, before briefly summarising the contin-
uum model introduced in Chapter 2 [123]. We then proceed to present our major
results, firstly comparing our experimental findings to the predictions of the existing
theoretical and simulational models, before presenting two previously unobserved
convective phenomena, and discussing the possible underlying mechanisms thereof.
A summary of our major results and their implications is provided in the last section.

3.2 System Details

Experimental Setup

In order to experimentally observe the Leidenfrost state, a granular bed consisting
of 12 square-packed layers of glass or steel spheres is housed in a cuboid container
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of dimensions lx × ly × lz = 25× 25× 250mm and vibrated sinusoidally in the vertical
direction. A simplified representation of experimental setup may be seen in Fig-
ure 3.1. A range of vibrational frequencies, ω ∈ (88,572) Hz, and peak amplitudes,
A ∈ (0.8,6.0) mm, are used to excite the system. The significant variation in ω and
A, and hence the dimensionless shaking strength, S =ω2A2/gd, allows us to explore
a variety of differing dynamical states.

The height lz of the container is adequate to ensure an effectively ‘open’ system.
Spheres of diameter d =1, 2, 3 and 5mm are used, giving the system a range of
dimensionless widths, l̃x = lx/d ∈ (5,25). The lower limit of this range corresponds to
the situation of a ‘granular column’, wherein horizontally inhomogeneous states are
suppressed and, therefore, the system can be considered quasi-1D. This frustration
of collective motion facilitates the clear observation of LFOs. The base and sidewalls
of the container are steel, giving an effective particle-wall coefficient of restitution
εw = 0.70. This value is an average over a wide distribution which includes kinetic
energy losses due to rotations and different impact velocities [125]. The use of a steel
walls ensures rigidity, and also removes the possibility of static charges affecting the
system. A single opposing pair of sidewalls can be replaced with perspex (εw = 0.33),
allowing the effects of sidewall dissipation to be investigated.

Experimental data is acquired using Positron Emission Particle Tracking (PEPT),
a non-invasive technique whereby a single particle, physically identical to the oth-
ers in the system, is ‘labelled’ with a β+-emitting isotope. The back-to-back pairs of
γ-rays emitted due to the rapid annihilation of positrons with electrons within this
‘tracer particle’ are detected using a dual-headed gamma camera, and can be used
to triangulate its position with millimetre precision and millisecond time resolution
[126]. A simple illustration of this process may be seen in Figure 3.1. The time aver-
aged motion of this single particle can then be used to give information pertaining
to the system as a whole. For instance, in PEPT data may be used to create one-
dimensional density profiles. This is achieved by subdividing the computational
volume into a series of thin horizontal segments, each of height dz. The fraction of
time spent by the tracer in each of these segments may then be recorded. Due to the
ergodicity of the system under investigation, this residence time fraction is directly
proportional to the local packing density within each region allowing, for adequately
small segments, a vertical density profile to be reproduced. An example of such pro-
file may be seen in Figure 3.2, where it is compared with a simulation equivalent.
The overall shape and qualitative features of both cases coincide, although the dis-
crepancies in the low-density region are significant. These may originate from the
experiment underestimating the packing fraction of the gaseous region due to the
high velocities, and thus low residency times, near the bottom, moving boundary.
Furthermore, the hard-sphere approximation used in simulations, as detailed in the
next section, may lead to overestimations of the overall dissipation in the gaseous
region.

In order to ensure reliable statistics, all experiments are conducted over a period
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γ-Ray path
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Detector Head

lX

lZ

Shaker

Figure 3.1: Schematic representation of the experimental system, showing a granular bed
in the density-inverted Leidenfrost state. Although in reality the radioactive tracer particle
is physically identical to all others in the system, for the sake of clarity this particle is here
highlighted in white. Dotted orange arrows represent the paths taken by the γ-rays emitted
by the tracer, while the solid red arrow represents the direction of vibration.

of between 45 and 120 minutes, dependent on the density of the system under inves-
tigation and the strength with which it is driven. Since denser and/or more weakly
excited systems exhibit slower dynamics, the run duration must be accordingly in-
creased in order to allow the tracer particle to fully explore the entire system, in-
cluding both the dense and dilute phases. For further information regarding PEPT,
see references [126, 127].

Event-Driven Simulations

Simulations are performed using an event-driven (ED) molecular dynamics [86]. The
algorithm uses a hard-sphere model, assuming binary collisions with no overlap and
no long-range forces between particles. This is the same simulation code as used in
Chapter 2 and [123], where a more detailed description of the algorithm can be
found. Collisions between particles are modelled by normal and tangential velocity-
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Figure 3.2: Experimentally (blue) and simulationally (red) acquired one-dimensional vertical
packing fraction profile, demonstrating the general form expected for a granular bed in the
density-inverted Leidenfrost state. In this image, we clearly see a particle-dense region resting
atop a considerably more dilute, gaseous phase. The data presented correspond to a bed of
1 mm diameter glass particles excited via vibration at a constant frequency ω = 157 Hz and
amplitude A = 4 mm.

dependent restitution coefficients, following the expression in [128]

r(v) =

 1− (1− r0)
(
v
v0

)1/5
v ≤ v0

r0
(
v
v0

)−1/4
v ≥ v0.

Material properties were chosen such that, at a typical particle velocity v0 = 0.3ms−1,
the relevant coefficients of restitution, r0, are r0 ∼ 0.90 and ro ∼ 0.95 for glass and
stainless steel particles respectively. These particular are in accordance with pre-
vious experimental measurements [129, 117]. The use of a velocity-dependent r0
ensures that dissipation is not over-estimated at high particle densities, as can oc-
cur when using constant coefficients [130]. Static and dynamic friction coefficients
(µs and µd , respectively) are also considered, and held constant at µs = µd = 0.05.
For particle-wall collisions the value rw0 = 0.7 was used for glass, and rw0 = 0.75 for
steel particles, while µws = µwd = 0.15. Although no specific values are known for
these type of collisions, it is expected that particle-wall collisions have a consider-
ably lower restitution coefficient than particle-particle collisions. Although it was
verified that these values are not critical to the observation of the phenomena, the
system is quantitatively sensitive to them. Finally, we remark that in simulations
walls are considered infinitely massive, and thus their movement unaffected by the
particles’ impact, an effect which could be relevant in experiments.
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ContinuumModel

An expression for the frequency of the LFOs can also be obtained from a continuum
model (described in detail in Chapter 2), given the vertical density profile. In this
model, a granulate in the Leidenfrost state is considered to have two distinct phases:
a dense, solid-like region of density ρs and mass per unit area in the horizontal plane,
ms, and a gaseous region of density ρg . The periodic vertical motion of the dense
region can be described as a forced harmonic oscillator, allowing the frequency of
LFOs, ω0, to be simply calculated as:

ω0 =

√
gρg
ms

(3.1)

3.3 Results and Analysis

Although the existence of LFOs in density inverted systems was shown in simula-
tions and predicted theoretically in [123], their presence has not, until now, been
confirmed experimentally2. Figure 3.3 shows a typical example of the evolution
of the tracer particle’s vertical position, z(t), for both experimental and simula-
tional data. Low-frequency oscillations can be observed when looking at short time-
windows as a slight movement of the particles’ position, superimposed in a slower
up-and-down migration through the granular bed. The nature of the second effect
will be studied later. Furthermore, we show the corresponding fast Fourier trans-
forms (FFT) in Figure 3.4. To minimise noise, z(t) is split into a series of 10s traces,
each containing approximately 3×104 data points, and the corresponding FFTs aver-
aged. The presence of LFOs can be identified by a broad peak in the power spectrum
at a frequency ω0 one or two orders of magnitude lower than the driving frequency
ωf . Thus, the existence of a clearly-defined low-frequency peak in Figure 3.4 ev-
idences the existence of LFOs in an experimental system. It should be noted that
Figure 3.4 is indeed a typical example: LFOs are observed over a wide range of driv-
ing frequencies, ωf ∈ (94,503) Hz, and amplitudes, A ∈ (1,5)mm (the upper values
being limited by the maximum obtainable velocity of the shaker used to drive the
system). Monodisperse beds composed of both steel and glass particles also exhibit
LFOs over a range of particle sizes d ∈ (2,5)mm, and for both steel- and acrylic-
walled systems, showing it to be a robust and easily-reproducible phenomenon. In
the following discussion, we initially focus on glass beads of 3 mm and 5 mm diam-
eter, in order to avoid the presence of bouyancy driven convection, which typically
dominates the system dynamics for smaller particle sizes. Figure 3.5 shows data in
the S-A phase space for these two cases. Remarkably, all experimental data sets for
which the system exists in the Leidenfrost state are seen to exhibit low-frequency

2. Behaviour suggestive of the presence of LFOs may be observed in the data of Folli et al. [131].
However, due to considerable disparities between their system and the current setup, it is not possible to
confirm that this is the same phenomenon.
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Figure 3.3: Vertical position, z(t), of a single particle in experiments (blue) and simulations
(red), for a system of 3mm glass spheres with ω = 327 Hz and A = 2mm. Data is shown for
larger (left) and smaller (right) time windows. For comparison, the frequency of the low-
frequency oscillations is shown in the left figure (gray).
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Figure 3.4: Power spectra of z(t), for experimental (blue) and simulational (red) data, showing
ωf and ω0, the driving and LFO frequency respectively, as well as the crystalline convection
frequency, C.C.

oscillations. Thus, the phase diagrams presented provide a clear indication of the
ranges of parameters for which one may expect to observe LFOs.

From the FFTs of z(t) we are able to obtain the dominant LFO frequency. Fig-
ure 3.6 shows ω0 for experiments, simulations, and the value computed from the
model. A good agreement is observed between three cases, in the case of the model
increasing with the energy input. This is to be expected, as the model is formally
only valid in the large shaking amplitude limit [123]. For all other particle num-
bers and sizes, wall and particle inelasticities and driving parameters explored, the
experimentally obtained values of ω0 agree with those produced by both the ED
and continuum models to within 10%. The persistent presence of LFOs across such
a broad range of parameter space, including the highly elastic limit at which the
behaviour of granular systems approaches that of classical, molecular systems, sug-
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Figure 3.5: Phase space for 5mm (left) and 3mm (right) glass beads. As the magnitude of
the energy injection, S, increases, the system goes from the bouncing bed (blue dots) to the
Leidenfrost (red squares) state. The transition region is roughly delimited by the horizontal
dashed gray line.
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Figure 3.6: Experimental, simulational and theoretical values of the characteristic frequency
of the low-frequency oscillations,ω0, as a function of the shaking strength S ≡ A2ω2

f /gd. Data

for d = 5mm (left) and d = 3mm (right) glass particles, for A = 2mm.

gests that an analogous phenomenon may also be present in classical fluids.

The effect of sidewall dissipation

In a constrained system, such as the one described here, we expect the dissipation
of the walls to significantly affect the dynamics of the bed. Thus, to further explore
the generality of our results, the material of a single pair of sidewalls is altered,
hence altering rw0 . Notice that, even in constrained systems, if a system’s packing
fraction is large, rw0 is typically considered unimportant, as particle-particle colli-
sions are expected to be the leading contributors the overall dissipation. Thus, the
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Figure 3.7: (a) Experimental mean squared displacement, M(t), for particles in the dense
upper region of the system for steel (blue, dark grey) and acrylic (red, light grey) sidewalls.
For both cases, ω = 327 Hz, A = 2mm and lx = 5. (b) Normalised vertical packing profiles
corresponding to the same system parameters.

current set-up allows us to explore the competing effects due to lateral confinement
and packing density. Comparison of data acquired from otherwise identical systems
with steel (εw = 0.7) and acrylic (εw = 0.33) sidewalls shows the increased dissipation
caused by the less elastic sidewalls to considerably affect even highly dense systems,
even with all other parameters held constant. This observation is illustrated by the
residence time distributions shown in Figure 3.7b. It should be noted, however, that
LFOs are still found to be present for both sidewall materials. It is additionally worth
specifically noting that we do not expect the inclusion of the acrylic walls to intro-
duce any appreciable effects due to triboelectric charging, due both to the relatively
large sizes and masses of the particles concerned, as well as the frequent collisions
experienced by particles and the system’s two remaining steel sidewalls and base,
which will act to rapidly dissipate charge. In both of the profiles presented in Figure
3.7b, we see the existence of multiple ‘peaks’ and ‘valleys’, indicative of the presence
of crystalline structure within the bed. However, these local maxima and minima
are considerably more pronounced in the acrylic-walled system than its steel-walled
counterpart, indicating a significantly increased degree of crystallisation in the for-
mer. This makes sense, as higher wall dissipation will clearly lead to a decrease in
the fluctuating component of the kinetic energy (granular temperature). Figure 3.7a
shows the typical mean squared displacement of particles in the upper region of the
system for both sidewall types. The markedly reduced mobility of particles in the
acrylic-walled system again demonstrates the heat-sink-like effect of the dissipative
system boundaries.

It is interesting to note the marked differences between the density profiles pre-
sented in Figure 3.7b and that shown in Figure 3.2, another clear demonstration that
LFOs exist for a variety of system parameters and dynamic states, and also coexist
with various other phenomena.
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Crystalline Convection in the Leidenfrost state

Analysis of z(t) and the corresponding power spectra for denser, less-fluidised sys-
tems shows evidence of an extremely slow, pseudo-periodic motion, with a fre-
quency approximately two orders of magnitude lower even than the previously dis-
cussed LFOs (see Figures 3.3a and 3.4). This slow migration of particles was also
observed in simulations, as illustrated in Figure 3.3a. However, in order to ob-
tain the periodic behaviour observed in experiments, it was necessary to modify
the frictional and elastic coefficients of the collision model for particle-wall inter-
actions, indicating a strong influence of the side-boundaries on this phenomenon.
Although a somewhat similar phenomenon has been previously reported in a multi-
phase system [132], this is, to the best of the authors’ knowledge, the first time such
behaviour has been observed in a monodisperse granular bed. It is possible, on an
adequately long time scale -O(103)s - to observe dynamics reminiscent of convective
motion within the densely packed crystalline phase of the upper region. Specifically,
grains are seen to move, on average, upward in the central region of the domain and
downward in the vicinity of the lateral boundaries. This motion is distinct from
the conventional, continuous convective flow previously observed [118]. Here, the
bed maintains a crystalline structure, with the migration of particles occurring in
sudden, discrete motions separated by periods of inactivity. The mean flow rate as-
sociated with this ‘crystalline convection’ is typically O(0.1) mm/s, compared to the
values of ≈ 3 mm/s for reverse convection and ≈ 6 mm/s typical of the ‘normal’
convection observed within the system. Further study of this state may give insight
into the origins of the transition of a granular system between a mechanically stable
solid-like state and a disordered, fluid-like state, a matter on which there is no gen-
eral consensus, despite significant research in the area [133]. Such research could
also lead to an improved understanding of the Leidenfrost-convection transition.

Reverse Convection in the Leidenfrost State

In a system such as the one detailed here, a granular bed may exhibit thermal or
buoyancy-driven convection [121]. In systems with dissipative side-boundaries, one
may observe a ‘wall-enhanced’ thermal convection, whereby a region of increased
density near the sidewalls leads to the formation of a pair of convection rolls remi-
niscent of Rayleigh-Bénard cells [67]; the rolls move downward in a thin stream near
the walls, where increased dissipation leads to a locally higher density and lower
energy, and upward in the centre of the container where the density is, accordingly,
reduced [134]. It should be noted that this form of convection is distinct from the
frictionally-driven convection observed in less strongly-excited systems than those
discussed here [135]. For data sets where l̃x > 5, such wall-induced convection is in-
deed observed. However, for certain combinations of ω and A, with l̃x = 25, one ob-
serves a density-inverted state in which the denser upper region displays convective
motion whose sense is opposite to the expected (see Figure 3.8). Previously, reverse
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Figure 3.8: (a) Velocity field for the dense upper region of a system of 1mm particles in
a density-inverted state, driven at A = 4mm, ω = 157Hz. The arrows, whose lengths and
orientations are representative of the magnitude and direction of the average velocity through
a section of the field, show a net downward motion in the centre of the system and a net
upward motion near the side-boundaries. (b) Velocity plot showing, for comparison, typical
wall-enhanced convection. The driving parameters for this case are A = 1mm and ω = 509
Hz.

convection had only been observed in frictionally driven systems [48]; the inversion
of buoyancy-driven convection is, to the best of the authors’ knowledge, a previously
unobserved phenomenon in experimental systems. We propose a tentative explana-
tion for this effect: sidewall dissipation is more influential in lower-density regions
[136], where the ratio of particle-wall to particle-particle collisions is higher. Thus,
in the dilute lower region of the Leidenfrost state, a pronounced increase in density
and decrease in temperature will occur near the walls of the system, leading to a de-
creased pressure in this region [9]. Conversely, for the upper region of the bed, one
observes an increased relative density in the central region of the bed (see Figure 3.9).
This greater compaction near the centre may be due to the increased pressure acting
on the upper bed due to the relatively energetic gas in the central region below. At
the interface between the upper and lower regions of the bed, collisions from parti-
cles in the energetic lower region will break the structure of particles in the dense
region, creating a localised volume of more energetic, lower density particles which
will tend to rise through the bed. These relatively mobile particles are likely to be
pushed radially outward from the centre of the container due to the pressure gradi-
ents in the dilute region below, increasing the probability that upward motion will
occur near the side-boundaries of the container. Moreover, the slightly decreased
density in the upper bed near the sidewalls means that the upward transit of the
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Figure 3.9: Packing fraction, η as a function of horizontal position for (a) the lower, gaseous
region of the system and (b) the dense upper region, for steel (blue, dark grey) and acrylic
(red, light grey) sidewalls, for A = 2mm, ω = 320Hz, and glass particles of d = 5mm.

energetic particles is less likely to be impeded. Due to conservation of mass flux,
this will naturally result in a pair of inversely-oriented convection rolls within the
system. The combination of ω and A at which this new phenomenon is observed
suggests that it may be representative of a transitional state between the Leidenfrost
state and the Faraday wave state [16]. It should be noted that the behaviour detailed
above was found to be reproducible, and was still observed when the system’s side-
wall material was altered, although differences in the convective flow rate and the
specific densities of each phase were observed for the two cases. Specifically, as the
sidewall coefficient of restitution was decreased from 0.70 to 0.33, the convective
flow rate of the system was found to increase from ≈ 2.5mm/s to ≈ 3.7mm/s. The
authors believe this phenomenon to be worthy of further study.

3.4 Conclusions

Analysis of the motion of a single particle in a granular bed, acquired using positron
emission particle tracking, has been used to provide, for the first time, strong exper-
imental evidence of low-frequency oscillations in density-inverted, vibrofluidised
granular systems. The experimentally observed frequencies of these oscillations, and
the variation of these frequencies with numerous system parameters, were found to
correspond closely to simulation and continuum theory. The observation of LFOs
over a wide range of parameters supports the hypothesis that they are a fundamen-
tal feature of the Leidenfrost state, meaning that future study of these oscillations
could prove crucial to the understanding of the transition of a granular system be-
tween the Leidenfrost and convective regimes. The findings of this study also sug-
gest the existence of two new phenomena, the further study of which may provide
valuable insight into transitions involving the Leidenfrost state.



4

From the granular Leidenfrost state to
buoyancy-driven convection1

Grains inside a vertically vibrated box undergo a transition from a den-

sity inverted and horizontally homogeneous state, referred to as the granular

Leidenfrost state, to a buoyancy-driven convective state. We perform a simu-

lational study of the precursory states of such a transition, and quantify their

dynamics as the bed of grains is progressively fluidized. The transition is pre-

ceded by transient convective states, which increase their correlation time as

the transition point is approached. Increasingly correlated convective flows

lead to density fluctuations, as quantified by the structure factor, which also

shows critical behaviour near the transition point. The amplitude of the mod-

ulations in the vertical velocity field are seen to be best described by a quintic

supercritical amplitude equation with an additive noise term. The validity

of such an amplitude equation, and previously observed low-frequency oscil-

lations of the bed of grains, suggests a new interpretation of the transition

analogous to a coupled chain of vertically vibrated damped oscillators. In-

creasing the size of the container shows metastability of convective states, as

well as an overall invariant critical behaviour close to the transition.

1. Based on: N. Rivas, A.R. Thornton, S. Luding, D. van der Meer, Physical Review E, Sub-
mitted.



60 From granular Leidenfrost to buoyancy-driven convection

4.1 Introduction

Granular materials —collections of macroscopic, dissipative particles— are an archety-
pal study case of complex dynamical systems. Decades of research have revealed
many novel non-equilibrium phase transitions and collective behaviours [61, 38,
137, 28, 138, 29], the study of which not only has a fundamental physical interest,
but is also relevant for many industries [139, 140, 141]. Many of these behaviours
show a striking similarity with molecular fluids or solid phenomena [121, 111, 142,
143], and some have even been successfully described by equilibrium theories [30].
Studying the origin of these agreements advances our understanding of far-from-
equilibrium states, and explores the limits of continuum descriptions of discrete sys-
tems. Furthermore, the low number of constituents, when compared to molecular
counterparts, makes granular materials particularly suited for the study of noise ef-
fects in spatially extended transitions, a subject of increasing physical interest due to
the ubiquitous presence of fluctuations in natural phenomena [33, 137, 34, 36, 144].

In order to keep granular media fluidized it is necessary to provide energy to the
system. Previously this has been done in several distinct ways, as for example elec-
tromagnetically [145, 146], by shearing [147], or by boundary forces such as rotating
a drum [148] or vibrating the grains’ container [63]. In vertically vibrated systems
several complex collective dynamic behaviours have been observed, such as segre-
gation [58, 149], pattern formation [29] and phase separation [38]. One particular
case of the latter is the granular Leidenfrost state, where a dense, solid- or fluid-like
region is sustained by a highly agitated low density gaseous region in contact with
the vibrated bottom wall [15, 79]. It is so called because of the clear analogy with the
water-over-vapour phenomenon observed in molecular fluids in contact with a high
temperature surface [115]. If the vibration strength is increased, the Leidenfrost
state evolves to a buoyancy-driven convective state [150], in analogy to Rayleigh-
Bernard convection. Recently, it was shown that granular hydrodynamics is able to
quantitatively capture the critical points of this instability, by performing a linear
stability analysis of perturbations over the Leidenfrost state [150, 80].

In the following chapter we study the precursor states of the transition from
the granular Leidenfrost to the buoyancy-driven convective state in the context of
bifurcations and critical theory. The transition is observed as the energy input is
increased and the bed of grains goes from a steady and homogeneous Leidenfrost
state to a buoyancy-driven convective phase. After specifying the system and simu-
lation methods, we begin by characterizing the two states involved in the transition,
and determining the phase space of the system by means of a convection intensity
order parameter. With this, we are then able to study time-dependent transient
convective states, that are present far below the transition and show a critically in-
creasing correlation time as the transition is approached. Furthermore, the static
structure function allows us to study the evolution of the relevant length-scale in
this pattern formation scenario, and see its behaviour prior to the transition. Finally,
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it is observed that the amplitude of the critical pattern follows a growth ratio that
is consistent with a quintic supercritical bifurcation, associated with parametrically
driven spatially extended systems [36, 151, 152]. We suggest that the agreement
with this universality class comes from the presence of collective semi-periodic os-
cillations, so called low-frequency oscillations (LFOs), present in density inverted
systems [123]. All results are presented for different boundary conditions and sizes
of the container, allowing us to observe the influence of confinement and variations
of the total number of particles.

4.2 System and simulations

The setup consists of a quasi-two-dimensional rectangular box with open top, vi-
brated in the vertical direction. Two different box widths are considered, defining
the narrow system, with lx = 50, and the wide one, with lx = 400. The depth of the
container, on the other hand, is kept constant, ly = 5; a schematic representation of
the studied geometries is shown in Figure 4.1. Here, and in what follows, we use di-
mensionless quantities with d as lengthscale and

√
d/g as timescale, and thus

√
g/d

as velocity units; when necessary, dimensional quantities will be distinguished by a
tilde, i.e. l̃x = lxd. Grains are considered to be perfectly spherical, frictionless and
monodisperse in size and mass. Their total number N is determined by the number
of filling layers F ≡N/(lxly), which we fix at F = 12. Previous studies show that both
the Leidenfrost and the buoyancy-driven convective states are observable for this
number of layers [71]. The whole box (base and side walls) is vertically vibrated in a
bi-parabolic, quasi-sinusoidal way with a given frequency ω and amplitude A. The
use of a quadratic interpolation instead of a sine function gives a considerable speed
advantage in simulations, as the collision times with the moving walls can be pre-
dicted analytically. Previously, test simulations have been done using a sine function
for exemplary cases, and no significant difference was observed [123, 118]. The am-
plitude of oscillation is kept fixed,A = 0.1, and thus the energy injection is controlled
by the angular frequency ω. The low amplitude is chosen to reduce as much as pos-
sible the effects of the moving boundary, and approximate the limit of a temperature
boundary condition [153]. Higher driving amplitudes lead to a coupling of the bot-
tom boundary movement with the number density field, creating shock waves that
propagate through the granular medium [24]. Moreover, low amplitudes eliminate
other inhomogeneous states for lower energies, such as undulations [71], which are
not the object of this study. Overall, our selection of parameters is based on previous
experimental setups where the transition was previously reported [71, 150].

The system is simulated using an event-driven (ED) hard-sphere algorithm. The
advantage of using ED simulations over regular time-stepping methods is straight-
forward: computational speed. Even though the number of particles is relatively low
(∼ 104), the high frequencies and very long simulation times make the use of discrete
particle methods (DPM) infeasible. In DPM simulations time-steps are constant and
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lx = 50

lz

g

A sin(ωt)

narrow

y = 5  
lx = 400

lz

large

l
x

y

Figure 4.1: Schematic representation (not to scale) of the setup. Two different geometries are
considered: narrow (left) and wide (right). Lengths are given in units of particle diameters d.

should be at least one order of magnitude lower than the lowest relevant time-scale,
T = 2π/ω [154]. Thus, for the high frequencies considered in our study, the small
time-step prohibits to simulate in a practical time the long transients involved near
a transition. On the contrary, the average time-step in ED is determined mainly by
the density of the system, and not directly dependent on the frequency of oscillation
of the container.

Collisions between particles are modelled by a normal restitution coefficient, rp =
0.9 [116]. We disregard rotational degrees of freedom, and any other physical effect
that is not captured by the hard-sphere model, with the goal of keeping the model
as simple as possible. This particular value is in accordance with collisions of glass
or stainless steel particles [117]. In order to avoid inelastic collapse, the TC model
is used, where particle collisions are considered elastic if they occur within a given
time, which we take as tc = 10−5 [87]. This essentially sets a lower limit for physically
relevant velocities, as also slightly decreases the packing fraction of high density
regions; possible relevant effects will be noted when appropriate.

Regarding boundary conditions, we consider both cases of periodic (PBC) and
solid boundary conditions, with either elastic or dissipative walls (EBC and DBC,
respectively). The different boundary types are only applied in the x-direction, as
we would like to investigate the effects they have on the transition independent of
other factors, as increased overall dissipation or free-volume; setting dissipative or
periodic boundaries also in the y-direction would make the comparison less straight-
forward, as the overall dissipation would decrease considerably. Dissipative walls
are set with the same restitution coefficient as between particles, rw = 0.9. The ef-
fects of dissipative walls on convective states have already been studied in similar
setups, both experimentally and numerically [119]. Here we are interested in the ef-
fects of walls on the excitation or suppression of the modes relevant in the transition.
Elastic walls (EBC) are used in order to see the influence of excluded volume effects
near the sidewalls when comparing with periodic walls PBC, as also to facilitate the
analysis of fluctuations by fixing a reference frame. Furthermore, PBCs are used to
study the dynamics of the bed of grains without confinement.
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Figure 4.2: In the narrow system, time averaged number density of particles 〈n(x,z)〉t (top),
granular temperature 〈T (x,z)〉t (middle) and velocity field

〈
~v(x,z)

〉
t (bottom), for systems in

the granular Leidenfrost state (left) and in the buoyancy-driven convective state (right).

4.3 Results

Macroscopic description

The most evident difference between the granular Leidenfrost and buoyancy-driven
convective states is the level of horizontal homogeneity. Figure 4.2 shows time av-
eraged number density 〈n(x,z)〉t , granular temperature 〈T (x,z)〉t and velocity fields〈
~v(x,z)

〉
t in each state, for narrow systems with EBC. The fields are obtained by bin-

ning the system in squares of size d. Time averages, 〈〉t , are always taken for at least
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105
√
d/g, which in dimensional terms for d = 1mm would correspond to experi-

ments of about fifteen minutes. The granular temperature is defined as the kinetic
energy of the fluctuating velocity, 3kBT ≡m(

〈
v2

〉
−〈v〉2). The fields clearly show that

in the Leidenfrost state, both ρ and T are homogeneous in the x-direction, while
in the convective state the profiles are modulated by a dominant mode kc. That is,
the transition is morphogenetic [155], as a pattern or new relevant length-scale arises
from a homogeneous state. The convective mode defines the typical size of the con-
vective cell, λc; in the case shown in Figure 4.2, 〈λc〉t ≈ 50, that is, kc = 1/λc ≈ 0.02.
An important condition of the system states that kclx = n, with n an integer or half-
integer; the consequences of this requirement will be elaborated further along.

It is important to remark that the buoyancy-driven convective state is also density
inverted (see Figure 4.2b), and thus this characteristic is not a sufficient condition to
define the Leidenfrost state. We demand two further properties for the system to
be considered in this state: (a) higher density regions present distinct dynamics to
the lower density ones (gas/fluid or gas/solid), to distinguish it from completely
gaseous states [72]; and (b) the system remains horizontally homogeneous, to dif-
ferentiate it from the convective state. The different phases mentioned in (a) can
be quantitatively distinguished by, for example, the pair correlation function and
its characteristic decay for each phase. In short, we define the granular Leidenfrost
state as a density inverted, phase coexisting, horizontally homogeneous state.

As the energy input increases, the bed of grains in the dense region progressively
looses its horizontal homogeneity, giving rise to convection; this is what we refer to
as the granular Leidenfrost to buoyancy-driven convection transition or, in short,
the LBC transition. In the following we define an order parameter based on the
evolution of the velocity field, and observe its behaviour through the transition.

Convection intensity

For the study of critical behaviours it is of fundamental importance that the transi-
tion region between the two states is accurately measured. The different states can
be easily distinguished by looking at the time-average velocity fields, which suggest
the use of the convection intensity order parameter, defined as

C ≡ 1
2 maxz(maxx(vz(x,z))−minx(vz(x,z))). (4.1)

Here vz(x,z) is the scalar field of velocities in the z-direction, and the maxima are
taken first over z and then over x. In words, C corresponds to half the highest dif-
ference of the vertical velocities at a particular height of the container. In a con-
vective state C is expected to be significantly higher than in a random flux case,
due to the presence of stable upwards and downwards flux regions (as can be seen
in Figure 4.2f). Even though the average vertical velocity is expected to scale with
Aω, the localization of the energy fluxes in the convective states is what produces
a higher deviation, and thus a higher C. The time averaged convection intensity,



Results 65

●
● ● ● ● ●

●

●

●
●
●●

●●
●●

●● ●

●

●

■
■ ■ ■ ■ ■ ■■

■

■

■
■
■■

■■
■■

■
■

■

◆
◆ ◆ ◆ ◆ ◆ ◆◆

◆

◆
◆
◆
◆◆
◆◆
◆◆

◆
◆

◆

DBC

EBC

PBC

(a) narrow

20 25 30 35 40 45
0

2

4

6

8

ω

〈C
〉 t

●
● ● ● ● ●

●

●

●●
●
● ●

●●
●●

●

●

■
■ ■ ■ ■ ■

■

■

■
■■

■■■■
■
■■

■

■

◆
◆ ◆◆◆◆

◆

◆

◆◆
◆◆◆

◆◆◆
◆◆

◆
◆

DBC

EBC

PBC

(b) large

20 25 30 35 40 45
0

2

4

6

8

ω

〈C
〉 t

- 0.4 - 0.2 0.0 0.2 0.4
0.4

0.6

0.8

1.0

1.2

1.4

1.6

ε

C
*

- 0.4 - 0.2 0.0 0.2 0.4
0.4

0.6

0.8

1.0

1.2

1.4

1.6

ε

C
*

Figure 4.3: (top) Time averaged convection intensity 〈C〉t , defined in the main text, as a
function of the angular driving frequency ω, for the narrow (left) and large (right) containers
with the boundary conditions indicated in the labels. Dashed lines indicate the transition
region for the corresponding BC, as specified in the main text. The thick grey line corresponds
to Aω, the characteristic shaking velocity. (bottom) Convection intensity normalized by the
driving frequency, C∗ ≡ 〈C〉t /Aω, as a function of the bifurcation parameter ε ≡ (ω −ωc)/ωc,
for the same systems as in the top figures.

〈C〉t , captures the transition as a rapid increase with ω, as shown in Figure 4.3 for
all considered systems.

In the Leidenfrost state 〈C〉t increases linearly with ω, and is lower than the char-
acteristic velocity of energy injection, Aω. This is followed by a transition region,
were 〈C〉t increases sharply and superlinear on Aω, eventually surpassing the Aω
line. Finally, the growth of 〈C〉t saturates as the system enters the stable buoyancy-
driven convective state. Quantitatively, we define the limits of the transition region
by looking at the intersection of the initial and final linear behaviours with the in-
creasing transient behaviour, the two points defining the width of the transition,
δω, and their average the critical frequency ωc, which coincides within measure-
ment error with the condition 〈C〉t = Aω. For the narrow container, this results in
critical frequencies and widths of transition ωc = 33.4±0.1, δω = 0.22±0.01 for EBC
and PBC, and ωc = 32.9 ± 0.1, δω = 0.26 ± 0.01 for DBC, with the error given by
the resolution of the simulations in ω. That is, elastic boundary conditions have no
measurable influence when compared to periodic boundaries, which suggests that
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excluded volume effects due to the presence of walls can be disregarded already for
lx = 50d. Dissipative boundaries, on the other hand, have the quantitative effect of
decreasing ωc, while increasing δω; even though overall the system presents more
dissipation compared to the EBC case, inelastic sidewalls slightly reduce the energy
needed to trigger the transition compared to elastic boundaries.

Boundary conditions in the wide container become irrelevant, with all cases
given by ωc = 33.0 ± 0.1 and δω = 0.29 ± 0.02. Quantitatively, the critical points
are slightly lower and the transitions wider, which we believe is due to the influence
of the confinement in the narrow container. It is worthy to remark that the amount
of energy needed for the creation of the convective cells is practically invariant on
lx or, equivalently, the number of convective rolls, suggesting that the interaction
between rolls has no influence on their creation. Nevertheless, we notice that when
EBC or DBC are used, convection cells are seen to appear first at the boundaries, and
the boundary rolls are more stable when compared to the bulk of the system. This,
nevertheless, happens at the same ωc as with PBC, suggesting that solid boundaries
have no relevant influence on the flux (n~v) strength, but do promote the appearance
of convective cells near them.

When normalized by Aω, we can recognize in C∗ ≡ 〈C〉t /ω a shape characteristic
of a supercritical pitchfork bifurcation, as shown in the insets of Figure 4.3. The
second branch of the ideal pitchfork supercritical bifurcation would correspond to
taking the minimum in x, instead of the maximum, in (4.1). When the bifurcation
parameter ε ≡ (ω −ωc)/ωc is used as control parameter, all three boundary condi-
tion cases coincide for all system sizes considered. This suggests that the transition
presents universal behaviour, independent of the amount of dissipation. It is also a
confirmation that the critical points are well defined. With the phase-space deter-
mined, next we characterize the precursor states of the transition by looking first at
correlations of the velocity field, and then at density fluctuations by means of the
static structure factor.

Time-dependent fluctuating convective flows

Far below the transition point in the Leidenfrost state, starting from ε > −0.5, time-
dependent fluctuating convective flows can be observed. These are analogous to the
precursor fluxes present in the classical fluid Rayleigh-Bénard convection transition
[156], which were theoretically predicted and relatively recently observed by careful
experiments in gaseous media [157]. In our case, the convective rolls can be easily
identified when observing the evolution of the short-time-averaged transient veloc-
ity fields, as shown in Figure 4.4. The cells are constantly generated anywhere in the
container, but more frequently next to walls, this of course when they are present,
i.e. in the EBC and DBC cases. Two fundamental aspects differentiate such a tran-
sient state from the fully developed buoyancy-driven convective state above ε = 0.
First, the circulation of particles is not associated with mean density or temperature
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Figure 4.4: Transient velocity fields, each averaged over 5 oscillation periods, showing the
emergence and decay of a fluctuating convective cell in a section of a wide container. From
blue to red, the colour and size of the vectors corresponds to their norm.
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inhomogeneities (it is time-dependent). That is, 〈n(x,z)〉t , 〈T (x,z)〉t and
〈
~v(x,z)

〉
t re-

main homogeneous in x̂. Second, the convective velocity field is present only as an
average, and thus is not correlated with the instantaneous velocity of the particles.
That is, the velocities of the fluctuating convective flows are much smaller than the
amplitude of the fluctuating velocities (

√
T ), in contrast to the buoyancy-driven con-

vection case, where they are comparable (see Figure 4.2). This has the consequence
that, as there is no localization of the fluxes, their effect is not reflected in 〈C〉t .

In order to characterize the stability of the transient convective cells, the self-
correlation of the fluctuating velocity field is computed,

Fv(τ) = cF
〈
δ~v(~x, t + τ) · δ~v(~x, t)

〉
x

with δv = ~v(~x, t)−
〈
~v(~x, t)

〉
t , and cF a normalization constant such that Fv(0) = 1. Fig-

ure 4.5a shows Fv(τ) for characteristic cases of ω. In the following we focus only
on EBC and DBC, as they considerably simplify the computation of self-correlation
functions by impeding the convective rolls to drift in the x-direction, as they do
with PBC. Visual inspection and preliminary analysis of the PBC case suggest that
the results can be generalized to this case as well. All correlations present a com-
mon shape: an initial quick, power-law-like decay followed by a slower exponential
decrease. The rapid decorrelation at short time-scales confirms that the particles’
instant velocities are mostly fluctuating, and do not present a high time correlation.
On the other hand, for longer times the correlation is comparatively lower, but still
considerable, and decays slower. This is a signal of long-term average preferred
fluxes. As expected by the critical slowing down of fluctuations near the transition,
the overall correlation of this region increases as the critical point is approached, as
can also be seen in Figure 4.5a. The characteristic time of decorrelation τv is ob-
tained by considering Fv ∼ exp(−τ/τv). Figure 4.5b shows ωτv as a function of ε,
from where we find a powerlaw τv ∼ ε−ξ /ω with exponent ξ ∼ 0.51± 0.02. Closer to
the critical point the measurement error becomes significant. The data is presented
for the whole range in ω where the Leidenfrost state is present, which is one and a
half decade in ε.

Wide systems present the same overall features as the narrow container; τv can
be determined with a higher precision –as noise is reduced with a higher number of
particles–, and presents the same critical exponent ξ as in the narrow case. That is,
transient convective flows are independent of the size of the container.

Also visible in Fv(τ) are wide peaks at regular intervals, signals of a quasi-periodic
time-scale of correlation. By observing the evolution of the centre of mass, and com-
puting its fast-Fourier transform, it was verified that this periodic correlation cor-
responds to the recently reported low-frequency oscillations, present in density in-
verted agitated systems [123, 158] (see Chapters 2 and 3). The quasi-periodic move-
ment is coupled with a breathing behaviour of the dense bed of grains, which in-
creases and decreases its granular temperature. Here we do not analyse this further;
for a detail study of the phenomena we refer the reader to Chapter 2.
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Figure 4.5: (left) Velocity correlation functions Fv for several ω and EBC in the narrow con-
tainer. (right) Characteristic time-scale of fluctuating convection τv , corresponding to the
exponent of the long term exponential decay of the self correlation function Fv , as a function
of the bifurcation parameter ε. The dashed lines indicate best fits of the form indicated in the
main text.

Static structure function

As energy input increases, for ε > −0.1, density fluctuations arise, clearly recogniz-
able as modulations in the surface of the bed of grains. To analyse their behaviour
we compute the static structure function,

S(k) =
1
N

〈∣∣∣n̂(k, t)− 〈n̂(k, t)〉t
∣∣∣2〉

t
, (4.2)

with n̂ the Fourier components of the depth-averaged number density field in the
x-direction,

n̂(k, t) =
lx/δx∑
j

n(xj , t)e
i2πkn(xj ,t). (4.3)

Notice that we define k = 1/λ, for a more straightforward comparison between wave
number k and wavelength λ. The position xj is given by regular intervals, xj =
1
2δx+jδx, with δx = 0.1 the coarse graining length. Notice that instead of considering
the particles’ position in the definition of n̂ we use the averaged density profiles,
as it significantly increases the speed of computation. This approximation holds
only for low wave-numbers, that is, 1/k � δx, which is the region we are interested
in. Test cases where done with the usual definition with particles positions, and no
significant differences were observed.

Transient modulations of the bed are captured in S(k) by the appearance and
steady increase of a narrow peak at k ≈ 0.02, as shown in Figure 4.6 for both the
narrow and wide containers. This implies that the number of convection rolls is
proportional to the system size, as their size is roughly constant. We define the
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Figure 4.6: Structure factor, S(k), for narrow (left) and wide (right) containers for the bifur-
cation parameters specified. Dashed lines correspond to PBC, while solid lines have EBC. The
vertical solid line indicates the 1/lx point.
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Figure 4.7: The most unstable mode kc, defined by the maximum of the structure factor
max(S(k)) ≡ S(kc), as a function of the bifurcation parameter, for narrow (left) and wide (right)
containers and the boundary conditions specified.

critical mode kc by the position of this maximum, that is Sm ≡ max(S(k)) ≡ S(kc).
Thus, the associated wavelength at the transition point, λ∗c ≈ 50, corresponds to the
size of the smallest stable convection roll, seen to be independent of lx for lx > λ∗c.
What other factors may affect λ∗c is not studied further here, although we notice that
previously realized stability analysis of the granular hydrodynamic equations have
found an expression for λ∗c as a function of the constitutive relations, which are in
themselves dependent on the particle properties [80].

Notice from Figure 4.6 that for ε = −0.1 the correlation of the transient convective
flows was significant, but S(k) has no relevant maximum. This confirms that fluctu-
ating convective flows take place in a stable homogeneous Leidenfrost state, and are
not accompanied by any relevant excitation of the critical mode in the density (and
temperature) field.
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Figure 4.8: Structure factor maximum, Sm, as a function of the bifurcation parameter ε, for
EBC (blue) and PBC (red) in narrow (left) and wide (right) containers. As reference, the best
fit for the amplitude of the critical mode is included (dashed gray, see main text).

Previous simulational and experimental works have stated that λc scales linearly
with the shaking strength Σ ≡ Ã2ω̃2/gd = A2ω2 [64, 150]. The inset of Figure 4.7
shows λc(Σ) for the wide container and confirms that this is indeed the case. In
contrast, in the narrow container solid walls fix kc, while with PBC the behaviour
is not clear, roughly increasing before the transition point and then decreasing in
a non-monotonic way; the uncertainty in the measurements does not allow a more
accurate conclusion in this case. The marked difference between both boundary con-
dition cases suggests that, even though EBC and PBC had equal critical points, as
measured by 〈C〉t , they do have an influence on the modes that are being perturbed.
In most of the studied range k∗ is consistently higher with PBC, showing that solid
boundaries can have the originally unexpected effect of increasing the critical con-
vection roll size. This is due to excluded volume effects near the wall, which decrease
the density and thus have the effect of exciting a lower mode, in our case for λ ≈ 25.
On the wide container wall effects become negligible, and thus k∗ coincides for both
types of boundary conditions.

By taking into account that kc in the wide container is not constant, we interpret
the LBC transition for lx > λ∗c as a series of transitions between energetically simi-
lar states. Inherent fluctuations are strong enough to allow the constant switching
between contiguous kc. In terms of the relevant scales, this is a conflict between λc,
which depends on our control parameter ω, and lx, which is fixed. As λ∗c is inde-
pendent of the container size, the critical behaviour for |ε| ∼ 0 is still expected to be
universal.

Indeed, Sm(ε) shows critical-like behaviour for ε < 0, as shown in Figure 4.8. In
the narrow container, both types of boundary conditions show the same qualitative
growth for ε < 0, although with consistently lower amplitudes in the EBC case, as
previously discussed. For ε > 0 the PBC case shows a growth reminiscent of the
critical amplitude of a supercritical bifurcations. In this case, Sm is directly related
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to the amplitude of the critical mode, as the lack of a fixed reference frame makes
〈n(x, t)〉t homogeneous even in the buoyancy-driven convective state. On the con-
trary, the EBC case immediately decays for ε > 0. In the wide container both cases
coincide within error for ε < 0, showing that the discrepancy between both cases in
the small container is indeed a size-effect. Sm again looses significance for ε > 0,
and the behaviour is erratic due to metastability of the transient region in the wide
systems.

Dynamics of transient states

The buoyancy-driven convective state may present complex time evolutions. These
are heavily dependent on the lx/λc ratio, based on the constraint that the number of
convective rolls has to be an integer number. Half-integer values are possible only
with solid wall boundary conditions. This implies that non-integer values of lx/λc
lead to metastable states, as the number of convective cells nc presents intermittent
behaviour between the two closest values of kc, as also between convection rolls at
different sides of the container, if walls are present. As an example, Figure 4.9a
shows the temporal evolution of n(x) for a system with lx = 80, that is, lx/λ∗c ≈ 1.6.
For a value ofω just after the transition point, the convective cell constantly switches
between metastable states; it is possible to identify two-rolls and one-roll configu-
rations at either side of the system, alternating with no clear periodicity. We believe
this to be an important factor to take into account on any study of the dynamics of
the granular convective state: the size of the container has no influence on the criti-
cal point of the transition, but plays a determining role in the dynamics. In our case,
lx for the narrow and wide containers was chosen a posteriori to diminish the effects
of metastability, considerably facilitating the study of precursor states.

As lx/λc is increased further, a new state becomes possible at the transition region
in which convective cells coexist with regions effectively in the Leidenfrost state. Fig-
ure 4.9b shows a period of coexistence, as two pair of convective cells emerge in a
confined region of the system while the rest remains in the Leidenfrost state. Notice
how the Leidenfrost region is roughly 200d wide, far larger than λ∗c. We interpret
this phenomena as the emergence of a localized state in a non-linear system, a sub-
ject of increased scientific interest [159].

Critical mode amplitude

It has been shown that both the correlation of the fluctuating velocity field and the
unstable mode of the density fluctuations present critical-like behaviour near the
transition. We now look at the overall transition behaviour in the context of bifurca-
tion theory, by following the amplitude in the emergent pattern of the critical mode,
Ac. The emergent pattern is more evident and measured from the vertical velocity
field vz(x, t). Ac is the amplitude of the mode kc in vz(x, t)/ω, with kc determined by
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Figure 4.9: Spatio-temporal density plot of the number of particles field, n(x, t), for lx = 80,
ω = 35 and SBC (left) and lx = 400, ω = 35 and PBC (right). High density regions are shown
in red.

the structure factor maximum. The final value of 〈Ac〉t is obtained by averaging over
the whole simulation time.

In the seminal work of Swift and Hohenberg, hydrodynamic fluctuations were
studied for a molecular fluid near the thermal convection instability [160], and a
simple model for the Rayleigh-Bénard instability was derived. In the following
we apply the Swift-Hohenberg model to the LBC transition, inspired by the evi-
dent similarities of both phenomena; in terms of bifurcation theory, both transi-
tions correspond to spatial-mode selecting bifurcations. Nevertheless, we expect
the discrete nature of our granular system to have a considerable effect close to the
transition, manifested as fluctuations arising from the finite number of particles.
Thus, we consider that the universal behaviour of the fluctuating vertical velocity
w(z, t) = vz(x, t) − 〈vz(x, t)〉t close to the transition is given by the Swift-Hohenberg
model for pattern formation with an stochastic term [144],

∂tw = ε′w −w3 − (∂xx + k2
c )2w+

√
η′ζ(x, t), (4.4)

with the control parameter ε′ , and the bifurcation parameter given by ε′ − k4
c . In our

system ε′−k4
c ≈ ε (as kc� 1), and thus in what follows we take ε′ = ε. Fluctuations are

modelled by the last term, where ζ is a Gaussian white noise, that is 〈ζ(x, t)ζ(x′ , t′)〉 =
δ(x − x′)δ(t − t′); and η′ is the parameter of noise intensity [161]. In our system the
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zero correlation of ζ is justified by assuming the gaseous phase close to the moving
plate to be the main source of fluctuations, and to behave strictly as an ideal gas, that
is, lacking temporal or spatial correlations of the particles.

It is known that in (4.4) the base statew(x, t) = 0 is stable for ε′ < 0, and presents a
supercritical spatial instability for ε′ = 0, which leads to the appearance of a pattern,
in our case corresponding to convective cells, for ε′ > 0. Following [161, 36], and
confirmed by our measured velocity profiles, solutions for the critical mode kc can
be assumed to be of the form

w =
a(τ)
√

3
eikcx +

ā(τ)
√

3
e−ikcx +U (a, ā,x) (4.5)

with a the amplitude of the pattern with mode kc, dependent on the slow time τ ≡ εt,
and U a general function containing higher order terms in a. Substituting (4.5)
into (4.4) one reaches the amplitude equation corresponding to a stochastic cubic
supercritical spatial bifurcation:

∂τa = εa− |a|2a+
√
ηζ(τ) (4.6)

with η ≡ 3η′ . A solution for the probability function of a, Ps(|a|, ε,η), can be found
from (4.4) and (4.5), as shown in [161, 36]. From the shape of Ps the expectation
value can be obtained [161], given by

|amax| =

√
ε+

√
ε2 + 2η
2

. (4.7)

In our case |amax| = 〈Ac〉t . Our measurements are consistent with this form for |ε| �
1, as shown in Fig 4.10 for narrow and wide systems with PBC and EBC. The best
agreement is found for noise intensity η = 10−4, a free parameter. Nevertheless, (4.7)
does not capture the shape of 〈Ac〉t (ε) for higher values of ε, deviating considerably
already for ε ∼ 0.05.

A higher level of agreement can be obtained by considering an stochastic quintic
supercritical bifurcation [36]:

∂τa = εa− |a|4a+
√
η
√
hζ(τ), (4.8)

with h quantifying the strength of the quintic non-linear term [36]. This type of bi-
furcation may be more relevant for our system, as it has been previously associated
with parametrically driven spatially extended systems, as Faraday patterns [151]
and vertically vibrated series of coupled pendula [152]. The former can be consid-
ered closer to our present system than the Rayleigh-Bénard scenario, taking into ac-
count that the bed of grains is also a vertically vibrated medium with a free surface.
The latter case, on the other hand, could be related to the already mentioned low-
frequency oscillations [123]. Previously it was shown that density inverted granular
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Figure 4.10: Amplitude of the critical pattern of the vertical velocity field vz(x, t), Ac, as
a function of the bifurcation parameter ε, for EBC (blue) and PBC (red) in narrow (left)
and large (right) containers. The grey dashed lines correspond to fits given by the Swift-
Hohenberg model with a stochastic term (see main text), with noise level η = 10−4. The
coloured dashed lines correspond to fits based on a quintic supercritical bifurcation, for noise
intensity σ = 8× 10−4 in the small container systems, and σ = 10−3 for the wide cases.

states in a quasi-one-dimensional container (l̃x ∼ l̃y ∼ d) behave approximately as
harmonic oscillators. It can thus be inferred that for wider containers, as the ones
considered in this study, the dynamics are analogous to a series of coupled oscilla-
tors.

Following a similar method as the previous analysis, an expression for the ex-
pected value of the amplitude of the unstable mode can be obtained (for details of
the derivation we again refer the reader to [36]),

|amax| = σ1/6
√
β/Ω+Ω/3 (4.9)

withΩ ≡ (3/4)1/3(9 +
√

3(27− 16β3))1/3 and β ≡ ε/σ2/3, with σ ≡ η
√
h the only fitting

parameter. The shape of (4.9) is also shown in Figure 4.10, now in good agreement
for higher ε in all cases.

All systems present the same overall shape of Ac(ε), with the most significant dif-
ference being lower amplitudes for ε > 0 in the wide containers. More importantly,
there is no significant difference in the noise intensity for all cases, except for the
narrow container with EBC, where the noise term is lower, σ = 6 × 10−4 ± 10−5. In
the narrow container with PBC σ = 8×10−4±2×10−4, and σ = 10−3±2×10−4 for the
wide container with any boundary condition. The independence of the noise inten-
sity on N suggests that the relevant quantity for the critical dynamics is the amount
of particles per surface area, which in our cases remains constant.
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4.4 Conclusions

We have studied the granular Leidenfrost to buoyancy-driven convection transition,
characterized the precursor states and proposed a new interpretation of its uni-
versal dynamical behaviour. The overall picture is of a continuously fluidized bed
of grains which goes from homogeneous Leidenfrost configurations to increasingly
velocity correlated convective states, until flows are strong enough to sustain the
density inhomogeneous buoyancy-driven convective state. From a bifurcation the-
ory perspective, the convection transition can be understood as a pattern formation
phase-transition, with the emergence of convective cells with a critical length-scale
independent of the domain size, which is consistent with previously realized hydro-
dynamic stability analysis of the Leidenfrost state [80].

The time-dependent fluctuating convection state can be characterized by the cor-
relation time of the fluctuating velocity field, which shows critical-like behaviour
with an exponent of approximately 0.51. From the self-correlation it is also pos-
sible to observe the influence of low-frequency oscillations [123] in the fluctuating
velocity field.

The static structure factor shows the emergence and growth of the pattern dom-
inant length-scale. The amplitude of the critical mode is also seen to show critical
behaviour, consistent with a supercritical bifurcation. By following the most unsta-
ble mode throughout the transition in wide systems it was possible to confirm that
the size of the convective cells is indeed proportional to the frequency of energy
injection.

In the transient state of wider systems the Leidenfrost and buoyancy-driven con-
vective states can coexist. The convective state in this region is constantly evolving,
presenting metastability between states with different number of rolls. As energy in-
creases the stability of the convective cells increases, although their number is deter-
mined by the amount of cells that can be fitted in the container. Further increasing
the energy leads to a comparatively slower process of merging of convective cells.
The rich dynamics of merging and splitting of convective cells in coexistence with
the Leidenfrost state in the wide systems calls for further research.

Elastic walls and periodic boundaries present the same critical points, disregard-
ing any significant confinement effects for containers bigger than 50 particle diame-
ters. Slightly dissipative side-walls, on the other hand, have the effect of decreasing
the amount of energy needed to trigger the transition, showing that the excitation
of the unstable mode at the boundaries has a more significant effect than the added
dissipation. In the wide systems all boundary conditions become equivalent.

The amplitude of the critical mode of convection is seen to be coherent with a
quintic supercritical amplitude equation. The agreement is much better than with a
cubic supercritical bifurcation, associated with the Swift-Hohenberg equation. This
suggests a new interpretation of the transition, closer to spatially extended paramet-
rically driven systems than to Rayleigh-Bénard convection. We hypothesize that the
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source of the parametric driving is not the vibration of the container (which has too
low amplitude and high frequency to couple with the bed dynamics), but the low-
frequency oscillations present in a density inverted bed of grains, i.e. the granular
Leidenfrost state. In general, we remark that the universal behaviour of the density
field can only be captured by considering a noise term in the corresponding ampli-
tude equation which quantifies the finite-number effects. The noise intensity is seen
to be independent on the system size, except in the confined small container. This
suggests that the transition in wider systems is a local phenomenon, with the size of
the critical convective cell as relevant length-scale. What factors determine the crit-
ical convective length-scale remains an open question. Furthermore, a derivation of
the quintic supercritical amplitude equation from a series of coupled oscillators with
the form proposed in [123] would be a way of confirming the proposed description.





5

On creating macroscopically identical
granular systems with different number of

particles1

Granular hydrodynamics is known to successfully describe various com-

plex granular flows. It is nevertheless unknown under which circumstances

the continuum hypothesis holds for granular media. In the following chap-

ter we investigate to what extent it is possible to create identical hydrody-

namic states with significantly different number of particles, with the goal of

studying density fluctuations in granular dynamics. A definition is given of

macroscopically equivalent systems, and the dependency of the conservation

equations with the particles’ size is studied. In certain cases, and by appropri-

ately scaling the microscopic variables, we are able to compare systems with

significantly different number of particles that present the same macroscopic

phenomenology. We use the found scaling laws in simulations of the density

inverted granular Leidenfrost effect and its transition to a buoyancy-driven

convective state, present in vertically vibrated setups. This allows us to quan-

tify the effects that density fluctuations have in the collective oscillations that

take place in the Leidenfrost state. The amplitude of the oscillations is de-

duced to be driven by density fluctuations, while their oscillation frequency

converges to a finite value. Furthermore, the transition to buoyancy-driven

convection is studied, showing a strong dependency on the particle size, al-

though a possible convergence for large number of particles.

1. Draft for: N. Rivas, S. Luding, D. van der Meer, Europhysics Letters.
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5.1 Introduction

Granular flows often show a remarkable similarity with those of molecular flu-
ids [121, 111]. The success of granular hydrodynamic theories in predicting many
complex granular behaviours indicates that such a relation is not only superficial [12,
13, 14, 28, 15, 16, 18]. But despite continued development, the defining properties of
granular materials, such as the dissipative nature of the particles’ interactions, still
present a challenge for continuum theories, specially for high packing densities or
dissipations [6, 7, 8]. An additional fundamental difficulty stems from the enormous
difference in the total number of constituents between granular and molecular sys-
tems; while in granular media macroscopic fields may vary in distances of the order
of a few particle diameters, in molecular systems the microscopic relevant length-
scale is orders of magnitude smaller than the macroscopic one. The low number of
constituents involved in granular flows immediately imply the existence of inher-
ently large density fluctuations, which can drastically modify the global dynamics,
specially near transitions [137, 34]. Deepening our understanding of the role played
by these fluctuations is thus of fundamental importance for the development of a
successful continuum description of granular media.

In the following chapter we study the possibility of constructing macroscopically
identical granular systems with significantly different number of particles. The final
goal is to analyse the influence of finite-number-driven fluctuations. Macroscopic
states are defined by the set of conserved hydrodynamic fields, as determined by
the granular hydrodynamics equations. The microscopic states, on the other hand,
are given by the particles’ positions and velocities, and evolve according to the par-
ticles’ interaction laws. The link between the two scales is mediated by the grain
properties, present in the transport coefficients on the macro scale, and in the col-
lision rules in the microscopic scale. Moreover, boundary conditions usually relate
effective hydrodynamic fields with microscopic attributes, such as dissipation coef-
ficients or energy injection parameters. Using previously obtained expressions for
the transport coefficients, we derive the dependency with particle size of all terms
of the conservation laws. As the particle size is directly related to the total num-
ber of particles, we essentially see the dependency of the macroscopic states on the
total number of particles of the system. We demonstrate that in general the gran-
ular hydrodynamic equations are not particle-size invariant. Nevertheless, we will
show that it is possible to construct invariance in steady, no flux states, via carefully
chosen scalings of the particles’ properties and boundary conditions. The key differ-
ence from usual scaling analysis is that in our case a microscopic quantity (the size
of the particles) is chosen as control parameter, and the rest of the microscopic vari-
ables are modified as a function of this control parameter such that the macroscopic
description of the system remains invariant.

The obtained scaling relations are verified by simulations of the granular Lei-
denfrost state and its transition to buoyancy-driven convection. By computing the
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coarse-grained fields of equivalent systems we are able to observe the influence of
finite-number effects in the macroscopic scale. Fluctuations are seen to have a deter-
minant effect on the oscillatory behaviour previously observed in the same setup, as
also intermediate states driven mainly by fluctuations are seen to disappear in the
hydrodynamic limit. The source of disagreements in non-steady states is also stud-
ied by increasing the energy injection and analysing the transition from the granu-
lar Leidenfrost state to a buoyancy-driven convective state. Although the scalings
are not expected to be valid in non-steady states, the transition shows interesting
dependencies as the number of particles is increased. Overall, we believe that the
methodology presented in what follows could be applied to other granular systems,
providing a clear way of studying intrinsic fluctuations driven by the number of
particles, and finite-particle-size effects.

5.2 Granular hydrodynamics particle-size dependencies

In the following we study the particle-size dependency of the two-dimensional gran-
ular hydrodynamic equations. The analysis is made for two dimensions mainly due
to the simplicity and wider acceptance of the form of the constitutive laws, when
compared to three dimensional ones. Our goal is to recreate equivalent hydrody-
namic states with significantly different total number of particles N which, as will
be proven, is equivalent to that of finding particle-size invariant states. Two hy-
drodynamic states are considered equivalent if the conserved macroscopic fields are
the same in all space and time. As conserved fields we consider the packing frac-
tion, φ(~x, t) = mn(~x, t)/ρp, with m and ρp = m/π(d/2)2 the mass and density of the
particles, and n(~x, t) the number density field, function of the spatial coordinates
~x = (x,y) (for two-dimensional systems) and the time t; the velocity field ~u(~x, t); and
the fluctuations in velocity, kBT (~x, t)/2m = 〈~u(~x, t)〉2t −〈~u(~x, t)2〉t , with T (~x, t) the gran-
ular temperature field, kB the Boltzmann constant, and time averages denoted as 〈〉t .
The condition of invariance can then be expressed as

φd(~x, t) = φd∗(~x, t) (5.1)

~ud(~x, t) = ~ud∗(~x, t) (5.2)

kBTd(~x, t)
md

=
kBTd∗(~x, t)
md∗

, (5.3)

for all ~x, t, and particle diameters d and d∗, where the d-dependency has been de-
noted by a subscript.

From the definition of the packing fraction and its condition of invariance (5.1),
one immediately obtains that d2nd(~x, t) = d∗2nd∗(~x, t), which implies that

[n ]d = d−2. (5.4)

where we have introduced the notation for the dependency on d as square brack-
ets, [ ]d . It then follows that the number-density is indeed inversely proportional to
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d and thus, if the total volume of the system is kept fixed, N also varies with d. That
is, the problem of finding equivalent systems with different number of particles is
equivalent to that of finding equivalent systems with different particles’ size.

From the velocity fluctuations invariance (5.3), we see that kB should scale as m
in order for T (~x, t) to be invariant. There is still freedom to choose the scaling of m,
which we take as

[m ]d = d2, (5.5)

such that ρp remains invariant. This implies that the temperature field (in kB units),[
kBT (~x, t)

]
d = d2. (5.6)

The subsequent step consists in investigating if such conditions over the con-
served fields also imply invariance of their conservation laws. If both the conserved
fields and their laws of evolution are invariant with respect to d, then the same hy-
drodynamic states are to be expected. As granular hydrodynamic model we consider
the two-dimensional compressible Navier-Stokes equations, with an added sink term
in the energy equation to account for particle dissipation:

m

(
∂n
∂t

+ ~u · ∇n+n∇ · ~u
)

= 0, (5.7)

mn

(
∂~u
∂t

+ ~u · ∇~u
)

= −∇p+∇ · (µτ) +∇(λ∇ · ~u) +mn~g, (5.8)

nkB

(
∂T
∂t

+ ~u · ∇T
)

= ∇ ·~J − p(∇ · ~u)− I. (5.9)

They correspond to the mass conservation equation; the momentum balance equa-
tion, with p the pressure, µ the (shear) viscosity, τ = ∇~u+(∇~u)T the strain rate tensor,
λ the second viscosity and ~g the acceleration of gravity; and the granular temper-
ature equation, or energy balance, with J the energy-current density (or heat flux),
and −I the sink-density of energy. Here we have neglected terms which are cuadratic
in ∇~u, particularly in the energy equation the terms µ∇~u : τ and −µ∇~u : (∇ · ~u).

In order for (5.7)-(5.9) to be d-invariant, i.e. independent of the size (and total
number) of particles, all terms of any equation should have the same dependency on
d. Notice that this is true for the continuity equation just by construction, consider-
ing (5.2), (5.4) and (5.5). For the momentum and temperature equations a explicit
form of the transport coefficients is needed, as p, µ, ~J and λ, as also the energy sink
term, I , are expected to explicitly depend on d. Various forms for these quantities
can be found in the literature, varying in ranges of validity and levels of approxima-
tions. Here we consider the expressions derived in [26] using the Chapman-Enskog
method to solve the Boltzmann kinetic equation. These expressions are known to be
useful in describing open vibrated granular systems under the influence of gravity
[22], given by the same set of conservation equations (5.7)-(5.9). Nevertheless, we
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remark that leading order scalings on d and r are expected to be independent of the
particular form of the transport coefficients.

It follows from the definitions (5.1) and (5.2) that the left side of the momentum
equation is invariant in d. For the pressure we consider, as a first order approxima-
tion, the equation of state of an ideal gas, p = nkBT . Notice then that, by (5.3) and
(5.4),

[p ]d = d0. (5.10)

Higher order corrections to the equation of state are expected to depend on the pack-
ing fraction φ, which is itself independent of d, and thus [p ]d is not expected to be
modified.

The viscosity µ is equivalent to that given by a system of elastic hard-spheres
times corrections due to particle-particle dissipative interactions,

µ = µ0(T )µ∗(r) =
1

2d
√
π

(mkBT )1/2µ∗(r). (5.11)

The specific form of µ∗(r) can be found in [22]; here we only remark that, as expected,
µ∗(r) = 1 as r→ 1. Considering (5.3) and (5.5), (5.11) results in

[µ ]d = d, (5.12)

where we have assumed that [r ]d = d0, and thus [µ∗(r) ]d = d0. Further along we will
elaborate on the consequences of relaxing this condition.

The second viscosity can be immediately obtained by using the Stokes approxi-
mation λ = −2

3µ. In that case
[λ ]d = d. (5.13)

Finally, for the gravity term we choose
[
~g
]
d = d0, and thus the last term in (5.8)

becomes d-invariant.
We now consider the terms in the energy equation (5.9). As expected, the left-

hand side terms of (5.9) are independent on d, as can be readily seen from (5.5)
and (5.6). Furthermore, the second term on the right-hand side of (5.9) is also d-
invariant, as it follows directly from (5.2) and (5.10). For the energy-density flux we
consider Fourier’s heat law,

~J = κkB∇T . (5.14)

with κ the coefficient of thermal conductivity. As derived in [22], the form is analo-
gous to that of µ,

κ = κ0(T )κ∗(r) =
2

d
√
π

(
kBT
m

)1/2

κ∗(r). (5.15)

which results in
[κ ]d = d−1, (5.16)

where, as before, we have considered [κ∗(r) ]d = d0.



84 Macroscopically identical granular systems

The last term in (5.9) quantifies the loss of energy due to the inelastic interaction
between particles. According to [22],

I = pnkBT
I ∗(r)
µ0(T )

, (5.17)

where I ∗(r) is a function only of r. Considering (5.10) and (5.12), we see that

[ I ]d = d−1. (5.18)

Summarizing, all terms involving the transport coefficients κ, µ and λ scale as
d, while the energy dissipation term I scales as d−1, and the rest of the terms are d-
invariant. It is important to remark that higher density corrections to the transport
coefficients and the equation of state are expected to be functions of φ, and thus also
d-invariant. This implies that (5.8) and (5.9) are not d-invariant, as not all terms
scale in the same manner with d. In other words, it is not possible to obtain macro-
scopically equivalent systems for different number of particles in the most general
dynamic case, considering the conservation laws given by (5.7)-(5.9). Even though
the previously derived relations depend on the specific form of the transport coef-
ficients, we expect all of them to present the same leading-order dependency on d,
and thus the previous results to be valid for general granular flows.

Notice that in the limit of d → 0 all d-dependent terms in (5.7)-(5.9) vanish,
except for the dissipation density I , which diverges. This is to be expected, as if
n(~x, t) increases with d → 0, and nkBT (~x, t) remains constant, the collision rate is
expected to increase, and with it the total dissipation per volume. Nevertheless, the
divergence can be avoided by considering a d-dependent coefficient of restitution.
In the case that [r ]d , d

0, as we have seen, [ I ]d = d−1 [ I ∗(r) ]d , [κ ]d = d−1 [κ∗(r) ]d and
[µ ]d = d [µ∗(r) ]d . The functions µ∗(r), κ∗(r) and I ∗(r) can be expanded in terms of
ε ≡ 1− r2 [22], which yields

µ∗ = 1 +
157
768

ε+O(ε2), (5.19)

κ∗ = 1 +
57

256
ε+O(ε2), (5.20)

I ∗ =
5

12
ε − 5

512
ε2 +O(ε3). (5.21)

We see that, to first order, [ I ]d = d−1 [ε ]d . This implies that if ε is taken to be at least
linear in d, then I does not diverge as d → 0. As an example as to how to derive an
scaling law for ε such that the equations remain invariant, let us consider the the
no-flow (~v = 0) and steady state case, where equations (5.7)-(5.9) are reduced to

∇p =mn~g (5.22)

∇ ·~J = I. (5.23)
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The invariance of the first equation follows from the condition (5.1) and (5.10). The
second equation is not directly d-invariant, as it follows from (5.16) and (5.18). In
order to balance ∇ ·~J and I , then

[ε ]d = d2. (5.24)

That is, in the case that the resitution coefficient is modified according to (5.24),
equations (5.22)-(5.23) are d-invariant. Fruthermore, in the limit d → 0, equations
(5.7)-(5.9) result in

m

(
∂n
∂t

+ ~u · ∇n+n∇ · ~u
)

= 0, (5.25)

mn

(
∂~u
∂t

+ ~u · ∇~u
)

= −∇p+mn~g, (5.26)

nkB

(
∂T
∂t

+ ~u · ∇T
)

= −p(∇ · ~u). (5.27)

which correspond to the equations of a perfect fluid. The resulting equations (5.25)-
(5.27) tell us that the macroscopic state of any granular flow is expected to converge
as d→ 0, behaving like a perfect fluid, given that [ε ]d = dα with α > 1.

Having explored the possibility of obtaining macroscopically identical systems
with different d or, what is equivalent, N , we now consider a specific granular flow
in which the relations can be tested. Even though we have proven that d-invariance
is not possible in the most general flow case, the convergence to given macroscopic
states of both steady and unsteady flows is studied.

5.3 Granular Leidenfrost system

As test case we consider the granular Leidenfrost state and its transition to buoyancy-
driven convection. The granular Leidenfrost state consists of a density inverted and
phase separated particle arrangement, where a high temperature, gaseous region
near the vibrating bottom sustains a denser, colder bed of grains on top [79, 71].
As the granular Leidenfrost state corresponds to a steady state with no flow, it is
expected to be described by (5.22) and (5.23) (with appropriate excluded volume
corrections) [79], the case where we have seen that it is possible to construct d-
invariance. Nevertheless, as the shaking strength is increased, the granular Leiden-
frost state looses its horizontal homogeneity and gives rise to a buoyancy-driven
convective state, still a steady state but with ~v , 0. Granular hydrodynamics was
recently proven accurate in predicting the critical modes of this transition [80], con-
firming its validity for this particular state.
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Boundary conditions

In order for the macroscopic system to be completely defined only the set of bound-
ary conditions rests to be determined. To account for the energy injection through
particle-wall collisions (5.23) is integrated over the whole domain, resulting in

Jin =
∫ h

0
Idz, (5.28)

where h is the height of the granular bed, and Jin the energy-density flux injected to
the system through particle collisions with the bottom boundary. We have accounted
for the free top boundary by taking J(z)→ 0 as z→∞. Notice that as particles have
no friction and walls are considered elastic, collisions with the side walls do not
inject energy. For the specific form of Jin we consider a saw-tooth driving, which
leads to

Jin =mn(0)u3
(

2kBT (0)
mu2

)1/2

(5.29)

with u the typical velocity of the bottom plate. Even though more complex expres-
sions exist for driving forms closer to sinusoidal functions, it can be shown that all of
them converge to (5.29) in the limit of u �

√
T (z = 0), which is expected to be valid

in the highly agitated granular Leidenfrost state. Therefore, using our previously
derived scalings, and imposing that [h ]d = d0, it is straightforward to see that, by
(5.28), [

u2
]
d

= d. (5.30)

If the container’s shaking is taken to have a characteristic amplitude Af and angular
frequency ωf , then u = Af ωf , and thus [Af ωf ]d = d1/2. In our case we use [Af ]d =
d, to make sure that the amplitude does not become larger than the particle size in
the limit d→ 0. It then follows that[

ωf
]
d

= d−1/2. (5.31)

As mentioned previously, the total number of particles N is expected to be d-
dependent, from (5.4), as long as the total volume is not adequately scaled. The total
number of particles is given by

N =
∫
Ω

n(~x)dΩ (5.32)

where Ω is the domain defined by the particles’ container. If the domain is not
scaled with the particles’ size, [Ω ]d = d0, then [N ]d = d−2. Nevertheless, keeping
the size of the container fixed could lead to different macroscopic states, as confined
states are expected to change their phenomenology as spatial restrictions are relaxed.
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It is then more adequate to maintain the effective dimensionality of the system De
independent of d, in which case [dΩ ]d = dD−De , and thus

[N ]d = d−De . (5.33)

For example, in the quasi-two-dimensional geometries usually considered in studies
of the granular Leidenfrost state, De = 2, implying [N ]d = d−2.

Dimensionless quantities

Several dimensionless numbers are known to be relevant in the dynamics of the
granular Leidenfrost state, as also in the transition to buoyancy-driven convection.
In the following we derive how do this quantities scale with d. The amount of parti-
cles is correctly quantified independent of the systems size by the number of filling
layers F ≡ N/lxly . Its scaling is observed to be independent of the number of con-
strained dimensions,

[F ]d = d−1. (5.34)

The shaking strength Sf ≡ A2
f ω

2
f /g d is known to be a good control parameter

for the transition to buoyancy-driven convection, as it remains roughly constant for
different combinations of Af and ωf [71]. It follows from (5.30) that[

Sf
]
d

= d0. (5.35)

Finally, the Prandtl number, which quantifies the relative importance of diffusive
momentum to energy transfer, Pr ≡ µ/κ, is known to play an important role in the
convective dynamics [80]. From (5.12) and (5.16),

[Pr]d = d0. (5.36)

The invariance of Pr on the particle size implies that the convective dynamics (where
~v , 0 and thus the conservation laws are not expected to be d-invariant) could retain
certain characteristics as d is scaled. In other terms, the differences observed in
systems with different d cannot be attributed to variations in the relative importance
of viscosity to thermal diffusivity.

5.4 Simulations

Numerical simulations are performed using an event-driven discrete particle method
algorithm [162]. The same algorithm has previously presented excellent agreement
with experiments of the granular Leidenfrost state [123] (see Chapter 3). The con-
tainer as a whole is vibrated in the z-direction, such that the position of the base is
given by z0(t) = Af sin(ωf t), with Af and ωf the amplitude and angular frequency
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Figure 5.1: The two container geometries studied: wide, with lx = 50 and column, with lx = 5,
while ly = 5 in both cases.

of oscillation, respectively. The sinusoidal function is actually implemented as a bi-
parabolic function, as it significantly simplifies the numerics. Previous simulational
results using the same algorithm have been tested against the use of an actual sine
function, and no relevant differences were observed, aside from the significantly
higher computational cost [123]. Furthermore, in order to avoid inelastic collapse
we set r = 1 if the relative velocity of the particles involved in a collision is less than
10−10

√
dg [87]. We use this particularly low value to avoid any significant influence

as r→ 1 or, equivalently, d→ 0.
Two different geometries are studied, shown in Figure 5.1: a wide container,

where the base’s width (lx) is much larger than the depth (ly), and a column con-
tainer, where lx = ly ∼ d, making the system effectively quasi-one-dimensional. The
height of the container is irrelevant, as there is no top lid and side walls are taken
to be infinitely tall. Particles are considered perfectly hard, smooth, monodisperse
and spherical. Rotational degrees of freedom are disregarded in order to be as close
as possible to the theoretical description. For the same reason particle-wall colli-
sions are considered to be perfectly elastic, and thus dissipation only occurs due to
particle-particle collisions.

Microscopic systems are determined by 7 physical parameters, all of them func-
tions of d, as given by the scalings previously derived. In order to produce equivalent
systems a reference one must be defined, which we take to be the unitary case where
d = 1. Systems are referred to as

Sd ≡ {d;N,lx, ly , r,ωf ,Af }. (5.37)

For simplicity, we use the notation ξd∗ ≡ ξ(d = d∗) for any variable ξ.
In the column geometry lx,1 = ly,1 = 5d, that is, we scale the base with the size

of the particles, which implies, from (5.33), [N ]d = d−1. Furthermore, we take
ωf ,1 = 30

√
g/d1 = 30. On the other hand, in the wide container we consider lx,1 = 50
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(fixed), implying that [N ]d = d−2, andωf ,1 becomes an additional control parameter,
as we want to vary the energy injection to study the transition to buoyancy-driven
convection. All other parameters between the two containers remain the same. Fol-
lowing the theoretical analysis, we scale the amplitude proportional to d, Af = 0.1d,
and thus Af ,1 = 0.1. The small prefactor is chosen so as to minimize the spatial inho-
mogeneities induced by higher oscillation amplitudes, and thus approach the limit
of an effective fixed temperature boundary condition [163]. Finally, two reference
particle-particle coefficients of restitutions will be considered, r1 = 0.9 and r1 = 0.99,
referred to as dissipative and quasi-elastic systems, respectively. As we want to com-
pare systems with similar packing fractions, in the quasi-elastic system we consider
a higher number of particles, so that F1 = 12 and Fe1 = 32.

Particle sizes are varied over two orders of magnitude. The higher limit is set by
the scalings: taking as reference S1, r becomes negative for d = d1(1 − r2

1 )−1/2 ≈ 2.3.
The upper limit, on the other hand, is set by the computational capacity. The lowest
particle size considered is d = 1/16; notice that in the wide case, N1/16 ∼ 8 × 105,
a significant number of particles that have to be simulated for long times —due to
transient behaviours close to the transition points—, and at very high ωf . It then
becomes of fundamental importance to use an event-driven algorithm, due to its
superior speed compared to constant time-stepping approaches.

Macroscopic fields are obtained by binning the container in the vertical direc-
tion, with bins of constant size 1, and then time-averaging for at least tf = 105

√
d/g.

We set a limiting time in terms of the gravity given time-scale rather than in terms
of the period of oscillation of the base, as for higher frequencies we expect the latter
to loose any significance, as the dynamics of the system essentially decouple from
the period of the base vibration. These values were selected after observing no sig-
nificant differences for higher spatial resolutions or longer time windows, although
due to the nature of the transition from Leidenfrost to convective states, finite times
will always truncate the ideal results. Horizontally homogeneous directions were
ignored after verifying that they remain homogeneous in all cases. Thus, in the col-
umn case all macroscopic fields are essentially one-dimensional in ẑ, while in the
wide case the x̂ direction is also considered.

Column container

In the column container the transition towards the buoyancy-driven convective state
is frustrated due to the strict confinement, allowing us to study the dynamics of the
Leidenfrost state for high energy inputs. It thus becomes possible to easily observe
collective quasi-periodic oscillations of the bed, referred to as low-frequency oscil-
lations (LFOs) [123] (see Chapter 2), due to their characteristic period being orders
of magnitude lower than the containers’ shaking period. In the following we study
the response of such oscillations to the variation of N in macroscopically equivalent
systems.
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Figure 5.2: Time-averaged vertical packing fraction profiles
〈
φ(z)

〉
t and temperature profiles

kB 〈T (z)〉t /m, for systems shown in the dissipative (ε1 = 0.9, left) and quasi-elastic (ε1 = 0.99,
right) cases.

The macroscopic states are seen to converge as d → 0 in the column container.
Vertical profiles of the time-averaged packing fraction

〈
φ(z)

〉
t and the fluctuating

velocity kB 〈T (z)〉t /m are shown in Figure 5.2 for several different Sd . The charac-
teristics of the Leidenfrost state can be readily recognized: low density, high tem-
perature regions near the bottom, below high density, low temperature regions [80].
As d → 0 the fields are seen to converge to a given d-independent state. The ratio
of packing fractions in both regions increases as d decreases, as φ(z) in the gaseous
regions goes from an almost linear increase to a concave curve. It is the gaseous re-
gions that presents the most significant differences with d, although the maximum
of

〈
φ(z)

〉
t also decreases slightly. Variations in the gaseous region are also significant

in 〈T (z)〉t , which presents a twofold increase as d → 0, accompanied by an overall
increase of the total temperature Tt .

The qualitative aspects of
〈
φ(z)

〉
t and 〈T (z)〉t /d suggest two sources of disagree-

ment due to finite-size effects. The first one stems from the influence of d on the
boundary layers, as the free-volume near solid walls is proportional to d, just due
to geometrical factors. This is an effect which cannot be captured by the considered
continuum description, but it is expected to become negligible as d → 0, as the de-
viations of φ(z = 0) suggest (see Figure 5.2). Secondly, larger particles can lead to
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Figure 5.3: (a) Total energy-density dissipation per time normalized by d, Id /d, for dissipative
(blue) and quasi-elastic (red) systems. (b) Total granular temperature per mass kBTt/m for the
same systems as in (a). (c) Ratio of the two previous quantities, dkBTt/mId .

conflicts between micro- and macroscopic length-scales; notice that in the conver-
gent fields

〈
φ(z)

〉
t , the height of the gaseous region hg ≈ 10. That corresponds to

hg = 5d2, and thus an uncorrelated gaseous behaviour can hardly be expected. On
the other hand, for S1/2, where the vertical profile is already similar to systems with
even lower values of d, hg = 20d1/2.

Beyond finite-size effects, the value of the coefficient of restitution is expected to
have a significant influence, as the scalings were derived in the r → 1 limit. Indeed,
quasi-elastic systems show a much higher agreement as d is varied, as shown in
Figure 5.2 for

〈
φ(z)

〉
t and kB 〈T (z)〉t /m. The most significant differences are again

observed near z = 0, suggesting that these are indeed finite-size, boundary-layer
effects.

The convergence of the conserved fields
〈
φ(z)

〉
t and 〈kBT (z)/m〉t as d → 0 sug-

gests that the found scalings do lead to macroscopically equivalent systems with
different number of particles. We observe ∼ 5% differences in the macroscopic fields
of systems with one order of magnitude difference in N . Interestingly, it is now pos-
sible to determine at which point one can expect N -independent states. For dissipa-
tive systems, we see a significant change of the convergence rate for d < 1/4, which
corresponds to N = 1200. At this point deviations from an extrapolated limit case
are on the 1% range. A comparison with the actual solution of the hydrodynamic
equations in this geometry, at this limit, would allow us to see until what extent
hard-particle simulations are actually solving the hydrodynamic equations; work is
currently being done in this direction (see Chapter 6).

After having studied the convergence of the macroscopic fields, we now turn
our attention to how particular quantities vary as N increases. Equation (5.23) pre-
dicted that the total energy dissipated per unit time and volume I scales linearly
with d. Measurements from simulations show considerable deviations from this lin-
earity, as shown in Figure 5.3a. In dissipative systems deviations are of the order of
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Figure 5.4: (a) Amplitude of the low-frequency oscillations a0, defined as the standard devi-
ation of the centre of mass σ (zcm(t)), for equivalent Sd . In gray, square root fits. (b) Frequency
of oscillation of the column, ω0, for the same systems as in (a).

∼ 20%, while in quasi-elastic system it improves considerably to ∼ 5%. The improve-
ment for higher r suggests that the deviations stem from neglecting higher order ε
dependencies of the transports coefficients. In dissipative systems an almost linear
increase of d → 0 can be observed, suggesting that the coefficient of restitution is
being overestimated or, analogously, that ωf should be higher.

Deviations from the expected constant behaviour of the total temperature per
mass, kBTt/m, are even stronger, specially in the dissipative case, as shown in Figure
5.3b. Again, the quasi-elastic case shows a significant improvement. Interestingly,
for both I/d and kBTt/m the behaviour with d changes between dissipative and quasi-
elastic systems: in the former case quantities increase as d → 0, while in the later
they decrease until d = 1/4, after which their behaviour cannot be extrapolated by
our data. Convergence to a macroscopic state even when the individual scaling re-
lations derived for an invariant no-flux, one-dimensional steady state ((5.22), (5.23))
are seen to deviate can be explained by the convergence of all systems to the ideal
fluid case.

Low-frequency oscillations

Low-frequency oscillations are clearly identifiable in the column geometry for all Sd ,
making it possible to study their properties in equivalent macroscopic systems with
different N . Remarkably, their characteristic amplitude, quantified by the standard
deviation of the evolution of the vertical centre of mass, a0 ≡ σ (zcm(t)), is seen to be
proportional to d1/2, as shown in Figure 5.4a. On the other hand, the characteristic
frequency ω0, obtained from the fast Fourier transform of zcm(t), shows a roughly
constant behaviour with d, as shown in Figure 5.4b. This [ω0 ]d = d0 behaviour is in
accordance with a previously derived theoretical expression [123] (see Chapter 2). A
first approximation of the frequency of oscillation of the granular bed was obtained
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by considering general conservation laws for a continuum medium and taking a
first-order approximation of the density inverted profile. Disregarding higher order
effects, the movement of the bed was shown to be equivalent to a forced harmonic
oscillator, with characteristic frequency

ωt0 =
gρg
ms

, (5.38)

with ρg the density of the gaseous region and ms the total mass of the solid region.
This expression has been found to be in good agreement with both simulations and
experiments, specially in the high energy injection limit [123, 158] (see Chapters 2
and 3). In our case, asφ(z) converges for d→ 0,ωt0 is expected to become d-invariant,
as both ρg and ms are macroscopic quantities determined by φ(z).

From the decrease of a0 as d→ 0 we can conclude that, in the limit of d→ 0, LFOs
would be unmeasurable, making it an essentially finite-size (granular) phenomena.
Moreover, for d small enough, the behaviour of a0(d) is consistent with a

√
N law,

suggesting that low-frequency oscillations are driven by intrinsic fluctuations due
to the low number of particles in the system. As N decreases, the relative strength
of the momentum fluctuations given by particles of the gaseous phase hitting the
solid/fluid phase increases, and as such the amplitude of the oscillations are bigger.
On the contrary, for smaller d, a significant amount of particles in the gaseous phase
would have to transfer momentum to the solid phase at the same time to have an
equivalent impact, a situation that becomes increasingly improbable as N increases.

It is interesting to notice that even though the amplitude of LFOs becomes negli-
gible, the unstable mode is still present in the macroscopic system, as the [ω0 ]d = d0

behaviour shows. This further suggests that the unstable mode is an intrinsic char-
acteristic of density inverted states, as argued in [123]. The situation is curious, as
the unstable mode is a macroscopic phenomena, but its amplitude is driven by mi-
croscopic effects. Furthermore, the evolution of zcm(t) is seen to become less chaotic
and closer to a harmonic oscillation with a clearly defined frequency as d → 0, as
increasingly steep peaks in the Fourier transforms show. This is another sign that
low-frequency oscillations are governed by intrinsic finite-number fluctuations.

Wide container

In the wide container, as energy injection is increased, the Leidenfrost state even-
tually looses its stability and gives rise to a buoyancy-driven convective state. Con-
vective flows were not observed in the column container due to the important geo-
metrical constraint. In the following section we study the transition for different S,
while varying ωf ,1, now an additional control parameter. All other parameters and
the scalings are the same as in the column container, although notice that lx is now
independent of d, and thus Nd =N1(d1/d)2.

The convective state is also a steady state although with non zero velocity, in
contrast with the Leidenfrost state. This motivates the use of the velocity field for
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Figure 5.5: (a) Time averaged convection intensity 〈C〉t , defined in the main text, as a func-
tion of the shaking strength Sf , for the different systems indicated in the labels. (b) Critical
transition point S∗f , for the different systems shown in the (a) figure.

the definition of an appropriate order parameter that captures the transition. We
consider the convection intensity,

C ≡ 1
2 maxz(maxx(vz(x,z))−minx(vz(x,z))), (5.39)

where vz(x,z) is the scalar field of velocities in the z-direction, and the maxima are
taken first over z and then over x. Even though the average vertical velocity is ex-
pected to scale with Aω, the loss of homogeneity of v(~x, t) in the convective states
results in C growing faster than the energy injection.

The time averaged convection intensity 〈C〉t is shown in Figure 5.5a, as a function
of ωf , for all different dissipative Sd . The transition can be appreciated as a steep
increase of 〈C〉t in a small region of Sf ; while this is true for all Sd , the overall shape
of the transition varies considerably for different Sd . Transitions for large d present a
wider intermediate state, where convective flows are intermittent and highly fluctu-
ating. This is a direct consequence of fluctuations being larger for smaller N . More
importantly, it is evident that the critical point of transition S∗ is not d-invariant, in
contrast with (5.35). Figure 5.5b shows S∗f as a function of d for both dissipative and
quasi-elastic systems. The decrease can be fitted by an exponential, S∗f ∝ exp(−d).
It is not clear from our considered range in d if S∗f eventually saturates at a given
value, or goes to zero, as d→ 0.

5.5 Conclusions

In this chapter we have studied the possibility of creating macroscopically equiva-
lent granular systems with significantly different number of particles. A definition
of macroscopic equivalence has been proposed in which all macroscopic, conserved
fields must be identical in space, time, and also for different particle sizes d. Con-
sidering the Navier-Stokes equations with a energy sink term accounting for particle
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dissipation, we have demonstrated that it is not possible to obtain equivalent sys-
tems in the most general flow case, as different terms in the equations scale differ-
ently with d. Nevertheless, after scaling the restitution coefficient so that heat flux
and dissipation are balanced, the limit d → 0 becomes well defined and leads to a
d-invariant set of conservation laws corresponding to a perfect fluid. As a conse-
quence of the dissipation scaling, we have observed that the steady-state, no-flux
case equations become d-invariant, disregarding higher order corrections for higher
inelasticities.

Simulations of perfect hard-spheres allowed us to test the derived scalings for a
considerable range of total number of particles. As test case we considered the gran-
ular Leidenfrost state and its transition to buoyancy-driven convection. The gran-
ular Leidenfrost state was seen to converge to a given macroscopic state as d → 0,
with the convergence considerably accelerated for lower energy dissipations. Fur-
thermore, the collective oscillatory movement present in the granular Leidenfrost
state, LFOs, was deduced to be driven by the intrinsic fluctuations in systems that
present a low number of particles. This follows from the decrease of the oscilla-
tions amplitude with d for macroscopically equivalent systems, suggesting that in
the d → 0 limit the oscillations would be unmesurable. Moreover, the frequency
of LFOs was observed to remain constant in the range of d studied, in accordance
with the previously derived theoretical expression predicting a dependency only on
macroscopic features of the Leidenfrost state.

The convergence of flows to the macroscopic states given by the perfect fluid
equations as d → 0 was studied in the transition to buoyancy-driven convection.
The intensity of the convective flows, used as an order parameter of the transition,
shows behaviour consistent with convergence in the limit d→ 0, although the stud-
ied range is not enough to be certain. Further research is currently being carried out
for this case.

As a final comment, we would like to remark that the same framework could
be used for the study of other out-of-equilibrium granular systems. Macroscopic
convergence can be expected as d → 0, given that the total dissipation and energy
injection terms are appropriately scaled, opening the possibility of studying equiva-
lent granular systems with different number of particles.





6

Hydrodynamics of the granular Leidenfrost
to convection transition1

We perform a numerical and simulational analysis of the granular Leiden-

frost to buoyancy-driven convection transition present in vertically vibrated

granular matter. Numerical solutions of the granular hydrodynamic equa-

tions in two different approximation limits are compared with discrete par-

ticle method simulations (DPM), in order to understand further the relation

between microscopic and macroscopic models of granular matter. Finite num-

ber effects are studied in the one-dimensional, steady state case, by comparing

the hydrodynamic fields with coarse-grained, time-averaged fields obtained

from DPM simulations. Macroscopically equivalent particle systems with dif-

ferent particle sizes reveal that finite-size effects are the origin of considerable

disagreements in certain parameter regions. In the two dimensional case, the

Boussinesq approximation of granular hydrodynamics is considered, and the

transition to buoyancy-driven convection is compared with DPM simulations.

Overall, the velocity fields present the same qualitative features, although the

velocities of the continuum solution are lower, and correspondingly the tran-

sition is seen to take place for higher energy injections.

1. Work being done in conjunction with S. Rhebergen and A. R. Thornton.
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6.1 Introduction

Developing a general hydrodynamic model of flowing granular matter has proved
to be an enormous challenge. Taking into account the often striking similarity of
granular flows to classical fluids [121, 111, 164], it is no surprise that granular hy-
drodynamic models resemble the Navier-Stokes equations. The main differences
reside in the constitutive laws, of which a general form able to reproduce the variety
of granular phenomena observed has not yet been recognized. Even the possibility
of formulating a general granular hydrodynamic model has been questioned [9, 10].
Nevertheless, significant progress has been made in several scenarios, usually in the
low dissipation and packing fraction limits [12, 13, 14, 15, 16, 17, 18]. For more
general cases, the difficulties arise from the fundamental characteristics of granular
matter: dissipative microscopic interactions, negligible thermal fluctuations, and a
lack of separation of scales between the microscopic and macroscopic. These prop-
erties usually produce steep inhomogeneities, with regions of high-packing fraction,
behaving essentially like solids, coexisting with gaseous like regions, even in the vol-
ume of just a few particle diameters. Moreover, fluctuations in granular matter are
determinant in the dynamics, due to the usually low number of particles involved
in any representative volume [9]. Although the challenge is considerable, the moti-
vations for a continuum theory of granular flows are diverse, as it would be possible
to apply the methods of fluid dynamics to granular flows, allowing us to advance
our understanding of natural phenomena such as rock slides and avalanches, and
improving the handling of granular flows present in many industrial processes.

In the following chapter we present the first results of a numerical study of
the granular hydrodynamic equations describing a vertically shaken granular bed.
Vibrated granular beds have become an important proving ground in granular re-
search. When vertically agitated, beds of grains exhibit a plethora of different be-
haviours [60, 61, 64, 65, 68, 71], the study of which has advanced our understanding
of out-of-equilibrium steady states in discrete systems. In the following we con-
sider the high energy injection limit, in which grains present density inversion and
phase coexistence, a steady state referred to as granular Leidenfrost. The granular
Leidenfrost state becomes unstable for higher energy injections, loosing its horizon-
tal homogeneity and giving rise to a buoyancy-driven convective state. The transi-
tion can be understood as the emergence of a definite length-scale from an homo-
geneous base state, the scale in this case corresponding to the size of the convective
cells. In the following we study the granular Leidenfrost state and its transition to
buoyancy-driven convective flows by considering two different limits of a granular
hydrodynamics model, in order to distinguish which are the relevant physical ef-
fects. We compare our results using discrete particle method (DPM) simulations of
a monodisperse collection of perfect hard-spheres.
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6.2 System and simulations

The setup under study consists of a two-dimensional rectangle container of vari-
able width lx and high enough so that grains never collide with the top, filled with
perfectly and monodisperse hard disks with no friction. In previous experimental
and numerical realisations [79, 158] the whole container is shaken in the vertical
direction (parallel to gravity), such that grains gain energy through collisions with
the bottom boundary and through friction forces with the walls. Here we model the
vibrations by considering the bottom wall to have a constant temperature T0, as the
use of a fixed instead of a moving boundary considerably simplifies the numerical
solution of the hydrodynamic equations. This is known to be a good approxima-
tion of the low-amplitude and high-frequency shaking case [163], a limit in which
we have verified both the granular Leidenfrost and the buoyancy-driven convection
state exist (see Chapter 5).

Numerical simulations are performed using an event-driven DPM algorithm,
well suited for the simulation of hard-disk collections. The same algorithm has pre-
viously been used for studies of similar systems, with excellent agreement with ex-
periments and continuum theories [123, 158] (see Chapters 2 and 3). Collisions
between grains are dissipative and modelled by a single parameter, the restitu-
tion coefficient r, which quantifies the amount of kinetic energy lost at every col-
lision. The total number of particles N is chosen so that the number of filling layers
F = Nd/lx = 12, with d the diameter of the particles. The temperature boundary
condition is implemented such that the normal component of the velocity of any
colliding particle is set to a random quantity taken from a Maxwellian distribution
with temperature T0. In order to avoid inelastic collapse, a dissipation-driven effect
where the number of particle collisions diverges in a finite time, we set r = 1 if the
relative velocity of the particles involved in a collision is less than 10−5

√
dg [87],

with g the acceleration of gravity.

6.3 Granular hydrodynamics model

As a model for granular flows we consider the two-dimensional granular hydrody-
namic equations obtained through the Chapman-Enskog solution of the Boltzmann
kinetic equation [24]. These are: the equation of continuity, or mass balance; the
Navier-Stokes equation, or momentum balance; and the granular temperature equa-
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tion, or energy balance:

∂n
∂t

+ ~u · ∇n+n∇ · ~u = 0, (6.1a)

mn

(
∂u
∂t

+ ~u · ∇~u
)

= −∇p+∇ · (µτ) +mn~g, (6.1b)

nkB

(
∂T
∂t

+ ~u · ∇T
)

= ∇ · (κ∇T )− p(∇ · ~u) +µτ : ∇~u − I. (6.1c)

Here n(~x, t) is the number density field;m the mass of the particles; ~u(~x, t) = (u,v) the
velocity vector; p the pressure; µ the shear viscosity; T (~x, t) the granular temperature
field, with kBT ≡ 1

2m(〈u2〉 − 〈u〉2) and kB the Boltzmann constant; κ the thermal con-
ductivity; the strain rate tensor τ = (∇~u +∇~uT ) and I the dissipation due to inelastic
particle collisions.

A closed set of hydrodynamic equations, with the transport coefficients µ, κ, η,
p and the dissipation term I given as functions of the conserved quantities, can be
obtained in the low-density, low-dissipation limit, as shown in [26]. We use these
expressions even though the Leidenfrost state may contain regions of high packing
fraction, as they have already been successful in describing the transition to the con-
vective state [80]. First, let us consider a simple state equation, which takes into ac-
count the divergence of the pressure as the packing density of the grains approaches
the close packing value,

p = nkBT
nc +n
nc −n

, (6.2)

where nc is the maximum close packing number density, nc = 2/(
√

3d2) in two-
dimensions, with d the particles’ diameter. Furthermore, from [80], the thermal
conductivity is given by

κ =
n (αl + d)2

l

(
kBT
m

)1/2

, (6.3)

with the mean free path

l =
1
√

8nd

nc −n
nc − an

, (6.4)

with a = 0.39, defined by fitting low-density and high-density approximations of the
mean free path [165]; and α = 0.6 a free parameter, the value taken to be the same
as previous hydrodynamic models of equivalent systems [15, 80]. The viscosity is
determined by the Prandtl number, Pr = µ/κ, with Pr a free parameter expected
to be of order 1 from previous descriptions of the same system [80]. Finally, the
energy-density dissipation is taken as [80]

I =
ε
γcl

nkBT

(
kBT
m

)1/2

, (6.5)
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Figure 6.1: (top) Time-averaged vertical velocity profile, 〈vz〉t (z) (solid), and the speed of
sound c (as defined in the main text; dashed), for systems with the base temperatures indi-
cated. (bottom) Mach number, M ≡ 〈vz〉t (z)/c, for the same systems than the top figure.

with ε = 1 − r2, r the coefficient of restitution for particle-particle collisions, and
γc = 2.26 again taken from previous similar studies [165].

The numerical solution of (6.1) presents a significant numerical challenge, spe-
cially with elaborate transport coefficients that further depend on T and n. In addi-
tion, computing the Mach number M reveals that the flow in the granular Leiden-
frost state is highly incompressible. We consider

M ≡ vm
c
, (6.6)

with vm the speed of the object moving through a medium with speed of sound
c. In our case, vm is taken as the vertical component of the time-averaged coarse-
grained velocity field, 〈vz(z)〉t . Here, and in what follows, time averages are taken
for 105

√
d/g. In order to determine the speed of sound the relation c2 = ∂p/∂ρ is
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used; from (6.2),

c2 = kBT
(
n2
c + 2nnc −n2

(n−nc)2

)
. (6.7)

Simulations allow us to obtain n(z), T (z) and 〈vz(z)〉t , and thus to compute M.
Figure 6.1 shows 〈vz(z)〉t and 〈c(z)〉t for different base temperatures T0 and r = 0.95.
We see that 〈c(z)〉t presents a maximum at roughly the location of the highly-packed
region, and then decays exponentially until the free surface, while 〈vz(z)〉t decays
monotonically, similar to the temperature field. This results in M ∈ (0.01,0.06), as
shown in Figure 6.1, values in a range far too low to consider compressible numerical
schemes. The low Mach numbers imply that the incompressible flow approximation
must be taken, ∇ · ~v =Dn/Dt = 0. With this, (6.1) results in

∇ · ~v = 0, (6.8a)

mn

(
∂~u
∂t

+ ~u · ∇~u
)

= −∇p+∇ · (µτ)−mn~g, (6.8b)

nkB

(
∂T
∂t

+ ~u · ∇T
)

= ∇ · (κ∇T )− I. (6.8c)

As the general solution of (6.8) with non-linear constitutive laws presents a sig-
nificant numerical challenge, especially in the high energy injection limit, we con-
sider two limits of distinct physical approximations: a one-dimensional steady state
case, and a two-dimensional granular model under the Buossinesq approximation.
In what follows we study until what extent these situations are able to reproduce the
observed granular phenomena by comparing with analogous DPM simulations.

6.4 One-dimensional steady state

The granular Leidenfrost state consists of a no-flux, steady state, with inhomogeneities
occurring only in the direction of gravity. Therefore, we consider an equivalent limit
in the hydrodynamic equations, by taking ~u = 0 and the one-dimensional case in
(6.8):

−
∂p

∂z
=mng, (6.9a)

∂
∂z

(
κ
∂T
∂z

)
− I = 0. (6.9b)

The set of equations (6.9), plus the equation of state (6.2), have already been
studied for models of density inverted granular systems [15, 79]; here we explore
further the ability of these equations to capture particle simulations. As we have
taken the one-dimensional limit, it is not possible in this case to capture the tran-
sition to convective states, allowing us to study the granular Leidenfrost state for a
wider range of parameters. For these three equations three boundary conditions are
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needed, accounting for the free surface at the top and the energy injection at the bot-
tom. For the free surface we consider zero pressure, pz=∞ = 0, and zero energy flux,
(∂zT )z=∞ = 0. The bottom boundary comes directly from our considered system,
Tz=0 = T0. The density at the bottom follows from the state equation: integrating
(6.9a) over the domain gives,

pz=0 − pz=∞ =mNg (6.10)

with N the total number of particles in the system. From (6.2) and pz=∞ = 0,

nz=0kBTz=0
nc +nz=0

nc −nz=0
=mNg (6.11)

from which we get the bottom density boundary condition,

nz=0 =
−mNg − kBT0nc ±

√
(mNg + kBTz=0nc)2 + 4kBTz=0mNgnc

2kBTz=0
. (6.12)

This condition is a consequence of particle conservation, as we used that
∫∞

0 n(z)dz =
N . Finally, as initial condition we take an exponentially decaying temperature field
T0(z, t = 0) = T0e

−z/5.0, and a constant density field n(z, t = 0) = nz=0.

Results

Equations (6.9) are solved using the numerical methods described in Appendix 6.6.
Solutions are compared with event-driven DPM simulations of the granular Leiden-
frost state. In both cases r = 0.95, and the same T0 is used. Once the continuum
system has been determined, there is no free parameter in the particle simulations
except for lx, which is chosen so that horizontal inhomogeneities cannot develop (a
quasi-one-dimensional limit), lx = 5.0d.

Numerical solutions capture the qualitative features of simulations, with good
quantitative agreement for a range of temperatures T0 ∈ (30,60)gd, as shown in Fig-
ure 6.2. Discrepancies may have their origin in both the physical assumptions and
choice of parameters made in the continuum equations and constitutive laws, as also
in finite-number and finite-size effects of particle simulations; in what follows we fix
the continuum model and parameters, and study the agreements by modifying the
particle simulations. Discrepancies at low T0 are marked by much lower densities
and higher temperatures in the continuum solutions, possibly from dominant ex-
cluded volume and finite-size effects in DPM simulations. For high T0, on the other
hand, densities are overall higher and temperatures lower in the continuum solu-
tions, and there is good agreement in 〈n(z)〉t in the gaseous region. We remark that
in the simulations shown N = 60, a remarkably low number of particles that can
nevertheless be captured, in certain limits, by a continuum model.

In order to investigate the influence of finite-size effects, we use the methodology
developed in Chapter 5 to obtain macroscopically equivalent systems with particles
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Figure 6.2: Time averaged packing fraction profiles (〈φ(z)〉t , left) and total fluctuating kinetic
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of different sizes. The method consists in taking d as control parameter and adjust-
ing the rest of the system parameters such that the hydrodynamic description of the
microscopic state, in this case given by (6.9), remains invariant (for a detailed de-
scription, we refer the reader to Chapter 5). As d is decreased, the total excluded
volume from particle-wall interactions is expected to be reduced. For low T0 we ob-
serve convergence of the microscopic averaged fields to the hydrodynamic solution,
as shown in Figure 6.3 for 〈φ(z)〉t . The effect of excluded volume is clear by looking
at the bottom boundary, where 〈φ(z)〉t shows a monotonic increase as d→ 0, finally
converging to the hydrodynamic solution. There is also a considerable decrease of
〈φ(z)〉t at the highly packed region; as discussed in Chapter 5, we believe this to be
mainly due to the effect of the side-walls. This case is representative for tempera-
tures T0 < 30gd. For higher T0 equivalent systems also show the effects of reduced
excluded volume effects, although in this case there is no convergence to the contin-
uum solution as d → 0. Temperature fields, on the other hand, do not improve the
agreement beyond boundary effects, and even deviate farther from the continuous
solution for T0 > 30gd as d→ 0. These suggests that the discrepancies may be an ef-
fect of the derived T0 scaling with d, and the density decrease observed for systems
with high T0 may be a consequence of an overall higher temperature. Nevertheless,
other factors may also be involved.

6.5 Boussinesq approximation

Increasing the energy injection from the granular Leidenfrost effect leads to a buoyancy-
driven convective state (see Chapter 4). In the following section we consider (6.8)
under the Boussinesq approximation, and compare the solutions with the fields ob-
tained from DPM simulations. In the Boussinesq approximation the density is con-
sidered to be constant n = nb, except at the gravity term. This approximation is often
used in studies of Rayleigh-Bernard convection [166], and has even been compared
with DPM simulations [167], although for considerably lower densities and energy
injections. Here we push the boundary of the constant density approximation to see
what is captured by this model or, equivalently, what characteristics are not present
in the constant density limit.

Some rearrangement of (6.8) facilitates the interpretation of the Boussinesq limit.
We define P ≡ p − pb(z) where pb(z) ≡ −mnbgzẑ + c, with c the arbitrary constant that
sets the level for the pressure. Then, in (6.8b), −∇p−mngẑ = −∇P +m(nb−n)gẑ. With
these considerations, (6.8) is then given by

∇ · ~v = 0 (6.13a)

∂~u
∂t

+ ~u · ∇~u = − 1
mnb
∇P +

1
mnb
∇ · (2µτ) +

∆n
nb
gẑ (6.13b)

∂T
∂t

+ ~u · ∇T =
1

nbkB
∇ · (κ∇T )− I

nbkB
. (6.13c)
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with ∆n = nb − n, which is further approximated by (nb − n) ≈ nbβ(T − Tb), with β
the coefficient of volume expansion, in our case a free parameter. Notice that in
the Boussinesq approximation the state equation loses significance, as the number
density is constant, but the pressure is still a variable.

We now proceed to scale (6.13). We consider the most general scaling relations,
as it will then facilitate the comparison between hydrodynamic and particle systems.
These are

~x = x0~̃x, t = t0t̃, n = n0ñ, P = P0P̃

All scales should be given by the parameters x0, n0, t0 and P0, but not all trans-
port coefficients are known as a function of these quantities. Since there is no state
equation, P0 is also a parameter. The most direct one comes from u = dx/dt =
(x0/t0)dx̃/dt̃ ≡ (x0/t0)ũ. The strain rate tensor is given by τ = 1

2 (∇u + ∇uT ), so
τ = 1/t0(∇̃ũ+ ∇̃ũT ) ≡ τ̃/t0. The temperature scale is given by the definition of granu-
lar temperature, kBT = 1

2m(〈u2〉 − 〈u〉2) = (x2
0m/t

2
0) 1

2 (〈ũ2〉 − 〈ũ〉2) ≡ (x2
0m/t

2
0)kBT̃ . The

mean free path with the Boussinesq approximation becomes a constant,

l =
1

√
8nbd

nc −nb
nc − anb

≡ lb. (6.14)

The energy dissipation term results in

I =
ε
γc lb

nbkBT

(
kBT
m

)1/2

=

x3
0k

3/2
B

t30

 ε
γc lb

nbT̃
3/2 ≡

x3
0k

3/2
B

t30

 Ĩb. (6.15)

The form of the thermal conductivity we know,

κ =
nb (αlb + d)2

lb

(
kBT
m

)1/2

=

x0k
1/2
B

t0

 nb(αlb + d)2

lb
T̃ 1/2 ≡

x0k
1/2
B

t0

 k̃. (6.16)

The viscosity is determined by the Prandtl number

µ =
mPr
κ

=

 t0m

x0k
1/2
B

 Pr
κ̃
≡

 t0m

x0k
1/2
B

 µ̃b (6.17)

Substituting in (6.13) we obtain the general form:

∇̃ · ~̃u = 0, (6.18a)

∂t̃ ~̃u + ~̃u · ∇̃~̃u = −
t20P0

x2
0mnb

∇̃P̃b +
t20

x3
0nbk

1/2
B

∇̃ · (2µ̃bτ̃) + x0mβ(T − Tb)gẑ, (6.18b)

∂t̃T̃ + ~̃u · ∇̃T̃ =
1

nbx0t0k
1/2
B

∇̃ ·
(
κ̃b∇̃T̃

)
−
x0k

1/2
B

nb
Ĩb. (6.18c)
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Figure 6.4: Velocity field ~v(~x), obtained through solving the granular hydrodynamic equa-
tions in the Boussinesq approximation (left), and time-averaged velocity field 〈~v(~x)〉t com-
puted from event-driven discrete particle dynamics simulations (right).

In terms of dimensionless numbers,

∇̃ · ~̃u = 0, (6.19a)

∂t̃ ~̃u + ~̃u · ∇̃~̃u = −At∇̃P̃b + Re−1∇̃ · (2µ̃bτ̃) + Fr−2g~̂z, (6.19b)

∂t̃T̃ + ~̃u · ∇̃T̃ = Pe−1∇̃ ·
(
κ̃b∇̃T̃

)
−GrĨb. (6.19c)

Finally, the set of boundary conditions must be specified. For the side boundaries
we consider no flux ~u = 0 and no temperature gradient in the normal direction,
n̂ · ∇T = 0. For the bottom boundary we consider Tz=0 = T0, while for the velocity we
consider a Neumann boundary condition ∇~u = 0.

Results

Equations (6.19) are solved using the numerical methods described in Appendix
6.6. The model captures the transition from an horizontally homogeneous state to
a convective one, as is evident by looking at 〈~v(~x)〉t , shown in Figure 6.4. For these
cases, β = 0.1 and P0 = 1.0; an initial exploration of the parameter space reveals the
same overall features although with considerable changes in the critical temperature
of transition T ∗0 . For T0 > 200gd no steady state was reached, and eventually the
numerical scheme became unstable; the transient state oscillated between unstable
configurations of two and three convective rolls.

There is clear qualitative agreement between the continuum solutions and the
time-averaged DPM simulations fields, as Figure 6.4 reveals. Nevertheless, differ-
ences are considerable. The most clear discrepancy is the relatively higher upward
velocities in the centre than the sides in the continuum solutions, although this is ex-
pected to be a consequence of the selected boundary conditions. First investigations
show that when using Neumann boundary conditions this effect disappears. Quan-
titatively, velocities in the Hydrodynamic case are seen to be consistently higher than
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Figure 6.5: Velocity fields ~v(~x), for event-driven discrete particle dynamics simulations (left)
and continuum solution of granular hydrodynamics in the bousinesq approximation (right).

the DPM simulations. The reason of this discrepancies is unknown, although several
free parameters have yet to be explored.

To quantify the transition to convection we use the convection intensity order
parameter,

C ≡ 1
2 maxz(maxx(vz(x,z))−minx(vz(x,z))). (6.20)

The value ofC increases as the velocity fields looses its homogeneity in the horizontal
direction. Figure 6.5 shows 〈C〉t for both DPM simulations and the hydrodynamic
solutions. In both cases the transition is evident as a steep increase of 〈C〉t . Due
to the aforementioned discrepancies in the velocities, the convection intensity in
continuum solutions is lower than DPM simulations for most of the studied T0 range;
consequently, the transition is seen to require a higher T ∗0 . Possibly, exploring the
parameter space would lead to a better agreement.

6.6 Conclusions

In this chapter we have shown an initial analysis of the granular Leidenfrost state
and its transition to buoyancy-driven convection using a granular hydrodynamic
model in two distinct limits. By computing the Mach number it was shown that
when modelled as a continuum, the bed of grains is in the highly incompressible
limit. The relevant hydrodynamic equations were then derived and solved, overall
showing similar features than discrete particle simulations of hard disks. In the one-
dimensional and steady state limit, continuum solutions show density inversion and
a decaying temperature field, both characteristic of the granular Leidenfrost state.
The agreement with DPM simulations with a total of 60 particles is optimal in an in-
termediate range of energy injection, while maximal densities are underestimated
in the low energy injection limit and overestimated in the high energy injection
limit. By constructing macroscopically equivalent systems with different number
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of particles it was possible to study finite-size effects; as the size of the particles was
decreased, the agreement for low temperatures improved, while for higher temper-
atures the coarse-grained DPM simulation fields did not converge to the continuum
solution. The source of these disagreements is currently under study.

The second limit considered corresponds to the two-dimensional granular hydro-
dynamic equations with a Buossinesq approximation. The transition to convection
was observed in the velocity field, and shows a good qualitative agreement with DPM
simulations. Nevertheless, there are important quantitative differences between the
two methods. Work is being done in exploring further the parameter space, and
establishing the origin of the disagreements.

Appendix: Numerical methods

The methods to numerically solve the sets of equations (6.9) and (6.19) are detailed
in what follows. These formulations are implemented in the finite-element package
for solving partial differential equations FEniCS [168].

One-dimensional no-flux state

The one-dimensional model is solved by a simple Crank-Nicolson time-stepping
scheme. The state equation is taken into account by substituting (6.2) in (6.9a):

1
nc −n

(
nT ∂zn+ (n+nc)T ∂zn+n(n+nc)∂zT +

n(n+nc)T ∂zn
nc −n

)
+mng = 0 (6.21)

Now, let Vh be a continuous finite element space defined on a domain Ω. The
weak formulation for (6.9) is given by: find n ∈ Vh and T ∈ Vh such that:∫

Ω

q

(
1

nc −n

(
nT ∂zn+ (n+nc)T ∂zn+n(n+nc)∂zT +

n(n+nc)T ∂zn
nc −n

))
dz

+
∫
Ω

qmngdz = 0, ∀q ∈ Vh, (6.22a)∫
Ω

wn(T − T0)
∆t

+
1
2

∫
Ω

∂zw(k(T ,n)∂zT )dz+
1
2

∫
Ω

wI(T ,n)dz

+
1
2

∫
Ω

∂zw(κ(T0,n0)∂zT0)dz+
1
2

∫
Ω

wI(T0,n0)dz = 0, ∀w ∈ Vh, (6.22b)

where we applied a Crank-Nicolson time-stepping scheme for the time derivative.
Here T is the unknown value and T0 is the value of T from the previous time-step.
Due to the strong non-linearities, we solve (6.22) in an iterative way per time-step,
with an inner and outer iteration. The process of one outer iteration step is given as
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follows: given a n0 and Tm we apply a Newton method (the inner iterations) to:∫
Ω

q

(
1

nc −n

(
nT ∂zn+ (n+nc)T ∂zn+n(n+nc)∂zT +

n(n+nc)T ∂zn
nc −n

))
dz

+
∫
Ω

qmngdz = 0 (6.23a)∫
Ω

wn0(T − T0)
∆t

+
1
2

∫
Ω

∂zw(κ̃(n0)
√
Tm/m0∂zT )dz+

1
2

∫
Ω

wĨ(T0)T
√
Tm/m0dz

+
1
2

∫
Ω

∂zw(κ̃(n0)
√
T0/m0∂zT0)dz+

1
2

∫
Ω

wĨ(n0)T0

√
T0/mdz = 0 (6.23b)

where κ̃ and Ĩ are given by (6.3) and (6.5). Having solved for T and n by the Newton
method, we update Tm = T and n0 = n and proceed to the next outer iteration. The
outer iteration ends after some criteria of convergence tolerance has been set, after
which we proceed to the next time step and set T0 = T .

Boussinesq approximation

In order to solve equations (6.18) we decouple the temperature equation (6.19c) from
the Navier-Stokes equation (6.19b), that is, given a temperature field T we update
the velocity ~u and pressure p by solving (6.19b). Given the velocity ~u we update
the temperature T by solving (6.19c). Per time-step we may iterate over this process
multiple times for higher accuracy.

To solve the Navier-Stokes equation (6.19b) with the incompressibility condition
(6.19a) we apply Chorin’s method. For the initial setup of this method we used a
FEniCS demo [168]. The Chorin’s method is applied in three steps. The first step
solves the momentum equation while ignoring the pressure, resulting in a tentative
velocity ~u? : find ~u? ∈ ~Vh such that∫

Ω

1
∆t

(
~u? − ~un−1

)
· ~v dx+

∫
Ω

∇~un−1~un−1 · ~v dx+
∫
Ω

2µ(T )Re−1τ(~u?) : τ(~v)dx

−
∫
Ω

T βFr−2gẑ · ~v dx = 0, ∀~v ∈ ~Vh (6.24)

where β is a given constant. The second step computes a pressure: find p ∈ Qh such
that ∫

Ω

∇pn · ∇qdx = −
∫
Ω

1
∆t
∇ · ~u?qdx, ∀q ∈Qh. (6.25)

The third step updates the velocity based on ~u? and pn: find ~un ∈ ~Vh such that∫
Ω

~un · ~v dx =
∫
Ω

~u? · ~v dx −∆t∇pn · ~v dx, ∀~v ∈ ~Vh. (6.26)

With the velocity and pressure known, we may solve for the temperature. We apply
a Crank-Nicolson method to discretize (6.19c) in time. Set T n = T 0 and T n+1 = T
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then (6.19b) becomes

T + 1
2∆t

(
~u · ∇T −∇ ·

(
κ(T )P e−1∇T

)
+ I(T )

)
=

T0 − 1
2∆t

(
~u · ∇T0 −∇ ·

(
κ(T0)P e−1

)
∇T0 + I(T0)

)
. (6.27)

This equation is non-linear in T so we apply a Picard/Newton method: write T =
T 1 + δT and note that

I(T ) ≈ I(T 1) + I ′(T 1)δT ,

∇ ·
(
κ(T )P e−1∇T

)
≈ ∇ ·

(
κ(T 1)P e−1∇T 1

)
+∇ ·

(
κ(T 1)P e−1∇δT

)
.

(6.28)

We write (6.27) as

δT + 1
2∆t

(
~u · ∇δT −∇ ·

(
κ(T 1)P e−1∇δT

)
+ I ′(T 1)δT

)
=

T 0 − T 1 − 1
2∆t

(
~u · ∇T 0 + ~u · ∇T 1

−∇ ·
(
κ(T 0)P e−1∇T 0

)
−∇ ·

(
κ(T 1)P e−1∇T 1

)
+ I(T 0) + I(T 1)

)
(6.29)

The weak formulation becomes: find δT ∈ Vh such that∫
Ω

wδT dx+ 1
2∆t

∫
Ω

w~u · ∇δT dx+ 1
2∆t

∫
Ω

∇w ·
(
κ(T 1)
P e

)
∇δT dx

+ 1
2∆t

∫
Ω

wI ′(T 1)δT dx =∫
Ω

w(T0 − T1)dx − 1
2∆t

∫
Ω

w~u · ∇T1 dx − 1
2∆t

∫
Ω

w~u · ∇T0 dx

− 1
2∆t

∫
Ω

∇w ·
(
κ(T 1)
P e

)
∇T1 dx − 1

2∆t

∫
Ω

∇w ·
(
κ(T 1)
P e

)
∇T0 dx

− 1
2∆t

∫
Ω

wI(T 1)dx − 1
2∆t

∫
Ω

wI(T 0)dx, ∀w ∈ Vh. (6.30)

Having found δT we compute T = T 1 + δT and iterate this process until some con-
vergence tolerance has been met. Given the converged T we may then update again
the velocity and pressure.
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Conclusions and Outlook

There is no science without fancy, and no art without fact.

—Vladimir Nabokov

This thesis concerned the dynamics of vibrated granular matter using discrete
particle simulations, experiments and theoretical analysis. Exploring further the
rich phenomenology of vertically vibrated bed of grains has revealed new collective
behaviours and intricate transition dynamics, novel examples of complex phenom-
ena in out-of-equilibrium particle systems. By comparing simulations and experi-
ments with hydrodynamic theoretical descriptions, an investigation has been made
on the relation between discrete and continuum descriptions of what are by defini-
tion many-particle systems. Overall, an effort has been made to describe the same
system using different model types, such that by comparing the results obtained in
each case, insight has been gained on the physical validity of each approach, as also
on the dynamics of the system.

Chapter 2 started by presenting the systems under study; vertically agitated nar-
row boxes filled with spherical grains. When highly agitated, grains separate in a
dense, low temperature region on top of a rare, highly temperature one, a density
inverted state referred to as granular Leidenfrost. In this thesis a first observation
and characterization of semi-periodic oscillations in the granular Leidenfrost state
was reported. These oscillations were named low-frequency oscillations (LFOs) due
to their frequency being orders of magnitude lower than the container’s shaking
frequency. Simulations in both quasi-one-dimensional and quasi-two-dimensional
geometries revealed that LFOs are not only present in the horizontally homogeneous
granular Leidenfrost state, but also in the buoyancy-driven convective state that rises
for higher energy inputs; the necessary condition of vertical density inversion is
present in both states. The oscillations were characterized using the evolution of the
centre of mass of the system, which showed that their amplitude is proportional to
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ω, the frequency of vibration of the container, whereas the characteristic frequency
of LFOs is inversely proportional to ω.

Modelling the grains bed as a continuum, an analysis of the density inverted sce-
nario revealed that, in the right limits, the position of the dense region follows a
forced harmonic oscillator equation of motion. An expression was derived for the
expected LFO frequency as a function of a zero-order approximation of the den-
sity profile. For this, the depth-averaging mathematical technique was used, which
proved to be useful in the description of highly constrained and vibrated granular
media. The predicted frequencies show a remarkable agreement with particle sim-
ulations in the limit of high energy injections. A second model was proposed that
considers thermodynamic and elasticity theory arguments, resulting in a very simi-
lar expression for the LFOs frequencies, suggesting that the results are general for a
broad class of density inverted systems.

Experimental work, presented in Chapter 3, confirmed the existence of low-
frequency oscillations in the granular Leidenfrost and buoyancy-driven convective
states. The previously derived theoretical predictions for the frequency of the oscil-
lations was shown to be accurate in the parameter range reachable by experiments.
Experiments were realized using the Positron-Emission Particle Tracking technique,
again proven to be very useful for the understanding of shaken granular matter: by
following the trajectory of one particle and integrating its position over time, den-
sity and velocity profiles were obtained, in good agreement with simulations. Data
analysis of the particle’s position further revealed convective phenomena in highly-
packed states, not easily observable by more traditional imaging methods, where
usually only boundary layers can be imaged. This slow circulation of particles was
shown to be present for very low energy injections.

In Chapter 4 a detailed examination of the granular Leidenfrost to buoyancy-
driven convection transition was presented. The buoyancy-driven convective mo-
tion was observed to be preceded by time-dependent fluctuating convective flows
present while still in the Leidenfrost state, and even far from the transition point.
Their velocity was measured to be at least an order of magnitude lower than flows
in buoyancy-driven convection. A first characterization of these transient flows re-
vealed that the time of correlation of the velocity fields increases critically as the
transition is approached. Furthermore, fluctuating convective states were not ob-
served to be associated with temperature or density inhomogeneities, and can occur
in highly packed Leidenfrost states. As the energy injection is increased, the cor-
relation of these flows grows, eventually giving rise to density fluctuations, which
proceed to dominate the dynamics. Density fluctuations were characterized using
the static structure function which was able to capture the growth of these fluctua-
tions as a clearly defined peak at a critical length-scale. This dominating wavelength
corresponds with the critical convective cell size, which is independent of the size of
the container. As the energy input increases further, the size of the convective cells
also increases, which leads to intricate dynamics for containers which do not fit an
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integer number of convective cells. Throughout the study of the transition, dissi-
pative, periodic and elastic solid walls in the horizontal direction were considered,
revealing that the critical points are only slightly affected by the different boundaries
in small containers (and for the weak dissipation considered), and play no determi-
nant role in very wide containers.

The critical behaviour of the granular Leidenfrost to buoyancy-driven convec-
tion transition was characterized by following the amplitude of the critical mode in
the vertical velocity field. The shape of the transition was observed to be consis-
tent with a quintic supercritical bifurcation. As this type of bifurcation is associated
with spatially extended periodically excited systems —such as Faraday instabilities
or vibrated coupled chains of pendula— we hypothesize that low-frequency oscil-
lations play a fundamental role on the dynamics of these states, even well into the
convective state. In order to obtain an adequate agreement it is necessary to include
an additive noise-term in the corresponding amplitude equation, which quantifies,
among other effects, fluctuations due to the finite-number of particles involved. The
amplitude of the noise term was not seen to vary between small and large systems
for sufficiently wide containers, suggesting that its origin depends on the amount of
particles per base area unit, thus involving always the same amount of particles for
a given filling height.

The relation between discrete and continuum descriptions of granular systems
was studied further in Chapter 5. A methodology was developed to study the role
of fluctuations arising in granular systems due to the low total number of parti-
cles (when compared to molecular systems). The method involves defining macro-
scopically equivalent systems, that is, systems that can have different microscopic
properties but posses equivalent macroscopic fields. Considering a form of granular
hydrodynamic equations, the dependency of all the terms with the size of the par-
ticles was derived. It was then proven that it is not possible to vary the size of the
particles and retain the same macroscopic state in the most general flow case, and
for simple microscopic systems involving only particle-particle dissipative interac-
tions. Nevertheless, by adequately scaling the restitution coefficient and the energy
injection parameters, it is possible to leave the hydrodynamic equations describing
the granular Leidenfrost state invariant, for systems with different particle size and
thus number of particles. Simulations that followed the found scaling laws showed
that the density and temperature fields converge as the particle size is decreased.
The observation of macroscopically equivalent granular Leidenfrost states then al-
lowed us to observe that the amplitude of LFOs is inversely proportional to the total
number of particles. This suggests that LFOs are driven by fluctuations due to the
finite number of particles, i.e., that they are an essentially discrete phenomenon. On
the other hand, the frequency of the oscillations was seen to converge to a given
value, in accordance with the derived theoretical expression, which depends only on
continuous, macroscopic quantities.

In the last section, Chapter 6, the granular hydrodynamic equations were solved
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for systems in the granular Leidenfrost state and buoyancy-driven convection. This
initial numerical analysis first established the correct physical limit in which to
model the granular Leidenfrost state by a continuum theory. By computing the
Mach number it was shown that the flow is on the highly incompressible limit. The
difficulty of solving the full incompressible hydrodynamic equations for high en-
ergy injections and complex transport coefficients motivated the use of two different
approximations. First, the steady-state, one-dimensional case was considered as a
model of the Leidenfrost state. Comparing with DPM simulations and using the
methodology derived in the previous chapter revealed that finite-size effects are a
relevant source of disagreements between the continuum solution and the coarse-
grained fields obtained from simulations. The agreement is in general worse for
higher energy injections. The second case studied was the two-dimensional gran-
ular hydrodynamic model under the Buossinesq approximation. The transition to
convection is observed in this case and has similar qualitative features as particle
simulations.

Regarding the simulation method, event-driven simulations of hard-spheres show
a remarkable agreement with experiments in the collisional regimes. This further
confirms the validity of the hard-sphere approximation for highly agitated systems.
It is nevertheless necessary to consider velocity dependent restitution coefficients in
order to capture the physics in high density regions. It was also shown that the speed
advantage of event-driven simulations is crucial for the study of long transients or
very high shaking frequencies.

Outlook and recommendations

At many points throughout this thesis the phenomena observed suggests deeper or
new lines of future research. In what follows an overview of such ideas is given.

• Exploring further the phase-space of the vertically vibrated quasi-one-dimensional
geometry could lead to an even better understanding of low-frequency oscilla-
tions. Of special interest are the dependency of the oscillations on the particles’
interaction properties, such as the coefficients of restitution and friction. A few
exploratory simulations have shown that modifying the restitution coefficient
could lead to higher amplitudes of oscillation for lower vibration strengths, fa-
cilitating future experimental realizations. Also of interest is the inclusion of
adhesive forces, as they could lead to more strongly separated phases, a limit
where the theoretical models are expected to work better.

• The complete equation of motion derived for density inverted continuum sys-
tems, before disregarding higher order terms, could be numerically solved.
The inclusion of the non-linear terms should result in temporal evolutions
more akin to those found in simulations, which are far from the regular oscilla-
tions of harmonic oscillators and closer to more chaotic dynamics. It would be
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of interest to include a stochastic forcing (instead of the sinusoidal boundary
condition used in our work), to model the particle number fluctuations which
drive the oscillations, and see how the forcing statistics has to be adapted for
systems with different numbers of particles. Furthermore, the energy equation
could be included in the description, possibly improving the predictive nature
of the model by obtaining the density and/or velocity fields.

• Experiments suggest the existence of an inverted convective state for very low
energy injections, in which the particles go up at the walls. In simulations with
higher energy injections inverted convective states were observed, but only
in specific cases and for short times, whereas experiments showed that this
state is possible for low energy injections and with high stability. Exactly what
parameters make that state possible remains an open question, as also how
stable it is. Simulations that can handle highly packed states more accurately
should be employed for any study of this very dense regime phenomenon.

• It was observed in simulations that the critical size of the buoyancy-driven
convective rolls is independent on the width of the container. The other deter-
minant factors have been predicted by a stability analysis of the granular hy-
drodynamic equations. Confirming this predictions in a wide region of phase-
space remains to be done. Moreover, Equivalent Leidenfrost states with dif-
ferent numbers of particles could be used to determine if the particle-size is
relevant. First observations indicate that for a given dissipation the number
of particle layers is indeed a determinant variable, although it is not know in
what form and until what extent is this true.

• The amplitude equation relevant for a system of vibrated coupled oscillators
of the form proposed to be present in the Leidenfrost state should be derived.
This would confirm or deny the relevance of the proposed quintic supercritical
bifurcation. Derivations have already been done for coupled chains of pendula
—which could be an adequate starting point— although these do not consider
the finite-size and number effects that are present in granular phenomena.

• Experiments of vertically vibrated grains inside a container filled with liquid,
realized by fellow researchers, suggested the presence of low-frequency oscil-
lations, although the measurements where not conclusive. Suspensions, in-
cluding colloidal systems, could provide ways to test the generality of our re-
sults, as predicted by the derived continuum analysis. By lowering the density
difference between the grains and the surrounding media it is expected that the
same phenomena can be observed for lower energy injection values, although
hydrodynamic interactions are also expected to have a significant influence.

• The buoyancy-driven convective state in wide containers was seen to present
complex, time-dependent dynamics. Convective cells are seen to merge, split,
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and coexist with the Leidenfrost state. The dependency of the characteris-
tic time-scales of these phenomena on the system properties could yield fur-
ther insight into the nature of buoyancy-driven convection in granular sys-
tems. First observations suggest that the restitution coefficient of the particles
dramatically affects the observed behaviour.

• The analysis of equivalent macroscopic states with different numbers of par-
ticles should be applied to other granular states. In vibrated monolayers that
undergo phase-separation, either for mono- or poly-disperse grains, the size
of the domains and the fluctuations that alter its shape could be studied as a
function of the discretization, i.e. number of particles. The theoretical analysis
should also be extended to include binary mixtures, and several segregation
phenomena could be analysed in this context, a scenario that could be also
relevant for practical applications.
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Summary

The subject of this thesis is the dynamics of granular materials. Granular matter
is defined as collections of macroscopic, dissipative particles. The size of the indi-
vidual particles (grains) must be large enough so that thermal fluctuations may be
ignored. The loss of kinetic energy at every grain-grain collision implies the need
of an external energy source to keep grains in movement. This thesis centres on a
specific energy injection method: vibrated systems, where the grains container is
shaken such that particles gain energy through collisions with the walls. As far-
from-equilibrium dissipative systems, vibrated granular matter presents many dis-
tinct out-of-equilibrium stable states and complex transitions between them. In this
thesis both particle simulations and different continuum models are used to inves-
tigate further the relation between discrete and continuum descriptions of particle
systems, a subject of fundamental scientific interest.

A collective, semi-periodic movement of the grains inside vertically vibrated con-
tainers is for the first time identified and characterized. A simulational study of
these oscillations is presented in Chapter 2, and Chapter 3 mainly describes an ex-
perimental observation of it. The oscillations take place in density-inverted states,
such as the granular Leidenfrost effect, where grains separate in a high temperature
region near the moving bottom wall and a dense region on top. The quasiperiodic
movement is usually orders of magnitude slower than the energy injection shaking
frequency, thus they are named low-frequency oscillations (LFOs). Furthermore,
from the equations of mass and momentum conservation in continuum media an
expression for the typical natural oscillation frequency is derived, in good agree-
ment with both simulations and experiments in the high energy injection limit.

Increasing the energy input and system size takes the system from the granular
Leidenfrost state to a buoyancy-driven convective state. Chapter 4 presents an in-
depth study of this transition, revealing the existence of fluctuating convective flows
far before the transition, as also suggesting a reinterpretation of the dynamics that
includes the influence of LFOs. The characteristic length and time-scales of precur-
sory fluctuations are measured, and the amplitude of the critical mode is observed
to be consistent with a quintic supercritical amplitude equation.

The last two chapters of this thesis study the granular Leidenfrost to convection
transition using granular hydrodynamics. Chapter 5 deals directly with the relation
of discrete and continuum descriptions of granular systems. A methodology is pro-
posed to quantify the finite-number effects on fluctuations, involving scalings that
leave the granular hydrodynamic equations invariant while varying the total num-
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ber of particles. This method allows us to conclude that LFOs are a finite-number,
discretization phenomena, although the mode of oscillation is seen to be a macro-
scopically determined quantity. In Chapter 6 the granular hydrodynamic equations
are numerically solved, and the solutions compared with particle simulations. De-
viations of the continuum model due to finite-size and higher order effects are dis-
cussed. Finally, it is observed that to first order the transition can be understood
as a Rayleigh-Bernard instability described by Navier-Stokes-like equations in the
Boussinesq approximation.



Samenvatting

Dit proefschrift onderzoekt de dynamica van granulaire materie: groepen van macro-
scopische deeltjes met energetische verliezen. De grootte van de individuele deelt-
jes is dermate gekozen dat thermische fluctuaties verwaarloosd kunnen worden.
Kenetische energie wordt bij elke botsing tussen verschillende deeltjes omgezet in
warmte, wat impliceert dat er een externe bron nodig is om de deeltjes in beweging
te houden. Dit proefschrift richt zich op trillende systemen, waarbij een omhulsel
met daarin deeltjes in zijn geheel dermate geschud wordt, dat er energie wordt
toegevoegd door botsingen tussen de deeltjes en het omhulsel. Zoals vaker in sys-
temen ver van een evenwicht, zijn er in granulaire materie in aangeslagen toestand
veel verschillende stabiele staten uit evenwicht te vinden, met complexe overgangen
tussen deze.

De eerste twee hoofdstukken zijn toegewijd aan een nieuw gemeenschappelijk
gedrag waargenomen in een vertikaal trillend systeem met een laag van deeltjes.
Wanneer sterk aangeslagen, scheiden de deeltjes zich in een regio met een hogere
temperatuur aan de onderzijde en een regio met een hogere dichtheid aan de boven-
zijde, vergelijkbaar met het Leidenfrost-effect waar vloeistof zich begeeft boven gas.
In deze situatie met een omgekeerde dichtheid nemen we, zowel in simulaties als
experimenten, waar dat er een semi-periodieke verplaatsing plaatsvindt binnen de
laag deeltjes, met een snelheid van enkele ordergroottes lager dan de externe trillin-
gen. Wij noemen dergelijke semi-periodieke verplaatsingen ook wel laag-frequente
oscillaties (LFO’s). Typische amplitudes en frequenties blijken respectievelijk evenredig
en omgekeerd evenredig met de toegevoerde hoeveelheid energie samen te hangen.
Bovendien leiden we van de wetten van behoud van massa en impuls uitdrukkingen
af voor de typische frequentie van de oscillaties welke overeenstemmen met zowel
simulaties als experimenten.

Het vergroten van de energie-toevoer laat het systeem overgaan van een Leidenfrost-
staat voor granulaire materie tot een door drijfvermogen gedreven convectieve staat.
In hoofdstuk 3 wordt deze overgang beschreven aan de hand van de bifurcatiethe-
orie. De karakteristieke lengte en tijdschaal van de voorafgaande fluctuaties zijn
gemeten en de amplitude van de kritische mode blijken uit waarnemingen overeen
te stemmen met de vijfdegraadsvergelijking voor superkritische amplitudes. Dit
leid ons om de dynamica van de Leidenfrost staat ter herinterpreteren als een serie
van gekoppelde oscillatoren, daarbij meegenomen de aanwezigheid van de voorheen
genoemde LFO’s.

De laatste twee hoofdstukken van dit proefschrift onderzoeken de overgang tussen
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het granulaire Leidenfrost en een staat van convectie met behulp van granulaire hy-
drodynamica. Met als doel het kwantificeren van een eindig aantal effecten in de
voorafgaande fluctuaties, stellen we een methode voor om macroscopisch equiva-
lente systemen met aanzienlijk verschillende hoeveelheden deeltjes te vinden. Deze
verschalingen zijn afgeleid zodat de granulaire hydrodynamische vergelijkingen on-
afhankelijk blijven van de grootte van de deeltjes. Dit blijkt alleen mogelijk te zijn in
het geval van een tijdsinvariante staat, waarbij simulaties een convergerend macro-
scopisch veld laten zien. Tijdens de overgang blijken de ruis-termen van de ampli-
tudevergelijkingen, welke de groei van de kritische modes beschrijven, omgekeerd
evenredig te zijn ten opzichte van de totale hoeveelheid deeltjes in het systeem.
Daarnaast zijn de granulaire hydrodynamische vergelijkingen numeriek opgelost
voor het bestudeerde systeem, wat bevestigd dat tot de eerste orde de overgang be-
grepen kan worden als een Rayleigh-Bernard instabiliteit beschreven door de Navier-
Stokes-achtige vergelijkingen in de Boussinesq-benadering. Ten slotte worden de
afwijkingen van deze klassieke overgang door het gebruik van een eindige hoeveel-
heid deeltjes en hogere orde effecten bestudeerd.
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