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Abstract

Particle simulations are able to model behavior of granular materials, but are
very slow when large-scale phenomena and industrial applications of granular
materials are considered. Even with the most advanced computational tech-
niques, it is not possible to simulate realistic numbers of particles in large sys-
tems with complex geometries. Thus, continuum models are more desirable,
where macroscopic field variables can be obtained from a micro-macro averag-
ing procedure. However, aspects of microscopic scale are neglected in classical
continuum theories (restructuring, geometric non linearity due to discreteness,
explicit control over particle properties).

The focus of this work is the investigation of elastic and dissipative behavior
of isotropic, dense assemblies. In particular, the attention is devoted on the ef-
fect of microscopic parameters (e.g. stiffness, friction, cohesion) on the macro-
scopic response (e.g. elastic moduli, attenuation). The research methodology
combines experiments, numerical simulations, theory.

One goal is to extract the macroscopic material properties from the mi-
croscopic interactions among the individual constituent particles; for simple
enough systems this can often be done using techniques from mechanics and
statistical physics. While these simplified models can not capture all aspects of
technically relevant realistic grains the fundamental physical phase transitions
can be studied with these model systems.

Complex mixtures with more than one particle species can exhibit enhanced
mechanical properties, better than each of the ingredients. The interplay of soft
with stiff particles is one reason for this, but requires a more accurate formation
of the interaction of deformable spheres. A new multi-contact approach is pro-
posed which shows a better agreement between experiments and simulations in
comparison to the conventional pair interactions.

The study of wave propagation in granular materials allows inferring many
fundamental properties of particulate systems such as effective elastic and dis-
sipative mechanisms as well as their dispersive interplay. Measurements of both
phase velocities and attenuation provide complementary information about in-
trinsic material properties. Soft-stiff mixtures, with the same particle size, tested
in the geomechanical laboratory, using a triaxial cell equipped with wave trans-
ducers, display a discontinuous dependence of wave speed with composition.

The diffusive characteristic of energy propagation (scattering) and its fre-
quency dependence (attenuation) are past into a reduced order model, a master
equation devised and utilized for analytically predicting the transfer of energy
across a few different wavenumber ranges, in a one-dimensional chain.
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Chapter 1
Introduction

Many industrial and geotechnical applications that are crucial for our society
involve granular systems at small strain levels. That is the case of structures
designed to be far from failure (e.g. shallow foundations or underlying in-
frastructure), strains in the soil are small and a sound knowledge of the bulk
stiffness is essential for the realistic prediction of ground movements. In the
following, a general introduction to granular matter is given. Then, different
regimes under deformation of a bulk granular materials and the emergence
of a theoretical framework based on micro-mechanical information to represent
elastic behavior for granular materials are explained. Definition of elastic waves
in solids is provided and some characteristics of mechanical waves in disordered
heterogeneous media like attenuation, dispersion, and stochastic modeling are
introduced. Finally, an outline of the thesis will be given.

1.1 Granular matter

Granular materials (e.g. Fig. 1.1), though ubiquitous in nature and widely used
in engineering and construction, remain relatively poorly understood. They
may behave like solids, liquids or gases, though typically exhibiting a variety
of unexpected behaviors that are not encountered in these conventional forms
of materials. The preponderance of problems yet to be solved has sparked a
renewed interest in granular materials, in different communities.

Granular materials consist of discrete particles such as, e.g., separate sand-
grains, agglomerates (made of many primary particles), natural solid materials
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(a) (b)

Figure 1.1: Examples of granular materials in our daily life.

like sandstone, or ceramics, metals or polymers sintered during additive manu-
facturing. The primary particles can be as small as nano-meters, micro-meters,
or millimeters, [156] covering multiple scales in size and a variety of mechan-
ical and other interaction mechanisms like, e.g., friction and cohesion [263].
The latter becomes more and more important the smaller the particles are. All
those particle systems have a particulate, usually disordered, possibly inhomo-
geneous and often anisotropic micro-structure, which is at the core of many
of the challenges one faces when trying to understand powder technology and
granular matter.

Particle systems as bulk show a completely different behavior as one would
expect from the individual particles. Collectively, particles either flow like a
fluid or rest static like a solid. In the former case, for rapid flows, granular
materials are collisional and inertia dominated and compressible similar to a
gas. In the latter case particle aggregates are solid-like and thus can form, e.g.,
sand piles or slopes that do not move for long time. In between is the dense
and slow flow regime that connects the extremes and is characterized by the
transitions (i ) : from static to flowing (failure, yield) or vice-versa (i i ) : from
fluid to solid (jamming). On the particle and contact scale, the most special
property of particle systems is their dissipative, frictional, and possibly cohesive
nature. Here, dissipation means that kinetic energy at this scale is irrecoverably
lost from the particles translational degrees of freedom into heat in terms of
random motion, or due to plastic, i.e. irreversible, deformations either of the
particles, or of the micro-structure (chapter 2). The transition from fluid to
solid can be caused by dissipation alone, which tends to slow down motion.
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The transition from solid to fluid (start of flow) is due to failure and instability,
when dissipation is not strong enough to avoid the solid yielding and transits to
a flowing regime.

1.1.1 Granular mixtures

Granular matter usually occur in various sizes, or as mixtures of different mate-
rials (Fig. 1.2). Particulate mixtures are of interest for a large number of fields,
materials, and applications, including mineral processing, environmental en-
gineering, geomechanics and geophysics, and have received a lot of attention
in the last decades [151]. A specific example in geotechnical engineering is
the increasing incorporation of recycled materials (e.g. shredded or granulated
rubber, crushed glass) often used into conventional designs and soil improve-
ment projects [21, 66, 137]. Moreover, sophisticated mixtures of asphalt and
concrete are widely used to construct roads and, also here, mixing-in additional
components is a widely applied option [87, 88, 222, 264, 268, 274].

Figure 1.2: Examples of granular mixtures in our daily life.

Among those mixtures, binary mixtures of two materials are a particularly
interesting selection. Binary granular mixtures comprise a wide range of natu-
ral and industrial materials, whose mechanical and acoustic behavior is strongly
influenced by the relative amount of the components [55, 274]. While several
researchers have investigated bidisperse mixtures [124, 273], the investigation
of mixtures made of two different components with different material properties



4 Introduction

(densities, visco-elastic moduli) is limited so far to phenomenological observa-
tions; a deeper insight into the governing micromechanical properties is still
missing [4, 35, 41]. Through better understanding the underlying small-scale
physics, the effective behavior of mixtures can be robustly predicted, tailored to
specific technical applications and even optimized on demand.

Much more limited is the work on mixtures made of a stiff and soft phase.
This was addressed experimentally in the substantial work of diffeent authers
[110, 138, 251] and numerically in [63, 217, 269] and with special focus on the
(post-)liquefaction behaviour. In a recent contribution we have combined wave
propagation experiments (chapter 4) and DEM simulations (chapter 4 and 5)
to show how the bulk modulus in a granular soil increases if soft inclusions are
added in proper amount. This is a field of immense interest, as interrelation
between solid phases at the microscale opens up many possibilities [157].

1.1.2 Discrete Element Method

In recent decades, the discrete element method (DEM) [43] that models the
motion and interaction of many individual particles has become increasingly
popular as a computational tool to model granular systems in both academia
and industry. To date, not only due to increasing computer power available,
considerable scientific advances have been made in the development of particle
simulation methods, resulting in an increasing use of DEM. However, careful
verification of the various numerical codes and validation of the simulation re-
sults with closely matching experimental data is essential to establish DEM as a
widely accepted tool able to produce satisfactory quantitative predictions with
added value for design, optimization and operation of industrial processes.

With the development of computational power in recent years, the discrete
particle/element method has gained its focus to the simulation community.
However, this method has its own limitations in applying to the real world.
One part is that the number of particles can be simulated is limited, normally
in the order between 104 to 107 in a 3D setup, whereas one normally has much
more than 109 to 1011 particles in a real system. Another point is the com-
plexity of describing the real contact mechanics between particles in a numer-
ical model. One has to make several assumptions to reduce this complexity
to be able to simulate many particles and all their contacts. Nevertheless, the
DEM/DPM method is a really helpful tool for understanding the granules bulk
behavior qualitatively (and quantitatively) and thus one can explore the physics
behind the scene, for discrete particulate systems, which the traditional contin-
uum solid/fluid mechanics can not explain.
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Figure 1.3: Micro-macro concept to link between discrete to continuum.

1.1.3 Micro-macro transition

Due to their wide application, granular media have received a lot of attention
in many fields, such as soil mechanics, process engineering, mechanical engi-
neering, material science and physics. Attempts to model these systems with
classical continuum theory and standard numerical methods and design tools
cannot always be successful, because of their discreteness and disorder at the
microscopic scale. Therefore, it is necessary to employ a multi-scale approach
that can link the discrete nature of granular systems to a macroscopic, con-
tinuum description. Both fundamental understanding and design/operation
of unit processes and plants require multi-scale and multiphase approaches,
where the discrete nature of the particles is of utmost relevance and must not
be ignored. Fig. 1.3 llustrates the idea behind the micro-macro transition, i.e.,
passing information from discrete element (particulate) to finite element (con-
tinuum) simulations.
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1.1.4 Continuum approach

DEM simulations are very detailed and therefore slow when large-scale phe-
nomena and industrial applications of granular materials are considered. Even
with the most advanced computational techniques of today, it is not possible to
simulate realistic numbers of particles with complex geometries. Thus, contin-
uum models are more desirable, where a granular medium is assumed a con-
tinuum, and principles of continuum mechanics are applied to obtain macro-
scopic field variables. However, besides the speed advantage of a continuum
approach, many features of granular materials at the microscopic scale have to
be neglected, such as restructuring, geometric non-linearity due to discreteness,
or explicit control over particle properties. The mechanical behavior of the ma-
terials has to be defined, for example, based on the relation between stress and
strain extracted from continuum models [76].

The relation between stresses and strains is called constitutive model and
it depends on the mechanical properties of the materials. Constitutive models
are formulated mathematically and modeled phenomenologically in continuum
mechanics. Different varieties of constitutive models have been established to
describe the material behavior and the deformation, such as elasticity, plasticity,
visco-elasticity, creep and etc. Several constitutive models within the frame-
work of continuum mechanics have been developed to describe the mechanical
behavior of granular materials. Most standard models with wide range of appli-
cation, such as elasticity, elasto-plasticity, or fluid-/gas-models of various kinds
are commonly used for granular flows. Nevertheless, they are sometimes valid,
only in a very limited range of parameters and flow conditions. For example,
the framework of kinetic theory is an established tool with quantitative predic-
tive value for rapid granular flows but it is not applicable in dense, quasi-static
and static cases [148]. Further models, such as hyper-or hypo-elasticity, are
complemented by hypo-plasticity and the so-called granular solid hydrodynam-
ics, where it has been established to represent also the mechanical behavior of
granular solids. Differently from classical plasticity theory, where a plastic yield
surface can be defined, the granular solid models provide incremental evolu-
tion of equations with strain, and involve limit states, because a strict split be-
tween elastic and plastic behavior seems invalid in granular materials. Some of
these theories have been extended to accommodate the anisotropy of the micro-
structure [149], but only few models account for an independent evolution of
the microstructure. The anisotropy constitutive model based on incremental
evolution equations for stress and fabric was presented in Ref. [122] for fric-
tionless systems.
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1.2 Elasticity in granular materials

It is commonly known that soil behavior is not as simple as its prediction with
simply formulated linear constitutive models, which are commonly and care-
lessly used in numerical analyses. Complex soil behavior which stems from
the nature of the multi-phase material exhibits both elastic and plastic non-
linearities. Deformations include irreversible plastic strains. Depending on the
history of loading, soil may compact or dilate, its stiffness may depend on the
magnitude of stress levels, and soil deformations can be time-dependent, etc.

The behavior of granular materials depends on the strain regime. Roughly
speaking, we can distinguish (i ) : an elastic regime (very small strain); (i i ) : an
elasto-plastic regime at intermediate and large strain; and (i i i ) : a fully plastic
regime where the material flows at constant stress and volume (beyond the
solid to fluid transition).

A stiffness degradation curve, obtained in the resonant column device, is
normally used to explain the shear stiffness G for a wide range of shear strain.
A typical output of the resonant column experiment is given in Fig.1.4.

Atkinson and Sallfors used a normalized stiffness degradation curve to cate-
gorize the strain levels into three groups (as shown in Fig.1.4): the very small
strain level, where the stiffness modulus is constant in the elastic range; the
small strain level, where the stiffness modulus varies non-linearly with the
strain; and the large strain level, where the soil is close to failure and the soil
stiffness is relatively small [15, 160].

For many geotechnical structures under working loads, the deformations are
small. The regime of deformation where the behavior can be considered linear
elastic is infinitesimal, with nonlinear and irreversible effects present already at
small strains. Nevertheless, the stiffness of soils is of outmost importance, as
it provides an anchor on which to attach the subsequent stress-strain response
[26, 175].

An elastic response is only observed for very small strain (order of 106 or
105) intervals, and should in fact be viewed as an approximation, as dissipa-
tion mechanisms are always present (in particular, solid friction) and preclude
the general definition of an elastic energy (chapter 2). The relative amount of
dissipation decreases as the size of the probed strain interval approaches zero.
For that reason, the material behavior is best characterized as “quasielastic” in
that limited range [26, 37]. In fact, soil behavior is considered to be truly elas-
tic in the range of very small strains, where soil even may exhibit a nonlinear
stress-strain relationship. However, its stiffness is almost fully recoverable after
unloading. Following the pre-failure non-linearities of soil, one may observe a
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Figure 1.4: Degradation curve for G with indication of typical soil tests and geotechnical
applications per strain regime [15, 160].

strong variation of stiffness starting from very small shear strains, which cannot
be reproduced by models such as the linear-elastic Mohr-Coulomb model.

Fig.1.4 shows that the response of granular materials is nonlinear and in-
elastic even at extremely small strains. The region of stress or strain in which
granular materials can be described as truly elastic, producing an entirely re-
coverable response to perturbations, the so-called small-strain stiffness Gmax ,
is very small, corresponding to shear strains of the order of 10−4. In turn, the
size of the elastic, reversible regime depends on material characteristics, stress
state, anisotropy: the elastic range increases with increasing asperities (particle
friction) and pressure, but decreases with increasing anisotropy.

1.2.1 Elasticity and State variables

Despite the long-standing debate across the geomechanical, mechanical and
physics communities, basic features of the physics of granular elasticity are cur-
rently unresolved, like a proper set of state variables to characterize the effective
moduli.

In early studies, macroscopic variables measurable in laboratory experi-
ments, were thought to be sufficient. Based on those information, many em-
pirical relations have been proposed, where the elastic moduli are functions of
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pressure and void ratio, e.g. [20, 82, 83, 201]. However, such formulations
miss a first order mechanical interpretation and coefficients have to be back-
calculated case by case from experiments, based on the specific material and
stress path. Moreover, experimental evidences [32, 56, 125, 191], along with
many numerical studies [3, 163], show that stress and volume fraction are not
sufficient to characterise granular elasticity
On the other hand, conventional approaches in the framework of solid state
elasticity [142] consider a uniform strain at all scales, with the displacement
field of the grains following the macroscopic deformation (affine approxima-
tion). These Effective Medium Theories (EMT) developed by Digby and Wal-
ton [49, 253] in the 80’s are the first, simplest attempt for a micromechanical
approach to the elasticity of granular soils. EMT predicts the moduli of an
isotropic granular material in terms of the external pressure, the void ratio and
average coordination number (p0,e, Z ). In particular, the pressure dependency
is G ∼ K ∼ p1/3

0 , a direct consequence of the Hertz interaction between the parti-
cles. However such scaling is not recovered in experiments and previous anal-
ysis (see [72] for a review) raises serious question about the validity of these
generally accepted theoretical elastic formulations.
Empirical relations coming from experiments and micromechanical EMT equa-
tions show many similarities and the two approaches can fruitful inform each
other. Following one of the paths suggested already in [72] and further devel-
oped in [158, 161], the set of state variables to describe granular elasticity is
complete, and experiments follow the trend predicted by the model. This is ob-
tained with the aid of Discrete Element Simulations (DEM), that uniquely allow
to monitor the kinematics at the microscale and link it with the macroscale.

However, the EMT framework still largely overpredicts the elastic moduli of
loose samples, especially when shear is involved. The difficulty in describing
theoretically the shear modulus is due to the complex relaxation of the particles
as related to the structural disorder in the packing [161]. Sophisticated theo-
ries in which collective fluctuations and relaxation of the particles are explicitly
accounted for are needed to recover quantitative agreement. Here we briefly
illustrate the mechanics beyond these theories and compare the results with
numerical simulations. Recent attempts in this direction are developed in [95,
126] where statistical parameters from a fluctuation analysis are introduced to
describe the scaling of the moduli. In these theoretical models, fluctuations are
introduced in the kinematics of contacting particles. They are determined as
functions of "fabric tensors" that describe, on average, the packing geometry
and the variation of the number of contacts per particle. The proposed the-
ories are able to predict an elastic resistance of the aggregate comparable to
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numerical simulation (chapter 3).

1.3 Waves propagation in granular medium

A wave is an elastic perturbation that propagates between two points through
a body (volume waves) or on the surface (surface waves) without material dis-
placement [5]. Traveling through the interior of the Earth, body waves arrive
before the surface waves and are at higher frequency than surface waves. They
are divided into two types P- waves and S-waves, the P-waves traveling faster
than S-waves through a solid body.

In the case of volume waves the acoustic-elastic effect is related to the
change in the wave velocity of small amplitude waves due to the stress state
of the body. Differently from liquids, in a solid material three acoustic polarisa-
tions exist, more specifically a longitudinal and two transversal branches.

1.3.1 Waves and elasticity

Wave also offer a direct connection to elastic properties of materials, due to
their relatively easy application, through commercial equipment, as well as the
various formulations relating the wave velocity and the material moduli. Ad-
vanced features like frequency dependence of wave parameters may further
improve the characterization capacity. Concrete and soil samples due to their
inherent microstructure, (which is enriched by the existence of damage-induced
cracking), exhibit interesting behaviors concerning the propagation of pulses
of different frequencies. Here, we will derive the relations between the elas-
tic characteristics and the velocities of acoustic waves, in the longitudinal and
transversal directions.

The use of wave propagation to describe the small strain stiffness behavior
of a material has been a well documented, widely-used technique, as evidenced
in the literature. Velocity testing, which includes BE and UT technology, has
been gaining popularity as an experimental method due to its relative ease of
obtaining the modulus of a material.

Let us consider a three-dimensional body with density ρ, homogeneous,
isotropic and elastic. The stress change due to the propagation of the wave
in the body is given by the Newton’s second law applied to the volume element
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ρdV [48]:

∂σi j

∂x j
= ρüi , (1.1)

with σi j stress and ui displacement of the volume element in directions i , j =
1,2,3. On the other hand, the constitutive relation for the elastic body holds,
that relates the stress tensor to the strain εi j via the stiffness tensor Ci j kl

σi j =Ci j kl εkl , (1.2)

In the isotropic case, Eq.(1.2) becomes (Lamé equation)

σi j =λΘδi j +2Gεi j , (1.3)

where Θ =
3∑

i=1
εi i , G and λ are the shear modulus and Lamé coefficient respec-

tively, and the incremental strain tensor is given by

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (1.4)

The bulk modulus is related to the previous quantities as K =λ+2/3G.
Using Eqs.(1.3-1.4) in Eq.(1.1), the equation of motion becomes

ρ
∂2ui

∂t 2 = ∂

∂x j

(
λ
∂ui

∂xi

)
+G

∂2ui

∂x2
j

+G
∂

∂xi

(
∂ui

∂x j

)
. (1.5)

From Helmholtz decomposition, the displacement vector uuu can be written in
terms of a scalar potential φ and a vector potential ψψψ:

uuu =∇∇∇φ+∇∇∇×ψψψ,

where the tensorial notation has been used for the sake of brevity. Thus Eq.(1.5)
is

∇∇∇
[
ρ
∂2φ

∂t 2 −
(
λ+ 4

3
G

)
∇2φ

]
+∇∇∇×

[
ρ
∂2ψψψ

∂t 2 −G∇2ψψψ

]
=000. (1.6)

Eq.(1.6) is known as the wave equation and predicts longitudinal and transver-
sal modes of propagation. The first term in Eq.(1.6) depends only on φ and is
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related to the propagation of waves in the longitudinal direction, while the sec-
ond term depends on the vector potential ψψψ and is associated to the transversal
waves. Both terms must be separately zero to satisfy Eq.(1.6), that is, the two
propagation modes, longitudinal and transversal, are independent.

Finally, if we introduce the longitudinal and shear components of the dis-
placement related to φ and ψψψ respectively as

uuuP =∇∇∇φ and uuuS =∇∇∇×ψψψ,

from Eq.(1.6) we can derive the velocities of the longitudinal and transversal
waves for the isotropic elastic body (chapter 4):

VP =
√

(λ+4/3G)

ρ
and VS =

√
G

ρ
(1.7)

Due to the properties of divergence and curl angular displacements and rota-
tions are not allowed during propagation of longitudinal waves, and volume
changes are forbidden for transversal waves.

When observing Eq.(1.7), some aspects appear: (i ) : the propagation velocity
increases with the stiffness of the material and decreases with its mass density
(inertia), these characteristics being constants in a given solid body; (i i ) : the
velocity of transversal waves is smaller than the velocity of longitudinal waves,
given the relative values of the moduli.

We move now our attention from solid to particulate materials. When the
wavelength is significantly longer than the internal scales of the material, such
as particle or cluster size, the propagation velocity can be defined for the equiv-
alent continuum, that is Eqs.(1.7), where the elastic moduli and mass density
refer to the bulk medium. Differently, for high frequencies and short wave-
lengths, the continuum assumption does not hold, due to the heterogeneity of
the material at small scale and forces fluctuation [228]. With increasing fre-
quencies, features related to the multiscale nature of soils become dominant,
e.g. dispersion and frequency filtering.

Other than frequency, also amplitude is an important factor to take into
account. The propagation of elastic waves is, by definition, a small perturbation
phenomenon that does not alter the micro-structure (fabric) or cause permanent
(plastic) effects. This condition must be guaranteed for the continuum analogy
to hold. If both conditions, long wavelength and small amplitude, are fulfilled,
wave measurements (obtained e.g. via wave transducers) can be used to infer
elastic moduli and vice versa.
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1.3.2 Dispersion

The study of the dispersive behaviors of materials with respect to wave prop-
agation is a central issue in modern mechanics. Dispersion is defined as that
phenomenon for which the speed of propagation of waves in a given mate-
rial changes when changing the wavelength (or, equivalently, the frequency)
of the traveling wave. This is a phenomenon which is observed in practically
all materials as far as the wavelength of the traveling wave is small enough to
interact with the heterogeneities of the material at smaller scales. Dispersion
most often refers to frequency-dependent effects in wave propagation. The dis-
persion relation describes the interrelations of wave properties like wavelength,
frequency, velocities, refraction index and attenuation coefficient. In wave the-
ory, dispersion is the phenomenon that the phase velocity of a wave depends
on its frequency. Indeed, anyone knows that all materials are actually heteroge-
neous if considering sufficiently small scales: it suffices to go down to the scale
of molecules or atoms to be aware of the discrete side of matter. It is hence
not astonishing that the mechanical properties of materials are different when
considering different scales and that such differences are reflected on the speed
of propagation of waves.

1.3.3 Attenuation (loss of energy)

When a mechanical wave propagates through a medium, a gradual decay of
wave amplitude can be observed before the wave diminishes, partly for geo-
metric reasons because their energy is distributed on an expanding wave front,
and partly because their energy is absorbed by the material they travel through.
The energy absorption depends on the material properties. Amplitude is di-
rectly related to the acoustic energy or intensity of a sound. When sound travels
through a medium, its intensity diminishes with distance. In certain materials,
sound pressure (amplitude) is only reduced by the spreading of the wave. The
effect produced is to weaken the sound. ‘Scattering’ is the reflection of the
sound waves in directions other than its original direction of propagation. ‘Ab-
sorption’ is the conversion of the sound energy to other forms of energy. The
combined effect of scattering and absorption is called attenuation of seismic
waves and is an important characteristic in the modern seismology which needs
to be studied.

Seismic attenuation is commonly characterized by the quality parameter Q.
It is most often defined in terms of the maximum energy stored during a cycle,
divided by the energy lost during the cycle. Among the various methods of
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measuring attenuation from seismic data, the spectral ratio method is the most
common method perhaps because it is easier to use and more stable.

1.3.4 Master equation

Including disorders, e.g. adding inclusions with different properties or size, will
lead to enhanced absorption in typical frequency ranges/bands, as related to
their specific characteristics relative to the basis material.

For instance, it is known that the dominant frequencies for exterior noise
due to tire-road interactions lies in the range of 0.5 to 2 kHz. Research has
shown that such noise generated in our daily life has a negative impact on hu-
mans health. Therefore, it is urgent to find a novel approach to damp as much
as possible at exactly these unwanted frequencies. One way are high and wide
walls/panels as usually installed along highways of metropolitan areas, which
are generally expensive, while our approach involves a smarter design of the
asphalt itself. Another example is the vibration and noise generated by railways
or subways in the low frequency range (10 to 50 Hz). These unwanted noises
bring issues for specific infrastructures e.g. hospitals, art galleries, or tunnels,
and could be avoided by a better composition and optimal use of the ballast
or the concrete foundations with respect to their damping features. Last but
not least, earthquakes are the natural hazard that generates the largest number
of human casualties in our modern society. The dominant harmful frequency
range of earthquakes usually remains very low, 5 to 20 Hz [101]. Earthquakes
often cause unrecoverable damages to buildings and infrastructures and ines-
timable losses to our historical heritage. The cost of upgrade works on historical
buildings is often too high and conflicts with other tight constraints. Our novel
approach is to design a seismic protection (“cloaking”) in the soil around, rather
than on the building.

This will be the results from experiments and particle simulation to be in a
macro-scale continuum model, with a resolution in frequency space. Instead of
dealing with the too many eigen-modes of the system, we propose an approach
with reduced complexity, where the frequencies are grouped in bands. This
is different in spirit from reduced order modeling since one accounts for all
frequencies, also the largest ones, but gives up the details by grouping all modes
with similar frequency, gaining tremendous speed-up (chapter 6).
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1.4 Thesis scope and outline

To gain more insight into the micro-structure of granular materials, three di-
mensional discrete element simulations, theory, and experiments are performed
on various quasi-static samples. Thus, this thesis is divided in chapters cover-
ing the elastic behavior of granular materials and considers many aspects such
as mixtures of soft-stiff species, dissipation of energy, new approach on contact
modelling of soft particles, master equation of a force chain.

• Chapter 2: In the next chapter of this dissertation, the micro- and macro-
mechanical behavior of idealized granular assemblies are studied, com-
prising linearly elastic, frictional, cohesional, polydisperse spheres, in a
periodic triaxial box geometry, using DEM. The stress response to various
deformation modes, namely purely isotropic and deviatoric (volume con-
serving), applied to this granular samples are analyzed. A hysteric contact
model with plastic deformation and adhesion forces is used for micro- and
macro-mechanical studies through fully disordered, densely packed, cohe-
sive and frictional granular systems. Especially, the effect of friction and
adhesion on the elastic response is examined.

• Chapter 3: Next, assemblies of polydisperse, linearly elastic frictional
spheres are isotropically prepared using DEM . In a second stage, several
static, relaxed configurations at various volume fractions above jamming
are generated and tested. We investigate the effects of inter-particle con-
tact properties on the elastic bulk and shear modulus by applying isotropic
and deviatoric perturbations. The amplitude of the applied perturba-
tions has to be small enough to avoid particle rearrangement and to get
the elastic response, whereas large amplitudes develop plasticity in the
sample due to contact and structure rearrangements between particles.
We compare the data from DEM simulations with predictions from well-
established micromechanical models, namely the Effective Medium The-
ory (EMT) and the Fluctuation Theory (FT). Both theories do not account
for the effect of different preparation history (different inter-particle fric-
tion coefficients) on the elastic moduli. The fluctuation theory is in agree-
ment with numerical data, almost perfect for the bulk modulus and close
for the shear modulus, at least in the intermediate compression regime,
but does not capture the anomalous behavior where the theory overpre-
dicts.

• Chapter 4: This chapter carries out an extensive series of physical experi-



16 Introduction

ments in a triaxial cell set-up equipped with piezoelectric wave transduc-
ers. Conducting systematic experiments on various mixtures of particles
with different species will help to complete the overall picture of the be-
havior of granular mixtures. The initial configuration considered is the
most basic binary system of rubber (soft) and glass (stiff) particles ran-
domly distributed within a latex membrane that allows to externally con-
trol the confining stress at different uni-axial compression levels. A wave
is agitated on one side of such dense, static, mechanically stable packings
and its propagation is investigated when it arrives at the opposite side.
At various stress levels, P-wave has been excited and the time of flight is
measured for many sample compositions and pressure levels.

• Chapter 5: The chapter attempts to model confined powder compaction
with the discrete element method (DEM) is a really challenging task since
classical particle-particle contact model are limited on the assumption of
binary contacts regardless of the degree of confinement. In classical DEM,
the fact that each particle experiences multiple simultaneous contacts that
influence each other, at high relative densitites, is missing. Important
progress has been made recently, resulting in the formulation of multi-
contact DEM but the picture is still incomplete. In this research, new force
models tackling this issue are presented. By adding an extra term which
is a function of Poisson’s ratio and local particle stress tensor, we extend
the classical force-displacement formula to capture pseudo deformation of
particles. Hence, stress tensor commonly used for post-processing reasons
(i.e. in cross coarse-graining methods) was used to account for multiple
contacts acting simultaneously on a single particle. In our initial attempt,
uniaxial compression simulations with Hertzian and linear contact models
were conducted and modeled by frictionless spheres in the absence of
gravitational forces. Comparisons between classical DEM simulations and
the new, alternative model for interactions between multiple contacts are
presented.

• Chapter 6: Focuses on the transfer energy with distance as well as across
different wavenumbers, as the mechanical wave propagates. The diffu-
sive characteristic of energy propagation has been discussed. A master
equations is devised and utilized for analyzing the transfer energy across
different wavenumbers, studied with the aid of a one-dimensional granu-
lar chain.

• Chapter 7: In this chapter a macroscopic continuum description is intro-



1.4 Thesis scope and outline 17

duced for the granular material, based on microscale information. A con-
stitutive model, for frictional particles, involving the elastic moduli and
the relation between effective moduli and microstructure, is implemented
in a Finite Element framework developed within the Kratos Multiphysics
open source platform and some benchmark examples are carried out.

• Chapter 8: Finally, the last chapter dedicates to conclusions and recom-
mendations for future research.





Chapter 2
Micro- and macro-mechanical
study of spherical granular
particles

Modelling granular materials can help us to understand their behaviour on the mi-
croscopic scale, and to obtain macroscopic continuum relations by a micro- macro
transition approach. The Discrete Element Method (DEM) is used to investigate
the influence of inter -particle friction coefficient and cohesion on the micro and
macro behaviour of granular packings in the context of an elasto-plastic contact
model. It is shown that the influence of friction coefficient on parameters is more
pronounce rather cohesion stiffness. However, the effect of cohesion is not yet neg-
ligible. The differences in macro and micro quantities become more pronounced
when packings are closer to the jamming point i.e. the lowest density where the
system is mechanically stable. Furthermore, we observe that friction and cohesion
have an influence on the jamming point for frictional samples. From the micro-
scopic contact characteristics the macroscopic elasticity parameters are determined
at different volume fractions. The conventional way to extract elastic constants of
a packing is to apply a compression or shear deformation to the entire system. The
results show that the stiffness of the packings increases with the volume fraction
as expected. Surprisingly, it was observed that elasto-plastic samples experience
multiple plastic regimes depending on the applied strain keeping the rate small. An
elastic regime for very small strain is followed by the contact plastic regime with
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reduced bulk moduli; which transits into the structural re-arrangements plastic
regime. This interesting intermediate plastic regime is due to the hysteric contact
model with changing contact stiffness during probing of configurations. 1

2.1 Introduction

Granular materials play an important role in many industries, such as pharma-
ceutical, mining or civil engineering. The macroscopic behaviour of granular
material is very different from common solids and fluids. There are different
methods to model and understand the macroscopic behaviour of particulate
systems. A powerful tool to study granular materials is the Discrete Element
Method (DEM) which provides a microscopic insight for the observed behaviour
[43, 81, 152, 153, 198, 235]. The contact force model is at the basis of this
method [145, 146] and a coupled system of equations is solved to describe
the motion of individual particles. Despite the modern computational power,
the number of particles that can be simulated is still small compared to real-
ity. This problem can be solved by performing a transition from the micro- to
the macro-scale and establishing macroscopic constitutive relations [74]. The
microscopic properties can be used to drive macroscopic constitutive relations.
These relations are used to describe the particle behaviour on the large scale
application/process level [150]. Because of discreteness and the disordered na-
ture of granular materials at the microscopic scale, it is necessary to employ a
multi-scale approach which can link the micromechanics of granular systems
to the continuum description. The objective of the multi-scale approach is to
predict the macroscopic (continuum) constitutive relationship from the micro-
scopic contact constitutive relationship and from appropriate geometrical quan-
tities or state variables by means of suitable averaging techniques.

The main challenge comes when the powders are sticky, cohesive and less
flow-able like those relevant in food industry [92]. Research has already been
done on cohesive granular materials (see refs [144, 225, 226]), however the
influence of cohesion on granular packings is still poorly understood. There are
two cases where cohesion becomes important. i ) When particles become very
small the cohesive forces become larger than the other forces on each particle, as
is the case for dry fine powders [145, 250]. i i ) Not only the size of the particles
contributes to the influence of cohesive attractive forces, but also liquid between
the particles does this, as is the case for wet granular materials [60, 170, 205].

1To be submitted: Taghizadeh, K., Luding, S., & Magnanimo, V. Physical Review E.
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The research presented here will focus on dry cohesive and non-cohesive
granular particles and DEM is used to study granular packings made of polydis-
perse particles. The question arises how does the presence of attractive forces
affect macroscopic properties of the packings? So far, only a few attempts have
been made to answer this question. Gilabert et al. [70] focussed on a two-
dimensional packing made of particles with short-range interactions (cohesive
powders) under weak compaction. Yang et al. [266] studied the effect of cohe-
sion on force structures in a static granular packing by changing particle size.
Singh et al. [223] studied the effect of friction and cohesion on anisotropy in
granular materials under quasi-static shear. The goal is to understand the influ-
ence of the microscopic parameters on the macroscopic properties of the pack-
ings. Knowing the influence of cohesion on particulate systems will advance
development of new constitutive models to predict the macroscopic material
behaviour, to be used to model real life applications and to understand and
optimize processes.

Many industrial and geotechnical applications that are crucial for our society
involve granular systems at small strain levels. That is the case of structures de-
signed to be far from failure (e.g. shallow foundations or underlying infrastruc-
ture), strains in the soil are small and a sound knowledge of the bulk stiffness
is essential for the realistic prediction of ground movements [37].

In micromechanical and numerical studies, elastic properties are associated
with the deformations of a fixed contact network, and should therefore corre-
spond to the “true elastic” behavior observed in the laboratory for very small
strain intervals. Indeed, except in very special situations in which the effects
of friction are suppressed and geometric restructuring is reversible, the irre-
versible changes associated with network alterations or rearrangements pre-
clude all kind of elastic modelling.

The goal here is to focus on the macro-mechanical response of dry frictional
packings with elasto-plastic contact model and DEM will be used to study pe-
riodic assemblies made of polydisperse spheres. In particular, the paper in-
vestigates how inter-particle contact friction and elasto-plastic cohesive contact
model influence the bulk response of granular packings [108, 233, 235]. In
this work, we analyze the role of the contact model along with microstructure,
stress and volume fraction [122, 233, 235]. The ultimate goal is to improve the
understanding of elasticity in particle systems and to guide the development of
constitutive models.

This paper is organized in the following manner. In section 2, the simulation
method and parameters used are given. The preparation test procedure and
the averaging definitions for scalar and tensorial quantities are explained in
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section 3. In Section 4, we first explain how the elastic moduli are determined;
after that results of small-strain perturbations for different packings are given.
Finally, section 5 is devoted to the conclusion remarks and outlooks.

2.2 Simulation approach

We use the Discrete Element Method (DEM) to understand the behaviour of
granular systems. In the model, we relate the force interacting between the par-
ticles to the overlap δ that the particles have with each other. DEM solves New-
ton’s equations of motion for all forces fi = f n ·n+ f t ·t acting on particle i for the
translational and rotational degrees of freedom. The Discrete Element Method
(DEM), often referred to as Molecular Dynamics (MD), is a many-particle sim-
ulation method. Even though a lot of research verified the usefulness of DEM
[207, 255], large scale industrial applications are out of reach. These appli-
cations involve even more than the millions of particles that can be simulated
using DEM. Instead of simulating real life applications, small samples of rep-
resentative volume elements (RVEs) can be used to calculate the macroscopic
constitutive relations needed to perform the micro-macro transition [152]. Note
that the evaluation of the inter-particle forces based on the overlap may not be
sufficient to account for the inhomogeneous stress distribution inside the parti-
cles.

2.2.1 Equations of motion

DEM models the particle interaction by calculating the equations of motion for
every particle in the system. This is done for the normal direction, but also for
the translational and rotational degrees of freedom. If the forces fi acting on
the i-th particle are known and Newton’s equations are applied we get [152]:

mi
d 2

d t 2 ri = fi +mig and Ii
d

d t
ωi = qi , (2.1)

where mi is the mass of the i-th particle and ri the position of the particle.
Two types of forces are working on the particles. One force because of the
interaction with other particles: fi =∑

c fc
i . The other force is due to body forces

like gravity (g), the particles moment of inertia (Ii ), its angular velocity (ωi )
and the total torque (qi = q f r i ct i on

i +qtor si on
i +qr ol l i ng

i ).
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2.2.2 Contact model

For the sake of simplicity, the linear visco-elastic normal contact force model
can be used. It involves a linear repulsive and a linear dissipative force: f n =
kδ+γ0δ̇ with k as spring stiffness, δ= (ai +a j )−(ri −r j )·n > 0 as particle overlap,
n = ni j = (ri −r j )/|ri −r j | as normal unit vector, γ0 as viscous damping coefficient
and δ̇ the relative velocity in normal direction vn =−vi j ·n= δ̇.

An artificial damping force fb is introduced to reduce dynamic effects and
shorten relaxation times: fb =−γbvi . This will resemble the damping of a back-
ground medium, as e.g. a fluid. This force acts not on contacts but directly on
particles, proportional to their velocity vi .

Using this model the particle contact can be seen as a damped harmonic os-
cillator. The advantage is that the half-period of a vibration around an equilib-
rium position can be computed and so the typical response time on the contact
level:

tc = π

ω
, with ω=

√
(k/mi j )−η2

0, (2.2)

where ω is the eigenfrequency of the contact, η0 = γ0/(2mi j ) the rescaled
damping coefficient and mi j = mi m j /(mi +m j ) the reduced mass.

Using the solution of Equation 2.2 the coefficient of restitution is obtained:

r =−v ′
n/vn = exp(−πη0/ω) = exp(−η0tc ), (2.3)

which quantifies the ratio of relative velocities after (primed) and before (un-
primed) the collision. The integration time-step ∆tMD used for simulations
needs to be much smaller than the contact duration tc to make sure that the
integration of the equations of motion is stable. Note that in extreme cases of
an overdamped spring, tc can become extremely, artificially large, i.e. dissipa-
tion γ should be neither too weak nor too strong.

The viscous dissipation mode is suitable for two-particle contact. But when
there are a lot of particles involved it becomes very inefficient. Therefore
artificial damping is introduced. There will be some additional damping with
the background. The background damping is of use for a quick relaxation
and the system comes more rapidly to a static equilibrium. The values for the
background damping (γb and γbr ) were checked for the used set of parameters
to prevent an over-damped system [145].
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2.2.3 Frictional contact model

Friction is generated when two particles are in contact and have a motion rela-
tive to each other. For the simulations presented here a friction model according
to the Coulomb friction law is used. This law has two aspects. There is a static
friction when two particles do not have micro-slip at the contact surface. In the
case of static friction, the friction force between the surfaces of two particles
cannot be greater than the product of the normal force f n and the coefficient
of static friction µs: f t ≤ µs f n . The linear visco-elastic contact model that was
introduced earlier is used for the force component in the tangential direction:

f t = ktδ
t +γt δ̇t , (2.4)

where kt is the tangential stiffness, γt the friction viscosity, δt the displace-
ment in the tangential direction and δ̇t the relative velocity in the tangential
direction [145]. The kinetic friction becomes active when the tangential com-
ponent of the force is exceeding the maximum value of the static force, so when
the surfaces of two particles that are in contact start to slide.

For a more detailed description of the force models introduced here and for
the rolling and torsional force laws that were used see [145, 152].

2.2.4 Adhesive, elasto-plastic contact model

In this work, a linear, hysteretic visco-elastic model is used to describe the inter-
action between cohesive particles by adding irreversiblity into the linear contact
model (see Refs. [145, 223, 224, 254]). This model is a simplified version of
the nonlinear hysteretic force laws which were proposed by different authors
[242, 243]. In this model, the particles stiffnesses are kept constant with dif-
ferent values during loading and unloading. The contact interaction consists
of different phases (see Fig. 2.1). At first, the force increases linearly with the
overlap δ up to δmax on the loading (irreversible) branch with slope k1. The
unloading (reversible) branch starts at δmax, from where the force decreases
with the slope k2. The force between two particles becomes zero at overlap
δ0 = (1−k1/k2)δmax, which represents the plastic contact deformation. The force
decreases with the same slope k2 in the case of further unloading. If the overlap
is lower than δ0 during unloading, then an attractive force between particles
will be active until the minimum cohesive force branch fmi n is reached at over-
lap δmi n = k2−k1

k2+kc
δmax . Further unloading leads to the (unstable) attractive force
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f hy s = −kcδ on the adhesive branch with the slope −kc . If unloading starts at
δ < δmax , contacts follow branches parallel to the limit value, with a constant
unloading stiffness k2 until the cohesive branch is reached.

The (hysteretic) force can be written as:

f hys =


k1δ if k2(δ−δ0) ≥ k1δ

k2(δ−δ0) if k1δ> k2(δ−δ0) >−kcδ

−kcδ if −kcδ≥ k2(δ−δ0)

(2.5)

where k1, k2 and kc are contact stiffnesses during loading, unloading and on
the adhesive branch, respectively. The contact model presented involves some
simplifications with respect to the behaviour observed in experiments, e.g. [230,
242, 243, 254], or proposed by other authors [99, 189, 240]. Among those, it is
the piece-wise linear structure, the value of the force at δ= 0 and neglecting the
detachment of the deformed particles at a finite overlap. A detailed discussion
on the model can be found in [224]. Simplifications are mainly driven by case
in computation. However, we believe that the influence on the specific aspects
studied here is negligible, as our primary focus is on static packings in the small
strain regime, where particles detachments/rearrangements are limited.

fhys 

fmin

k1 k2 - 0)

0 max

kc

(δ    δ

δ

δδ

k2

k2
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Figure 2.1: Schematic graph of the piece-wise linear, hysteretic model. The adhesive
force-displacement for normal collision. The non-contact forces ( f0) are kept
equal to zero in this study and also the line for negative δ is neglected in this
paper

An overview of the parameters used in the DEM simulations can be seen
in table 2.1. The values were examined with two particle collisions (bench-
mark tests) to validate that the program was working correctly and the linear
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(hysteretic) force model is correct. The normal force is plotted against the over-
lap δ (Fig. 2.2). The hysteretic force diagram had the same characteristics as
the theoretical model (Figure 2.1). For different values of the adhesive stiff-
ness (kc) the adhesive force (the negative force) increases as the kc increases
(Fig. 2.2). For the adhesive stiffness values were chosen between a wide range
(1/20 ≤ kc /k ≤ 20) to show the influence well.
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Figure 2.2: Two particles collision in the normal direction using the hysteretic contact
model with different cohesive stiffness kc . The force in the normal direction
is plotted against the overlap δ.

2.2.5 Microscopical quantities

Here, we define some microscopical quantities that obtained from single contact
interaction. These parameters can not usually be measured from experiments,
but are easily available from DEM simulations. For single contacts, the contact
force law is reformulated in terms of potential energy density, contact stress,
and elastic deformation. Starting from a linear expansion of the interaction
potential around static equilibrium, stress can be derived from the principle of
virtual displacement. The approach includes both normal and tangential forces.

The overlap in normal direction can be expressed as ~δn = ~l − (a1 + a2)~n.
Where, ai is the radius of a particle,~l =~ri −~r j the branch vector (the difference
between particles position), ~n =~l /l the normal vector with l = |~l | = (a1+a2). The
normal overlap is the normal deformation relative to the configuration when
the particles just get in contact. The total relative deformation can be expressed
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Property Symbol Value SI-units
Time unit t 1 10−6 s
Length unit x 1 10−3 m
Mass unit m 1 10−9 kg
Particle radius 〈a〉 1 10−3 m
Polydispersity amax /ami n 3
Number of particles N 5000
Particle density ρ 2000 2000 kg/m3

Simulation time step ∆tMD 0.0037 3.7·10−9 s
Unloading (reversible) stiffness k2 15·104 15·107 kg/s2

Loading (irreversible) stiffness k1/k2 0.666
Cohesive stiffness kc /k2 0-20
Tangential stiffness kt /k2 0.2866
Coefficient of friction µ 0.5
Normal viscosity γ= γn 1000 1 kg/s
Tangential viscosity γt /γ 0.2
Background visc. γb/γ 0.15
Backgr. torque visc. γbr /γ 0.03

Table 2.1: The microscopic contact model parameters values

in a normal and tangential contributions,~ε=~εn +~εt , which becomes:

~ε=
~δn

l
~n~n +

~δt

l
~t 0~n (2.6)

with~t 0 := δt /|δt |. During the deformation, the length and direction of branch
vector, ~l , changes. The change of branch vector, ∂~l , can be split into a normal
and tangential component as well. The normal component, expressed in index
notation 2, becomes: :

∂δn
α = ∂l n

α = nαnβεβγlγ (2.7)

and in the tangential component becomes ∂~δt := ∂~l −∂~ln , which can be writ-

2Summation over equal indices is implied.
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ten as:

∂δt
α = ∂l t

α = tαtβεβγlγ (2.8)

Hence, the potential energy density for one contact can be expressed in term
of the overlap:

uc = 1

2Vc
(kn

~δ2
n +kt

~δ2
t ) (2.9)

where, kn and kt are the spring stiffness in the normal and tangential di-
rection, respectively. Vc is left unspecified as this volume disappears during
averaging, in many cases. The potential energy density changes due to the de-
formation. The change in the potential energy density can be split into a normal
and tangential contribution which results in:

∂~u = ∂un +∂ut ≈ 1

Vc
(kn~δn∂~ln +kt~δt∂~lt ) ≈ 1

Vc

~f ∗ ·~ε ·~l (2.10)

where ~f ∗ = (~f +~f ′)/2 which is expressed in the actual force, ~f = kn~δn +kt~δt ,
and the force after displacement, ~f ′ = ~f +∂~f . With the defined potential energy
density and deformation, the stress can be derived. By differentiating u with
respect to the deformation components:

σαβ =
∂u

∂εαβ
= 1

Vc
f ∗
α lβ (2.11)

Likewise the former terms, the stress term can be expanded into a normal
and tangential contributions:

σαβ =
kn lδn

Vc
nαnβ+

kt lδt

Vc
nαt 0

β (2.12)

which gives the incremental stress tensor as:

∂σαβ ≈
kn l∂δn

Vc
nαnβ+

kt l∂δt

Vc
nαt 0

β (2.13)

with δn = |~δn |, ∂δn = |∂δn |, δt = |~δt |, ∂δt = |∂δt |.
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2.3 Preparing samples and defining quantities

In this section, we first describe the preparation procedure of samples and then
evolution of quantities during sample preparation are investigated. To create
the samples, particles are randomly generated in a 3D-box at very low volume
fraction. Each particle is given a small velocity that causes the particles to move,
collide and randomize themselves. Particles with cohesion have attractive forces
when they separate after interacting, related to the maximal overlap between
the particles. If the initially assigned velocities of particles are too large, the
particles overlap will become too large (e.g. more than 10% of particles average
radius) when they collide. In such cases, particles will stick to each other which
leads to unwanted uncontrolled clusters. Such clusters are not spherical and
can cause strong inhomogeneities in the system. Therefore, it is advised that
particles are randomized in the 3D-box with sufficiently small velocities and
without large initial overlaps to avoid the formation of clusters.

The sample preparation is composed of several steps. At the first step of the
preparation process, a loose packing of particles at a volume fraction of φ0 =
0.3 was created, considering the issues explained before regarding unwanted
clusters. After random generation, the packing is isotropically compressed to
the target volume fraction at φ1 = 0.5 which is well below the isostatic jamming
regime, i.e. the transition from liquid- to solid-like behavior. The system is then
relaxed at constant volume fraction φ1 and particles are allowed to dissipate
their kinetic energy and to reach zero-pressure. After the relaxation, further
isotropic compression is applied up to a volume fraction of φmax = 0.82. In a final
phase of preparation the compressed packing are decompressed isotropically
from φmax to φ1. To obtain an initial isotropic configuration, several driving
modes , e.g. wall-driven or strain-rate driven, can be carried out and these
modes are discussed in Ref.[94]. As strain-rate driven method produces more
homogeneous system, it is more favorable in this study. The compression and
decompression are both performed using a constant strain rate applied to each
particle which will ensure the homogeneity of the sample.

We use a simulation time of 4000[µs] for the first and second phase, which
results in a strain rate of ε̇ = 6.6 ·10−5[s−1]. By following the above procedure
frictional and cohesive samples were created by varying the inter-particle fric-
tion coeffcient (0 ≤µ≤ 1) and cohesion stiffness (0 ≤ kc /k2 ≤ 20). More informa-
tion about sample preparation of packings can be found in Refs. [108, 235].

Samples with different inter-particle friction and cohesion values were pre-
pared by using the preparation protocol explained before. Note that, the most
cohesive particles stick to each other at high volume fractions, which results in
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clusters during the sample decompression; hence, these samples will no longer
be homogeneous. For this reason, the results shown later in case of cohesive
samples will be taken from the compression path of the sample preparation and
those will be relaxed before any further deformation. But, this is not a problem
in case of frictional samples, hence, the decompression path is used for further
investigations. Below, we discuss the effect of friction coefficient and cohesion
between particles on different quantities during the sample preparation.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

φ

Time [µs]

1

2

3 4

1: Compression

2: Relaxation

3: Isotropic loading

4: Isotropic unloading

Figure 2.3: Evolution of the volume fraction as a function of the time during sample
preparation.

2.3.1 Jamming transition (from fluid- to solid-like behavior)

One characteristic these varied systems share is their particular sensitivity to
external stress; in densely jammed systems, for instance, the external pressure
can cause the system to transition between rigid and floppy states. Jamming
governs the transition to rigidity of disordered matter. Granular packing can
jam in rigid, disordered states in which it responds essentially elastically to
small applied shear stress. However, it can also easily be made to yield (unjam)
and flow by tuning various control parameters.

Figs. 2.4a and b show the fractions of particles with a certain number of
contacts during compression and decompression. Looking at Fig. 2.4a, there
is only a small number of particles having more than three contacts at low
volume fraction. It is clear that by increasing the volume fraction, the number
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of particles with a high number of contacts increases (Z̄ ≥ 4) and particles with
a small number of contacts decreases (Z̄ < 4). Having a closer look, we can see
that there is a regime of volume fractions, around the so-called jamming density,
where the sharpest changes occur in the number of contacts. This transition
regime (around φ= 0.56) displays in particular a change in slope for Z̄ = 4. The
jamming density is the next quantity, it can be obtained from the performed
simulations using the pressure and coordination number data. It is defined as
the transition of the material from a fluid-like state to a solid-like state. When
we look at the pressure this could be seen about the point where the pressure
becomes non-zero.

Figure 2.4b shows the particle fractions during the sample decompression.
As expected, the number of particles with high numbers of contacts is greater
at high volume fraction. By moving towards the decompression path, it can be
seen that there is not a significant change in the number of particles with high
number of contacts (especially for Z̄ = 4,5,6); this proves the forming of agglom-
erates during decompression due to the cohesive forces. Particles stuck together
will be attached to each other during decompression due to the high cohesive
force among themselves. Note that the compression path is used for further
results, because decompression path could not be used due to inhomogeneity
as mentioned earlier.

2.3.2 Macro-quantities during the sample preparation

Here, we present the general definition of the investigated quantities and the
results obtained during the sample compression for samples prepared with dif-
ferent friction coefficient and cohesive stiffness.

Coordination number

Coordination number was calculated during sample compression to observe the
influence of cohesion and friction. The coordination number is defined as the
average number of contacts per particle (Z = M/N , where M is the total number
of contacts and N is the total number particles). Particles with zero number of
contacts and particles having a too small number of contacts, so called rattlers,
were excluded, because they do not contribute to the mechanical stability of the
packing [75]. To identify the rattlers, the contacts of the particles are counted. If
the number of contacts is less than four, the particle is considered mechanically
not stable and is defined as rattler. So the coordination number becomes: Z̄ =
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Figure 2.4: Fraction of particles carrying number of contacts from 0 to 6 or more, for the
frictional sample µ = 0.5 with kc /k = 0 (a,b) and kc /k = 10 (c,d), during the
sample compression (left pictures) and decompression (right pictures).

M3/N3, with M3 = total number of contacts of particles with at least 3 contacts
and N3 = number of particles with at least 3 contacts.

Fig. 2.5 shows the evolution of the coordination number as function of φ for
samples frictional and cohesional samples. Looking at Fig. 2.5.a, one can see
the effect of friction coefficient is crucial on the coordination number where in-
creasing friction coefficient at dense regime leads to a lower coordination num-
ber.Also, as the particle friction increases, the critical jamming fraction shifts
towards the left side of x-axis. Our observation is consistent with the previous
study Refs. [75, 76].

Fig. 2.5.b depicts the behaviour of coordination number with respect to the
cohesive stiffness. For the lower densities, below jamming, a systematic increase
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Figure 2.5: Coordination number plotted against volume fraction φ for different (a) fric-
tion coefficient µ and (b) cohesion values kc , during compression (solid lines
with points).

in Z̄ can be seen with respect to kc . This is less pronounced for highly dense
samples. As we know, cohesive forces are more active at low volume fractions,
therefore the change of coordination number at low volume fraction can be
observed. By looking at the coordination number plots, it can be understood
that the effect of cohesive forces is more important at lose packings (close to
the jamming density) rather to dense packings. This is due to activation of
cohesive forces close to the jamming density since particles have more space to
attract and repel each other. While going far from the jamming density, there
is not enough space for particles to establish cohesive forces since they are fully
compressed and their normal force is dominated by elastic loading branch.

Pressure

The stress tensor is a macroscopic quantity that can be obtained by measure-
ment of forces per area, or via the averaging procedure. One can obtain the ap-
proximate macroscopic stress by averaging over the volume V using the stress
computed earlier (Sec. 2.2.5) at the contact level:

σαβ =
1

V

∑
p∈V

V pσp = 1

V

∑
p∈V

C p∑
c=1

l c
α⊗ f c

β (2.14)
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which is an average over the contacts in the volume V of the dyadic products
between the branch vector lc and the contact force fc , where the contribution
of the dynamics has been neglected. Note that the particle volumes cancel due
to the volume weight. The isotropic component of the stress is the pressure. We
use the dimensionless pressure which is calculated by using the average normal
stress: P∗ = P/k∗, where P = (σxx +σy y +σzz )/3 and k∗ = k1/(2〈a〉).

Note, we avoid using ∗ sign for the data shown later. The dimensionless
pressure (P) is plotted in Fig. 7.8 for isotropic compression from φmax = 0.5 to
φ0 = 0.82 (isotropic loading path in Fig. 2.3) for samples prepared with different
friction coefficients and cohesion. It is not surprising to see the increase in the
pressure with volume fraction since the samples get more compacted. On the
other hand, for a given volume fraction, the pressure increases with the coeffi-
cient of friction and cohesion, and the jamming volume fraction φ∗

c decreases
with friction and cohesion as depicted in Fig. 7.8.
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Figure 2.6: Dimensionless pressure P plotted against volume fraction φ for different (a)
friction coefficients µ, and (b) cohesion values kc , during compression.

Energy ratio

The ratio of kinetic energy and potential energy (Eki n/Epot ) are plotted in
Fig. 2.7 for isotropic loading path from φ0 = 0.82 to φmax = 0.82. As increase
of friction coefficient causes to a higher tangential component of force which
decreases the mobility of particles (less kinetic energy), we can see the decrease
of energy ratio at a given volume fraction with friction coefficient by looking at
the energy ratio plots. Similar observation is obtained when cohesive stiffness is
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active since the attractive forces lead to less mobility of particles, thus lower ki-
netic energy. Likewise the pressure plot, the jamming transition point is moved
to the left on volume fraction axis by increasing the friction coefficient.
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Figure 2.7: Energy ratio Eki n /Epot plotted against volume fraction φ for different (a)
friction coefficients µ, and (b) cohesion values kc , during compression.

Transition from flow to quasi-static (inertial number)

As it was mentioned earlier, one of the most fascinating properties of granu-
lar materials is their ability to show both solid- and fluid-like behavior. In the
absence of a unified framework, granular flows can be classified into three dif-
ferent regimes: quasi-static, inertial (dense flow) and rapid flow. (i ): The quasi-
static behavior of granular materials occurs at low applied rate where particles
remains in contact and their interactions with their neighbors happen over long
periods of time. (i i ): Increasing the deformation rate causes a transition from
quasi-static to dense flow of granular materials where the material flows more
as a liquid and particles still face multi-contact interactions but partners change
frequently. The transition regime from these two regimes is the jamming transi-
tion where flow stops. (i i i ): Beyond the fluid-like flow regime, granular media
experience gas-like behavior at very high velocity. In this regime, particles in-
teract through binary since the duration of their interactions is shorter than the
time between contacts [57, 90].

The volumetric inertial number Iv = ε̇〈d〉pD/P is a dimensionless value that
can be used to identify the transition between regimes (i) and (ii). Here, ε̇
is the strain rate (volumetric and deviatoric in case of isotropic and deviatoric
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deformation, respectively), 〈d〉 is the mean particle diameter, P is the confining
pressure, and D is the particle density [67, 104]. The inertial number is the ratio
between the microscopic inertial time scale 〈d〉pD/P (also referred to as particle
relaxation time) and the macroscopic time scale associated with the applied rate
1/3ε̇vol . The flow goes to the quasi-static limit for low values of Iv < 0.001, which
is associated to a dense network of enduring contacts. Upon increasing Iv , the
transition between the quasi-static and inertial flow takes place in the range of
0.001 < Iv < 0.01. The inertial value between 0.01 < Iv < 1 corresponds to the
intermediate fluid-like regime where the dynamical inertial effects have crucial
impact. The inertial number of granular assemblies with different friction coef-
ficient during isotropic compression and decompression of sample preparation
(path 3 and 4) were calculated (data not shown). It was found that by increas-
ing the volume fraction φ, the inertial number saturates between 10−4 and 10−5

in the quasi-static regime and the samples are rate independent in this regime.
As we want to explore the elastic behavior of solid-like granular samples, we
focus on the regime of small Iv (smaller than 0.0001) in this research, where
we are sure that the granular sample is in the quasi-static regime.

The inertial number of granular assemblies with different friction coefficient
and cohesion during isotropic compression (path 3 in Fig. 2.3) are illustrated
in Fig. 2.8. It is clear that by increasing the volume fraction φ, the inertial
number saturates between 10−4 and 10−5 where is the quasi-static regime and
the sample is rate independent in this regime. Moving towards the left side of
volume fraction axis, the assemblies experience a transition (10−4 < Iv < 10−2)
which is the jamming regime explained earlier. Also, it is can be found that
when the samples are loose (φ<φc), the inertial number varies a lot due to the
existence of dynamical collisions between grains. Likewise the other quantities,
the effect of the particle friction on the inertial number is more pronounced
than the cohesion.

2.4 Small strain stiffness

Even though millions of particles can be simulated, the possible length of such
a particle system is in general too small in order to regard it as macroscopic.
These microscopic quantities are used to derive macroscopic quantities needed
to describe the material within the framework of a macroscopic continuum the-
ory. The microscopic quantities obtained from DEM simulations (e.g. force,
position, and etc) can be reformulated and averaged to derive the macroscopic
quantities. These macroscopic quantities give an impression of the whole pack-
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Figure 2.8: Inertial number Iv plotted against volume fraction φ for different (a) friction
coefficients µ, and (b) cohesion values kc , during compression.

ing. Therefore, can give an insight into the behaviour of the packing.
We now discuss the conditions for which the response to load increments of

a pre-stressed granular packing in mechanical equilibrium can be described as
elastic, and explain how macroscopic elastic moduli are computed in our sim-
ulations. Furthermore, we show results for larger strain deformations beyond
the elastic regime.

Several configurations are chosen with different volume fractions φi , above
the jamming regime, from the loading branch of the preparation path for sam-
ples prepared with cohesion and cohesionless. A sufficient relaxation period
is applied at constant volume fraction to allow the particles to fully dissipate
their energy and to reach equilibrium. From the kinetic to potential energy
ratio we conclude that systems with φi > φ j (where φ j is the material- and
procedure-dependent, jamming density [123]) reach a static state as soon as
the energy ratio (kinetic to potential) drops well below 10−8, as confirmed from
many additional simulations (data not shown). We assume that the packing is
in equilibrium when the ratio of kinetic to potential energy is less than 10−8 or
when the inertial number is lower than 10−4.

These relaxed configurations can now be used to study the effective stiffness
of the granular assemblies. The stiffness is measured by applying strain to the
sample in a given direction εi j and measuring the resultant change in stress σi j

[115]. Due to the preparation procedure, samples can be considered isotropic,
where by definition the material properties are independent of direction within
random fluctuations (data not shown). Such materials are fully characterized
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by only 2 independent elastic constants. The two elastic constants are usually
expressed as the Young’s modulus E and the Poisson’s ratio ν. However, the
alternative elastic constants K (bulk modulus) and G (shear modulus) can be
directly measured as shown next, and are linked to E and ν (K = E/(3−6ν) and
G = E/(2+2ν)).

In particular, the bulk and shear stiffness of isotropic samples, K and G, are
calculated by means of isotropic and deviatoric strains respectively. Isotropic
compression of samples is such that samples are homogeneously compressed
along all directions; during pure shear, samples are compressed along the x-
direction and decompressed along the y-direction, while the z-direction is kept
stationary. Shear deformations are applied in the form of a pure shear, i.e. by
having a displacement in the y-direction imposed on all particles that cross the
x-boundary and a displacement in the x direction on all particles that cross the
y-boundary. One can obtain the samples bulk (K ) and shear (G) moduli, by
measuring to incremental response of isotropic and shear deformation:

K = δP

δεv

∣∣∣
δεdev=0

& 2Gx y =
δ

(
σxx −σy y

)
δ

(
εxx −εy y

) ∣∣∣
δεv=0

(2.15)

where P is the hydrostatic pressure, σi j is the static stress tensor, and ε is the
applied strain with δεv = 3δεvol = δ(εxx+εy y +εzz ) and δεdev = δ(εxx−εy y ) terms.
Note that stress and moduli have been normalized by the loading stiffness and
mean radius k∗ = k1/(2〈a〉).

Since we apply small but finite strain perturbations, we do not want slip-
page to occur; therefore the friction coefficient is set to infinity (µ = ∞, i.e. a
large value) to avoid sliding of contacts during probing of samples. For each
calculation, we verify that the applied strain is small enough to be in the lin-
ear, elastic, reversible regime where the coordination number does not vary
significantly during the applied increment of deformation. For each configura-
tion, we apply an identical strain-rate value 3ε̇vol = ε̇xx + ε̇y y + ε̇zz = 3.10−6 and
ε̇dev = ε̇xx − ε̇y y = 2.10−6 [1/s] to assure that the mechanical response of assem-
blies is in the elastic regime. The inertial number of granular assemblies with
during isotropic and shear probing is between 10−4 (samples with low volume
fraction) and 10−6 (samples with high volume fraction), which is the quasi-static
regime and the sample is rate independent in this regime. In the following, we
first describe the elastic behavior of frictional samples, then, we investigate the
phase transition, from elastic to plastic, of samples prepared and probed with
cohesion (i.e. elasto-plastic contact model employed).
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2.4.1 Incremental response of frictional samples

As we are interested in the elastic moduli, we have to identify the transition
from the linear elastic to the non-linear and plastic regime. First, we consider
samples having the same friction coefficient at different confining pressures,
and we explore the elastic regime of granular samples. Next, we discuss about
the reversible and irreversible behaviour during sample probing. Finally, we
compare the results obtained by isotropic and deviatoric probing with uniaxial
probing to show the consistency with continuum mechanics (isotropic linear
elasticity) for particulate systems.

Elastic regimes identification

In order to show the transition from elastic to plastic regime, the bulk and shear
modulus with various amplitudes of the applied isotropic, 3δεvol , and deviatoric
strain, δεdev , during probing are depicted for chosen configurations at confining
pressure levels (P = 0.01, 0.03, 0.06 and 0.09), and two friction coefficients
(µ= 0.0001 and µ= 1), in Figs. 2.9 and 2.10. The elastic moduli stay practically
constant for small amplitudes, δεvol and δεdev < 10−3. We assume this regime
to be elastic. By increasing the amplitudes of the perturbation, K and G start to
increase and decrease, respectively.
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Figure 2.9: Evolution of bulk modulus K with applied isotropic 3δεvol strain for different
states at different confining pressure stages P = 0.01, 0.03, 0.06 and 0.09,
with different friction coefficients: (a) µ = 0.0001 and (b) µ = 1 probed with
µ=∞. Corresponding solid lines represent the small strain limit value of K
(elastic bulk modulus).
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Figure 2.10: Evolution of shear modulus G with applied deviatoric δεx y strain ampli-
tudes for different states at different confining pressure stages P = 0.01,
0.03, 0.06 and 0.09, with different friction coefficients: (a) µ= 0.0001 and
(b) µ= 1 probed with µ=∞. Corresponding solid lines represent the small
strain limit value of G (elastic shear modulus).

The second order symmetric fabric tensor F provides information on the
spatial distribution of the contacts through its eigenvalues and it is computed
as:

F = 1

V

∑
P ∈V

V P
∑

c∈P

nc ⊗nc , (2.16)

which is weighted according to V P , the particle volume of particle P , for all
particles inside the averaging volume V , with the normal unit branch-vector nc

pointing from the center of particle P to contact c.
To get a better understanding, we study the change of microstructure.

Figs. 2.11 and 2.12 show the change of volumetric fabric (Fv = Fxx +Fy y +Fzz)
and deviatoric fabric (Fdev = Fxx −Fy y ) for the same configurations as presented
before. To make the change visible, the initial values of fabric (their elastic
regime, F ◦

v and F ◦
x y ) was subtracted. Looking at Figs. 2.11 and 2.12, it can be

seen that the microstructure does not change for small strains, which ensures
that packings are in the elastic regime.

When we apply more strain, we can see that the microstructure starts to
increase (dramatically) which reveals that packings large deformation. Com-
paring Figs. 2.9 and 2.10 with Figs. 2.11 and 2.12, shows that non-linearity
of elastic moduli is associated with considerable changes of the microstructure.
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Figure 2.11: Evolution of isotropic fabric Fv with the respective applied isotropic δεv
strain amplitudes for different states at different confining pressure stages
P = 0.01, 0.03, 0.06 and 0.09, with different friction coefficients: (a) µ =
0.0001 and (b) µ= 1. Note that the x-axis is log-scale.
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Figure 2.12: Evolution of deviatoric fabric Fx y with the respective applied deviatoric
δεx y strain amplitudes for different states at different confining pressure
stages P = 0.01, 0.03, 0.06 and 0.09, with different friction coefficients: (a)
µ= 0.0001 and (b) µ= 1. Note that the x-axis is log-scale.

Fig. 2.9 to 2.12 show that the elastic regime gets wider when the confining pres-
sure gets higher, since samples are more compacted and particles have limited
space to rearrange. Therefore, to move particles at high confining pressure,
more strain must be applied to destruct the contact network.
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2.4.2 Reversibility - from elastic to plastic

By definition, elasticity implies reversibility. To confirm the reversibility of the
elastic regimes shown in Figs. 2.9 and 2.10, we tested those samples by revers-
ing strain, i.e. at different levels in Figs. 2.9 and 2.10, where the elastic moduli
have different values. We first applied enough relaxation to make sure that
the energy ratio remains well below 10−10 and thus coordination number does
not dynamically change (fluctuate). After the relaxation, small strain pertur-
bations are applied to configurations in the opposite direction with respect to
the previous strain for both isotropic and sheared samples. Figs. 2.13 and 2.14
show the elastic moduli of chosen configurations at pressure level of P = 0.06,
for friction coefficients µ = 0.0001 and 1, during loading and unloading path.
The moduli of loading and unloading are identical when the strain is reversed
at very small previous deformation level. This confirms reversibility (blue data
points in Figs. 2.13 and 2.14). However, when the load is reversed after large
previous strain, the moduli show different values which confirms irreversibility
and plasticity.
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Figure 2.13: Loading (red points) and unloading path of the bulk modulus K for con-
figurations at P = 0.06 with friction coefficients of (a) µ= 0.0001 and (b) 1.
Dashed lines correspond to the bulk modulus obtained during unloading
the samples after different strain amplitudes as given in the legend.

Uniaxial probing, M-modulus

Although only 2 independent elastic constants (K and G) are required to de-
scribe the elastic stiffness of an isotropic elastic medium, there are many differ-
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Figure 2.14: Loading (red points) and unloading path of the shear modulus G for con-
figurations at P = 0.06 with friction coefficients of (a) µ= 0.0001 and (b) 1.
Dashed lines correspond to the shear modulus obtained during unloading
the samples after different strain amplitudes as given in the legend.

ent constants from which to choose. Most of these constants arise as constants
of proportionality between stress and strain for various loading conditions. The
longitudinal modulus M , also known as the P-wave modulus or constrained
modulus, is one of the constants that can be measured under certain other load-
ing conditions and by new methods such as wave propagations [159, 173, 174,
235]. The physical meaning of M is the stiffness for tension or compression in
one direction, when the strain in the other two directions is constrained to be
zero. General continuum mechanics says that there is a one-to-one relation be-
tween different elastic constants for an isotropic body, so that the longitudinal
modulus M can be obtained from bulk and shear modulus as M = K + (4/3)G.

In order to confirm the validity of this relation for our particulate systems, we
apply uniaxial deformations (along the x−direction) on configurations chosen
before in Sec. 2.4.1. Uniaxial probing is an other deformation mode, superpos-
ing isotropic and deviatoric, which gives us the longitudinal modulus along the
probed direction. In Fig. 2.15, we plot the longitudinal modulus M obtained by
direct (uniaxial probing) and indirect (isotropic and deviatoric probing) mea-
surement. This figure clearly states that the results obtained by two different
simulation approaches well coincide, which confirms the validity of continuum
mechanics assumptions for the case of our isotropic granular materials as long
as they are in the elastic regime. For that reason, once can compute the bulk
and shear moduli from uniaxial test (data not shown) in agreement with direct
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testing.
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2.4.3 Incremental response of cohesionless samples

In this subsection, we visit to represent the influence of cohesion between parti-
cles on the elastic moduli of cohesional packings. Results of the overall stiffness
in the case of cohesive samples is shown in Fig 2.16. Samples prepared with
internal contact elasto-plasticity and cohesion (Fig. 2.1) show a different, more
complex behavior as shown in Fig. 2.16. Similar to cohesionless materials, the
stiffness stay constant at very small applied strain level (3εvol and εdev ≤ 10−5).
Increasing the applied strain in both isotropic and shear modes leads to the
transition from the initial elastic regime to a second plateau, where the stiffness
is again constant, but assumes a different value with respect to the very small
strain regime. As the effective stiffness is constant, this must be read as a second
elastic regime. Finally, when large strain is applied to the system rearrangement
happens. We associate the transition from the first to the second elastic regimes
to the contact model.
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As explained earlier, configurations have been chosen from the compres-
sional branch (where most contacts have loading stiffness k1) and relaxed be-
fore probing. During the relaxation, contacts move from the loading branch
of the hysteretic contact model to the unloading branch (with stiffness k2, see
the arrows in Fig. 2.1). This means that pair-particle contacts will obtain the
stiffness of the elastic branch at the end of relaxation. Therefore, when prob-
ing starts, the elastic stiffness of the samples is controlled by the contact stiff-
ness k2. However, when larger strain is applied, many contacts transit from
the un/reloading (reversible) branch k2 to the loading (irreversible) branch k1.
This transition at the contact level leads to a reduction of the bulk stiffness,
with elastic moduli at very small strain 1.5 larger than the second regime in
agreement with the ratio k1/k2=0.66.

To summarize, we have identified three regimes for the stiffness of cohe-
sive granular packings: (i) a first elastic regime dominated by the unloading
branch of the contact model at very small strain, (ii) a second (pseudo) elas-
tic regime dominated by the loading branch of the contact model at moderate
strain, and (iii) a plastic regime associated to large structural rearrangements
of particles. The increase (decrease) of bulk (shear) modulus at larger strain
is accompanied by large fluctuations due to permanent rearrangements. Note
that the magnitude of cohesion (value of kc) has very little effect on K and G
(data not shown).

2.5 Concluding remarks

In this study the influence of friction and cohesion on the macro- and micro-
scopic properties was observed. Frictional samples were prepared with and
without inter-particle cohesion. Sample preparation plays a key role to ob-
tain a homogeneous medium; for more cohesive packings we observed stronger
formation of clusters and agglomerates during sample preparation in particu-
lar during unloading. During compression, the influence of cohesion is more
pronounced for samples due to tangential forces that cause rotations and rear-
rangements. Moreover, cohesion and friction both play a more significant role
at low volume fractions, since samples have not been compacted yet and trans-
lational and rotational movement of particles can activate forces. The jamming
density is a crucial state variable at which the transition from fluid to solid-like
behaviour of configurations occurs.

In the second part of this paper, the influence of contact model details, such
as elasto-plasticity (reversibility vs. irreversibility at the contact level), on the
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Figure 2.16: Normalized (a) bulk modulus K plotted against volumetric strain and (b)
shear modulus G plotted against deviatoric strain at different volume frac-
tions for elasto-plastic cohesive kc /k2 = 1 granular samples. Dotted lines
correspond to the elastic regime at very small strain with contact stiffness
of k2. Dashed lines correspond to the elastic regime of packings with re-
duced stiffness with the ratio k1/k2 = 0.66.

macroscopic stiffness of granular materials was investigated. Configurations at
different volume fractions were chosen and relaxed to reach mechanical equi-
librium. Then, we applied different deformation modes to obtain the bulk and
shear stiffness of the packings. The behavior of cohesive samples is more com-
plex than for particles with a linear contact law due to the existence of forces
between the particles, where the attractive forces are only playing an important
role for large strain tensile or shear probing (data not shown). The transition
from the elastic to the plastic regime of irreversible samples is not as continuous
as for linear samples. It was found that particles will settle on the unloading
branch of the triangular contact model at the end of relaxation before probing.
When probing the samples, the stiffness of the contacts will start to change from
unloading to loading, which was the reason of the transition of the elastic mod-
uli at small strain level. After the stiffness transition at the contact points, elasto-
plastic samples followed the behavior of the linear non-cohesive ones with the
same stiffness kl i n = k1. Applying more strain caused a second meso-scopic level
of irreversible behaviour of the packings due to structural rearrangements.

An interesting perspective is to use experimental measurements of the stiff-
ness at different strain/probing amplitudes to infer useful information on the
inner structure and the contact mechanics of granular packings. That, in turn,
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can be exploited to predict their behavior under large deformations.





Chapter 3
Micromechanical study of the
elastic stiffness in isotropic
frictional granular solids

Understanding the pre-failure, elastic behavior of dense granular systems is of in-
terest in many fields, such as soil mechanics, process engineering, material science
and physics. The Discrete Element Method (DEM) allows to inspect the influence
of microscopic contact properties of its individual constituents on the macro bulk
behavior of granular assemblies. In this study we use DEM to explore the elastic
response of frictional granular materials. Small, isotropic and deviatoric defor-
mations (“probes”) are applied to isotropic packings of frictional spheres featur-
ing both linear and non-linear normal interactions; with different inter-particle
contact friction coefficients. At various pressure levels, the effective elastic mod-
uli are determined from the incremental stress response to the applied strain. For
both types of contact interactions, the moduli exhibit a non-trivial dependence on
the preparation procedure. With increasing inter-particle contact friction during
preparation, the moduli decrease for samples with the same volume fraction, but
a much larger stress at maximal overcompression during preparation. We explain
this by differences in the microstructure (decreasing coordination number for in-
creasing friction) that characterises the sample state after preparation. Major dif-
ferences in magnitude appear in the tangential force contributions to the shear
modulus. The systematic, unexpectedly small moduli due to tangential forces are
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observed for both linear and Hertzian contacts, even though less so for the latter,
irrespective of compression level and even for extremely high tangential contact
stiffness. We compare the data from DEM simulations with predictions from well-
established micromechanical models, namely the Effective Medium Theory (EMT)
and the Fluctuation Theory (FT). Both theories do not account for the effect of
different preparation history (different inter-particle friction coefficients) on the
elastic moduli. The fluctuation theory is in agreement with numerical data with
Hertzian particles, almost perfect for the bulk modulus and close for the shear
modulus, at least in the intermediate compression regime, but does not capture the
anomalous behavior (small and fairly constant of the tangential shear modulus)
where the theory overpredicts. When looking at the fluctuations in the normal
displacements, we find good quantitative and qualitative agreement with the func-
tional form assumed by the theory for Hertzian contacts, whereas the dependence
on the tangential stiffness leads to major deviations in the case of linear contacts.
1

3.1 Introduction

Granular materials behave differently from usual solids or fluids and show pe-
culiar mechanical properties like dilatancy or ratcheting. One interesting char-
acteristics of these materials is their sensitivity to external stress. In densely
packed systems, for instance, the external pressure can cause the system to tran-
sition between rigid and floppy states, the so-called jamming transition, typical
of many amorphous materials. Since the system becomes rigid and can carry
loads, jamming defines the threshold at which the elastic stiffness of the assem-
bly assumes finite values [39, 123, 151]. The solid states above jamming are
the focus of this study.

The response of granular solids to small strains is relevant for many indus-
trial and geotechnical applications. In these cases, where strains are small, a
sound knowledge of the bulk stiffness is essential for the realistic prediction of
the macroscopic behaviour [37, 234] which can be highly non-linear due to dis-
order and involves irreversibility (plasticity), due to frictional rearrangements
of the elementary particles [9, 17, 72, 221]. In micromechanical-based mod-
els, this feature is often neglected and elastic properties are associated with the
deformations in a fixed contact network, and therefore correspond to the “true
elastic” stiffness [30, 76, 162].

1Submitted: Taghizadeh, K., Luding, S., & Magnanimo, V. International Journal of Solids and
Structures.
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From the theoretical point of view a popular approach assumes a uniform
strain at all scales, i.e. the displacement field of the grains is affine with the
macroscopic deformation, and only the stiffness tensor is needed to compute the
stresses in terms of strains. This approach is usually referred to as the Effective
Medium Theory (EMT) [96, 162]. EMT successfully describes the behavior of
ordered granular systems, given the microstructural unit arrangement and the
external condition (pressure and volume fraction) [166, 173]. However, in the
case of disordered media, displacements of particles in contact do not follow
the affine motion and the corresponding prediction significantly overestimates
the actual moduli, especially for loose systems. By assuming an affine motion
for all particles, one can only obtain an upper bound for the effective elastic
moduli [41, 49, 180, 253]. Efforts have been made to improve upon EMT.
Introducing fluctuations of particles displacements is an important first step to
consider non-affinity [95, 169, 248]. In Ref. [95], an analytical expression of the
elastic moduli was derived for an assembly of identical frictionless particles by
applying the pair fluctuation model. Later, the given expression was extended
to frictional particle contacts considering the interaction of particle pairs with
their neighbors [126].

Various authors have compared the predicted values of the effective bulk
and shear moduli of granular assemblies with the results of DEM simulations
[2, 107, 117, 162, 229] and physical experiments [96, 162, 163, 237]. It has
been shown that a proper description of the microstructure, as related to both
particle characteristics and load history, is essential for the characterization of
granular elasticity [158, 234].

In this study, we use Discrete Element simulations to prepare and test fric-
tional, disordered granular samples in isotropic conditions and to study and
understand their effective (bulk) elastic behavior. We scan a wide range of
inter-particle friction coefficients, contact stiffnesses and confining pressures,
in order to understand how the interplay of contact and system properties af-
fects the elastic moduli. Two popular normal contact models are implemented,
namely linear visco-elastic and non-linear Hertzian, and their influence on the
tangential effective properties is carefully assessed. Furthermore, we compare
analytical expressions with results from simulations and address the importance
of displacement fluctuations, measured directly from DEM results.

This paper is organized in the following way. We first recall the properties
of the model material and we define some micro- and macro-mechanical quan-
tities in Sec. II. Next, in Sec. III, we describe the sample preparation protocol,
and explain the approach to calculate the effective elastic moduli. After that, re-
sults obtained for samples prepared with different friction coefficients in case of
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linear and Hertzian contact models are discussed. In Sec. V, we briefly summa-
rize the theoretical frameworks of interest, and their predictions for the elastic
moduli and compare them with DEM results. Sec. VI focuses on the role of
tangential stiffness on the elastic properties and the interplay with contact fluc-
tuations. Finally, we summarize our observations in Sec. VII with conclusions
and a final outlook.

3.2 Numerical setup

The Discrete Element Method (DEM) [43, 153] can help to understand and
predict the stress response to deformations of particle systems. At the basis of
DEM are laws that relate the interaction force to the overlap and tangential
displacement of two particles in contact. If all forces fi acting on particle i
are known, the problem is reduced to the integration of Newton’s equations
of motion for the translational and rotational degrees of freedom. The system
contains 4096 polydisperse frictional spheres in a triaxial periodic box. Gravity
is neglected in all simulations, so that during preparation, after the applied
isortopic compression, the system still is nearly isotropic and homogeneous.

3.2.1 Contact models

The normal contact force model is given by f n = knδ
n + γn δ̇

n , where kn is
the normal spring stiffness, γn is the normal contact viscosity parameter, δn =(
di +d j

)
/2− (

ri − r j
)

.n̂ is the overlap in normal direction between two interact-
ing particles i and j at positions ri and r j , with diameters di and d j , with
contact normal vector n̂ = (

ri − r j
)

/
∣∣(ri − r j

)∣∣, and δ̇n is the relative velocity in
the normal direction.

In this work, two contact models are compared, namely Hertzian visco-
elastic and linear visco-elastic contact models for the normal force. In case
of the Hertzian contact model, the normal spring and contact viscosity are func-
tions of particle overlap and expressed as k H

n = Gp

1−ν
√

d̄δn and γH
n = αn

√
d̄δn ,

respectively, with the shear modulus of particles Gp , the Poisson’s ratio of parti-
cles ν, and a Hertzian viscous dissipation parameter αn . For the linear contact
model, the stiffness (kL

n) and viscosity (γL
n) remain constant, independent of

particles overlap. In order to reduce dynamical effects and shorten relaxation
times, an artificial viscous background dissipation force and torque, fb

i =−γtr vi

and tb
i = −γr ot , proportional to the moving velocity vi of particle i is added,
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resembling the damping due to a background medium, as e.g. a fluid, but not
affecting the elastic properties.

Friction is generated by the relative motion of the two particles in contact,
and is modeled according to the Coulomb law. The tangential force f t exerted
between two particles is given by f t = ktδ

t +γt δ̇
t , where kt is the tangential

spring stiffness, γt is the tangential contact viscosity parameter, δt is the dis-
placement and δ̇t is the relative velocity in the tangential direction [153]. In
case of the Hertzian contact model, the tangential spring and contact viscosity
are functions of the normal overlap δn as k H

t = 2Gp

2−ν
√

d̄δn and γH
t =αt

√
d̄δn . In

the case of linear contact model, the tangential stiffness and viscosity, kL
t and

γL
t , remain constant. When the tangential force exceeds the maximum allowed

value of the force f t = µ f n , the two particles slide. Fig. ?? and ?? illustrate the
normal and tangential contact models described in this section.
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Figure 3.1: (a) Normal contact models with the normal overlap distance δn . (b) Tangen-
tial contact models with the tangential distance δt . The tangential force is
coupled to the normal force via Coulomb’s law.
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3.2.2 Simulation parameters

The standard simulation parameters are N=4096 (=163) particles with average
diameter d̄ [mm], and material density β= 2000 [kg/m3], while the coefficient
of friction µ assumes values between 0 and 1. To avoid crystallization, poly-
dispersity is introduced, with w = dmax /dmi n = 3, the width of a uniform size
distribution, where dmax and dmi n are the diameters of the biggest and small-
est particle respectively. Numerical values of all the parameters used in DEM
simulations are presented in Table 3.1.

Parameter Value S.I. Units Description
tu 1 1 [µs] Time unit
lu 1 1 [mm] Length unit
mu 1 1 [µg] Mass unit
N 4096 4096 Number of particles
d̄ 2 2 [mm] Average diameter
w 3 3 [-] Polydispersity w = dmax

dmi n

β 2000 2000 [kg/m3] Density
µ varied [0 - 1] 0 - 1 [-] Friction coefficient
Gp 29 ·103 29 ·109 [kg/m.s2] Shear modulus of grains
ν 0.2 0.2 [-] Poisson’s ratio of grains
kL

n 105 108 [kg/s2] Stiffness-normal spring
kL

t 80000 8 ·107 [kg/s2] Stiffness-tangential spring
γL

n 1000 1 [kg/s] Linear viscous normal dissipation
γL

t 200 0.2 [kg/s] Linear viscous tangential dissipation
γtr 100 0.1 [kg/s] Background damping-translation
γr ot 20 0.02 [kg/s] Background damping-rotational
αn 1000 1 [kg/m.s] Hertzian viscous normal dissipation
αt 20 0.2 [kg/m.s] Hertzian viscous tangential dissipation

Table 3.1: Numerical values of particle parameters used in the DEM simulations

The typical time scale for the interaction of two particles with masses

mi =β
(
πd 3

i /6
)

and m j =β
(
πd 3

j /6
)

is tc =π/
√

kn/mi j −
(
γn/2mi j

)2, where mi j =
mi m j /

(
mi +m j

)
is the reduced mass. The restitution coefficient quantifies the

dissipation for a collision of a pair of particles, e = exp
(−γn tc /2mi j

)
. The size of

particles is thus a parameter that affects the contact duration tc and restitution
coefficient e, when particles have the same stiffness and viscosity. Since our dis-
tribution is polydisperse, the fastest possible collision takes place between two
smallest particles in the overall ensemble with tc = 0.228 [µs] and e = 0.804 (and
tc = 0.643 [µs] and e = 0.926 for the mean size particles) [93]. In case of Hertzian
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contacts, tc varies with the maximal overlap between particles. However, in this
study, we consider a constant minimal tc , calculated based on the interaction
time-scale of two particles with diameter dmi n at the maximum expected pres-
sure level and thus overlap2. Consequently, the integration time-step is set to
∆t = 0.004 [µs], approximately 50 times smaller than the smallest collision time
tc , in the two cases of linear and Hertzian contacts.

3.2.3 Characteristic quantities

Here, we present the general definitions of averaged microscopic and macro-
scopic quantities relevant for analyses in the following sections. Micro-
quantities are often impossible to measure in experiments but are easily avail-
able from DEM simulations. The classical definition of the coordination number
is M/N , where M is the total number of contacts and N is the total number of
particles. Because there is no gravity in our simulations, at the end of relaxation
there will usually be particles without contacts, or due to numerical precision,
particles with fewer contacts than needed to keep them in equilibrium. As we
are interested to link the macroscopic load carried by the sample with the micro-
scopic contact network, all particles with less than 3 contacts (so-called rattlers)
are excluded, since they are not mechanically stable and do not contribute to
the force network. Excluding rattlers leads to the corrected coordination num-
ber Z̄ = M3/N3, where M3 is the total number of contacts of the N3 particles
with at least 3 contacts. The volume fraction φ is given by the ratio between the

volume of the particles and the total volume, φ =
N∑

p=1

Vp

V = N
V
π
6 d̄ 3 ignoring the

overlaps.
Furthermore, we can define averaged tensorial macroscopic quantities in-

cluding strain- and stress-tensor. The strain tensor εi j is the external (global)
strain that we apply to the sample. The isotropic part of the infinitesimal strain
is defined as εvol = ε̇vol∆t =−(

εxx +εy y +εzz
)

/3 = (−εαα)/3 = (−ε̇αα∆t )/3, where
εαα= ε̇αα∆t with αα = xx, y y and zz as the diagonal components of the tensor
in the Cartesian x − y − z reference system and ε̇vol is the strain-rate. The trace
integral of 3εvol denoted by εv is the true logarithmic strain, i.e. the volume
change of the system relative to a reference volume, V0, or the true isotropic
strain.

2One can find a linearized stiffness of Hertzian from a force-displacement plot of a two particle
collision. In this work, the Hertzian stiffness was linearized at the maximum overlap to estimate the
worst case time step as ∆t ≈ 0.004 [µs].
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From DEM simulations, one can measure the “static” stress in the system:

σi j = (1/V )
∑

c∈V
l c

i ⊗ f c
j , (3.1)

averaged over all contacts in the volume V , with the dyadic product between
the branch vector l c

i and the contact force f c
j [35, 74, 93, 94]. As here branch

vector and force are defined to be parallel, the isotropic component of the stress
is the pressure P =σαα/3.

Note that in this work we use k∗ = kn/d̄ (k H
n and kL

n for Hertzian and lin-
ear contact models, respectively) to non-dimensionalize macro-quantities, e.g.,
σ∗

i j =σi j /k∗ and P∗ = P/k∗,

3.3 DEM simulations

3.3.1 Preparation procedure

The preparation procedure is an essential step in any physical/numerical ex-
periment to obtain reproducible and reliable results, especially when friction is
involved. In this work, the preparation procedure starts with spherical particles
randomly generated, with low volume fraction φg and rather large random ve-
locities, in a periodic 3D box, such that they have sufficient space and time to
randomize themselves. The initial configurations are obtained by first homoge-
neously compressing this granular gas up to a volume fraction φ◦ below the tran-
sition from solid-like to liquid-like behavior, the so-called jamming transition φ j

[123, 151]. The system is then relaxed to allow the particles to dissipate kinetic
energy and achieve zero-pressure. This is followed by an isotropic compression-
decompression cycle up to a desired maximum volume fraction φmax = 0.82, as
depicted in Fig. 3.2 [75, 93, 234]. Different coefficients of friction, from µ= 0 to
1, are used during the preparation process. To prevent inhomogeneity, the sim-
ulations are carried out by applying a uniform strain field to the system where
at every time-step ∆t the particles move according to the momentary strain-rate
tensor ε̇i j = ±ε̇volδi j with unit tensor δi j and rate ε̇vol = 12 ·10−6; positive and
negative sign mean compression and decompression, respectively.

3.3.2 Elastic stiffness

We now discuss the conditions for which the response to load increments of
a pre-stressed granular packing in mechanical equilibrium can be described as
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Figure 3.2: Evolution of volume fraction as a function of time during sample preparation:
(1) A frictional granular gas is homogeneously compressed from φg = 0.3 to
φ◦ = 0.5; and (2) relaxed at φ◦ = 0.5; (3) the sample is compressed from
φ◦ = 0.5 to φmax = 0.82; (4) finally, the sample is decompressed from φmax =
0.82 to φ◦ = 0.5. Blue bullets ’•’ represent configurations chosen for further
tests. The color of particles indicates their average overlap. Large (artificial)
overlaps are present in the initial random gas (red particles), whereas in the
relaxed packing (blue) particles practically do not overlap.

elastic, and explain how macroscopic elastic moduli are computed in our simu-
lations.

After sample preparation with different contact friction, different system
configurations are realized. We study their incremental response during
isotropic compression and plane pure shear tests. Various configurations are
chosen at different volume fractions above jamming, along the unloading
branch (blue dots in Fig. 3.2). Then, sufficient relaxation is applied to allow
the particles to dissipate their kinetic energy and achieve a static configuration
in mechanical equilibrium. After that, we probe these relaxed samples by ap-
plying small strain perturbations and measure the incremental stress responses
[64, 93, 122, 127, 158].

For each configuration, we apply identical strains εv = 3εvol = εxx + εy y +
εzz = 3 ·10−6 and εdev = εxx −εy y = 2 ·10−6. For each calculation, we verify that
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the applied strain is small enough to be in the linear, elastic, reversible regime
where the coordination number does not vary significantly. A general schematic
representation of the sample isotropic and deviatoric tests is shown in Fig. 3.3.

In this stage, the friction coefficient is set to infinity (µ=∞, i.e. a large value)
to avoid sliding of contacts during probing. In appendix. A, we discuss the case
where we keep the friction between particles during the probing the same as
during sample preparation, as well as the importance of preventing slippage.

After sample preparation with different friction coefficients, an initital state 

with volume fraction  <  <  from the unloading branch is choosen

(blue bullets in Fig. 2 represent some of the initial configurations).

Sufficient relaxation is applied to chosen configurations

 Probing

Isotropic compression Plane pure shear (volume conserving)

ε xx

ε
zz

ε
yy

ε xx

ε
yy

Figure 3.3: Schematic representation of the procedure for implementing isotropic and
deviatoric deformation probing in the cubic triaxial element test.
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After probing the configurations, the effective elastic moduli of the isotropic
granular assembly are obtained as the ratio between the measured increment in
stress and the applied strain:

K ∗ = ∆P∗

∆εv

∣∣∣
∆εdev=0

G∗ =G∗
x y =

∆σ∗
dev

2∆εdev

∣∣∣
∆εv=0

=
∆

(
σ∗

xx −σ∗
y y

)
2∆

(
εxx −εy y

) ∣∣∣
∆εv=0

(3.2)

while K ∗ = K d̄/k̄n and G∗ = Gd̄/k̄n are the non-dimensional moduli. The
stiffness k̄n assumes different expressions in the two cases of linear and Hertzian
contact models. In the former k̄n = kL

n is constant and the value is given in Ta-
ble. 3.1, in the latter k̄n = k H

n depends on the sample configuration via the av-
erage overlap δ̄n , as k̄ H

n = Gp

1−ν
√

d̄ δ̄n . As samples are isotropic, the shear moduli
along different directions are assumed to be identical G∗ ' G∗

x y ' G∗
y z ' G∗

zx , as
tested and confirmed in a few cases (data not shown).

3.3.3 Influence of inter-particle contact friction during
preparation on the elastic moduli

Using the probing approach explained in Sec. 3.3.2, we next study the incre-
mental elastic response of the aggregates and its dependence on the actual
configuration and deformation history. In Fig. 3.4, we plot the variation of
the normalized moduli K ∗ and G∗ against the product of volume fraction and
coordination number φZ̄ , for packings prepared with different coefficients of
friction, µ, in the cases of linear and Hertzian contacts. For both models, as ex-
pected, the elastic moduli increase with increasing φZ̄ . However, the increase
of the shear modulus is slower for packings prepared with higher friction. We
can relate this behavior to the lower average number of contacts for samples
prepared with higher friction at the same volume fraction [76]. For smaller fric-
tion coefficients, the tangential components of forces are typically reduced as
are the rotational degrees of freedom, which leads to static packings with more
contacts. It is worth pointing out that the coefficient of friction has no direct
influence on the elastic moduli during probing, as sliding is forbidden (µ=∞),
for details see appendix. A. Rather µ affects K ∗ and G∗ indirectly through the
sample preparation that leads to different Z̄ , i.e., to different micro-structure.
Both the contact model and the preparation procedure have a crucial influence
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on the transition regime, where increasing friction coefficients shift the jamming
transition to the left, to smaller φ and Z̄ , for both linear and Hertzian cases. For
all cases, the effect becomes negligible and the behaviour seems to saturate for
friction coefficients µ≥ 0.5.

The figure also gives an overview about the differences in the compression-
al/shear elastic moduli associated with the contact model. For both contact
models, the bulk modulus K ∗ (Fig. 3.4a and c) linearly scales with φZ̄ over
a wide range of values, with deviation and discontinuity only for very loose
samples (low φZ̄ ). The Hertzian data collapse whereas the linear data slightly
decrease with µ even though both had the same preparation history. . However,
values of the normalized modulus K ∗ are slightly higher in the case of Hertzian
interactions than for linear ones. As for G∗, the linear contact model seems
underestimate the values of the Hertzian shear stiffness, especially for large φZ̄
and high friction. The preparation procedure affects the shear modulus in the
whole φZ̄ regime and a linear scaling G∗ ∼φZ̄ is not retrieved for neither linear
nor for Hertzian packings [4, 107, 182]. The dependence of G∗ on the history
appears more dramatic for linear contacts than for Hertzian. In fact, data in
the intermediate regime (3 ≤ φZ̄ ≤ 4.5) overlap in Fig. 3.4(d), the same does
not happen in Fig. 3.4(b). On the other hand, for highly deformed packings
(φZ̄ ≥ 4.5), G∗ tends to constant values. Again, this trend is more pronounced
for linear contacts than for Hertzian.

3.4 Granular elasticity

The simplest approach to model elasticity in granular materials is given by the
Effective Medium Theory (EMT), as proposed initially by Walton [253] and
Digby [49]. EMT assumes that all particles move according to the affine motion
defined by the applied, external strain rate field ε̇i j . That is the relative incre-
mental displacement rate between a pair of contacting particles AB would be:

u̇(B A)
i = ε̇i j l (B A)

j , (3.3)

where u̇(B A)
i = u̇(B A)

i = u̇(B)
i − u̇(A)

i and l (B A)
i is the branch vector introduced in

Sec. 3.2.3.
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Figure 3.4: Evolution of the normalized bulk modulus K∗ and shear modulus G∗ with
the product of volume fraction and coordination number φZ̄ for different
coefficients of friction, µ, during preparation as shown in the legend, and µ=
∞ during probing, for packings that interact through linear (a) and (b) and
nonlinear (c) and (d) normal contacts. Dashed and dotted lines in subfigures
(c) and (d) refer to the values of K∗ and G∗ obtained with a linear contact
model as in subfigures (a) and (b) and low/high values of friction (µ= 0 and
1).

3.4.1 Effective medium theory

Based on the affine assumption for particle displacement, the following expres-
sions for the bulk and shear moduli of an isotropic aggregate of polydisperse



62 Micromechanical study of the elastic stiffness in isotropic frictional granular solids

particles are obtained:

K ∗ = φZ̄

3π
D

G∗ = (1+ 3

2

k̄t

k̄n
)
φZ̄

5π
D, (3.4)

with k̄n and k̄t average normal and tangential stiffness, and d̄ 2 and d̄ 3 sec-
ond and third moment of the size distribution, respectively. The term D = d̄ d̄ 2

d̄ 3

is based on the actual sample configuration and corrects the expressions of
the moduli to take into account polydispersity [31, 116, 215]. In this work
D = d̄ d̄ 2

d̄ 3
≈ 1.15. Eqs. (3.4) give the EMT predictions of elastic moduli of dis-

ordered systems of frictional particles in 3D as functions of volume fraction φ

and coordination number Z̄ . The linear contact stiffnesses kL
n and kL

t are con-
stant, and the moduli do not explicitly depend on pressure P . Differently, in the
case of Hertzian interactions, an extra dependence on the average overlap, and
in turn pressure, appears in Eqs. (3.4), via the contact stiffness [126, 162], as
defined in Sec. 3.2 with the average overlap between particles [126]:

δ̄n

d̄
∼=

[
3π

2

(1−ν)

φZ̄

P

Gp

]2/3

. (3.5)

The expressions in Eqs. (3.4) have been widely used for a number of appli-
cations, see among others [19, 96, 119, 162, 169, 215]. While EMT describes
exactly the response of regular arrays of particles [166, 173], the affine assump-
tion overpredicts [158, 162] the elastic moduli of a random granular assembly,
especially in the case of loose samples subjected to shear probing.

3.4.2 Fluctuation theory

In order to improve the theoretical prediction, particle displacements can be
given by the sum of the affine average and additional fluctuation components
[30, 95, 113, 117, 126]. Then, Eq. (3.3) becomes [95, 126]:

u̇(B A)
i = ε̇i j l (B A)

j + ∆̇(B A)
i − 1

2
εi j k Ṡ(B A)

j l (B A)
k , (3.6)

where the first term is the affine displacement rate, and ∆̇(B A)
i is the fluctuation

in the translations of the two centres, while Ṡ(B A)
j is the fluctuations due to the
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rotations about their centres, and εi j k is the permutation symbol. The so-called
fluctuation theory (FT) provides an analytical formulation for the bulk and the
shear moduli of a random granular aggregate [95, 126]:

K ∗ = [
1−2

(
ρ+ρ∗)] φZ̄

3π
D

G∗ = [
1−2(ρ+ρ∗)

] φZ̄

5π
D + 3

2

k̄t

k̄n

[
1−2(ρ+ρ∗)+2(ζ+ζ∗)

] φZ̄

5π
D, (3.7)

where the coefficients ρ and ζ are averages of the incremental fluctuations in
displacement with ρ∗ = ρ(1−2ρ+2ζ) and ζ∗ = ζ(1−2ρ+2ζ) (the steps to obtain
Eqs. (3.7) are briefly given in appendix. B, see [126] for details). Fluctuations
relax the relative displacement between particle pairs, and the coefficients ρ and
ζ introduce a reduction term that lowers the values of the moduli predicted by
EMT. In particular, in Ref. [126] the authors derived an explicit expression for
ρ and ζ. They are given as a statistical measure of the sample contact geometry
and involve only the particle coordination number:

ρ = 22−3Z̄

24

(
1

Z̄
− 1

Z̄ 2

)
+ 1

8
χ (3.8)

ζ=−66−9Z̄

26Z̄

(
1− 24

13Z̄

)
− 261

676
χ, (3.9)

with standard deviation χ= (Z − Z̄ )2/Z̄ 2 of the contact number per particle, Z .
Next, we measure the contact fluctuations in our DEM packings and we ex-

plore the relation between χ and the microstructure parameter φZ̄ in Fig. 3.5.
Interestingly, we observe that the data collapse irrespective of the contact model
and preparation procedure. We can then extract an approximate analytical ex-
pression for χ as a function of volume fraction and coordination number as:

χ= (
φZ̄

)−1
. (3.10)

Using Eq. (3.10) in Eqs. (3.8) and (3.9) and we plot the predictions of FT
and EMT for K ∗ and G∗ in Fig. 3.6, versus φZ̄ , along with linear and Hertzian
numerical data. Data from [158] are included as well. Since, the normalized
moduli K ∗ = K d̄

k̄n
and G∗ = Gd̄

k̄n
are used, the predictions of EMT and FT for linear

and Hertzian contact packings coincide.
As reported earlier [117, 163], simulation data are in reasonable agreement

with EMT for the bulk modulus K ∗, irrespective of the contact model details
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Figure 3.6: Evolution of the normalized (a) bulk modulus K∗ and (b) shear modulus G∗
with the product of volume fraction and coordination number φZ̄ for differ-
ent contact models and coefficients of friction, µ, as shown in the legend.
Dashed and solid lines are Eq. (3.4) and Eq. (3.7), respectively. Thin lines
extend the simulations to very high overlaps, where the contact models reach
their limits.

and the preparation procedure. The predictions for K ∗ become excellent when
FT and Hertzian simulations are compared. Yet, the theory can not capture the
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behavior for very loose samples, φ≈φ j .
On the other hand, the shear modulus does not scale with the product of the

state variables as proposed by Eqs. (3.4) and (3.7). A good agreement between
fluctuation theory and samples with Hertzian contacts is found in the interme-
diate φZ̄ regime. For highly compressed samples (φZ̄ > 4.5, data shown with
dotted lines), G∗ deviates considerably from the analytical prediction. The de-
viation is partly due to the high overlap between particles at such a compressed
state, where the binary contact assumption of DEM is not valid anymore. More-
over, the theory overpredicts G∗ for small φZ̄ where the jamming transition
strongly depends on the preparation history. The mismatch between theory and
simulations is worse in the case of linear contacts.

3.5 Role of the tangential stiffness during probing

After studying the effect of contact friction during preparation, and probing
with µ = ∞ and fixed kt , in this section, we investigate the influence of the
tangential stiffness on the elastic response of the material. We start from the
samples prepared with linear contacts and frictionless (µ = 0 and kt = 0) and
probe the elastic response by assigning a finite value to the tangential stiffness
in proportion to the constant value of kL

n (Table 3.1), and a very high value for
the friction coefficient. Two extreme exemplary values of kL

t /kL
n are considered,

namely kL
t /kL

n = 0.1 and 0.8. With this approach, at a given density, the pack-
ings with different tangential stiffness have exactly the same particle/contact
network and rearrangements are prevented during small strain probing.

Along with the linear cases, Hertzian packings are studied, characterized by
the ratio k H

t /k H
n =0.88, and the other material constants given in Table 3.1. In

this case, a friction coefficient µ= 0 is used during preparation and µ=∞ during
probing, similar to the linear packings.

Fig. 3.7 shows results for the bulk and shear moduli versus the product of
volume fraction and coordination number φZ̄ . Despite packings at a given φZ̄
being topologically identical, the activation of the tangential stiffness during
probing induces significant differences in the measured elastic moduli, with
both bulk and shear moduli increasing with kt . This is expected in the case of
the shear modulus G∗, since tangential forces are activated during shear probing
and the magnitude of the tangential stiffness plays an essential role. The effect
of the tangential stiffness on K ∗ is non negligible, even though if one would
expect that mainly normal forces are activated during isotropic probing. The
packings with Hertzian contacts show a bulk stiffness comparable with linear
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Figure 3.7: Normalized (a) bulk modulus K∗ and (b) shear modulus G∗ plotted against
the product of volume fraction and coordination number φZ̄ for samples
with linear and Hertzian contacts. All samples are prepared without friction
(µ= 0 and kt = 0), and probed with different kt and µ=∞.

packings with a similar ratio kL
t /kL

n = 0.8, and shear stiffness a little higher than
the linear packings. The linear packings with small ratio kt /kn have smaller and
much smaller K ∗ and G∗, respectively. In the same figures, the predictions from
FT are plotted. The theory does not include a dependence on the tangential
stiffness for the bulk modulus K ∗ (see Eq. 3.7). That is why one line appears in
Fig. 3.7(a), insensitive to kt , that matches the numerical data with high kt /kn .
The formulation of G∗ does involve a term related to kt , and Eq. 3.7 is plotted
in Fig. 3.7(b) for the two values of kL

t /kL
n and for k H

t /k H
n = 0.88. The agreement

between FT and the numerical data is reasonable for kt /kn ≈ 0.8, somewhat
better for Hertzian contacts, as already discussed in Sec. 3.4. For low tangential
stiffness, the FT captures qualitatively the DEM data of G∗, but with a large
quantitative disagreement.

In order to quantify the effect of kt on the effective stiffness, we select a
set of data at constant φZ̄ = 4.5, then we subtract the reference values for the
bulk and shear moduli, obtained with zero tangential stiffness, K ∗(kt = 0) and
G∗(kt = 0) from the moduli with finite kt and plot the data in Fig. 3.8 versus the
ratio kt /kn . For both bulk and shear moduli, the effect of the tangential stiffness
increases with kt /kn and tends to saturate for higher values. The effect of kt on
the shear modulus is larger than on the bulk modulus, due to high involvement
of tangential forces during shear probing.

To further investigate this behaviour, we isolate the normal and tangential
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Figure 3.8: Dependence of the elastic moduli on the tangential stiffness for φZ̄ = 4.5.

parts of the elastic moduli. To do this, we use a modified version of Eq. (3.2):

K ∗
N = ∆P∗N

∆εv

∣∣∣
∆εdev=0

K ∗
T = ∆P∗T

∆εv

∣∣∣
∆εdev=0

G∗
N =

∆
(
σ∗N

xx −σ∗N
y y

)
2∆

(
εxx −εy y

) ∣∣∣
∆εv=0

G∗
T =

∆
(
σT

xx −σT
y y

)
2∆

(
εxx −εy y

) ∣∣∣
∆εv=0

where the stress components σN
i j ,σT

i j , as well as P N ,P T , are computed from
Eq. (3.1) using only normal and tangential forces, respectively.

In Fig. 3.9, we plot the partitioned shear moduli versus φZ̄ for packings with
linear contacts and two values of tangential stiffness at probing, like in Fig. 3.8.
We compare those with the partitioned shear response of Hertzian packings and
the theoretical predictions from FT. The latter are obtained by Eqs. 3.7 consid-
ering only the terms proportional to kn and kt ; one line for G∗

N is depicted in
Fig. 3.9(a), while G∗

T in Eq. 3.7 assumes different values for kL
t /kL

n=0.1, 0.8, and
k H

t /k H
n =0.88 in Fig. 3.9(b). The figures reveal several interesting features. In

the case of linear contacts, the normal modulus G∗
N increases in a similar fashion

as in Fig. 3.7, while the tangential part G∗
T stays almost constant close to zero

for the whole φZ̄ range. Surprisingly, the tangential stiffness influences mainly
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the normal partition of the shear modulus, rather than the tangential part. The
major effect of kt during probing is not on the tangential forces, despite the
direct link between these two quantities. In the case of Hertzian contacts, G∗

N
is higher than G∗

T , but with a ratio G∗
T /G∗

N ≈ 0.15, meaning that the contribution
of the tangential forces is distributed to both normal and tangential parts of the
shear modulus. The normal shear modulus G∗

N perfectly overlaps for linear and
Hertzian contacts with similar kt /kn . Furthermore, the linear G∗

T approaches
the Hertzian data, the behavior of G∗

T thus being at the origin of the differences
between the two numerical cases as observed in Fig. 3.4(d). This comes from
the fact that the tangential overlap is relatively smaller than the normal overlap;
thus, the tangential force (tangential stress) is much smaller. Obtaining slightly
higher G∗

T in case of the Hertzian data comes from the fact that the Hertzian
tangential stiffness depends on the normal overlap between particles. Hence,
it is proportional to the change of the configuration (k H

t ∝ φZ̄ ), whereas, the
linear tangential stiffness is constant throughout the simulations.
Furthermore, we want to assess the quality of theoretical predictions for the
partitioned moduli and the dependence on the tangential stiffness. When we
compare the Hertzian numerical data with the fluctuation theory, we observe
underestimation of the theory for G∗

N . On the other hand, FT fails in describing
the numerical G∗

T , with the mismatch becoming more dramatic for increasing
tangential stiffness and φZ̄ .

The comparison between FT and DEM data is striking. For G∗
N , numerics and

theory are far from each other, as the theory neglects G∗
N (kt ). An opposite trend

is seen for G∗
T in Fig. 3.9(b) for the term proportional to kt in Eq. 3.7, i.e. G∗

T
vanishes when kL

t /kL
n tends to zero; for kL

t /kL
n=0.8 the theoretical G∗

T builds up
while the DEM data stay practically unchanged, showing a dramatic difference
with theoretical predictions (as well as with Hertzian data).

Despite FT includes an explicit dependence on kt , the analytical prediction
still neglects the effect of kt on G∗

N ; the theory strongly overpredicts the material
modulus due to the tangential forces. This is because the partitions G∗

N and G∗
T

in Eqs. (3.4) and Eqs. (3.7) are associated only with the direct effect of kt on the
contact forces (i.e. stress) while a more complex behaviour is possibly involved,
due to corrections between non-affine displacements and tangential forces.

3.5.1 Incremental non-affine fluctuations

We want to investigate further the effect of the tangential stiffness on the contact
network and the load/displacement redistribution during probing. We focus on
isotropic probing and we measure the incremental fluctuations, ignoring the
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Figure 3.9: Normalized (a) normal shear modulus G∗
N , and (b) tangential shear mod-

ulus G∗
T with volume fraction φZ̄ for samples probed with tangential stiff-

ness kt /kn=0.1 and 1. Symbols correspond to DEM data, while lines are
Eqs. (3.7), also partitioned in the normal and tangential components.

rotation term in Eq. 3.6, in the normal displacement of each pair of particles
during probing as:

∆̇(B A)
i = u̇(B A)

i − ε̇i j l (B A)
j (3.11)

and define a measure of the average normal fluctuations over all pairs:

η̄= 1

M

∑
(B A)∈M

∥∥∥ ∆̇̇∆̇∆(B A)

ε̇lε̇lε̇l (B A)

∥∥∥. (3.12)

In Fig. 3.10, we plot η̄ versus φZ̄ for packings with linear contacts and several
values of kL

t /kL
n as in Fig. 3.7, along with packings with Hertzian contacts. We

compare η̄ with the parameter 2ρ, that relates the average fluctuations in the
normal displacement to contact statistics, as introduced in Eq. (3.8).

All fluctuation terms η̄ decrease with φZ̄ as expected for more compact sam-
ples where particles movement is limited. Surprisingly, we found that the fluc-
tuation parameter η in packings with linear contacts is strongly affected by the
tangential stiffness. η assumes very high values close to jamming and decreases
strongly with φZ̄ for low tangential stiffness. For large tangential stiffness, the
decay is much less pronounced and also the magnitude of η decreases with kt

increasing.
η̄ for Hertzian packings scales with φZ̄ in a similar fashion. Hertzian pack-

ings (i.e. k H
t /k H

n = 0.88) feature similar fluctuations as linear packings with
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Figure 3.10: Displacement fluctuations of samples under isotropic compression plotted
against the volume fraction for samples prepared frictionless and probed
with different tangential stiffness.

k H
t /k H

n = 0.8 but with around very different trends. On the other hand, weak
tangential stiffness kL

t /k H
n = 0.1 has a similar trend, but with double fluctuation

intensity η̄L
kt=0.1 ≈ 2η̄H

kt=0.88.

The contact fluctuations term 2ρ remains constant when varying the tan-
gential stiffness during probing, since we considered configurations prepared
through the same protocol, i.e. with identical structure. Contact fluctuations as
predicted by FT are in good agreement with values of displacement fluctuations
measured from DEM Hertzian packings.

These observations hint at the importance of a particle fluctuation parameter
for predicting the elastic behaviour of disordered granular systems. The data
show that pairs of particles with linear contacts fluctuate in a different fashion
than Hertzian contacts. Moreover, since it was systematically varied, we report
that the displacement fluctuation term of linear contacts is highly dependent on
the tangential stiffness kt but cannot state anything about the Hertzian case,
since there we did not vary kt .
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3.6 Concluding remarks

This paper has made a contribution to advance the fundamental understand-
ing of granular material by considering the effects of normal forces, inter-grain
friction and tangential stiffness on the material response. Using Discrete El-
ement Method (DEM) simulations of a triaxial cubical element test, we have
studied the effects of preparation history, contact non-linearity and stiffnesses
on the elastic moduli and granular elasticity. Major goal is to bridge between
the micro-mechanical parameters and the macro-scale behaviour of granular
materials.

The approach is a two-step one. First, we prepare three dimensional static
packings of frictionless and frictional polydisperse particles at various confining
stresses using DEM. Two popular contact models are compared, namely the lin-
ear visco-elastic and the non-linear Hertzian normal contact model with respec-
tive linear and non-linear tangential forces. Note that the samples have experi-
enced different deformation history when the particles have different properties
already during preparation. Second, the resulting packings were then analysed
by studying their response to small strain perturbations.

In the cubical triaxial box, the elastic moduli were measured directly by
applying different small strain modes, quantifying the incremental, elastic re-
sponse of relaxed granular materials. Concerning this so-called probing, the
amplitude of the applied perturbations had to be small enough to avoid particle
rearrangements and thus get the true elastic response.

The effect of friction on the macroscopic elastic response is already con-
sidered at the end of preparation, over a wide range of confining pressures.
Increasing friction between particles gives smaller elastic moduli at the same
volume fraction (or density). We associate this to the less denser contact net-
works (smaller Z̄ ) for lower µ, established during preparation; this effect is
more pronounced for the linear contact model, rather than for non-linear in-
teractions. For the latter, correlations between the macroscopic elastic response
and the microscopic were observed in the intermediate compression regime.

Furthermore, we focused on the effect of a varing tangential stiffness kt

(associated with linear normal interactions) on the granular elasticity due to
probing. Surprisingly, we found that the tangential stiffness strongly affects
both the bulk modulus and the shear modulus, and even its normal component,
where it is expected that mainly normal forces are active. When the tangential
component is active during probing, the global force network becomes stiffer (at
the same density) with reduced ability of the particles to move freely. The tan-
gential part of the shear modulus is consistently very small, irrespective of the
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tangential stiffness, which leads to both qualitative and quantitative differences
with the moduli measured in Hertzian granular assemblies.

Those aspects can have a major influence on the granular solid materials
behaviour, but are not included in the existing theoretical frameworks, like the
classical Effective Medium Theory (EMT), that attempts to link the elastic mod-
uli to the packing microstructure. When the DEM data are compared with pre-
dictions from EMT, good agreement is found for the bulk modulus, but EMT
fails to predict the shear modulus, as already reported [162, 163]. The fluc-
tuation theory [95, 126] improves upon EMT and offers interesting insights.
Concerning contact fluctuations are considered: i) the normal part of the shear
modulus is well described, while specific features in the tangential part are not
captured by the theory; i i) the magnitude of fluctuations is very close to the
values measured in DEM Hertzian simulations; i i i) the influence of tangential
stiffness on probing is not included in the theoretical framework.

Extension of the work to investigate the influence of inter-particle cohesion
on the elastic moduli and structural anisotropy is in progress, using the same
probing approach as in this paper. In addition, multi-contacts approach will be
taken into account at high compression.

Appendix A: Influence of contact slippage during
probing

In Sec. 3.3, samples were prepared with different inter-particle contact friction
to obtain packings with different micro structural history. Then, small perturba-
tions must be applied to the samples, to measure the elastic response. During
probing, there are two possibilities for the friction coefficient between particles:
(i) either the friction coefficient remains unchanged, i.e., we keep the value as
used for preparation, which may result in slippage; or (i i) it can be set to a
much larger value to avoid sliding at the contacts (Sec. 3.3). Here, we discuss
results on elastic moduli obtained by the two possibilities to see how important
it is to set a proper friction coefficient between particles during probing.

In Fig. 3.12, the bulk and the shear modulus obtained using both meth-
ods are plotted for three different friction coefficients µ = 0.0001, 0.1 and 1
against the product of volume fraction and coordination number. The elastic
moduli deviate significantly for samples prepared with very small friction co-
efficient µ = 0.0001. This difference is more pronounced for samples at low
volume fractions, which are less “rigid” and experience rearrangements already
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Figure 3.11: Normalized (a) bulk modulus K∗ and (b) shear modulus G∗ with φZ̄ for
different coefficients of friction, µ, as shown in the legend. Dashed line
corresponds to a case in which the friction coefficient (µ = 0.0001) is kept
unchanged during the preparation and probing but the applied strain is
1000 times slower than other cases.

at very small strain. There is no significant difference between the two cases
for µ = 0.1 and 1. When the friction coefficient is set to a higher value with
respect to the initial, preparation value, the increasing tangential forces can
resist further motion in tangential direction, preventing rearrangements. This
becomes of outmost importance in the case of low initial friction. Therefore,
it is essential to set the friction coefficient µ to a large value to avoid sliding
at the contacts when we apply small but finite strain perturbations in order to
measure the actual elastic moduli of the granular assembly. However, one can
keep the friction coefficient same as preparation by setting a much smaller strain
amplitude during probing. Dashed line in Fig. 3.12 confirms that if the strain
amplitude is set to a very small value, εpr obe ≤ 10−9 in this case, then it is not
needed to set the friction coefficient to a large value to prevent the rearrange-
ments. But, computational time of simulations will increase dramatically. When
the strain amplitude is deduced by factor 100 or 1000, the results do not show
dependence on µ during probing anymore.

Appendix B: Notes on the Fluctuation Theory (FT)

Incorporating fluctuations in the displacement of neighbours will result in a
further relaxation of the kinematics and an improved prediction of the elastic
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moduli. Eqs. (B.1) are the solutions for the fluctuation of a typical pair of parti-
cles to be in equilibrium, assuming that the other particles in the neighbourhood
move with the average strain.

K ∗ = [
1−2ρ

] φZ̄

3π
D

G∗ = [
1−2ρ

] φZ̄

5π
D + 3

2

k̄t

k̄n

[
1−2ρ+2ζ

] φZ̄

5π
D. (B.1)

Table B.1 provides values of parameters used in Eqs. B.1.
Fig. B.1 illustrates schematically a packing of polydisperse particles. For

each pair the first ring of neighbours is defined. Particles in contact with the
pair form a first-order sub-assembly. Those move following EMT in the basic
FT Eqs. (B.1). When the second iteration is included in FT, pairs formed by
the basic pair A −B and particles in the first contacting ring also move with
average plus fluctuations as was used in Eq. 3.7. For loose systems close to
jamming a higher number of rings is needed to obtain a significant improvement
as collective motion dominates the material behaviour [4, 117]. Therefore, the
theoretical framework could be extended further by involving more rings (see
Eq. 3.7).

(a) (b)

Figure 3.12: Sketch of neighboring assemblies for a specified central pair-particle shown
in red. (a) First sub-assembly is shown by blue and (b) second sub-assembly
is highlighted with green.
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Appendix C: system size - number of particles

The number of particles of a simulation, i.e. the system size, can have big
influence on the simulation results. Choosing a low number of particles may
lead to bigger scatter in the outcomes. On the other hand, running simula-
tions with a tremendous amount of particles leads to much more expensive
computations. Furthermore, small samples might not be representative of the
material behaviour, but bigger samples might develope inhomogenities or even
shear bands. The main question here is whether the number of particles affects
the elastic properties [121]. Therefore, probing was applied to configurations
with different system sizes. Our aim was to determine the range of specimen
sizes that yield identical results. For this reason, two system sizes were chosen
(N = 1728, 9261) along with the one used earlier (N = 4096). As expected, re-
ducing the number of particles (N = 1728) induces undesired scatter. Tests with
the larger number of particles (N = 9261) show no significant differences, which
confirms the intermediate system size chosen in this research is large enough,
yet not too large, to capture the macromechanical response with reasonable
computational time.
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φ Z̄ χ ρ ζ

0.5919819471 3.098039216 0.009213267105 0.1168783048 -0.194781669
0.5948472656 3.147058824 0.01266486156 0.1150246019 -0.1952309987
0.5977311055 3.059701493 0.005996430696 0.1182807852 -0.1940782642
0.6020919216 3.079545455 0.007720483109 0.1175603546 -0.1944825855
0.6064952609 3.147058824 0.01464465601 0.1152720762 -0.1959953868
0.6094547007 3.141732283 0.01391951056 0.1154285044 -0.1958213927
0.6124334262 3.108333333 0.01172293339 0.1167100317 -0.1955826637
0.61693802 3.210810811 0.01928374656 0.1129188443 -0.1963428741
0.6214868988 3.300947867 0.02539669942 0.1096137629 -0.1961666792
0.6245443565 3.48877551 0.04232656812 0.1035551934 -0.1959423613
0.62916826 5.152321981 0.09433859721 0.05443583724 -0.1304492125
0.6322762485 5.511873351 0.09924148489 0.04621852687 -0.114392941
0.6401362972 5.780095856 0.1006929941 0.04036548293 -0.1021859473
0.6481271691 6.057597367 0.0998437455 0.03445978849 -0.08923188417
0.6562515153 6.42972973 0.1026045645 0.02766033806 -0.07429403919
0.6645123002 6.677116827 0.1023512545 0.02323887315 -0.06413070044
0.6729123161 6.907964135 0.1062085761 0.0198589189 -0.05662512297
0.6814545088 7.133368065 0.1083798816 0.01656031324 -0.04903708876
0.6901418989 7.304504505 0.1121572771 0.01444546042 -0.04432421065
0.6989775848 7.509058433 0.1120092879 0.01146550102 -0.03713717392
0.7079647443 7.683180894 0.1120992238 0.009061436753 -0.03130640746
0.7171066373 7.819122099 0.1142846664 0.007512756695 -0.0276964684
0.7264066082 7.989706252 0.1152953295 0.0054281598 -0.02264848908
0.7358680888 8.126528575 0.1172260733 0.003953893991 -0.01914929164
0.7454946003 8.289793891 0.1173123615 0.001981545445 -0.01424950946
0.7552897567 8.418979187 0.1172534093 0.0004522572439 -0.0104218977
0.7652572673 8.551928783 0.1170006291 -0.001103855714 -0.006496608777
0.7754009398 8.671597633 0.1168028459 -0.002465948593 -0.003049114738
0.785724683 8.810591133 0.1167880368 -0.003981255981 0.0007864348086
0.7962325107 8.931510224 0.1165400074 -0.005295320976 0.004141214911
0.8069285443 9.039114391 0.1173829613 -0.006306369481 0.006660510436
0.8178170163 9.156963891 0.1168604495 -0.007567892216 0.009919547323

Table B.1: Coefficients used in FT obtained from a frictional packing (µ= 1).



Chapter 4
Elastic waves in particulate
glass-rubber mixtures

In this paper we study the elastic response of granular mixtures made of soft and
stiff particles subjected to hydrostatic stress conditions. Wave propagation allows
inferring fundamental properties of granular materials such as elastic moduli and
dissipation mechanisms. Measurement of both velocity and attenuation provide
complementary information about material properties and combined use of veloc-
ity and attenuation data in seismic analysis provides greater insight into the gran-
ular packings. We perform physical experiments in a triaxial cell equipped with
piezoelectric wave transducers. Dense, static packings made of monodisperse glass
and rubber beads are prepared at various levels of hydrostatic stress and species
fractions. Low frequency waves are propagated through the samples and the time
of flight measured in order to light on the combined effect of applied stress and
rubber content on the elastic properties of the mixture. Interestingly, bulk stiff-
ness data show that the behavior is non-linear and non-monotonic with increasing
percentage of rubber particles, the effect being more prominent with higher pres-
sure. The modulus remains fairly constant when increasing the fraction of rubber
to 30%, while they experience a sudden drop between 30% and 60%, to become
again constant between 60% to 100%. Along with the stiffness investigation ob-
tained from the time domain signal, a Fast Fourier Transform analysis gives an
insight into the frequency domain. FFT response explains the transition event from
glass- to rubber-dominated media. Finally, the influence of the rubber particles on
the dispersion of samples at low rubber content is addressed. We demonstrate that
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mixtures with small amount of soft particles perform better than material made by
stiff particles only, i.e. those are stiffer but lighter and more damped. 1

4.1 Introduction

In our daily life, we are surrounded by granular materials like soil, coffee, sand,
nuts, etc. They constitute over 75% of raw materials feedstock to industry,
including pharmaceutical, mining, agriculture, chemical, biotechnological, tex-
tile, etc. Despite its ubiquity, the behavior of granular materials is far from being
fully understood, which leads to the loss of the world’s energy consumption in
processing and transport.

The behavior of particulate mixtures is of interest for a large number of
fields, materials, and applications, including sintering, ceramics, gels, mineral
processing, pharmaceuticals, environment engineering, and geomechanics. Due
to the wide range of application, particulate mixtures have received a lot of at-
tention in the last decades [55, 136, 138, 171, 251]. A specific example in
geotechnical engineering is the increasing incorporation of recycled materials
(e.g. shredded or granulated rubber, crushed glass) often used into conven-
tional designs and soil improvement projects [21, 66, 137]. Moreover, mixtures
of asphalt and concrete are widely used to construct roads [53, 267]; thus ex-
ploring the effect of granular composition on the effective physical properties of
mixtures can help optimizing industrial processes, engineering structures and
make the pavement more robust and enduring [87, 188, 267, 274].

Although several methods become commercially available to determine the
stiffness of geomaterials both in the laboratory and in the field, the wave prop-
agation techniques are widely accepted for their rapid, non-destructive, and
low-cost evaluation methods. The use of piezoelectric transducers to estimate
small-strain stiffness of soils from wave velocity in the laboratory has been well
established nowadays [29, 162, 186, 210]. By knowing the elastic wave veloci-
ties as measured with the wave-based techniques and total mass density of the
media, the stiffness of the geomaterials are determined.

Mechanical waves are perturbations moving through space and time in a
medium, where the small deformations lead to elastic restoring forces. This
causes a transfer of momentum or energy through particle contacts, with little
mass transport. The propagation of the mechanical wave through the medium

1To be submitted: Taghizadeh, K., Steeb, H., Luding, S., & Magnanimo, V. Journal of Mechanics
and Physics of Solids.
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provides valuable information about the medium. By applying this method to
samples, one can deduce the mechanical response of bulk sample [25, 37]. The
importance of wave propagation into a granular media comes up in application
such as: oil exploration, earthquake, and roads construction.

Primary waves are the first seismic wave detected by seismographs; able to
travel through all types of materials including solids, liquids and gases. P-waves
are called compressional or longitudinal waves. They compress and expand
(oscillate) the ground back and forth in the direction of travel, like sound waves
that move back and forth as the waves travel from source to receiver,

During seismic wave propagation, some of the elastic energy is lost
(e.g. transforms into heat) per cycle in a propagation waveform through the
earth media. Furthermore, high frequency energy dispersion is lower than low-
frequency dispersion, and this produces amplitude attenuation, waveform dis-
tortion, and low-resolution seismic data, especially for moderately to deeply
buried formations. The attenuation of seismic waves is an important property
of the earth, which is of great interest to material scientist, geo-mechanical en-
gineers, and physicists. The energy loss (attenuation) is usually characterized
by the quality factor Q defined as the ratio between the energy stored and en-
ergy loss per frequency cycle due to inelasticity. It has been long believed that
attenuation is an important quantity for the characterization of particulate sys-
tems like e.g. sands, rocks and pore fluid properties, e.g. saturation, porosity,
permeability and viscosity because the attenuation is more sensitive than the
velocity [11, 12, 103, 130, 188].

On the other band, the quality factor constitutes prominent parameters hav-
ing an important effect upon the amplitude and duration of ground motions
during earthquakes [97, 101]. Their determination by field measurements ap-
pears to be a crucial point for the quantitative interpretation of the amplification
effects often produced by surficial deposits [54].

The purpose of this experimental study is to explore the effect of particle
mixture composition on the compressive elastic modulus by means of wave
propagation in a triaxial cell at different pressure level [237]. This paper is or-
ganized as follows. Sec. 2 describes the details of the experimental procedure.
the obtained results are discussed. We show the elastic stiffness of samples in
sec. 3. Frequency analysis of different mixtures are shown in sec. 4. In sec. 5, we
compute the quality factor of particular samples using of spectral ratio method.
Finally, sec. 6 concludes the paper.
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4.2 Test procedure

The experimental methodology is described in this section. Uniform glass and
rubber particles with similar size (dr = dg = 4 mm) are used in this study
to prepare cylindrical specimens with different volume fractions of glass and
rubber beads.

At first, we characterize the property of single particles used in experiments.
The contact force between two rigid grains is given by the nonlinear Hertzian
law in the normal direction. Given two elastic spheres i and j of radii Ri and
R j at position ~xi and ~x j , the contact force in the normal direction is written as:

Fn = 4

3
E∗R1/2δ3/2, (4.1)

where R = Ri R j /
(
Ri +R j

)
is the effective radius, δ = [

Ri +R j −|~xi − ~x j |
]

is the
normal overlap and E∗ is the effective modulus

1

E∗ = 1−υ2
i

Ei
+

1−υ2
j

E j
, (4.2)

with Ei , E j and υi , υ j Young’s modulus and Poisson’s ratio, respectively.
To obtain the Young’s modulus of glass and rubber, we perform a compres-

sion test on single particles. The force-displacement curve of glass and rubber
is plotted in Fig. 4.1. One can fit the data using the Hertzian contact law ex-
plained earlier (dashed lines) [187, 195]. Measured properties are reported in
table. 4.1.

Used material properties Glass Rubber
Diameter (mm) 4 4
Mass density (kg/m3) 1540 860
Shear modulus (MPa) 29000 200
Poisson’s ratio 0.3 0.5

Table 4.1: Properties of glass and rubber particles.

Let ν be the ratio between the volume of rubber particles and the total vol-
ume of solids in the mixture. Glass-rubber samples were prepared with variable
rubber content, ν = 0, 0.1, 0.2, ..., 0.9, 1.0, where ν = 0 is composed of glass
particles only and ν= 1.0 of rubber particles only [193, 251].
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Care is taken to prepare homogeneous mixtures. Differences in size, den-
sity, stiffness, and shape characteristics of granular mixture system can lead to
segregation. We prevented segregation by avoiding granular flow and minimiz-
ing any vibration during specimen preparation. All specimen are tested in our
custom-made triaxial cell with the sample diameter and height equal to 100 mm
(Fig. 4.2.a).

The instrumentation system for the piezoelectric element test consists of a
pair of piezoelectric transducers, function generator, signal amplifier, voltage
divider for the input signals and digital oscilloscope, signal amplifier/filter and
digital oscilloscope. These transducers are generally used in pairs when one
transducer operates as a transmitter and the other as a receiver. The trans-
mitting transducer is generally embedded at one end of a soil sample and the
receiving is, aligned with the transmitter, embedded at the other end. The trans-
mitting transducer sends the input electric signal through the medium and the
receiving transducer receives the propagated signal. Note, the energy of input
signal is small enough to not destruct the samples, i.e. rearrange micro-structure
of samples. Fig. 4.2.b shows a schematic drawing of the set up and peripheral
electronics. Granular samples are compressed in the axial direction via the top
piston in subsequent stress increments. At each instant step the radial stress
is corrected to match the axial stress. Water is used as confining fluid for the
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Figure 4.1: Experimental (solid line) force-displacement plot of a single particle com-
pression fitted by Eq. 4.1 (dashed line). Red and blue color indicate glass
and rubber particle.
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samples enclosed by a rubber membrane. Ten pressure values are analyzed,
namely P = 50,100,150,200,250,300, 350, 400, 450, and 500 kPa. At each pres-
sure level, a high voltage burst signal is excited to measure the time of flight.
The top cap (the sound source) and the bottom plate (the detector) of the cell
are instrumented with piezoelectric transducers with a diameter adjusted via a
PMMT contact plate to the sample size, able to excite longitudinal waves and
measure the arrival time, respectively. Two different sample heights, 100 and
70 mm, are considered in this study.

We limit our studies to the compressional P-waves, since the transducers are
mounted on the longitudinal direction. The transmitted signal is a ±400V step
signal via the top cap. The signals transmitted and received are pre-amplified,
filtered and recorded with a digital oscilloscope (LeCroy WaveSurfer 1GHz).
Then, the wave velocity can be calculated from the travel time, given the height
of the sample in the actual configuration and using the peak as reference. The
signal-to-noise ratio is improved by repetitive averaging of 100 detected signals
using the digital oscilloscope and then sent to a computer for further processing.
We repeat the experiment five times for each rubber content and pressure level
in order to avoid configuration-dependent results.

Transducer (source)

A
ir p

re
ssu

re
 A

ir
 p

re
ss

u
re

 

Transducer (receiver)

Signal generator 

Pre-amplifier / filter

Triaxial cell

D = 10 cm 

H = 10 cm

Load cell

Digital storage

oscilloscope

Computer

(Data analysis)

Power amplifier

Glass Particles

Rubber Particles
(a) (b)

Figure 4.2: (a) Acoustic triaxial cell with piezoelectric transducer measurement system
and a prepared sample with glass (dark) and rubber (light) particles. (b)
Schematic drawing of the experimental setup.

The mass density of samples at different rubber content is given by the fol-
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lowing expression:

ρB = (1−ν)ρg +νρr (4.3)

where ρg and ρr are true mass densities of glass and rubber beads, respectively,
and ν rubber content. Fig. 4.3.a shows the mass density versus the rubber
content calculated using Eq. 4.3. The given expression can be rewritten in terms
of number of glass and rubber particles as:

ρB =
V p (ρp

g Ng +ρp
r Nr )

Vbox
(4.4)

where superscript p denotes a single particle parameter, then Vp becomes the
single particle volume. Ng and Nr represent number of glass and rubber par-
ticles used in the experiments. Since, samples are made out of monodisperse
glass and rubber particles (same size), then a relation between rubber fraction
and number of particles can be found as:

(1−ν)Nr = νNg (4.5)

Therefore, the number of glass and rubber particles used during experiments
can be estimated at different rubber content by Eqs. 4.4 and 4.5. After the
estimation of the amount of particles at each mixture and knowing the volume
of cylinder after deformation, one can measure the sample volume fraction by:

φ= (Ng +Nr )V p

Vbox
(4.6)

In Fig. 4.3.b, we plot the fraction of sample volume occupied by the glass and
rubber beads against applied pressure for different mixtures. Rubber is softer
than glass and can deform easily. Deformation of rubber particles lead to fill the
pores of media thus the volume fraction increases by increasing both, pressure
and rubber content. It can be seen that the volume fraction changes slightly
with pressure for sample prepared with glass beads. Adding rubber particles
makes the bulk system softer. Thus, the volume fraction becomes sensitive to
the change of the pressure such that slope of lines gets steeper for high rubber
contents.

4.3 P-wave velocity determination

The P-wave, or primary wave, is the fastest and the first detected by seismo-
graphs. They are able to move through both solid rock as well as through liq-
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Figure 4.3: a) Mass density of samples at different rubber content. b) Measured volume
fraction of samples during loading at different pressure for samples with
different mixtures.

uids. These are compressional or longitudinal waves that oscillate the ground
back and forth along the direction of wave travel, in much the same way that
sound waves (which are also compressional) move air back and forth as the
waves travel from the sound source to a sound receiver. In a longitudinal
wave, the particle displacement is parallel to the direction of wave propaga-
tion [158, 208, 220, 232]. Piezoelectric transducers are used to determine the
small-strain compression stiffness, M , of soil by determining the velocity of me-
chanical waves through tested samples. The aim of this section is to explore
the role of soft-stiff compositions on the bulk elastic response of the mixture.
Particular attention is devoted to the dependence of sound velocity on the stress
state, since this is an important controllable experimental parameter [98, 261].
These and other emergent considerations are addressed in this section through
experiments.

A typical output of signal gathered from an impulse input signal is presented
in Fig. 4.4 within the transmitted signal, in each the signal amplitude values
plotted are normalized by the maximum amplitude recorded for the relevant
transducer. There is significant uncertainty and difficulty associated with de-
termining the travel time. Suggested criteria and recommendations vary de-
pending on the installation, application and input signal. The most common
methodology is to interpret the received signal in the time domain. It is typical
to consider a peak-peak time or the first arrival method. In Fig. 4.4, some char-
acteristic features of the transmitted and received signal are marked. Feature
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A marks the impulse of the transmitted signal, and on the received signal the
characteristic features are first-arrival B, first-local maximum C, and first-local
minimum D. Generally, the signal transmitted till the D-point is called the first
event which carries the essential information. The first arrival method calcu-
lates the time difference between the first peak in the transmitted signal (A)
and the first deflection observed in the output signal (B). But, the peak-peak
method takes the time between the first peak (A) of the input signal and the
first and/or second peak (C and/or D) of the received signal. Here, we pick
consistent peak-peak travel time (difference between time of A and C), since
selecting the first arrival pin is sometimes less straightforward [184].

By measuring the travel time of the P-wave (tp) and the tip-to-tip distance
between transmitting and receiving transducers (L), the P-wave velocity of the
specimen (Vp) is obtained as:

Vp = L

tp
(4.7)

Fig. 4.5 shows P-wave signals recorded for different rubber contents during
loading and unloading. The horizontal axis shows the wave travel time and the
vertical axis shows the waveforms sequence from the beginning of the test until
the end at different pressure levels. Looking at these signals, it is clear that
the waveforms are sensitive to changes in material composition and confining
stress. For samples prepared at low rubber content (ν = 0,0.1, and 0.3), the
waveformes show a clean response to the change of pressure such that the first

Figure 4.4: Typical input and output signals from the transmitting and receiving piezo-
electric transducers.
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peak shifts on the left hand side of time axis. But, when we look at ν= 0.5 figure,
noisy features start to appear. Moreover, the waveforms show slightly different
behavior which tells the transition from stiff to soft bulk sample. Comparison
between ν= 0.3, 0.5, and 0.7 clearly shows a pronounced change in waveforms
which is associated to a transition from stiff to soft dominated regime. Adding
soft particles into the sample, not only leads to delay in events but also to ad-
ditional features in the post-peak part of the signal. Furthermore, waveforms
of ν = 0.7 and 1 reveal a fact that the response of soft dominated samples are
insensitive to the pressure level.

Here, we report results on the bulk stiffness of granular mixtures with di-
verse rubber content obtained by the experimental tests. Mechanical waves
propagate through a material medium (solid, liquid, or gas) at a wave speed
which depends on the elastic and inertial properties of that medium. Therefore,
in the long-wavelength limit, the longitudinal P-wave modulus, M , is related to
the velocity, Vp , in the medium by:

M = ρbulkV 2
p , (4.8)

where ρbulk is the mixture’s bulk density of the sample and was given by Eq. 4.3
and depicted in Fig. 4.3.
By means of Eq. 4.8, we can then calculate the P-wave modulus of the gran-
ular mixtures tested in the triaxial cell. Fig. 4.6.a shows the evolution of the
bulk stiffness with the rubber content for all mixtures at different pressure lev-
els. The figure shows that the compressional modulus remains fairly constant
by increasing the volume of the rubber content to ν = 0.3. Since the majority
of particles are glass, hence, the wave velocity is controlled by glass medium.
In the case of high pressure, adding a small amount of soft particles surpris-
ingly enhances the effective stiffness of the medium and the highest modulus
is observed at ν ≈ 0.2. Thus, granular mixtures can be manipulated to obtain
aggregates with even higher stiffness, but lighter and more dissipative thanks
to rubber, when appropriate external conditions are matched (in this case the
pressure) [110]. Between ν = 0.3 and 0.6, there is a considerable drop in the
wave velocity which is the transition from glass- to rubber-controlled media. In-
creasing the amount of rubber particles (i.e. the rubber content ν) reduces the
effective stiffness. The modulus is again relatively stable between ν = 0.6 to 1
which is linked to the dominance of the rubber media.

In Fig. 4.6.b, M-modulus is plotted against pressure P to evaluate their func-
tional behaviour with the confining pressure P . The slopes of the M-lines with
P are almost constant for ν ≤ 0.3 and it follows the expected scaling M ∝ P

1
3
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Figure 4.5: Received P-wave signal series during loading (from 50 to 500 kPa) and un-
loading (from 500 to 50 kPa) for samples with different rubber content
(ν= 0,0.1,0.3,0.5,0.7, and 1).
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[72, 162, 229]. While the behavior suddenly tends to change by increasing the
rubber content (for ν = 0.4 and 0.5). For these samples with intermediate rub-
ber content the scaling law of the M-modulus with pressure P is M ∝ P

1
2 with a

power higher than the typical scaling (P
1
3 ). Such a change in the slope is due to

the creation of new particle media by incorporating rubber particles [18]. Fur-
ther on, the modulus becomes almost independent of pressure for higher rubber
content. As already observed in Fig. 4.6.a, samples with ν=0.6 to 1 show not
a significant dependence on pressure. The reason for this is related to the soft-
ness of rubber particles which deform so high such that they lose the nature
of point-to-point contact, i.e. contacts between particles become surface con-
tact. Fig. 4.3.b proves the fact of having high volume fraction for high rubber
samples, thus, samples are more continuum-like rather particulate-like.
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Figure 4.6: a) P-wave modulus against fraction of rubber. b) P-wave modulus against
confining stress.

4.4 DEM study

4.4.1 Numerical setup

To understand the experimental observations we perform numerical simulations
and try to reproduce the behavior glass-rubber mixtures tested in the experi-
mental part [55]. The Discrete Element Method (DEM) allows to simulate large
number of interacting particles that either move following Newton’s second law
or just in static mechanical equilibrium (before the wave-tests) [153]. Given
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two elastic spheres i and j of radii Ri and R j at position ~xi and ~x j , the contact
force in the normal direction is given by the Hertz contact law, by

Fn = 4

3
E∗R1/2δ3/2 +Fd , (4.9)

where R = Ri R j /
(
Ri +R j

)
is the effective radius, δ = [

Ri +R j −|~xi − ~x j |
]

is the
normal overlap and E∗ is the effective modulus

1

E∗ = 1−ν2
i

Ei
+

1−ν2
j

E j
, (4.10)

with Ei , E j and νi , ν j Young’s moduli and Poisson’s ratio, respectively. Fd is the
damping force between two particles and given by

Fd = γ
p

dδδ̇ , (4.11)

where γ is the Hertzian viscosity parameter and δ̇ is the relative velocity of two
particles. Note that Fd contributes very small value (almost zero) in case of
quasi-static simulations since δ̇≈ 0 (particles do not move).

In a tangential direction a linear-dashpot contact model with Coulumb
threshold is used with stiffness kt and damping γt as defined in [145, 234]
and with coefficient of particle friction µ = µs = µd . To find the inter-species
parameters (numerical value of parameter between a glass and a rubber parti-
cle), the reciprocals of parameters are added and the reciprocal of the sum is
taken (product over sum) as the inter-species numerical value. For example,
inter-species density between glass and rubber particles is given by ρ

g ,r= ρg ρr
ρg +ρr

,

note that other contact properties follow the same rule. For glass and rubber
particles the material characteristics in Table 4.1 and contact properties in Table
4.2 are used.

After defining the microscopic interaction between grains, we describe the
protocol to generate packings and measure the elastic moduli. We start our
simulations from a set of non-overlapping particles randomly generated in a
periodical cubic box at an initial volume fraction φ = 0.3. The initial configu-
ration is compressed isotropically by constant compression strain-rate until a
given volume fraction φ= 0.5, below the jamming point. The system is then al-
lowed to relax at constant volume fraction until it reaches a stable state, which
means that the particles dissipate kinetic energy and achieve a zero-pressure
unjammed relaxed configuration. This is followed by an isotropic compression
until the desired maximum volume fraction, φ= 0.82 [122]. The same protocol
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is used for all glass-rubber mixtures from ν= 0.0 to 1.0. In this way, samples re-
sembling the set of experiments to some extent in Sec.2 are created. In simula-
tions the preparation is isotropic, periodic without walls all the time, whereas in
experiments, only hydrostatic stress conditions have been applied, thus isotropy
of packing could not be guaranteed.

Property Symbol Value SI-units
Time unit t 1 10−6 s
Length unit x 1 10−3 m
Mass unit m 1 10−9 kg
Particle radius 〈a〉 2 10−3 m
Number of particles N 5000
Particle density, g ρg 2540 2540 kg/m3

Particle density, r ρr 1270 1270 kg/m3

Simulation time step ∆tMD 0.01 10−8 s
Tangential stiffness, g kg

t 104 107kg/s
Tangential stiffness, r kr

t 150 150·103kg/s
Viscosity, g γg 100 100 kg/s
Viscosity, r γr 100 100 kg/s
Friction coefficient µ 0.5

Table 4.2: Summary and numerical values of particle parameters used in the DEM simu-
lations [145]

Once packings are created and compressed, various configurations are
picked up at different pressure states above the jamming volume fraction. Those
samples are allowed to relax with constant volume until a stable state is reached,
which means the pressure remains unchanged over a period of time. Then a
small strain perturbation is applied to these relaxed samples, either pure vol-
umetric or pure deviatoric [158, 234]. The bulk and shear moduli K and G
are calculated as the ratio between the measured increment in stress and the
applied strain:

K = δP

3δεv
= δ(σxx +σy y +σzz )

3δ(εxx +εy y +εzz )
,

Gx y = δ(σxx −σy y )

δ(εxx −εy y )
, with δεzz = 0 ,

(4.12)
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where σi j and εi j are components of stress and strain tensors respectively. Since
the aggregates are isotropic, the P-wave modulus is given by:

M = K + 4

3
G , (4.13)

as also measured directly by M ' δσxx
δεxx

' δσy y

δεy y
' δσzz

δεzz
when only one strain is

activated.

4.4.2 Numerical results

In this section we show the results of the numerical moduli for different rub-
ber content ν and pressure states. Note that a pressure range in simulation is
wider than in experiments to gain more insight into the mechanical response
of mixtures. In Fig.4.7 we plot the P-wave moduli versus pressure, decreasing
monotonically with the rubber content from ν = 0.0 to ν = 1.0. In this respect,
simulations are not able to reproduce the macroscopic behavior observed in
Fig.4.6 in the experiment the maximum M at ν 6= 0. We associate the mismatch
to the adopted contact model not appropriate to describe rubber-rubber and
rubber-glass interactions. Finding a better contact model is subject to ongoing
study. However, when experiments and simulations are directly compared in

Figure 4.7: P-wave modulus versus applied vertical stress obtained by DEM simulations.

Fig.4.8, interesting information can be inferred. For the sake of clarity, only
three cases are shown, namely, ν = 0.05, ν = 0.5 and ν = 1.0. Simulations with
ν = 0.05 capture the experimental data quantitatively, noticeably without any
calibration. On the other hand, when looking at the the packing ν = 0.5, the
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qualitative trend is well captured by simulations even if actual experimental
values are higher than the simulated ones. Finally, for the case ν = 1.0, where
the moduli are pressure independent, simulations are far from experiments in
qualitative trend.
By summarizing the previous observations, a three regime scenario shows up.
In the glass-dominated regime G, waves do transmits via a glass beads network,
where simulations based on Hertzian interactions are able to reproduce the
macroscopic behavior. In the intermediate regime I, waves still have a preferen-
tial path via glass bead chains. Here two mechanisms concur to shape the bulk
behavior: i) the density of glass beads in the sample reduces with respect to
case G and the actual values of the moduli get lower; ii) the number of contacts
increases with pressure faster than in the G-regime due to easy rearrangement
of the rubber particles, that is the slope M(P ) gets higher. Finally, in the third
regime R, the behavior of the mixture is dominated by the rubber beads, and
the present simple DEM contact model can not offer an accurate representation
of the system.

Figure 4.8: Experimental and numerical P-wave modulus plotted against pressure; com-
parison of DEM and experimental glass-rubber mixtures for ν= 0.05,0.5 and
1.0.

4.5 Frequency spectrum

Looking at a mechanical wave in time series profile, we can see the mechanical
wave signals can be decomposed into two parts, the initial coherent wavefront
followed by an incoherent multiply scattered signal also known as "Coda". The
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initial wavefront is of low frequency in nature opposite of the Coda which con-
tains high frequencies [96]. The Coda contains waves reflected multiple times,
e.g. from smaller particles, clusters, or inclusions [6]. Hence, it provides in-
formation at the smaller structures in comparison to the media. As we are
interested in the response of bulk structure, the Coda waves were discarded
from the signal processing and analysis. Thus, the initial wavefront, used in the
sec. 4.3 to determine the bulk sound wave velocities (was called the 1st event),
is used in this section too. Here, we will study the previous samples in fre-
quency domain by applying a Fast Fourier Transform (FFT) to signals obtained
by experiments [79]. It is worth mentioning that filtering function has not been
applied on signals to not lose any information.

The energy (power) parameter |A( f )|2 is derived from the Fourier amplitude
of a signal. In Fig. 4.9, the energy is plotted for samples with rubber contents
of ν = 0, 0.1, 0.2, and 0.3 at two different confining pressures (P = 200 and
500kPa). Even though the bulk stiffness of the sample changes by adding rubber
particles, the main frequency remains unchanged. Furthermore, this plot shows
that the dominant frequency range does not change with the confining pressure
and only energy increases marginally as the specimen is subjected to higher
confining pressures.

In addition, it is important to investigate the frequency response in the tran-
sition regime where rubber content is between ν= 0.4 and 0.6. Fig. 4.9.b shows
the energy plot against frequency for samples at ν= 0.4 (red) and ν= 0.5 (blue)
rubber content for two pressure levels P = 200 and 500kPa. As can be seen from
the red curves (ν = 0.4), the main frequency is close to the value obtained for
cases of ν≤ 0.3. However, a second peak appears at higher frequencies. By this,
we can say that rubber particles start playing a role, unless samples shown for
ν≤ 0.3. An interesting observation comes up when the cases of ν= 0.4 and 0.5
are compared. Samples with ν = 0.5 rubber show two peak frequencies, one
is close to the value seen before in case of glass dominated samples (around
0.01 MHz), another one is higher (around 0.05 MHz) which is associated to
the rubber phase. By this figure, we can conclude a transition from glass- to
rubber-dominated media as it was shown earlier in stiffness plot (Fig. 4.6).

Finally, two different rubber contents ν= 0.7 and 1 are depicted in Fig. 4.9.
Unlike the earlier plots, this figure does not show any significant frequency
around 0.01 MHz which was associated with glass particles, but the major fre-
quency is obtained around 0.05 MHz (the peak frequency of the rubber media).
Therefore, it can be concluded that the glass media does not play an important
role in samples with high rubber contents. It is worth mentioning that the FFT
analysis has been applied on the input signal too. As expected, the energy is
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very small in comparison to the output signals which ensures that samples have
not been burst by the input.
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Figure 4.9: Energy against frequency for sample made with ν = 0 (black), 10 (red),
20 (blue), 30% (green) rubber content, at confining pressure of P=200 kPa
(solid line) and 500 kPa (dashed line), b) Energy against frequency for sam-
ple made with ν = 40% (red) and 50% (blue) rubber content, at confining
pressure of P=200 kPa (solid line), 400 kPa (dashed line), and 500 kPa (dot-
ted line), c) Energy against frequency for sample made with ν = 70% (red)
and 100% (blue) rubber content, at confining pressure of P=250 kPa (solid
line) and 500 kPa (dashed line).
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4.6 Damping

The attenuation of seismic waves is an important property of the earth which is
of great interest. Seismic attenuation can be quantified by the quality factor Q
[206]. The knowledge of Q is very desirable for improving seismic resolution,
facilitating amplitude analysis, understanding the lithology of subsurface better
and providing useful information about the porosity and fluid or gas saturation
of reservoir [103, 188].

The purpose of this section is to study the loss of energy during the wave
propagation with focus on the low rubber content samples (ν ≤ 0.3 rubber).
For this, we define a common parameter used to express the energy loss of
wave during the propagation [185]. The ability of a material to attenuate seis-
mic waves is measured by a dimensionless quantity Q called the quality factor,
i.e. attenuation factor. The attenuation factor Q reflects the energy attenuation
of seismic waves in subsurface media as:

Q = Energy of seisemic wave
Energy dissipated per cycle of wave

= 2π|A( f )|2
∆|A( f )|2 , (4.14)

where |A( f )|2 is the energy of the wave, and ∆|A( f )|2 is the change in energy
per cycle.

Several methods have been developed to compute the experimentally deter-
mined quality factor Q [33, 102, 103, 109, 241, 244, 256]. In recent inves-
tigations, we have successfully applied in our experiments the Spectral Ratio
method which is based on the frequency domain response, based on the as-
sumption that the ratio of the acoustic amplitude spectra at two different sam-
ple dimensions (travel distances of the acoustic wave) varies as a function of
frequency [213]. Computation of the spectra of the wavelet and evaluation of
the logarithmic ratios for two receivers at depth L1 and L2 yields:

ln

∣∣∣∣ A1( f )

A2( f )

∣∣∣∣ = −π(t2 − t1)

Q
f + cte, (4.15)

where A1( f ) and A2( f ) are the amplitude spectra at different length, f is the
frequency, t1 and t2 are the travel time from source to receiver at length L1 and
L2.

Then, the Q factor can be estimated from fitting a straight line to the loga-
rithmic spectral ratio over a finite frequency range. The estimated Q has a direct
relation with the slope, m, of the best-fit straight line as:

Q = −π(t2 − t1)

m
. (4.16)
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The above derivation is the basic theory of the classic spectral-ratio method,
which is originally derived for the application to VSP (vertical seismic profile)
data [245]. It must be mentioned that even when the data is free of noise, the
estimated Q can significantly deviate from the true value.

To employ the spectral-ratio method for our mixture samples, we perform
our experimental tests on samples with two different lengths, 7 and 10 cm.
As we have found an interesting mechanical response from the stiffness analy-
sis (Figs. 4.6), we dedicate our attention to samples with low rubber content.
Fig. 4.10 shows two signals recorded for samples at the same rubber content
and pressure but different heights. It is clear that the shorter sample (7 cm)
shifts the wave to the left side of the time axis. The arrival time of samples,
from the source to receiver, have been marked on the image. Form the time
domain response, we can calculate the time difference of two samples at their
peaks δt = t2 − t1. Since, we need to know the loss of energy during the travel
into the sample, we consider a part of signal till the first peak. This part of the
signal is flipped to get a full curve of wave. By flipping the signal, FFT results
become more reliable and clean. To measure Q, we first need to take the signals
from the time domain to frequency domain. Then, FFT response of two samples
at the same pressure and rubber content but two different heights are consid-
ered. From Figs. 4.9 it is reasonable to assume that over the frequency range
of the measurements, 0-0.05 [MHz], Q is a linear function of frequency. Since,
frequencies above this range do not carry high energy. After that, amplitude
ratio for samples with different lengths (L = 7 and 10 cm) can be fitted using
Eq. 4.16 in order to measure the quality factor Q.

Values of damping (loss factor) Q−1 are plotted against the rubber content in
Fig. 4.11.a (up to ν= 0.3) for different pressure levels. It is observed that when
the amount of rubber increases, the quality factor parameter Q−1 increases in a
linear fashion, irrespective to the pressure level, i.e. the system is more dissipa-
tive by increasing the amount of soft inclusions.

Fig. 4.11.b demonstrates the systems damping in another fashion where Q−1

is plotted versus the confining pressure. As expected, there is a systematical
increase of damping by adding soft particle [29, 89]. Looking at single plots, it
is found that increasing the pressure leads to a decrease of damping.

Combining the observations in Fig. 4.6 and 4.11, we summarize that adding
roughly about 20% of soft inclusions strongly improves the damping of the sys-
tem (about 30%), but also increases its stiffness (upto 15%) and gives a much
lighter sample (about 15%).
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Figure 4.11: Attenuation factor Q−1 for four rubber contents at different pressure level.

4.7 Conclusion

In this research, wave propagation experiments were performed to examine the
behavior of selected mixtures composed of glass and rubber particles. Signals
obtained from wave propagation tests using transducers were used to obtain
the bulk stiffness and damping ratio of glass-rubber mixtures. The experimental
data indicate that the glass skeleton controls the behavior for ν≤ 0.3, while the
rubber skeleton prevails at ν≥ 0.6. There is a considerable drop in modulus, M ,
only at intermediate mixtures (0.3 < ν < 0.6) where the transition from stiff to
soft occurs. Experimental data of high rubber content reveal that the modulus
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does not have any pressure dependency, since there is not a strong stiff media
(glass) for the waves to propagate through. Interestingly, we found that waves
propagate faster in ν ≈ 0.2 than a purely glass sample at all stress levels which
might be of interest for many industrial applications to optimize their processes
and materials.

After that, we studied numerically the evolution of granular mixtures with
the volume fraction of rubber particles at different pressure levels to look more
into the micro-structure of the composites. Simulations data showed a system-
atical decrease of the P-wave modulus with increasing rubber fraction, unlike
experimental observations where we could see a small peak of M at ν ≈ 0.2.
Comparing results between experiments and simulations, the non-calibrated
numerical model captures well the experimental results for low rubber content
samples and to some extent (for few cases of mixtures) also for really high ν.
However, simulations could not explain qualitatively the intermediate ν and the
qualitative behavior of soft (rubber) dominated samples, because the Hertzian
pair contact model is insufficient to depict the behavior of strongly deformable
particles such as rubber. The classical contact laws predict the microstructure
evolution during compression based on the assumption that contacts between
particles are formulated locally as independent pair-interactions. In future, we
thus will focus on the modification of contact models for strongly compressible
particles [23].

Further, we studied the frequency response of signals using of FFT at dif-
ferent pressure levels to look more into the micro-structure of the composites.
Frequency plots gave a more detailed perception of the transition from stiff to
soft media. Increasing confining pressure was not seen to cause any change in
the main frequency of specimens prepared with ν ≤ 0.4. Comparing the peak
frequencies of samples, the transition from stiff to soft dominated media was
clearly explained.

Finally, damping of samples with low rubber content were determined in-
troducing of spectral-ratio approach. As expected, a systematical increase of
damping with increasing rubber content and confining pressure was attained.
The relationship between P-wave modulus and attenuation factor at low rub-
ber content samples reveals an interesting phenomenon. Although, the stiffness
remains almost unchanged with increasing the amount of rubber (or even in-
creases slightly), but the damping increases continuesly. Especially, the high-
est P-wave modulus was achieved for the sample with rubber content close to
ν = 0.2. Consequently, our results demonstrate a fairly constant stiffness for
samples at low rubber content but more damped.

In future, we first modify our setup to embed transducers laterally in order to
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perform similar experiments for S-wave. After that, we will perform numerical
simulations (using DEM and FEM) to reproduce the behavior of glass-rubber
mixtures tested in the experiments and gain more insights.
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Appendix. A

Several difficulties such as the selection of travel distance, the determination
of travel time, and near filed effects affect the measurement of P-wave velocity.
These issues have been addressed in Refs. [139, 173, 174, 183, 184]. Once
these boundary and scale effects are evaluated and their effects are considered,
the travel time between source and receiver bender elements can be determined
[10]. The recorded traces provide a mean to measure the P-wave travel time,
calculation of the P-wave velocity, and evaluate the corresponding compression
modulus (if the density is known). Concerning the travel time and distance,
necessary to calculate the wave velocity, the determination of travel distance
(distance between transducers) is generally considered less problematic of the
two. The determination of the travel time, on the other hand, is more contro-
versial. However, we will show the results obtained by considering all three
points shown earlier in Fig. 4.4 (B, C, and D).

The P-wave modulus obtained by different travel time selection criteria are
shown in Fig. 4.12 for samples confined at 200kPa pressure. As it was expected
from Fig. 4.12, the results obtained using the first arrival point (B in Fig. 4.5)
give the lowest value than the other two. It is noteworthy to mention that the
qualitative trend of the P-wave modulus is similar for the three methods, as
illustrated in Fig. 4.12.

Appendix. B

Complementary to the FFT analysis results, the energy is plotted for a sample
with rubber content of ν = 0 at different confining pressures (from P = 50 to
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500kPa) in Fig. 4.13. This observation prevails the fact that the main frequency
of glass media remains unchanged by increasing the confining pressure. More-
over, one can determine the main frequency of glass dominated samples from
this figure.
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Chapter 5

Stress based multi-contact
model for discrete-element
simulations

The aim of this study is to first introduce stress-based non-binary contact model,
missing in classical discrete element methods (DEM), and compare to the classical
DEM and strain-based non-binary contact model. To tackle this issue the classi-
cal Hertzian force-displacement law is generalized using the trace of the particle
stress tensor to make contacts dependent on all other contacts of a particle. The
stress tensor is commonly used for post-processing reasons (i.e. in coarse-graining
methods), but here it is used to account for multiple contacts acting simultaneously
on a single particle. Simulation results for uniaxial confined compression of our
new contact-model were compared with the classical discrete element formulation,
an existing multi-contact model, and experimental data reported in the literature.
The satisfactory agreement between these results supports the validity of our new
contact-model. In addition, test examples at higher loading levels show that our
new contact-model formulation is able to capture also the stronger non-linearity
at higher stresses. Due to its simplicity, the proposed multi-contact model can be
easily integrated in any DEM implementation, remaining relatively fast when com-
pared to more complex methods or even a discretized method e.g. by FEM of single
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particles. 1

5.1 Introduction

Granular media, such as sand, are ensembles of dissipative, athermal grains that
interact through repulsive and frictional contact forces. An interesting feature
of granular materials is the fact that they can behave as solids, liquids or gases,
and show peculiar mechanical properties like dilatancy, history dependence,
ratcheting and anisotropy [39, 151]. Despite their simplicity and omnipresence,
the physics of granular materials is poorly understood and this leaves many
open questions in different fields, e.g. physics, mechanical engineering, material
science, geotechnical engineering, etc.

The discrete element method (DEM), pioneered by Cundall and Strack [44,
153, 236], models granular materials numerically as a collection of particles
rather than as a continuum, and the bulk behaviour of granular materials de-
pends on the collective interactions among individual particles. Each discrete
element has its own individual movement that can be traced by explicitly inte-
grating the governing differential equation based on the Newton’s second law
of motion.

DEM has been used in a wide variety of applications such as powders [165],
ceramics [214], granular flows [38], pharmaceutical and food industries [27,
197]. Despite the fact that DEM is a very efficient tool to study these applica-
tions, modeling of confined high to extreme compression with DEM is a chal-
lenge still. In classical DEM, a so-called soft particle approach [154, 237] par-
ticle deformations mimicked by overlaps between contacting particles. When
an overlap detected the contact forces between two particles are being calcu-
lated by a contact law. The general assumption made is that contacts between
particles are independent and therefore contact forces are resolved locally. This
assumption is only true in cases when particles deformation is small. For cases
with large deformations classical DEM is limited on capturing the required de-
formation [84, 190].

One way to introduce deformability in a particle model is with Multiple Par-
ticle Finite Element Method (MPFEM) [69, 84, 196] where each individual par-
ticle is being meshed with finite elements. Another way is to combine FEM
and DEM [61, 231], a method that embodies contact detection algorithms of

1To be submitted: Giannis, K., Taghizadeh, K., Schilde, C., Finke, J.H., Celigueta, M.A., Luding,
S., & Kwade, A. Granular Matter.
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DEM in the framework of FEM. Particle deformability can be also modeled with
other continuum based dicretization methods such as the material point method
(MPM) [91, 178] or the bonded particle method (BPM) [50]. The main advan-
tage of these methods is their ability to deal with anisotropic deformations of
single particles; therefore, these models are able to model arbitrary shapes after
deformation. However, the main challenge is their high computational cost that
hinders their use for cases with a large number of particles.

Following a different strategy, there have been attempts to introduce de-
formable particles in the framework of DEM. A simple approach was proposed
by Haustein et al. [85], by expanding the radius of the spherical particles. The
particle deformation from its overlapping area is redistributed on the free sur-
face of the particle, such that the volume of the particle is kept constant. A more
sophisticated model was presented by Kloss et al. [112], based on the single
particle average stress tensor each particle is allowed to isotropically deform
by decreasing particle radius and increasing its internal density. In addition,
Rojek et al. [202] proposed the so-called deformable discrete element method
(DDEM). In this approach, particles are uniformly deformed under uniform in-
ternal stress, which generates a uniform strain inside the particle; and contact
forces are evaluated using the local and newly formed global overlap caused by
the deformation of the particle.

The need of having deformable particles in the framework of DEM has led
to the formulation of the multi-contact discrete element method (MC-DEM).
Brodu et al. incorporated explicitly the mutual influence of contacts acting si-
multaneously on a single particle [23]. In this method, the overall deformation
of a particle is evaluated in terms of the strain field induced by other contacts
acting on the particle. Brodu et al. compared the results of conventional DEM,
their new model, and experimental results for uniaxial compression of hydro-
gel particle packings, in order to show the ability of their model to reproduce
the real physical data [23]. Furthermore, the evolution of the microstructure,
using the multi-contact approach, was compared against the non-local contact
formulation presented by Gonzalez et al. in Refs. [77, 78].

Another idea is to employ the stress instead of the strain field in calculations.
For this reason, a multi-body contact law that accounts for contact dependency
was presented by Frenning [62]. In this case, particle deformation is approxi-
mated by truncated spheres; and the contact force was expressed as the product
of an average pressure (same for all contacts) and a contact area (that varies
between contacts). The contact dependency among contacts acting on the same
particle was also considered in the work of Celiqueta [28]. However, for this
case the contact dependency was restricted to contacts acting perpendicular to
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the contact direction considered.
This study concerns a new formulation in the context of multi-contact dis-

crete element method based on the stresses acting on single particles to account
for multiple contacts acting on a particle. The overall deformation of the parti-
cle contact has been induced by other contacts acting on the particle. The main
difference between the new methodology and the one introduced by Brodu et
al. [23] is that this model is based on the stress applied on the particle not
strain.

This paper is organized as follows. In the second section, the classical dis-
crete element method is presented. A general overview on the exiting multi-
contact model proposed by Brodu et al. [23] is given in section three. Further-
more, the formulation and implementation of our new multi-contact model is
presented. At the end of section four, test cases with three and five particle
collisions are considered to see how the multi-contact models are performing in
comparison to classical DEM. In section four, a case of uni-axial compaction us-
ing hydrogel balls is presented, which shows the success of multi-contact mod-
els relative to classical DEM. Additionally, a numerical test on a harder material
(rubber spheres) is given. We conclude our work in the section five and finish
with some outlooks.

5.2 Discrete Element Method

The approach towards the microscopic understanding of macroscopic particu-
late material behaviour is the modelling of particles using the so-called discrete
element method (DEM), a numerical scheme originally formulated and devel-
oped by Cundall et al. [44].

DEM is a straightforward implementation to solve the transitional and rota-
tional equations of motion for a system of many interacting particles:

mi ~̈ai = ~fi +mi~g Ii ~̇ωi =~τi (5.1)

where mi is the mass of the i -th particle with position xi . It is subjected
to two kinds of forces, one due to contacts with other particles (~fi =∑

c
~f c

i ) and
one due to volume forces (i.e. gravity acceleration, ~g which are neglected in this
study. Ii is the spherical particles moment of inertia, ~̇ωi is the angular velocity
and ~τi =∑

c (~l c
i
~f c

i +~qr
i +~q t

i ) is the total torque, where~l c
i is the branch vector and

~qr
i , ~q t

i are torques due to rolling and torsion.
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The basis of DEM are force laws that relate the interaction force to the overlap
of two particles. The force can be decomposed into a normal and tangential
component ~f c

i = ~f n + ~f t . With the normal and tangential forces acting on all
particles, one can numerically integrate the equations of motion and obtain
the next position of particles. Below, we will describe a force law used in this
research.

5.2.1 Normal contact law

The elementary units of granular material are mesoscopic grains which deform
under contact forces, which are induced by an externally applied stress. Since,
the realistic modelling of the deformation of particles is way too complicated,
we relate the interaction force to the overlap δ of two particles. Note that the
evaluation of the inter-particle forces based on the overlap may not be sufficient
to account for the inhomogeneous stress distribution inside the particles. Two
particles only interact if they are in contact, resulting in a overlap:

δ= (ri + r j )− (~xi −~x j ) ·~n > 0, (5.2)

where ~n = ~xi−~x j

|~xi−~x j | is the unit vector pointing from particle j to particle i .
From the motion equations Eq. 5.1, it is apparent that the contact force is
needed to determine particles trajectory. This force is calculated through a
contact force law, which is a simplification of the contact between two particles.
Hertzian contact model is the most common used contact model in DEM which
is a non-linear model based on the Hertz theory of elastic contact [100, 153,
235, 238, 271]. This model assumes that the particles are spherical and do not
deform during the simulation. In addition, this model considers binary contacts
between two particles which means particles are in contact through a single
point during their collisions.

f n = f n
el + f n

vi sc =
4

3
E∗

√
re f f δnδn +ηn δ̇n (5.3)

with re f f = ri r j

ri+r j
as the effective radius and E∗ is the effective Young’s modu-

lus, 1
E∗ = 1−νi

2Gi
+ 1−ν j

2G j
. In this expression, ν and G represent the particles Poisson’s



106 Stress based multi-contact model for discrete-element simulations

ratio and shear modulus, respectively. In reality, particles collisions are inelas-
tic, i.e. energy loss occurs during collisions. Here, the dissipation is related to
relative velocity (v r el

n = −(~vi −~v j ) ·~n = δ̇n) of interacting particles with the vis-
coelastic damping constant for normal contact viscosity ηn which is an intrinsic
material parameter.

5.2.2 Tangential force law

For the tangential degrees of freedom, we only consider sliding resistance
between particles, rolling and torsion resistance are neglected for the sake
of simplicity. Tangential forces are linked to friction between two particles
generated by the relative motion of the two particles. This is a source of
energy dissipation. The sliding/sticking friction model is based upon Coulomb’s
friction law. Two friction models are used, static f t ≤µs f n and dynamic friction,
f t =µd f n; where (µs) is the static and (µd ) the dynamic friction coefficient.
Static friction occurs when two particles do not involve micro-slip at the contact
surface. In the case of static friction, the friction force (tangential force) f t

exerted between the surfaces of two particles where the particles having no
relative motion can not exceed the value given by Coulomb’s law using static
friction coefficient (i.e. f t ≤ µs f n). For the static case, a restoring force is
needed to compensate for the non-zero tangential force from the Coulomb’s
law. To determine if the particle experiences static or dynamic friction, a
tangential test-force is calculated. The tangential test-force is calculated in the
same form as the normal force using the Mindlin tangential law:

f t = f t
el + f t

vi sc = 8G∗
√

re f f δnδt +ηt δ̇t (5.4)

where δt is the relative shear displacement between the two particle centers,
and G∗ is the effective shear modulus, 1

G∗ = 2−νi
Gi

+ 2−ν j

G j
. Likewise the normal di-

rection, we consider a dissipation term along the tangential direction using of
viscosity term ηt [239].
Dynamic friction happens when the tangential component of force f t is exceed-
ing the maximum value of static force (µs f n), hence two particles start to slide
against each other.
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5.3 Deformable particle models

In the classical formulation of DEM, each contact force is considered to be a
local phenomenon and it is resolved locally independent of the effect of other
contact forces in its vicinity. However, in reality every contact between particles
is affected by neighboring particles acting simultaneously. Deformation of parti-
cles induces non-linearity at the same and all other contacts, and can cause the
formation of new contacts which is ignored in the conventional DEM approach.
The essential ingredient is to consider an overall grain shape deformation in-
duced by particle contacts.

Figure 5.1: Influence of one contact onto another. Contacts are not restricted to the
surface of a sphere, their position is consistent with the grain deformations
[23].

Here, we adopt the nonlocal contact formulations that account for the inter-
play of deformations due to multiple contact forces acting on each single parti-
cles. Such nonlocal formulations remove the classical assumption that contacts
acting on a single particle is formulated locally as independent pair-interactions.

In the following, we first explain a strain-based approach proposed by Brodu
et al. [23] and after that, we propose a new method, based on the stress and
thus the elasticity of materials. Finally, we compare the explained models with
the classical DEM results of simple test cases.
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5.3.1 Multi-contact strain based

To overcome the above summarized challenge, Brodu et al. [23] proposed a
multi-contact approach to improve the predictive power of DEM methods, while
retaining their conceptual simplicity. In this approach, the mutual influence
of contacts is modeled by using information on deformations induced by one
contact force on the other contacts acting on the grain. The displacement fields
imposed by neighboring contacts in the normal direction δk→c , are then added
to the particle deformation at the local contact δc . After that, force calculation
can be computed based on the added displacement fields F ∝ (δc +∑

k δk→c )3/2,
with the displacement fields δk→c equal to:

δk→c =−γ (1+ν) f c
k

2πE dkc

[
(~nk ·~ukc )(~nc ·~ukc ) +

(3−4ν)~nk ·~nc − (1−2ν)
(~nk +~ukc ) ·~nc

1+~nk ·~ukc

] (5.5)

where f c
k is the force at contact k, E the Young’s modulus of the material, and ν

its Poisson’s ratio. γ is an adjustable prefactor which accounts empirically for the
geometry. For non-compressible materials (low Poisson’s ratio), the prefactor is
set to be γ = 0.5 and for compressible particles γ = 1. dkc , ~n, and ~ukc are the
distance between contact points, normal vectors of contact surfaces, and unit
vectors between contacts; these parameters depicted in Fig. 5.1. Since, the main
feature here is the strain field around particles, hereinafter, the multi-contact
model proposed from Brodu et al. [23] will be called MC-strain. Eventually,
normal contact forces are calculated through this equation:

f n
el =

4

3
E∗√

re f f (δn +∑
k
δk→c )

3
2 (5.6)

5.3.2 Multi-contact stress based

In order to overcome the inherent assumption of the classical DEM which treats
each contact locally as a binary pair-interaction, we propose a non-local model
to describe a new space in which the mutual influence of contacts is taken into
account. To do this, we took the advantage of the trace of the particle stress
tensor and its information.
Typically, the particle stress tensor was used to access the stresses over a part
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which by definition computes the stress level exerted on a particle by its neigh-
boring particles after averaging the sum of all contact stresses within its volume
[58, 128, 154, 259, 272]:

σp = 1

V p

C P∑
c=1

l c
α⊗ f c

β (5.7)

So to say, the stress tensor incorporates a multiple contacts interaction ex-
erted on the particle. With that, we collect information from all local contacts
around the particle. Using this information, we can generalize the typical DEM
normal force law in a way that the trace of the stress tensor is used for on-line
calculations. In this concept, the new contact forces on each pair are depend-
ing also on the trace of the stress tensor of neighbouring particles, hence, an
anisotropic deformation of a particle can be accounted for. Fig. 5.2 depicts
a schematic concept of new approach. In the following, our model is called
MC-stress since our formulation starts with the stress tensor acting on a sin-
gle particle. As can be seen from the figure, an additional term is added into
the conventional DEM (Pi j ). This term consists the trace of stresses applied
on the primary (i -th) particle (tr(σi )), and the trace of stresses applied on the
secondary ( j−th) particle (tr(σ j )). A new term can be added into the former

Figure 5.2: For any pair-interaction, a term dependent on the average stress between
particle i (red) and particle j (blue) is added to the normal force law.
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normal force calculation by including the trace of stress tensor:

f n
el = fH + (βνA)Pi j (5.8)

The first term in Eq. 5.8 was defined earlier (Eq. 5.3). The second term car-
ries the information from neighboring particles acting on the particle. In this
expression, β is an empirical prefactor (similar to γ in Eq. 5.5), ν is the Pois-
son’s ratio, and A is the contact area at interface of the active pair of contacts.
At this point and for the multi-contact models that were used here it is nec-
essary to highlight the similarities and differences. MC-strain model estimates
the particle deformation by using analytical formulas given in elasticity theory
which is a similar assumption in case of MC-stress model too. In both models,
the overall deformation of a particle is calculated, and the deformation is taken
into account for calculation of contact force. It must be noted that for MC-strain
model contact forces that were calculated at a previous time-step from equation
Eq. 5.6 are now used to generate a new overlap base on Eq. 5.5, i.e an explicit
calculation. And then this new overlap inserted into Eq. 5.6 for the new force
calculations which takes indirectly into account a shape deformation. On the
contrary, MC-stress model uses the contact forces at the current time-step to
calculate the trace of the stress tensor between interacting particles, i.e an im-
plicit calculation. Based on Eq. 5.8, new contact forces are calculated for every
pair interactions .

The new multi-contact model, MC-stress, was implemented in the
LIGGGHTS-DEM platform [111]. LIGGGHTS in its philosophy takes the ben-
efit of Newton’s third law, where forces are computed for each pair of particles
once [194], in order to have an optimized and fast algorithm. By exploiting
this, we can integrate our new formula without violating the momentum bal-
ance [~f c

i j =−~f c
i j ]. The following pseudo-code briefly describes the way how it

was implemented:

5.3.3 Modeling test cases

To see the differences between given models and the classical DEM, we create
a set of simple reference cases that includes a system of three and five particles.
On the other hand, comparing results between the classical DEM, MC-strain,
and MC-stress validates the implementation of MC-stress. Since, the behavior
of hydrogel grains was thoroughly examined in Refs. [23, 24], and it is the first
material studied under the framework of multi-contact modeling, its material
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1 for i = 1 to N par ti cles do
2 for j = 1 to N nei g hbour s do
3

4 ForcesLocal [i,j] = Forces(Over l ap[i , j ]);
5

6 StressTrace [i]+=
Stress(For cesLocal [i , j ],Br anchV ector [i , j ]);

7

8 StressTrace [j]+=
Stress(For cesLocal [i , j ],Br anchV ector [i , j ]);

9 end
10 end
11

12 for i = 1 to N par ti cles do
13 for j = 1 to N nei g hbour s do
14

15 PressureSum [i,j]← 1
3 (Str essTr ace[i ]+Str essTr ace[ j ]);

16

17 ForcesGlobal [i,j]← Forces(Over l ap[i , j ],Pr essur eSum[i , j ]);
18 end
19 end

Algorithm 1: Pseudo-code used in the LIGGGHTS-DEM platform to ob-
tain the global force acting on a particle.

properties were used in this study. Moreover, we have used a harder material
(rubber) to further investigate the models. Material parameters used for the
simulations are shown in table. 5.1.

It is clear that multi-contact models do not show any difference with the
classical DEM in case of two sphere interactions. Therefore, the first reference
case consists of a central sphere with a diameter of 2cm that has been placed
between two spheres with identical characteristics (see Fig. 5.3.a). Initial ve-
locities of 10 m

s were applied in opposite directions such that the central sphere
gets compressed, i.e. its overlaps with two neighbouring particles increase. In
addition, we study a more complex case by adding two more spheres added
along the y-axis, as shown in Fig. 5.3.b, in order to better resemble a typical
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Material Density ( kg
m3 ) Diameter (cm) Young’s modulus (Pa) Poisson’s ratio Friction coefficient Coefficient of restitution

Hydrogel 11.5 2 23.3 ·103 0.5 0.03 0.95

Rubber 2000 2 1.85 ·106 0.46 0.5 0.7

Table 5.1: Input parameters used for simulations from [23, 78, 85].

confining situation. By studying these cases we can meticulously examine how
deformation develops under different contact laws.

(a) (b)

Figure 5.3: Schematic representation of (a) three and (b) five particles interaction.

Test cases using hydrogel

The systems examined in the following contains N = 3 particles and N = 5 par-

ticles with radii ri = 1cm. The typical contact duration is tc = 2.87
(

(m∗)2

r v(E∗)2

) 1
5

[86] which leads to tc = 0.0018s, and accordingly an integration time-step of
δtMD = 0.00001s (tc À δtMD , in order to allow for safe integration of the equa-
tions of motion) are chosen for simulations. Fig. 5.4 shows the kinetic energy
of systems simulated by three and five hydrogel particles. Overlap of central
particle in case of three and five particles simulation are given in Fig. 5.5.

Looking at Fig. 5.4, we can see a faster reduction of the energy with the
multi-contact implementations followed by an increase in the energy after the
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maximum indentation is reached (zero velocity). The shift of energy is related
to the fact that the multi-contact models reach to the maximum overlap earlier
than the conventional model. The total forces acting on a single particle are
gradually higher using multi-contact models. These forces are then used and
the DEM equations of velocity and position for each individual particle are inte-
grated in time using an explicit scheme.
LIGGGHTs uses Velocity-Verlet integration scheme to perform time integration
the extended equations and the algorithm can be found here [65]. Briefly the
equations for the velocity and position of each particle are: vnew

i = vol d
i −δt fi

m

and xnew
i =−xol d

i +δtvnew
i , and where signs are changing according of particle’s

direction.
It is clear that for higher total forces (δt ,m = constant) we have lower

magnitude of the velocity and and as a consequence lower change in a particle’s
position. With that we can say that for multi-contact models we have lower
velocities when we are trying to compress the particles due to higher resistance
and higher velocities at the decompression due to higher repulsive forces.

Overlap figures reveal that the contact collision is shorter while using multi-
contact models since more resistance is applied against further compression.
The maximum overlap of the MC-strain contact model is the highest in compar-
ison to others due to the generation of new overlaps at each time step, i.e. in
MC-strain model, a correction term of the overlap is added. Contradictorily, the
MC-stress model resists against compression (and decompression) which leads
to a lower value of maximum overlap in comparison to other cases.

Test cases using rubber

In addition to hydrogel tests, we examine the three and five particles tests using
a harder material (rubber) to confirm that the earlier observations remain in-
dependent of the particles properties. The contact duration of tc = 0.0025s and
an integration time-step of δtMD = 0.00002s are considered in simulations using
rubber particles. Likewise the hydrogel tests, we can see that the kinetic en-
ergy plots show the same trend with stronger dissipation of energy while multi-
contact models are used (Fig. 5.6) and interestingly when our system gets more
confined the reduction of the kinetic energy is the same for both multi-contact
models (Fig. 5.6.b). As it is observed in Fig. 5.7, the maximum overlap at the
peak is reached by the MC-strain model, and the minimum is given by the MC-
stress. It is not surprising since the basis of MC-strain is on adding new overlaps,
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Figure 5.4: Kinetic energy of test cases of (a) three and (b) five hydrogel spheres using
different contact models as indicated in the inset.
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Figure 5.5: Overlap of central particle for the test cases of (a) three and (b) five hydrogel
spheres using different contact models as indicated in the inset.
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and MC-stress is on correcting the force by adding new forces, i.e. stiffening of
particles.

The results of test cases using hydrogel and rubber properties evidently show
that the performance of multi-contact models is strongly dependent upon the
confinement level of a system. However, it is hard to say which model shows a
more robust agreement with respect to the real data due to the lack of experi-
mental data. Therefore, in the next section, we will compare different models
for a real test of uni-axial compression.
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Figure 5.6: Kinetic energy of test cases of (a) three and (b) five rubber spheres using
different contact models as indicated in the inset.

5.4 Uniaxial confined compression

After the validation of new approach in the previous section, here, we simulate
a more complex system which contains many particles and applying different
contact models. The objective of this section is to encounter how our model
is performing in comparison to existing models (classical DEM and MC-strain)
and available experimental data given in Ref. [23]. The system considered here
is a rectangular box, with dimension of 0.165×0.165×0.167 m3 along x − y − z
directions in which 514 polydisperes balls with a mean diameter of 2.1cm were
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Figure 5.7: Overlap of central particle for the test cases of (a) three and (b) five rubber
spheres using different contact models as indicated in the inset.

placed. The sample was first compressed uni-axially along the z-direction to a
maximum target strain; after that it was decompressed. In the following, we
first consider hydrogel properties (shown in table. 5.1) as the material char-
acteristic of balls in the simulation. Results are compared with the existing
experimental data. Fig. 5.8 shows the representative 3D-box filled with hy-
drogel particles, compressed to the maximum strain of 13.4%. Later, we will
assign the rubber properties (shown in table. 5.1) to spheres and will discuss
the differences between the contact models.

Fig. 5.9 shows the results obtained from the compression/decompression
simulation of the box filled with hydrogel spheres. It is not surprising to see the
failure of the classical DEM in representing the experimental data, especially
in case of hydrogel particles since the classical DEM can not treat simulation
of soft materials. The MC-stress model with a prefactor of β = 1 offers a good
performance, but not as good as the MC-strain model with a prefactor of γ= 1.
Yet, we are far from describing the experimental data with these parameters
presented in Fig. 5.9.a To obtain a better agreement between simulation and
experiment, one can tune the prefactor of γ and β in both models. Note that
these parameters must be calibrated in a way to not only capture the maximum
force exerted on the top plate but also to follow the path during the sample
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(a) (b)

Figure 5.8: Uni-axial compression of hydrogel sample from (a) the reference configura-
tion to (b) the maximum strain 13.4%.

compression and decompression.
A good agreement between experimental and simulation data obtained by

choosing β= 1.65 for MC-stress model and shown in Fig. 5.9.b. Although, setting
γ= 1.12 which is the best fitting parameter for the case of MC-strain model, as
suggested by Ref. [36], shows a good agreement but the representation is not
good enough. Table. 5.2 gives the maximum force obtained by different models.
It also is clear that selecting γ= 1.22 for the MC-strain model does not give the
maximum force as obtained from the experimental data. Further vision on the
force network established between particles is illustrated in Appendix. A.

In addition to the hydrogel simulations, we perform our numerical study
employing rubber particles; in order to see the performance of the multi-contact
models in case of harder material which brings a higher level of confinement.
Simulation setup is identical to the previous test with the only difference in
the maximum strain level, up to 28% (Fig. 5.10). The force displacement plot
for a box filled with rubber particles is shown in Fig. 5.11. As expected, the
MC-stress provides a higher maximum force with respect to the MC-strain and
typical DEM.

One of the advantage of the proposed multi-contact model (MC-stress) with
respect to MC-strain is its computational time which is quite faster than MC-
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Figure 5.9: Force exerted on the top plate during compression of hydrogel box with pref-
actors of (a) β,γ= 1, and (b) β= 1.65,γ= 1.12

Model Max. force

Experiment 15.65 [N]
Classical 6.69 [N]
MC-strain (γ= 1) 13.29 [N]
MC-stress (β= 1) 10.95 [N]
MC-strain (γ= 1.12) 15.48 [N]
MC-strain (γ= 1.22) 18.59 [N]
MC-stress (β= 1.65) 16.07 [N]

Table 5.2: Maximum force exerted on the top plate during the compression at the maxi-
mum strain level.

strain. For this reason, we address the computational time obtained during
the uni-axial compression using different approaches in table. 5.3. It is not
surprising to see that the classical DEM is much faster than other two multi-
contact models due to its simplicity, i.e. considering one-to-one contacts during
its simulations. The success comes into the comparison of MC-stress and MC-
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(a) (b)

Figure 5.10: Uni-axial compression of rubber sample from (a) the reference configura-
tion to (b) the maximum strain 28%.
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Figure 5.11: Force exerted on the top plate for the compression test of rubber balls.

strain models where the presented approach it is quite faster than the MC-strain
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model (almost two times faster).

Model T-hydrogel [s] T-rubber [s]

Classical 304 668
MC-strain 2715 6262
MC-stress 1030 2298

Table 5.3: Computational time of uni-axial compression using of differet approaches.

5.5 Conclusions and outlooks

In this research, we studied the importance of multi-contact models to describe
the behavior of dense granular materials. At first, a brief introduction on the
classical DEM was given. After that, the most common multi-contact model
(MC-strain), which is based on the strain field around a particle, was explained.
Then, we proposed a new approach to consider the effect of other particles
based on the stress tensor applied on a particle (MC-stress).

Incorporating the multi-contact correction in classical DEM significantly im-
proves the comparison results (force-displacement) of dense packings. The
behavior of hydrogel (quite soft material) particles under uni-axial compres-
sion/decompression was successfully described with the new multi-contact ap-
proach (MC-stress). Similar to MC-strain model, we included a prefactor β

which must be carefully calibrated depending on the type of the material.
One of the interesting achievements with the new multi-contact approach

was its ability to provide a higher force at a given displacement with respect
to the classical DEM and MC-strain. To confirm this feature, we tested our
simulations using of rubber properties to reach a high level of confinement. This
outcome can be employed in pharmaceutical industry for tableting processes,
where reaching extreme confinement using DEM is a challenge. In addition
to the given remarks, we showed the simplicity of new multi-contact model,
which makes the model easy to implement and faster in comparison to existing
multi-contact model (MC-strain).

Next, we will conduct different types of experiments using a variety of ma-
terials (from soft to stiff) in order to allow for a wider comparison between our
proposed model and experimental data. One can think of investigating the de-
pendence of prefactors with respect to shape and properties of particles. Since
the prefactors always have to be calibrated, it would be an interesting study to
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provide these parameters for simulation inputs or to calibrate the meso-model
from more refined approaches, where the deformation of particles is fully re-
solved.
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Appendix A: Force network schematic

Furthermore, all contact forces between particles were visualized to establish
the network of force chains. Figs. 5.12 and 5.13 shows all the contact forces
between particles, of the particle assembly, for the initial configuration and for
the maximum engineering stain at 13.4%. Each contact force is drawn as a
line, with the color of the line representing the magnitude of the normal force.
The different between force networks with the classical and multi-contact im-
plementations is clear, with higher normal forces for the multi-contact imple-
mentations. Distributions of normal contact forces are also different between
the two multi-contact models. In general results reflects the findings that we
also saw through force-displacement curves in Fig. 5.9.
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(a) (b)

Figure 5.12: (Color online) Contact forces between particles of the particle assembly.
The color of the force represents the magnitude of normal force, with light
(red online) corresponding to large forces down to blue (blue online) rep-
resenting zero forces. Network of force chains a) initial configuration b)
normal contact forces computed at the maximum engineering strain with
classical hertz contact model

(a) (b)

Figure 5.13: (Color online) Contact forces between particles of the particle assembly.
The color of the force represents the magnitude of normal force, with light
(red online) corresponding to large forces down to blue (blue online) rep-
resenting zero forces. Network of force chains for normal contact forces
computed at the maximum engineering strain with a) MC-strain contact
model with γ= 1.12 b) MC-stress contact model with β= 1.65



Chapter 6
Effect of Mass Disorder on Bulk
Sound Wave Speed: A
Multiscale Spectral Analysis

Energy transfer is one of the essentials of mechanical wave propagation (along
with momentum transport). The dispersive (attenuation) and diffusive (scatter-
ing) characteristics of energy during wave propagation in disordered media are
focus of many ongoing studies. Predicting the energy propagation in time and
space, as well as in frequency or wavenumber space, through (simplified) model
granular media can assist in understanding the overall properties of wave propaga-
tion through real media like soil; this eventually can assist in seismic prospecting,
non-destructive testing, or designing metamaterials. First, the effect of disorder
on energy propagation is examined using an impulse propagating in a disordered
granular chain, where disorder is quantified by the standard deviation of the mass
probability distribution of the granules. The use of an idealized one-dimensional
granular chain allows isolating longitudinal P-wave mode from shear or rotational
modes. From the total energy signals, it is observed that stronger disorder leads
to more rapid attenuation of the signal. While an ordered granular chain exhibits
ballistic propagation of energy, a disordered granular chain exhibits diffusive-like
propagation of energy. Disorder also causes localization of energy near the source,
where the intensity of the localization exhibits a power law like relationship with
distance from the source and also increases quadratically with increase in disorder.
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Second, the effect of disorder on the energy transfer across wavenumbers is ex-
amined using standing wave initial conditions (with specific wavenumbers/tones).
Low wavenumbers remain in the system for long time, decaying slowly, whereas
higher wavenumbers decay faster with increasing disorder. Energy conservation
dictates that the initially non-active modes gain energy accordingly. Using the en-
sembled spatio-spectral energy evolution from the granular chain, the coefficients
of a disorder specific Master Equation are evaluated. After homogeneous binning in
Fouriee space, this represents a much reduced model for all wave-numbers, which
eventually can be used for frequency-band specific mean-field macroscopic/contin-
uum analyses. 1

6.1 Introduction

Disorder in granular materials (like soil) can manifest in many ways from grain
level to system level (contact disorder, geometrical disorder, asphericity, layer-
ing, etc.). All may have an effect on the mechanical wave transmission through
the granular material in it’s own unique way (for instance, contact disorder due
to tiny polydispersity can reduce the mechanical wave speed and the transport
of high frequency waves [40, 135, 172, 173, 211]). Knowing these effects can
aid us in numerous ways for subsurface exploration or for non-destructive test-
ing of materials [7, 209, 216, 247]. Thus, there is a need to study the effects
of disorder individually and hence the focus of this article will only be on mass
disorder, for which a 1D granular chain has been chosen so that the P-wave
mode is isolated from shear or rotational modes. A mechanical wave propagat-
ing through this simplified model 1D granular medium is bound to suffer from
multiple scattering [1, 8, 181, 252]. However, regardless of scattering, linear
waves preserve some coherence that manifest as intensity correlations ([257]).
The results obtained from the chain also represent attributes of both longitu-
dinal P-waves (compressional) and S-waves (shear) in a 3D system as stated
in [134, 167]; the frequency filtering effects are very similar to those in a 3D
system, as observed in [173]. All the more reason to study energy content and
spectral energy response of the propagating wave [22, 47, 71, 260].

Classical continuum theories and Effective Medium Theory experience dif-
ficulty in modeling wave propagation in the intermediate or high frequency
range because of their inability to resolve the micro-structure of the material.
Continuum numerical techniques like Finite Element Method (F.E.M), Finite

1To be submitted: Shrivastava, R.K., Taghizadeh, K., & Luding, S. Journal of Statistical Mechanics.



6.2 The Granular Chain Model 125

Difference Method (F.D.M), etc. can be used to predict wave propagation char-
acteristics only if the right parameters are used, which are often difficult to find.
However, Discrete Element Method (D.E.M), a numerical technique which takes
into account the disordered micro-structure of the material and the nonlinear
contact forces between the interacting constituent granules of the media. This
microscopic description is detailed but also costly so that only small volumes
can be modeled. Nevertheless, D.E.M can be used to obtain the parameters
of stochastic meso-scale models. These then eventually can be used for con-
tinuum, macroscopic wave propagation analyses, hence, paving way towards a
statistical micro-informed macroscopic treatment of the problem [164].

The dynamic wave propagation in a granular chain can be argued as a
Markovian process, the initial waveform (displacement/velocity of the parti-
cles) and the granular chain properties (pre-compression, sizes/masses of the
particles through which the mechanical wave propagates) are sufficient to con-
struct/predict successively the waveform at later time intervals. The transition
probability functions of the Markovian processes can be written in the form of
Chapman-Kolmogrov equation, one of the versions of this equation is the Master
Equation [105]. Hence, a Master Equation can be used to represent the transfer
of energy across wavenumbers during mechanical wave propagation.

Sec. 6.2 contains the micro-mechanical model of the granular chain with lin-
earized Hertzian repulsive interaction forces acting between the granules; two
types of initial conditions (impulse propagation condition and standing wave
condition; Sec. 6.2.2 and Sec. 6.2.2) are used to analyze energy propagation
with distance and across wavenumbers, respectively. Sec. 6.2.3 gives a brief
description about the mass disorder used in the granular chain. Sec. 6.3 lists
the equations used for computing the total energy responses both in real and
wavenumber space. Sec. 6.3.2 formulates the Master Equation and proposes the
procedures to evaluate the transfer rates of energy across wavenumber space
(componenets of the transfer matrix). Results are discussed in Sec. ?? and final
conclusions are presented in Sec. 6.5.

6.2 The Granular Chain Model

A granular chain of mesoscopic granules/particles has been modeled using the
Hertzian repulsive interaction potential (a good approximation for spherical
particles [132, 212]), the repulsive interaction force between adjacent particles
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i and j is ( j can be i +1 or i −1),

F̃(i , j ) = κ̃(i , j )δ̃
3/2
(i , j ), (6.1)

where κ̃(i , j ) is the dimensional inter-particle contact stiffness, δ̃(i , j ) is the di-
mensional dynamic inter-particle overlap and the 3/2 exponent is due to the
Hertzian potential. The granular chain has a high pre-confining force (∆̃(i , j ))
which prevents opening and closing of contacts. This assists in modeling me-
chanical wave propagation across well established granular chains. Assuming
an external pre-compressional force F̃o on the granular chain in mechanical
equilibrium, the initial particle overlap is given by:

∆̃(i , j ) =
(

F̃o

κ̃(i , j )

)2/3

. (6.2)

The dimensional dynamic overlap is written as δ̃(i , j ) = ∆̃(i , j ) + ũ(i ) − ũ( j )),
where ũ(i ) and ũ( j ) are the dimensional displacements of the particles i and j ,
respectively. To obtain a non-dimensionalized equation of motion for particles,
the physical parameters have to be scaled. The minimum number of scaling
parameters required for arriving at a non-dimensionalized equation of motion
are characteristic mass (m̃o), characteristic stiffness (κ̃o) and a length scale ( ˜̀).
The length scale could be chosen from a variety of parameters such as the parti-
cle size, the driving amplitude or the characteristic initial static overlap, where
we adopt the latter. The equilibrium overlap, ∆̃o = (F̃o/κ̃o)2/3, if all κ̃(i , j ) = κ̃o ,
i.e., for uniform contact stiffness, κ̃o , is related to the mass, m̃o , by Eq. (6.44)
below.

The non-dimensional mass is then: b(i ) = m̃(i )/m̃o , the non-dimensional stiff-
ness is: κ(i , j ) = κ̃(i , j )/κ̃o and the non-dimensional displacement is: u = ũ/∆̃o .
Without new scaling parameters, this also defines the non-dimensional time
t = t̃/t̃c where

t̃c =
√

m̃o

κ̃o∆̃
1/2
o

. (6.3)

and the non-dimensional repulsive interaction force

F(i , j ) =
t̃ 2

c

m̃o∆̃o
F̃(i , j ). (6.4)
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The non-dimensional equation of motion for particle i is now given by

b(i ) d2u(i )

dt 2 = F(i−1,i ) −F(i ,i+1)

= κ(i−1,i )[∆(i−1,i ) − (u(i ) −u(i−1))]3/2 −κ(i ,i+1)[∆(i ,i+1) − (u(i+1) −u(i ))]3/2

(6.5)

Eq. (6.5) can be solved numerically using the Verlet integration scheme, it can
be used for analyses related to nonlinear dynamics of particles (Hertzian). The
non-dimensional stiffness (κ(i , j )) and the initial overlap are given in Ref. [132])

κ(i , j ) =
√

2

b(i ) +b( j )
(b(i )b( j ))1/6 and ∆(i , j ) = κ−2/3

(i , j ) , (6.6)

which simplifies to b(i ) = 1 and κ(i , j ) = 1 in the case of a homogeneous chain with
all equal particles. In the following, we will use the fully disordered case in Sec.
6.3.3

6.2.1 Linearized Equation of Motion

F(i , j ) = κ(i , j )δ
3/2
(i , j ) can be expanded around the initial overlap ∆(i , j ) as

F(i , j ) = κ(i , j )∆
3/2
(i , j )+

3

2
κ(i , j )∆

1/2
(i , j )(δ(i , j )−∆(i , j ))+ 3

8
κ(i , j )∆

−1/2
(i , j ) (δ(i , j )−∆(i , j ))

2+... (6.7)

If the amplitudes of displacement (u(i )) are small during mechanical wave prop-
agation, the nonlinear terms can be ignored and

F(i , j ) = κ(i , j )∆
3/2
(i , j ) −

3

2
κ(i , j )∆

1/2
(i , j )(u( j ) −u(i )). (6.8)

Hence, the linearized equation of motion for particle i becomes

b(i ) d2u(i )

dt 2 = κ(i−1,i )∆
1/2
(i−1,i )[∆(i−1,i ) − 3

2
(u(i ) −u(i−1))]

−κ(i ,i+1)∆
1/2
(i ,i+1)[∆(i ,i+1) − 3

2
(u(i+1) −u(i ))],

(6.9)

which can eventually be written as

b(i ) d2u(i )

dt 2 = 3

2
κ2/3

(i ,i+1)(u(i+1) −u(i ))− 3

2
κ2/3

(i−1,i )(u(i ) −u(i−1)). (6.10)
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Eq. (6.10) results in N equations which are assembled in matrix form [208]:

M
d2u

dt 2 = Ku, (6.11)

where M is a diagonal matrix with b(1),b(2),b(3)....b(N ) as diagonal elements, K
has − 3

2 (κ2/3
(i+1,i ) +κ2/3

(i−1,i )) as diagonal, 3
2κ

2/3
(i+1,i ) as superdiagonal and 3

2κ
2/3
(i−1,i ) as

subdiagonal elements, other elements of K are 0. u is the displacement vector
containing u(i ) as the elements. Assuming A =−M−1K, Eq. (6.11) becomes

d2u

dt 2 =−Au. (6.12)

Using the ansatz u = u0 expIωt , Eq. (6.12) becomes an eigenvalue problem

Au =ω2u. (6.13)

The eigenvalues ω2
j (ω j are the natural frequencies) and the eigenvectors s( j ) of

the matrix A represent the eigendomain of the dynamic granular chain. The set
of eigenvectors (s( j )) can be orthonormalized to fulfill the condition

sT
(i )Ms( j ) = δi j , (6.14)

where δi j is the Kronecker delta symbol. A matrix S is constructed using s( j ) as
columns and arranged such that their corresponding ω j are in increasing order.
S is an eigenbasis matrix and can be used for projecting u into eigenspace by
the relation

z = S−1u, (6.15)

where z is the displacement amplitude (per eigenmode) in the eigenspace. Us-
ing the transformation S−1AS = G, where G is a diagonal matrix with ω2

j as the
diagonal elements, so that Eq. (6.12) becomes

d2z

dt 2 =−Gz. (6.16)

The solution of this equation is given by (in eigenspace and real space, respec-
tively)

z(t ) = C(s)z
′
0 +C(c)z0 or, u(t ) = SC(s)z

′
0 +SC(c)z0, (6.17)
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where C(s) is a diagonal matrix with sin(ω j t ) as diagonal elements, C(c) is also a
diagonal matrix with cos(ω j t ) as diagonal elements; z0 and z

′
0 are vectors which

are determined from initial conditions uo (initial displacement vector) and vo

(initial velocity vector), respectively, as:

z
′
0 = H−1S−1vo , and z0 = S−1uo , (6.18)

where H is a diagonal matrix with ω j as the diagonal elements.

6.2.2 Boundary conditions

In the following, there are two systems considered, with N +2 or N +1 particles
in the chain. In the former case of with 0th and (N +1)st particles as the fixed
boundaries of the chain such that u(0) = 0 and u(N+1) = 0, in the latter with
periodic boundaries such that u(0) = u(N+1) are identical. For Fourier transforms,
we use N +1 = 2M particles, with integer M , in order to guarantee clean Fourier
signals, in particular for standing waves. Two different types of initial conditions
have been used for different types of analyses in the upcoming sections, impulse
propagation and standing wave analysis, see Fig. 6.1.

Impulse Propagation Condition

The initial condition for impulse propagation is uo and vo to be

u(i )(t = 0) = 0, v (i 6=n)(t = 0) = 0, v (n)(t = 0) = vo , (6.19)

where n is the particle number to which the impulse is imparted. Note that
vo ¿ 1 (initial particle overlap ∆o) to avoid opening and closing of contacts
or to maintain the validity of the linearized equations of motion (Sec. 6.2.1).
The first and the center particles in a granular chain have been imparted with
impulse for further analyses in Sec. 6.4.1. Eq. (6.19) is used to get

z
′
0 = H−1S−1vo , z0 = 0. (6.20)

Hence, the displacement and velocity of particle i becomes

u = SC(s)H−1S−1vo and v = SC(c)S−1vo . (6.21)



130 Effect of Mass Disorder on Bulk Sound Wave Speed: A Multiscale Spectral Analysis

Standing Wave Condition

For studying standing waves in the chain, an initial sinusoidal waveform is
given to the chain as: uo = uo sin

(
N 2πi

N+1

)
(where i is the particle number and

N = 1,2,3, ..., N specifies the particular tone of the standing wave) 2. Again,
very small uo ¿ 1 are applied to avoid opening and closing of contacts, i.e., to
maintain the validity of the linearized equations of motion (Sec. 6.2.1). vo = 0.
z
′
0 and z0 are given as:

z
′
0 = H−1S−1vo = 0 and z0 = S−1uo . (6.22)

Hence, the displacement and velocity of particle i becomes:

u = SC(c)S−1uo and v =−SHC(s)S−1uo . (6.23)

Impulse Propagation:

N=1

Standing Wave:

N

N

Figure 6.1: Impulse and Standing Wave initial conditions for a granular chain.

2 Note that the tone N = N +1 is special in two senses, since it represents oppositely displaced/-
moving particles, i.e., the shortest wave-length possible in a chain. First, it is not activated at all by
the sinus-, but only by a cosine wave-form. Second, its Fourier transform of energy does not show
up in Fourier space – see below, Sec. 6.4.1.
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6.2.3 Mass Disorder/Disorder Parameter (ξ) & Ensembles

The diagonal elements of the mass matrix, M, namely: b(1),b(2),b(3), ...b(N+1),

are selected from a normal distribution f (n)(b) = 1
ξ
p

2π
e
− (b−1)2

2ξ2 , ignoring negative

values. The standard deviation (ξ) of f (n) quantifies the disorder of the gran-
ular chain; the amount of mass-disorder can be rather large, if the average of
the distribution is properly scaled to unity for each sample [219]. A similar
model has been used previously in [134, 218, 219] for various wave propa-
gation analyses. It was observed in Ref. [218] that independent of the shape
of the disorder probability (binary, normal, uniform or any other distribution),
the same first (b = 1) and second moments (ξ) produce quantitatively similar
wave propagation effects (frequency filtering, attenuation or mechanical wave
velocities), up to a certain strength of disorder. The physical quantities (e.g.,
displacement, velocity, total energy, etc.) of multiple realisations of granular
chains with a particular disorder parameter are averaged to obtain ensembled
quantities, later depicted by angular brackets 〈...〉.

6.3 Energy Evolution

For calculating the Kinetic Energy of individual elements / particles we define
the matrix with elements K Epq , where:

KE = 1

2
M [v⊗v] = 1

2
MvvT . (6.24)

The Kinetic Energy of individual elements/particles are the diagonal elements
of the matrix KE, i.e., K EPP (capital letters PP denote the diagonal elements, to
avoid confusion with pp, which implies summation of the diagonal elements,
i.e., the trace of the matrix KE).

K E (p)(t ) = K EPP = δpPδqP K Epq = 1

2
b(p)(v (p)(t ))2 . (6.25)

The Total Kinetic Energy of the chain is the trace of the matrix KE, i.e., K Epp ,

K ET (t ) = K Epp = δpq K Epq = 1

2

∑
p

b(p)(v (p)(t ))2 . (6.26)

The Potential Energy is viewed relative to the pre-compressed (equilibrium)
state. Each individual element p basically stores energy in the form of compres-
sion at its contacts, arising from the forces (F (qp)) exerted by other elements on
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it. For the Potential Energy, as well, we define the matrix

PE =−1

2
K [u⊗u] =−1

2
KuuT =−1

2
FuT with F = Ku, (6.27)

where K is the stiffness matrix (Eq. (6.11)). The Potential Energy for individual
elements are the diagonal elements of the matrix PEpq ,

PE (p)(t ) = PEPP = δpPδqP PEpq =−1

2
F (p)(t )u(p)(t ). (6.28)

The Total Potential Energy is the trace of the matrix PEpq , i.e., PEpp ,

PET (t ) = PEpp = δpq PEpq =−1

2

∑
p

F (p)(t )u(p)(t ) . (6.29)

Note that the last term in Eq. (6.28) represents the work carried out by a
displacement, u(p), away from equilibrium, which is not the same as the po-
tential energy stored in contacts PEc = (1/2)kc (∆c )2, with contact deformation:
∆c −∆0 = (R1 +R2)− |u(p) −u(q)|. The potential energy in Eq. (6.28) is in phase
with the kinetic energy – in space, but is out of phase with respect to time. This
yields a total energy per particle/element, as discussed next, that is constant in
time, which allows for much better analysis.

The Total Energy of individual particles is the sum of its kinetic and potential
energies. Using Eq. (6.24) and Eq. (6.27),

TE = KE+PE = K Epq +PEpq . (6.30)

Using Eq. (6.25) and Eq. (6.28),

T E (p)(t ) = T EPP = δpPδqP T Epq = 1

2
(b(p))(v (p)(t ))2 − 1

2
F (p)(t )u(p)(t ) , (6.31)

with total energy constant in time, T ET (t ) = K ET (t )+PET (t ) = T ET (0). We
calculate the Energies (Potential Energy, Kinetic Energy and hence, Total Energy)
relative to the initial pre-compressed state so that only the energy associated with
wave propagation across the elements is taken into account. The equations (6.25),
(6.26), (6.28) & (6.29) are derived in Sec. 6.3.

The center of total energy is defined as [8]

R(t ) = 1

T ET (t )

N∑
p=1

p T E (p)(t ) with T ET (t ) =
N∑

p=1
T E (p)(t ). (6.32)



6.3 Energy Evolution 133

The mean squared width of the total system propagating and trapped wave is
[8]

r 2(t ) = 1

T ET (t )

N∑
p=1

(p −R(t ))2 T E (p)(t ). (6.33)

6.3.1 Total Energy in the Wavenumber Domain

TE or T Epq is in real space, to transform it into wavenumber space T̂E or ˆT E km

(k and m being rows and columns in wavenumber space), there is a need of
change of basis as T̂E = F TE F−1, where F is the discrete Fourier transform
matrix 3, it can be used to calculate Fourier transform of vectors such that û = Fu
and v̂ = Fv, where û and v̂ are displacement and velocity vectors in wavenumber
space, respectively. Hence,

T̂E = F TE F−1. (6.34)

The diagonal elements of this matrix yields the total energy in wavenumber
space per wavenumber k:

T E (k)(t ) = ˆT E K K = δkKδmK ˆT E km . (6.35)

6.3.2 Numerical Master Equation

A Master Equation can be an efficient tool in analysing the criss-cross transfer
of energy across different wavenumbers. In contrast to traditional methods of
order reduction [68, 106, 140, 141, 192, 199], we do not focus on a subset of
eigen-modes of the system, but group modes by wave-numbers (frequencies) to
stochastically model the evolution in time (space), using only a much reduced
set of frequency bands. The transfer of spatio-spectral energy is formulated as:

de(r )(t )

dt
=Qr r (t )e(r )(t )+ ∑

r 6=s
Qr s (t )e(s)(t ), (6.36)

where (negative) Qr r depicts the energy loss (rate) from a particular wavenum-
ber band r , which eventually gets transferred to all other wavenumber bands
s 6= r . Qr s quantifies the transfer rates of energy back to the wavenumber band

3The square matrix F can be computed numerically as dftmt(N +1) in Matlab, where N +1 is its
size.
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r from s. e(r )(t ) is the r th component of the binned energy vector e in wavenum-
ber space. e is constructed by binning the spatio-spectral energy responses
(T E (k)(t )). The binning is done by

e(r )(t ) =
k=r+∆k/2∑
k=r−∆k/2

T E (k)(t ), (6.37)

where ∆k is the bandwidth of the bin and r is the central wavenumber.
The total energy is conserved, hence,

B∑
r=1

e(r )(t ) =∑
k

T E (k)(t ), (6.38)

where B is the total number of bins assigned in wavenumber space. The binned
spectral energy is normalized as

ê(r )(t ) = e(r )(t )
B∑

r=1
e(r )(t )

(6.39)

The coefficients Qr r and Qr s can be assigned as the diagonal and non-
diagonal elements of the transfer matrix Q, respectively. Eq. (6.36) is thereby
written in the scaled matrix form as

dê

dt
= Qê. (6.40)

6.3.3 Computing the elements of the transfer matrix Q

The elements of the matrix Q can be computed numerically using the boundary
condition in Sec. 6.2.2, with a standing wavemode k belonging to a particular
wavenumber band r , agitated in the form of a sine (or cosine) initial condition.

The energy decay from the normalized ê0 = ê(r )(0) = 1 can be fitted by a
either a linear or a non-linear function, with a small and a large time-window,
respectively. The linear function 〈e(r )(t )〉 = 1− x1t , directly provides Qr r = −x1,
while 〈e(r )(t )〉 = (1− y1)e−z1t + y1, gives Qr r = −z1(1− y1), and y1 represents the
long term saturation value (the brackets 〈...〉 indicate that ensembling is used
to improve the quality of the fit). The linear function is the first order Taylor
expansion of the non-linear fit function, i.e., the linear fit should provide a good
approximation of Qr r , as long as ê(s 6=r ) ¿ 1.
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Similarly, when inserting energy into a band s 6= r , Qr s , the transfer rate of
energy from s to r , is determined by fitting either 〈e(r )(t )〉 = x2t , with Qr s =
x2, or 〈e(r )(t )〉 = y2(1− e−z2t ), with Qr s = y2z2, and y2 represents the long term
saturation value. The linear fit is expected to work for ê(r 6=s) ¿ 1

In the following, the non-linear and linear fits are referred to as procedures
1 and 2, respectively.

6.4 Results and discussion

An N particles long granular chain has been used with Impulse and Standing
Wave initial conditions for analyses. Sect. 6.4.1 deals with propagation of en-
ergy in a granular chain and the associated energy transfer. Sect. 6.4.2 deals
with the analyses associated with energy transport between different wavenum-
bers.

6.4.1 Energy Propagation with Distance

Two types of impulse initial conditions are used. In one of the systems, the first
particle (N = 1) has been imparted with initial velocity vo . In the other system,
the center particle has been imparted with vo . Eq. (6.32) and Eq. (6.33) have
been used for diffusion analyses associated with the impulse propagating in the
granular chain.

First Particle Excitation:

Here, an N = 1024 particles long granular chain is used. Particle p = 1 is im-
parted with vo = 0.01. The time step for the computation is ∆t = 0.1250 and
the maximum time evaluated is tmax = 1024, chosen in order to avoid reflection
of the incident wave from the boundary. Figs. 6.2 and 6.3 display the ensem-
bled total energy signal of four different disordered chains ξ = 0 (Fig. 6.2(a)),
ξ = 0.05 (Fig. 6.2(b)), ξ = 0.1 (Fig. 6.3(a)), ξ = 0.3 (Fig. 6.3(b)). 500 different
realizations of chains are used for ensembling. It is observed that there are two
peaks in the energy signal for all instances of time shown, irrespective of dis-
order except for the ordered chain (Fig. 6.2(a)). The first peak is due to weak
localization, a coherent backscattering effect during wave propagation near the
source (Sec. 6.4) and the second peak is due to the propagating coherent wave-
front (Fig. 6.3(a)). The ordered chain does not exhibit the weak localization
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peak because of absence of disorder. Higher ξ shows a more rapid drop of the
propagating coherent wavefront.
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Figure 6.2: Ensembled energy signal at different instances of time for (a) ordered and
(b) disordered chains.
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Figure 6.3: Ensembled energy signal at different instances of time for moderate and
strongly disordered chains.

Moreover, the weak localization peak decays with distance from the source,
the total energy signals at all time instances collapse along this curve except the
propagating wavefront which propagates along this long time limit decay curve
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[133, 270].

p
100 101 102 103

⟨T
E

(p
) (
t)
⟩

10-10

10-9

10-8

10-7

10-6

10-5

10-4

ξ = 0.05
ξ = 0.1
ξ = 0.15
ξ = 0.2
ξ = 0.25
ξ = 0.3
ξ = 0.35

slope = -1/2

slope = -2

Figure 6.4: Power law relationship of the weak localization decay curve for different ξ,
at later time t ∼= 875.

Fig. 6.4 is the log plot of the decay curve associated with weak localization
for chains (ensembled total energy signal at t = 875 per particle; measurements
are taken by limiting the space interval (p ≤ 800) to avoid propagating wave-
front), a power law relationship can be observed from the figure. It is observed
that the rate of decay increases with increasing disorder parameter ξ of the
chain, indicating a stronger weak localization decay curve with increase in dis-
order. Fig. 6.5(a) shows the total energy signal of particle p = 1 (source) with
time. The figure shows that after the initial impulse, the energy of the source
particle decays and becomes constant with very little fluctuations. This residual
energy of the particle increases with increasing ξ, Fig. 6.5(b) shows a power
law relationship of 2 between the disorder ξ and the T E of the first particle at
long time t = 500.
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Figure 6.5: (a)Total Energy (averaged over 500 ensembles) of p = 1 particle with time
for chains with different ξ. (b)Almost constant residual energy localized in
the first particle measured at t ∼= 500

Diffusion

The system used in the previous section (N = 1024 particles long granular chain
with vo = 0.01 imparted to the 1st particle) is used in this sub-section as well.
Eq. (6.32) is used to compute 〈R(t )〉 averaged over 500 ensembles. 〈R(t )〉 gives
the averaged propagation of the center of energy, as plotted in Fig. 6.6. It shows
that initially the center of energy does not propagate (as shown in the inset),
during which the initial high frequency impulse is self-demodulated [246] by
the granular chain (in contrast to a Gaussian pulse [8]). After this short time
interval, the center of energy propagates with the same speed for different dis-
order parameters. ξ = 0.0 has linear (ballistic) propagation of center of energy
whereas, ξ> 0 leads to nonlinear propagation of the center of energy with prop-
agation speed decreasing with increasing time [218]. Stronger disorder yields
smaller propagation speed with increase in time. Unlike ξ = 0.0, higher ξ re-
sult in the center of energy becoming confined in a finite space and this con-
finement space is smaller for stronger disorder. This occurs because R(t ) takes
into account both the weak localization occurring close to the source and the
propagating wavefront. The mean squared width of the energy during impulse
propagation r 2(t ) is computed using Eq. (6.33), averaged over 500 realizations.
Fig. 6.7 displays 〈r 2(t )〉 for granular chains with different ξ. It is observed that
for an impulse response, the energy propagation is slightly superballistic for low
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Figure 6.6: Position of the center of energy (〈R(t )〉) during impulse propagation for gran-
ular chains with different ξ.

disorder parameters (e.g. ξ = 0.05) and gets nonlinear towards superdiffusive,
diffusive and then subdiffusive for high disorder parameters.

Center Particle Excitation

In order to ensure that the localization of energy during wave propagation is
occurring near the source and is not a boundary effect, the effect of a different
initial condition on impulse propagation in a granular chain is examined, p =
1025th particle of N = 2049 particles long granular chain is imparted with vo =
0.01. The time step for the computation ∆t = 0.2501 and tmax = 1024. Fig. 6.8
shows the total energy signal per particle at a particular instance of time t ∼= 750
before the wave reach the end of the system for ξ= 0.1 (Fig. 6.8(a)) and ξ= 0.3
(Fig. 6.8(b)). It can be observed that the energy is localized around the source
(the middle particle) and the two propagating wavefronts are moving in the
opposite direction. The figure is symmetric around the center particle, which
means we are in linear regime and tension and compression wave have same
speed.
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Figure 6.8: Center pulse (p = 1025) is imparted with vo = 0.01 initially towards right. The
total Energy signal is averaged over 500 ensembles at t ∼= 750.
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6.4.2 Energy Propagation across Wavenumbers: Master
Equation for Spectral Energy

Figure 6.9: (a) u(p)(t ) (p = 1 to 256) of an ordered granular chain (ξ = 0.0). (b) u(p)(t )
(p = 1 to 256) of a disordered granular chain (ξ= 0.35).

With the goal to understand the evolution of standing waves in time, an
initial sinusoidal waveform (uo = uo sin

(
N 2πi

N+1

)
; see Sec. 6.2.2) is imparted to

an N +1 = 256 particles long granular chain with uo = 0.01 or 0.001, (which show
no difference other than in amplitude) and different disorder ξ. Disorder can be
either imparted on the mass only, or on both mass and stiffness, as default, using
the relations from the previous section 6.2.1. Note that the effect of disorder in
mass only is much weaker than for both mass and stiffness disorder.

The evolution of displacement and energy responses of particles/elements
are then analyzed. Fig. 6.9 shows the evolving displacement of particles for the
N = 1 standing wave in an ordered (ξ = 0.0) and a disordered chain (ξ = 0.3).
Fig. 6.9(a) displays the particles (color signifies the displacement amplitude)
performing a standing wave motion (ξ = 0.0). However, in Fig. 6.4.2(b), it is
observed that particles exhibit a perturbed standing wave motion of fluctuating
low amplitude (color) in addition with traveling waves, clearly indicating that
the disorder in the chains is disrupting the standing wave motion. It can also
be observed that there are few localized high amplitude displacements shown
by certain particles like p = 60 and p = 145; these particles are the lowest and
the third lowest mass particles in the granular chain in addition to being close
to the peaks of the standing wave.

Fig. 6.10 (a) shows the total energy of the particles for the ordered (ξ =
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Figure 6.10: (a) T E (p)(t ) (p = 1 to 256) of an ordered granular chain (ξ = 0.0). (b)
T E (p)(t ) (p = 1 to 256) of a disordered granular chain (ξ= 0.3).

0) and disordered (ξ = 0.3) granular chain (color represents the amplitude
T E (p)(t )). Unlike Fig. 6.10(a), Fig. 6.10(b) exhibits localized high energy par-
ticles p = 145 and p = 60 (low mass particles), indicating localization of energy
due to presence of disorder.

Eq. (6.35) is used to obtain the Total Energy in wavenumber space, then
Eq. (6.39) is used to bin the energy responses accordingly. The number
of bins used for the computation here onwards is B = 32 with a bandwidth
∆k = π/32 = 0.0982. Fig. 6.11 shows the temporal evolution of total energy in
wavenumber space for ξ= 0.3 disordered chain (grayscale in the plot is T E (k)(t )),
N = 92 (Fig. 6.11 (a)) and 40 (6.11 (b)). A peak is initially observed at the ini-
tially agitated wavenumber (ki ns =N 2π

N+1 ), the peak decreases as the time pro-
gresses, the decay rate is lower for lower wavenumber, which can be observed
when Fig. 6.11 (a) and (b) are compared. Fig. 6.12 displays the binned total
energy in binned wavenumber space for T E (k)(t ) (from same data as in Fig. 6.11
(a)), Fig. 6.12 (b) represents the same total energy response averaged over 100
ensembles. As can be seen, ensemble averaging of many realizations improves
the quality of response. Hence, the following analysis use ensemble averaged
samples.

In Fig. 6.13.a, binned total energy response of 23rd band is plotted for four
different disordered chains (χ = 0.05, 0.1, 0.2, and 0.3). Looking at this figure,
one can see that the energy of the band is decaying faster for higher disorder and
it is reached its saturation faster than the lower disordered system. In fact, this
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(a) (b)

Figure 6.11: Total energy response (T E (k)(t )) in wavenumber space of a single real-
ization of disordered granular chain (ξ = 0.3) initially agitated with (a)
ki ns = 2.159 (N = 92) and (b) ki ns = 0.981 (N = 40).
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Figure 6.12: (a) Binned total energy response (ê(23)(t ), ki ns = 2.0781 (N = 92) of
Fig. 6.11 (a). (b) Binned total energy response averaged over 100 ensem-
bles (〈ê(23)(t )〉, ki ns = 2.159 (N = 92).

observation is expected since higher disorder in the system leads to faster loss
of energy. Note that an ordered system χ= 0 does not show any decay of energy,
i.e. energy loss, since there is no singularity for diffusion of energy. Hence, its
normalized energy will remain constant (= 1) with time evolution. Fig. 6.13.b
shows the energy response of different agitated bands (r (N ) = 10(40), 15(60),
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20(80), and 30(120)) for a chain with disorder χ= 0.2. Looking at this image,
it is observable that higher bands r (higher wave number k) lose more energy
than lower bands. That means, when a lower band is agitated, less energy is
transferred other bands. Whereas, agitation of a higher band leads to a signifi-
cant energy transmission to other bands. The same observation is seen for other
disorders.
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Figure 6.13: (a) energy response of 23nd bin for four different disordered chains. (b)
energy response of different bins for a system with disorder ξ= 0.2.

6.4.3 Attenuation

The attenuation of seismic waves is an important property of particulate sys-
tems, which is of great interest to different communities. Seismic attenuation
can be quantified by the quality factor Q, i.e. the transfer matrix shown earlier
in Sec. 6.3.2. The knowledge of Q is very desirable for improving seismic resolu-
tion, facilitating amplitude analysis, understanding the lithology of subsurface
better and providing useful information about the porosity and fluid or gas sat-
uration of reservoir [103, 188]. Here, we first employ procedures explained
earlier to obtain the components of the transfer matrix, then, we interpret our
observations. Finally, we validate the proposed master equation using of the
measured Q to solve the course model.

Fig. 6.14 (a) shows the ensembled decay rate of the bin which contains the
initially agitated wavenumber (r = 23nd bin; ki ns = 2.159), the energy from this
bin is getting transferred to the other bins, the decay is well captured by the fit
(Sec. 6.3.2) through procedure 1 (Q(1)

r r = 0.1) and 2 (Q(2)
r r = 0.095); superscript
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1 and 2 represent fitting coefficients obtained via the procedure 1 and 2, re-
spectively. As expected, damping coefficients obtained by linear and non-linear
fits are consistent. In addition to the energy decay of 23rd bin, Fig. 6.14 (b)
displays the rise of energy in a bin (r = 20th) which is receiving energy from the
23rd bin. The rise is well captured by the fitting procedures explained earlier
(Sec. 6.3.2), where Q(1)

r s = 0.1 and Q(2)
r s = 0.095. It can be observed that the energy

of the bin which is initially agitated decays and achieves a steady state. On the
contrary, the energy of the bin, which is receiving energy, starts increasing and
achieves a steady state. Similar plots are shown for r = 20th bin in Fig. 6.15 (a)
for ki ns = 1.86 and the rise of r = 23nd bin is shown in Fig. 6.15 (b).
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Figure 6.14: (a) Decaying binned total energy response of initially agitated bin 23 for
ki ns = 2.159 with the fits following procedures 1 and 2. (b) Increasing
binned total energy response of bin 20 receiving energy with the fits fol-
lowing procedures 1 and 2. Only time steps from 2 to 18 have been used
for procedure 1 fit, and from 2 to 8 have been used for procedure 2 fit.

The transfer matrix Q can be deduced from wave-propagation simulations
in disordered particle systems (in the ideal situation, without loss of general-
ity, elastic and 1D). Using the set of ki ns (where N = 4,8,12, ...,128, one mode
from every bin, hence, encompassing all the 32 bins) and the fitting equations
mentioned in Sec. 6.3.2, the components of the transfer matrix are computed
for ensembles of 100 disordered granular chains with ξ = 0.05, 0.1, 0.2, and
0.3. Fig. 6.16 (a) depicts the diagonal elements of the Q matrix computed by
procedure 1 (non-linear function). Qr r increases with increasing the bin num-
ber (i.e. increasing ki ns) for different disorders. This can be attributed to the
fact that lower bins/wavenumbers achieve a steady state fast as it can be ob-
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Figure 6.15: (a) Decaying binned total energy response of initially agitated bin 20 for
ki ns = 1.86 with the fits following Procedure 1 and 2. (b) Increasing binned
total energy response of bin 23 receiving energy with the fits following Pro-
cedure 1 and 2. Only time steps from 2 to 18 have been used for procedure
1 fit, and from 2 to 8 have been used for procedure 2 fit.

served from Fig. 6.13 (b), where 〈ê(r )(t )〉 is plotted with time (averaged over
100 ensembles), leading to less energy loss. However, the increase of Qr r is
faster in case of higher disordered chain. This reveals a fact that the loss of
energy is related to the disorder, i.e. attenuation increases with increasing the
sample disorder. In addition, we plot the Qr r elements of Q derived using the
linear function (procedure 1) in Fig. 6.16 (b). Likewise the non-linear function
observations, it shows that Qr r increases with increase of the bin number and
disorder.

Following the procedures explained earlier, off-diagonal components of Q
are computed. Fig. 6.17 illustrates the color plots off Q computed by proce-
dure 2 for four different disordered system. As can be seen, this matrix is anti-
symmetric. It was expected that the intensity of diagonal terms keep increasing
while bin numbers increases. Also, it is stated that higher bins transfer more
energy to their neighbors in comparison to the lower bins. For low s values
one has very small probabilities for transfer of energy to another band, while
for increasing s, the probability for energy-transfer to other bands r increases,
in particular there is more transfer to the lower bands r , as indicated by the
non-symmetric form with more yellow color above the diagonal.
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Figure 6.16: Diagonal components of Q obtained by (a) procedure 1(non-linear fit) and
(b) procedure 2 (linear fit), for 4 different disorders.

6.4.4 Solution of the Master Equation

Given any matrix Q the evolution of energy with time can be easily modeled/in-
tegrated using the master equation in Eq. (6.36). Thanks to the reduced order
modeling in a Master-Equation approach that combines many eigenmodes in
frequency bands, this solution is very efficient but expresses the energy transfer
between the bands qualitatively correctly.

After measuring the components of the transfer matrix in the previous sub-
section, here, we test the validity of the proposed master equation, Eq. (6.36).
Using Eq. (6.36) and the Q matrix computed in Fig. 6.17.b (for the disordered
system ξ = 0.2), the frequency propagation of specific bins can be computed
(the final purpose of the Master Equation formulation, here this computation
can serve as cross-validation), which has been done for two different bins 10th

and 23th in Fig. 6.18. As expected, the higher frequency bin (23th bin) looses
energy faster than the lower frequency bin (10th bin) to other frequency bin-
s/bands, it indicates that the lower frequency passes and the higher frequency
attenuates, a fundamental frequency propagation characteristic in disordered
granular media.

6.5 Summary, Conclusion and Outlook

A disordered granular chain with linearized Hertzian repulsive interaction force
between the particles is used as model granular system (Sect. 6.2) for study-
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Figure 6.17: The transfer rate matrix Qr s computed through procedure 2 (linear fit, Sec.
6.3.2) for different disorders: (a) ξ = 0.05, (b) ξ = 0.1, (c) ξ = 0.2, and (d)
ξ= 0.3, where the first index indicates the source and the second the target
(where diagonal elements are not color coded). The diagonal elements
(Qr r ) are the attenuation coefficients of the total energy in band/bin r .
The corresponding non-diagonal components Qr s are the increase rates of
total energy in the bin s after receiving energy from bin r .

ing the energy propagation characteristics in space and time. The analytical
solutions of the wave propagation in such a simplemost disordered system al-
lows several conclusions, in line with existing literature, (like, e.g., sub-diffusive
propagation of energy in space, and low band pass- and high-band attenua-
tion of energy in time). The novel contribution is a reduced order stochastic
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Figure 6.18: Frequency propagation of (a) 10th and (b) 23th bins computed using the Q
matrix (Fig. 6.17.b).

model for energy-propagation in wave-number space with time, where all wave-
numbers and not only the lower eigenmodes are considered. The two types of
initial conditions used are:

• Impulse initial condition for studying energy propagation with distance
from the source (Sec. 6.2.2 and 6.4.1).

• Sinusoidal standing wave initial condition for studying energy propaga-
tion with time and its transfer between wave-numbers (Sec. 6.2.2 and
6.4.2)

6.5.1 Diffusive-like wave-propagation in space

The results in Sec. 6.4.1 show the existence of twin peaks when the total energy
signal is plotted with distance from the source for disordered granular chains;
unlike ordered chains which have only one peak. The peak near the source
is attributed to (weak) localization due to disorder, whereas, the second peak
is the propagating coherent wavefront. The weak localization of energy is ob-
served to be invariant with time and exhibits a power law like relationship with
distance from the source, where the rate of decay increases with increasing dis-
order parameter (ξ). However, the second peak (wavefront) rapidly decreases
with distance from the source, and more strongly with increasing ξ. The center
of energy’s propagation speed decreases with increasing disorder, ξ, due to the
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confinement of the energy within a finite space, revealing diffusive-like propa-
gation of energy. The propagation of energy is slightly superballistic for small
disorder, and then diplays superdiffusive, diffusive and subdiffusive behavior
when increasing disorder, ξ, successively.

6.5.2 Stochastic, reduced model for evolution of evolution in
time

Sec. 6.4.2 focuses on the total energy evolution of a standing wave (sinusoidal)
initial condition, also used for studying the transfer of energy across wave-
numbers in disordered chains. The energy becomes localized, here, around
lower masses in the chain. Energy inserted into higher wave-numbers decays
faster than the energy in lower wave-number domains. At the same time, due
to conservation of energy, the energy from the source domain is transported
into other wave-number domains, with rates strongly dependent on the target
wave-number.

All this qualitative and quantitative behavior is cast into the stochastic (lin-
ear) evolution equation of energy per wave-number domain with time, i.e., a
so-called Master Equation (ME). Two procedures were introduced in Sec. 6.3.3
for computing the components of the transfer matrix Q in the Master Equation.
Note that the idea of the master equation is not new itself, but the great step
forward done here is to use the total energy for computing the transfer matrix,
which avoids “breathing” of signals, and such much facilitates the data analysis.
The obtained matrix, with size of order of as little as 32 wave-number domains,
can then be used in the Master Equation for modeling a disordered granular
chain, easing the computational expense relative to the full model with all de-
grees of freedom, but still keeping the characteristics of energy transfer across
all the wave-number domains.

6.5.3 Concluding Remarks

The Weak Localization effect and the diffusive-like behavior are interesting fea-
tures of disordered media, which can be modeled and parametrized to better
understand and even predict the material properties. The Master Equation rep-
resents a stochastic model for wave propagation in disordered media; the trans-
fer matrix can be improved with better fitting procedures and better formu-
lations, which may also incorporate non-linear interactions between different
wave-number bands. There are some open issues in the fit procedure, like the
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time interval to be used for fitting the decay of the agitated bin or the rise in
energy of the non-agitated bins. One option could be to select the time interval
according to the initially inserted wave-number through the dispersion relation
that provides a frequency associated with the related, close-by eigen-modes.
However this attempt of automatization of the fit procedure did not work so
well for the larger wave-numbers. As mentioned previously in Sec. 6.1, and
shown in Sec. 6.4.4, the computed Master Equation can be used for continuum
analyses associated with realistic, much larger systems, retaining information
about the micro-structure in the form of the components of the transfer matrix
that needs to be calibrated and validated experimentally.

6.5.4 Outlook

Future work of this research direction will focus on two and three dimensional
packings of granular materials by employing Discrete Element Method for nu-
merical simulations. Further investigation will include also contact/stiffness dis-
order (material characteristic), where different species, soft and stiff particles,
are mixed. To pursue this goal towards realistic materials, as first step, damping
can be added to the (reduced complexity) master equation and the equation
can be calibrated and tested for different materials and material combinations;
in experiments, we expect much stronger damping for softer (e.g. rubber) than
for stiff (e.g. sand) particles.

As way to test its predictive quality, the master-equation can then be cali-
brated for pure stiff (almost elastic) and pure soft (strongly damping) samples,
and used to predict the behavior of different mixture compositions. The chal-
lenge is then defining the master equation for two (or more) types of materials
and calibrating also the transfer-terms that quantify the transfer of energy be-
tween the species, where the characteristic time-scales (rates) of the species can
be highly different (fast for stiff, vs. very slow for soft).

Another challenge for future research is to understand also non-linear terms
in the master equation, that can be added in the form of, e.g. mixed, quadratic
terms in energy, which have been shown to produce higher harmonics, and
which are needed in order to properly predict band-gaps, transmission bands
and possibly other non-linear interactions between different bands in the pres-
ence of multiple materials.

The final, ultimate challenge is to formulate the master equation not only in
wave-number space (vs. time), but also in frequency space (vs. position), and
to go beyond the limits of the linearized, small amplitude waves considered so
far.
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Appendix A: Hertz contact model

If Hertzian repulsive interaction force is taken into consideration between par-
ticles. The contact stiffness is given by ([132], [134])

κ̃(i , j ) = Ỹ(i , j )

[ r̃i r̃ j

r̃i + r̃ j

]1/2
, (6.41)

where

Ỹ −1
(i , j ) =

3

4

(1−ν2
i

Ẽi
+

1−ν2
j

Ẽ j

)
. (6.42)

Ẽi and νi are the elastic modulus and Poisson’s ratio, respectively of the particle
i . If the particles are made up of the same material, Ỹ(i , j ) becomes same for all
the contacts,

Ỹ −1 = 3

2

(1−ν2

Ẽ

)
. (6.43)

The characteristic stiffness of the contact is

κ̃o = Ẽ

1−ν2

[ 2m̃o

243πρ̃

]1/6
. (6.44)

The characteristic initial overlap becomes

∆̃o =
( F̃o

κ̃o

)2/3
. (6.45)

The characteristic time is

t̃c = 1

∆̃1/4
o

√
1−ν2

Ẽ

[243πρ̃m̃5
o

2

]1/12
. (6.46)



6.5 Summary, Conclusion and Outlook 153

The scaled stiffness ratio is

κ(i , j ) =
κ̃(i , j )

κ̃o
=

√
2

b(i )1/3 +b( j )1/3

(
b(i )b( j )

)1/6
. (6.47)

The initial overlap during static equilibrium can be formulated as

∆(i , j ) =
∆̃i , j

∆̃o
= κ−2/3

(i , j ) . (6.48)

Appendix B: Energy equations in the matrix form

Energy Equations (Kinetic, Potential and Total Energy) are used for analyzing
the properties of mechanical wave propagation across the granular chain. The
matrix form of the equations assists in computing the signals both in real and
wavenumber space with ease. The equations (6.25,6.26,6.28) & (6.29) are
derived in this section using a three particles system (i−1, i and i+1). For better
visualization, the pre-compressed granular chain is represented by a spring mass
system as shown in Fig. 6.19. The springs are the interactions between the
elements, resembling particle contacts.

Kinetic Energy During the initial pre-compressed static, equilibrium state, the
elements/particles are not in motion, hence their respective velocities are 0,
therefore, the Kinetic Energy is 0. The Kinetic Energy associated with particle p
during wave propagation is given by

K E (p)(t ) = 1

2
b(p)(v (p))2. (6.49)
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Figure 6.19: Particle chain for simple test cases of energy equations.

The Kinetic Energy can also be calculated by the use of matrices as in Eq. (6.25),

KE = 1

2
M [v⊗v] = 1

2
MvvT

= 1

2



. . .
...

...
...

...
. . . b(i−1) 0 0 . . .
. . . 0 b(i ) 0 . . .
. . . 0 0 b(i+1) . . .
...

...
...

...
. . .





...
v (i−1)

v (i )

v (i+1)

...


(
. . . v (i−1) v (i ) v (i+1) . . .

)

= 1

2



. . .
...

...
...

...
. . . b(i−1)(v (i−1))2 b(i−1)v (i−1)v (i ) b(i−1)v (i−1)v (i+1) . . .
. . . b(i )v (i−1)v (i ) b(i )(v (i ))2 b(i )v (i )v (i+1) . . .
. . . b(i+1)v (i−1)v (i+1) b(i+1)v (i )v (i+1) b(i+1)(v (i+1))2 . . .
...

...
...

...
. . .
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(6.50)

The diagonal elements of this matrix give the Kinetic Energy of individual ele-
ments (Eq. (6.49)) and the Total Kinetic Energy of the system is the trace of this
matrix. The non-diagonal elements give the spatial velocity correlation of the
elements with other elements in the system. For instance, K E12 is the velocity
correlation of the 1st element with the 2nd element.

Potential Energy The Potential energy during the initial precompression state
is due to the initial static overlap. However, during wave propagation the po-
tential energy is calculated as

PE (p)(t ) = (PE(i−1,i ) +PE(i ,i+1))/2; (6.51)

where PE (p)(t ) is the potential energy of the individual particles, PE(i−1,i ) and
PE(i ,i+1) are potential energies due to the adjacent springs (contacts). According
to the definition of Potential Energy,

PE(i , j ) =−
∫

(F(i , j ) −Fo)d x, (6.52)

where Fo is the force between particles during initial static overlap, F(i , j ) is the
dynamic force between particles i and j and x is the change in the length of the
spring. Hence, using Hertzian contact forces (Eq. (6.5))

PE(i , j ) =−
∫ ∆(i , j )−u(i )+u( j )

∆(i , j )

[
κ(i , j )(∆(i , j ) −u(i ) +u( j ))3/2 −κ(i , j )∆

3/2
(i , j )

]
dx,

= 2

5
κ(i , j )

[
∆(i , j ) −u(i ) +u( j )

]5/2 − 2

5
κ(i , j )∆

5/2
i , j −κ(i , j )∆

3/2
i , j (u( j ) −u(i )),

= 2

5
κ(i , j )∆

5/2
(i , j )

[
1+ (u( j ) −u(i ))

∆(i , j )

]5/2

− 2

5
κ(i , j )∆

5/2
i , j −κ(i , j )∆

3/2
(i , j )(u( j ) −u(i )),

(Using Newton’s expansion, (1+x)m = 1+mx +m(m −1)
x2

2!
+ . . .)

(Neglecting higher order and lower coefficient terms)

∼= 3

4
κ2/3

(i , j )((u(i ))2 −u(i )u(i+1)).

(6.53)
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Hence, using Eq. (6.51)

PE (p)(t ) ∼=−3

4

[
κ2/3

(i−1,1)u
(i−1)u(i ) − (κ2/3

(i−1,i ) +κ(i ,i+1)2/3 ){u(i )}2 +κ2/3
(i ,i+1)u

(i+1)u(i )
]

.

(6.54)

The Potential Energy in the matrix form is computed as (Eq. (6.28))

PE =−1

2
K [u⊗u] = 1

2
KuuT,

=−1

2



. . .
...

...
...

...
. . . − 3

2 (κ2/3
(i−2,i−1) +κ2/3

(i−1,i ))
3
2κ

2/3
(i−1,i ) 0 . . .

. . . 3
2κ

2/3
(i−1,i ) − 3

2 (κ2/3
(i−1,i ) +κ2/3

(i ,i+1))
3
2κ

2/3
(i ,i+1) . . .

. . . 0 3
2κ

2/3
(i ,i+1) − 3

2 (κ2/3
(i ,i+1) +κ2/3

(i+1,i+2)) . . .
...

...
...

...
. . .




...
u(i−1)

u(i )

u(i+1)

...


(
. . . u(i−1) u(i ) u(i+1) . . .

)

(6.55)

The diagonal elements of the matrix

PEPP =−3

4

[
κ2/3

(i−1,1)u
(i−1)u(i ) − (κ2/3

(i−1,i ) +κ2/3
(i ,i+1)){u(i )}2 +κ2/3

(i ,i+1)u
(i+1)u(i )

]
(6.56)

which is the same as Eq. (6.54). Similar to KE matrix, the non-diagonal ele-
ments of PE give the spatial displacement correlation of the elements with other
elements in the system.



Chapter 7
Overview on continuum
modeling of granular materials

The interest in the prediction of granular material behaviour in industrial appli-
cations has increased during the last decades. A wide variety of granular matter is
employed, characterized by different dimensions and shapes of the grains, by their
state of saturation or their temperature. In many applications the behaviour of
granular materials is still unpredictable. For deeper insight, particles simulations
can be used. A way to increase the capability and value of our simulations is to
define a methodology able to bridge the microscale with macro-scale, which will
give us an avenue in which we can capture numerically higher length and time
scales. The proposed methodology will have the main feature of linking the prop-
erties of the grain scale, with those of the bulk, which could be accomplished by
defining new constitutive laws or new contact models, based on micro-scale simu-
lations and experiments. In the previous deliverables the appropriate procedures
that would be used to obtain such methodology have been demonstrated depending
on case studies of several researchers. The current report describes the numerical
implementation of the proposed methodology with a focus on numerical simula-
tions with a micro-macro transition, post processing analysis and visualization of
micro- and macro-data. Finally, results of the numerical analyses are matched
with theoretical predictions, which can give helpful insights in the definition of a
continuum model and calibration. 1

1In preparation: Taghizadeh, K., Iaconeta, I., Larese, A., Magnanimo, V., & Luding, S. Journal of
Applied Mechanics.
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7.1 Introduction

With the development of computational power in recent years, the discrete par-
ticle/element method has gained its focus to the simulation community. How-
ever, this method has its own limitations in applying to the real world. One part
is that the number of particle can be simulated is limited, normally in the order
between 104 to 107 in a 3D setup, where as one normally has more than 109 to
1011 particles in a real system. Another point is that the complexity of describing
the real contact mechanics between particle in a numerical world, one has to
make several assumptions to reduce this complexity to be able to simulate many
particle contacts. Nevertheless, the DEM/DPM method is a really helpful tool
for understanding the granules bulk behaviors qualitatively (and quantitatively
for small systems) and thus one can explore the physics behind the scene for dis-
crete nature of particulate systems where the traditional continuum solid/fluid
mechanics can not explain.
An ambitious challenge in the granular material field is the accurate charac-
terization of granular flow and its micromechanics under static and dynamic
conditions. Granular flow is determined, on one hand, by the microscopic prop-
erties of the particles (e.g. friction, shape, morphology) and on the other hand,
by the bulk /macroscopic properties of the bed of powder which is affected by
the constraints exercised by the process equipment.
Despite numerous efforts, the constitutive relations describing the granular flow
behavior are still a matter of debate. Solid mechanics and kinetic theory have
been successful in predicting the solid and gas like behavior, respectively [73,
176]. At one extreme particles interact via enduring contacts, while in the
gaseous regime, binary collisions are the mode of momentum exchange. The
recently proposed inertial number framework has been successful in describing
the flow behavior in the dense flow liquid like regime when the particles not
only undergo collisions but also frictional interactions with other particles [14,
59, 104, 168]. Though it very well predicts the flow behavior in case of steady
shear of rigid particles, it fails in cases of inhomogeneous shear and transient
shear, where we need better constitutive models to describe dense granular flow
[200]. With the development of binning or coarse-graining methods, one can
now obtain discrete simulation data with sufficient statistics that allow to derive
constitutive relations that describe the local rheology and flow behavior [147,
155, 204, 227, 258].
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7.2 Overview on continuum modeling

Continuum mechanics is considered as a mathematical approach to solve engi-
neering problems. Regarding matter as indefinitely divisible and locally homo-
geneous are the principle assumptions of the continuum theory. Accordingly,
infinitesimal volume of material is noted as a particle in the continuum and
there are neighbouring particles in all neighbourhood of a particle [131]. The
most important continuum mechanical state variables are:

• Stress: expressing the effect of external loads ( the relation between loads
and stresses is given by the equilibrium equation of continuum mechanics,
for example the Cauchy equations in the simplest case).

• Strain: reflecting deformations (the relation between strains and defor-
mations is given by geometrical equations).

Stress and strain are related to each other through constitutive equations, which
expect to contain all the necessary information about the mechanical character-
istics of the material.

Continuum models, which are raised upon assumptions of continuum me-
chanics, provide a reliable interpretation of material behaviour under various
loading conditions. Since response of real material changes with regarding to
amount of loading, there are many mathematical models, sometimes referred
as constitutive equations, to characterize them. Constitutive equations are used
in almost every engineering field such as: civil, chemical, mechanical, pharma-
ceutical engineering. As an example, in civil engineering practices, soil beneath
the foundation plays an important role in the stability of the structures. It is
considered as a complex material due to its unpredictive behaviour, thus, it
needs to be fully characterized. In this respect, many constitutive models such
as: Mohr-Coulomb, Cam Clay, Duncan-Change (hyperbolic), Plaxis Hardening,
Hyperelastic, Hypoelastic models are developed and there will be fundamental
improvements in future [129].

To find proper constitutive equations for granular assembly is not simple.
Two approaches are followed by the majority of researchers: a continuum-
mechanical and a micro-structural approach [16].

The idea of the continuum mechanical approach is to consider the assembly
as a continuous domain, accept the concept of an infinitesimally small repre-
sentative volume element (RVE), where stress and strain are the fundamental
variables that uniquely determine the state of the material in any point. The
parameters in the equations, expressing the specific properties of the material,
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are measured experimentally. This aspect makes this approach unreliable if
the conditions, under which the experimental results are obtained, can not be
replied.

Whereas the aim of the microstructural approach is to find macro-level state
variables that are based on microvariables such as contact forces, grain displace-
ments and local geometrical characteristics using suitable averaging techniques.
Since the mechanical behaviour of granular material is essentially settled at the
grain scale, a microstructural theory is expected to be far more reliable and
general than the existing continuum-mechanical models.

It is evident that Discrete Element Method (DEM) has a direct access to
the fundamental scale of granular materials and, as it becomes more accurate
and computational power, it will allow for accurate representation of granular
materials from their most basic granular scale. Unfortunately, nowadays, DEM
models suffer from two major shortcomings: high computational cost and, re-
lated to this, inability to capture grain shape accurately. Use of smooth particles
such as spheres and ellipsoids and enlargement of particles renders the model
as just another phenomenological method [249]. Consequently, combine the
strengths of the FEM and DEM methods by means of a multi-scale approach
capturing the main features of the material becomes essential.

Recently, integration of modelling methods is the subject of the studies in
various engineering disciplines. The reason for increasing interest in applica-
tion of multi-scale approaches is the ability of these methods in interpreting
and characterizing complex phenomena in materials. Multi-scale methods have
emerged lately in mechanics to bridge different material scales ranging from
atomic scale to continuum scale. These methods aim at obtaining constitutive
responses at the continuum scale, without resorting to phenomenology, broad-
ening the field of application.

The mechanical state of the assembly and its state-changing can exactly be
described and predicted if the following characteristics are fully given:

• position and geometry of each grain

• displacements (translation and rotation) of each grain

• contact forces

• material properties of the individual grains

A central problem in the micro-structural approach is the geometrical repre-
sentation. First of all the geometrical unit has to be defined. Among of those
used in literature for the theoretical description we can find: the grain itself, the
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contact between two particles, branch vectors or more complex unit as micro-
element, consisting of a grain and its neighbours.

The best-known mathematical representations applied for modelling whole
systems of grains are the Voronoi tesselation, Dirichlet tesselation and Delaunay
network, where a clear description can be found in [16].

As a beginning, stress and strain tensors must be defined in terms of micro-
variables. Several micro-structural definitions have been presented until now.

Regarding the definition of stress tensor, [51] suggests the following average
stress:

σ̄i j = 1

V

m∑
k=1

xk
i T k

j (7.1)

where V is the spherical volume consisting of grains having arbitrary shape,
submitted to the external force T 1

i , ...,T m
i on its boundary points x1

i , ..., xm
i .

[34] proposed the definition of the average stress with the help of contact
forces inside the assembly of particle of arbitrary shape which, by means of the
principal of virtual work, can be expressed as:

σ̄load
i j = 1

V

M∑
c=1

l c
i F c

j (7.2)

where l c
i is the branch vector forming the c-th contact and F c

j the c-th contact
force arising between the grains.

[203] by means of the analysis of the grains’ equilibrium obtains an equation
similar to the previous one.

Regarding the definition of strain, the average strain tensor has the following
general formulation:

ε̄i j = 1

V

∑
e
δe

i d e
j (7.3)

where δe
i is the relative displacement and d e

j has been defined in several
ways. In [118] and in [120] d e

j is the called polygon vector hRS , defined as the
vector obtained by counter-clockwise over 90◦ of the rotated polygon vector g RS

that connects the centres of adjacent polygons. A graphic description is given
by Figure 7.1 :
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Figure 7.1: Polygons,branch vectors, polygon vector and rotated vector [114]

In [16] d e
j is the called complementary area vector, fundamental geometri-

cal micro-variable of the system defined through a Delauney tesselation of the
assembly.

In [16] the idea to use two dual cell systems, a material and spaced one re-
spectively, is presented. The topological structure of the graphs is expressed by
two topological matrices, which are employed to define the average stress and
strain tensors and in the formulation of equilibrium and compatibility equa-
tions. The method of Bagi was formulated to 3D by, and used to analyze the
strain and micro-parameters under tri-axial loading [52].

In [120] a micro-mechanical study is carried out. Since a packing of real
heterogeneous granular materials is considered, the mechanical behaviour is
expected to be heterogeneous, as well, exhibiting random variations. This im-
plies the usefulness of statistical approach. Discrete element simulations have
been performed to obtain the necessary data at the microscopic level, which
would be very hard extract from experiments (photoelastic experiments). For
each particle informations as displacements and forces are computed. Statis-
tics, such as mean, standard deviations and probability distribution function
were evaluated.

In [13] a more powerful model that rely on physics rather than phenomenol-
ogy for granular matter is presented. The case of an elastoplastic material sub-
jected to a triaxial compression is considered. The complex material behaviour
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is caught by extracting the evolution of those properties considered to fully
describe the plasticity model, directly from the grain-scale mechanics. In this
study the frictional resistance and the plastic dilatancy are individuated as the
fundamental plastic variable. A hierarchical multi-scale approach is used to ex-
tract micro-mechanical state (stress and strain average tensor) and define the
dependence of the fundamental plastic variables on the deformation. This study
is applied in two different ways. The first one consists in performing discrete
element simulations and linking them to finite element computations. The sec-
ond one, performing a triaxial compression experiment, reading the necessary
data by means of a tomography (technique) and a digital image correlation and
linking them to finite element computations. In Figure 7.2 one can observe the
schematic procedure of the multi-scale approach used in this study.

Figure 7.2: Schematic procedure of the hierarchical multiscale approach adopted [13]

In computational mechanics some examples, where a combination between
Finite Element Method and Discrete Element Method are present in literature,
as well. Finite element method (FEM), as a continuum numerical analysis tools,
is preferred among researchers due to its capability in modelling complex ge-
ometries and diverse boundary conditions provided for macroscopic models. A
crucial aspect for the precise estimation of material response through multi-
scale approach is the ability to achieve continuum behavior directly from the
particle-scale. Thus, FEM can be coupled with particle-scale methods such as
discrete element method (DEM) [42]. Figure 7.3 illustrates a coupled FEM-DEM
solution.
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Figure 7.3: Coupling of FEM-DEM in simulation of cohesive granular material [179]

Yan et al. proposed coupling DEM to FEM domains to decrease numerical
analyses cost through a layer of “ghost” particles located on surface FE facets,
which deform by FEM domain [265]. In their study, the mesh generated by FEM
does not cover the whole domain, instead the DEM and FEM overlap in a single
layer of particles (i.e. ghost particles), see Figure 7.4 . The algorithm in this
study includes a simultaneous exchange of data between DEM and FEM; free
particles in the DEM simulation contribute to the boundary force in the FEM
domain through ghost particles. On the other hand, the FEM domain produces
the necessary data that allows the computation of the boundary condition on the
particles involved in DEM through ghost particles as well. The particle-scale and
continuum-scales function at the same time and exchange needed information
dynamically. The results from simulation of pile penetration suggested that the
artificial boundary effect can be alleviated by using the coupled FE facets with
tuned FE continuum elastic compliance [265].
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Figure 7.4: Schematic presentation of coupling between particle and continuum scale
[265]

Guo and Zhao suggested a hierarchical multi-scale framework by coupling
FEM and DEM for the simulation of cohesionless granular media [80]. In the
framework, the DEM is used to characterize the highly nonlinear and disperse
behaviour of granular assembly, while the continuum-based FEM is used to solve
large-scale boundary value problems (BVPs). DEM assembly is attached to each
Gauss integration point of the FEM mesh to perform as a representative volume
element (RVE), through which the DEM and FEM exchange information such
as stress, strain and tangent modulus. The hierarchical approach provides ef-
ficiency of FEM in solving large-scale BVPs. It also improves the conventional
phenomenological assumptions on constitutive relation in continuum modelling
[80]. The schematic illustration of hierarchical multi-scale modelling approach
is presented in Figure 7.5.

Lu et al. developed a hybrid model of FEM and DEM capable of simulating
the flow velocities and stresses of a bulk solid material stored in silos [143].
The FEM was employed to simulate the particles in the system as a continuum.
Meanwhile, DEM was preferred in areas that the particle assembly no longer
response as continuum, such as: intense shearing zones near intersection of
silo walls and hopper section and the region near the outlet of the silo. The
time steps selected in the FEM analysis are approximately 100 times larger than
the DEM domain for calculation of velocity profiles and stress distributions.
Furthermore, they conducted laboratory experiments involving gravity flow of
soybean from a parallel wall bin for different outlet widths. As shown in Figure
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Figure 7.5: The solution procedure of hierarchical multi-scale modelling [80]

7.6, good agreement was found between the wall pressures measured in the
model silo and calculations from the numerical model based on finite-element
and discrete element methods [143] [177].

Figure 7.6: Comparison of numerical and experimental results of wall pressure (+) Exp
lower; (*) Exp upper; (—) DEM lower; (—) DEM upper a)outlet with of
50mm b)outlet with of 90mm [177]
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7.2.1 Continuum model: a particle-based hypoelastic law

A particle-based constitutive law, defined only for the elastic regime, is pre-
sented. The elastic response is formulated in the Eulerian description by a hy-
poelastic constitutive equation and by the elastic parameters of Bulk and Shear
moduli expressed as functions of the volume fraction ν. The theory behind the
definition of the laws K (ν) and µ(ν) was shown earlier in chapter.3. The con-
stitutive law is implemented in a Material Point Method (MPM) code, which
is based on the Finite Element theory and developed within the Kratos Multi-
physics open source platform [45, 46].

The software is written for solving large displacement and large deformation
problems; for this reason a distinction between reference and current configura-
tion is made, considering the latter one for the resolution of the solving system.
Furthermore, strain terms of higher order are taken into account, allowing a
more accurate evaluation of the material response in non linear regime.

For a better understanding of the non linear finite element theory, used for
the implementation of the software the authors suggest to refer to [262] for
general purposes and to [91] for a detailed explanation of the formulation and
algorithm of the method applied in this case.

In the definition of a rate constitutive law, the main concern, from a compu-
tational point of view, consists in defining a numerical integration of the con-
stitutive model so that the resulting discrete equations satisfy the principle of
material from indifference. In order to preclude the generation of spurious
stresses in rigid body motions the following idea is adopted. Conceptually, the
spatial, rate-constitutive equations are mapped to a local configuration which
is unaffected by superposed rigid body motions. Then, a time-stepping algo-
rithm is performed in this configuration, and the discrete equations are mapped
back to the Eulerian configuration. In this work the methodology of Convective
representation, which is essentially based on providing an algorithmic approxi-
mation of the rate of deformation tensor using the generalized mid-point rule,
is adopted.

The algorithmic approximation of spatial, rate-like objects, such as, the rate
of deformation tensor d and the Lie derivative of the Kirchhoff stress tensor
Lvτ , in terms of incremental displacement u(xn) and the time increment ∆t is
derived.

To obtain the approximation of d in convective description the following
identity is exploited,

Ċ = 2F TdF (7.4)
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where Ċ is the time derivative of the right Cauchy-Green tensor and F is the
total deformation gradient F = ∂ϕ

∂X .
It is possible to rewrite the rate of deformation tensor as:

dn+α = 1

2∆t
f−T

n+α
[
fT

n+1fn+1 −1
]
f−1

n+α (7.5)

where fn+α = Fn+αF −1
n and fn+1 = Fn+1F

−1
n are the deformation gradients

relative to the configurations ϕn+α and ϕn+1, respectively.
Regarding Lvτ , the algorithmic approximation is obtained exploiting the

following identity

Lvτ =F ṠF T (7.6)

where Ṡ is the time derivative of the Second Piola-Kirchhoff stress tensor.
The approximation of Lvτ in convective description is:

Lvτn+α = 1

∆t
fn+α

[
f−1

n+1τn+1f
−T
n+1 −τn

]
fT

n+α (7.7)

Assuming a rate constitutive equation of the form

Lvτ =a :d (7.8)

with a representing the tensor of elastic moduli, and replacing the expressions
of Equations 7.5 and 7.7 in Equation 7.8, the updated formula is

τn+1 = fn+1τnf
T
n+1 +an+1 :

1

2

[
1−f−T

n+1f
−1
n+1

]
(7.9)

The algorithms for the elastic response and the evaluation of of K n+1 and
µn+1 are described in Tables 7.1 and 7.2.

In the following an example of isotropic compression is presented.
The validation study is performed by using as material parameters of input

the data listed in Table 7.3.
The analysis is performed by using a quasi-static time scheme with pre-

scribed displacement imposed along each of three directions, with a value such
that the resulting strain rate for each time step is equal to -0.0001m. The anal-
ysis ends when the volume fraction reaches a value of 0.82.

In the following the numerical results obtained with the particle-based hy-
poelastic law are presented in terms of coordination number C∗ and pressure P
as functions of the cumulative strains.
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STEP 1: Evaluate the relative deformation gradient
fn+1 =Fn+1F

−1
n

STEP 2: Evaluate the left Cauchy-Green tensor and Almansi strain tensor
bn+1 = fn+1f

T
n+1

en+1 = 1
2

[
1−b−1

n+1

]
STEP 3: Evaluate the Bulk and Shear moduli and a as function
of the volume fraction (see Table 7.2)
K = K (ν),G =G(ν),a=a(ν)
STEP 4: Evaluate the stress rate tensor
Lvτn+1∆t =a(ν) : en+1

STEP 5: Update the stress tensor
τn+1 = fn+1τnf

T
n+1 +Lvτn+1∆t

Table 7.1: Algorithm of the hypoelastic constitutive law

Input parameters: J ,ν0,C0,C1,α, g3,Fv0,K0,K1,G0,G1,G2

STEP 1: Update the volume fraction
νn+1 = ν0 ·e−(J−1)

STEP 2: Evaluate the coordination number
C∗ =C0 +C1( ν

ν0
−1)α

STEP 3: Evaluate the trace of fabric
Fv =C∗(ν) · g3 ·ν
STEP 4: Evaluate the bulk and shear moduli
K = K0 +K1 (Fv −Fv0) ; G =G0 +G1 (Fv −Fv0)G2

Table 7.2: Algorithm for the computation of the bulk and shear modulus
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ν0 C0 C1 α g3 F 0
0 K0 K1 G0 G1 G2

0.665 4 9.5 0.375 1.24 3.63 16005 4350 13700 5083.5 0.723653

Table 7.3: Isotropic compression: input parameters in particle-based hypoelastic law

For the verification of the constitutive law the values of the Bulk and Shear
moduli evaluated numerically and analytically are compared. From Figures 7.9
and 7.10 it is possible to observe that the values coincide. As future work, a
comparison of the numerical results in terms of pressure evaluated through the
particle-based constitutive law and a Discrete Element Method code has to be
performed.

Figure 7.7: Isotropic compression: coordination number.
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Figure 7.8: Isotropic compression: pressure.

Figure 7.9: Isotropic compression: comparison of Bulk modulus evaluated numerically
and analytically.
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Figure 7.10: Isotropic compression: comparison of Shear modulus evaluated numeri-
cally and analytically.
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7.3 Conclusion

This chapter showed the philosophy behind micro-macro transition, data anal-
ysis and continuum modeling cases where modern, advanced data analysis has
been applied and critically tested. Many different microscopic quantities can
be extracted by DEM simulations, like position, velocity, number and orienta-
tion of contacts, forces for each individual particle in the numerical sample, as
functions of space and time. We described this using different examples. Never-
theless the application of DEM is constrained by its computational cost to small
systems, i.e. when a process involving few (less than a million) particles or a
(local) representative element of the full system is considered. Therefore, the
wide set of information has to be transferred into macroscopic field variables in
order to make them usable for industrial and technological applications. Only
a multi-scale/multiphase continuum analysis can fully solve the challenges that
await those who want to understand and improve realistic particulate systems
of industrial relevance. It is possible to link the macro-scale with the insights
obtained at micro-scale, by proper averaging and coarse-graining procedures,
and solve the micro-macro gap by means of a multi-scale approach coupling
discrete and continuum techniques. This is a fundamental feature of granular
materials as the behaviour at macro-scale is strongly related to smaller-scale
field variables and kinetic processes. Continuum fields can be obtained by the
novel coarse-graining methods development in T-MAPPP, as well as by suitable
post-processing and on-the-fly data-analysis tools, able to deal with the enor-
mous amount of data resulting from DEM. Interpretation and increased under-
standing can be reached by averaging in space and time with various different
resolutions and a rich output result from data mining.





Chapter 8
Conclusion and Outlook

Conclusion

Dense granular media are of widespread importance in a number of applica-
tions, ranging across time and length scales from geophysical earthquakes in
the San Andreas fault zone, to plastic powder sintering in the 3D printer on
your desk. The granular processes involved can be very slow, almost static, or
very fast, highly dynamic. Such particle-based materials, like granular soils, are
different from ’classical’ materials such as crystals or watery liquids; they are
neither fluid- nor solid-like, but often display both behaviors at the same time.
This solid-fluid phase behavior requires precise predictive modeling tools, while
this complex phase behavior also poses fundamental questions as to how it
emerges as collective effect. Understanding the response of granular-based sys-
tems in applications requires detailed grasp of the connection between the basic
ingredients (particles) and the macroscale properties of the systems considered.
These are complex systems and an understanding of the overall behaviour can-
not be gained by studying individual particles. While significant progress has
been made during the last decades on understanding relevant physical mecha-
nisms, there is still many open questions, starting from the physics of particle
interactions to general features of multiscale models that will bridge the differ-
ent spatial and temporal scales of interest.

These days, it has been well understood that grain-scale properties control
the bulk-scale behavior of the granular material. The aim of this thesis was
to study and determine the micromechanical mechanisms that govern various
phenomena that are challenging in the world of particles. This leads to a better
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understanding of complexities in macro-scale response of particulate systems.
Several noteworthy conclusions can be drawn from the research and are listed
per chapter below.

Numerical simulations, e.g. Discrete Element Method (DEM) on the par-
ticle scale or the Finite Element Method (FEM) on the continuum scale, have
revealed the utmost role of the microstructure in characterising the elastic be-
haviour of granular soils. Especially, DEM is a powerful tool to inspect the influ-
ence of the microscopic contact properties of the individual constituents on the
bulk behavior of granular assemblies. In the first part of this thesis, isotropic
and deviatoric deformations are applied to polydisperse packings of frictional
and cohesive spheres; after preparation by isotropic compression of samples
with different inter-particle contact friction and adhesion, at various volume
fraction, the effective elastic moduli is determined from the incremental stress
response to the application of strain-probes (chapter 2). Then, numerical results
were compared with analytical formulations for the bulk and the shear moduli
and observations were discussed in chapter 3. The main observations of these
chapters are drawn as:

• Chapter 2: At first, simulation results using the Discrete Element Method
(DEM) of frictional, cohesive, disordered packings of dense granular ma-
terials are presented. The goal is to gain a better understanding of the me-
chanical behavior of granular matter. Afterwards, the micro- and macro-
mechanical behavior of similar assemblies emphasizing the effect of inter-
particle friction and cohesion is analyzed on macro-mechanical parame-
ters, e.g. pressure, energy, and inertial number. A particular attention is
devoted to the effect of inter-particle micro-parameters on the elastic and
plastic response of the assemblies. It was shown that the effect of inter-
particle parameters are not negligible, where friction between particles
enhances macroscopic results more than cohesion. Thus, selecting a right
set of input parameters is an essential task to achieve reliable outputs.

• Chapter 3: Next, the prepared assemblies of polydisperse, linearly elas-
tic frictional spheres are used to compare the data from DEM simulations
with predictions from well-established micromechanical models, namely
the Effective Medium Theory (EMT) and the Fluctuation Theory (FT).
Both theories do not account for the effect of different preparation history
(different inter-particle friction coefficients) on the elastic moduli. The
fluctuation theory is in agreement with numerical data, almost perfect for
the bulk modulus and close for the shear modulus, at least in the interme-
diate compression regime, but does not capture the anomalous behavior
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where the theory overpredicts. This analysis remands to the open question
on what statistical measures are needed for a comprehensive description
of the microstructure. For dense systems, the coordination number (and
its local fluctuations) seems to be a sufficient measure of the contact geom-
etry. Simulations and theory still diverge for poorly-coordinated samples,
when the jamming point is approached, i.e. the transition from solid to
fluid state.

Most soils are mixtures of two or more components; the relative amount
of species affect the overall behavior, but the multi-scale mechanisms behind
this behavior are far from understood. Chapter 4 was devoted to the effect of
the mixtures composition on the bulk elastic stiffness and attenuation using a
well-established wave propagation technique. Along with the experiments, the
chapter gives a comparison between simulations and experiments. The objec-
tive of chapter 5 was to improve the simulation results of mixture assemblies
by introducing a new contact approach. Below, the main outcomes of chapter 4
and 5 are depicted as:

• Chapter 4: The elastic response of disordered mixtures of granular and
soft matter is investigated by means of wave-propagation, both experi-
mentally and numerically. This allows inferring fundamental properties
of granular and soft disordered materials such as elastic moduli and dissi-
pation mechanisms. Mixtures are prepared with different volumes of soft
matter mixed with hard matter to identify the transition from a rigid to
a soft granular skeleton. Interestingly, we find that the behavior is highly
non-linear and also non-monotonic with increasing the percentage of soft
content. It was found that the stiffness in a granular mixture increases if
soft inclusions are added in proper amount. In short, the main goal of this
chapter was to enhance the dissipative, elastic and lightweight properties
of materials (like soils, asphalt, etc.) by deliberately adding dissipative,
soft, light inclusions of various types and compositions. This allows for a
novel design methodology for calm, smooth, and smart materials that can
be better in various aspects than their separate components. Particularly,
the chapter aimed at making improved materials like soils.

• Chapter 5: Although, the qualitative agreement between physical exper-
iment and simulations was well captured, complex interactions between
soft and stiff particles yet renders several ongoing challenges like, e.g.,
the presence multi-body-interactions instead of pairwise contacts. Hence,
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the emerge of right interaction law between soft particles leads to intro-
duce stress-based non-binary contact model, missing in classical discrete
element methods (DEM), and compare to the classical DEM and strain-
based non-binary contact model for highly deformed spheres; which takes
into account not only the non-binary interaction of particles but also the
influence of neighboring particles. It was shown that the new proposed
contact model provides a better agreement between simulations and ex-
periments; furthermore, the new proposed contact model is quite faster
than the previous versions of multi-contact models.

Numerical simulations, based on the Discrete Element Method, have re-
vealed the essential role of the microstructure in characterising the elastic be-
haviour of granular soils. However, continuum models are more desirable for
applications, where the macroscopic field variables can be obtained via micro-
macro averaging procedures on small, representative elementary volumes. In
the final stage of this thesis, the attempt is to develop a macroscopic continuum
model for the granular materials, based on micro-scale information obtained by
the DEM simulations; by involving not only the elastic moduli and the relation
between effective moduli and microstructure but also the attenuation and dis-
persion behavior for all relevant frequencies. The main outputs of chapter 6 and
7 are concluded as:

• Chapter 6: From experiments, it was found that adding soft rubber in-
clusions (i.e. disorder) reduces unwanted vibrations and noise generated
for higher damping. Thus, a stochastic-based theoretical model, involving
a reduced complexity, for granular systems that predicts the influence of
vibrations is applied; which, instead of dealing with the too many eigen-
modes of the system, we propose an approach with reducsed complexity,
where the frequencies are grouped in bands. The results for disordered
granular chains showed that at high-frequency, energy dispersion and dis-
sipation are stronger than at low-frequency, which produces amplitude
attenuation, e.g. waveform distortion allows only for low-resolution seis-
mic data analysis, especially for moderately to deeply buried formations.

• Chapter 7: Finally, chapter 7 gives an overview on implementation of
micro-based constitutive laws in a Finite Element platform to simulate
selected larger i.e. continuum-scale problems.
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Outlook

The work in this thesis is undertaken as a step forward towards understanding
the relationship between microscale particle properties and macroscopic behav-
ior, e.g. elastic stiffness of granular assemblies, from experimental, numerical
and theoretical points of view. There are several limitations and many aspects
that require further research. Thus, it is recommended that future studies ad-
dress the following issues:

• The analysis of the interplay of micromechanical properties (particle size,
visco-elastic moduli (stiffness), densities) and system properties (compo-
sition, stress state, anisotropy) on the sound absorption behavior of gran-
ular aggregates and mixtures is still an open field of research.

• Among diverse physical properties of individual particles in particu-
late materials, the shape and morphology play important roles in shear
strength and flowability of the bulk. Additionally, it has been observed
that the particle shape and the resulting geometric interlocking between
particles is a primary contributor to the overall shearing resistance and
is therefore critical for predicting the behaviour of a granular assembly.
Hence, one need to study the effect of shape irregularities on the bulk
response of granular packings.

• The majority of the research on granular materials carried out in the past
have concentrated on single species (single property) particles. Relatively
little effort was invested to design, e.g. lightweight material by using a
mixture of different species with different material properties.

• There is very limited study about dissipation mechanisms in granular ma-
terials: numerical simulation at both particle and continuum level could
give a better insight at the microscopic and effective macroscopic scales.

• A systematical experimental investigation aimed to reduce unwanted
acoustic noise in granular mixtures, has still not yet been carried out.

• A predictive wave mode, e.g. based on the reduced order approach, has
never been applied to granular materials, specifically in case of mixtures,
to properly describe the energy transfer between frequencies associated
to different particle species.

• To the best of our knowledge, there are still no contributions devoted
to the analysis of acoustic absorption in soft-stiff mixtures, in particular
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aimed to the smart design of mixtures with tailored damping properties,
e.g. in a pre-defined frequency band.

• Works devoted to the investigation of recyclable materials mixed with
granular soils in order to reduce costs along with the environmental foot-
print is missing.

• To gain more insights from the wave propagation experiments, photoelas-
tic disks (2 or 3D) and high speed cameras can be employed during to
access the sound propagation properties and microstructural information
of granular packings.

• Future work will focus on the extension of our small perturbation ap-
proach to elasto-plasticity and predicting the plastic response of a granular
assembly under large deformation.
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Summary

The subject of this thesis is the static elastic, solid-like behavior and its limits of
dense granular materials. Granular materials, e.g. soil, are defined as a large
number of grains or particles acting collectively as an ensemble. Particulate or
granular media play crucial roles in both industry and nature. Understanding
the elastic behavior of these media is crucial to our ability to improve the safety
and efficiency of multitudinous industrial processes spanning almost all sectors,
and is pivotal to the prediction and prevention of catastrophic natural phenom-
ena such as earthquakes and landslides. However, unlike for classical media,
there do not exist at present theoretical models capable of accurately predict-
ing the behaviors of granular systems. Numerical models – though capable of
quantitative accuracy – remain heavily reliant on precise calibration and exper-
imental validation. As such, our ability to explore and hence better understand
these systems depends heavily on experimental methods.

Understanding the effective mechanical properties of closely packed, dense
granular systems is of interest in many fields, such as soil mechanics, materials
science and physics. The main difficulty arises due to discreteness and disorder
in granular materials at the particle scale which requires a multi-scale approach.
The mechanical behavior of granular materials is highly nonlinear and involves
plastic deformations also for very small strain due to rearrangements of parti-
cles. On the other hand, the concept of an initial purely elastic regime at small
strains for granular assemblies is an issue still under debate in the community of
soil mechanics. In addition, approaches that neglect the effect of elastic stored
energy are also questionable, i.e., all the work done by the internal forces is
dissipated.

Studying the mechanisms occurring at the grain level can improve our un-
derstanding of some complex aspects of soil behaviour. The aim of this thesis is
to create a clear pathway toward the importance of micro- on macro-mechanical
response at elastic level. The acquisition of more comprehensive, more de-
tailed, higher-resolution data from particulate systems, should help to improve
our understanding thereof. Remarkably, this dissertation attempts to frame and
compare contributions from different points of view, numerics, experiments and
theories.

For many geotechnical structures under working loads, the deformations
are small. The regime of deformation where the behaviour can be considered
linear elastic is infinitesimal, with nonlinear and irreversible effects present al-
ready at small strains. Nevertheless, characterisation of the stiffness of soils is
important, as it provides an anchor on which to attach the subsequent stress-
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strain response. Features visible in experiments, like the propagation of acoustic
waves, can hardly be described without considering an elastic regime. Mechan-
ical waves are disturbances that propagate through space and time in a medium
in which deformation leads to elastic restoring forces. This produces a transfer
of momentum or energy from one point to another, usually involving little or no
associated mass transport if the amplitude is small enough. Probing a material
with (ultra) sound waves can give useful information on the state, the structure
and the mechanical properties.

Numerical simulations, based on the Discrete Element Method, have re-
vealed the utmost role of the microstructure plays for the elastic behaviour of
granular soils. Following this evidence, microstructure-based continuum mod-
els have been developed. However, continuum mechanics are yet insufficient.
Thus, it is essential to understand the effect of the grain level parameters, such
as friction and cohesion between particles, size of constituent grains, and statis-
tics of configurations using DEM simulations, in order to improve our under-
standing and establish some linkage between such dissipative micro- with con-
tinuum parameters.

Although, DEM offers deep micro-mechanical insights, macro-continuum
models are more desirable for applications, where the macroscopic state vari-
ables can be obtained via micro-macro averaging procedures on small, rep-
resentative elementary volumes. Examples, for continuum theories, with re-
duced complexity, are stochastic-based theoretical models for granular mate-
rials that predicts the propagation of vibrations; or a macroscopic continuum
model based on micro-scale fluctuation information obtained by the DEM sim-
ulations. They can be applied to test, improve and optimize novel designs for
materials, constructions, or landfill/soils. Such proposed/modified/improved
constitutive laws can in future be implemented in a Finite Element platform to
simulate selected larger i.e. continuum-scale problems.

To level up the complexity, one can consider mixtures of different species,
in particular particles with different stiffness properties like stiff and soft. The
analysis of the interplay of different species, soft and stiff, on the elastic mod-
uli and the sound absorption behavior of granular aggregates and mixtures is
still an open field of research. One of the important outcomes of experimental
study of wave into granular mixtures is a fact that simple mixture rules can not
be applied for the prediction of the effective acoustic properties of such partic-
ulate media; whereas standard DEM simulations do not predict well the me-
chanical response of such systems. To be able to reproduce a better agreement
between simulations and experiments, an improved contact law that considers
the large deformations of soft particles is needed. Multi-contact models are
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new approaches to tackle the the interaction between soft and stiff particles,
which can improve not only qualitative but also quantitative results achieved
by particle simulations. However, deeper understanding of the effective moduli
that control the velocity dispersion and attenuation in soft-stiff mixtures is still
lacking.

In a nutshell, the purpose of this dissertation is to improve the understanding
of basic physical of mechanical mechanisms in particle systems and to guide
further developments for new macroscopic constitutive models, starting from
the micromechanical view point.
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