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Micro-Macro and Rheology
in sheared Granular Matter
by A. Singh

As a kid

| walked on the sand

but never sank in

My house stood on the ground,
but did not cave in

Made me think

soil is solid!

Growing older one day,

| read

about the Leaning Tower of Pisa
and | saw

a horrible landslide

The same saoill

That lies beneath my foot
looked different than before
remains a mystery

is it solid or

is it liquid ?

summary

Soil, which is made up of countless interacting grains isréegeexample of granular mate-
rial. The shape of the grains, the way they interact throwghact, and the presence of humi-
dity between them are all crucial to predict whether thelseileath my house can withstand
the load or if it would fail. When granular materials are gleelathe relative motion (flow)
is confined to narrow regions (between large solid-likegaralledflowing zones



Vi SUMMARY

In the past couple of decades computer simulations, edlyettia Discrete Element Method
(DEM) have evolved to become important tools to study granulatter. In this thesis, DEM
simulations are used to study granular material in thecalitstate, by focusing inside the
flowing zonesnduced by a special geometry called the split-bottom gegme€he aim of
this work is to link themicroscopigproperties to thenacroscopidulk behavior as observed
in experiments.

The thesis begins with the study of pairwise collisions le&twtwo elasto-plastic cohesive
particles. A contact model, which takes all essential ¢ffedo account is introduced. With

increasing impact velocity, stick-rebound-stick-rebourtzehavior is observed. The first sti-
cking range originates from the short-range non-contacaive forces, while the second
one appears due to the plasticity induced cohesion angétgsn.

Among the material properties influence on the macro-flonaligh, first focus is on the

contact friction. Both the shear resistance of the mataridithe deviatoric fabric (structural
anisotropy) first increase and then saturate with incregdsiction, while the contact number
density decreases. Increasing friction also increasesdggneity in the spatial distribution
of both the normal and tangential force network.

Next, a further level of complexity, cohesion is introduc&d determine the intensity of
cohesive forces, a non-dimensional parameter called BantberBo, which compares at-
tractive forces to external compression forces is defiBedv 1 captures the crossover from
essentiallynoncohesive free-flowing granular assembBes< 1 to cohesive oneBo > 1.
Various macroscopic and micro-structural features likewldth of flowing zones and tails
of force probability distributions aralmostindependent of cohesion for low Bond num-
ber,i.e.,.Bo< 1. Whereas, they get wider with increasing cohesion for fdghd number
Bo> 1.

As a next step, the effect of particle softness and gravith@system are studied. So far
in literature, the bulk behavior has been assumed to be extmt of both. However our
analysis, shows that the shear resistance of the matededaes systematically with in-
crease in either softness or gravity. On the other hand hbargesistance can be described
as a unique power law, when analyzed against a non-dimeaisiamber, which is the ratio
of time scales related to softness and gravity. The stratamisotropy (deviatoric fabric)
also shows a very similar behavior, that leads to an integgtterpretation that the shear
resistanceccompanieghe anisotropy in the steady state contact network.

Finally, we look at therheologyof granular flows : simply put, how does the response of
the system depend on the rate of shear. For low rates of dafmm) the system is found
to be an inalmostrate independent regime. As the rotation rate is increabedeaa par-
ticular driving rate, the system enters a rate dependeiheed@oth local shear resistance
and structural (contact) anisotropy increase with indreglecal strain rate. This shows that
the shear resistance increases with strain rate mainlyaae increase in structural ani-



sotropy, which indicates that theesoscopicontact network dominates the behavior even
for fast rate dependent flows, before the system enters tlig@aal regime for even faster
strain-rate.

Using different tones composed in this thesis, a unique Bgmpcan be orchestrated, which
describes the flow behavior of soil on the Earth, as well asthenMoon. In the end, the

knowledge | gained increased my curiosity and at the end EHfaw answers but more
guestions than before.
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Micro-macro en reologie
in granulaire materie
door A. Singh

Toen ik nog een kind was
Liep ik over het zand

Maar ik zakte er nooit in weg
Mijn huis stond op de grond
Maar het storte niet in

Did deek me denken

Grond is een vaste stof!

AMaar toen ik ouder werd
Hoorde ik

over de scheef staande toren van Pisa

en zag ik

Een verschrikkelijke aardverschuiving

ADezelfde grond
De grond waar ik op sta

Hij ziet er anders uit dan eerst

Het blijft een raadsel
Is het een vaste stof
Of zoch vloeibaar?

Samenvatting

Grond is een mooi voorbeeld van een granulaire materie, lakestaat namelijk uit ontelbaar
veel kleine korrels die onderlinge interactie met elkadotden. De vorm van deze korrels, de
wijze van interactie en de mogelijke aanwezigheid van gloéizijn alleen cruciaal om het
gedrag van dit soort materie te voorspellen. Dit samenspektrhet moeilijk te voorspellen
of mijn huis zal blijven staan of zal worden meegesleepd reetaardverschuiving. Als
granulaire materie wordt afgeschoven, zal slechts een kleel van de korrels bewegen,
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terwijl de meeste korrles op ongeveer dezelfde locatiemlijven liggen. Het gebied van
de bewegende korrels noemen we ook wel het stromings gebied.

In de afgelopen decennia hebben comptersimulaties zichildld tot belangrijke onder-
zoek instrumenten. In dit proefschrift wordt de Discreteriénten Methode (DEM) ge-
bruikt om granulaire materie in de kritieke toestand te $@ren. Met behulp van een
“split-bottom”geometrie worden stromings gebieden geerd, waarin de materie zich in
de kritieke toestand bevindt. Het doel van dit onderzoekeis knk te leggen tussen de
microscopische eigenschappen en het macroscopischeygitnaordt gezien in vele expe-
rimenten.

Dit proefschrift begint met een gedetailleerde studie mi@apaarse wijze botsing van twee
deeltjes. Een eenvoudig contact model, dat toch alle ésg=atfecten in ogenschouw neemt
wordt geA ntroduceerd. Met toenemende botsings-sneihededt een “stick-rebound-
stick-rebound’gedrag waargenomen. De eerste “stick’faset door de attractive krachten,
terwijl de tweede “stick"fase komt door de cohesie en distsgpdie wordt vergroot door de
plasticiteit.

Verderop in de proefschrift wordt het effect van deeltjesgsteem eigenschappen op het
macroscopische bulk gedrag bestudeerd. Het doel is om deteff van elke eigenschap
te isoleren, zodat een duidelijk begrip van het completstelplastische, wrijvingsvolle,
cohesieve granulaire materie onder afschuiving wordtregyén.

Als eerste wordt de aandacht gericht op het effect van wgjvZowel de afschuif weerstand
van het materiaal als de structurele anisotropy, neemteehioe met toenemende wrijving,
maar verzadigen later. Terwijl de contact dichtheid jufseamt. Bij toenemende wrijving

worden de “spatial distrubution”van zowel de normale atgyentiele krachten netwerken
meer heterogeen.

In het tweede deel wordt de complexiteit verder verhoogd dobesie te introduceren. Om
de intensiteit van de cohesive krachten te kwantificererdwen de dimensieloze parame-
ter, het Bond getal geintroduceerd. Dit getal vergelijktatgactieve cohesieve krachten
met de zwaartekrachteBo laat duidelijk de overgang zien van bijna niet chohesievie vr
stroomende granulare mateBe < 1 tot cohesieve materie dpo > 1. Verschillende ma-
croscopische gedragingen, zoals de breedte van de strozongs, zijn onafhankelijk van
Bovoor Bo < 1, terwijl deze toenemen m8p voor Bo> 1. "Micro-structural signatures”
zoals de staarten van de kans dichtheid van de grote van deténalaten een soortgelijke
overgang zien.

Om nog een stap verder te gaan, worden de effecten van stiinezwaartekracht bestu-
deerd. In de literatuur wordt tot heden verondersteld dahfaeroscopische gedrag onaf-
hankelijk is van beide. Onze analyse laat zien dat de afSeleérstand van het materiaal
systematisch afneemt met een toename zwaartekracht ohafue stijfheid. De afshuif-



weerstand kan beschreven worden met een unieke machtsaraiger deze geanalyseerd
wordt als functie van de verhouding tussen de tijdsschagasgpcieerd met stijfheid en
zwaartekracht. De structurele anisotropy laat een vegkbelar gedrag zien, wat leidt tot de
interessante interpretatie dat de afschuif weerstand idetawpie vergezeld in het contact
netwerk.

Als laatste kijken we naar de rheology van dit soort stroremgSimpel gezegd kijken we

hoe het systeem reageert afhankelijk van de afschuifsidelRer langzame deformatie be-
vindt het systeem zich in een bijna snelheids onafhankgdidied. Wanneer de afschuifsnel-
heid verhoogd wordt, boven een bepaalde snelheid, wordsrealheids afhangelijk gebied

bereikt. Zowel de locale afschuif weerstand en de strulguarisotropy nemen toe met
toenemende locale afschuifsnelheid. Dit laat zien dat dehafif weerstand toeneemt met
afschuifsnelehid voornamelijk door een toename in de tirale anistorpie. Dit geeft de

indicate dat het mesoscopische contact netwerk het stgsngiedrag domineert, zelfs voor
snellere snelheids afhankelijke stromingen.

Uit de verschillende klanken in dit proefschrift kan eenelei symfonie gecomponeerd wor-
den die het stromingsgedrag van grond beschrijft, op aacdeet als op de maan. Uiteinde-
lijk heeft de kennis die ik heb opgedaan mijn nieuwsgieifiergroot, en bij dit einde heb
ik weinig antwoorden maar meer vragen dan in het begin.
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CHAPTER 1

Intfroduction

Matter is usually classified into solids, liquids, and gagast what abougranular matte?
Dry sand flows in a hourglass. When poured into a containadapts to the shape of the
container displaying a property of liquids, while at resdijpears to be “solid”. At the level
of a single grain of course it is a solid, but collections obdf grains together are granular
material, with quite different properties.

Dune migration, landslides, avalanches, and silo instalgite a few examples of systems
where granular materials play an important role. Furtheent@andling, and transport of
these granular materials are central to many industrigs asipharmaceutical, agricultural,
mining and construction industries and pose many open ignesb the researchers.

1.1 Granular Materials

In spite of the ubiquity of granular systems, understanttieg behavior is a major challenge
for science. Even in a seemingly simple system such as dny, $ha presence of large
numbers of internal degrees of freedom lead to highly nealireffects, which makes it
difficult to relate the microscopic grain level propertiési@gwn) to the macroscopic bulk
behavior.

Basic properties —

In cases of misfortune when an earthquake hits, our homdioe tfegins to vibrate. Alas, it
is too late to think about the strength of the ground undefeet; because in many cases soil
does not act as you expected. Normally it is a solid, but whénfiuidized the liquid like
behavior of soil leads to destruction. Hence it is importaninderstand how and when soil
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flows. Lucretius (ca. 98 — 55 B.C.) was probably the first oneetangnize this interesting
behavior of soil-like materials, when he wrot®rie can scoop up poppy seeds with a ladle
as easily as if they were water and, when dipping the ladle séeds flow in a continuous
stream’(text taken from Duran45)).

This complex macroscopic behavior has many origins. Fargranular constituent is much
larger than atoms and molecules composing it, this makesétisitive to thermal fluctua-
tions. The gravitational energyigdof a 1 mm sized sand grain and kinetic energy acquired
by it (when raised by its own diameter) exceed the thermalggnigT by many orders of
magnitude 87, 72]. Second, granular interactions are dissipative in natlinés means, ki-
netic energy is lost during collision due to inelasticityddriction at contact. This property
distinguishes granular materials from ordinary liquid asgs, where the energy is conserved
during collision between atoms or molecules. The atherm@tissipative nature of interac-
tions lead to a system far away from equilibrium. Dissipatnd irrelevance of temperature
are primary reasons of difficulties faced while explainimgrailar materials using theories
like thermodynamics and statistical physics.

Granular solid, liquid or gas? — An interesting feature of granular materials is the fact
that they can behave as solids, liquids, or gases, depeaditite way the material is driven
[55, 72]. Fig. 1.1 shows a typical flow obtained by pouring steel beads on a fileree
distinct phases can be clearly observed: on the top is a&d#gime where the beads bounce
in all directions, and collisions are the dominant intei@cbetween them. This regime is
referred agaseous regimend will not be touched in this thesis; interested readeosils
refer to 7] and references therein. Just below this gaseous regimamadilute phase
exists, where the beads have enduring frictional contaatstill flow past each other. Below
this liquid phase deep into the bulk of the heap is tkelid phasewhere the particles do
not have much free space to move. In this phase, particleal@a@st static, they do not
experience collisions, but haesduringcontacts.

The coexistence of these diverse phases makes the beh&goarmular materials rather
complex, which is hard to be captured by a unique model. Gikerwide presence and
applications, a model which describes broad, general giatieat can explain all collective
systems is particularly appealing to physicists, as wethashanical and civil engineers.

A particular area of interest of many scientists is the flgnehavior of granular materials
undershear due to its application in geophysics for description anedption of natural
risks such as landslides, avalanches etc. The flowing behafigranular materials is re-
markably different from what one would expect from Newtanféuids. When granular
materials are sheared, the shear is not distributed horeogsty throughout the system,
instead it gets localized to narrow regions called shead®am other words, only narrow
regions between the large solid-like parts show flowing biha

Another field of interest in the granular community is ‘Jamgij where granular materi-



Figure 1.1: An image of steel beads poured on a pile illussrétie three distinct phases of
granular material. Adapted with permission frosb]

als above a critical packing fraction (jamming point) arerid to be mechanically stable
with finite stiffness 17, 96, 136 138 146, 177, 187, 215 235. The belief in a jamming
“point"was recently questioned b7, 32, 135 236.

1.2 Goal

To begin with the goal of this thesis, | would like you to catesi a jar filled with sand
grains. The sand grains behave like a solid, supporting #ighw of the particles above.
When the jar is tilted gently about an axis, above a critiogle, called thengle of repose
sand begins to move/flow. When one looks closely, the toptagsts flow like a liquid,
while the bottom part is still solid: a shear band forms atittterface of the two. This is
the simplest small-scale analog of what happens in natargéiscale granular flows like
avalanches or land slides.

The aim of this thesis is to study the boundary between thedignd solid phases by study-
ing granular flows. How do the microscopic material and sysp@rameters influence the
macroscopidlow behavior of the bulk system? This question remains pgnaatic and will
be addressed in the thesis. Citing the above example of saisdn a jar, the onset of flow,
i.e., the angle of repose would depend on many parametemelfills two separate jars
with the same amount of rough and smooth particles, fronitintuone can say that jar with
rough sand will have higher a angle of repose. But then fewstipugs emerge: how does the
bulk macroscopi@ngle of repose change withicroscopiaoughness of the particles? Does
the jar filled up of purely smooth (frictionless) grains haveero angle of repose? Activating
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Figure 1.2: A synthetic image of the Spirit Mars ExploratiRaver: Mars rover stuck in
soil. Figure adopted from Ref5§).

attractive forces at contact e.g. by simply adding somediguen further complicates the
picture.

A new question which becomes important for scientists @gtad in the geology of planets
is, whether the external compression affects the flow behafithe granular materials? In
other words, can one assume the flow properties, on Moon os Mave the same as that
found on Earth? Or does the soil found deep down Earth’s seitiave the same properties
as soil found on Earth’s surface? A wrong estimate of thaufaiproperty of soil can be
dangerous, as shown in Fity.2, which shows the Mars rover stuck in soil.

This thesis tries to answer the questions raised in thisssgedby focusing on how given,
knownmicro-mechanical properties affect theknownmacroscopic continuum behavior of
the bulk granular material.

1.3 Story of the thesis

To understand the flow behavior of granular material at thid-diguid interface, we perform
numerical simulations in the split-bottom geomety][ The focus of this thesis is to study
the effect of material and system parameters on the bulkii@haf granular material.

A brief review of granular flows in various commonly found geetries is presented in
Chapter two. We begin with a review sfow granular flows, where enduring contacts are
dominant. Since Split-bottom cell is the geometry useduphmut the thesis, the major
works done in this geometry are briefly discussed. In latergfahis chapter, fast granular
flows are also discussed.

Interaction laws between the particles are at the heart dfl BEnulations. To begin with,
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in Chapter three pairwise contacts and collisions betweesonparticles are studied. A
brief review of cohesive, elasto-visco-plastic contactdels is presented. Using energy
conservation arguments, the dependence of the coeffidieastitution on impact velocity
is studied. A new sticking regime is observed, which is iretlby a balance between non-
linear, history dependent cohesion and plastic dissipatio

The rest of the thesis deals with the flow behavior of granulatter under quasi-static shear
in a split bottom ring shear cell, while in the last chaptethmlow and fast flows are studied.
The effect of particle friction and cohesion on steady ssatisotropy is the focus of Chap-
ter four. For noncohesive granular material, macroscajgtidn and fabric anisotropy are
found to behave similarly. Both are found to saturate aftenéial increase with increasing
contact friction, with the major contribution coming froimet strong contact network. We
analyze the probability distribution functions (PDFs) aftb normal and tangential forces.
For cohesive powders, shear stress becomes nonlineadndept on confining pressure.
The contact network is found to be more isotropic for systdth higher cohesion. This ob-
servation suggests that with changing cohesion, the csnédang compressive and tensile
directions rearrange, such that total number of contaaystbe same.

Chapter five, deals with the effect of contact cohesion onlglsheared dense, dry, frictional-
cohesive powders. We study the effect of cohesion on the @dorce network and velocity
profiles in the steady state. A dimensionless nungipenular Bond numbe(Bo) is used to
estimate the strength of attractive cohesive forces. Thaennfigrce inside a shear band is
independent of cohesion, while the heterogeneity and tinjsp of the force network are
found to increase with cohesiofdo = 1 is found to be a control parameter for the shear
banding phenomenon, which undergoes a transition fromgbeimesion independent for
Bo < 1 to cohesion dependent fBo > 1. The explanation for this transition is presented in
this chapter.

For a long time, the macroscopic friction coefficient for @egi material has been assumed
to be independent of magnitude of gravity. Chapter six aingest this assumption by
studying frictional granular matter under slow shear withvity varying over two orders
of magnitude. The macroscopic friction coefficient is fowagnonotonically decrease with
increasing gravity. A collapse of the data is observed oniquéncurve when the ratio be-
tween forces due to gravity and contact stiffness is usedsaalang parameter. The contact
anisotropy behaves in a similar way as the macroscopiddrictorrelating with macro-
scopic friction. We further show that this correlation, ainis found in slow granular flows
can be further extended to dense inertial flows, but failsdprd flows.

In chapter seven, the scope of the thesis broadens, andasbmid slow flows are studied. A
three dimensional local rheology model is the focus of thigpter. Traditionally, extensive
homogeneous volume or pressure conserving experimergdhée performed to study the
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critical state rheology. Here, from a single simulation deviange in local strain rate, shear
and normal stresses, and volume fractions can be extractede steady state, the system
is found to be heterogeneous, and the local rheology shovamaition from a quasistatic
regime at low shear rate to an inertial regime, where therssteass ratio increases with
shear rate. The evolution of the microstructure of the nmtés well characterized by a
suitable parametrization of the fabric tensor and the doatibn number.

The thesis ends with conclusions and recommendationstiarefuesearch.



CHAPTER 2

Granular Flow Review

Abstract

We review flows of dense cohesionless granular materiatk, avspecial focus on split-

bottom geometries. We first discuss slow flows in basic antladoosnon geometries, which
is characterized by enduring contacts. Then a brief reviéweoent works on the flows
in split-bottom geometry follows. Finally a description fakt flows is presented, where
binary collisions are dominant mode of interaction. In thstlsection, methodology of the
numerical technique used in this thesis is briefly introdlice

2.1 Slow Flows

The motion in assemblies of grains has to be first inducedrderdo study granular flows.
The flow can be achieved by imposing an external stress on ¢herial, or by applying a
shear to the material. In this chapter, the focus is on theeléquid regime, which is most
often encountered in applications. To begin with, only sgst with dry grains and without
any cohesive interactions are discussed here.

The work of illustrious scientist Coulomb, who first expleghthe yielding of granular ma-
terial as a frictional process, laid the basics of slow glanflows. He was interested in
prediction of soil failure for Civil Engineering applicatis. Few basic and most common
geometries (Fig2.1), are discussed below:

2.1.0.0.1 Inclined plane One common flow geometry, thigclined planes encountered
in both geophysical and industrial contexts. The grainpateed from a large reservoir onto
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(b)

(@

Figure 2.1: Four flow geometries (a) inclined plane; (b) plahear; (c) Couette; (d) channel.
Figures adapted from Reb}).

a chute plane placed at some defined angle with respect taygdinection. The tilt angle
of the plane, controls both the flow and stress acting betwleparticles. One interesting
point is, lowering the tilt decreases the stress , while &sailting flow suddenly speed does
suddenly drops to zero — below a certain threshold inclamgtihe flow stops; the packing
jams

2.1.0.0.2 Plane Shear Flows The plane shear geometry is one of the simplest ways to
impose shear deformation. In this geometry, the materiasheared between two parallel
plates; Numerically the stress distribution is found to Ipéfarm inside the shear layer,
however experimentally it is not achieved owing to the pneseof gravity L19. The most
common method of inducing shear in this geometry is by impp#ie wall velocity 10].

2.1.0.0.3 Couette Flows Couette flow is also classically referred as “Annular shear
flow”. This is one of the classical geometries used to studyftbw behavior of com-
plex fluids. In this geometry the material is sheared mainig th relative motion between
(concentric or conical) cylinders. In this geometry, shisdmcalized on a few particle layers
close to the inner moving bounda®1} 119, which is robust in the sense that it exists inde-
pendent of dimensionality and rotation rag4,[124]. The shear stress necessary to sustain
the flow in most of the cases is independent of rate of rotatimugh for some compressed
systems a logarithmic dependence is fousd.[

2.1.0.0.4 Channel Flows Vertical channel flow in principle is made up of two parallel
walls filled up with material between them. The velocity plesfiare reminiscent of a plug
flow in the center part of the material, where veloatynostremains constant, hence the
material is not sheared. Shear is localized in narrow sheaddclose to the boundary with
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thickness of the order of 5-10 particle diameter3Q . Flow is found to be intermittent for
some special case&f], which can be associated with sudden appearance of loathbea
force network configurationdpJ]. Jamming of particles at the orifice can also lead to com-
plete arrest/blockage of the flo61, 202, a problem which disappears for large enough
orifice size.

One special and common property of the above mentionedsettipat the material under-
goeddilation. This phenomenon was first observed by Osborne Reynd&#; who named
it dilatancy. He performed a rather simple experiment binfijlla bag with water and grains,
and observed that additional amount of grains can be addezithe bag is deformed, i.e.,
the density of grains decreased upon shearing.

Another common feature of slow granular flows is localizatad strain in shear bands of
few particle diameters width. Shear bands have been steditedsively in geomechanics
because of their role in natural hazards such as landslitkeavalanched[l]. Capturing the
width of a shear band with continuum models has been chafigimgecause of the lack of a
microscopic length scale reflecting the microstructure.a&esult, micro-polar continuum
models such as by Cosserd8] have been put forward to regularize, i.e. get a finite width
of the shear band.

Apart from the setups described above, another geometpopeadl recently which allows
one to impose an external deformation at constant rate isghiebottom geometryH4).
In this geometry, stable shear bands of arbitrary width caadhieved allowing for a de-
tailed study of microstructure within the shear band. Sitheesplit-bottom geometry is the
geometry studied in the whole thesis, a detailed descrifgigiven below.

2.1.1 Split-Bottom Geometry

In this section, a brief review of recent experimental, ntioad and theoretical work on the
flows in this geometry is presented.

2.1.1.1 Description

In the split-bottom geometry, the granular material is in@zged directly from the sidewalls,
but from the bottom. The bottom of the setup that supportsmeight of material above it
is split in two parts, the two parts move relative to each oémal creates a wide shear band
away from sidewalls. The resulting shear band is robusthesotcation of the shear band
exhibits simple, mostly grain independent propertiessThakes it a im-practicable device
for measuring grain properties, but has advantages, abevditailed and used in this thesis.

Two variants of the split-bottom geometries are popularexperiments, cylindrical split-
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Figure 2.2: A sketch of our numerical setup consisting ofedixner part (light blue shade)
and a rotating outer part (white). The white part of the baskthe outer cylinder rotate with
the same angular velocity around the symmetry axis. The inner, split, and outer radii a
given byR = 0.0147 m,Rs = 0.085m, andR, = 0.11 m, respectively, where each radius is
measured from the symmetry axis. The gragtyoints downwards as shown by arrow.

bottom shear cell is used, which is typically a Couette céha split at the bottomd1, 52—
54, 67], while a linear split-bottom cell is also used in some stsdB8, 39, 160. In this
thesis, we use a cylindrical split-bottom shear cell, whgfound to give good agreement
with experiments104).

Fig. 2.2is a sketch of the cylindrical split-bottom shear cell usethis thesis. In this figure,
the inner, split, and outer radii are given By Rs, andR,, respectively, where the concentric
cylinders rotate relative to each other around the symneetiy (the dot-dashed line). The
ring shaped split at the bottom separates the moving and ptats of the system, where a
part of the bottom and the outer cylinder rotate at the sanee ra

2.1.1.2 Control Parameters

The split-bottom geometry is characterized by three patarsethe split radiu®s, height

of the granular layeH, and the rate of rotatio@ (of the outer cylinder and the base). The
driving rateQ is generally fixed in initial series of experiments, and tektive motion of
the split with respect to the cylinder drives the flow. Theckiniess of granular layeH, is
scanned in a series of experiments. Note that, the radidsedduter cylinder appears to be
immaterial, if it is sufficiently large$2, 54]. The interesting observation in the experiment
is a universal shear zone, initiated at the bottom of thearellbecoming wider and moving
inwards while propagating upwards in the system, as showigir2.3.

The ratio of averaged azimuthal velocity of the gramg/r and external rate of rotation
Q is denoted byw; w = 0 signifies stationary grains, white = 1 corresponds to particles



2.1. Sow FLows 11

moving with the driving. The grains moving wiits between the two extremes correspond
the flowing part, i.e. the shear band. Blue colored particidgg. 2.3 are practically static,
red colored particles co-move with outer cylinder, whilegm colored particles denote the
shear band.

2.1.1.3 Shear deformation

2.1.1.3.1 Shallow flows— We begin with the discussion of the flow profile observed at
the free surface. As shown in Fig.3, from the top view, it is evident that the shear band
moves inwards with increasing filling height, and it alsodmaes wider without any upper
bound [LO4.

Figure 2.3: Snapshots from simulations with differentrfijiheights seen from the top and
from the front, and the number of particles being (L&ft}= 16467, (Middle)N = 34518,
and (Right)N = 60977. The colors blue, green, orange and red denote gartiéthrdg <
0.5mm, rdg < 2mm, rdp < 4mm, andrdg > 4mm, i.e. the displacement in tangential
direction per second, respectively. The filling heightsiese simulations até = 0.018 m,
0.037m, and @61 m (from left to right) Figure reprinted with permissiani Ref. [L04].

After proper rescaling, all bulk profiles collapse on a uréatcurve which can be extremely
well fitted by

w(r) = Yol :A<1+erf<r\_NRc>), 2.1)

rQ,

where erf denotes the error functions the radial coordinatdi; the center position of the
shear band (maxima of velocity gradient), avdthe width of the shear band. Accurate
measurements of the tails of velocity rule out exponentiéd t rather suggesting, that the
strain rate is Gaussian—like, and the shear bands are cmiypdetermined by their centers
R: and widthW [52]. Particle shape does not much influence the functional fofrhe
velocity profiles, which contrasts the particle shape ddpane found for wall-localized
shear bands in Couette cellZ4.
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The center of the shear band is found to be independent ofdterial used$2]. Therefore,
the relevant length scales for the position of shear banBgaedH. The fits to the velocity
profile from simulations confirm this finding, and a simpleat&n

Rs—Re O H%/? (2.2)

very well describes the behavior as shown in Rig.
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Figure 2.4: (Left) distance of the top-layer shearbanderdndm the slit, both plotted against
thefilling heightH. The open symbols are simulation results, the solid syns$imulation
with slower rotationf, = 0.005 s %, and the line is a fit with constang = 30. (Right) width
of the shearband from the same simulations; the line is atfitay = 2/5. Figure reprinted
with permission from Ref.]04].

The width of the shear barwl depends on the grain properties, andlimostindependent of
Rs [52). Grain shape, size, and contact properties affect thehwgitherical particles display
wider shear bands compared to irregular ones of the same Biaagh particles display
narrower shear bands compared to smooth partidle§.[ Experimental data show&/ ~
(H)?/3, while simulations show that the width of the shear bandeiases almost linearly
with the filling heightW ~ H, as shown in Fig2.4.

Experiments using colored bead?] and MRI [31, 165, and numerical simulations3p,
103-105 160 have shown that the flow profiles at fixed deptihelow the top surfacel
can be expressed using Efj1 This allows to characterizey(r) at a givenh, the fits to
simulations results help us to understand position andhwedithe shear band in the bulk.
Very much like in the experiments, the behavior of the shaadlwithin the bulk, see Figure
2.5, deviates qualitatively from the behavior seen from the toptead of a slow motion of
the shear band center inwards, the shear band rapidly mowesds at small heights,
and reaches a saturation distance with small change closke tsurface. Again, a slower
rotation does not affect the center but reduces the widthhérbulk, position of the shear
band is very well predicted using variational principle bpdér et. al. 211]. Numerical
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study by Ries et. al.1[6( showed thaW(h) can be described by the functional form as

W(h) =W(H)\/1— (1—h/H)2 (2.3)
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Figure 2.5: (Left) distance of the bulk shearband centanftioe slit. (Right) width of the
shearband, both plotted against the heighThe open symbols are simulation results ob-
tained withf, = 0.01 571, the solid symbols are obtained with slower rotatfga- 0.005s ™.
Squares, circles and triangles correspond to the fillinghteH = 0.037 m, 0049 m, and
0.061 m, respectively. The dashed curves are identical teetptisted in Fig.2.4. Figure
reprinted with permission from Ref14.

This thesis mainly focuses on moderately shallow flows insghié-bottom cell, below we
give a brief overview on deep flows.

2.1.1.3.2 Deep flows When the ratiodH /Rs is small, the core material rests and moves
together with the center disc. With increaseHifiR;, the shear band grows wider and moves
inside. The most striking feature is that the core now preeesvith a constant rate, hence
material in the central part of the surface no longer resthemlisc. Precession is not simply
the consequence of the overlap of two opposing shear zones, lsefore being eroded by
shear, the inner core rotates as a solid blob for an appiediafe [53]. For various split
radii, the onset of precession grows wiRh while it is mainly controlled by the ratibl /Rs.

For H/Rs of order one, the whole surface rotates rigidly with the tiagadrum, and shear
is concentrated in the bulk. While, fét /Rs < 0.65, hardly any precession is observed
[53. WhenH /Rsis sufficiently large, the shear band is entirely confinedoliulk, and a
dome-like structure is formed above the spBL[53, 165 211].
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2.1.1.4 Dilatancy

The sheared granular material is known to dildts7. Sakaie et al. 169 presented results

on evolution of the local packing fraction under shear inlé-fottom ring shear cell using

Magnetic Resonance Imaging. They observed that the relatimnge in the local density
in the flowing zone is rather strong. After long times, a lazgee, with almost constant,
low packing fraction forms, which coincides with the sheant. The local packing fraction
remains constant, and independent of local strain ratgesigthat the density of the flowing
granular material depends total strain, similar to what was observed by KabRq].

2.1.1.5 Segregation

In this section, segregation studies concerning splitenotring shear cell are briefly re-
viewed. For more details, interested readers are suggestedd L4(. For dense sheared
granular mixtures, there are three possible driving meishasito drive segregation: gravity,
porosity, and velocity gradients. Hill et abT] studied segregation of mixture of particles in
a split-bottom cell. They find that gravity alone does noveisegregation associated with
particle size without a sufficiently large porosity or patgpgradient. A velocity gradient,
however, appears to be capable of driving segregation iassdavith both particle size and
material density. In a later stud%]], they found that the direction of shear-driven segre-
gation depends on the nature of the flow itself, collisiondriztional. Further studies by
Harrington et al. §0] found suppression and emergence of segregation, whichtvésited
to the presence of a critical shear amplitude that bringsitedegregation.

2.1.1.6 Reflection and exclusion of shear bands

Unger et al. 09 studied refraction of shear bands in the layered granuktenals. They
found a new effect for shear bands that are created in laygesdilar materials. When two
materials with different frictional properties are laygian top of each other, shear bands are
refracted at the interfac09. The phenomenon is in complete analogy with the refraction
of light. The angle of refraction follows Snell’'s law fromgetric optics. Tamas et all |
found that under natural pressure conditions i.e., in tlesgmce of gravity, the shear band
can also be deflected by the interface, so that the deformatithe high friction material is
avoided. Tamas et al2()] found that in a layered system with different effectivections,
the presence of material interface leads to a special tygeot# internal reflection ” of
the shear band. However, unlike in optics the zone reflecicmurs always at the critical
angle of refraction. In case of shear bands this angle isatkfay the ratio of the effective
frictions of the two material layers. This special reflentalso involves a part of the shear
band trapped at the interface of the layers.
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2.2 Fast Flows

Description of fast dry granular flows, for example steadgngitar flow down an incline,
has made much progress recently. A comprehensive revienRee b5|; a brief review
of the main results is presented here. Simple, steady staddie properties explains the
bulk behavior. On a microscopic level, collisions are miketiveen binary collision (as in
granular gas) and enduring frictional contacts.

2.2.0.6.1 The inertial number — For the case of infinitely rigid particles (such as glass
beads), a simple dimensionless parameter called thedheutinber can be constructed using
variables which play a role in the flow. The local presspirehe local strain ratg, the mean
particle diameted and the local densitp can be combined to give:

= ——. (2.4)

This number signifies the local ‘fastness’ of the flow. An eleginterpretation is presented
in [119, where it is described as a ratio of two time scales in thegla flows. Yy is the
timescale of (shear) strain induced rearrangements atfeairt this flow, andd/ \/g is the

time a particle takes to move over a distance of odjsubjected to the forced?. The iner-
tial number is also equivalent to the square root of the Savagnber or Coulomb number
[167. It is important to mention that this dimensionless numdEsumes that particles are
hard, otherwise the particle elasticity becomes relev2gt|[39.

2.2.0.6.2 Friction law For rigid grains, the shear stress is proportional to thesunee,
with effective friction coefficient being a function of p(1) is an empirical function, and
involves the material parameters, given as:

H2 — H1
lo/I +1

whereys is the friction coefficient in the limit of very small straimte, 1, is the saturation
reached for high, andlg is the typical inertial number (reference scale). The sdiom of
friction coefficient for infinitely largd is supported by the experiments of steady granular
front down an inclined planel4g. This friction law successfully captures many aspects of
rapid granular flowsg5, 80, 119.

p(l) = ps+ (2.5)

2.2.0.6.3 Dilatancy law The local volume fraction in a flowing zone is found to deceeas
with increasing as

@(1) = @nax+ (@nin — Pnax)l, (2.6)
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where typical values ofinax are close to RCP anghn around 07 in two dimensions35|,
and 055 in three dimension$p].

Here, we recall few geometries, which were briefly discugeedlow flows in the context
of fast flows.

Flow of grains on rough inclined plane has been investighte#tl experimentally and nu-
merically [119. Many of the observations can be captured by the local dggol Using
force balance across a flowing layer very well predicts Bédjnelocity profile b5]. In
case of plane shear, the stress distribution is homogemethus flowing layer, and a linear
velocity profile can be predicted. However for Couette fldwe stress distribution inside
the lowing zone is similar to that of inclined plane. But theocity profiles are found to
be linear, instead of Bagnold type. Jop performed simutatiaf flows in split-bottom ring
shear cell using the inertial number theorg] The center of the shear band in the bulk, and
smooth transition to precession, and the dome flow were peghturhe width of the shear
band was found to scale with the rate of rotation, and for dlows the shear band width
was found to be zero.

The inability of local rheology to predict the width of theestr band for slow flows, and the
violation of velocity profile prediction for Couette flow emarages for a non-local descrip-
tion [120, 149 150. Recently non-local theory with a fluidity parameter hascassfully
predicted various flow flow profile8p]. A size-dependent non-local model introduced re-
cently can predict finite width of shear barG#.

2.3 Methodology

2.3.1 Discrete Element Method (DEM)

The discrete element method, which allows to simulate latgabers of interacting parti-
cles, is the numerical method used in this thesis. We brieftyrsarize the principle of the
method in this section.

A possibility to obtain information about the behavior odgular media is to perform careful
experiments. An alternative are simulations with molecdimamics (MD) or the discrete

element method (DEM)I[4, 34, 66, 92, 196, 213 217]. Note that both methods are identical
in spirit, however, different names are used by differepugrof researchers.

The elementary units of bulk granular material are mesdsgugsticles which deform under
external applied stress/force. Since the realistic madelf the deformations of the particles
is much too complicated, we relate the interaction forcehtodverlapd of two particles.
Note that the evaluation of the inter-particle forces basethe overlap may not be sufficient
to account for the inhomogeneous stress distribution éié particles. Consequently, the
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results of DEM simulations are of the same quality as the Enagsumptions about the
force-overlap relationl, 34, 100, 103. For details about DEM simulations readers are
referred to 102. A brief review of various contact models for normal forsepresented in
Chapter 2, hence is not presented here. Readers interastedtact models for tangential
forces should readlp2.

2.3.2 Micro—macro transition

For scientific research and industrial applications, thpnthallenge is to obtain continuum
constitutive relations from experiments and numericdbtds other words, the main goal is
to find a connection between the microscopic propertiestadiacroscopic bulk behavior.
Bridging the gap between the two involves the so-called oamacro transition1, 102
104 217.

2.3.2.0.4 (global-local averaging Extensive “microscopic” simulations of many homo-
geneous small samples, i.e., so-called representativeneklements (RVE), have to be
used to derive the macroscopic constitutive relations ee¢al describe the material within
the framework of a continuum theor217. However, it is important to realize that the
granular flows are heterogeneous in nature, hence the assnrophomogeneous samples
inside a RVE might be misleading. An alternative is to do theal averaging at the level
of few grain sizes or even smaller. The approach used in thiyds to simulate an in-
homogeneous geometry. In such a geometry, granular pachiitlg contrasting properties
and behavior co-exist, both high density static areas datedidynamic, flowing zones are
found in the same system. Using adequate local averagingquévalent volumes — inside
which all particles are assumed to behave similarly, looaktitutive relations within a cer-
tain parameter range can be obtained using a single nurhexjgariment. This method has
been systematically applied in two-dimensional Couettg shear cellsq1, 92|, and three
dimensional split-bottom ring shear cels0f3 105. Especially in the three dimensional
split-bottom ring shear cell, we take the advantage of ¢yawithe system and critical state
yield stress at various various pressure levels can ber@utdiiom a single simulation.

2.3.2.1 Averaging and micro-macro procedure

Translational invariance is assumed in the tangeatialirection, the averaging is performed
over toroidal volumes, over many snapshots in time. leatbrfgeld Q(r,z) as function of
the radial and vertical positions. The averaging procetiasebeen explained in detail for
2D systems in91, 92], and three dimensional systems #0B-105, and will not discussed
here. The simulation runs for more than 50s. For the spattiane averaging, only large
times are taken into account, disregarding the transidmaber at the onset of shear.
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2.3.2.1.1 Stress Tensor From the simulations, one can calculate the stress tensor as
1 P(\: P\ (y: P cf.C
0ij :V[%m (ViP)(v;P) — gfi ;] 2.7)
pe ce

with p particles, massP, velocity vP, force f¢ and branch vector®. The velocityv® is
relative to the mean streaming velocity inside the ave@golumeV. The first term is the
sum of kinetic energy fluctuations, and the second involliesdyadic product of contact-
force with the contact-branch vector.

2.3.2.1.2 Fabric Tensor The quantity which describes the local network of contats i
granular material is the fabric tensddl, 137, defined as

1
Fi== S VPSS ntnc (2.8)
=y p; cgp i Nj

whereVP is the particle volume which lies inside the averaging vadiymnC is the normal
unit branch-vector pointing from center of partigi¢o contactc.

For both stress and fabric tensors, we can calculate thengiiees and define the volu-
metric partTy, = (T, + T+ T3) /3 (pressurep andF, for stress and fabric respectively) and
deviatoric component &&ey = v/ ((T1 — T2)2 + (T2 — T3)2 + (T3 — T1)2) /6 (Tgev andFgey for
stress and fabric respectively).

The pressure is the isotropic stress, wibig, quantifies the normal stress difference. The
volumetric fabrick, represents the contact number density, while the deviatabiric Fyey
quantifies anisotropy of the contact network.

In rest of the thesis, local averaging is applied to the stestdte data from simulations
with different particle and system properties to studyrtledfiect on the macroscopic bulk
behavior.



CHAPTER 3

contact model for sticking of
adhesive mesoscopic particles”

Abstract

The interaction between realistic visco-elasto-plastid @adhesive meso-particles is
the subject of this study. The goal is to define a simple, feeaifid useful interaction
model that allows to describe the multi-contact bulk bebaof assemblies of non-
homogeneous/non-spherical particles, e.g. with intestalctures of the scale of
their contact deformation. We attempt to categorize prev@pproaches and propose
a simplified mesoscale normal contact model that contaiestsential ingredients
to describe an ensemble of particles, while it is not aimethétude all details of
every single contact, i.e. the mechanics of constituemehtary, primary particles
is not explicitly taken into account.

The model combines short-ranged, non-contact adhesigeaictions with an elabo-
rate, piece-wise linear visco-elasto-plastic adhesivetact law. Using energy con-
servation arguments, the binary collisions is studied an@aalytical expression for
the coefficient of restitution in terms of impact velocitgésived, for the special case
of very small non-contact force. The assemblies (partiotesieso-particles) stick
to each other at very low impact velocity, while they reboless dissipatively with

increasing velocity, in agreement with previous findingsdlasto-plastic spherical

particles. For larger impact velocities we observe a secsiitking regime. The first

*, Based on A. Singh, V. Magnanimo, and S. Luding. Contact ehddr sticking of adhesive mesoscopic
particles.Powder TechnologyJnder Review, 2013
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sticking is attributed to dominating non-contact adhesorees, while the high veloc-
ity sticking is due to a balance between the non-linearlygasing history dependent
ahdesion and plastic dissipation. The model allows for f, gtiastic core material,
which produces a new rebound regime at even higher velscitie

The relevance of the model for various types of bulk mateisatritically discussed with re-
spect to features as: non-linear pressure dependent hiffikests, limit elasticity vs plasticity
or non-perfect detachment under slow tension.
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Nomenclature

Amin
&
Whiss
n
B
X
fa
Oa
kca

3.1

mass oft" particle.

Radius ofi" particle.

Reduced mass of two particles.

Contact overlap between particles.

Spring stiffness.

Relative velocity before collision.

Relative velocity after collision.

Relative velocity before collision at infinite separation
Relative velocity after collision at infinite separation.
Normal component of relative velocity.

Coefficient of restitution.

Pull-in coefficient of restitution.

Normal coefficient of restitution.

Pull-off coefficient of restitution.

Slope of loading plastic branch.

Slope of unloading and re-loading elastic branch.

Slope of unloading and re-loading limit elastic branch.
Slope of irreversible, tensile adhesive branch.

Relative velocity before collision for which the limit casf overlap is reached.
Dimensionless plasticity depth.

Maximum overlap between particles for a collision.
Maximum overlap between particles for the limit case.
Force free overlape plastic contact deformation.

Overlap between particles at the maximum negative aiveafirce.
Kinetic Energy free overlap between particles.

Amount of energy dissipated during collision.
Dimensionless plasticity of the contact.

Adhesivity: dimensionless adhesive strength of the azinta
Scaled initial velocity relative top.

Non-contact adhesive force at zero overlap.

Non-contact separation between particles at which aiveaforce becomes active.
Strength of non-contact adhesive force.

Introduction

Flows of granular materials are ubiquitous in industry aatlire. For this reason, the past
decade has witnessed a strong interest in better undeirsgeofdheir behavior. Especially,
the impact of fine particles with particles/surfaces is alamental problem. The interaction
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force between two particles is a combination of elastotga®formation, viscous dissipa-
tion, and adhesion — due to both contact and long-range aotact forces. Pair interactions
that can be used in bulk simulations with many contacts peicmare the focus, and we
use the singular special case of pair interaction to unaedshem.

Different regimes are observed for two colliding particlEsr example a particle can either
stick to another particle/surface or it rebounds, dependpon the relative strength of adhe-
sion and impact velocity, size and material parameterss ptoblem needs to be studied in
detail, as it forms the base for understanding more comptexy-particle flows in realistic
systems, related to e.g. astrophysics (dust agglomer&aiarn’s rings, planet formation) or
industrial processes (handling of fine powders, granuiafiting and discharging of silos).
Particularly interesting is the interaction mechanismddhesive materials such as asphalt,
ice particles or clusters/agglomerates of fine powdergifaftade of even smaller primary
particles). Some materials can be physically visualizelteatng a plastic outer shell with a
rather stiff, elastic inner core. Moreover, the analysis lsa applied to particle-surface col-
lisions in kinetic spraying, in which the solid micro-sizpdwder is accelerated towards a
substrate. In cold spray, bonding occurs when impact visdsof particles exceed a critical
value, that depends on various material paramefiefg [L91, 234 but for even larger ve-
locities particles reboun®B0, 231]. Due to the inhomogeneity of most realistic materials,
their non-sphericity, and their surface irregularity, geal is not to include all the possible
details — but rather to catch the essential phenomena angfiegts, finding a compromise
between simplicity and realistic contact mechanics.

3.1.1 Contact Models Review

Computer simulations have turned out to be a powerful toahvestigate the physics of
particulate systems, especially valuable as there is nerghy accepted theory of granu-
lar flows so far, and experimental difficulties are consibdera A very popular simulation
scheme is an adaptation of the classical Molecular Dynata@t®ique called Discrete El-
ement Method (DEM) (for details see Ref&4[ 34, 66, 92, 101, 102 217). It consists of
integrating Newton’s equations of motion for a system oft'saleformable grains, starting
from a given initial configuration. DEM can be successfulipked to adhesive particles, if
a proper force-overlap model (contact model) is given.

Brilliantov et al. 23] investigated the collision of adhesive viscoelastic spheand pre-
sented a general analytical expression for their colliglgnamics, but we rather turn to
plastic contact deformations in the following. The JKR miofd&] is a widely accepted
adhesion model for elastic spheres and gives an expressitinefnormal force. Later, Der-
jaguin et al. 0] considered that the attractive forces act only just oet$iite contact zone,
where surface separation is small. One interesting modeirfjoadhesive particles was pro-
posed by Molerusl[21, 127, which explained consolidation and non-rapid flow of adies
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particles in terms of adhesion forces at particle contadisornton and Yin 200 com-
pared the results of elastic spheres with and without adhesid Thornton, later on in Ref.
[199, extended this work to adhesive elasto-plastic sphereslefds’'s model was further
developed by Tomas, who introduced a contact mo2i@B{205 that couples elasto-plastic
contact behavior with non-linear adhesion and hysteresigh involves dissipation and a
history (compression) dependent adhesive force. The comadel subsequently proposed
by Luding [102 109 111] works in the same spirit as the one of Tom283, only reducing
complexity by using piece-wise linear branches in an otlsstill highly non-linear con-
tact model. In 102, the short ranged non-contact force beyond contact waspettified as
in the present study. Complex details like a possible noeali Hertzian law for small defor-
mation, and non-linear load-unload hysteresis are ovapigfied in the model as compared
to Tomas R03. This is partly due to the lack of experimental referenctada theories,
but also to keep the model as simple as possible. The modelinerthe basic mechanisms,
elasticity, plasticity and adhesion as relevant for fing, gowders and shell-core materi-
als. A possible connection between the microscopic commetel and the macroscopic,
continuum description for adhesive particles was receniyposed by Luding and Alonso-
Marroquin [LO7. Walton et al. R20 225 proposed a contact model which works in the
same spirit as that of Luding.p2 and Tomas 203, but separates the rate of pull-off force
from the slope of tensile attractive force. Jiang et &5 experimentally investigated the
force-displacement behavior of idealized bonded granwbigh was later implemented in
DEM in [76] to study the mechanical behavior of loose cemented gramadderial. Kemp-
ton et al. B4] proposed a meso-scale contact model combining lineaehstit, simplified
JKR and linear bonding force models, to simulate agglonesrat sub-particles. Recently a
contact modelis proposed by Thakur et 499 , which works in the same spirit as Luding’s
model, but treats loading and un/re-loading behaviorslim@aarly.

When two patrticles collide, the behavior is intermediateMeen the extremes of perfectly
elastic and fully inelastic, possibly fragmenting cobliss. The elasticity of the collision
can be best described by the coefficient of restitution, tviécthe ratio of magnitude of
post-collision and pre-collision normal relative velée# of the particles. It quantifies the
amount of energy not dissipated during the collision. Ferdase of plastic and viscoelastic
collisions, it was suggested that dissipation should bedéent on impact velocity/[7, 89,
223, as can be realized by viscoelastic forcg$, [89, 99, 10( and follows from plastic
deformations too437. An early experimental study on micrometer adhesive fghgne
latex spheres was done by DahneRé][ He observed sticking of adhesive particles for
low velocities, and an increasing coefficient of restitatior velocity higher than a critical
threshold. Wall et al.719, confirmed these findings for highly mono-disperse ammaniu
particles. Thornton et al1P9 and Brilliantov et al. 3] presented adhesive visco-elasto-
plastic contact models in agreement with these experimafftek by Sorace et al.18g
further confirms the sticking at low velocities for partidizes of the order of a few mm.
Jasewutius et al. F3, 74] have recently presented the rebound behavior of ultrafiieas
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particles using the contact model from Ref203-204.

3.1.2 Model classification

Since our focus is on dry particles, we do not review the digevork involving liquid B5] or
strong solid bridgesZ1] here. Even though oblique collisions between two parielee of
practical relevance and have been studied in detail by Tooet al. L9, here we focus on
central normal collisions without loss of generality. Hipave also disregard many details
of non-contact forces, as e.g. due to van der Waals forceshdosake of brevity, but will
propose a simple mesoscale non-contact force model irosexf.3

Based on our review of adhesive, elasto-visco-plasticaminnodels, we propose here a
(partial) classification, by dividing them into three greufgl) Academic, (2) Mesoscopic,
and (3) Realistic, detailed contact models. Here we revidhesive elastic, and elasto-
plastic contact models only. A detailed review concernimg éffects of various forces on
adhesion of fine particles is nicely reviewed 22[].

1. Academic contact modelsallow for easy analytical solution, as for example the lin-
ear spring-dashpot model(Q, or piece-wise linear models with constant unloading
stiffness (see e.g. Walton and Bra@2f] (constant coefficient of restitution mode)),
which feature a constant coefficient of restitution, indegent of impact velocity.
Also the Hertzian visco-elastic models, belong to thisslasen though they provide
a velocity dependent coefficient of restitution, for a sumyrse L0J. However, no
academic model describes particle deformation that woeldrhctically relevant, as
their range of strict validity is extremely limited.

2. Mesoscopic contact modelare a compromise, (i) still rather easy to implement, (ii)
aimed for fast ensemble/bulk-simulations with many p&ti@and various materials,
but (iii) not matching all the minute contact details of gveingle contact, they are
often piece-wise linear, e.g., with a variable unloadirffygtss or with an extended ad-
hesive force (Walton and Brau@34] (variable coefficient of restitution mode), Lud-
ing [107, Walton [225, Thakur et al. 195).

3. Realistic, full-detail contact modelshave (i) the most realistic, but often rather com-
plicated formulation, (ii) can reproduce with similar piston the pair interaction and
the bulk behavior, but (iii) are valid only for the limitedads of materials they are par-
ticularly designed for, since they do include all the mindeails of these interactions.
As a few examples, there are:

(a) visco-elastic modelsWalton [223, Brilliantov [23, 24], Haiat [59];
(b) adhesive elastic modelsJKR [78], DMT [40], Thornton and Yin 200;

(c) adhesive elasto-plastic modeldviolerus[L21], Thornton and Ning199, Tomas
[203-2086.
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Since our main goal is to define and apply contact models talaimthe bulk behavior of
assemblies of many fine particles (for which no valid reiglistodel is available), we focus
on the second class, mesoscopic models.

3.1.3 Focus and Overview of this study

In particular, we study the dependence of the coefficiengstitution for two meso-particles
on impact velocity and contact/material parameters, foidewange of impact velocities,
using a generalized version of the contact model by Ludi0g][ extended by a non-contact
force term. We observe sticking of particles at low velqgaitiiich is consistent with previous
theoretical and experimental workkg8 199 219. Pasha et al.143 recently also repro-
duced the low velocity sticking using an extension of a @m#impler model109. Above a
certain small velocity, dissipation is not strong enougtissipate all relative kinetic energy
and the coefficient of restitution increases. We want to tstdad the full regime of relative
velocities, and thus focus also on the less explored intéiateand high velocity regimes,
as easily accessible in numerical simulations. In the mggliate regime, we observe a de-
crease of the coefficient of restitution, as observed preskdor idealized particles, see e.g.
Refs. 3, 199, but with different functional behavior as predicted byrsorealistic mod-
els, a property that can be tuned by simple modifications eontlesoscopic model. With
further increase in impact velocity, we find a second intémgssticking regime due to the
increasing adhesive dissipation with respect to plassisigation. Finally, since the physical
systems under consideration also are viscous in naturepmaude with some simulations
with added viscous damping.

An exemplary application of our model that leads to the ueetgd high velocity sticking
and rebound regimes is, among others, the study of coatowepses in cold sprays, where
researchers are interested in the effect of the impact igloe the deposition efficiency of
the powder on a substrate. In this process, bonding/cdagipgens when the impact velocity
of the particles exceeds a critical velocity, with valuedtie order 18m/s. Interestingly,
when the velocity is further increased the particles do notto the substrate anymore, with
a decrease of the deposition efficiency (inverse of coeffficgérestitution) 30. Schmidt et
al. [17Q have used numerical simulations to explore the effect abus material properties
on the critical velocity, while Zhou et al2B]] studied the effect of impact velocity and
material properties on the coating process. The data shaiptioperties of both particle
and substrate influence the rebound, the details of whichegoridl the scope of this study.
Using our model we can explore the dependence of the depositiiciency on the impact
velocity, helping the interaction between different conmities.

In section3.2, we introduce the DEM simulation method and the basic noooatact mod-
els, which are further elaborated on in the following set8a3, where the coefficient of
restitution is computed. Dimensionless contact pararseter proposed in secti@¥.1, the
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dependence on contact adhesion is described in se&#o? the effect of viscosity in sec-
tion 3.A.1, and some asymptotic solutions are given in se@ién2. The study is concluded
in section3.5.

3.2 Discrete Element Method

The elementary units of granular materials are mesoscaping which deform under
stress. Since the realistic and detailed modeling of redighes in contact is too compli-
cated, it is necessary to relate the interaction force totteglapd between two particles.
Note that the evaluation of the inter-particle forces basedhe overlap may not be suffi-
cient to account for the inhomogeneous stress distribtitiside the particles and possible
multi-contact effects{7]. This price has to be paid in order to simulate larger sampfe
particles with a minimal complexity and still taking var®physical contact properties like
non-linear contact elasticity, plastic deformation orda#ependent adhesion into account.

3.2.1 Equations of Motion

If all forces acting on a spherical particfe either from other particles, from boundaries
or externally, are known - let their vector sum bg, then the problem is reduced to the
integration of Newton’s equations of motion for the tratisiaal degrees of freedom (the
rotational degrees are not considered here since we foausraral forces) for each particle:

2
mp@rp: fp+mpg (31)

where,my is the mass of particle, rp its position,f, =3¢ f% is the total force due to all
contacts, andg is the acceleration due to volume forces like gravity.

With tools from numerical integration, solving the equas®f motion, as nicely described
in textbooks as], 147, is a straightforward exercise. The typically short-radinteractions
in granular media allow for further optimization by usingked-cell (LC) or alternative
methods in order to make the neighborhood search more effiditsowever, this is not of
concern in this study, since only normal pair collisions@asidered.

3.2.2 Normal Contact Force Laws

Two spherical particles and j, with radii & anda;j, ri andrj being the position vectors
respectively, interact if they are in contact so that theertap,
0= (a+aj)—(ri—rj)-n (3.2)

is positive,d > 0, with the unit vectom = nj; = (r; —rj)/|r;i —rj| pointing fromj to i.
The force on particleé, from particle j, at contactc, can be decomposed into a normal



3.2. DISCRETEELEMENT METHOD 27

. n _ fhys
fn — flm f f

(@) (b)

Figure 3.1: Schematic plots of (a) the linear normal contaatlel for a perfectly elastic
collision, and (b) the force-overlap relation for an elagtastic adhesive collision

and a tangential part a := f¢ = f"n+ f't, wheren-t = 0, n andt being normal and
tangential parts respectively. In this chapter, we focu$rictionless particles, that is only
normal forces will be considered, for tangential forces wrdues, see e.g. Refl(Z and
references therein.

In the following, we discuss various normal contact forcedels, as shown schematically
in Fig. 3.1 We start with the linear contact model (FBy1(a)) for non-adhesive particles,
before we introduce a more complex contact model that is eblgescribe the realistic
interaction between adhesive, inhomogeneous, slighttyspherical particles (Fig.1(b)).

3.2.2.1 Linear Normal Contact Model

Modelling a force that leads to an inelastic collision regsiat least two ingredients: repul-
sion and some sort of dissipation. The simplest normal flawewith the desired properties
is the damped harmonic oscillator

"= K&+ yov" , (3.3)

with spring stiffnes, viscous dampingp, and normal relative velocity" = —V; - fi =
—(Vi—Vj)-i= 5. This model (also called linear spring dashpot (LSD) motiel$ the
advantage that its analytical solution (with initial cotalis 5(0) = 0 andS(O) =vg) allows
the calculations of important quantities very easli9(j. For the non-viscous case, the linear
normal contact model is given schematically in RBgla

The typical response time (contact duration) and the eiggoency of the contact are related
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as

te=-— and w=/(k/m)-ng (3.4)

with the rescaled damping coefficiemi= yo/(2m), and the reduced masg = mym; /(m +
m;). From the solution of the equation of a half-period of theiléson, one also obtains
the coefficient of restitution

er>® = vt /vi = exp(— o/ @) = exp(—note) (3.5)

which quantifies the ratio of normal relative velocitieeafys) and beforey) the collision.
Note that in this moded, is independent of;. For a more detailed review on this and other,
more realistic, non-linear contact models, sk@J 107 and references therein.

The contact duration in Eq3(4) is also of practical and technical importance, since the
integration of the equations of motion is stable only if theegration time-stept is much
smaller thart.. Note thatt; depends on the magnitude of dissipation: In the extreme case
of an over-damped spring (high dissipatioz)can become very large (which renders the
contact behavior artificiad9]). Therefore, the use of neither too weak nor too strongotisc
dissipation is recommended.

3.2.2.2 Adhesive Elasto-Plastic Contacts

Here we apply a variation to previously proposed piece-\igar hysteretic modell00-
102 204 224 as an alternative to non-linear spring-dashpot modelsarermomplex hys-
teretic models199 203-205 218. It reflects permanent plastic deformation, which might
take place at the contact, and stronger attractive (adiekivces, both depending non-
linearly on the maximal compression force.

In Fig. 3.2 the normal force at contact is plotted against the ove¥laptween two particles.
The force law can be written as

kid if k(3 — &) > kid
fvs— k(8- &) if kb > ka(8— &) > —ked (3.6)
ke if —ked > ka(8 — &)

with ki < ko < kp, respectively the initial loading stiffness, the un-/oadling stiffness and
the elastic limit stiffness. The latter defines the limitderbranctky(é — &Y), as will be
motivated below in more detail, arkd is interpolating betweeky andkp, see Eq.%.9). For
k. = 0, the above contact model reduces to that proposed by WattdBraun 224, which
leads to a variable coefficient of restitution

eh® =vii/k (3.7)
as proposed by Walton and Brat?H].
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Figure 3.2: Schematic graph of the piece-wise linear, gtte and adhesive force-
displacement model in normal direction.

During the initial loading the force increases linearly twidverlapd alongkz, until the
maximum overlapmax = Viy/m /K (for binary collisions) is reached, which is a history
parameter for each contact. During unloading the forceedsas along,, see Eq. §.9),
from its maximum valud; dmax at dmax down to zero at overlap

& = (1—k1/k2)Omax , (3.8)

where & resembles th@ermanent plastic contact deformatioRReloading at any instant
leads to an increase of the force along the (elastic) braitbhsiopek,, until the maximum
overlapdmax (Which was stored in memory) is reached; for still incregsaverlapd, the
force again increases with sloggand the history parametéf,ax has to be updated.

Unloading belowdy leads to a negativattractive (adhesive) force, which follows the line
with slopeky, until the extreme adhesive foree&k:dmin is reached. The corresponding over-
lap is

(ko —kq)

Omin = manax (3-9)

Further unloading follows the irreversible tensile branstih slope—k., and the attractive
force fVs = —k.d.

The lines with slop&; and—k; define the range of possible force values and departure from
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these lines takes place in the case of unloading and rerigadispectively. Between these
two extremes, unloading and re-loading follow the line vétbpek,. A non-linear un-/re-
loading behavior would be more realistic, however, due tack bf detailed experimental
informations, the piece-wise linear model is used as a comjze; also it is easier to im-
plement. The elastik, branch becomes non-linear and ellipsoidal, when a modecateal
viscous damping force is active at the contact, as in the L8Deh

In order to account for realistic load-dependent contattabim®r, thek, value is chosen
dependent on the maximum overldpax, i.€. particles are more stiff for larger previous
deformationand the dissipation is dependent on deformation. The depeedofk, on
overlapdmax is chosen empirically as linear interpolation (in the sampietsas Walton and
Braun R24):

ke it G/ OB > 1
k2(Omax) = Ky + (kp - kl)(smax/érgax (3.10)
if Omax/ 5r$1ax <1

wherek, is the (maximal) elastic stiffness, and

kp 2aiap
kp —k T agt+a ’

5rgax = (3.11)

is the plastic flow limit overlap, witlg; the dimensionless plasticity depth, anda, being
the radii of the two particles. This can be further simplified

5P = grayy, (3.12)
whereéop represents the plastic contact deformation at the limitlapeanda;, = gf‘ﬁz is

the reduced radius. In the ran@gax < dhax the dependence &b can also be written as
follows:

(kp_kl) max
ko = kg + — P2 fmaX, 3.13
2 N o G

wheref™& = k; dnax, Which is same as equation 4 234 with S= —p—(:f(;nkl).

From energy balance, one can define the “plastic” limit vigyoc

Vp= v kl/m( 6r$1axv (3-14)

below which the contact behavior is elasto-plastic, andvabwhich the perfectly elastic
limit-branch is reached. Impact velocities larger thrigisan have consequences, as discussed
next.
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In summary, the adhesive, elasto-plastic, hysteretic aboontact model is defined by the
four parameterss, kp, ke and ¢ that, respectively, account for the initial plastic loaglin
stiffness, the maximal, plastic limit (elastic) stiffnesise adhesion strength, and the plastic
overlap-range of the model; it also involves an empiricadica for the non-linear, load-
dependent, intermediate elastic branch stiffikess

3.2.2.3 Motivation of the original contact model

To study a collision between two ideal, homogeneous sphenesshould refer to realistic,
full-detail contact models with a solid experimental anddtetical foundationq8, 199
204. These contact models feature a small elastic regime amgaiticles increasingly
deform plastically with increasing, not too large deforimat(overlap). During unloading,
their contacts end at finite overlap due to flattening. Otlimanbesides many smaller model
details there exist various such models. However, one hesrisider also the non-contact
forces that are often neglected for very large particleshboome dominant and hysteretic as
well as long-ranged for rather small spher284. A mesoscopic model that compromises
on the details of the contact model, but follows the flat contketachment philosophy was
recently proposed in Reflf3.

The mesoscopic contact model used here was originally gezpby Luding 102 and fol-
lows a different approach in two respects: (i) it introduadsnit to the plastic deformation
of the particles/material for various reasons as summaieéow in subsectioB.2.2.4 and
(i) the contacts are not idealized as perfectly flat, and tihoi not have to lose mechanical
contact immediately at un-loading, as will be detailed i $ibsectio.2.2.5

Note that a limit to the slopk, that resemblea different contact behavior at large defor-
mationshas various physical and numerical reasons:

(O) due to the wide probability distribution of forces in kyranular matter, only few con-
tacts should reach the limit, which should not effect muehabllective behavior;

(i) in many particle systems, for large deformations thetipleis cannot be assumed to be
spherical anymore, as they deform plastically or even cbradk;

(ii) from the macroscopic point of view, too large defornoais would lead to volume frac-
tions larger than unity, which for most materials (exceghy micro-porous, fractal ones)
would be unaccountable;

(iii) at small deformation, contacts are due to surface hmags realized by multiple surface
asperities and at large deformation, the single pair poamtact argument breaks down and
multiple contacts of a single particle can not be assumee iadependent anymore;

(iv) numerically in a bulk simulation the time step is choserch that it is well below the
minimal contact duration of all the contactskjfis not limited this minimum could become
very small so that the required time step would have to beaedibelow practical values,
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only because of some extreme contacts.

Following two subsections discuss the two major differsnoé the present piece-wise
linear model as compared to other existing models: (i) tlsti limit branch, and (ii)
the elastic re-loading or non-contact-loss, as well ag ttegisons, relevance and possible
changes/tuning — in cases needed.

3.2.2.4 Shortcomings, physical relevance and possible tag

In the context of collisions between perfect homogeneoastelplastic spheres, a purely
elastic threshold/limit and enduring elastic behavioerét sharply defined contact-loss are
indeed questionable, as the plastic deformation of thelesipgrticle cannot become re-

versible/elastic. Nevertheless, there are many matehialsupport the idea of a more elastic
behavior at very high impact velocity (or contact force).

In the following, we will list some of these cases and exteglgicomment on them.

3.2.2.4.1 Mesoscopic contact model applied to real matef&a First we want to recall
that the present model is mainly aimed to reproduce the bhehafvmulti-particle systems of
realistic fine and ultra-fine powders, which are typicallyrapherical and often mesoscopic
in size with internal micro-structure and micro-porositythe scale of typical contact defor-
mation. For example, think of clusters/agglomerates ahpri nano-particles that form fine
micron-sized secondary powder particles, or other fluffyanals. The primary particles
are possibly better described by other contact modelsnbotder to simulate a reasonable
number of secondary particles one cannot rely on this betiprapproach and better uses a
meso-contact model. During the bulk compression of suctstesy, the material deforms
plastically and its internal porosity reduces. Plasticodefation diminishes if the primary
particles are elastic/stiff and the material has becomsealerimost non-porous. Beyond this
point the system deformmoreelastically, i.e. the stiffness becomes high and the (@vec
able) deformations are much smaller than initially.

In their compression experiments of granular beds with omater sized granules of micro-
crystalline cellulose, Persson et dl4d found that a contact model where a limit on plastic
deformation is introduced can very well describe the bulkawgor. Experimentally they ob-
serve a strong elasto-plastic bulk-behavior for the as§eatliow compression strain/stress.
In this phase the height of the bed decreases, irreversidlgknost linearly with the applied
load, while the deviation from linearity strongly increaseeyond a certain strain/stress, with
a dramatic increase of the stiffness of the aggregate. T¢$smcate the change in the behav-
ior to the loss of porosity and the subsequent more elasticrbaponse to the particles that
are now closely in touch with each other. In this new, considly denser configurations,
not much more void reduction is allowed and thus the behaéts more elastic. While the
elastic limit in the contact model does not affect the dgsiamn of the bulk behavior in the
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first part, the threshold is found to play a key role in ordeefaroduce the material stiffening
(see Fig. 8 in Ref.144).

Note that in an assembly of particles, not all the contactsre@ach the limit branch and
deform elastically simultaneously. That is, even if few tamts are in the elastic limit, the
system will always retain some plasticity, herice assembly will never be fully elastic

3.2.2.4.2 Application to pair interactions: Interestingly, the contact model in Sec.
3.2.2.2is suitable to describe the collision between pairs of plati when special classes of
materials are considered, such that the behavior at higitiyeland thus large deformation
drastically changes.

(i) Core-shell materialsThe model is perfectly suited for plastic core-shell matsrisuch

as asphalt or ice particles, having a “soft” plastic outalisiind a rather stiff, elastic inner
core. For such materials the stiffness increases with the thue to an increasing contact
surface. For higher deformations, contact between ther iooees can take place, which
turns out to be almost elastic when compared to the behakibe @xternal shell. The model
was successfully applied to model asphalt, where the elaster core is surrounded by a
plastic oil or bitumen layerl37. Alternatively, the plastic shell can be seen as the range
of overlaps, where the surface roughness and inhomogendtd to a different contact
mechanics as for the more homogeneous inner core.

(ii) Cold spray.An other interesting system that can be effectively repeediby introducing

an elastic limit in the contact model is cold spray. Reseanctave experimentally and
numerically shown that spray-particles rebound from thestate at low velocity, while they
stick at intermediate impact energ¥23 170 191, 234. Wu et al. P30 experimentally
found that rebound re-appears with a further increase iocigl (Fig. 3 in Ref. R30Q).
Schmidt et al. 170 relate the decrease of the deposition efficiency (invefseefficient of
restitution) to a transition from a plastic impact to hydyndmic penetration (Fig. 16 in Ref.
[170Q). Recently Moridi et al. 123 numerically studied the sticking and rebound processes,
by using the adhesive elasto-plastic contact model of Lgifli®2], and their prediction of
the velocity dependent behavior is in good agreement witlegments.

(iii) Sintering. As an additional example, we want to recall that the presergoitontact
model has already been applied to the case of sintering, se¢1R1]. For large deforma-
tions, large stresses, or high temperatures, the materds © a fluid-like state rather than
being solid. Hence, the elasticity of the system (nearlpinpressible melt) determines its
limit stiffness, whileg; determines the maximal volume fraction that can be reached.

All the realistic situations described above clearly hina anodification in the contact phe-
nomenology that can not be described anymore by an elaastigpinodel beyond some
threshold in the overlap/force. The limit stiffnelss and the plastic layer depip in our

model allow the transition of the material to a new state. sIpition on the limit branch
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— which otherwise would be perfectly elastic — can be takea 0§ by a viscous damping
force (as the simplest option). Due to viscous damping, tileading and re-loading will
follow different paths, so that the collision will never berfectly elastic, which is in agree-
ment with the description in Jaséuis et al. F'3, 74] and will be shown below in subsection
3.AL

Finally, note that an elastic limit branch is surely not thémate solution, but a simple
first model attempt — possibly requiring material- and peoiladapted improvements in the
future.

3.2.2.4.3 Tuning of the contact model: The change in behavior at large contact defor-
mations is thus a feature of the contact model which allowsougescribe many special
types of materials. Nevertheless, if desired, without diragnthe model, the parameters
can be tuned in order to reproduce the behavior of materiaésevthe plasticity keeps on
increasing with deformation. The limit-branch where glasteformation ends is defined
by the dimensionless parameters plasticity degth,and (maximal) elastic stiffnesp.
Owing to the flexibility of the model, it can be tuned such ttie limit overlap is set to a
much higher value which is never reached by the contacts. nithee new value Oth/ is
chosen, a ne\kp/ can be calculated to describe the behavior at higher ovéatagetailed in
Appendix3.C). In this way the model with the extended exhibits elasto-plastic behavior
for a higher velocity/compression-force range, while kegphe physics of the system for
smaller overlap identical to the one with smajl

3.2.2.5 Irreversibility of the tensile branch

Finally we discuss a feature of the contact modellig, that postulates the irreversibil-
ity, i.e. partial elasticity, of the tensilk. branch, as discussed in S&2.2.2 While this

is unphysical in some situations, e.g. for homogeneousiplsisheres, we once again em-
phasize that we are interested in non-homogeneous, narisphmeso-particles, as e.g.
clusters/agglomerates of primary particles in contadhwiternal structures of the order of
typical contact deformation.

Only for ideal, perfect, elasto-plastic adhesive sphdrasdaxperience a large enough tensile
force, the particles detach with a (perfect) flattened serfdue to plasticity. In almost all
other cases, the shape of the detaching surfaces and theqsebs behavior depend on
the relative strength of plastic, attractive, and othertacnmechanisms. Moreover, other
details like particle rotation can also play a role. Few ep® include core-shell materials
[137, assemblies of micro-porous fine powdetgld] or atomic nanoparticleslp3. We
first briefly discuss the case of ideal elasto-plastic adigsarticles and later describe the
behavior of many particle systems, which is the main focuhisfwork.

For ideal homogeneous particles with radius of the orderithihmeters [199, a permanently
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flattened surface is created during deformation of the coflericrometers and the plastic
dissipation during mechanical contact is dominant witlpees to the van der Waals force.
When the particles detach during unloading, the force snigidizops to zero from the tensile
branch. During non-contact, further un- and re-loadin@ines no force; when the contact
is re-established it also is assumed to be mostly elastimwimg the previous contact-

unloading path. Thus re-established contacts have littioglastic deformation until the

(previously reached) maximum overlap is reached again m frdhen on strong plasticity

kicks in again.

On the other hand for ultra-fine ideal spherical particlesrder of macro-meter2p4, 206
207, the van der Waals force is much stronger and unloadingsidhés due to purely
non-contact forces. Therefore, the non-contact forcesotiwanish and even extend beyond
the mechanical first contact distance. The contact modebofab R04 20§ is reversible
for non-contact and features a strong plastic deformatothfe re-established contact — in
contrast to the previous case of large particles.

The contact model by Ludind P2 follows similar considerations as others, except for the
fact that the mechanical contact does detach, as discussed next. The irreversible, elastic
re-loading before complete detachment can be seen as a @misprbetween small and
large particle mechanics, i.e. between weak and strongcétte forces. It also could be
interpreted as a premature re-establishment of mecharuecdéct, e.g., due to a rotation
of the particles. Detachment and remaining non-contachlg then valid if the particles
do not rotate relative to each other; in case of rotationt) bliding and rolling degrees of
freedom can lead to a mechanical contact much earlier thémeindeal case of a perfect
normal collision of ideal particles. In the spirit of a mesogic model, the irreversible
contact model is due to the ensemble of possible contactsergome behave like imagined
in the ideal case, whereas some behave strongly differgntdeie to some relative rotation.
However, there are several other good reasons to consideeaersible unloading branch.

In the case of asphalt (core-shell material with a stone antebitumen-shell), dependent
on the composition of the bitumen, it can contain a constdleramount of fine solids that
will behave softly for loading, but rather stiff for re-loiag (elastick, branch). (Bitumen
with fine fillers is referred to as “mastic”, but a more detdigtudy of this class of materials
goes beyond the scope of this study.37]

For atomistic nano-particles and for porous particles, thiveg in common is the fact the
typical deformations can be much larger than the primartiggas inhomogeneities and that
the adhesion of the primary particles is very strong, whéek to their re-arrangements (see
Fig. 5in Ref. [L193). That is the bulk material will deform plastically (irrexsibly) even if
the primary particles can be assumed to be perfectly elasgccan not assume permanent
ideal flattening and full loss of mechanical contact durimjoading for the mesoscopic
particles: Many contacts between the primary particlessamthce inhomogeneities will be
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Figure 3.3: Schematic plots of (a) the non-contact adhdene=-overlap relation and (b)
the non-contact jump-in force-overlap relation.

lost, but — due to their strong attraction — many others veilfx their contacts. Strong clusters
of primary particles will remain intact and can form bridgé@sreads) or clumps during
unloading — which either keep the two surfaces in contacbhéyhe idealized detachment
point or can lead to an elastic repulsion due to a clump-garsitting between the surfaces
(see Fig. 3 in Ref.102).

When re-loading, the (elastic) connecting elements infleghe response; rearrangements
of the primary particles (and clusters) happen on the seyfleading to its reshaping —
leaving a surely non-flat contact surface.

Also in this case, as often mentioned for granular systehesinteraction of several elastic
particles does not imply bulk elasticity of the assemblye do rearrangements. Thus, in
the present model an irreversible tensile branch is assuwiggbut distinction between the
behavior before and after the first contact-loss-pointithan the intrinsic non-linearity in
the model: The elastic stiffness for re-loadikgdecreases the closer it comesde-= 0;

in the present version of the contact model,for unloading from thek; branch and for
re-loading from thék; branch are exactly matched.

As a final remark, for almost all models on the market — due ttvenience and numerical
simplicity, in case of complete detachmén& 0 — the contact is set to its initial state, since
it is very unlikely that the two particles will touch againeatactly the same contact point as
before. On the other hand in the present model a long-rangeittion is introduced, in the
same spirit asZ03 206. Reloading in the non-contacd (< 0) regime is perfectly elastic,
as it refers to the non-contact of surfaces and is due onlgrtg-tange attractive (van der
Waals) forces, as will be detailed in the next subsection.



3.2. DISCRETEELEMENT METHOD 37

3.2.3 Non-contact normal force

It has been shown in many studies that long-range interactice present when dry adhesive
particles collide, i.e. forces are present even for negatierlapd [102 199 206 207]. In
the previous section, we have studied the force laws forembioverlapd > 0. In this section
we introduce a description for non-contact, long rangeeaie forces, focusing on the two
non-contact models schematically shown in Bg — both piece-wise linear in the spirit
of the mesoscopic model — namely the reversible model anplithp-in (irreversible) non-
contact models (where the latter could be seen as an iddalizesoscopic representation
of a liquid bridge, just for completeness). Later, in thetreection, we will combine non-
contact and contact forces.

3.2.3.1 Reversible Adhesive force

In Fig. 3.3(a) we consider the reversible attractive case, where eaffjrvan der Waals type
long-range adhesive force is assumed. The force law canibemas

—fa if >0
fadh— ' _1@a5—f, if0>58>0 (3.15)
0 if 0a>0

with the range of interactiod, = —fa/k&, wherek? > 0 is the adhesive strength of the
material andfa > 0 is the (constant) adhesive force magnitude, active forlap® > 0 in
addition to the contact force. Wheh= 0 the force is—f,. The adhesive forcéad js
active when particles are closer thadn when it starts increase/decrease linearly alekg,
for approach/separation respectively. In the rest of tlaptdr, for the sake of simplicity and
without loss of generality, the adhesive strength will besan as coincident with the contact
adhesive stiffness in Se8.2.2.2 that isk2 = k.

3.2.3.2 Jump-in (Irreversible) Adhesive force

In Fig. 3.3(b) we report the behavior of the non-contact force verseslap when the ap-
proach between particles is described by a discontinuotevéirsible) attractive law. The
jump-in force can be simply written as

o 0 if 6<0
jump—in _
f { —fy  if6>0 ° (3.16)

As suggested in previous studi@3[ 78, 199, there is no attractive force before the particles
come into contact; the adhesive force becomes active analyddrops to a negative value,
—fa, at contact, whe® = 0. The jump-in force resembles the limit cdge— « of Eq.
(3.15. Note that the behavior is defined here only for approach®piarticles. We assume
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the model to be irreversible, as in the unloading stagendwseparation, the particles will
not follow this same path (details will be discussed below).

3.3 Coefficient of Restitution

As already mentioned, we can quantify the amount of dissgpanergy relative to the inci-
dent kinetic energy in terms of the coefficient of restitnpby using the expression-1€e?.

When we consider a pair collision, with particles approaghrom infinite distance, the
coefficient of restitution can be defined as

Vf°°
=— 3.17a
e (3.17a)
and further decomposed as
Vi® ViV
e— ayo_ . 3.17b
Vi Vv €obnej , ( )

where three different regimes have been introduced to ibestire pair interactione; and

€0 are the pull-in and pull-off coefficients of restitution atrdescribe the non-contact parts
of the interaction § < 0), for approach and separation of particles respectivelyle e,

is the coefficient of restitution defined for particle in cactt (@ > 0). v* andv{® denote
the approach and separation velocities at infinity distawben the (short- and long-range)
interaction force is zerov; is the approaching velocity at zero contact ovedap 0O (start

of contact) andv; is the separation velocity at zero overlap= 0 when the particles are
separating (end of contact).

In the following, we will first analyze each term in E®.17H separately, based on energy
considerations. Then we will show combined contact mod&tsgthe non-contact and con-
tact components described in secti@8.23.2.3and provide the coefficient of restitution
for this wide class of models.

3.3.1 Pull-in coefficient of restitution

In order to describe the pull-in coefficient of restitutigrwe focus on the two non-contact
models proposed in Se@.2.3 as simple interpretations of the adhesive force during the
approach of the patrticles.

When thereversible adhesiveontact model is used, the energy conservation argument

1 ., 1 1
imVi ZZEfaéa‘f' EmViz (318a)

yields the following expression faf:

Vi
eiadh 1

. 2
- = \/1_ faazz = \/1+ fa/'ffz : (3.18b)
Vi my Vi myvj
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The pull-in coefficient of restitution increases with inesing adhesive force magnitudie
due to increase in attractive force and decreases with thesag strength of the material
ke. On the other hand, if thiereversible adhesive jump-imodel is implemented, a constant
valued"™ " = 1 is obtained, a§"™P-" = 0 for § < 0 and the velocity is constant=v;*.

3.3.2 Normal coefficient of restitution

When focusing on the contact coefficient of restituteynand writing the energy balance
between the start and end of contact interaction, we get

1 1
EeriZ = Whiss+ imvfz (3.19a)
and
Vi MWhiss
=—=4/1- 3.19b
Y myvi? 7 (3-190)

whereWiss denotes the amount of energy dissipated during the cailisio

If the linear contact model (see Se8.2.2.]) is considered in the absence of viscous damping
(LS), Wyissis zero, hence the normal coefficient of restitutﬁﬁ = 1. Onthe other hand, for
either viscous damping or in the caseamfhesive elasto-plastimontacts (see Se&.2.2.2,
there is finite dissipation. Adj4issis always positive, the normal coefficient of restitution is
always smaller than unity, i.&-SP < 1 andel'YS < 1. The coefficient of restitution for the
linear spring dashpot model is given in E8.5), while the elasto-plastic contact model will
be discussed below.

3.3.3 Pull-off coefficient of restitution

The pull-off coefficient of restitution is defined for paits that lose contact and separate,
using theadhesive reversiblmodel as described in secti@2.3.1

By assuming energy conservation

1 ., 1 1 5
Eme —2f363+2me , (3.20a)

we obtain the following expression

EO:E:\/H fa‘sa:\/l—fg/k‘;. (3.20b)

Vs mvs 2 mvs 2

Similarly to what already seen for E§.18h the pull-off coefficient of restitution depends
on both the adhesive force magnitufieand strengthk;, other than the separation velocity
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Figure 3.4: (a) Reversible and irreversible non-contates, where the top blue line (for
negative overlap) represents the former and the bottomimedfor negative overlap) the
latter. The black line for positive overlap represents thedr contact force as superimposed
on the non-contact force. (b) Force-displacement law fastelplastic, adhesive contacts
superimposed on the irreversible non-contact adhesiee for

vi. As the particles feel an attractive force during unloadimayt of their kinetic energy is
lost and hence, < 1 in Eq. 3.20h.

It is worthwhile to notice that the force-overlap picturesdebed above, witl, defined as
in Eq. (3.20D refers to a system with sufficiently high impact velocity,that the particles
can separate with a finite kinetic energy at the end of coliisiThat is

viZ > £2/(mic) =: (V)2 (3.21)

or, equivalentlyv® > v /(enei), wherevi denotes the maximum relative velocity at which
particles actually can separate. On the other hand, if thetiki energy reaches zero before
the separation, e.g. during the unloading path, the pestigfart re-loading along the adhe-
sive branch until the valué = 0 is reached and they follow contact law defined dos O
again.

3.3.4 Combined contact laws

The contact and non-contact models described in previat®ses 3.3.], 3.3.2and 3.3.3
can be combined in order to obtain the overall descriptiothefsystem behavior, during
approach, contact and final separation of the particles.

For example, the combination of the pull-in, the linear narand the pull-off components
leads to areversible adhesive linearontact model, as shown schematically in the upper
part of Fig.3.4a with coefficient of restitutiore = ¢,€55P¢29".  On the other hand, by
combining the irreversible (jump-in) pull-in, the lineannmal and the (reversible) pull-off
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Figure 3.5: Restitution coefficiemtplotted as a function of the impact veloci§j e, — e
andv; — v for irreversible elastic-adhesive and elasto-plastieadte spheres (as given in
the inset). Parameters used herekare- 10° Nm~1, kp = 5 x 10°Nm™1, ke = 10°Nm~1,
andf, = 5x 10N, which leads to the low-velocity sticking lim = 2.1 x 10-5m/s, for
particles with radius 1.10-3m, density 2000 kg/f) and massn = 5.6 x 10%kg.

components (see schematic in the lower part of Bigg we get coefficient of restitution
e— 6OehSDeJ:umpfin
i .

In the following we will focus on the combination of the irexgible pull-in with the adhesive
elasto-plastic and the (reversible) pull-off parts, leadio anirreversible adhesive elasto-
plastic model, see Fig3.4h with e = eoel{"S"™™" = ¢,elYS. For this special case we

want to analyze the influence of the adhesive componentfpeas on the overall behavior.

In Fig. 3.5, we plot the coefficient of restitutiomas a function of impact velocity for both the
irreversible elastice, = €-5P) and the irreversible elasto-plaste, & €/YS) contact models.
We observe that for low velocity the system behaves in a airfalshion in both cases, show-
ing an initial sticking regime, in agreement with previouperimental and numerical results
[188 199 219. At higher velocities, a significant difference appeams: dlastic adhesive
spherese keeps increasing and approaches unity while, for elagtstipladhesive spheres,
e starts decreasing at intermediate velocity until it becemexo at higher velocity. This dif-
ference is related with the sources of dissipation in therhaadels. In the irreversible elastic
case, energy is dissipated only due to the pull-off of théigas, which is significant in low
velocity range only. On the contrary, for irreversible étaplastic spheres, dissipation takes
place during both, pull-off and normal contact, stages. [altter, new, effect is negligible
for low velocity (hence the two models coincide) but it be@mmportant for large impact

velocity, leading to a second, high velocity, sticking ragi (that will be discussed in detail
below).
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Figure 3.6: Restitution coefficient plotted as functionrapiact velocity without viscous dis-
sipation. Different lines correspond to the analyticalregsion in Eq.3.28 with different
non-contact adhesiofy as given in the inset. Black circles represent the numesation
results forf, = 0, where all other parameters are the same as in3g.

Furthermore, in Fig3.6, we focus on the strength of the non-contact adhes$ioand we
plot e against the impact velocity for differerif. We observe that fof =0, e; ~ 1 at
low velocities, while, for finitef,, the particles stick to each other wigh= 0. The critical
velocity v§ required to separate the particles increases Wittror extreme values df, the
particles stick in the whole range of velocities.

It is interesting to notice that for very lovi, and low impact velocities the behavior is
independent of the adhesive force magnitude (cyan line &uklgircles lie on top of each
other in Fig. 3.6). In the further sections we restrict our analysis to thisgeaof f; and
impact velocity.

3.4 Elasto-plastic coefficient of restitution

In the following we will restrict our analytical study on tleeefficient of restitution to the
range of moderate and large impact velocity, where the tmuton of weak non-contact
adhesive force$, — 0 can be neglected. Furthermore, we disregard viscoussanaader
to allow for a closed analytical treatment. The coefficidmestitution will be computed and
its dependence on the impact velocityand the adhesive stiffneks is considered for two
cases/; < Vp andv; > vp, with vp defined in Eq. 8.14).
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3.4.1 Theory and dimensionless parameters

3.4.1.1 Initial relative velocity v; < vp

Whenv; < v the particles after loading, unload with sldgeand the system deforms along
the path 0— dmax— % — Omin — 0, as described in the Se®.2.2.2and shown in Fig3.2

The initial kinetic energy (ad = 0 overlap) is completely transformed to potential energy at
the maximum overlapmax,

1 1
Emvi2 = Ekldr%ax. (3.22a)

The direction of relative velocity is reversedd®tax, unloading starts with sloge and some
part of the potential energy is converted to kinetic enetgh@force-free overlapy,

1 1

SMVG = Sko(Gmax— &)° (3.22b)
which, using Eq. $.8), can be written as

1 1

Eerg = Eklamax(fsmax— %) - (3.22¢)

Further unloading, belowd, leads to attractive forces. The kinetic energydgis partly
converted to potential energy &in

1 1 1
Eerﬁﬂn-F §k2(5min—50)2: iercz)- (3.22d)

The total energy is finally converted to only kinetic energtha end of the collision (overlap
0=0)

1 1 1
Eer% - ierEnin = _ikccsr%in ) (3.22¢)
that, when combined witl3(22d, gives

1 1 1
Eer%—iercz): —Ekcaminfso (3.22f)

Using Egs. 8.223, (3.229, and @.22f) with the definitions o, anddp, and dividing by
the initial kinetic energy, we obtain the coefficient of iegion

@ _ Vi [k ke (ko—ki) (ko —ki)
& ‘vi‘¢ ok (otk) K (329

with ko = kz2(dmax) = ko(Vi), as defined in Eq5.9).
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3.4.1.2 Initial relative velocity v; > vp

When the initial relative velocity; is large enough such that> v, the estimated maximum
overlapdmax = Vi\/Mm /Ky is greater thadhax. Letvy be the velocity at overlaphax. The
system deforms along the path&)dﬁax—> Omax — O — Omin — 0, see Fig3.2 The initial
relative kinetic energy is not completely converted to ptitd energy add = dhax, hence

1 1 1
SMVE = Smvi+ 5K (G, (3.242)

and the loading continues with the sldgguntil all kinetic energy equals zero at= dmax >

d?]ax
1 1 , 1 ,
SMVVE + 5K (8ha)? = SKp(Gmax — )7, (3.24b)

the relative velocity changes sign @#ax, the contact starts to unload with slokg The
potential energy is completely converted to kinetic enexgyy, such that the equality

1 1

SMVG = 5Ko(Bmax— ) (3.24¢)
or

1 1 P P 1

imf\’% = iklémax(émax_ &) + Eer% (3.24d)

holds. Further unloading, still with slope, leads to attractive forces ungf,, is reached,
where the kinetic energy is partly converted to potentiargn

1 1 1
>MVinin + 5Kp(Gpin — &) = SMAG (3.24e)

The unloading continues alorig and the total energy aﬁ,ﬁin is finally converted to only
kinetic energy at the end of collisiod & 0 overlap), so that
m

%I’T}V% - %mrvﬁﬂn = _%kc(épin)z : (3.24f)

Using Eqgs. 8.249 and (3.249 in Eq. (3.24) gives

1 1 1

STV — SmvG =~ Skedpindo - (3-249)
Combining Egs. 3.249, (3.24h, (3.249, (3.249 with the definitions ofénﬂin and &, and
dividing by the initial kinetic energy, we obtain the coeifiat of restitution

@ 14 [_Hﬁ ke (kp—ki)2 ] V5 (3.25)

with vp/v; < 1.
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3.4.1.3 Dimensionless Parameters

For a more general description, a few dimensionless pasmean be defined:

- ky —k

Plasticity :n = pk—l , (3.26a)

1

o ke
Adhesivity :B = P (3.26b)

1
Scaled initial velocity ) = dgax ~ 0 (3.26¢)

Omax  Vp

The final dimensionless number, given here for the sake opteteness, but not used in this
subsection, is the ratio of maximum velocity at which paescstick due to adhesion only to
the initial relative velocity of the particlegla = va/V{° < 1.

Using Egs. 8.269, (3.26h and 3.269 in Eq. 6.9), one can define

ke if x> 1
kZ(X)_{ ki(l+ny) ifx<1 (3.27)

while the coefficients of restitutiore,(ﬁ) in Eq. 3.23 anda(f) in Eq. 3.295 become

e§11>(n,3,x<1):\/ 1 Bn’x (3.28)

1+nx Q+nx)@+B+nx)

and

e@(n,ﬁ,le):\/1+[A<n,ﬁ>—1]x—12, (3.29)

with

A(n.B) = [e(nl)(mﬁ,x=1)r- (3.30)

3.4.1.4 Qualitative Description

In Fig. 3.7, the analytical prediction for the coefficient of restitutj from Eqgs. 8.28 and

(3.29, is compared to the numerical integration of the contactiehdfor different scaled
initial velocities x. We confirm the validity of the theoretical prediction foetboefficient
of restitution in the whole range.

For very smallnx < 1073, e, can be approximated ﬁl) ~1-— % which gives a good
agreement to 2 orders of magnitude in velocity. With inciregitial relative velocityv;,
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Figure 3.7: Restitution coefficient plotted as a functiorithe scaled initial velocity for

a collision without viscous and non-contact forces. Thekhied line correspond to the
analytical expressions in EQB.@8), the dashed blue line to Ec3.@9, and circles are DEM
simulations, while the thin black line represents the lowoeity approximation results for
the same material parameters as in Bi, i.e.n =4 andg = 1.

dissipation increases faster than the initial kinetic gpégading to a faster convex decrease
of a(ql). The coefficient of restitutioa,(ql) becomes zero when a critical scaled initial velocity
Xc(l) (see Eq.8.32) is reached. At this point, the amount of dissipated energgual to the
initial kinetic energy, leading the particles to stick. Tduefficient of restitution remains zero
until a second critical scaled initial velocigéz) is reached, i.e. sticking behavior is observed
for Xc(l) <x< XC(Z). Finally, for x > Xc(2>, the dissipated energy remains constant (plastic
limit is reached), while the initial kinetic energy increas As a result, the kinetic energy
after collision increases and so does the coefficient oftuéish e,. Existence of sticking
at such high velocities is recently reported by Kothe et &6],[where authors studied the
outcome of collisions between sub-mm-sized dust agglomeia micro-gravity! The in-
crease ing, with the velocity is because of a limit on maximum plastic &g, thereby
making the plastic dissipation to be constantdas dhax.

Certainly, this is in contrast to what is expected and ole@im experiments on some types
of elasto-plastic granular materials. We point out thas tiehavior shows up only at very
high velocities (x-axis in Fig.3.7 has increased by 2 orders of magnitude). Moreover,
the definition ofe, might become questionable at that high velocity, as thegbestcan
fragment/break and physics of the system has to be recaadid&t such large deformations
the particles cannot be assumed to be spherical anymorénelnttier hand, the increase of

1. Note that this is the regime where the physics of the cootanges and dependent on the material and other
considerations, modifications to the contact model cobti&l be applied, however, this goes beyond the scope of
this study.
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Figure 3.8: Restitution coefficient plotted as a functionhaf scaled initial velocity. The
blue solid line corresponds to the solution fok 1, with ¢ = 0.05, while the dashed lines
with different colors represent the behavior once limitntae is reached. Magenta, green
and red represem, for (pf' =0.1, qof' =05 and(pf’ = 1.0 respectively, where the latter is
the fully plastic case, as if one would &igﬁ = a, wherea s the particle radius. Note thkg

is adapted as described in appengli.

ey for high velocity is a familiar observation in the cold spreymmunity fL70, 191, 234].
After a given (critical) velocity the spray particles addés the substrate, and they do so fora
range of impact velocities, while increasing velocity het leads to unsuccessful deposition,
i.e. the particles will bounce from the substrate. The stigiphenomenon of the material
has been extensively studied experimentally and numéricel 0, 191, 230, 231, 234].

As explained in the previous sectiBr?.2.3 a pre-determinate threshadx on the plastic
regime is the reason for the anomalous elastic high veldatyavior of the coefficient of
restitution. The model can be tuned by choosing a higherre-calculatingk,, thereby
keeping the behavior plastic in the whole range of interasttfe velocity and the collision
dynamics up tadhax unchanged (see appendixC). Nevertheless, we consider a reference
value forgr (andkp) based on the maximum volume fraction of the multi-partgranular
assembly, such that the macroscopic behavior is reasoaadllem good agreement with the
experiment, e.g. based on our simulations on split-botiog shear cell107. Also, in a
typical DEM simulation, the maximum overlap is-510% of the reduced patrticle radius.
This is illustrated in Fig.3.8, where we plok, against the normalized velocipy = \‘,’—'p for
different values ofpr, with vy, calculated from the same reference stiffness input paenset
@ andkp. Referencepr is chosen to be 0.05, which would me&fl = 0.05a. For low
velocity the different curves lie on the top of each otheovgimg that the collision dynamics
stays unaffected by the changegn. The onset of the increase & shifts to right with
increasingps, providing a fully plastic regime at higk if desired.
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Figure 3.9: Contact force during one collision, plottediagtthe overlap for different scaled
initial velocitiesy = 0.34, 0.69, 1.1, and 1.37, respectively. The three straigbslrepresent
the plastic branch, with slogq, the adhesive branch, with slope., and the limit branch
with slopek,, for k; = 10°Nm~1, k, = 5x 10°Nm~2, ke = 10> Nm~! and ¢ = 0.05, i.e.
n=4andB=1

In Fig. 3.9, we compare the variation of the force with overlap in theous regimes of as
discussed above fagr = 0.05. For very smal, the unloading slopk, ~ ki, (see Fig3.9a

for a moderately smalf = 0.34), and the amount of dissipated energy is small, incrgasin
with x. The kinetic energy after collision is almost equal to thidahkinetic energy, i.e.

e, ~ 1, see Fig3.7. In Figs.3.9band3.9¢ the force-overlap variation is shown for sticking
particles, for the casexsél> <x<landl< x < xc(z), respectively (more details will be
given in the following subsection). Finally, in Fi§.9d the case > XC(Z) is displayed, for
which the initial kinetic energy is larger than the dissipat resulting in the separation of
the particles. The corresponding energy variation is desdrin detail in the appendix.

3.4.1.5 Sticking regime limits and overlaps

In this section we focus on the range)g(;{1> <x< xc(z), where the particles stick to each

other and calculate the critical valu,gél) andxé2>. Also we assumg to be large enough

so that sticking is possible, as we show in later sectionftvat givenn a minimumg = g*
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is required for particles to stick. Whep= Xél) all initial kinetic energy of the particles is
dissipated during the collision. Hence the particles sticie, becomes zero:

e (n,8,xM) =0, (3.31a)
which leads to
Bn*x*—nx—(1+B)=0. (3.31b)

Only the positivey solution is physically possible, as particles with negatiitial relative
velocity cannot collide, so that

Xglu% 1+ VIT 2B B)| - (332)

For largery > xc(1>, the dissipation is strong enough to consume all the irktiadtic energy,
hence the particles loose kinetic energy at a positive efioverlapd;, see Fig3.9h The
contact deforms along the path-0 dmax — d — Omin — &. Thereafter, in the absence of
other sources of dissipation, particles keep oscillatioggthe same slople. In order to
computed., we use the energy balance relations in E§24), and conservation of energy
alongdmin — &, as described by Eq3(22¢

1 1 1 1
EmV%—zer%Z—Ekc{@nin&)—zkc(Scz}a (3.33a)
with vi = 0 at the overla@.. Re-writing in terms ok; anddmayx leads to

2 k_f_kc(kz—kl)z} 2 _
kC5C+{k2 ook | Srax=0 (3.33b)

and thus to the sticking overlap

&Y Gnax |(o—k)?2 K
5r$1ax B dﬁax\/kz(kz—f— kc) N @ ’ (333C)

In terms of dimensionless parameters, as defined earliegets

5C(1) — \/ n2x? 1 X L@
5r$1ax_x (1—1—’7)()(1-1-ﬁ—|—r])()_B(:|__|_,7X)_ﬁ|Qj | (3.34)

Where|e,(11)| denotes the absolute value of the result from B2§).

For larger initial relative velocitiegy > 1, the coefficient of restitution is given by E®.29),
so that the second critical<d XC(Z) can be computed setting

e?(n,B,x?) =0, (3.35a)
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Figure 3.10: Kinetic energy-free contact overtgmplotted as a function of the scaled initial
velocity x = \\,’—'p the increasing branch correspondsytec 1, while the decreasing branch
corresponds ty > 1. The dots are simulations for= 4 and3 = 1, as in Fig.3.9, which
yields 3M/ 58 = (1/3)%2in Eq. (3.39.

or

[ 1 pn® 1|2 (3.35b)

— — —_— = 1
1+n @Q+m@+B+n) ] x?
Again, only the positive solution is physically possible,tbat

@_ [, 1 Bn?
* _Vl L0 @rna+Bn) (#59)

is the maximum value of for which particles stick to each other. Fpr< xc(z) particles
deform along the path 9> hax — dmax— d — Omin — O and then keep oscillating with
ko stiffness,dc being one of the extrema of the oscillation, see Bi§c From Eq. 8.246,
applying conservation of energy alodgin — &, we get

1 1 1 . 1 o
imrv% - Eer% = —zkcémln(SO"' Ekcéc ) (3.37a)

with v¢ = 0, and re-writing in terms df. anddhax leads to

8 [P KB k] m
amTa;ﬂm‘kc—kp*E T @ 3370
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In terms of the dimensionless parameters, this yields

6°(2)—\/ n’ n___X_ X 42
o\ Arm@pin Barm B VBT (3.38)

Where|a(12)| denotes the absolute value of the result from B29.

In Fig. 3.10 the evolution oféc/dﬂax with x is reported, showing perfect agreement of
the analytical expressions in Eq8.34) and @.38), with the numerical solution of a pair-
collision. In the sticking regime, the stopping overlapregses witty, and reaches a maxi-
mum aty =1,

2_p_p-1
5max 5p — B’? ’7 B 339
) O \/B(1+n)(1+n+ﬁ) (3-39)
which depends on the the adhesiy@yand the plasticity] only. Fory > 1, dissipation gets
weaker, relatively to the increasing initial kinetic engrgnd5(? /§hax decreases until it

reaches 0 fox = Xc(2>-

3.4.2 Dependence on Adhesivit$

In the previous subsections, we studied the dependence obtfficient of restitutior, on
the scaled initial velocity for fixed adhesivity3, whereas here the dependencepbn 3
is analyzed.

A special adhesivity3* can be calculated such that= 0 for x = 1, which is the case of
maximum dissipation and leads to sticking only at exagthy 1. From Eq. 8.28, we get

1+B*+n—-pB*n?=0, (3.40a)
so that
.1
B* = =1 (3.40b)

In Fig. 3.11 we plot the coefficient of restitution as function of thelsdainitial velocity x

for different values of adhesivit§. For 3 < 3*, in Fig. 3.11, the coefficient of restitution,
decreases with increasing< 1, reaches its positive minimum gt= 1, and increases for
X > 1. In this range, the particles (after collision) alwayséawnon-zero relative separation
velocityvs. Whenf = 3*, e, follows a similar trend, becomes zeroyat= 1, and increases
with increasing scaled initial velocity fgy > 1. This is the minimum value of adhesivity
for which e, can become zero and particles start to stick to each other8Fe 3*, the
two critical values coincidexc(l) = XC(Z) =1. If B > B*, e, decreases and becomes zero at
X= xél) < 1, it remains zero untiy = XC(Z) > 1, and from there increases with increasing
initial velocity. Hence, we can conclude that the stickirfgparticles and then range of
velocity for which this happens, is affected by materialgadies of both particles. Indeed
Zhou et al. 231 presented similar conclusion about deposition efficienayold spray.
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Figure 3.11: Coefficient of restituticay plotted against the scaled initial velocjty Circles

with different colors correspond to different adhesiBtyred for3 < 3*, green for3 = 3*

and blue for3 > B*) for x <1, while magenta, black and cyan squares correspond to the
respective values g8 for x > 1. Other parameters used d&ge= 10?, kp, = 5x 10?, and
differentk; (all in units of NnT?), i.e.n = 4 andB/B* = 1/3, 1, and 3, with3* = 1/3.

The dashed red line represents the solution with the tunigddlastic model with a new

qof' = 0.5 and newly calculatekip/, see Appendi.C.

3.5 Conclusions

Various classes of contact models for non-linear eladtibeaive and elasto-plastic particles,
are reviewed in this chapter. Instead of considering thé welerstood models for perfect

spheres of homogeneous (visco) elastic or elasto-plastienals, here we focus on a special
class of mesoscopic adhesive elasto-plastic models, aineescribe the overall behavior

of assemblies of realistic (different from perfectly horeagous spheres) fine particles.

The contact model by LudinglDPZ is extended and generalized by adding short-ranged
(non-contact) interactions. The model is critically dissed and compared to alternative
approaches which are classified in Sub-Sec3idn2 The influence of the model parameters
on the overall impact behavior is discussed, focusing orirtiegersible, adhesive, elasto-
plastic part of the model and combining all the elements {ommact, hysteretic, contact
and viscous dissipation) at the end. The model is simplet gatéhes the important features
of particle interactions that affect the bulk behavior ofrargular assembly, like elasticity,
plasticity and contact adhesion. It is mesoscopic in spgigt it does not resolve all the
details of every single contact, but it is designed to remmethe ensemble of many contacts
in a bulk system. The goal is to propose a rich, flexible andinpulrpose granular matter
model, which is realistic and allows to involve large nunsbefrparticles.

When the dependence of the coefficient of restitutgmn the relative velocity between
particles is analyzed, two sticking regimes= 0, show up. These are related to different
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sources of dissipation in the system.

(i) As previously reported in the literature (see e.g. REI8, 36, 74, 188 199) the particles
stick to each other at very low impact velocity. This can fapgdue to irreversible short-
range non-contact interaction. The threshold velocitypwevhich the particles stick, is
directly related to the magnitude of the non-contact adleefsirce f5. (ii) With increasing
velocity, e increases and then decreases until the second stickingaégireached. This is
a result of the plastic/adhesive dissipation mechanisrttsimysteretic contact model.

At small impact velocity, the details of the contact model af minor importance. At higher
velocities, for a sufficiently low value of jump-in fordg the contribution of the (irreversible)
non-contactforces can be neglected. In the limit of wigdnd for moderate-high velocities,
the contact component of the coefficient of restitutepnis examined analytically using
simple energy conservation arguments.

The results are derived in a closed analytical form, by phgathe behavior in terms of
dimensionless parameters (plasticity, adhesivity artéhinielocity) and the range of impact
velocities of the second sticking regime is predicted.

For still increasing relative velocity, beyond the stiggiregion,e, starts increasing again.
This regime involves a change of the physical behavior ofsysem and resembles for
example material with an elastic core like asphalt (storth Witumen layer). Completely
plastic behavior can be reproduced by the same model witmquthange, just by tuning
two input parameterkp A and ¢, such that low velocity collision dynamics is kept un-
affected but the maximal plastic overlap is reached only athrhigher impact velocities.
This modification provides the high velocity sticking regirfor high velocity, as expected
for plastic material. The existence of a high velocity rebduas predicted by our model,
has been observed experimentally and numerically in caialysji70 191, 230, 231, 234
and can be expected for elastic core with a thin plastic skl shown in appendi8.C,
the model is flexible enough to model the “unusual” behawdri¢h might be relevant to
other applications described above), as well as the wellwkindecrease of the coefficient of
restitution with impact velocity.

In the sticking regime, due to the lack of dissipation on théoading / re-loading branch

the sticking particles oscillate around their equilibriposition. However, the real collision

between two-particles is dissipative in nature. Sinceosgg hinders analytical solutions, a
few simulation results with viscosity are presented. Wittusity, the unloading/re-loading
is not reversible elastic anymore. Thus with time the pkasicndergo a damped oscillation
and approach a static contact with finite overlap.

In the last part of the chapter a section is dedicated to thapi®tic behavior o&, at high
impact velocities. We observe that the asymptotic behasidirectly related to the choice
of the interaction law and its details. For low adhesivityg toefficient of restitution is found
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to decay a&n ~ Vi /2, which is due to the empirical choice of the unloading séffs in the
model. Further analysis on this feature is possible in th&&) when new data from modern
experimental techniques involving fine powders or cordtshaterials becomes available
for numerical calibration and validatio 8.

The application of the present extended model to manygbartystems (bulk behavior) is
the final long-term goal, see Refl(Q7 as an example, where the non-contact forces were
disregarded. An interesting question that remains unamsiv@ncerns a suitable analogy
to the coefficient of restitution (as defined for pair cotiiss) relevant in the case of bulk
systems, where particles can be permanently in contactesith other over long periods of
time, and where impacts are not the dominant mode of interact

The interest of widely different communities viz. granufarysics, particle technology,
interstellar dust, asphalt or cold-spray in the dependehiestitution coefficient/deposition
efficiency on impact velocity is considerable. We hope oudgthelps to connect these
widely different communities by providing an overview amdparticular a flexible multi-
purpose contact model valid in many practically relevatizgions.

3.A  Appendix

In this appendix, we present in detail the effect of viscoaimging, different interpolations.
We also present asymptotic soultions with different intdaions. Finally we also show
the unloading and re-loading behavior of mesoscopic pgesticSection3.A.1 is devoted
to show the effect of viscous damping on the coefficient ofitg®n. Section3.A.2is
devoted to the asymptotic behavior of the coefficient ofitigsbn as function of the impact
velocity. In section3.A.3, we discuss the effect of a linear and square-root intetjpola
on the coefficient of restitution as a function of impact wi#tip In section3.B, we show
the time evolution of the kinetic and potential energiesmyithe collision. In sectio.C,
we present a method to tune the slope of plastic brd«g’clﬁor any givenqof/, such that
the collision dynamics for lower plastic deformatidf < dP is intact. Finally in section
3.D, we present the unloading and re-loading behavior of anoaggyate, i.e. its effective,
mesoscopic force-displacementrelation, which cleartjfferent from the contact force law
applied at the primary particle contacts.

3.A.1 Effect of Viscosity

Since real physical systems also can have additional dissipmodes that are, e.g., viscous
in nature, in this section we study the behavior of the doltisvhen viscosity is present
(yo > 0) and compare it with the non-viscous cage=£ 0). Note that any non-linear viscous
damping force can be added to the contact laws introduceibu®y, however, for the sake
of simplicity we restrict ourselves to the simplest line@cous law as given as second term
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in Eq. 3.3. However it is important to choose the correct viscous damperm for the
force law to get the correct behavior as explainedd, fLOQ 108 227. In Fig. 3.12 we
plot the contact force against the overlap, and the ovedamat time, during collisions for
a constant value gf = 1 and differen3, for yp =5 x 103,

Whenf < 3%, see Fig3.12aand Fig.3.12h the contact ends when the adhesive foréed
goes back to zero, for both cases, with and without visco3ikys is since the viscosity is
relatively small and does not contribute enough to the ditdipation to make the particles
stick.

For the critical adhesivityy = *, reported in Fig3.12¢ without viscosity the overlap be-
tween the particles still goes down to exactly zero at thedditide collision, with all kinetic
energy dissipated. Fgp > 0, dissipation brings this marginal collision case into $hiek-
ing regime and the particles stay in contacdat 0. This can be seen clearly in Fig.12d
where the particles undergo a damped oscillatory motioh awtplitude depending on the
residual velocitys (the amplitude is very small due to small residual velocity)

For larger valueg > B*, the overlap does not reach 0, neither yge= 0 nor for y > 0,
see Fig.3.12e In both cases, the particles stick and remain in contadt avfinite overlap.
Without viscosity, the particles keep oscillating along glopek,, while in the case with
viscosity the oscillation is damped and kinetic energy shes. During loading and unload-
ing the apparent slope changes with time due to the additis@ous force that leads to the
dissipation of energy. Waiting long enough, for some oatidh cycles, the particles stick
to each other with a finite overlap and zero relative kinetiergy. The difference is dis-
played in Fig.3.12f where foryy = 0 the particles keep oscillating with constant amplitude,
whereas, forg > 0, the particles undergo a damped oscillatory motion, whélvelocity
becomes 0 ad > 0. The time evolution of the overlap in Fig.12fresembles that of the dis-
placement evolution in Ref6p], where the authors studied sticking of particles in Sasurn
rings.?

3.A.2 Asymptotic Solutions

In this subsection, we focus on the cgsec 1, and study the asymptotic behavior of the
coefficient of restitution as function of the impact velgcit

For the sake of simplicity, let us start with an elasto-ptasystem without adhesion, i.e.

2. In general, one could add a viscous law that is proportitmi, — ki or to a power of overla@, such that
the jump-in viscous force in (e) at the beginning of the cohisinot there, however, we do not go into this detail.
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Figure 3.12: (a), (c), (e) Contact forces plotted againstiayp and (b), (d), (f) time evolution

of 6/5,ﬁax for pair collisions with parametekg = 10, kp=5x 10? and different; = 10,
33.33, and 100, (units Nrmt), i.e. withn = 4, B < B*, B = B* and > B*, for the same
situations as shown in Fi@.11 The red and blue lines represent the data in the presence
and absence of viscosity respectively, whgye- 5 x 103, (unit Nm!sec).
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k: =0, in Eq. .28 such that

(1) 1
(=N =0 1) =4/ 3.41
(n.B X <1) 1+nx’ ( a)

inserting the definitions af, B andvp,

1
e (B=0v<vp) = e (3.41b)
142 S
Fémax
using Eqg. 8.13), where we define&= :%_pki and assumingy, = Z—r']‘ql we get

(1) |1

Eq. 3.419 is exactly the same as Eq. (5) iB44. For non-cohesive particles, and in the
rangev < vp we get exactly the same solution as Walton and Bra2d[

Further to study the asymptotic solution

D B0y el et (py)-1/2 3.42
en’(n,B=0x<1) 170y (nx) (3.42)

with the approximation valid fonx > 1. Since the scaled velocity is moderate< 1,
the condition requires a large plasticity, i.e., a strorftedence between the limit stiffness
and the plastic loading stiffnesg,>> 1 (orkp > k1). In Fig. 3.13 we plot the coefficient
of restitution against the scaled initial velocityfor three different values off = kp/kq,
together with the power law prediction of EQ.42. We observe, that for the smalles{red
circle and line), the approximation is far from the data, lefor highern, the approximation
works well even for rather small velocitigs~ 0.1.

Next, when studying the elasto-plastic adhesive contadehf > 0 andf < 1, again, we
restrict ourselves to values gfsuch that asymptotic conditiapy > 1 is satisfied. Hence,
Eq. 3.28 can be approximated as

) L

aslong ag)x > >0and; > 8 holds.

In Fig. 3.14 we plot the coefficient of restitution against the scaletidhvelocity x for dif-
ferent values of3 and superimpose the approximation, E3}4@. For small3 and largey,
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Figure 3.13: The coefficient of restitution is plotted agtithe scaled initial velocity in
log-log-scale for3 = 0 and three values af = 5, 50, and 500, with the other parameters
as in Fig.3.7. Red, green and blue circles denote, respectively, thdisolaf Eq. 3.42,
while the solid lines represent the approximation for highled impact velocity and large

plasticityn > 1.

10

Increasing 3

10

10" 10° 107 10" 10°

Figure 3.14: Log-log plot of the coefficient of restitutiogaanst the scaled initial velocity
for four different values off = 0.01, 01, and 10, with n = 50. Red, green and blue circles
denote the respective solutions of the general equatiar(3E2§), solid black line represents
power lawe, ~ v~1/4, while magenta line denoteg ~ v—1/2.
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one observes good agreement between the full solution @nagbroximation. Differently,
for the highest values gf the approximation is not valid. Due to the adhesive force, fo
large x, with increasingB, the deviation from the /2 power law becomes increasingly
stronger, leading to the sticking regime, as discussedamtBvious subsections. On the
other hand, for smaller velocities, one observes a cordiflesmaller power-law, resem-
bling the well-knowny ~1/4 power law for plastic contacts, as indicated by the dashe i
in Fig. 3.14

3.A.3 Dependence on interpolation

The choice of the interpolation rule for the unloading s#ffsk, in Eq. (3.27) is empirical.
Therefore, forémax/é,ﬁax < 1, a different choice could be:

k2(dmax) = ka(1+nv/X). (3.44)

Inserting Eq. 8.44) into Eq. 3.23 leads to a different expression for the normal coefficient
of restitutione,(11), which for high values of) /X, and for smal|3, reduces to

en O0V/A(x) 4. (3.45)

A similar power law prediction for moderate velocities haseb previously obtained by
Thornton et al. in Ref.199, using a non-linear Hertzian loading and unloading. Bid.5
shows the agreement between the power law approximgtioff and Eq. 8.23 with the
alternative interpolation rule8(44), for moderate velocities. The choice of different interpo
lation laws fork, shows the flexibility of the model and requires input from estments to
become more realistic. The convexity of linear interpalafior zero cohesion is very similar
to that of lowp in Fig. 3.11

3.B Energy Picture

This appendix shows the energies of two particles duringaainwhere the difference
between the different branches of the contact model, nain&yersible/unstable or re-
versible/elastic, will be highlighted.

In Fig. 3.16 the time-evolution of kinetic and potential energy is shothe graphs can be
viewed in parallel to Figs3.9aand3.9b In Fig. 3.16a we plot the kinetic and potential
energy of the particles against time for low initial velgcik < xé”, corresponding to Fig.
3.93 for which dissipation is so weak that particles do not stithe kinetic energy decreases
fromits initial value and is converted to potential eneripe(conversion is complete &tay).
Thereafter, the potential energy drops due to the changeeketthe loading and unloading
slope fromk; to kp. The potential energy decreases to zero (at the force-fredap o),
where it is converted to (less) kinetic energy. Then thetigrenergy decreases further due
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Figure 3.15: Semi-log plot of the coefficient of restitutias function of the scaled initial
velocity x, using different interpolation rules fdae, for pair collisions withn = 50 and
B = 0. The symbols denote the solutions of the general equatiqn(3.42 with linear
interpolation (red circles) or square root interpolatibiué circles), as given in Eq3(44).
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to the acting adhesive force. A, the increasing potential energy drops to a negative
value due to the change in unloading slope frigiito the adhesive (instable) slopek..
From there it increases from this minimum, negative valueeto, ford = 0. From here the
kinetic energy remains constant and the potential eneayg it zero, since the particles are
separated.

In Fig. 3.16h we plot the time evolution of kinetic and potential energgittthe particles
would have if un-/re-loading would take place at that momalung the branch with slope
ko, namely the available (elastic) potential energy. Thisgynecreases from zero ait= 0,
and reaches a maximum when the kinetic energy becomes zattfrat it is not equal to
the initial kinetic energy due to the plastic change of slopk,.) Thereafter, the available
potential energy decreases to zero at the force-free qvéglaFor further unloading, the
available potential energy first increases and then drqpdlyeon the unstable branch with
slope—k;. The change in sign of the unloading slope, frigto —k, is reflected in the
kink in the curve admn. Note, that comparing Fig8.16aand3.16h the available potential
energy always stays positive, while the total, plastic gmbial” energy drops to negative
values after the kink adnin.

Figs. 3.16cand 3.16dshow the time evolution of kinetic and potential energydtand
available, respectively) for an initial velocixél) <X < xc(z) in the sticking regime, see Fig.
3.9h In Fig. 3.16¢ a similar trend as that of Fi§.16ais observed until the potential energy
becomes negative @,n. The difference to the case of smaller impact velocity ig #ia
this point, the kinetic energy is less than the magnituddeftegative potential energy and
hence first reaches zero, i.e., the particles stick. At thiatpthe (plastic) potential energy
increases and jumps to a positive value indicating the ahangign of the unloading slope
from —k; to ky. Finally, it oscillates between this positive valuedgt exchanging energy
with the kinetic degree of freedom. When the available pidéenergy is plotted in Fig.
3.16d a similar trend as that of Fi@.16bis observed up to the kink &,,. Here, the two
energies have comparable values when they réaghand the kinetic energy decreases to
zero with a non-zero available potential energy, which eauke contact to re- and un-load
alongks.

3.C Tuning of parameters to increase the plastic range

We assume that the reference dimensionless plasticityh deggs , which is e.g. calculated
based on the maximal volume fraction related arguments ofiléi-particle assembly, and
kp be the reference limit stiffness. We propose a rw’m> @¢ which represents the new
dimensionless plasticity depth (our choice or calculateseldl on another volume fraction)
and a new value dfp/ such that the tuned model resembles the referena® fara; »¢r and
becomes plastic faa @ < & < alzqof/. At & = a12¢%, with a;2 being reduced radius, Eq.
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Figure 3.17: Force-displacement law for elasto-plastibesive contacts superimposed on
the irreversible contact force law. The black solid lineresgents the force law for reference
input parametergr andkp, while the dashed red line represents the same for a newrchose
qof/ and newly calculateklp/ resembling a wider plastic regime of the particle defororati

(3.12 reads
kp = ko = ko + (Ko — k1) 3B/ S (3.46)
since all parameters except andk, remain unchanged. Using this definition in E8.12

we arrive at
k)2 RTRY
(o —ka)? _ (k' ~k)® (3.47)
Kp@x Kp' ¢
which gives the new limit stiffness
(3.48)

! 2ki +AB+ /(AB)? + 4k;AB
p = )
2

!

_ (ko—ka)? _ %
whereA = K andB = o

Using Eq. 8.48, we can calculate values of the new limit plastic stiffnle,s’s‘or any given
qof', such that the collision dynamics for lower plastic defotiorad, < dPq is intact, while
the range of plastic deformation is enhanced, dependinge)uhoserqof/ > .
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3.D Agglomerate compression and tension test

Goal of this appendix is to show the unloading and re-loatieigavior of an agglomerate,
i.e. its effective, mesoscopic force-displacement refgtwhich clearly is different from the
contact force law applied at the primary particle contadts.will reportincomplete detach-
ment and partly/weaker elastic response for re-loadirney afirious different compressive
and tensile loading amplitudes.

The system considered here is an agglomerate (cubic) of gize0.115, made oN = 1728
primary particles of diametedy = 0.01 (with some variation in size to avoid monodisperse
artefacts), just like in Ref1[02. The cubic sample was first compressed (pressure-sintered
with a dimensionless wall streslgps/kp = 0.02 to form a stable, rather dense agglomerate
or “tablet”. The stress is first released to a valug02, i.e. pr/ps = 103 for all walls.
Then various uni-axial, unconfined tension/compressisis t@re carried out applying either
further tension or compression starting from the releasei@® ©f the samplelpd. The
simulation parameters are same as in RE) (table 2), except for the cohesion that is set
here to a rather small intensitg /kp, = 0.2, rolling and sliding friction coefficients that are
double as largey, = Lo = 0.2, and viscous damping of those degrees of freedepy,=
Yo/Y = 0.1, which also is larger than that of the reference situation.

The force-displacement curves for the tests at differengléndes are shown in Figs.18
and3.20for tension and compression tests respectively. All siths in Figs.3.18and
3.20start from the same configuration, i.e. the released statdiomed above and is indi-
cated by the black circle at poifd, 0). These plots represent the mesoscopic contact model
of agglomerates consisting of multiple primary particles ¢heir geometrical surface con-
figurations and change in shape during the tests.

Fig. 3.18shows the force-displacement curve for an unconfined uaditgemsion test. The
black arrow shows the unloading/tension path, and finaligves with different colors show
the re-loading paths for different deformation amplitydes given in the inset. Each of
the tests, when it reaches the original strain at zero, is tepeated for three more cycles.
Note that repeated cyclic loading remains on the same bnaitlslpositive slope, displaying
the elastic nature of the contact, while itniet completely, perfectly detached. The contact
surface is changing plastically by restructuring of theraniy particles and surely is not flat,
see Fig3.19 as one would expect for ideal, homogeneous, plastic naddefror the largest
amplitude, the behavior is not perfectly elastic anymoirgesthe first plastic effects show
up. For deformations as large as 0.2 of the primary partigmdter,dy, before re-loading
(arrow with positive slope on the red curve) has mostly, lmitaompletely lost mechanical
contact. The complete detachment of the assembly happemsifh higher amplitude, than
what is expected from a 2 particle interaction. Note thatdtwetact model of the primary
particles is behaving elasto-plasticaltgr = 0.05) on the scale of only 05dp; the reversible,
elastic un-/re-loading is thusotdue to the primary particle contact model, since it stredche
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Figure 3.18: Dimensionless force-displacement curve fouaconfined uni-axial tension
test (negative horizontal axis), with the various différdaformation amplitudeBy given
in the inset. The downward arrow indicates the direction it fiensile unloading, while
the upwards-right arrows indicate the change of force durnaloading. Except for the red
curve, all these branches are reversible, for repeatecedliodding.

to four timesg@dp and even higher displacements. Finally, in order to confirat this is
not an effect of viscosity, qualitatively, the thick linesaimulations performed four times
slower than those with thin lines.

In Fig. 3.19 a few snapshots during the tensile deformation are predefhe first snapshot
corresponds to the undisturbed sample, while the othermareasing tensile deformation
amplitudes. Note that these deformations are much larger ith Fig.3.18 The contact
is completely lost only at the extreme, final deformation ig.A9(g). In Fig.3.19 it is
also visible that the contact surface has developed a rasgtof the size of several primary
particles; the first visible gap is opened at a total defoimnabf Dy ~ dy, and the contact
is lost only atDyx ~ 8dp, when the last of the thin threads breaks. The elastic,ersivle
tension branch, however, is strongly developed only forlremalleDx ~ dp/5.

Complementing the tension test above, B0 shows the behavior of the same sample
during compression cycles. The values given in the insécate the amplitude of un-/re-
loading. The smallest amplitudes remain elastic throughehile plastic deformation kicks

in for Dy > 0.1 (see the red curve). However, the unloading and re-loatdike place on

the same branch, i.e. a new elastic branch (e.gDfoe 0.2). For even larger amplitudes,
e.g. the yellow curve witldy = 0.3, the continuous damage/plastic destruction of the sample
(by considerable irreversible re-arrangement during esgicte). Again, thick lines indicate
simulations four times slower, which shows a small quatitigadifference, but qualitative
agreement even for the largest amplitude/rate. The sn&pishbig.3.21show the continu-
ous plastic deformation of the sample at large strains.
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Figure 3.19: Snapshots of the tablet-sample during (ldeye)le deformations fdby = (L —
Lo)/do=0(a),0.81 (b), 1.8 (c), 3.1(d), 4.7 (e), 7.4 (f), and 8.6 [@)e primary particles are
colored according to their distance from the viewer (redgegr blue is increasing distance).
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Figure 3.20: Dimensionless force-displacement curvelfersame sample as in Fig.18
but under compressive initial loading and un-/re-loadifge values in the inset indicate the
maximal amplitude®y.
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Figure 3.21: Snapshots of the tablet sample during comipress (large) deformations
Dx = (L—Lg)/do=0(a), 0.01 (b), 0.3 (c), 0.8 (d), and 1.8 (e). The color coderiall stress
(green) and compressive/tensile larger stress (red/blerpged/isotropically per primary
particle.



CHAPTER 4

Effect of friction and cohesion on
behavior of granular materials”

Abstract

The effect of particle friction and cohesion on the steadyesshear strength and the con-
tact anisotropy of a granular material is studied using Defe Element Simulations (DEM).
For non-cohesive frictional material, when shear stresd &abric anisotropy are analyzed
locally, as functions of pressure and shear rate, they anmdto increase with contact fric-
tion; and saturation is reached for high friction with themtg contact network dominating.
From a microscopic point of view, we analyze the probabdistribution functions (PDFs)
of both normal and tangential forces. They behave in a sinféshion, i.e., the probability
of weak forces and heterogeneity are increasing with fitti

For cohesive powders, the relation between shear stresscantining pressure becomes
non-linear. Interestingly the contact number density stynost unaffected, while the struc-
ture anisotropy of the contact network decreases with @sirey cohesion, hinting at a re-
distribution within the contact network without affectitige total number of contacts.

*, Based on A. Singh, V. Magnanimo, and S. Luding. Effect adtfon and cohesion on anisotropy in quasi-
static granular materials under she&tP Conference Proceeding$542(1):682-685, 2013
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4.1 Introduction

What do sand, rice, coffee powders and cocoa powder haverimem? They all aregran-
ular materials a collection of non-Brownian, macroscopic particles wdthsipative inter-
actions. Their intrinsic nature leads to great deal of Bg&ng phenomena like segregation,
jamming, clustering, arching and shear-band formati#h [It is now well established that
the microstructure of granular matter plays a significate o the overall constitutive be-
havior. Finding a connection between the continuum beharid kinematics at microscale
is a great challenge and involves the so-called micro-maarwsition fL1, 102-105 217.

On this respect, particle simulations are relatively régenverful tools that allow to track
individual particles with complex interaction by solvingeiNton’s laws of motion. The
micro-macro transition is often applied on small, seemingbmogeneous representative
volume elements (RVE)s. An alternative is to use an inhomegas geometry where static
and dynamic, flowing zones i.e. high density and dilated gaeexist - at various confin-
ing pressure levels. In these kind of systems, by local avegaover adequate representative
volume elements (RVE)s: inside which all particles are as=iito behave similarly, one can
obtain local continuum relations covering a wide range atamy states. Such a procedure
has been performed systematically in two-dimensional @euig shear cell91, 92], and
three dimensional split-bottom ring shear c&0B-106. One special property of this set-up
is the fact that a wide, stable shear band initiates at thimosplit and remains far away
from side walls. The free surface of the split-bottom shedr allows to scan a range of
confining pressure, due to weight of the material, and israeted by the filling height.

Under shear, the microstructure of a grain packing devetopsotropic features in both
stress and contact network. The anisotropy depends onratepahistory of the material,
and at the same time on the contact and particle propertdsasistiffness, roughness and
angularity of particles3-8, 192 197]. In this chapter, we study the effect of particle contact
properties ( friction and cohesion) on the steady state asaopic properties of the system.
Further we analyze the problem at the microlevel and studeffect of particle friction on
the steady state behavior, by investigating the probgliigttribution (PDFs) of forces along
the eigen-directions of the local strain rate tensors.

The chapter is organized in 4 main parts. Secid®describes the model system specifying
the geometry, particle properties and interaction lawsselection4.3, the results from sam-
ples with different inter-particles friction on the forcestlibution are presented. Finall,4

is the section dedicated to discussion of results.

4.2 Model System Geometry

In this section, the methodology of our molecular dynamypgs simulations is briefly dis-
cussed. The details about particle properties are brieflggmted in Seel.2.1and we show
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our numerical setup in Se4.2.2 In Sec.4.2.3 we briefly discuss our averaging methodol-
ogy.

4.2.1 Numerical simulations

Discrete Element Methods (DEM), provide numerical soluti@f Newton’s equations of
motion based on the specification of particle properties stiffness, density, radius and
an interaction law like Hertzian/Hookeaf, [33]. Simulation methodology and material
parameters used in this study are the same as in our previnég105. The normal contact
force is related to overlap through a linear contact lws k,dn, with stiffnessky, if & > 0.

In tangential direction, the forck = k; & is also proportional to the tangential displacement
of the contact point, with a stiffnedg. The tangential force is limited by Coulombs law
for sliding fy < upfa, i.e. for up = 0 tangential forces do not exist. For more details on the
contact model seel g and references therein.

The system is filled witiN ~ 37000 spherical particles with density= 2000 kg/nf =

2 glcn?. The average size of particlesdg= 1.1 mm, with a homogeneous size-distribution
of the width 1— A = 1 — (a)?/(a?) = 0.18922 (withamin/amax = 1/2). The stiffness con-
stant of the particles ik = 100 NnT2. The rolling and torsion friction are inactive. The
normal and tangential viscosities afe= 0.002kgs* andy/y, = 1/4. In order to study
the influence of contact friction, we analyzed the systentlierfollowing set of friction
coefficients:

Hp € [0.0,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1.0]

To study the effect of contact cohesion, an adhesive efaasiic contact modellp? is
used to simulate cohesive particles, involving an elagtit Istiffnessk, = 500NnT 2, a
plastic stiffnesk; = 100NnT %, and an adhesive “stiffnes&:. The simulations were run
for different values of the non-dimensional cohesive gite§ = k:/k; = [0,0.1,1], in order
to focus on effect of cohesion the particle friction is seifiarally small to p, = 0.01.

4.2.2 Simulation Setup

We perform numerical simulation in the same setup descrédzetier in Sec2.1.1.1 It
consists of two concentric cylinders, with inner and outdincler radii asR, = 0.0147m
andR, = 0.11 m respectively, with a split radius beifRg = 0.085m (as shown in Fig.2).
The concentric cylinders rotate relative to each other rddhe symmetry axis (the dot-
dashed line). The ring shaped split at the bottom sepataandving and static parts of the
system, where a part of the bottom and the outer cylindetaatethe same rate. The system
is filled with N ~ 3.7 x 10* spherical particles with density= 2000 kg/n¥ = 2 g/cn? up to
heightH. The cylindrical walls and the bottom are roughened due mees@bout 3% of the
total number) attached/glued particles, as explained®3{105. When there is a relative
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motion at the split, a shear band propagates from splitipod®; upwards and inwards and
remains far away from cylinder-walls and bottom in most sas&ince we are interested in
the quasi-static regime, the rotation rate of outer cylinsiehosen to bcz% =0.01s1, such
that the inertial numbdr< 1 [119.

4.2.3 Averaging and micro-macro procedure

The averaging procedure used in this study as same as dischesfly in Sec2.3.2.1
From the simulations, we calculate stress and fabric tensdnich are represented ag
andF; respectively. It is important to mention that for the rcmat'rate% =0.01s1, the
contribution of the kinetic stress to the total shear steegsmuch smaller compared to the
contact stress. Hence, we ignore the dynamical stress anogctate on the contact stress.

For both stress and fabric tensors, we can calculate thengiyees and define the volu-
metric partTy = (T1 + T2+ T3)/3 (pressurg andF, for stress and fabric respectively) and
deviatoric component &&e, = \/((T1 — T2)2 + (T2 — T3)2 + (T3 — T1)2) /6 (Tgev andFgey for
stress and fabric respectively). The pressure is the igintsiress, whilegge, quantifies the
normal stress difference. The volumetric fabFicrepresents the contact number density,
while the deviatoric fabriéye, quantifies anisotropy of the contact network.

4.3 Results

For a given confining stress (pressure) and preparatioorisighe material can only resist
shear up to a certain deviatoric (shear) stress, called ytiedd“stress”, beyond which it
fails [90, 172 173. When yield pointg p), 0¥ 4e,) are collected in therge, — p-plane, a
yield locus can be identified, that fully describes the falbehavior of the material, i.e. its
transition fromstaticto dynamicstate. In addition, when the material is sheared continlyious
for along time, it reaches a steady state which is charae iy a steady state yield stress,
i.e. the stress needed to keep the material in moﬂpﬁ?,aég,), also referred to as the
critical state yield or “termination” locus. For simple nonhesive granular materials, the
termination locus can be predicted from a Coulomb type roiteas a straight line with
a slope that can be called the (critical) steady state magpis friction coefficientsp :=
(094ev)/p©. When cohesion is introduced at the contact, a more conteticpicture
appears as described in Ref0[].

When the material fails, shear strain gets localized inamgjicalled as shearband that, in
case of the split-bottom shear cell, is stable, rather wiitle @rror-function shape, but nev-
ertheless stays away from the walls in our system. In ordigietatify the established steady
state shearbands, Luding ibd3 105 found that forfo = 0.01, only part of the system with
local shear rate above a threshgfd= 0.08 can be assumed to be in the critical state. Hence
for this study we only consider data with local shear ratevatzthresholg*



4.3. RESULTS 71

In the following sections, we study the effect of particletion coefficient on the macro-

scopic behavior of the material by studying its effect orestrand fabric tensors. At the
same time, we also study how particle friction affects theroscopic properties of material
such as the probability density functions (PDP$)*) in the steady state. Later the effect
of contact cohesion on the steady state macroscopic behswlso briefly discussed.

4.3.1 Effect of particle friction on macroscopic behavior
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Figure 4.1: Volumetric fabrids, plotted against pressuge The different symbols corre-
sponds to data from simulations with different particletion coefficients, as given in the
inset.

In Fig. 4.1, we plot the volumetric fabric against pressure. For a gigri~, shows a slight
increase with pressure ( small drop is observed at the highessure level). Corresponding

to a value of pressure, different points correspond to iifievalues of local strain rate in
the system. With increasingp, F, decreases. Enhanced friction at contact increases the
stability of the systematic and reduces the number of cémtagjuired to achieve a stable
configuration, leading to reduction in the contact numbeisitg.

Fig. 4.2 shows the variation of deviatoric fabrige, against pressurp. Opposite to the
volumetric fabric, the fabric anisotropy increases witistfon. That can be related to the
decrease iifry: As the packing becomes looser anisotropy becomes strodgen shearing
the probability of particle contacts to establish in falmeadirections could be higher due to
presence of empty voids in systems with larggr

In Fig. 4.3, we plot the shear stress ratig against the contact friction coefficiepp. We
observe that fop, = 0, sp is non-zero due to interlocking between the particle$y. sp
increases rapidly and reaches an asymptote atfijgh
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Figure 4.2: Deviatoric fabri€ye, plotted against pressupe The different symbols corre-
sponds to simulations using different particle frictioreffiwients, as given in the inset.
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Figure 4.3: Shear stress ratp plotted as function of particle friction coefficient. The
inset shows deviatoric (shear) stresg, plotted against pressuge The different symbols
correspond to simulations using different particle focticoefficients+(pp = 0), X(Up =
0.01), o(pp = 0.05), O(pp = 0.5) and A (Lp = 1.0).

4.3.1.0.1 Contribution of strong and weak contacts Many studies such ag8[4, 155
190 197, have suggested that the contact network can be partiione two complemen-
tary subnetworks: atrongsubnetwork that accounts for the whole deviatoric stress,asa
weaksubnetwork that contributes only to the mean stress. M@amwrtve strong subnetwork
develops higher structural anisotropy compared to the wahketwork, which remains al-
most isotropic. In this section we re-examine our data fraevipus section in terms of
strong and weak force— transmission networks and conipib@ach makes to both stress
and fabric tensors for different values of particle frictioy.

Fig. 4.4 illustrates the relative contributions of subnetworkshwit < 1 andf* > 1 to the
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deviatoric stresgye, and deviatoric fabriéye,, together with the overall network. Fig.4a
clearly show that contribution of the weak subnetworloge, is negligible. In Fig4.4bwe
plot the contribution of weak and strong subnetwork&dg,. In agreement with previous
studies 155 197], a much stronger fabric anisotropy characterizes thengtembnetwork,
while the weak subnetwork is mostly isotropic. It is notethgrthatFye, for both subnet-
works is positive because of the definition of deviator, batexpect the main eigenvectors
of strong and weak subnetworks to have orthogonal direstids an initial attempt, for a
given particle friction, we assume the deviatoric fabridb®independent of pressure and

depend only onp, i.€., Faev(kp,p) = Fev(Hp)-
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Figure 4.4: Contribution of weak, and strong subnetwork&)agge, and (b)Fyey plotted
against pressure.

Fig. 4.5adisplays the normalized shear stregs= 0qe,/P as a function ofu, for the two
subnetworks and the overall system. We observe that for limdewvange of particle friction
Hp, the strong subnetwork carries almostsjl System withu, = 0 has finitesp due to
interlocking of contacts. Whole network and the strong stbwork show similar variation
in sp as a function of, i.e. an initial increase and then saturation for high

Fig. 4.5h displaysFqey as a function ofu, for the strong and weak subnetworks and the
complete network. We observe that the strong subnetworlesdrigher anisotropy than the
overall network. It is interesting to note that, similaFy., also starts with a non-zero value
for zeroy, i.e. the contact network for frictionless particles is aisotropic. It increases
with initial increase inup until it saturates for highy, > 0.3.

4.3.2 Effect of particle friction on force distribution

To better understand the macroscopic observations in #haqus section, we focus on its
micromechanical origin by looking at the probability dilstrtion function of forces. Micro-
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scopically, the nature of internal force network is of griegbortance in understanding var-
ious macroscopic observations. One important quantiat@y to study this is to measure
P(f) of the normal forced between neighboring particles, which carries the inforomat
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about the inhomogeneities in the force network.

Pioneering work of Liu et al.97] using carbon paper technique indicated that the number of
contacts carrying a given force decreased as the magnifulde torce increased. From the
work of [8, 18, 27, 49, 125 134, 174, it was shown that the probability distribution is also
sensitive to preparation history, packing disorder anébwuarparticle properties like contact

friction.

Figure 4.6: Probability density functions of normalizedmal forces for the data inside the
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shear band. The inset shows the same on a log-linear scale.
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4.3.2.0.2 Normalforces The probability distributions for normalized normal fosdeé =
f/(f) are shown in Fig4.6for different values of, (for the sake of clarity we show only
4 values ofp). We observe a very similar behavior f8¢f*) in the range of strong forces
f* > 1, a decrease iR(f*) with increasingf*. However, the contact friction affects the
distribution of weak force$* < 1, as foru, = 0.0 and 001, the distribution bends down as
f* — 0, but does not tend to zero, while an opposite is observeugbi,. The difference in
shape ofP(f*) for f* < 1 was also observed by Silbert et al7g while comparing three-
dimensional packings, and Azéma et a8, 9] for three-dimensional packings of spheres
and polyhedra. This shows that the fraction of contacts/gagweak forces increases with
increasingup, even though the total number of contacts decrease. Thisdifibe figure also
shows that with increasing friction, the tail of distriboniin Fig.4.6gets longer (fronup =
0.0 to 10), stating that the inhomogeneity in the contact netwodkgases with friction.
Moreover, the tail of the distribution getting wider withidtion reflects the effect on force
chains, that get stronger with increasing

Furthermore, we look &®(f*) along the principal eigen-directions of the local straitera
tensor of the overall networldp, 47]. Fig. 4.7 displaysP(f*) of forces for contacts aligned
with the compressive directions of local strain rate temswmalized by the mean force of
overall network. We observe that the tail of the distribotgets longer, with increasing,,
i.e. the increase in particle friction leads to inhomoggnii the forces along the com-
pressive direction. For all range of particle friction, $8@ subnetwork always stays more
homogeneous than the compressive subnetwork, and as shdvign 4.8 no clear trend in
the tail of the distribution is observed with increasimg This implies that friction mainly
affects the force distribution along the compressive dioac
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Figure 4.7: Probability density functions of normal foredsng the compressive direction
normalized by overall normal forces for the data inside theas band. The inset shows the
same on a log-linear scale.
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Figure 4.8: Probability density functions of normal for@sng the tensile direction nor-
malized by overall normal forces for the data inside the shead. The inset shows the
same on a log-linear scale.

4.3.2.0.3 Tangential forces Fig. 4.9 shows the distribution of the tangential forces, that
behaves very similar t8(f*) for normal forces, with a friction dependent cup for< 1.

Figure 4.9: Probability density functions of normalizeddantial forces for the data inside
the shear band. The inset shows the same on a log-linear scale

For completeness, we also analyze the probability digtdbwf tangential forces along the
compressive and tensile directions, as done previouslypr8ingly, the behavior is now
different between the normal and tangential componenttheatter does not show any
trend with friction in the compressive direction (F§10. This implies that friction does
not affect the tangential forces along the eigenvectorsphly the whole distribution of
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forces, displaying a different mechanism between normaltangential forces.
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Figure 4.10: Probability density functions of normalizadgential forces along (Left) com-
pressive and (Right) tangential directions, for the dadaimthe shear band. The inset shows
the same on a log-linear scale.

4.3.3 Anisotropy of force networks

Fig.4.11shows theP(f*) for normal forces along the eigen-directions for differesities of
Hp. P(*) of overall network lies in between th& f*) of forces in compressive and tensile
directions. For all values gi,, we observe that the(f*) of weak forces {* < 1) along the
tensile direction is higher compared to that in the comgvestirection, which is intuitive as
the majority of contacts will have small forces in the teasiirection. However, as the value
of force increase®(f* > 1), the probability along the compressive directions overesthe
one in tensile direction. We also observe that, with indreg,, the difference between the
distributions along compressive and tensile directionsdases, meaning that the anisotropy
in force network increases.

Fig. 4.12displays the same comparison for tangential forces. Agairirend ofP(f*) can
be inferred from the figure, as a confirmation that frictioeslaot affect the behavior of the
tangential components along the eigenvectors.

4.3.4 Effect of contact cohesion on macroscopic behavior

In Fig. 4.13 we plot the (shear) deviatoric stresge, against pressure, for different
cohesive-parametefs With increasing3, the relation between shear stregg, and pres-
sure becomes non-linear, as studied in more detail in R@7][Here, we focus on the effect
of particle cohesion on the volumetric and deviatoric fabiihe data collapse whd® is
plotted againsp for different, as shown in Fig4.15

In Fig. 4.14, we plotFye, against pressurp. The non-cohesive casg & 0) is identical to
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Figure 4.11: Probability density functions of normal fasadong the compressive, tensile
directions, and overall network for, = (a) 0, (b) 001, (c) 01, and (d) 10 in linear scale
for the data inside the shear band. The forces are normdlizéide mean normal force of
the overall network.
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Figure 4.12: Probability density functions of tangentaides along the compressive, tensile
directions, and overall network far, = (a) 001, (b) 1, and (c) 10 in linear scale for the
data inside the shear band. The forces are normalized by ¢la@ tangential force of the
overall network.
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Figure 4.13: Shear streggey plotted against pressuge Different symbols corresponds to
simulations using different particle cohesion paramefemss given in the inset.
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Figure 4.14: Volumetric fabri&, plotted against pressuge Different symbols corresponds
to simulations using different particle cohesion paramsgie as given in the inset.

previous analysis, i.e., an increase followed by slightel@se for the highest pressure. Inter-
estingly, for the intermediaf® = 0.5, Fyey is found to decrease with increasipgdifferently
from F,: With the increase in cohesion, contacts redistribute #edwes more isotropically,
with different contact orientations, even though the tatahber of contacts remains almost
unaffected.

For the strongest cohesigh= 1.0, a different behavior is observeée, first decreases
with pressure, starting at low pressure where the strucamiaotropy is almost unaffected
by cohesion; at higher pressure, a slight increase/sainrend is observed, even though
the fluctuations are too large to conclude on this.

For cohesive particles, the strength of adhesive contacefis pressure dependedOf].
Hence the probability of loosing a contact or building up a/m@ntact becomes pressure



80 CHAPTER4. EFFECT OF FRICTION AND COHESION ON BEHAVIOR OF GRANULAR MATERLS

T
0.14 | L, |
£40h 4t +
: e +
012 L wofree Daw e g T o
=" g?ﬂ L g P T
R LA L S
! Fa o .- LT s
01 | P T 1
Ji£ o & ] Ll L I
3 i () ! ° )
W 008 °0 go e %
° 6 ° L o % o oo
L O .
008 O% %ooo © %% c%ogoo
00®° 5 B &
0.04 © w0 o ° E
o B=00  +
° o =05 .
0.02 | ‘ ‘ B0 o
0 100 200 300 400 500
p(Nm?)

Figure 4.15: Deviatoric fabriEge, plotted against pressupe Different symbols corresponds
to simulations using different particle cohesion paramsgieas given in the inset.

dependent. With increasing cohesion, the particles wilieha tendency to stick and stay
together, hence less contacts are lost in tensile direciiba compressive direction is much
more affected than the tensile direction, which leads toefese in anisotropy.

4.4 Discussion

The effect of micro-mechanical parameters on the macrasélopv properties of a granu-
lar material have been studied by means of the discrete alemethod (DEM). Different
features have been highlighted, when varying contactidrichknd cohesion. The effect of
contact friction on both the macroscopic and microscopapprties of a granular material
have been studied in search of the connection between them.

In case of non-cohesive materials, the termination loctisgal state shear stress) is a linear
function of pressure, as predicted by the Mohr-Coulomtedoh. While analyzing the
contact network, as a split in weak and strong subnetwor&ghsgerve that the latter carries
the majority of the stress and fabric anisotropy, in agregméth previous studieslp5
197, with values increasing and then saturating with frictibnoking into the microscopic
properties, we find that friction affects the probabilitgtibution of normal and tangential
forces in a very similar fashion: the increase of contactifsn leads to an increase of the
heterogeneity (width of the PDF) in both the force networktowever, when the focus
moves on the anisotropy, i.e., the probability distribonia@long compressive and tensile
directions, a systematic increase in anisotropy (diffeeebetween the distribution mean
values along the two directions) is seen with increasirgiém, but only for normal forces.
Surprisingly, no similar trend is present in these dirawifor the tangential forces. Thus,
friction influences the behavior of the force network in bitshcomponents, moving from a
Gaussian-like bell-shaped distribution, with a peak adoitve mean, for weak friction to an
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exponential type with continuously decreasing probahiliith force, for stronger friction.

The relation between shear stress and pressure becomdiseamnwhen cohesion is intro-
duced at the contacts. The contact network is not affectedbgsion, since contact number
density remains unaffected by cohesion. The fabric arapgtis found to decrease with
cohesion. This hints at a possible redistribution of caistatong tensile and compressive
directions, while keeping the total number of contacts taubeffected. Hence cohesion
affects the spatial orientation of contacts but not thd taianber of contacts.

A comparison of strength of force chains for different cabesind friction deserves further
investigation in the future.
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CHAPTER 5

Effect of cohesion on shear
banding in granular materials

Abstract

Very often when dealing with powder technology, a fundaaig@aint is raised, what is the
effect of contact cohesion on the bulk behavior? A dimetessiparameter to determine the
intensity of cohesive forces is tgeanular Bond numbdiBo). Using DEM simulations, we
investigate the effect of contact cohesion on slowly shiedemse, dry, frictional-cohesive
powders in a split bottom Couette cell. Because of the gegraavide stable shear band
forms and the steady state becomes the focus. The sheanggittitnomenon is indepen-
dent of cohesion for Bond number Bol and dependent on cohesion for Bol, when
cohesive forces start to play an important role. Inside theas band, we find that the mean
normal contact force is independent of cohesion, while diheek carried by contacts along
the (compressive and tensile) eigen-directions of thellsttain rate are cohesion depen-
dent. Forces carried by contacts along the compressive ansile directions are symmetric
about the mean force, while the force along the neutral dioeds like the mean total force.
The anisotropy of the force network increases with cohest@shesion also increases the
heterogeneous structures in both compressive and terigdietions.

*, Based on A. Singh, V. Magnanimo, K. Saitoh, and S. Ludinffe& of cohesion on shear banding in quasi-
static granular materiaPhys. Rev. EUnder Review, 2014
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5.1 Introduction and Background

Granular materials such as sand and limestone, neithevédika elastic solids nor like
normal fluids, which makes their motion difficult to prediavhen they yield under slow
shear, the relative motion is confined to narrow regionsieen large solid-like parts) called
shear band22, 70, 169. Shear bands are observed in many complex materials, wduicie
from foams B3] and emulsions8, 141] to colloids [42] and granular mattedf3, 22, 54, 70,
91,92 114,117,118 126 133 174. There has been tremendous effort to understand the
shear banding in flow of cohesionless graih3 P2, 54, 64, 70, 91, 92, 114, 117, 118 126
133 174. However, real granular materials often experience iptaticle attractive forces
because of different physical origingan derWaals force due to atomic forces for small
grains R9, 152 217, capillary forces due to presence of humidi®§g 116, solid bridges
[21], coagulation of particles53], and many more.

The question, arises how does the presence of attracticed@ffect shear banding? So
far, only a few attempts have been made to answer this questocerning dense metallic
glasses93, 189, adhesive emulsiond b, 30], cemented granular medi&(], wet granular
media fL15 171 and clayey soils233. Recently, rheological studies on adhesive and non-
adhesive emulsiond b, 30, 156 reported that the presence of attractive forces at contact
affects shear banding by affecting flow heterogeneity antskg.

Another unique yet not completely understood feature ofigla materials is their highly
heterogeneous contact force distribution. The heteratydnehe force distribution has been
observed in both physical experiment8[70, 97, 98, 112 125 and numerics$5, 155 178
186. While huge effort has been made to understand the for¢ehiison of cohesionless
particles L8, 70, 95, 97, 98, 112 125 155 176, only limited studies have aimed to un-
derstand the same for particles with attractive interastip6, 154, 158 208 212, 232.
Richefeu et al. 159 studied the stress transmission in wet granular systeresig to
isotropic compression. Gilabert et abg focussed on a two-dimensional packing made of
particles with short-range interactions (cohesive powdender weak compaction. Yang et
al. [237 studied the effect of cohesion on force structures in acstanular packing by
changing the particle size. In a previous stud@7),the effect of dry cohesion at contact
on the critical state yield stress was studied. The crititale yield stress shows a peculiar
non-linear dependence on the confining pressure relatedhteson. But the microscopic
origin was not studied.

In this chapter, we report the effect of varying attractioeces at contact on the steady state
flow behavior and the force structure in sheared dry cohgsiveders. Discrete Element
Method (DEM) simulations are used to investigate the systemicro (partial) and macro
level. In order to quantify the intensity of cohesion, a &tidn of thegranular Bond number
[56, 129 167 is introduced. We find that this dimensionless number veeyl waptures
the transition from a gravity/shear-dominated regime ®dbhesion-dominated regime. To
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understand this further we look at the effect of cohesiorhemtean force and anisotropy, by
investigating the forces along the eigen-directions ofitical strain rate tensor. Intuitively,
one would expect only the tensile direction to be affecteddiyesion, but the real behavior
is more complex. We also discuss the probability distridmgiand heterogeneities of the
forces in different directions to complete the picture.

The chapter is organized in four main parts. Secid@describes the model system in detail
specifying the geometry, details of particle propertiegiiaction laws and the micro-macro
procedure. In sectioB.3, the velocity profiles and shear band from samples with fie
contact cohesion are presented. In the same section, tte doisotropy and probabilities
are studied too. Finally, sectidn4is dedicated to the discussion of the results, conclusions
and an outlook.

5.2 Discrete element method simulation (DEM)

In this section, we explain our DEM simulations. We introdammodel of cohesive grains in
Sec.5.2.1and show our numerical setup in S&2.2 In Sec.5.2.3 we introduce a control
parameter, i.eglobal Bond numberwhich governs the flow profiles and structure of the
system.

5.2.1 Model

Discrete Element Methods (DEM), provide numerical solui@f Newton’s equations of
motion based on the specification of particle properties stiffness, density, radius and
a certain type of interaction laws like Hertzian/Hooke&nd3]. Simulation methodology
and material parameters used in this study are the same as jimevious work 107. The
adhesive elasto-plastic contact modk0?, is used to simulate cohesive bulk flow. The
model is discussed in detail in Cha}.and is briefly touched below.

Briefly, in the adhesive elasto-plastic contact model,gtpbysical phenomena: elasticity,
plasticity and adhesion are quantified by three materiadrpatersky, k;, andkc, respec-
tively. kq together withk, andk. signifies the intensity of plastic dissipation, and adhesio
force respectively. Plasticity disappears ker= k, and adhesion vanishes fky = 0. The
hysteretic force is introduced by allowing the un- and rading stiffnessk; to depend on
history of the deformation, which interpolates linearlyveen these two extremels, (and
kp) (for details see Eq. 1 inP2). The overlap §) when the unloading force reaches zero,
resembles the permanent plastic deformation and depemiiaearly on the previous max-
imal force. The negative forces reached by further unlapdne attractive, adhesion forces,
which also increase nonlinearly with the previous maxinmahpression force experienced.
The maximal adhesion force is given by

fm = —kcémin, (5-1)
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With Gmin = (£ Smax.

Three physical phenomena: elasticity, plasticity and saireare quantified by three mate-
rial parameters,, ki, andke, respectively. Plasticity disappears far= k, and cohesion
vanishes fok. = 0.

The contact friction is set tg = 0.01, i.e. artificially small, in order to be able to focus on
the effect of contact cohesion only. In order to study theuirilce of contact cohesion, we
analyzed the system for the following set of adhesivity pergersk.:

ke € [0,5,10,25,33,50,75,100,200Nm 1 | (5.2)

which has to be seen in relationkp= 100 NnT. Other parameters, such &s[180 and
¢r [102 18( are not changed here.

5.2.2 Split-bottom ring shear cell

We perform numerical simulation in the same setup descrézgtier in Sec2.1.1.1 It
consists of two concentric cylinders, with inner and outdincer radii asR = 0.0147m
andR, = 0.11 m respectively, with a split radius beifRg = 0.085m (as shown in Fi.2).
The concentric cylinders rotate relative to each other malahe symmetry axis (the dot-
dashed line).

The ring shaped split at the bottom separates the moving tatid parts of the system,
where a part of the bottom and the outer cylinder rotate as#me rate. The system is
filled with N ~ 3.7 x 10* spherical particles with density = 2000 kg/n? = 2 g/cn? up to
heightH. The cylindrical walls and the bottom are roughened due mees@bout 3% of the
total number) attached/glued particles, as explained®3{105. When there is a relative
motion at the split, a shear band propagates from splitipod® upwards and inwards and
remains far away from cylinder-walls and bottom in most saskince we are interested in
the quasi-static regime, the rotation rate of outer cylinsiehosen to bé}—T =0.01s1, such
that the inertial numbdr< 1 [119. The simulation runs for more than 50s.

5.2.3 Dimensionless number

Intensity of cohesion can be quantified by a ratio of the maxmattractive force to a typical
force scale in the system. For example, Nase et &29[introduced the granular Bond
number under gravity, which compares the maximum attradtvce at contact with the
weight of a single grain. For plane shear without gravitheos b6, 1624 used a ratio
between the maximum attractive force and the average faredalthe confining pressure.
In our analysis, we introducegobal Bond numbeas

Bo= <me> , (5.3)
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wherefy and(f) are the maximum allowed attractive force reached at a co(daen by

the contact model, Eq5(1)) and the mean force per contact reached close to the bottom,
respectively. For the calculation of mean forde, layer of two particles diameters which

is few particle diameter away from bottom is chosen. Bec#usshear band initiates from
the bottom, we choose the mean foféé at the bottom to understand the effect of cohesion
on these shear bands.

It is important to mention that the mean compressive fortéh@bottom) corresponds to
the weight of the material above, whereas the maximum é&iteaforce corresponds to the
pull-off force, which is directly related to the surface emeof the particles. These two
material and particle properties are easily accessibleraxgntally.

The Bond number is a measure of the importance of adhesiges@ompared to compres-
sive forces. A low Bond number indicates that the systeml&ively unaffected by attrac-
tive force effects; a high number (typically larger than pimelicates that attractive forces
dominate. Intermediate numbers indicate a non-trivighbed between the two effects.

In parallel with the global Bond number as defined above, we define two variants of
this quantity locally. A local simulation based Bond numBef(P) = f3,(P)/(f(P)) can be
define by comparing the maximum attractive force reachedgaten pressure (which can
be less than or equal to the maximum allowed attractive fgien by contact model) with
the mean force at that pressure (subsdrigipresents the local quantity, while superscsipt
denotes that this definition takes input from simulatiorajiafnother variant of thi8of(P)

is defined in Appendix, which compares analytical predicfir maximum attractive force
with mean force at that pressure.

Figure5.1displays the global Bond numbBo and the mean values &7(P) andBg?(P)
(averaged over different pressure) as functions of thesadheparametek;, where they are
comparable with each other. For the sake of simplicity inrést of this chapter, we use the
global Bond numbeBo to quantify the intensity of cohesion.

5.3 Results

In this section, we present our results of DEM simulationsSéc5.3.1, we analyze the flow
profiles and shear banding in our system. In $e8.2 we study distributions and structures
of force chain networks in shear bands. In S£8.3 we explain anisotropic features of the
force chain networks.

5.3.1 Effect of cohesion on the flow profiles

Figureb5.2displays both top- and front-view of samples with the santiadilheight, i.e. the
same number of particles, and different global Bond numliers- (left) 0 and (right) 486,
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Figure 5.1: (Color online) Variants of granular Bond numipéotted against cohesive
strengthk;, where the red circles represent the global Bond nun@mgrwhile the blue
squares and green triangles represent the average valBe¥Bj andBd?(P), respectively.

respectively, where the color code represents the azirhdis@lacement rate of particles.
From the front-view of particles, the shear bands (greeoredlarea) move inwards and get
wider with increasing “height”, while the shear band alsovesinwards and becomes wider
with increasing “cohesion".

Figure 5.3 shows the non-dimensional angular velocity profiles at dpedurface against
radial coordinate normalized with mean particle diaméderwhere we assume translational
invariance in the azimuthal direction and take averagesttectoroidal volumes as well as
many snapshots in tim@{]. The angular velocity profile can be well approximated by an
error function

w:A1+A2erf(%) (5.4)

as in the case of non-cohesive materidl3 b2, 54, 103 105, whereR. andW are the po-
sition and width of the shear band, respectively. Here, veetlus dimensionless amplitudes,
A; = Ay = 0.5, for the whole range of the global Bond numbers, while weAjse 0.58 and

A, = 0.42 for the strong cohesion witBo = 4.86. We summarize the dimensionless ampli-
tudes,A; andA, in Table5.1 Figure5.4plots the position of shear band relative to the split
at bottomRs — R; and the width of shear bai at the top surface against the global Bond
number. Here, within the error-bars, both the position aititware independent of cohesion
if Bo< 1. However, the shear band moves inside and becomes widetheitglobal Bond
number ifBo> 1.

Both the position and width of shear band also depend on tlydt@) in the system. Figure
5.5displays the non-dimensional position and width of the sbaad for different values of
Bo as functions of the height scaled by the filling height, z&H. In this figure, the shear
band moves closer to the inner cylinder and gets wider wigfg@aching to the top layer,
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Figure 5.2: (Color online) Snapshots from simulations with differeshesion strengths, but the
same number of mobile particléé= 34518, seen from the top (Top) and from the front (Bottom).
The material is (a) without cohesiddio = 0, and (b) with strong cohesioBo = 4.86. The colors
blue, green, and orange denote the particles with displestsrin tangential direction per second
rdg < 0.5mm,rde <2mm,rdp <4mm, and dg > 4 mm, respectively

which is consistent with the previous cohesive and non-swhestudies43, 52, 54, 103
105 107, 160. In Fig. 5.5a the lines are the prediction by Unger et &1[]:

S S

where the exponentis given Ily= 2.5 for cohesionless particles. If the global Bond number
is less than one, our numerical data show very good agreemiteriqg. 6.5). AboveBo=1,
however, the exponelf decreases with the global Bond number as in Tahle Note that
Eq. (6.5 slightly deviates from the results near the top surfacédf tohesion is strong
(Bo=2.22 and 285). In Fig.5.5b the lines are the prediction by Ries. et dl6Q):

z

W(z) =V |1 (1- 2)°] g (5.6)

whereW,, is the width at the top surface and the exponent is givel by0.5 for cohe-
sionless particles. Bo < 1, Eq. 6.6) with Wp = 0.012 andy = 0.5+ 0.1 well agrees with
our results. However, o> 1, both the width\,p, and exponeny increase with the global
Bond number as in Tablg.1 In addition, Eq. $.6) deviates from the results near the top
layer if the cohesion is stron@6 = 2.22 and 285), where the width initially increases with
the height, but saturates abay#l ~ 0.6. Hence foiBo > 1, we choose width at that height
to beWop and usey = 0.66 and 07 for Bo= 2.22 and 285, respectively.

From the above results, we find that the cohesive forces leetywarticles drastically af-
fect the flow profiles. Eqs5(5) and 6.6) very well predict the position and width of the
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shear bands, respectively fBo < 1. For largeBo these equations do not work anymore at
large heights since the shear band interferes with the ieylgrder. The shear band, which
is a large velocity gradient, is caused $ljding motionsof particles. However, cohesive
forces strongly connect the particles in contacts (in otvmds, the cohesive forces promote
collective motion®f particles) and prevent them from sliding. As a result,uabcity gra-
dient is smoothed and the width of shear-band is broadengd.observation is consistent
with previous studies on adhesive dense emulsi@dg]| Interestingly, such an effect of
cohesion is suppressed if the global Bond number is lessatheywhere our numerical data
agrees well with previous theoretical/numerical studieaon-cohesive particled$0, 211].
Hence, we show that the global Bond numlB;, captures the transition between essentially
non-cohesive free-flowing granular assemb(ige < 1) to cohesive onefBo > 1).
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Figure 5.3: (Color online) Non-dimensional angular vetpgirofile w at the top surface
plotted against the radial coordinatscaled by the mean diamet@t). Different symbols
represent different values of the global Bond number ginghé inset, where the solid lines
represent the corresponding fits to Eg 4.

5.3.2 Structure and distribution of forces in shear bands

To understand the microscopic origin of the anomalous flafiles of cohesive aggregates,
we study structures of force chains and statistics of therjiatrticle normal contact forces.
Recently Wang et al.226 reported the shape of probability distribution as an iathc for

transition of flow from quasistatic to inertial flows. In théection, we us similar philosophy
to determine if there is any change in the shape of PDFs astiesive strength is increased.

Figure 5.6 shows force chains of positive ((a) and (b)) and negatived(el (d)) normal
forces in the systems with low cohesion ((a) and (c)) andnstreohesion ((b) and (d)).
Grey color shows the weak forces, while red and blue colossvghe strong positive and
negative forces respectively. The strong or weak positiveds are forces larger or smaller
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Figure 5.4: (Color online) (a) Position and (b) width (botlaled by mean particle diameter)
of shear band at the top surface plotted against the globadl Bamber. Symbols with
error-bars are the data, while the lines are only a guide¢o ey

Wi/<d>
»

L L L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z/H z/H

(@) (b)

Figure 5.5: (Color online) (a) Position and (b) width (botlaled by mean particle diameter)
of shear band in the cell plotted against heiglstaled by the filling heighiti. Different
symbols correspond to values of the global Bond number givéime inset. The lines in (a)
and (b) are the predictions, Eg5.%) and 6.6), respectively.

than the mean positive fordges. A similar approach is adopted to identify the strong/weak
negative forces. In this figure, we observe that both thetipesind negative forces are fully
developed in the cohesive system ((b) and (d)), where tlemsityy of the positive/negative
force inside of the shear band is much stronger than thatdeutdn addition, the strong
(positive/negative) force chains are percolated throhgtshear band region. As explained
in Sec.5.3.3 we can also see that the positive and negative force chaegraigned in their
preferred directions, i.e. compressive and tensile doest respectively.

Figure5.7 displays scatter plots of the interparticle forces agamstlaps between the par-
ticles in contacts, where each point corresponds to a coatatdifferent colors represent
different height, i.e. pressure level in the system. Thedatl right columns are the results
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Bo | A Ao H B % range | Wop y

0 0.50+ 0.0005| 0.500+ 0.0005| 0.0365| 2.52 | 0.1-1 0.0117| 0.507
0.17 | 0.50+ 0.0005| 0.499+ 0.0005| 0.0365| 2.52 | 0.1-1 0.0118]| 0.523
0.33 | 0.49+ 0.0007| 0.500+ 0.0007| 0.0365| 2.512| 0.1-1 0.0118| 0.555
0.81 | 0.49+0.0008| 0.500+ 0.0008| 0.0361| 2.494| 0.1-1 0.0119]| 0.583
1.05| 0.49+0.001 | 0.50H-0.001 | 0.0359| 2.510| 0.1-1 0.0120| 0.582
1.50| 0.49+0.002 | 0.504-0.002 | 0.0364| 2.453| 0.1-0.8 | 0.0126| 0.613
2.22 | 0.49+0.003 | 0.5010.003 | 0.0368| 2.367| 0.1-0.6 | 0.0138| 0.667
2.85| 0.49+0.005 | 0.502+ 0.005 | 0.0369| 2.259| 0.1-0.6 | 0.0160| 0.713

Table 5.1: Table showing filling height of the systémand fitting range/H for Egs. 6.5)
and 6.6), together with the fit parametefg, A in Eq. 6.4), B in Eq. 6.5), Wop andy in
Eq. 6.6).

Figure 5.6: (Color online) Force chain networks of posith@mal forces foiBo = (a)
0.33 and (b) 285, and negative normal forces f8o = (c) 0.33 and (d) 285 at height
0.02 < z< 0.05 m, respectively.

of inside and outside of shear bands, respectively. Therlaig the higher is the average
force (or overlap), to sustain a pressure due to the weigthieoparticles. For almost all val-
ues ofBo, the density of points towards unloadikgbranch inside the shear band is higher
compared to the points outside. We also observe that witle@singBo, the most contacts
(except for small pressure) drift towards and collapse raddhbe limit branch of the contact
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Figure 5.7: (Color online) Scatter plots of overlaps anadésrbetween all contacts inside
(left) and outside (right) of the shear bands for differBot= 0.33 and 285. The different
symbols represent a zoom into the vertical ranges8 mm 41 mm (green stars), 15mm
+1 mm (blue circles), 22 mnt:1 mm (magenta dots), 29 mml mm (cyan squares), with
approximate pressure as given in the inset. Note that thetgdio not collapse on the
line ky(8 — O¢) due to the finite width of the size distribution: pairs of larghan average
particles fall out of the indicated triangle. Radial rang@® m< r < 0.085 m signifies data
points inside the shear band, while the radial rang&®m< r < 0.065 m signifies the data
points outside the shear band.

model (especially inside shear band). This implies,cohesive forces are more pronounced
in shear bandsather than the outside.

5.3.2.1 Mean force and overlap in shear bands

Figure 5.8 displays the mean normal force,), in shear bands against pressupg for
different values of the global Bond number, where the satigils the prediction by Shaebani
et al. [L79 for non-cohesive granular systems as

_ 4n(a?)
Ca

with the 2'd moments of size distributiota?), coordination numbeE, volume fractiong,

and mean pressuk®). Notably,the mean normal force is almost independent of cohesion

(f) (P) (5.7)
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Figure 5.8: (Color online) The mean normal force inside &fshear band plotted against
pressure, where different symbols represent the globatiBamber (as given in the inset)
and the solid line is given by Ed5 (7).

and linearly increases with pressure as in the cases dof stati-cohesivel25 178 and co-
hesive system2B2. We also observe that for low pressure, Eg7) slightly over predicts
the value of the mean force, while for higher pressure thdiptien well captures the data.

While the mean value is insensitive to cohesion, the meaitiywand negative normal
forces,(fpos) @and(freg), strongly depend on cohesion. Figir® shows the mean positive
and negative forces against pressure for different valt@opwherethe intensities of the
mean positive and negative forces increase with cohesiame observed the fully developed
positive/negative force chains in the cohesive system @&). Note that the mean positive
force is linear against pressure and independent of canesiowBo = 1, while its depen-
dence on pressure becomes nonlinear alBw/e 1. Though the origin of this nonlinearity
is not clear, it is readily understood that cohesion enhaittee collective motion of the par-
ticles, i.e. the particles rearrange less and the systemasnechanically constrained state.
Because the increase of cohesion also increases the nidgpitmegative forces, both the
positive and negative force chains remain strong to balaachk other. It is noteworthy that
in Fig. 5.7, the increase oBo increases the density of points in both positive and negativ
extremes, inside the shear band.

The cohesive force seems not to affect the average numbentiats, see ReflB1], where

we reported that cohesion had practically no effect on tiexd number density (volumetric
fabric) in the same system. Fi§.10shows the fractions of repulsive and attractive contacts
against pressure for different Bond numbers, togetherthigtoverall coordination number.
An increase of cohesion generates more attractive contéudlis it decreases the number of
repulsive contacts. Interestingly, the overall mean forreains independent of cohesion
and contacts simply redistribute between the repulsiveadinactive directions.
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Figure 5.9: (Color online) The mean (a) positive and (b) tiggdorces inside the shear
band plotted against pressure, where different symboiesept the global Bond number
(as given in the inset).
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Figure 5.10: (Color online) The fractions of (a) positiveda() negative contacts inside
the shear band plotted against pressure, where differemialg represent the global Bond
number (as given in the inset).
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Figure 5.11: (Color online) Normalized mean over inside the shear band plotted

against pressure, where different symbols representd%UBond number (as given in the
inset).

In contrast to the mean force, the mean overlap betweerclesrth contact depends on co-
hesion non-linearly as shown in Fig.11 In our model of cohesive particle$(2, overlaps
are positive for both positive and negative forces. It istwonentioning that for lovBo, the
time evolution of(d) saturates quickly, while foBo= 1.5,2.22 it takes longer to longer to
reach the steady state due to the plastic increase of thiapweraveragel07.

5.3.2.2 PDFs of forces and structures of strong force chains shear
bands

The distributions of forces are also strongly affected blgesion. Figureés.12 shows the
PDFs of normal forces in shear bands for different pressadecahesion, where the forces
are scaled by the mean normal force, f.e= f/(f). As can be seen, the PDF in shear band
for cohesion-less particles is almost independent of presd-ig.5.129, while it depends
on pressurdf the cohesive forces are very strong (F®12h. Figure5.13displays the
variations of the PDFs for different intensities of cohesiwhere we find that the PDF
becomes broad with increasing cohesion and this trend i mpanounced foBo > 1.
Therefore the strong cohesion, which leads the system to “mechagifaistrated state",
induces large fluctuations of positive/negative forcég note that Yang et al.2B2 also
found similar trends in static three-dimensional packiiogsmall sized particles, where the
PDF becomes broader, as particle size decreases, i.ei@moheseases. Broadening of the
PDFs was also observed by Luding et 41]] during cooling down of a sintered system.

The cohesive forces change not only the shapes of the PDFalsbithe asymptotic behav-
iors of the PDFs, i.e. the structures of strong force chabusfirst, we fit their tails by a
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Figure 5.12: (Color online) Probability distribution oftimormalized force for (a) cohesion-
lessBo= 0 and (b) highly cohesivBo = 2.85 systems at different pressures in the system.

Different symbols represent value of local pressure (asrgin the inset).
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Figure 5.13: (Color online) Probability distribution of moalized forcef* for (a) low pres-
surep = 50 Nm 2 (close to top) and (b) high pressupe= 400 Nn 2 (close to bottom)
in the system for data inside the shear band. Different sysmepresent the global Bond

numberBo (as given in the inset).
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Figure 5.14: (Color online) Fit parameters ¢aand (b)fy plotted against Bond numbBuo.
Different symbols represent value of local pressure (asrgin the inset).

stretched exponential functioA14]
P(f*) ~e (F'/T)" (5.8)

with a characteristic forc& and a fitting exponertt. Figure5.14displays the characteristic
force and the exponent against the global Bond nunitzer If Bo < 1, we obtainfg =
1.44+0.1 anda = 1.6+ 0.1, which is very close to that predicted by Eerd et a214

for three-dimensional cohesionless ensemble generatddbgimulations. ForBo > 1,
however, both the characteristic force and fitting expodentease with increasing cohesion.
The decreasing fitting exponent hints at stronger fluctaatio the force distribution. A
Gaussian tail of the probability distribution would indiesa more homogeneous random
spatial distribution of forces. The deviation towards apanential distribution can be linked
to an increase in heterogeneity in the spatial force digtion; as mentioned in previous
studies 113 153 235. Therefore, we conclude thdte tail of the PDF becomes more
exponential with increasing cohesion, which implies a legfeneous spatial distributions of
strong forces

Also we observe that the fitting exponent decreases witteasing pressure, which again
implies that at high pressure spatial distribution is ma®hgeneous compared to that for
low pressure.

5.3.3 Anisotropy of force chain networks in shear bands

In the case of simple shear, there are two non-zero eigeswaifithe strain rate tensor,
which are equal in magnitude but opposite in sign, and thel thigenvalue is zero. The
plane containing the eigen-vectors with non-zero eigerals called the “shear plane”,
where the eigen-vector with zero eigenvalue is perpendidol this plane (parallel to the
shear band). We call the eigen-directions with positivgatige, and zero eigenvalues as the
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Figure 5.15: (Color online) A sketch showing the shear bandadted line, shear plane, and
three eigen-directions of the strain rate tensor. Greyslstgow inner and outer cylinders,
while solid brown line shows the split, dashed black linevehithe shear band which initiates
at the split at bottom and moves towards inner cylinder asites towards the top. Green
arrow represents the eigen-direction for neutral eigerevaf the strain rate tensor, which is
tangential to the shear band, perpendicular to this vesttiva shear plane (yellow shaded
region), which contains the eigen-directions for comgoeséred arrow) and tensile (blue

arrow) eigenvalues.

compressivgtensile andneutraldirections, respectively. Since the compressive andl&ensi
directions are associated with loading and unloading ofaxis, respectively, it is intuitive
that in the absence of any external force, the mean forcednmilpositive in compressive
direction, negative in tensile direction, and almost zarneutral direction.

In our system, both compressive forces and shear play a o@ohbole, where the neutral
direction gets a contribution from external compressivedaonly, while the two principal
(compressive and tensile) directions get contributioosifboth shear and external compres-
sive force. Because the cohesive force is activated by difigait should affect the force
along the tensile direction. Note that the shear band hei igertical, instead its orientation
changes with depth as shown in the schematic in%ith In this figure, the eigen-direction
of the neutral (zero) eigenvalue (green arrow) moves wighstiear band. This turning of
the neutral eigen-direction makes the shear plane tilt digwigich is shown by the yellow
shaded regions). To extract the contacts aligned along thesctions at a given pressure in
the system, we first calculate the local strain rate tensteatract the three eigen-directions
ny. Next, we look for contacts with unit contact veciws which satisfy the conditionc.ny |

> 0.9. The contacts which satisfy the condition for compressigen-direction are termed
compressive, and tensile and neutral contacts are defingldy. The forces carried by
compressive, tensile, and neutral contacts are denotéghyfien, and fhey respectively.
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Figure 5.16: (Color online) Difference between the meandseiin different eigen-directions
of the strain rate tensor subtracted from overall mean fplotted against local pressure in
the system. Different symbols represent the global BondbarBo (as given in the inset).

Figure 5.16 shows the mean forces relative to overall local mean fof(égn/ten/neuz

(feomyterynew — (), plotted against pressure for different valuegof We find thatféom(>

0) and f,,(< 0) are symmetric about zero, arfg,,~ 0. Because the mean force along
the neutral direction is independent®d, the cohesion does not affect the neutral direction
(due to the absence of shear in this direction). Howef{g{,decreases with pressure and
cohesion, whilef,,,, increases to keep the mean overall force to stay indepenfienhe-
sion. Both positive and negative forces are present in edlctibns. However, the positive
and negative forces dominate in the compressive and tedisdetions, respectivelyThe
anisotropy of forces is more pronounced with increasingguee and cohesigas observed

in Fig. 5.6.

Next, we study the PDFs of forces in the compressive, teragile neutral directions. Figure
5.17displays the PDFs along each direction for non-coheBive- 0 and highly cohesive
Bo= 2.85 systems, where the forces along different directionsaammalized by the overall
mean force. In a non-cohesive system (FHdL78, we observe that fof* < 1, the PDF
along the tensile direction is higher compared to that fercbmpressive direction, which
is intuitive as the majority of contacts will have smallerdes in the tensile direction. For
f* > 1, however, the PDF along the compressive direction is migbmpared to that along
the tensile direction, as force along the compressive tiineshould be stronger compared
to that along the tensile directio(Q1]. For a highly cohesive system (Fi§.17h, a sim-
ilar behavior is observed for positive forces, while for dnpasitive and negative forces,
due to attractive forces the probability is higher alongtesile direction compared to the
compressive direction. The PDFs of forces in the neutraldiion lie in between those in
compressive and tensile directions, suggesting a closestage distribution of forces in the
neutral direction.
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Figure 5.17: (Color online) Probability distributions obmmalized forcesf* = f/{f) in
compressive, tensile, and neutral directions inside tbardbands. Here, we show the results
for high pressure in (a) non-cohesive and (b) high cohesistems. The PDFs of overall
normalized forces are also shown.

Figure5.18shows the variations of the PDFs along compressive andéetisections for
different values oBo. If Bo< 1, the PDFs collapse on top of each other. However, the PDFs
get wider with increasing cohesion aboBe = 1 (such widening is more prominent for
positive and negative forces in the compressive and tediséetions, respectively). Again,
we confirm that strong cohesion leads to an increases ofiysitd negative forces in
the compressive and tensile directions, respectivelyré@fbee,the force distributions in the
principal directions gets more heterogeneous with incirgsohesion for Bo> 1, and hence

the heterogeneity of the overall force structure increases

The results in this section, suggest that for Bay compressive forces and shear dominates
and governs the distribution of forces along compressivketansile directions. The forces
respond to external compression and shear, i.e., due to, gfaeticles can rearrange and
avoid very large forces. In contrast, for hiBl, cohesion dominates over external compres-
sion and the contact forces respond mainly to cohesion agar.sBue to the sticky nature
of cohesive forces, rearrangements of the contact netweckrhe difficult, and very large
contact forces as well as strong sticking forces occur tegeand hence the contact network
becomes more heterogeneous.

5.4 Discussion and conclusion

In this chapter, we have studied the effect of cohesion oardtending in dry cohesive pow-
ders. We used a dimensionless parameter the gidoadl number Boo quantify how strong
cohesive forces are relative to compressive forces. WedfthatBo ~ 1, very well predicts
the transition from a free-flowing, non-cohesive system tolaesive system. Interestingly,
we found that many quantities of the system show a transiti@o ~ 1.



102 CHAPTERS. EFFECT OF COHESION ON SHEAR BANDING IN GRANULAR MATERIALS

10° 10°

i i " Bog 2000
» B0g=0.17 —o—
2 =
¥ Bog=105 -
i N Bog=150 —o—
10tk ~ fl \ Bog=2.22 o | wth
| Bo,=2.85
;\ g
2 =
a / &
10? : W= 1 10?f
\; X
WA\
3 \ 3
10 10
4 2 0 2 4 6 8 10 4

Figure 5.18: (Color online) Probability distributions ainimalized forces in (a) compressive
(f& = fe/(f)) and (b) tensile {;* = f;/(f)) directions inside the shear bands. Here, we show
the results for high pressure and different strength of sioime where different symbols
represent the global Bond numligo (as given in the inset).

5.4.0.0.1 Shear band Width and center position of the shear bandBor< 1 stay fairly
the same as for non-cohesive material, and show a dependeicobesion only foBo> 1.
Cohesive forces tend to keep the particles in contact to beeaxied, i.e. the cohesive forces
assist the “collective motion” of particles. As a resulte tehear band i.e. the velocity
gradient, tends to be flattened. Therefore, the width of teaisband increases with the
strength of cohesion, i.e. the Bond number. This would intpht, presence of attractive
forces works against the localization of shear.

5.4.0.0.2 Forces and their direction dependenceThe mean forcéf)(P) (with POH —

2) is found to be independent of cohesion, like the number ofaxis. With increasingo,
stronger attractive negative forces are possible at theacb(which is intuitive). However,
these negative forces must be balanced by some positivesftwenaintain the same overall
mean force. Therefore, the positive forces also must bedarger as compared to non-
cohesive systems.

Because we apply shear, compressive/tensile contactsduredd in the system in compres-
sive/tensile eigen-directions of the local strain ratestenHowever, there exists a direction
along which no shear takes place. We observe that the mees dtong this direction re-
mains unaffected by cohesion, which implies that cohesivee’s in the system are induced
by shear. Both negative and positive forces are influenaadydioth tensile and compressive
directions.

The mean force carried by contacts along compressive asdeetirections issymmetric

about mean overall force. F&o < 1, this difference i.e. anisotropy of the force network is
independent of cohesion, while fBo > 1 the anisotropy in the force network increases with
cohesion. Macroscopically, this anisotropy in force iedily related to the shear stress, we
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observe that the trend in force anisotropy is very similatht® trends found in the shear
stress in previous workip7].

5.4.0.0.3 Force probability distribution ~ Since granular systems are known to be hetero-
geneous in nature, we also analyzed the effect of cohesitimediorce probability distribu-
tions. For non cohesive systems, no prominent effect ospireson force distributions could
be seen. For high cohesido > 1, pressure affected the distribution of forces, by mak-
ing the tails longer as compared to the caseBfor< 1. The distribution of forces showed
that cohesion makes the force distributiside, and more symmetriSplitting up the force
distributions along the compressive and tensile direstievealed that, foBo < 1, the dis-
tributions are almost independent of cohesion. For hif@gicohesion broadens the force
distributions along tensile direction, which in turn atfethe distribution along the com-
pressive direction. This suggests, an increase in heteeityan forces forBo > 1 along
compressive and tensile directions. For B the dynamics helps the particles to rearrange
and avoid very strong forces. In contrast, for higgy cohesion induces stickiness at the con-
tacts so that rearrangements are suppressed, increasangdeneity of the system, which
is evident from longer tails of the probability distributidor system with higheBo.

In conclusion, we have reported that both the flow profilepprtes of the system (shear
banding) and the force structure are unaffected by cohdsioBo < 1. In contrast, for
Bo > 1, cohesion strongly affects the flow, the anisotropy, amdiniternal force structure.
Attractive forces have been found to reduce shear locaizdor Bo > 1. In the same
regime, cohesion also promoted heterogeneity of the for€hese two observations inde-
pendently are consistent with previous studies with ditradorces, concerning rheology
[30] and force structures for static packin@3p,.

As speculation for a wider view, our results can be integutets follows: In the language
of statistical mechanic®o corresponds to a “control parameter” a@Bd= 1 to a “critical
point”. The critical changes in the characteristic forcd #e fitting exponent show a small
pressure dependence, which could be better predicted agiressure dependent local Bond
number. Since the locdo are close to the globdo, the system can be classified by
the latter. In our case, the macroscopic properties (posénd width of shear-bands) and
structural signatures (the tails of the PDFs) graduallyaase fromBo = 1. This implies,
that this increase, behaves like a “second-order trangiti©€onfirming this would need a
further detailed study. Also, experiments performed withteolled cohesive strength would
be exciting to confirm and validate our results. Finally itudbbe interesting to reproduce
our findings with different contact models, such as capillaiidges or even simpler linear
contacts models.
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5.A Appendix

In this appendix, we present the dependence of maximunttwtean local pressure in the
system.

5.A.0.0.4 Maximum attractive force The extreme loading and unloading branches are
reflected by the outer triangle in Fig. 1 ihQ4. Starting from a realized maximum overlap
during loading dmax < Shax the unloading happens within the triangle, as can be cterac
ized by a branch with stiffness

ko = k14 (kp — K1) Omax/ Ohax (5.9)

(as given in 180). The elastic, reversible force along this branch is gibgrkz (5 — &)
[102 18(. The intermediate stiffnesk, follows from a linear interpolation betweda
andkp, as explained in]02 180. The corresponding maximal attractive forcefis =

—KeOmin = kJE;‘LE? dmax. If we assume that the maximal overl&fax is realized under a

given external (compressive) pressirgx, then we can lnfelg aax with pressurgp
beingp = kidmax/A, A being a representative area. This Ieads to realized maxittnattive
force being

(ke — ki)
(k2 +kc) Pmax

Using Eqg. 6.9) in Eq. (.10, we get

=—ke 6max (5-10)

2
(kp—kl)pkax(prm)
= e o (5.11)

Pmax

This definition can be used to define alocal Bond numb&adé&P) = fy(P)/(f(P)), where
mean force at that pressure is as discussed in $e2.3 This Bond number would be
compared with various other definitions in S&c2.3



CHAPTER 6

DEM simulations of granular
rheology: Effects of gravity and
contact stiffness.”

Abstract

The chapter presents a characterization of the shear faihghavior for an ideal-
ized granular material, under different gravity fields anzhtact stiffness conditions,
where the response is conventionally assumed to be indepeaflboth. A series of
Discrete Element simulations are performed on a frictioganular assembly in a
split-bottom geometry varying over a wide range of partsétness and gravity. We
show that these two properties affect the flow behavior inrg sienilar fashion. In
the steady state, the macroscopic friction decreasesragsiteally with an increase
in either particle softness or gravity and the ratio betwéertes due to gravity and
contact stiffness is a suitable non-dimensional parameteescribe the bulk behav-
ior of the material. This trend is traced back to the anisptran the contact network,
leading to a linear relation between macroscopic frictiamdadeviatoric fabric in the
steady state. Interestingly, when the rotation rate of §sesm is increased the same
relation holds, stating that the two properties are relatest only in the quasi-static
but also in the dense inertial regime.

*. Submitted.
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6.1 Introduction

Matter is usually classified into solids, liquids, and gasgsanular matter like sand or cof-
fee beans have special properties and do not meet thisfidagen. When poured into a
container, it adapts to the shape of the container dispdegiproperty of liquids, at rest it
appears solid. While a single grain is clearly solid, granaksemblies have quite different
properties. Understanding and modelling these commonredisens are difficult tasks, so
that granular flows have been subject of interest for decpt®$5, 72]. The flowing be-
havior of granular materials is important due to its appiaain geophysics for description
and prediction of natural hazards such as landslides, restads etc. 5].

Most common granular flows, such as hopper, chute flows ami$ligies are dense, and can
be termedjuasi-statidlows. There are many ways in which slow granular flows aresdiifit
from Newtonian flows228. For example in slow granular flows the particles have eimgur
contacts, and inter-particle frictional force is the mabuike of dissipation. For this kind

of flows the relative motion is confined to narrow regions \{i@n large solid-like parts)
called shear band22, 70, 169. The flowing regime can be characterized by means of the
effective friction coefficienwhich is the ratio of shear to compressive stress, thatrakpe
on particle and contact propertiel?l 192. In the case of slow flows, this ratio is known to
be independent of local strain ra@8] 55, 119, 167).

In most of the granular flows, like geophysical situationratustrial application, gravity is
the main driving force for the flow. Still the effect of changigravitational acceleration on
slow granular flows is largely unexplored. Moreover, thisyrba particularly important in
understanding of the geology on other plané8.[A poor understanding of failure behavior
of soil found on planetary bodies can lead to problems like ¢fi a Mars exploration vehicle
getting stuck in granular materié227.

The current understanding of gravitational granular flde/based on the studies performed
under Earth’s gravity. Only a couple of studies have beefopmed on the effect of grav-
ity on granular flows. Klein and White examined the dynamiwflo a tumbler under low
gravity on a parabolic flightd5]. They found that the dynamic angle of repose of the flow-
ing layer decreases asincreases. Brucks et al2¢] performed centrifuge experiments at
gravity levels larger than Earth’s gravity and confirmedt tte dynamic angle of repose
decreases with increasedn Alshibli et al. [2] investigated the effect of loading condition
and confining pressure on the peak friction angle in a conwealtriaxial compression test
in microgravity and found that peak friction angle in low gitg is higher compared to that
found on the Earth consistent with the others. Recent miexdty experiments by Murdoch
etal. [L27, 129 in a Taylor-Couette setup confirm that shear bands can foitimel presence
of weak gravity fields, just as on earth.

Motivated by these findings, in this paper, we numericalsestigate the dependence of the
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bulk behavior of slow granular flows on the gravitationaldevUsing three-dimensional
Discrete Element Method (DEM) simulations, we simulateesibnless frictional granular
material in a split-bottom ring shear cell, as introduce®eéf. [54] and vary gravity by two
orders of magnitude. Our simulations explore a range ofeglwhich covers both gravity
smaller and larger than Earth’s to answer the question,eneir not a unique law could
describe the flow behavior on Earth, Moon and Mars. This alsdles us to understand the
flow properties of granular materials in a broad range of camdi pressures, ranging from
very low to very high stress levels. Additionally, we stuthe teffect of the normal stiffness
of the particles on the bulk behavior, where normal stiffn@ovides a particle—level effect,
while gravity is a macroscopic modification. We find that theye opposite effect at meso-
scopic (local) scale, and the macroscopic material behawio be well described when the
ratio between forces due to gravity and contact stiffnessésl as a scaling parameter.

We organize this paper as follow: We explain our methods in &2 and show our results
for quasistatic state and dense inertial regime in S&8and6.4, respectively. In Se®.5,
we discuss and conclude our results.

6.2 Discrete Element Method

In this section, we present our numerical simulations (6&x1) and setup (Se&.2.2. We
also summarize various time scales associated with theray8ec6.2.5.

6.2.1 Model

We use DEM simulations of soft frictional particles in thréienension. The normal force be-
tween the particles in contact is given by= —knd, — NnVn, whereky, on, nn, andv, are the
normal stiffness, particle overlap, normal viscosity ¢o&nt, and relative velocity in nor-
mal direction, respectively. Similarly, the tangentiaide is introduced af§ = —ki& — NV,
wherek = 2k, /7, &, Nt = Nn/4, andv; are the tangential stiffness, relative displacement
in tangential direction, tangential viscosity coefficieantd relative velocity in tangential di-
rection, respectively. We also introduce Coulomb’s faotbetween the particles, where the
tangential forcef; is switched to the sliding forcés = —pp|fn| with the particle friction
coefficientup = 0.01, whenf; exceeds the critical value, i.g| > up|fn| [102.

To study the effect of particle softness on macroscopictiehs we change the normal stiff-
ness,, as well as the tangential oke= 2k, /7, within the range 10Xm < k, < 10°N/m. In
our simulations, the time incremeft for numerical integrations of the equation of motion
is adjusted such that is much smaller than the contact duration to ensure accdyatemic
integration L0Z).
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6.2.2 Split-bottom ring shear cell

We perform numerical simulation in the same setup descrézetier in Sec2.1.1.1 It
consists of two concentric cylinders, with inner and outdimder radii asR, = 0.0147m
andR, = 0.11 m respectively, with a split radius beifRg = 0.085m (as shown in Fig.2).
The concentric cylinders rotate relative to each other malahe symmetry axis (the dot-
dashed line). The ring shaped split at the bottom sepatatendving and static parts of the
system, where a part of the bottom and the outer cylindeteatathe same rate. The system
is filled with N ~ 3.7 x 10* spherical particles with densify= 2000 kg/n? = 2 g/cn? up to
heightH. The cylindrical walls and the bottom are roughened due mees@bout 3% of the
total number) attached/glued particles, as explained®3{105. When there is a relative
motion at the split, a shear band propagates from splitipod® upwards and inwards and
remains far away from cylinder-walls and bottom in most sas&ince we are interested in
the quasi-static regime, the rotation rate of outer cylinsiehosen to bcz% =0.01s1, such
that the inertial numbdr< 1 [119.

6.2.3 Local averaging

One of the goals of current research in the granular commumito derive macroscopic
continuum theory that can take into account the given mmeshanical properties. Find-
ing a connection between the two scales involves the seetaticro-macro transitiorl[l,
91, 228, often applied on small, seemingly homogeneous reprateatvolume elements
(RVE)s [217. An alternative is to use an inhomogeneous geometry whete sind dy-
namic, flowing zones i.e. high density and dilated zonesxist-e- at various confining
pressure levels like e.g. in chute flon22f. In these systems, by local averaging over
adequate representative volume elements (RVE)s insidehvaii particles are assumed to
behave similarly, one can obtain local continuum relatiomgering a wide range of system
states. Such a procedure has been developed systematicglip a two-dimensional Cou-
ette ring shear celd1], and a three dimensional split-bottom ring shear ¢l 107. The
free surface of the split-bottom shear cell allows to scaa@e of confining pressures, due
to weight of the material, and its maximum is determined leyfilfing height.

6.2.4 Averaging and micro-macro procedure

The averaging procedure used in this study as same as dischesfly in Sec2.3.2.1
From the simulations, we calculate stress and fabric tensdnich are represented ag
andF; respectively. It is important to mention that for the r(xbat'rate% =0.01s1, the
contribution of the kinetic stress to the total shear steegsmuch smaller compared to the
contact stress. Hence, we ignore the dynamical stress anogctate on the contact stress.

For both stress and fabric tensors, we can calculate thengiyees and define the volu-
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metric partTy = (T1 + T2+ T3) /3 (pressure andF, for stress and fabric respectively) and
deviatoric component &&ey = +/((T1 — T2)2 + (T2 — T3)2 + (T3 — T1)2) /6 (Tgev @aNdFgey for
stress and fabric respectively). The pressure is the igiotetress, whilegge, quantifies the
normal stress difference. The volumetric fabFicrepresents the contact number density,
while the deviatoric fabrige, quantifies anisotropy of the contact network.

6.2.5 Time Scales

We characterize the dynamics of the system by different Seades focusing on various
guantities. At first, we define two microscopic time scales as

(m) (m)
Te=2m/~—, Tp=-—, 6.1
¢ Kn 1 NMn (61)
related to the contact duration and the viscous dampingdsatuwwo particles in contact, re-
spectively, wherém) is the mass of a particle with mean diametr. Next, two time scales
associated with external forces, i.e. the gravity and estaotation rate, can be introduced
as

_27'[

(d)
Tg == E TQ Q 5

(6.2)

respectively, wher& is the time taken by a particle with zero initial velocity @ilfa distance

(d)/2.

The time scales, Eq$(1) and 6.2), are given by the material constants and applied external
forces, respectively, so that these are constants thramg®system. In this sense, the time
scalesI¢, Ty, Tg, andTq, areglobal. On the other hand, we can introduce two macroscopic
time scales related to the local shear nagnd pressure as

Ty=-. Tp={d)/=—, (6.3)

whereT, represents the time pressure would take to push a particg ay a distance
(d)/2. As shown in the following subsections, the spatial disttions of pressure and shear
rate are inhomogeneous due to gravity and shear banddatiahi. Therefore, in contrast to
the global time scaledy, andT, arelocal field variables with certain dependence on space.

The time scales can be combined in some dimensionless narttier give indications
of dominance of one of the time scales. For example, theiaemumber,| = T,/T; =
y<d>\/%, which is widely used in previous studie35 55, 80], provides an estimate of
the local rapidity of the flow. Fol < 1, the flow isquasistati¢c where particles interact
via enduring contacts and inertial effects are negligilfler | ~ 1, the flow is in thedense
inertial regime and forl > 1, the flow is in the rapid, collisional gas like state.
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Table 6.1: Table showing (in units of ms2), particle stiffness, (in units of NnT1), and
various time scales associated with the system, as distus#iee main text (in units of s).
The values of these time scales are the average valuesgépdrt=2(d),H/2,H — 2(d) in
the center of the shear band.

g QO ko x 107 Tc Tg T Tp I x 1073 K

05 0005 1 0.002  0.0663 25,20, 10 0.017, 0.025, 0.05 0.7,1.2,5 0.00002
1 001 1 0.002 00469 10.87,7.8,2.73  0.032,0.0153,0.01253, 214 0.0005
2 001 1 0.002 0.0332 10.67,7.47,2.67 0.009,0.011,0.022 75,0, 1.4 0.0034
5 001 1 0.002 00210 10.28,7.37,2.60  0.005,0.007,0.014 0.820.9 0.001

5 001 5 0.0009 0.0210 10.61,7.55,2.10  0.005,0.008,0.014 .5,08,1.3  0.00005
20 001 1 0.002  0.0105 9.67,7.03,2.58  0.0029, 0.004, 0.008 , 0.5D.9 0.001
20 001 4 0.010  0.0105 10,7.12,2.66 0.0029, 0.004,0.008 , 0&D.7 0.0001
50 001 1 0.002  0.0066 8.67,6.64,2.5 0.0074,0.0027, 0.0020, 34 72 0.0025
50 001 10 0.0006 0.0066 10.06,7.12,2.6  0.0019,0.002246.0 50, 30, 60 0.00024
10 001 1 0.002 00148 9.98,7.02,2.61  0.004,0.006,0.01 ,0BML5 0.0004
10 001 10 0.0006 0.0148 9.09,8.17,2.63  0.004,0.006,0.01 .4,085,1.1 0.00005
10 0.01 100 0.0002 0.0148 10.71,7.28,2.79  0.004,0.00510.0 1.2,0.6,0.9 0.000005
10 01 1 0.002  0.0148 1.12,0.7,0.23 0.004, 0.006, 0.009 95, 6 0.0004
10 05 1 0.002 00148 0.25,0.15,0.05  0.004,0.005, 0.01 6602 0.0004
10 1.0 1 0.002 00148 0.12,0.07,0.02  0.004, 0.005, 0.02 550P20  0.0004
10 20 1 0.002  0.0148 0.0210.03,0.008 0.004,0.006,0.018 0, 1BD,1500 0.0004

Table6.1shows typical values of various timescales for our simaitgtiwith different normal
stiffness and gravity. For slow flows with a rotation r@¢2m= 0.01 s'* and the gravity

g> 1 ms?, the inertial number is well below 1. The inertial numbermighie same range, if
we use the lower gravity and rotation rages 0.5ms 2 andQ /2= 0.005s %, respectively.

As the rotation rate increases, the inertial number becameparable to 1.

6.3 Quasistatic state

In this section, we present our results on the analysis ofosaopic rheology in a quasistatic
state. We will extend our analysis to dense inertial flowséo.8.4. At first, we study the
local stress, rheology and the macroscopic friction cdefiitdn Secs6.3.1, 6.3.2and6.3.3
respectively. We also show the results of local volume fomdn Sec6.3.4 and connect the
rheology to the microscopic structure tensor in $8.5

6.3.1 Local stress and shear bands

Figure6.1shows the local shear stresgr, h), plotted against the local pressupr, h), at
different positions, i.e. with different local shear ratg&, h). We observe that for a given
pressurer is higher for largery, however fory > y (with y. ~ 0.08s™1), T becomes almost
independent of the local strain rate. This means that theesbd the shear stress-pressure
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Figure 6.1: (Color online) The local shear stress, h), plotted against the local pressure,
p(r,h), for different values of the local shear ratgr,h) as given in the inset, under the
gravity,g = 10ms 2.

curve is almost constant for all data points with strain tatger than the threshold value. In
other words, if the dimensionless shear lerigth tayy [103 exceeds unity, i.e. neighboring
particles are sheared about one particle diameter, the de@&@mation can be assumed to
be fully established, which is a concept of the critical flagime [L03. Ries et al. 160
showed that a minimum strain is required to reach the ctiitzae, which is a unique state
regardless of the preparation history of the mate@ad. MRI experiments from Sakaie et
al. [164 also showed that the location where the strain is abovedatfadincides with the
dilatancy zone, which on the other hand coincides with thereinside the shear band. Our
previous works 103 107] showed, that for rotation rat@ /2= 0.01 s°%, y, ~ 0.08s 1 is
the shear-rate above which the shear-bands are well esstadli Since we are interested in
the flowing behavior in the steady state, in the rest of thepape analyze only the data in
shear bands,

y(r.h) > y(Q) =

4Q
—. (6.4)

6.3.2 Rheology

To understand the rheology and dilatancy in the system, alyamthe relations between the
local shear stress and shear rate, and the local pressusheadrate, respectively. Figure
6.2displays the local shear stressr, h), and pressurg(r, h), plotted against the local shear
rates above the cutoff shear ragér, h) > y(Q) for Q/2m= 0.01s*. Here, the local shear
rates are restricted to relatively small values (due to kratg of rotation) and we find that
both the shear stress and pressure are fairly constansagf@ashear rate. Such states with
small shear rates can be assumed to lgumsistatic statewhere both the shear stress and
pressure aralmostindependent of the strain rate in accordance with Ré#%.168 194.
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Figure 6.2: (Color online) The (Left) local shear stregs, h), and (Right) pressurgyr,h),
plotted against the local shear ragr, h). Different symbols show different heightin the
system as given in the inset.

Note that both the shear stress and pressure increase asighe decreases, which is due
to the weight of the material above a layer at heightig. 6.3 displays the local pressure
against the height, where the pressure is well approxiniated

p(r,h) ~ pg(H —h) . (6.5)

6.3.3 Friction coefficient

In a quasistatic state, both the local shear stress andupeeds not much depend on the
local shear rate, which means that the local friction coieffic or shear stress ratio defined
as

7(r,h)
p(r,h)

also does not depend on the local strain rate, a propertyeajulsistatic state. In previous
studies, the friction coefficient has been assumed to beartent of both the patrticle stiff-
ness and gravity. However, the particles used in many pue\dtudies were extremely rigid
and there are few works systematically investigating theeddence of the flow behavior on
gravity. Thus, we study the dependence of the local frictioefficient on the particle stiff-
ness and gravity, restricting ourselves to quasistatiestso that we can neglect the weak
dependence on the local strain rate.

p(r,h) =

(6.6)

Figure6.4adisplays the shear stress-pressure curve for differenegadf normal stiffness,
kn, where the softness of the particles drastically decretieeshear stress. Figuéedb
displays the shear stress-pressure curve for differenegabf gravity,g, where the shear
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Figure 6.3: (Color online) The local pressurgy, h), plotted against the heiglfitin the
system, under the gravitg,= 10ms 2 . The line is the approximation given by Eg}5.

stress under higher gravity is always smaller than that wialeer gravity. From these
results, the local friction coefficient in a quasistatictstaly, certainly depends on both
softness and gravity.

6.3.3.1 Linear approximation

To understand the dependence of the macroscopic frictiefficient in a quasistatic state on
the softness and gravity, we estimate it as the slope of afifiging function for the shear
stress against pressure, i.e.

T(r,h) = pd°p(r,h) (6.7)

whereug'c’ba' is aglobal friction coefficientvhich depends neither on the shear rate nor on

pressure.

Figure6.5adisplays the global friction coefficient plotted against gravitg for different

values of the normal stiffnesk,, as given in the inset. We observe thatlecreases with
increasing gravity, while itincreases with increasiagFigure6.5bshows the global friction
coefficient with different values of the normal stiffneks, and gravity,g, where all results

of ud'°@ are collapsed if we introduce tiggobal compressibility
T\ (mg
k= (=) =V 6.8
(%) =@ ©©)

defined as the square of the ratio between the two time stakesdTy. The global com-
pressibility,k, provides a global measure of compressibility of the bulkemal. A highk
signifies that the bulk material is compressible, which cefn@m very high confinement by
the gravity or low contact stiffness at particle level. Oa tither hand, whek is small, the
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Figure 6.4: (Color online) (Left) The local shear stresstteld against the local pressure
for different values of the normal stiffness as given in thset in units of kgs®>. Here,

the gravity is fixed tagy = 10m/s’. (Right) The local shear stress plotted against the local
pressure for different values of the gravity as given in tiget in units of nis’. Here, the
normal stiffness is fixed tk, = 10m/s?. Both t(r,h) andp(r,h) are scaled by the maximum
pressuremax(r, h), respectively. Bottr(r,h) andp(r, h) are plotted in the center of the shear
band.

average overlap is very small compared to the particle dieamehich means that the bulk
material is closer to being the rigid limit.

In Fig. 6.5h the solid line is given by

lobal lobal K\

global _  global _

IJO IJr (KO> ’ (69)
Whereur@"obal is the global friction coefficient in the rigid particle litnand the exponent and

characteristic global compressibility are givendy- 0.4+ 0.01 andkp ~ 3.55, respectively.

Note that Klein and Whited5] and Brucks et al.26] showed similar dependence of the
macroscopic friction coefficient on gravity, where theyifiothis dependence might be com-
ing from cohesive forces in micro-gravity and/or a load-eleent interparticle friction coef-
ficient. However, they focused on the dynamic flows, whiler@sults are for slow granular
flows and no cohesive force or load-dependent friction wademented in any of the DEM
simulation data presented here.

6.3.3.2 Nonlinearity

In the shear stress-pressure curves for different sofmedgravity (Fig.6.4), the depen-
dence of shear stress on pressure slightly “bends” witleasing softness and gravity. This
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Figure 6.5: (Color online) The global friction coefficiep°*®, plotted against (Top) grav-
ity g, and (Bottom) the global compressibility,= mg/(k.(d)), on a log-linear scale for
different values of the normal stiffness and gravity as ghawthe inset. The solid line
represent the corresponding fit to EG.9).

means that the friction coefficient depends on the pressutdte shear stress becomes a
nonlinear function of pressure, i.e.

T(rv h) = u(l)ocal(p) p(rv h) ) (6.10)

whereu(')oca'(p) is alocal friction coefficientvhich depends on pressure, but not on the shear
rate, since we excluded large strain-rate data.

Figure6.6 shows the local friction coefficient with different valuestbe normal stiffness
and gravity, where all results <pf(')°°a'(p) are well collapsed if we introduce thecal com-
pressibility,

(TP
0 :<Tp> -£9, 6.11)

defined as the ratio between two time scalksand Tp. Therefore, we rewrite the local
friction coefficient as a function of the local compressiiil l°%(p*). In this figure, we
scanned through a wide rangeifby systematically varying andk,, and observe that for
p* < 5x 1074, plocd(p*) is almost constant, while for higher valug§®®(p*) decreases
with p* up to p* =~ 0.1. This dependence can be written in the form,

local/ local p* A
Ho"(P") = Ky —<—*) : (6.12)
Po

wherep°°d = 0.172 is the value of macroscopic friction in the rigid limithigh is in fair
agreement with contact dynamics simulatio@d4@. The exponent is found to bg; ~
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Figure 6.6: (Color online) The local friction coefficient?°¥(p*), plotted against the local
compressibility,p*, on a log-linear scale. Different symbols represent dififévalues ok
as given in the inset of Figh.7, while the solid line represent the corresponding fit to Eq.

(6.12).

0.54-0.04 and the characteristic local compressibilitpjs= 10.08+0.2. As one extreme of
p*, atp* = 0.1, the average overlap is almost 10% relative to the meaitjgadiameter, that
is thesoft particle limit The upper bound qﬂ(')"ca'(p*) is the low compression case, where
the average overlap is much smaller relative to the padicmeter, and wherp(')oca'(p*) is
almost double as large as fpf ~ 0.1.

From Eqgs. 6.5, (6.8), and 6.11), the global and local compressibilities, and p*, are
connected by a relation

p*(h*) =k(H"—h"), (6.13)
or
2 1 H * *

where we introduced the scaled heiglits= h/(d) andH* = H /(d). Therefore, the global
compressibilityk, is proportional to the height average of the local compbégy, p*.

6.3.4 Local volume fraction

In Fig. 6.7, the local volume fractiom is plotted against the local compressibilipy, where
the packing is rather loose for lowgr and tends to a critical value. = 0.642. The data
can be very well fitted by

pr=a"(v—vg), (6.15)
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Figure 6.7: (Color online) The local volume fractiar(r, h), in the system plotted against the
local compressibilityp*, on a semi-logarithmic scale. Different symbols represiferent
values ofk as given in the inset. The solid line represents the corredipg fit to Eq. 6.15).

with anda* = 0.48. Interestingly, no significant difference in volume fian v is observed
for p* < 1073, while for p* > 10~2 within the fluctuationsy begins to increase almost
linearly with p* (the curvature is due to logarithmic axis). The relationnssnv and p*

is well established in the case of static packirgf 1, 235. Here we show that the same
relation holds for a slow granular flow, involving considelefinite strain rates.

6.3.5 Local structures

The shear resistance in a dense granular flow often accoegtie microscopic anisotropy.
Previous experiments have also shown that persistent &eeds to the buildup of a devi-
atoric fabric in the systemlfl2 216. To relate such a structure to the rheology in a qua-
sistatic state, we analyze the fabric tensor. The secordiant of the fabric tensor quantifies
anisotropy of the contact network in the system.

6.3.5.1 Anisotropy

Figure6.8displays the local deviatoric fabri€ge,(r, h), plotted against the local compress-
ibility, p*, whereFge\(r,h) for different values of the particle stiffness and graviywell
collapsed on a unique curve (solid line). This dependenedeavritten in a similar fashion

as Eq. 6.12,

p* B2
Faeo D) = Floy— (p—> , (6.16)
F
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Figure 6.8: (Color online) The local deviatoric fabrke(r,h), plotted against the local
compressibility,p*, on a log-linear scale. Different symbols represent dififévalues ok
as given in the inset of Fig.7. The solid line represent the corresponding fit to BgL§).

whereF],, is the anisotropy of contact network in the rigid limit, thepenent is found to be
B2~ 0.5+ 0.03, andpf ~ 26.34+0.6.

In Figs.6.6 and6.8, we observe that the the local shear resistance and thednisaltropy
of the contact network in a quasistatic state show very aindiépendence on the local com-
pressibility. In Fig.6.9, we plotpg(p*) againstye(p*) for different values ok, where one
can see a linear relation between

“cl)ocal(p*) = Uiso+ bFgeV(P”) , (6.17)

where piso = 0.014+0.01 = 0 is the friction coefficient in the (extrapolated) limit oh a
isotropic contact network anll= 1.38 is a constant of proportionality. The shear resis-
tance accompanies the anisotropy in the contact networks diiservation supports the
idea presented in recent studi®3,[88, 94, 238, where the authors claim that fabric is an
essential ingredient to uniquely characterize the ctistate of a granular system.

6.3.5.2 Shape factor

Moreover we compare the shape fact%)(for stress and fabric tensors, whédig and Ty
are the eigenvalues of the deviatoric tensors.

In Fig. 6.10a we plot the shape factor for the stress tensor. We obseatsttls slightly
below zero. In Fig6.10h the shape factor for fabric tensor is fluctuates around. ZEmese
two observations suggest that the fabric and stress tehsbis/e differently even though



6.4. DENSE INERTIAL REGIME 119

02——————————————

0.18

0.16

3 014

0.12

T
+
1

0.1 o

o.ogl——r—
0.04 006 008 01 0.2

I:dev

Figure 6.9: (Color online) The local friction coeﬁicierpr(',"ca'(p*), plotted against the local
deviatoric fabricFqe\(r, h), for different values ok. Different symbols represent different
values ofk as given in the inset of Fig.7. The solid line represent the corresponding fit to

Eq. 6.17).

they are proportional in magnitude (norm) as shown in Bi§. The fabric tensor is in
a planar state very much like the strain rate, whereas ssdasa partly triaxial state, as
expected for a solid-like materiaF,/F; tends to positive values of larget, establishing
the difference between structure and stress tensors.

6.4 Dense inertial regime

In the previous section, we showed that the friction coeffitiand deviatoric fabric are
strongly correlated in a quasistatic state. Motivated liy, thie check this correlation in the
dense inertial regime. In Se6.4.1we show the dilatancy law in the dense inertial regime.
In Secs6.4.2 and6.4.3we extend our analysis of the friction coefficient and amizoy to

the dense inertial regime. In Se&4.4 we examine the correlation between the rheology
and microscopic structure in the dense inertial regime.

6.4.1 Dilatancy Law

Figure6.11displays the local volume fraction plotted against inémiamberl. The qua-
sistatic state data for different gravity and stiffnes®1firSec.6.3) is superimposed with
the different external rotation rate data for a given gsagit= 10ms 2 and stiffnesk, =
100NnT L. Two trends show up: (a) Different gravity and softness datdow | ~ 0.001
show an increasing trend, which is mainly due t6/P in 1. Howeverv does not scale



CHAPTER6. DEM SIMULATIONS OF GRANULAR RHEOLOGY. EFFECTS OF GRAVITY AND
120 CONTACT STIFFNESS

0.4
0.3} 1

— —
g | u
AN [V}
o] LL

4 _0.3 .

0.4 L L L 04 L L L
10°  10* 1@ 102 10t 10°  10* 1@ 102 10t
P p

Figure 6.10: (Color online) Shape factor for (a) stress, @ydabric plotted against dimen-
sionless pressung’. Different symbols represent different valueskoés given in the inset
of Fig.6.7.

with |. This data was found to scale wiffi, as explained previously. (W) calculated from
simulations with different external rates of rotation famgty g = 10ms? and stiffness
kn = 100NnT 1 however show a different trend. We observe thalecreases approximately
linearly with increasingd. This data very well collapses on the relation:

v(l,p") = v (p") byl (6.18)

which includes both the compressibility and inertial effedth v°@(p*) as given by Eq.
(6.195 andb, = 0.9+ 0.05. Forl <0.01,v stays almost constant, and the system &limost
rate independent quasistatic regime, which was explorédeiprevious section. However
for1 > 0.01, the inertial effects begin to dominate and the systemuad to dilates.

6.4.2 Friction coefficient

In this section, we analyze the dependence of friction amefftu on inertial numbet.

Figure 6.12 displays the local friction coefficient plotted againstrined numberl. The
guasistatic state data for different gravity and stiffn@ssm Sec.6.3) is superimposed with
the different external rotation rate data for a given gsagit= 10ms 2 and stiffnessk, =
100NnT L. Once again, two trends show up: (a) Different gravity anfiness data for
low | =~ 0.001 does not scale with This data was found to scale wifti, as explained
previously. (b)u calculated from simulations with different external ratégotation for
gravityg= 10ms 2 and stiffnes&, = 100NnT 1 however show a different trend. We observe
thatu increase approximately linearly with increasingtarting fromu(')"ca'(p*). This data
very well collapses on the relation:

(1, p*) = p(p) + bu(p)I (6.19)
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Figure 6.11: (Color online) Local volume fraction plotteglanst the inertial numbérfor
results from simulations with different rates of rotati@ifferent symbols represent different
rates of rotation as given in the inset and rest symbols ane s& given in Fig6.7.

which includes both the compressibility and inertial effedth (1°%(p*) as given b y Eq.
(6.12 andby, = 1.084+0.05. Forl for | < 0.01, theu is in rate independent quasistatic
state, which means it has almost no dependencg baot depends op*. However for for

| > 0.01, the friction coefficient increases linearly with

6.4.3 Anisotropy

Fig. 6.13displays the localyey plotted against inertial numbér The quasistatic state data
for different gravity and stiffness (from Seg.3) is superimposed with the different external
rotation rate data for a given gravity= 10ms 2 and stiffnes, = 100NnT%. Once again,
two trends show up: (a) Different gravity and softness datddiw | ~ 0.001 does not scale
with I. This data was found to scale wifhf, as explained previously. (Ib}ey calculated
from simulations with different external rates of rotatfongravityg = 10ms 2 and stiffness
kn = 100NnT ! however show a different trend. We observe fhg} increase approximately
linearly with increasind. This data very well collapses on the relation:

Faeu(l.,P") = Fagig (") + brye, (P)1 (6.20)
with Fé%‘\ﬁ' as given by Eq.§.16 andbr,,, ~ 0.9. Itis noticeable that for a givdnthe scatter

in Fyev is more pronounced compared to thaginFor| > 0.1, Fye,, Shows a very different
behavior as predicted by Eg6.20, and a decreasing trend is observed. This might be due
to the fact that around this packing becomes very loose, it is noticeable that fer0.05,
volume fractionv < 0.55. It is interesting to note that fér< 0.05, the anisotropy in contact
network increases with increasimg Fyey varies oppositely with the volume fraction, but
varies very much like the friction coefficient.
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Figure 6.12: (Color online) The friction coefficient plattagainst the inertial numbérfor
results from simulations with different rates of rotati@ifferent symbols represent different
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6.7.
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Figure 6.14: (Color onlinel plotted againskEye, for data in previous section and different
rates of rotation fog = 10. Different symbols represent different rates of rotats given
in the inset and rest symbols are same as given ing-igy.

6.4.4 Correlations with structures

Figure6.14showspu plotted againsEqe, for different rates of rotation. In the same figure,
we also plot the quasistatic data with different gravity atifiness in Sec6.3. All the data
collapses the linear relation used in F&9. Only for very high rate of rotatiorfyey drops
off (the packing becomes very loose for such rate of rotatibmierestingly, the same law as
proposed in quasi-static regime (where contact stressraigs) hold in the dense inertial
regime too. It is important to point out that the data plotedns over at least three orders
of magnitude in bothx andl, which further adds strength to this result. This suggésts t
the local contact network dominates the behavior in the nghtial regime also.

6.5 Discussion and Conclusion

In this paper, we have studied the rheology of three-dinueradirictional granular assembly.

For slow quasistatic flows, we systematically varied gsaaitd stiffness to study the effect
of them on the flow behavior. Our data shows that the macraséogtion coefficientu
decreases with increase in both grawityand softness. When the same data are plotted
against a control-parameter(which is the ratio of two time scales), the data collapse on a
unigue curve. Even thougk, andg affect the force between particles at different scales,
they have equal and opposite effect at the mesoscale (loakd)s Both of them have an
effect on the flow behavior by modifying the microstructuas quantified by the deviatoric
fabric. Both deviatoric fabrid4e, and macroscopic frictiou can be expressed as very
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similar power law functions of the local compressibilfi{. This proves that they are highly
correlated in quasistatic regime and fhéollows contact anisotropy.

We further studied the rheology of the system for gragity 10ms 2, and we found that for
faster flows the system enters into a rate dependent deesgalimegime. We find that both
U andFgey show very similar dependence bnwhich shows that both are correlated even
in the dense inertial regime. This correlation fails only Yery fast flows, as the packing
becomes too loose at such high shear rates. This shows ¢hedmitact network dominates
the behavior in slow and moderately fast granular flows tde fact that for very fast flows,
i.e.,l > 0.1 friction coefficient does not follow contact anisotropysdeves a detailed study.



CHAPTER 7

Conclusions and outlook

Conclusions

Fact that the granular materials such as sand, cocoa poeaffae beans, rice etc. are so
abundantly found in nature that one hardly realizes theusgroperties they posses. Is it
not surprising that extra amount of coffee beans or muesliteaadded to the jar simply
by shaking it? Granular materials are not only found in létcér the road we walk/drive
on is also made up of granular materials. The stick-slip amotf earthquakes and snow
avalanches are closely related to the processes that ecawollapsing sand castle.

Granular materials are part of a large class of materialedtdlsordered materialswhich
as the name suggests are a disordered collection of mapiog@uticles. Disordered mate-
rials, and in particular granular materials fill our dailfeli Typical examples of disordered
materials are toothpaste, shaving foam and ketchup. Reh@iir omnipresence, we still do
not fully understand their behavior. What makes the behafia collection of sand grains
so challenging to model?

This difficulty arises from the fact that granular particleteract differently than the atoms
or molecules which solids, liquids or gases are made up ofd §eains interadhelastically;
i.e. when two sand grains interact they dissipate energighwheans an external driving is
required to induce motion in a collection of sand grains. ikinthe molecules in ordinary
gas or liquid, which always fly around, the constituent ggaima sand heap arfezen
Therefore, tools such as kinetic theory, elasticity thatiesed to describe conventional gases
or solids, fail to describe the behavior of granular matsri®@roposing a theoretical basis
that correctly describe the flow behavior of théssenmaterials is a great challenge for
researchers.
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In this dissertation, we studied disordered materials nigakty by modelling the flow be-
havior of spherical soft particles using a numerical todlechDEM in a special setup: the
split-bottomgeometry. The split-bottom is a useful tool to study the flowgianular materi-
als, as itinduces flow in the granular medium in a special reaby creating a broaftbwing
zoneknown as wide shear bands, in which many particles parteipia this dissertation,
an attempt is made to describe and predict the flow behavipaitles in the shear bands,
both micro- and macroscopically.

As a starting point, the dissertation begins with an ingegton of pairwise collisions be-
tween particles. In chapter three, we study head-on amtissbetween two mesoscopic
adhesive particles, which can be seen as a collectiomi@bscopicparticles. An extended
and generalized version of adhesive contact model fromngidio? is proposed by adding
short-ranged (non-contact) interactions. As the normeffment of restitutiore, is the key
element to describe a collision, we investigatgds a function of the impact velocity. From
our analysis, it follows that with increasing impact vetga stick-rebound-stick-rebound
behavior is observed. The first stick-rebound happens dekdd-range non-contact inter-
actions between two particles. The second stick-rebouachvel feature of our study and
happens due to the elastic core in the material. This regim@hies a change in physical
behavior of the system and resembles a material with anielzste, for example asphalt
(elastic stone with plastic bitumen layer).

In this dissertation, we studied granular flows in the dplittom geometry in several ways:
In chapter four and five, we studied the effects of frictiod aohesion orbulk behaviorof
such flows.

Macroscopically with increasing friction, the contact number density @ases. Shear re-
sistance (quantified by shear stress ratio) and structoisd@opy (quantified by deviatoric
fabric) show similar behavior with increasing friction. dhincrease with increasing friction,
and saturate above particle frictip ~ 0.3. In both cases, the major contribution comes
from the “strong” subnetwork of contacts transmitting ab@verage contact forces. From
the microscopicpoint of view: The tails of the probability distribution fations (PDFs)

of both normal and tangential forces become longer witheasing friction. This demon-
strates an increase in heterogeneity of forces with inargdisction. Increasing friction also
strongly enhances the anisotropy in the force distributiomormal forces.

Introducing cohesion at contact, the contact number deasid mean force remaamost
unaffected by contact cohesion. A dimensionless parapeatted Bond numbeBo, relat-
ing the maximum attractive force to the mean forces due topression was introduced.
Bo~ 1, very well estimates the crossover from a free-flowing,-nohesive system to a co-
hesive one. Variousacroscopigesponses such as shear banding are independBotof
Bo< 1 and dependent dBo for Bo> 1. A few structural signatures like the tails of PDFs
show a similar crossover, they aknostindependent of cohesion f&o < 1, while they get
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longer with increasindo for Bo> 1. The mean forces carried by contacts oriented along
the compressive and tensile directions of the local stamtensors argymmetri@about the
mean overall force. The difference between force carrieddmgacts along these directions,
i.e. anisotropy of the force network is also independentabfesion forBo < 1, while for
Bo> 1 the anisotropy increases wio.

In chapter six, we focused on the rheology of such flows: sirppit, the global rheology
is the relation between external rotation applied to théesysand the resultingnacroscopic
response of the flow. The local rheology, however, relateal Idensity, strain-rate, pressure
with structure, and a single simulation covers a rather bigme of state-space. For low
rates of rotation, i.e., low local strain rates, system isnibto be in aralmostrate inde-
pendent quasistatic regime. We studied the dependencésmhakcompression and particle
softness on the flow behavior in this regime. We found thatsthear resistance and the
deviatoric fabric decrease as either external compressiparticle softness are increased.
As a non-Newtonian local feature of granular flow, we repbtteat both fabric and shear
stress are non-planar, despite the planar strain-ratedafdl scale when plotted against the
dimensionless pressup, defined as the ratio between time scales related to theessftn
and external compression or local pressure. The sheatamsésand the deviatoric fabric
are found to be linearly correlated. When driven faster,gfans in the split-bottom start
to collide with higher speeds and more frequently. Beyomdestocal strain rate, the inertia
of the system begin to dominate and the system enters intee alependent dense inertial
regime. Both the shear resistance and the deviatoric fakgmns to increase with the local
strain rate. We find that even in the dense inertial regimeestiear resistance and the devia-
toric fabric are correlated. This correlations breaks déovmapid flows, where the packing
becomes very loose.

Outlook

For the different subjects, which have been studied in thesis, there are a few lines of
research that could be continued, as summarized next:

In chapter three various contact models for elastic andeelalastic collisions between two
particles are introduced. Chapters four and five deal wilacebf cohesion on the macro-
scopic and microscopic responses of cohesive, dense granadia.

A comparison of various contact models for cohesion The contact model presented
in chapter three aims to reproduce the behavior of multiigjarsystems of realistic fine
powders, which are typically non-homogeneous and ofterosuepic in size with internal
micro-structure on the scale of the typical contact defdiona There are a few features of
the contact model such as existence of a plastic threshoitdr reversibility of the tensile
branch, which are different from more realistic contact eiedsuch as those by Thornton
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[199 or Tomas RO4. It would be interesting to directly measure the mesoscdpice-
displacementrelation, i.e., the loading, unloading arldaeling behaviors for agglomerates,
where different interaction laws are applicable on thelle¥@rimary particles.

Effect of cohesion on the bulk behavior Chapters four and five deal with the effect of
friction and cohesion on both the microscopic and macradscbehavior of dense, dry,
frictional-cohesive powders. In chapter three, we preskwarious cohesive models starting
from the simplest reversible/irreversible elastic cohesd the irreversible elasto-plastic co-
hesive models. One is extremely “simple”, while others adersthe fact that in reality the
collision between two particles is non-linearly dissipaiin nature. Here we discussed cohe-
sive interaction due to plastic dissipation at contactsvéir, there can be different origins
of cohesive interaction between the particles. Direct s@rebetween two particles associ-
ated to van der Waals forces can be well characterized yeirsible elastic-plastic cohesive
model as presented in chapter thr&apillary forces due to the presence of humidity can
also lead to cohesion at contact.

An issue which remains unattended is whether our resulthearsanding and force dis-
tributions are independent of the details of the interactietween the particles. The Bond
numberBovery well predicted various macroscopic properties likdttviand position of the
shear bands to be unaffected by cohesiorBok 1, and a dependence fBo> 1. At the
microscopic scale, the structural signature like tailsaas€& PDFs showed similar behavior
with increasingBo. The question which needs further investigation is how iseaghese
results are to the details of what goes on between the gatiEurther shear cell simulations
with more elaborate cohesive models, and e.g. liquid bedyeontacts should be done and
compared with the results presented here.

Non-colinearity between stress and strain (rate) tensors As shown by 107, 110, 163
and further elaborated by Weinhart et @28, for large strain rates and non-symmetric ve-
locity gradients one can observe non-collinear stressrsrate) relations. In this disserta-
tion, we studied how various particle properties (frictaord cohesion) and system properties
(gravity and external shear) affect timacroscopidlow behavior of the granular assemblies.
But we did not discuss in detail how the various particle aygtesn properties affect this
non-collinearity. This topic deserves further attentiemas to formulate a correct and com-
plete tensorial objective description for granular matisri

Effect of softness and gravity on the flow behavior Chapter six showed the effect of
softness and gravity on the shear resistance and struanisgitropy for slow, rate indepen-
dent quasistatic granular flows. However, we did not stueyhilgh shear rate regime, where
flow becomes rate dependent. We showed that the local diordass pressung’ very well
quantifies both the shear resistance and structural aopgotf granular materials. For slow
flows, the flow behavior is independent of the local straie, rathile for fast flow-rate, it
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becomes significant. It is necessary to investigate how fwessibility "and “local strain
rate "of the bulk compete with each other, other than a sirspfeerposition. A big range
of gravity or compressibility in other words should allow ®unified local rheological de-
scription of granular materials ranging from bewjtto rigid if a wide range of strain-rate
is considered at the same time.

Segregation in granular media Granular mixtures are notorious for being segregated.
Gravity and local shear rates are the two major driving fecfior segregation in dense gran-
ular flows. In this dissertation, especially in chapter sie studied granular flows under
variable gravity foralmostthe same, slow local shear rate. While for a given gravityygis
different external rotation rates a wide range of localistrates can be extracted. Study-
ing the segregation in two independent ways can help us tadillhe gravity-shear rate
phase-space for segregation.



130 CHAPTER7. CONCLUSIONS AND OUTLOOK




(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

Bibliography

M. P. Allen and D. J. TildesleyComputer Simulations of Liquid<larendon Press,
Oxford, 1989.

K. A. Alshibli, M. Asce, S. N. Batiste, and F. Asce. Straiacalization in Sand: Plane
Strain versus Triaxial Compressiodournal of Geotechnical and Geoenvironmental
Engineering 129(6), 2003.

S. J. Antony. Evolution of force distribution in threéatensional granular media.
Physical Review F53(1):011302, 2000.

S. J. Antony. Link between single-particle propertiesl anacroscopic properties
in particulate assemblies: role of structures within dtrees. Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical andifieering Sciences

365(1861), 2007.

S. J. Antony and N. P. Kruyt. Role of interparticle frioti and particle-scale elastic-
ity in the shear-strength mechanism of three-dimensioralgar media.Physical
Review E (Statistical, Nonlinear, and Soft Matter Physiz8)031308(3), 2009.

E. Azéma and F. Radjai. Stress-strain behavior and gaarakproperties of packings
of elongated particle?hysical Review B81:051304:1-17, 2010.

E. Azéma and F. Radjai. Force chains and contact netve@ddgy in sheared pack-
ings of elongated particle®hys. Rev. E85(3), 2012.

E. Azéma, F. Radjai, R. Peyroux, and G. Saussine. Foapsinission in a packing of
pentagonal particles?hysical Review F76:011301, 2007.

E. Azéma, F. Radjai, and G. Saussine. Quasistatic riggoforce transmission and
fabric properties of a packing of irregular polyhedral maes. Mechanics of Materi-
als, 41(6):729-741, 2009.



132 Bibliography

[10] M. Babic, H. H. Shen, and H. T. Shen. The stress tensoramgar shear flows
of uniform, deformable disks at high solids concentratiohsFluid Mech, 219:81,
1990.

[11] K. Bagi. Microstructural stress tensor of granulareasblies with volume forcesl.
Appl. Mech, 66:934-936, 1999.

[12] J. P. Bardet. Observations on the effects of partidations on the failure of idealized
granular materialsMechanics of Materials18:159-182, 1994.

[13] J. P. Bardet and J. Proubet. A numerical investigatibthe structure of persistent
shear bands in granular medi@éotechniquet1(4):599-613, 1991.

[14] Y. M. Bashir and J. D. Goddard. A novel simulation metHod the quasi-static
mechanics of granular assemblag&sRheol, 35(5):849-885, 1991.

[15] L. Bécu, S. Manneuville, and A. Colin. Yielding and flowadhesive and nonadhesive
concentrated emulsionBhys. Rev. Lett96:138302, 2006.

[16] V. Bertho, F. Giorgiutti-Dauphine, and J.-P. Hulinténmittent dry granular flow in a
vertical pipe.Phys. Fluids15(11):3358-3369, 2003.

[17] D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer. ddémg by shear.Nature
480(7377):355-358, 2011.

[18] D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaagand S. R. Nagel. Force
distributions in 3d granular assemblies: Effects of pagkander and inter-particle
friction. Phys. Rev. E63:041304-1, 2001.

[19] T. Borzsonyi, T. Unger, and B. Szabd. Shear zone rafraeind deflection in layered
granular materialsPhys. Rev. E80:060302, Dec 2009.

[20] T. Borzsonyi, T. Unger, B. Szabo, S. Wegner, F. Angdanstnd R. Stannarius. Re-
flection and exclusion of shear zones in inhomogeneous namaterials Soft Mat-
ter, 7:8330-8336, 2011.

[21] L. Brendel, J. T6rok, R. Kirsch, and U. Brockel. A coritawodel for the yielding of
caked granular material&ranular Matter, 13(6):777-786, 2011.

[22] J. Bridgwater. On the width of failure zoneS£otechnique30:533, 1980.

[23] N. V. Brilliantov, N. Albers, F. Spahn, and T. PAPsch€bllision dynamics of gran-
ular particles with adhesioriRhysical Review E76(5), 2007.

[24] N. V. Brilliantov and T. P&schelCollision of Adhesive Viscoelastic Particled/iley
VCH, 2005.



Bibliography 133

[25] N. V. Brilliantov, F. Spahn, J. M. Hertzsch, and T. PésichModel for collisions in
granular gasesPhysical Review F53(5):5382-5392, May 1996.

[26] A. Brucks, T. Arndt, J. M. Ottino, and R. M. Lueptow. Befar of flowing granular
materials under variablg Phys. Rev. E75:032301, Mar 2007.

[27] J. Brujic, S. F. Edwards, D. V. Grinev, |. Hopkinson, D. Bigjiand H. A. Makse.
3D bulk measurements of the force distribution in a comm@ssmulsion system.
Faraday Discussionsl23:207-220, Jan. 2003.

[28] C. S. Campbell. Granular shear flows at the elastic lidutirnal of Fluid Mechanics
465:261-291, 2002.

[29] A. Castellanos. The relationship between attractiterparticle forces and bulk be-
havior in dry and uncharged fine powdefslvances in Physic8§4(4):263-376, 2005.

[30] P.Chaudhuri, L. Berthier, and L. Bocquet. Inhomogerseshear flows in soft jammed
materials with tunable attractive force2hys. Rev. E85:021503, 2012.

[31] X. Cheng, J. B. Lechman, A. Fernandez-Barbero, G. SsiGie. M. Jaeger, G. S.
Karczmar, M. E. M6bius, and S. R. Nagel. Three-dimensiomeasin granular flow.
Phys. Rev. Lett96(3):038001, 2006.

[32] M. P. Ciamarra, R. Pastore, M. Nicodemi, and A. Conigliamming phase diagram
for frictional particles.Phys. Rev. E84:041308, Oct. 2011.

[33] P. A. Cundall. A computer model for simulating progrigsslarge-scale movements
in blocky rock systems. IRroc. Symp. Int. Rock Meghvolume 2, Nancy, 1971.

[34] P. A.Cundalland O. D. L. Strack. A discrete numericaltalfor granular assemblies.
Géotechniqug29(1):47-65, 1979.

[35] F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and F. m.hev@ir. Rheophysics
of dense granular materials: Discrete simulation of pldreas flows. Phys. Rev. E
72:021309, Aug 2005.

[36] B. Dahneke. Measurements of bouncing of small latexesgh Journal of Colloid
and Interface Sciencd5(3):584 — 590, 1973.

[37] P. G. de Gennes. Granular matter: a tentative vidReviews of Modern Physics
71(2):374-382,1999.

[38] M. Depken, J. B. Lechman, M. V. Hecke, W. V. Saarloos, 81d5. Grest. Stresses
in smooth flows of dense granular medi@aPL (Europhysics Lettersy8(5):58001,
2007.

[39] M. Depken, W. van Saarloos, and M. van Hecke. Continuppr@ach to wide shear
zones in quasistatic granular mattehys. Rev. E73:031302, 2006.



134 Bibliography

[40] B. Derjaguin, V. Muller, and Y. P. Toporov. Effect of catt deformations on the
adhesion of particleslournal of Colloid and interface scienc®3(2):314-326, 1975.

[41] J. Desrues and G. Viggiani. Strain localization in saemloverview of the experimen-
tal results obtained in grenoble using stereophotogramynieternational Journal for
Numerical and Analytical Methods in Geomechan#®(4):279-321, 2004.

[42] J. K. G. Dhont, M. P. Lettinga, Z. Dogic, T. A. J. Lenstid, Wang, S. Rathgeber,
P. Carletto, L. Willner, H. Frielinghaus, and P. Lindnere&hbanding and microstruc-
ture of colloids in shear flowFaraday Discuss.123:157-172, 2003.

[43] J. A. Dijksman and M. van Hecke. Granular flows in splitiom geometriesSoft
Matter, 6:2901-2907, 2010.

[44] J. A. Dilksman, E. Wandersman, S. Slotterback, C. R.aB#r W. D. Updegraff,
M. van Hecke, and W. Losert. From frictional to viscous bebdavl hree-dimensional
imaging and rheology of gravitational suspensidPisysical Review F82(6):060301,
2010.

[45] J. Duran. Sands, Powders, and Grains-An Introduction to the PhysidSranular
Materials Springer, New York, 2000.

[46] O. Duran, N. P. Kruyt, and S. Luding. Analysis of threieadnsional micro-
mechanical strain formulations for granular materialsaldation of accuracy.n-
ternational Journal of Solids and Structurekr (2):251-260, 2010.

[47] O.Duran, N. P. Kruyt, and S. Luding. Micro-mechaniaahbysis of deformation char-
acteristics of three-dimensional granular materidisternational Journal of Solids
and Structures47(17):2234-2245, 2010.

[48] W. Ehlers and W. Volk. Cosserat-Theorie flr gesattigiedse FestkorpeEZeitschrift
fur Angewandte Mathematik und Mechanik (ZAMFj(Supplement 1):83-84, 1997.

[49] J. M. Erikson, N. W. Mueggenburg, H. M. Jaeger, and S. &&. Force distributions
in three-dimensional compressible granular paéksys. Rev. E66(4), 2002.

[50] N. Estrada, A. Lizcano, and A. Taboada. Simulation gheated granular materials.
i. macroscopic stress-strain response and strain lotializdhys. Rev. E32:011303,
2010.

[51] V. Fan and K. M. Hill. Shear-driven segregation of degssnular mixtures in a split-
bottom cell.Phys. Rev. E81:041303, Apr 2010.

[52] D. Fenistein, J. W. van de Meent, and M. van Hecke. Usiaeaind wide shear zones
in granular bulk flow.Phys. Rev. Lett92:094301, 2004.



Bibliography 135

[53] D. Fenistein, J. W. van de Meent, and M. van Hecke. Coeegssion and Global
Modes in Granular Bulk FlowPhys. Rev. Lett96:118001, 2006.

[54] D. Fenistein and M. van Hecke. Kinematics — Wide sheaezsan granular bulk flow.
Nature 425(6955):256, 2003.

[55] Y. Forterre and O. Pouliquen. Flows of dense granulatiménnu. Rev. Fluid Mech.
40:1-24, 2008.

[56] F. Gilabert, J.-N. Roux, and A. Castellanos. Computerugation of model cohe-
sive powders: plastic consolidation, structural changed,elasticity under isotropic
loads.Physical Review E78(3):031305, 2008.

[57] 1. Goldhirsch. Rapid Granular Flowannu. Rev. Fluid Mech35:267-293, 2003.

[58] F. Goncu, O. Duran, and S. Luding. Constitutive relasidor the isotropic defor-
mation of frictionless packings of polydisperse spher€s.R. Mécanique338(10-
11):570-586, 2010.

[59] G. Haiat, M. P. Huy, and E. Barthel. The adhesive contdictiscoelastic spheres.
Journal of the Mechanics and Physics of Salftk(1):69 — 99, 2003.

[60] M. Harrington, J. H. Weijs, and W. Losert. Suppressiod @mergence of granular
segregation under cyclic she&hys. Rev. Lett111:078001, Aug 2013.

[61] R. R. Hartley and R. P. Behringer. Logarithmic rate degence of force networks in
sheared granular materiaNature 421(6926):928-931, 2003.

[62] A. Hatzes, F. Bridges, D. Lin, and S. Sachtjen. Coaguadf particles in saturn’s
rings: Measurements of the cohesive force of water frdsarus 89(1):113-121,
1991.

[63] A. P. Hatzes, F. Bridges, D. N. C. Lin, and S. Sachtjena@oation of particles in
Saturn’s Rings: Measurements of the cohesive force of wadst. Icarus 89:113,
1991.

[64] D. L. Henann and K. Kamrin. A predictive, size-depenideontinuum model for
dense granular flows2roceedings of the National Academy of Scien2z643.

[65] S. Herminghaus. Dynamics of wet granular mat#edvances in Physic§4(3):221—
261, 2005.

[66] H. J. Herrmann and S. Luding. Modeling granular medithviie computerContin-
uum Mechanics and Thermodynamit8:189-231, 1998.

[67] K. M. Hilland Y. Fan. Isolating segregation mechanisma split-bottom cell Phys.
Rev. Lett.101:088001, Aug 2008.



136 Bibliography

[68] R. Hohler and S. Cohen-Addad. Rheology of liquid foalaurnal of Physics: Con-
densed Matterl7(41):R1041, 2005.

[69] K. A. Howard. Avalanche mode of motion: Implication®ifn lunar examplesSci-
ence 180(4090):1052-1055, 1973.

[70] D. Howell, R. P. Behringer, and C. Veje. Stress fluctasiin a 2d granular Couette
experiment: A continuous transitioPhys. Rev. Lett82(26):5241-5244,1999.

[71] O.I.Imole, N. Kumar, V. Magnanimo, and S. Luding. Hydtatic and shear behavior
of frictionless granular assemblies under different defation conditions. KONA
30:84-108, 2013.

[72] H. M. Jaeger, S. R. Nagel, and R. P. Behringer. Granwhds liquids, and gases.
Reviews of Modern Physio88(4):1259-1273, 1996.

[73] R.Jaseuius, R. K&ianauskas, and J. Tomas. Simulation of normal impact afanic
sized particle with elastic-plastic contactournal of Vibroengineeringl1(1):6-16,
2009.

[74] R. Jasewiius, J. Tomas, and R. Kmnauskas. Simulation of normal impact of ultra-
fine silica particle on substrat®articulate Science and Technolo@®(2):107-126,
2011.

[75] M. Jiang, Y. Sun, L. Li, and H. Zhu. Contact behavior oé&dized granules bonded
in two different interparticle distances: An experimeritakestigation.Mechanics of
Materials 55(0):1 — 15, 2012.

[76] M. Jiang, W. Zhang, Y. Sun, and S. Utili. An investigation loose cemented granular
materials via dem analyseGranular Matter, 15(1):65—-84, 2013.

[77] K. L. Johnson.Contact MechanicsCambridge Univ. Press, Cambridge, 1989.

[78] K. K. Johnson K. L and R. A. D. Surface energy and the ocindd elastic solids.
Proc. R. Soc. Lond. A324(1558):301-313, 1971.

[79] P. Jop. Hydrodynamic modeling of granular flows in a nfiedi Couette cell.Phys.
Rev. E 77:032301, 2008.

[80] P. Jop, Y. Forterre, and O. Pouliquen. A constitutive far dense granular flows.
Nature 441:727—-730, 2006.

[81] A. J. Kabla and T. J. Senden. Dilatancy in Slow Granulams. Physical Review
Letters 102(22), 2009.

[82] K. Kamrin and G. Koval. Nonlocal Constitutive Relatifor Steady Granular Flow.
Phys. Rev. Lett108:178301, Apr. 2012.



Bibliography 137

[83] G. Katgert, M. E. Mdbius, and M. van Hecke. Rate deperdemnd role of disorder
in linearly sheared two-dimensional foanizhys. Rev. Lett101:058301, 2008.

[84] L. Kempton, D. Pinson, S. Chew, P. Zulli, and A. Yu. Simtibn of macroscopic
deformation using a sub-particle {DEM} approadPowder Technology223(0):19 —
26, 2012.

[85] S.P.KleinandB. R. White. Dynamic shear of granularenat under variable gravity
conditions.AlAA Journal 28:1701-1702, 1990.

[86] S. Kothe, J.Blum, R. Weidling, and C. Guttler. Free isidins in a microgravity many-
particle experiment. iii. the collision behavior of subHimieter-sized dust aggregates.
Icarus 225(1):75-85, 2013.

[87] N.Kumar, O.I.Imole, V. Magnanimo, and S. Luding. Eviidun of the Effective Mod-
uli for Anisotropic Granular Materials during Shear. In Suding and A. Yu, editors,
Powders & Grains 2013pages 1238-1241, Sydney, Australia, 2013. Balkema.

[88] N. Kumar, V. Magnanimo, and S. Luding. The evolution ofisotropy in sheared
granular materials: numerical simulation and theorefcaetiction. Acta Geotech-
nica, Under Review, 2013.

[89] G. Kuwabara and K. Kono. Restitution Coefficient in a &n between two
SpheresJapanese Journal of Applied Physi@$(8):1230-1233, 1987.

[90] A. Kwade, D. Schulze, and J. Schwedes. Determinatidgh@stress ratio in uniaxial
compression tests - Part Powder handling & Processing(1):61-65, 1994.

[91] M. Léatzel, S. Luding, and H. J. Herrmann. Macroscopicenal properties from
quasi-static, microscopic simulations of a two-dimenal@hear-cellGranular Mat-
ter, 2(3):123-135, 2000.

[92] M. Léatzel, S. Luding, H. J. Herrmann, D. W. Howell, andfR Behringer. Comparing
simulation and experiment of a 2D granular Couette sheaiceevihe European
Physical Journal E: Soft Matter and Biological Physid4 (4):325-333, 2003.

[93] J. Li, F. Spaepen, and T. C. Hufnagel. Nanometre-scaflectls in shear bands in a
metallic glassPhilosophical Magazine A82(13):2623-2630, 2002.

[94] X. S.Liand Y. F. Dafalias. Anisotropic Critical Statd@ory: Role of FabricJournal
of Engineering Mechani¢438(3):263—-275, Mar. 2012.

[95] K. Liffman, D.Y. C. Chan, and B. D. Hughes. Force distition in a two dimensional
sandpile.Powder Technology’2(3):255-267, 1992.

[96] A. J. Liu and S. R. Nagel. Nonlinear dynamics: Jammingasjust cool any more.
Nature 396(6706):21-22, 1998.



138 Bibliography

[97] C. H. Liu, S. R. Nagel, D. A. Schecter, S. N. CoppersnfihiMiajumdar, O. Narayan,
and T. A. Witten. Force fluctuations in bead packscience 269(5223):513-515,
1995.

[98] G. Levoll, K. J. Malgy, and E. G. Flekkgy. Force measugets on static granular
materials.Physical Review F60(5):5872, 1999.

[99] S. Luding. Models and Simulations of Granular Material®hD thesis, Universitat
Freiburg, 1994.

[100] S. Luding. Collisions & Contacts between two particledn H. J. Herrmann, J. P.
Hovi, and S. Luding, editor&hysics of dry granular media - NATO ASI Series E350
page 285, Dordrecht, 1998. Kluwer Academic Publishers.

[101] S. Luding. Particulate Solids Modeling with Discr&iement Methods. In P. Massaci,
G. Bonifazi, and S. Serranti, editor@HoPS-05 CD Proceedingpages 1-10, Tel
Aviv, 2006. ORTRA.

[102] S. Luding. Cohesive, frictional powders: contact misdor tension.Granular Mat-
ter, 10(4):235-246, 2008.

[103] S. Luding. Constitutive relations for the shear banal@tion in granular matter under
large strain.Particuology 6(6):501-505, 2008.

[104] S. Luding. Introduction to discete element methodasiBs of contact force mod-
els and how to perform the micro-marco transition to contimttheory. Euro. J. of
Enviro. Civ. Eng, 12(7-8):785-826, 2008.

[105] S. Luding. The effect of friction on wide shear banBarticulate Science and Tech-
nology, 26(1), 2008.

[106] S. Luding. From molecular dynamics and particle sitiohs towards constitutive
relations for continuum theory. In B. Koren and K. Vuik, exti, Advanced Computa-
tional Methods in Science and Engineerihgcture Notes in Computational Science
and Engineering. Springer, 2009.

[107] S. Luding and F. Alonso-Marroquin. The critical-stgield stress (termination lo-
cus) of adhesive powders from a single numerical experimé&nanular Matter,
13(2):109-119, 2011.

[108] S. Luding, E. Clément, A. Blumen, J. Rajchenbach, aridutan. Interaction Laws
and the Detachment Effect in Granular Media.Fractal Aspects of Materials/ol-
ume 367, pages 495-500, Pittsburgh, Pennsylvania, 199Brisla Research Society,
Symposium Proceedings.



Bibliography 139

[109] S. Luding and H. J. Herrmann. Micro-macro transition éohesive granular media.
Zur Beschreibung komplexen Materialverhaltens, InsfitmitMechanik, S. Diebels
(Ed.), Stuttgartpages 121-133, 2001.

[110] S. Luding, M. Latzel, W. Volk, S. Diebels, and H. J. Haann. From discrete element
simulations to a continuum modelComputer Methods in Applied Mechanics and
Engineering191(1-2):21-28, 2001.

[111] S. Luding, K. Manetsberger, and J. Mullers. A discratedel for long time sintering.
Journal of the Mechanics and Physics of Sqlif3(2):455-491, 2005.

[112] T. S. Majmudar and R. P. Behringer. Contact force mesamsants and stress-induced
anisotropy in granular materialblature 435(7045):1079-1082, 2005.

[113] H. A. Makse, D. L. Johnson, and L. M. Schwartz. Packihgampressible granular
materials.Physical review letters84(18):4160, 2000.

[114] G. Mandl, L. Jong, and A. Maltha. Shear zones in gramakaterial. Rock mechanigs
9(2-3):95-144, 1977.

[115] R. Mani, D. Kadau, D. Or, and H. J. Herrmann. Fluid déplein shear bands?hys.
Rev. Lett.109:248001, 2012.

[116] G. Mason and W. C. Clark. Liquid bridges between sphie@hemical Engineering
Science20(10), 1965.

[117] S. McNamara and W. R. Young. Inelastic collapse in twoahsions.Phys. Rev. E
50(1):R28-R31, 1994.

[118] S. McNamara and W. R. Young. Dynamics of a freely evadyitwo-dimensional
granular mediumPhys. Rev. E53(5):5089-5100, 1996.

[119] G. D. R. MiDi. On dense granular flowsThe European Physical Journal E: Soft
Matter and Biological Physigsl4(4):341-365, 2004.

[120] P. Mills, D. Loggia, and M. Tixier. Model for a stationadense granular flow along
an inclined wall.EPL (Europhysics Letters}5(6):733, 1999.

[121] O. Molerus. Theory of yield of cohesive powdeRowder Technologyl2(3):259—
275, 1975.

[122] O. Molerus. Effect of interparticle cohesive forcestbe flow behaviour of powders.
Powder Technology20(2):161-175, 1978.

[123] A. Moridi, S. Hassani-Gangaraj, and M. Guagliano. Atg approach to determine
critical and erosion velocities in the cold spray procesgplied Surface Science
273:617-624,2013.



140 Bibliography

[124] D. M. Mueth, G. F. Debregeas, G. S. Karczmar, P. J. EngRSNagel, and
H. M. Jaeger. Signatures of granular microstructure in desfiear flows.Nature
406(6794):385-389, 2000.

[125] D. M. Mueth, H. M. Jaeger, and S. R. Nagel. Force distidn in a granular medium.
Physical Review F57(3):3164—3169, Mar. 1998.

[126] H. B. MUhlhaus and I. Vardoulakis. The thickness ofestisnds in granular materials.
Géotechniqug(37):271-283, 1987.

[127] N. Murdoch, B. Rozitis, S. Green, T.-L. Lophem, P. Méthand W. Losert. Granular
shear flow in varying gravitational environmentSranular Matter, 15(2):129-137,
2013.

[128] N. Murdoch, B. Rozitis, K. Nordstrom, S. Green, P. MithT.-L. de Lophem,
and W. Losert. Granular convection in microgravityPhysical review letters
110(1):018307, 2013.

[129] S. Nase, W. L. Vargas, A. A. Abatan, and J. J. McCarthiscEgte characterization
tools for cohesive granular materi®owder Technologyl 16(2-3), 2001.

[130] R. M. Nedderman and C. Laohakul. The thickness of tleashone of flowing gran-
ular material.Powder Techno|25:91, 1980.

[131] M. Oda. Initial fabrics and their relations to mechaaliproperties of granular mate-
rials. Soils and Foundationl (12):17-36, 1972.

[132] M. Oda, K. Ilwashita, and H. Kazama. Micro-structureeleped in shear bands of
dense granular soils and its computer simulation — mecheaiiglilatancy and failure
—. In N. A. Fleck and A. C. E. Cocks, editoi&)TAM Symposium on Mechanics of
Granular and Porous Materialgpages 353—-364. Kluwer Academic Publishers, 1997.

[133] M. Oda and H. Kazama. Microstructure of shear bandstanélation to the mecha-
nism of dilatancy and failure of dense granular soBotechnique48(4):465-481,
1998.

[134] C. S. O'Hern, S. A. Langer, A. J. Liu, and S. R. Nagel. deobDistributions near
Jamming and Glass TransitiorBhysical Review Letter86(1):111-114, 2001.

[135] C. S. O'Hern, S. A. Langer, A. J. Liu, and S. R. Nagel. &am packings of friction-
less particlesPhys. Rev. Lett88(7), 2002.

[136] C. S. O'Hern, L. E. Silbert, A. J. Liu, and S. R. Nagelmiuaing at zero temperature
and zero applied stress: The epitome of disorééys. Rev. E68, 2003.



Bibliography 141

[137] T. Ormel, V. Magnanimo, H. H. ter, and S. Luding. Modejiof asphalt and ex-
periments with a discrete particles method. Qonference Proceedings MAIREPAV7
2012 2012.

[138] M. Otsuki and H. Hayakawa. Critical scaling near jamgtransition for frictional
granular particlesPhys. Rev. E83(5), 2011.

[139] M. Otsuki, H. Hayakawa, and S. Luding. Behavior of jgteg and viscosity at high
densities for two-dimensional hard and soft granular nigter Prog. Theor. Phys.
Suppl, 184:110-133, 2010.

[140] J. M. Ottino and D. V. Khakhar. Mixing and SegregatidrGsanular MaterialsAnn.
Rev. Fluid Mech.32:55, 2000.

[141] G. Ovarlez, S. Rodts, X. Chateau, and P. Coussot. Phenology and physical
origin of shear localization and shear banding in compleiflu Rheologica acta
48(8):831-844, 2009.

[142] G. Ovarlez, S. Rodts, A. Ragouilliaux, P. Coussot,dy@h, and A. Colin. Wide-gap
couette flows of dense emulsions: Local concentration neagents, and compari-
son between macroscopic and local constitutive law measmts through magnetic
resonance imaging?hys. Rev. E78:036307, 2008.

[143] M. Pasha, S. Dogbe, C. Hare, A. Hassanpour, and M. GhadiL3. Under review.

[144] A.-S. Persson and G. Frenning. An experimental evmoaf the accuracy to simu-
late granule bed compression using the discrete elemehbichdtowder Technology
219:249 — 256, 2012.

[145] P.-E. Peyneau and J.-N. Roux. Frictionless bead paaks macroscopic friction, but
no dilatancy.Phys. Rev. E78:011307, July 2008.

[146] M. Pica Ciamarra and A. Coniglio. Jamming at Zero Terapee, Zero Friction, and
Finite Applied Shear Stres®hys. Rev. Lett103(23), 2009.

[147] T. P6schel and T. SchwageComputational Granular DynamicsSpringer, Berlin,
2005.

[148] O. Pouliquen. On the shape of granular fronts down Indaglined planesPhysics
of Fluids (1994-presentl1(7):1956-1958, 1999.

[149] O. Pouliquen and Y. Forterre. A non-local rheologydense granular flow$hysical
and Engineering Science367(1909):5091-5107, Dec. 2009.

[150] O. Pouliquen, Y. Forterre, and S. L. Dizes. Slow densaglar flows as a self-induced
processAdvances in Complex Systerfi4(04):441-450, 2001.



142 Bibliography

[151] O. Pouliquen and R. Gutfraind. Stress fluctuations simelar zones in quasi-static
granular chute flowsPhys. Rev. F53(1):552, 1996.

[152] M. A. S. Quintanilla, A. Castellanos, and J. M. Valverdnterparticle contact forces
in fine cohesive powders. theory and experimeRf&sMM, 3:206—207, 2003.

[153] F. Radjai, M. Jean, J. J. Moreau, and S. Roux. Forceibuigion in Dense Two-
Dimensional Granular SystemBhys. Rev. Lett77(2):274, 1996.

[154] F. Radjai, V. Topin, V. Richefeu, C. Voivret, J. DelenrE. Azéma, and S. El Yous-
soufi. Force transmission in cohesive granular medi&@ Conference Proceedings
1227(1):240-259, 2010.

[155] F. Radjai, D. E. Wolf, M. Jean, and J. Moreau. Bimodahftter of Stress Trans-
mission in Granular Packing®hysical Review Letter80:61—64, 1998.

[156] A. Ragouilliaux, G. Ovarlez, N. Shahidzadeh-Bonn,Hrzhaft, T. Palermo, and
P. Coussot. Transition from a simple yield-stress fluid tixdtropic material Phys.
Rev. E 76:051408, 2007.

[157] O. Reynolds. On the dilatancy of media composed ofinigirticles in contachilos.
Mag. Ser. 550-20:469, 1885.

[158] V. Richefeu, M. S. El Y., and F. Radjai. Shear Strendtbsaturated Soils : Exper-
iments, DEM Simulations, and Micromechanical Analysis. Theoretical and Nu-
merical Unsaturated Soil Mechanicglume 427. Springer Berlin Heidelberg, 2007.

[159] V. Richefeu, M. S. El Youssoufi, and F. Radjai. Sheagrsith properties of wet
granular materialsPhys. Rev. E73:051304, 2006.

[160] A.Ries, D. E. Wolf, and T. Unger. Shear zones in granmedia: Three-dimensional
contact dynamics simulationBhys. Rev. E76:051301, 2007.

[161] G. H. Risto and H. J. Herrmann. Density patterns in timensional hopper®hys-
ical Review E50:5, 1994.

[162] P. G. Rognon, J.-N. Roux, M. NaalM, and F. Chevoir. Refiews of cohesive gran-
ular materials.Journal of Fluid Mechanics596:21-47, 2008.

[163] C. H. Rycroft, K. Kamrin, and M. Z. Bazant. Assessingnttouum postulates in sim-
ulations of granular flowJournal of the Mechanics and Physics of Sqliig(5):828—
839, May 2009.

[164] K. Saitoh, A. Singh, V. Magnanimo, and S. Luding. Thadedissipation principle in
wide shear bands. In preparation, 2014.



Bibliography 143

[165] K. Sakaie, D. Fenistein, T. J. Carroll, M. van Hecked @xUmbanhowar. Mr imaging
of reynolds dilatancy in the bulk of smooth granular floE®L (Europhysics Letters)
84(3):38001, 2008.

[166] K. Sakaie, D. Fenistein, T. J. Carroll, M. van Hecked @nUmbanhowar. Mr imaging
of reynolds dilatancy in the bulk of smooth granular floE®L (Europhysics Letters)
84(3):38001, 2008.

[167] S. Savage.The Mechanics of Rapid Granular Flowsolume 24 ofAdvances in
Applied Mechanicgpages 289-366. Elsevier, 1984.

[168] S. B. Savage. Analyses of slow high-concentration $l@f granular materialsJ.
Fluid Mech, 377:1-26, 1998.

[169] P. Schall and M. van Hecke. Shear Bands in Matter withn@larity. Annual Review
of Fluid Mechanics42(1), 2010.

[170] T. Schmidt, F. Gartner, H. Assadi, and H. Kreye. Depeatent of a generalized pa-
rameter window for cold spray depositioAicta materialia 54(3):729-742, 2006.

[171] R. Schwarze, A. Gladkyy, F. Uhlig, and S. Luding. Riuepl of weakly wetted gran-
ular materials: a comparison of experimental and numedatd. Granular Matter,
15(4), 2013.

[172] J. Schwedes. Testers for measuring flow propertiesagiqulate solids. Powder
Handling & Processing12(4):337-354, 2000.

[173] J. Schwedes. Review on testers for measuring flow ptiegef bulk solidsGranular
Matter, 5(1):1-43, 2003.

[174] D. R. Scott. Seismicity and stress rotation in a granuhodel of the brittle crust.
Nature 381:592-595, 1996.

[175] M. R. Shaebani, M. Madadi, S. Luding, and D. E. Wolf. uiefhce of polydispersity
on micromechanics of granular materidi#ys. Rev. E85(1), 2012.

[176] L. E. Silbert. Jamming of frictional spheres and ramdoose packingSoft Matter
6:2918-2924, 2010.

[177] L. E. Silbert, A. J. Liu, and S. R. Nagel. Structuralrsgures of the unjamming
transition at zero temperaturehys. Rev. E73(4, Part 1), 2006.

[178] S. E. Silbert, G. S. Grest, and J. W. Landry. Statistitthe Contact Network in
Frictional and Frictionless Granular Packing®ysical Review E66:061303(6 Part
1), 2002.



144 Bibliography

[179] A. Singh and S. Luding. Flow behavior at different shestes for dry powders.
In Proceedings of World Congress on Particle Technology WCRT8nberg Messe
GmbH, 2010.

[180] A. Singh, V. Magnanimo, and S. Luding. Contact model $ticking of adhesive
mesoscopic particlefowder TechnologyJnder Review, 2013.

[181] A. Singh, V. Magnanimo, and S. Luding. Effect of frimti and cohesion on
anisotropy in quasi-static granular materials under shA# Conference Proceed-
ings 1542(1):682—685, 2013.

[182] A. Singh, V. Magnanimo, and S. Luding. Effect of frimti on the force distribution in
sheared granular materials. NUMGE, Conference Procegdrigh.

[183] A. Singh, V. Magnanimo, K. Saitoh, and S. Luding. Doeavity have an effect on
the slow shear rheology of granular matter? Submitted, 2014

[184] A. Singh, V. Magnanimo, K. Saitoh, and S. Luding. Effe¢ cohesion on shear
banding in quasi-static granular materighys. Rev. EUnder Review, 2014.

[185] A. Singh, V. Magnanimo, K. Saitoh, and S. Luding. Thdamensional local rheology
of dense granular system. In preparation, 2014.

[186] J. H. Snoeijer, M. van Hecke, E. Somfai, and W. van Saes:l Force and weight
distributions in granular media: Effects of contact geame®hys. Rev. E67, 2003.

[187] C. Song, P. Wang, and H. A. Makse. A phase diagram fomjathmatter.Nature
453(7195), 2008.

[188] C. Sorace, M. Louge, M. Crozier, and V. Law. High appéradhesion energy in
the breakdown of normal restitution for binary impacts obdirapheres at low speed.
Mechanics Research Communicatip88(3):364 — 368, 2009.

[189] F. Spaepen. A microscopic mechanism for steady statogeneous flow in metal-
lic glassesActa Metallurgica 25(4):407-415, 1977.

[190] L. Staron and F. Radjai. Friction versus texture at #pproach of a granular
avalanchePhysical Review E72(4):041308, 2005.

[191] T. V. Steenkiste, J. Smith, R. Teets, J. Moleski, D.awicz, R. Tison, D. Marantz,
K. Kowalsky, W. R. I, P. Zajchowski, B. Pilsner, R. McCun@&dK. Barnett. Kinetic
spray coatingsSurface and Coatings Technolody 1(1):62 — 71, 1999.

[192] A. S. J. Suiker and N. A. Fleck. Frictional collapse oagular assemblieslournal
of Applied Mechanics71:350-358, 2004.



Bibliography 145

[193] H. Tanaka, K. Wada, T. Suyama, and S. Okuzumi. Growttosmic dust aggregates
and reexamination of particle interaction modeRrogress of Theoretical Physics
Supplementl95:101-113, 2012.

[194] G. I. Tardos, S. McNamara, and I. Talu. Slow and intetiat flow of a frictional
bulk powder in the Couette geomet®owder Technologyl31(1):23-39, 2003.

[195] S. C. Thakur, H. Ahmadian, J. Sun, and J. Y. Ooi. An ekpental and numerical
study of packing, compression, and caking behaviour ofrdete powders Partic-
uology, 2013.

[196] C. Thornton. Numerical simulations of deviatoric ahdeformation of granular me-
dia. Geotechniqugb0(1):43-53, 2000.

[197] C. Thornton and S. J. Anthony. Quasi static defornmatibparticulate mediaPhilo-
sophical Transactions of the Royal Society of London. SéridMathematical, Phys-
ical and Engineering Science356(1747):2763-2782,1998.

[198] C. Thornton, S. J. Cummins, and P. W. Cleary. An ingzdion of the compara-
tive behaviour of alternative contact force models duritegtic collisions. Powder
Technology210(3):189 — 197, 2011.

[199] C. Thornton and Z. Ning. A theoretical model for thecktbounce behaviour of
adhesive, elastic-plastic spher®swder Technologyi2(5):451+, 1998.

[200] C. Thornton and K. K. Yin. Impact of elastic sphereshnéind without adhesion.
Powder Techno)65:153, 1991.

[201] B. P. Tighe, J. E. S. Socolar, D. G. Schaeffer, W. G. Ngiter, and M. L. Huber.
Force distributions in a triangular lattice of rigid baPhys. Rev. E72:031306, 2005.

[202] K. To, P.-Y. Lai, and H. K. Pak. Jamming of granular flowa two-dimensional
hopper.Physical review letters86(1):71, 2001.

[203] Tomas. Assessment of Mechanical Properties of CoebdXarticulate Solids. Part 1:
Particle Contact Constitutive Modé?®articulate Science And Technolqd®:95-110,
2001.

[204] J. Tomas. Particle Adhesion Fundamentals and Bulkdeowonsolidation KONA,
18:157-169, 2000.

[205] J. Tomas. Assessment of mechanical properties ofsbadparticulate solids. part 2:
Powder flow criteriaParticulate Science and Technology: An International Jalr
19:111-129, 2001.

[206] J. Tomas. Adhesion of ultrafine particles—A micronmestbal approach. Chemical
Engineering Scienc&2(7):1997-2010, 2007.



146 Bibliography

[207] J. Tomas and S. Kleinschmidt. Improvement of flowapitif fine cohesive powders
by flow additives.Chemical engineering & technolog92(10):1470-1483, 2009.

[208] V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre, andADWeitz. Jamming phase
diagram for attractive particleNature 411(6839):772—775, 2001.

[209] T. Unger. Refraction of shear zones in granular makePhys. Rev. Lett98:018301,
2007.

[210] T. Unger. Collective rheology in quasi static sheawftdf granular media, Sept. 2010.

[211] T. Unger, J. Torok, J. Kertész, and D. E. Wolf. Sheardoformation in granular
media as a variational problerRhys. Rev. Lett92:214301, May 2004.

[212] J. Valverde, M. Quintanilla, and A. Castellanos. JamgrTrhreshold of Dry Fine
Powders Phys. Rev. Lett92(25), 2004.

[213] S. van BaarsDiscrete Element Analysis of Granular MateriaBhD thesis, Technis-
che Universiteit Delft, Delft, Nederlands, 1996.

[214] A. R. van Eerd, W. G. Ellenbroek, M. van Hecke, J. H. Sjgoeand T. J. Vlugt.
Tail of the contact force distribution in static granularteréals. Physical Review E
75(6):060302, 2007.

[215] M. van Hecke. Jamming of soft particles: geometry, hagiics, scaling and isostatic-
ity. Journal of Physics: Condensed Matt@2:033101(3), 2009.

[216] C. T. Veje, D. W. Howell, and R. P. Behringer. Kinematif a 2D granular Couette
experiment at the transition to sheariithys. Rev. F59(1):739-745, 1999.

[217] P. A. Vermeer, S. Diebels, W. Ehlers, H. J. Herrmannl.&ling, and E. Ramm,
editors. Continuous and Discontinuous Modelling of Cohesive Foitél Materials
Berlin, 2001. Springer.

[218] L. Vu-Quoc and X. Zhang. An elastic contact force-thggment model in the normal
direction: displacement-driven versidaroc. R. Soc. Lond. A155:4013—-4044, 1999.

[219] H.-C. W. Wall S., Walter J. and G. L. S. Measurementsiokkc energy loss for
particles impacting surface8erosol Science and Technolodp(4):926 — 946, 1990.

[220] O. Walton. Potential discrete element simulationlapgions ranging from airborne
fines to pellet beds. Iinternational Conference On Environmental Systexts-
ume 01, page 2329, 2004.

[221] O. Walton. Review of adhesion fundamentals for miescale particlesKONA Pow-
der and Particle 26:129-141, 2008.



Bibliography 147

[222] O. R. Walton. Numerical simulation of inelastic, fimnal particle-particle interac-
tions. In M. C. Roco, editorParticulate two-phase flowpage 884, Boston, 1993.
Butterworth-Heinemann.

[223] O. R. Walton and R. L. Braun. Stress Calculations fosexablies of Inelastic Spheres
in Uniform Shear Acta Mechanica63:73, 1986.

[224] O. R. Walton and R. L. Braun. Viscosity, Granular-Teargture, and Stress Calcula-
tions for Shearing Assemblies of Inelastic, Frictionalk3is). Rheol, 30(5):949-980,
1986.

[225] O. R. Walton and S. M. Johnson. Simulating the effedtsterparticle cohesion
in micron-scale powders. IRowders and Grains 2009: Proceedings of the 6th In-
ternational Conference on Micromechanics of Granular Medblume 1145, pages
897-900. AIP Publishing, 2009.

[226] X. Wang, H. P. Zhu, S. Luding, and A. B. Yu. Regime traiosis of granular flow in
a shear cell: A micromechanical studhys. Rev. E38:032203, 2013.

[227] G.  Webster. Rover team tests mars moves on earth.
http://marsrovers. jpl.nasa.gov/newsroom/pressreleases/20050506a.html.

[228] T. Weinhart, R. Hartkamp, A. R. Thornton, and S. Ludi@parse-grained local and
objective continuum description of three-dimensionahgitar flows down an inclined
surface.Physics of Fluids25:070605(7), 2013.

[229] D. M. Wood. Soil behaviour and critical state soil mechanicgambridge university
press, 1990.

[230] J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee. The rebounenmmenon in kinetic
spraying depositionScripta Materialig 54(4):665 — 669, 2006.

[231] z. Xianglin, W. Xiangkun, W. Jianguo, and J. Zhang. MNarioal investigation of
the rebounding and the deposition behavior of particleindurold spraying.Acta
Metallurgica Sinica(English lettersp4(1):43, 2011.

[232] R. Y. Yang, R. P. Zou, A. B. Yu, and S. K. Choi. Charactation of interparticle
forces in the packing of cohesive fine particl®$ys. Rev. E78:031302, 2008.

[233] J. Yuan, Q. Zhang, B. Li, and X. Zhao. Experimental gsizlof shear band formation
in plane strain tests on shanghai silty cl@ulletin of Engineering Geology and the
Environment72:107-114, 2013.

[234] D. Zhang, P. Shipway, and D. McCartney. Cold gas dyeapraying of aluminum:
The role of substrate characteristics in deposit formatifmurnal of Thermal Spray
Technology14:109-116, 2005.


http://marsrovers.jpl.nasa.gov/newsroom/ pressreleases/20050506a.html

148 Bibliography

[235] H.P.ZhangandH. A. Makse. Jamming transition in emousand granular materials.
Phys. Rev. E72:011301, July 2005.

[236] J. Zhang, T. S. Majmudar, M. Sperl, and R. P. Behrindamming for a 2D granular
material. Soft Matter 6(13):2982—2991, 2010.

[237] X. Zhang and L. Vu-Quoc. Modeling the dependence oftibefficient of restitution
on the impact velocity in elasto-plastic collisionfternational Journal of Impact
Engineering27(3):317-341, 2002.

[238] J. Zhao and N. Guo. Unique critical state characies$h granular media considering
fabric anisotropy Géotechniqugs3(8):695—-704, 2013.



Curriculum vitae

Abhinendra Singh

August 2009 Integrated Masters of Science in Physics

IIT Kharagpur, India
May - July 2006 Internship, School of Physical Sciences, JXdia
May - July 2007 Internship, INCASR, Bangalore, India

August 2009 - Present  PhD candidate, University of Twente

Publications
Journal Papers

1

. A. Singh, V. Magnanimo, and S. Luding. Contact model fackatg of adhesive
mesoscopic particlefowder TechnologyJnder Review, 2013

. A. Singh, V. Magnanimo, K. Saitoh, and S. Luding. Effectcohesion on shear
banding in quasi-static granular materiBhys. Rev. EUnder Review, 2014

. A. Singh, V. Magnanimo, K. Saitoh, and S. Luding. Does gyavave an effect on
the slow shear rheology of granular matter? Submitted, 2014

. A. Singh, V. Magnanimo, K. Saitoh, and S. Luding. Threeelisional local rheology
of dense granular system. In preparation, 2014

. K. Saitoh, A. Singh, V. Magnanimo, and S. Luding. The le@hssipation principle in
wide shear bands. In preparation, 2014

Proceedings

6

7

. A. Singh and S. Luding. Flow behavior at different shesesor dry powders. |/®ro-
ceedings of World Congress on Particle Technology WCRT8nberg Messe GmbH,
2010

. A. Singh, V. Magnanimo, and S. Luding. Effect of frictiomdacohesion on anisotropy
in quasi-static granular materials under shA#. Conference Proceedingkb42(1):682—
685, 2013



150

CURRICULUM VITAE

8.

A. Singh, V. Magnanimo, and S. Luding. Effect of friction the force distribution in
sheared granular materials. NUMGE, Conference Proceg2rig}

Conferences (Talks)

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Singh, and S. Luding, Flow behavior with random drivingsheared cohesive-
frictional powderJamming and Rheology Conferenégril 2010, Cargese, Corsica
A. Singh, and S. Luding, Flow behavior at different shases for dry powdersNorld
Congress of Particle Technology April 2010, Nuremberg, Germany

A. Singh, V. Magnanimo, and S. Luding, Microstructuralgsis in shear bands for
cohesive-frictional powder$jeterogeneity and Disorder in Physics, 201hiversi-
dad de Chile, Santiago, Chile

A. Singh, A. Thornton, and S. Luding, Stability Analysisfully coupled equations
in granular avalanchd€MM2 2011 September 2011, Paris, France

A. Singh, V. Magnanimo, and S. Luding, Cohesive FriciioBowders, From Micro
to Macro, Tsinghua UniversityJune 2012, Beijing, China

A. Singh, T. Weinhart, V. Magnanimo, and S. Luding, Froanticles to continuum
theory: Shear bands, jamming and dilatarkty Asian Particle Technology, Sympo-
sium (APT 2012)June 2012, Singapore

A. Singh, T. Weinhart, V. Magnanimo, and S. Luding, Froantieles Towards Con-
tinuum Theory: Dilatancy and Anisotrop8th European Solid Mechanics Conference
2012 July 2012, Graz, Austria

A. Singh, V. Magnanimo, and S. Luding, Three dimensiohablogy of dense granu-
lar systemBurgersdag 2013January 2013, Enschede, The Netherlands

A. Singh, V. Magnanimo, and S. Luding, Effect of cohesionshear band in dense
granular mediumParticles 2013 September 2013, Stuttgart, Germany

A. Singh, V. Magnanimo, and S. Luding, Effect of cohesaon friction on the shear
banding,Traffic and Granular Flow’13Julich, September 2013, Germany

A. Singh, V. Magnanimo, and S. Luding, How does a granmaterial fail on the
moon? Physics@FOMJanuary 2014, Veldhoven, The Netherlands

Other services to the scientific community

1.

2.

Co-Chair: A session on “Mechanics of Granular Media” gh“Buropean Solid Me-
chanics Conference 2012".

Reviewer: Granular Matter, Particuology, Intl. Jouro&$olids and Structuress



	Summary
	Samenvatting
	Acknowledgements
	Contents
	1 Introduction
	1.1 Granular Materials
	1.2 Goal
	1.3 Story of the thesis

	2 Granular Flow Review
	2.1 Slow Flows
	2.2 Fast Flows
	2.3 Methodology

	3 Contact model for sticking of adhesive mesoscopic particles
	3.1 Introduction
	3.2 Discrete Element Method
	3.3 Coefficient of Restitution
	3.4 Elasto-plastic coefficient of restitution
	3.5 Conclusions
	3.A Appendix
	3.B  Energy Picture
	3.C Tuning of parameters to increase the plastic range
	3.D Agglomerate compression and tension test

	4 Effect of friction and cohesion on behavior of granular materials
	4.1 Introduction
	4.2 Model System Geometry
	4.3 Results
	4.4 Discussion

	5 Effect of cohesion on shear banding in granular materials
	5.1 Introduction and Background
	5.2 Discrete element method simulation (DEM)
	5.3 Results
	5.4 Discussion and conclusion
	5.A Appendix

	6 DEM simulations of granular rheology: Effects of gravity and contact stiffness.
	6.1 Introduction
	6.2 Discrete Element Method
	6.3 Quasistatic state
	6.4 Dense inertial regime
	6.5 Discussion and Conclusion

	7 Conclusions and outlook
	Curriculum vitae

