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Abstract

Flow and transport in porous media are essentiainamy processes in mechanical,
chemical, and petrochemical industries. Despite wide variety of applications and

intensive research efforts, the complex hydrodycarof these systems is still not fully
understood, which renders their design and scaléHtipult. Most porous media have a
particulate origin but some are composed of longiges/fibres and, therefore, are
considered as fibrous media. They are encounteredvariety of modern technological
applications, predominantly in the manufacturingfibfe-reinforced composites, with

extensive use in the aerospace and automobiletimekis

The aim of this thesis is to further develop oudenstanding of the drag closures, i.e. the
connection between microstructure (particle shapesntation and arrangement) and
macroscopic permeability/drag. To address thislpropwe employ fully resolved finite
element (FE) simulations of flow in static, reguéard random arrays of cylinders (and
other shapes) at low and moderate Reynolds numhsysaptotic analytical solutions at
both dense and dilute limits are used to constiuay relations that are universal, i.e.
valid for all porosities. Those relations are nekdéla coupling of the fluid and solid
phases (particles) in multi-phase flow codes.

The numerical experiments suggest a unique, scpbmger law relationship between the
permeability and the mean value of the shortestaley triangulation edges,
constructed using the centers of the fibres (whscldentical to the averaged second
nearest neighbor fibre distances). It is compleegtbty a closure relation that relates the
effective microscopic channel lengths to the mawpg porosity. This percolating
network of narrow channels controls the macro flopaperties.

From our fully resolved FE results, for both ordkead random fibre arrays, we find that
(i) the weak inertia correction to the linear Dareyation is third power in superficial
velocity, U, up to small Reynolds number, Re~1-5. When attenmgb fit our data with

a particularly simple relation, (i) a non-integeower law inU performs astonishingly
well up to the moderate Re~30. However, for rangowmfistributed arrays, (i) a
guadratic correction performs quite well as usethenForchheimer (or Ergun) equation,
from small to moderate Re.

Finally, the universal fluid-particle drag relat®have been incorporated into a coarse FE
two-phase framework, based on coupling an unstredtérE mesh and a soft-sphere
discrete element method (DEM) for moving particlése mesh is a dynamic Delaunay
triangulation based on the particle positions. Tgrisvides a framework for FE method
discretization of the equations of fluid dynamicsveell as a simple tool for detecting
contacts between moving particles.



Samenvatting

Stroming en transport in poreuze media zijn es8knthechanismes in vele processen in
mechanische, chemische en petrochemische induSti#anks de grote verscheidenheid
van toepassingen en intensief onderzoek, is de leamphydrodynamica van deze
mechanismes nog steeds niet volledig begrepen,hetitontwerp van processen en
schaalvergroting van laboratorium modellen moeiljkakt. De meeste poreuze media
hebben een deeltjes structuur, maar sommige bestilamge deeltjes/vezels en worden
daarom beschouwd als vezelachtige media. Dit soattrialen worden gebruikt voor
een verscheidenheid van moderne technologischeagemmen, voornamelijk in de
productie van vezelversterkte composieten, die widily worden gebruikt in de
luchtvaart- en automobiel industrie.

Het doel van dit proefschrift is de verdere ontwelikg van ons begrip van de weerstand
sluiting, dat wil zeggen de verbinding tussen derastructuur (deeltjes vorm, oriéntatie
en plaatsing) en de macroscopische permeabiliegt/stand. Om hierin meer inzicht te
verkrijgen, gebruiken we hoge resolutie eindigengeten simulaties van de stroming in
statische, regelmatige en willekeurige configusatian cilinders (en andere vormen) bij
lage en gematigde Reynolds getallen. Asymptotisaiytische oplossingen voor limiet
gevallen van veel en weinig deeltjes zijn gebruaikt universele relaties te construeren.
Deze relaties zijn nodig voor de koppeling van teigtof en de vaste fase (deeltjes) in
meerfasenstroming. De numerieke experimenten saggeeen unieke schaal machtswet
tussen de permeabiliteit en de gemiddelde waardedeakortste Delaunay triangulatie
randen geconstrueerd met de centra van de vezetspeicolatie netwerk van smalle
kanalen controleert de macroscopische vloei-eideyguen.

Van onze volledig eindige elementen opgelost raserdt zowel voor geordende en
willekeurige vezel pakking, vinden we dat (i) de akke traagheid correctie op de
lineaire Darcy relatie is de derde macht in supgite snelheidl, tot klein getal van

Reynolds, Re~1-5. Bij een poging onze gegevensetzHrijven met een bijzonder
eenvoudige relatie (i) een niet-integer machtsimetd geeft verbazingwekkend goede
resultaten tot gemiddelde Re getallen (tot Re~BOhter, bijvoorbeeld voor willekeurig
arrays (iii) presteert een kwadratische correctalz gebruikt in de Forchheimer of
Ergun vergelijking goed voor kleine tot gemiddeRie getallen.

Tenslotte zijn de universele vloeistof-deeltjes igtgnds relaties opgenomen in een grof
eindige elementen, twee fasen kader gebaseerd opkapeling van een
ongestructureerde eindige elementen rooster emasdt-bol discrete elementen methode
(DEM) voor het verplaatsen van deeltjes. Het raoggeeen dynamische Delaunay-
triangulatie op de posities van de deeltjes. Datlbeen kader voor de eindige elementen
discretisatie van de vergelijkingen van de strorsliegr en een eenvoudige tool voor het
opsporen van contacten tussen bewegende deeltjes.
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Chapter 1. Introduction

1.1 General introduction

In this chapter | present some background matef@slsubsequent chapters, aiming at
developing an intuitive (physical) understandingha essential underlying concepts and
methodologies, before presenting a new multiscaméwork for modeling two-phase
flows.

1.2 Motivation and background

The modeling of realistic systems is already alehgk when several fields are involved
only on a single scale. Usually fields or phaseg, discrete particles, solid walls and
fluids/gases, are coupled and affect each othetiremusly at different length scales.
Examples are, but not limited to, fluidized bed cteas in chemical engineering,
mechanical engineering unit-processes like silogerm, ball-mills, or transport belts,
modern engineering materials like composites, goteal and geophysical systems,
micro-fluidic reactors, and electrostatic fieldestture-particle interactions [1]. Fig. 1.1
shows some examples of multiphase phenomena aoguatrivarious length scales.

5 3 4 o1 Log (m)

Figure 1.1: Some examples of multiphase phenomena occurtingrsus length scales.
From left to right: Nanoparticles for self-cleanisgrfaces, gases (like bubbles) in a
liquid, flow in porous media and industrial chenticzactors.

The particle (solid) phase is usually describedr®ans of the so-called discrete element
method (DEM), where all information on particle pios, velocity and forces is
available in detail [2, 3]. The DEM is essentialynumerical technique to model the
motion of an assembly of particles interacting walich other through collisions. It is
quite efficient for investigating phenomena ocaugriat the length scale of a particle
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diameter. The computational cost relies on sevielors, including the geometric
representation and contact detection algorithm y4pdOn the other hand, continuum
methods are used for chemical engineering appdicatiike granular and gas-particle
flows [5, 6] silos and unusual flow-zones and gewieg [7, 8], fluid flow, aerodynamics,
and many others, on much larger scales. Attemptsotple particle- and continuum
methods have been successful in rather simple ngyd¢¢ms and special cases [9, 10]
and are still subject of ongoing research.

The discrete particle model (DPM) is consideredb® the most suitable model to
describe the hydrodynamics of dispersed multipfiases [11-13]. The DPM is based on
Lagrangian tracking of individual particles, i.eEM, combined with computational fluid
dynamics (CFD), i.e. the volume-averaged Naviek&oequations, for the continuous
phase. Two-way coupling is achieved via the monmargink/source term which includes
the fluid-particle drag force. This type of modell$ in between the two-fluid model
(TEM) used for simulations of large scale procesaed the direct numerical simulations
(DNS) that are applicable only for small scale syst (see next section where different
modeling schemes at various length scales are aeatjpaA common deficiency of this
model is the incompatibility between the resolusidor the two phases. Typically, a fluid
cell must contain many particles so as to be ctergisvith the volume averaging concept
used in the fluid/gas phase. Since the fluid/gaessphmesh size is much larger than the
individual particle, it is not possible to resole drag numerically. Moreover, the DPM
traditionally calculates the drag on a particlehwatlocal slip velocity interpolated at the
particle position from values on neighboring grimbes, which deviates further from the
original meaning of the empirical drag closuresisTias motivated the development of
more accurate relationships between macroscopaners, like permeability/drag, and
microstructural parameters, like fibre/particle amgements, shape and orientation or
tortuosity (flow path), see chapters 2 and 3.

1.3 Multi-level (hierarchy) modeling approach

The general approach in modeling industrial mubg# flow processes is at the
continuum scale. Semi-empirical expressions, sicDarcy’s law, are substituted for
velocity in the continuity equation, which is theoupled with a momentum, mass, and
energy balance. While a continuum approach is @abbpin some cases, additional
modeling (small scale simulations) is required dertain multiphase flows, where the
detailed information is desired. The basic ideghet the smaller scale models, which
take into account the various interactions (fluattgcle, particle-particle/wall) in detail,
are used to develop closure laws which can repteden effective coarse-grained
interactions in the larger scale models [14].

Fig. 1.2 shows a schematic representation of varioadels, including the information
that is abstracted from the simulations, whichisorporated in higher scale models via
closure relations. At the most detailed level ofatgtion, the fluid/gas flow field is
modeled at scales smaller than the particle sizegusne of the finite element (FE),
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lattice Boltzmann (LB), immersed boundary (IB),ifendifference (FD) or finite volume
(FV) approaches. The momentum exchange (drag @ssbetween the particles and the
fluid/gas phase is determined, which can be usddeimigher (larger) scale models.

At the intermediate level, i.e. DPM, the flow figkltreated as a continuum and usually
solved on a computational grid with a grid sizedéw particle diameters. The motion of
individual particles is tracked using Newton’s lawscounting for collisions with other
particles, with walls and the fluid-particle intet@n forces. This Euler-Lagrangian
model has been widely used over the last decaditly the complicated flow behaviors
in gas-solid fluidized beds. The advantage of DPMthat the particle-particle/wall
interactions are taken into account for sufficigrilrge systems to allow for a direct
comparison with laboratory-scale experiments (~dter). However, this approach
requires accurate closure (drag) relations foruheesolved solid-fluid interactions, see
next section.

Method of simulation Length scale
Phenomenological models: DBM Large scale motion, Industrial scalle / \
Several closures > Design parameters
Continuum model: TFM or MFM Large scale motion, Pilot scale
Drag + pressure/viscosity closures Dispersion coefficients
larger
scaleand
less detailed
information
DEM/DPM - Local averaging Particle-particle, Laboratory scale
Collision model + drag closure Solid pressure and viscosity
DNS: LB, FE, IB, FD or FV Fluid-particle, Meso/micro scale
No closures required > Closure/drag laws

Figure 1.2: Schematic representation of the multi-level modgnoheme. The italic and
red, bold text show the closures one need anchtbemation one obtain from that level
of simulation, respectively.

The third model is the continuum model, i.e. theoTMuid Model (TFM) or the Multi

Fluid Model (MFM), where two or multiple phases am@nsidered as interpenetrating
continua that are described by the averaged N&tmes equations [15, 16]. The TFM
equations relate the spatial distributions of agedaphysical quantities of continuous or
dispersed phases to the interaction force at tteeface. This Euler-Euler model relies
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heavily on closure relations for the effective dgbressure and viscosity, and gas-solid
drag, which are obtained from DNS. With this apploa bed behavior of gas-solid flows
can be predicted using at intermediate pilot-indaisscale (~1 meter).

At the highest level (~10 meter), industrial sddléized bed reactors are simulated with
the phenomenological Discrete Bubble Model (DBMjere the voids or bubbles are
tracked by evaluating the net force acting on eaghble (similar to the particles in
DEM) and the emulsion phase treated as the continphase [17]. It has been
extensively used to investigate the hydrodynantoalescence, and breakup occurring in
large scale bubble columns [18].

1.4 Fluid permeability (drag force) and interfacldsures

The prime difficulty of modeling two-phase gas/@éitsolid flows (in both Euler-Euler
and Euler-Lagrangian approaches) is the interpbaspling, which deals with the effects
of gas/fluid flow on the solids motion and vice s&r Among all the coupling terms
emerging from averaging (e.g. fluid-particle draglded-mass, lift, history, Magnus
forces, and particle and fluid phase stresses), fltid-particle drag is particularly
important: it is usually the primary force to susgeand transport the particles; it has a
significant influence on the bed expansion andikabf the suspension. The drag force
depends (among many parameters such as partielsatial distribution, particle shape,
and orientation, etc.) on the local relative velpdbetween phases and the average
porosity. It was shown in several case studiestttetirag law has a significant influence
on the qualitative and quantitative nature of thewf[19-21], which may result in
differences in the heat and mass transfer and hbeagverall chemical conversion in the
bed. Therefore, establishing accurate drag fortioas is crucial for obtaining good
performance and has challenged both the physicstt@angineering community for
many yeatrs.

The most widely used drag laws, i.e. Ergun equafi] at low and Wen & Yu
correlation [23] at high porosities, are generaliged on experimental measurements and
are empirical in nature. While experiments are tiomnsuming, costly and easily
influenced by disturbances, analytical predictians limited to idealized situations, for
instance spherical particles at very dense ordaitagimes in the limit of low Reynolds
numbers, Re. A relatively new, accurate and efficieay is to use DNS, which is neither
restricted to any idealized situation nor suffeosif experimental difficulties. The typical
simulation strategy is to specify a constant presguadient in a given direction and then
obtain the averaged flow velocity through statibesjcal/cylindrical particles/fibers. At
the creeping flow regime, the macroscopic perméwifag of the porous medium can
then be obtained using Darcy’s law, which statest the superficial velocity in the
medium is directly proportional to the applied m@® gradient.

Detailed LB simulations of the flow through unifolsnd random spherical particles were
carried out at low Re and wide range of porosityHil}f et al. [24] and at low and
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moderate Re by van der Hoef et al. [25]. In botldists a model was derived by fitting
the numerical simulations into an empirical relatiovhich shows some discrepancy
compared to commonly established and well verifiedelations. Benyahia et al. [26]
developed a drag law, applicable to the full ran§gorosity and Re, by blending the
previous drag correlations such that the blendadtfon is continuous with respect to Re
and porosity. Kandhai et al. [19] compared the luBuation results to both the Ergun
and the Wen & Yu correlations for Re up to 60. Ten & Yu correlation was found to
present a good match with the simulation resultspfwrosity larger than 0.7, while the
Ergun correlation shows good agreement for pordsgyg than 0.5. Beetstra et al. [27]
reported that the Ergun correlation over-predicesgdorce in monodisperse systems with
Reynolds numbers greater than ~400 and porosiyetathan 0.4 and always over
predicts for systems with higher Reynolds numbesgardless of the porosity. Note that
the experimental measurements made by Ergun wene dor crushed (irregular)
materials and with some degree of polydispersitytha particles whereas the LB
simulations were done for monodisperse, perfeghescal particles. This may account
for some of the observed discrepancies.

In almost all previous studies, the drag closuresewobtained by smoothing out the
small-scale effects and fitting the numerical/expental data of nearly homogeneous
systems into complicated, empirical equations withany physical or microstructural
insights/effects. However, in many applications tbcal, micro-scale phenomena and
physics are relevant for the macroscopic behavwiomuoich larger scale. The (possibly
evolving) size, shape, physical properties andiapdistribution of the microstructural
constituents largely determine the macroscopic, ralvebehavior of multi-phase
materials. Agrawal et al. [28] established thatrseagrid simulation of gas-patrticle flows
must include sub-grid models, to account for thieat$ of the unresolved mesoscale
structures. Similarly, Boemer et al. [29] pointedt dhe need to correct the drag
coefficient to account for the consequences oftetusy, and proposed a correction for
the very dilute limit. Due to both the inhomogeweih porosity distribution and the
additional wetted surface introduced by the coimagirwall, the pressure drop can differ
from that of the homogeneous bed. Consequently iibportant to accurately predict the
effect of the containing wall. Despite the contneyeover the wall effect [30, 31], recent
studies [32-34] have concluded that the presswp dan be increased by wall friction or
decreased by an increase in porosity near the a@dl,the predominance of one effect
over the other depends on the flow regime. In @&nestudy, Kriebitzsch et al. [35]
showed that the drag on individual particles incanbgeneous random array depends
strongly on all its surrounding neighbors withindestance of at least two particle
diameters. They showed that this drag can diffetoup0% with the drag that would be
used in DPM simulations. Finally, the drag force polydisperse systems was recently
described by extending the monodisperse drag lawesad hocmanner [36-39]. Beside
all these attempts, a systematic approach that ioeslthe influence of the unresolved
(micro) structures on the macroscopic drag/perntigaboefficient has not yet emerged.

This research aims at proposing a reformulated finaxg model for monodisperse fiber
arrays as function of microstructural parameteet tmprove the consistency, accuracy
and computational efficiency compared to those apggk until now. To this end,

extensive calculations of the permeability for Jdidered fiber arrays in a wide range of
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porosity and Re are carried out using a steadypmipecessible FE scheme. The
permeability values, computed from pressure drog feow rate through Darcy’s law,
were calculated and given as function of porogity Reynolds number.

1.5 Scope and objectives

On one hand, it is nearly impossible to resolve haterogeneous (small-scale) flow
structures in large-scale industrial gas/fluid-jpéetflows using a computational grid size
of the order of a few particle diameters. On théeothand, for the design and
optimization of industrial processes, it is impaitéo faithfully model the physics due to
interactions at the microstructural scales. Thegjoathis research are twofold: (i) the
derivation of accurate correlations for the drageéo taking into account the effect of
microstructure, to improve the higher scale modeld (ii) incorporating such closures
into a “compatible” multi-phase/scale model thaiesisa (particle-based) Delaunay
triangulation (DT) of space as basis — in futuresgibly involving also multiple fields.
Due to a special property of DT, a unique decontmosbf space can be obtained which
provides a discretization framework for the contimufluid solver as well as a simple
tool for detecting contacts between moving parsiclEhe remaining scientific challenge
is to understand systems composed of differentgshashich interact continuously at
various length scales. This involves multi-physigscro-systems, (moving) interfaces
and multi-field problems in general.

The focus of this work is on high-resolution FE ralbdg, a rigorous approach that
represents detailed geometry and first-principlgsps at the small scales. The systems
studied here are composed of unidirectional, maeogsi(dis)ordered arrays of
cylinders/fibers oriented perpendicular to the flowection. Such systems have wide
variety of applications including textile reinforoents [40, 41], design of a mould for the
production of composite parts [42] and in resim$far molding (RTM), i.e. an efficient
and frequently used process for producing fibrefoeced polymer composites [42].

A microstructural model for predicting the macrgsicodrag/permeability is obtained
from the pore-level modeling of transport in sudbrdus media at both creeping (i.e.
small fluid velocity) and inertial flows. The compon is made with asymptotic
analytical solutions for the dense and dilute lin@tes. The results are given in the form
of closures, i.e. as function of macroscopic pdyoand Reynolds number, which can
readily be incorporated into existing (non)commaranulti-phase flow codes. In the next
step, a coarse-grained FE framework based on emuph unstructured FE mesh and a
soft-sphere DEM for moving particles has been psegdo The fluid-particle interactions
have been incorporated using the previously obthiaecurate drag closures. This
approach provides computing dynamics of particlesxgi a deforming mesh while
reasonably resolving the fluid/gas flow around plaeticles.
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1.6 Organization of the dissertation

The rest of this dissertation is organized as Vadlo

Chapter 2: is a study of the effect of microstructural paetens like particle
shape, orientation and unit cell stagger anglehenmacroscopic permeability.
Detailed FE simulations for viscous, incompressflies through aregular array
of cylinders/fibers are employed for predicting fermeability/drag associated
with this type of media [43, 44].

Chapter 3: presents a prediction for the transverse perrigabf creeping flow
through unidirectionatandomarrays of fibres. Different microstructures (doe t
four random generator algorithms) are comparededsas the effect of boundary
conditions, finite size, homogeneity and isotropf tbhe structure on the
macroscopic permeability of the fibrous mediumindfa unique, scaling power
law relationship between the permeability obtaifireain fluid flow simulations
and the mean value of the second nearest neigitiver distances. Finally, the
results are compared against a purely phenomermalogiodel which connects
the analytical solution of the dense and dilutetBrin5, 46].

Chapter 4: introduces several order parameters, based oandoand Delaunay

tessellations, to characterize the microstructureamdomly distributed non-

overlapping fibre arrays. In particular, by anahgihe mean and distribution of
topological and metrical properties of Voronoi mgns, | observe a smooth
transition from disorder to order, controlled b teffective packing fraction. |

summarize the theoretical links between the maomscphenomenological

Darcy’s law and the pore-scale fundamental Stokesat®ons, and recognized that
the application of the pore-scale analysis requalearacterization of the pore-
scale geometry (size) of the porous material. Tloeokoi tessellation and their
statistics have been employed to obtain this esdaygometrical (length scale)
information [47, 48].

Chapter 5: gives a comprehensive survey of published exparted, numerical
and theoretical work on the drag law correlatioas ffuidized beds and flow
through porous media, together with an attemptyatesatization. Ranges of
validity as well as limitations of commonly usedate®ns (i.e. the Ergun and
Forchheimer relations for laminar and inertial f)vare studied for a wide range
of porosities. From my fully resolved finite eleméRE) results, for both ordered
and random fibre arrays, (i) the weak inertia ooiiom to the linear Darcy relation
is third power inU, up to small Re~1-5. When attempting to fit théadaith a
particularly simple relation, (ii) a non-integervpexr law performs astonishingly
well up to the moderate Re~30. However, for rangodmtributed arrays, (iii) a
guadratic correction performs quite well as usedhm Forchheimer (or Ergun)



Chapter 1. Introduction

equation, from small to moderate Re [49-51]. TherE&ults show an accurate
quantitative agreement with the lattice BoltzmabnB)(results.

Chapter 6. presents a method for two-way fluid-particle ciugp on an
unstructured me$hThe mesh is a deforming Delaunay triangulatiosebaon the
particle positions. The particulate phase is matlelsing the DEM and the fluid
phase via a stabilized higher order FE scheme 43R, A two-way momentum
exchange is implemented through the previouslyinbthdrag laws.

Chapter 7: summarizes the contributions of the thesis andkesa
recommendations for future work to better undeibtire connection between
small-scale fluid-particle interactions and the macopic phenomena occurring
at industrial multiphase flow units.

It is important to note that the core chaptershi$ tissertation, i.e. Chapters 2-6, are
self-contained since they have been or are in theegs of being published as individual
journal articles. As a result, there will be somepatition of fundamental concepts and
references.
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Abstract

An analytical-numerical approach is presented fampguting the macroscopic
permeability of fibrous porous media taking intcaaent their micro-structure. A finite
element (FE) based model for viscous, incompresdiblw through a regular array of
cylinders/fibers is employed for predicting the rperbility associated with this type of
media. High resolution data, obtained from my satiohs, are utilized for validating the
commonly used semi-analytical models of drag refstifrom which the permeability is
often derived. The effect of porosity, or volumeadtion, on the macroscopic
permeability is studied. Also micro-structure paedens including particle shape,
orientation and unit cell stagger angle are variBoe results are compared with the
Carman-Kozeny (CK) equation and the Kozeny factfte( assumed to be constant)
dependence on the micro-structural parameterspsrted and used as an attempt to
predict a closed form relation for the permeabilitya variety of structures, shapes and
wide range of porosities.

Highlights

A unified understanding of the effect of microsttue on the macroscopic

permeability of fibrous media is presented.

* Based on hydraulic diameter concept, the perméahdi expressed in the general
form of the Carman—Kozeny (CK) equation.

* The finite element (FE) results show that the Cétdadepends on the porosity and
pore structure.

* These results can be utilized for validation of amtbed, coarse-grained models for

particle—fluid interactions.

1 K. Yazdchi, S. Srivastava and S. Luding, Microstmual effects on the permeability of periodic &ibs
porous media, International Journal of Multiphat®aw: 37 (2011) 956-966.

K. Yazdchi, S. Srivastava and S. Luding, Multi-Bcpermeability of particulate and porous media, vor
Congress Particle Technology 6 (2010), Nurembeggmany.
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2.1 Introduction

The problem of creeping flow (i.e. very small fluicgtlocity) through solid bodies
arranged in a regular array is fundamental in tregliption of seepage through porous
media and has many applications, including: conipasaterials [10, 22], rheology [24,
23], geophysics [3], polymer flow through rocks [38atistical physics [14, 7], colloid
science [29], soil mechanics [26, 8] and biotecbggl[36]. A compelling motivation for
such studies concerns the understanding, and alignthe prediction, of single and
multiphase transport properties of the pore strnactu

A specific category of porous media is formed byl@Bg cylinders or fiber-like particles
(such as composite materials). Restricted flow ubho fibrous porous materials has
applications in several engineering/industrial aregluding: filtration and separation of
particles, composite fabrication, heat exchangkexmal insulations, etc. Prediction of
the hydraulic permeability of such materials hasrbeastly studied in the past decades.
It is known that, for fiber reinforced compositése microstructure of the reinforcement
strongly influences the permeability. This studgg@nts an interesting step towards a
unified understanding of the effect of microstruetue.g. particle/fiber shape and
orientation) on the macroscopic permeability by borimg numerical simulations with
analytical prediction in a wide range of porosity.

Usually, when treating the medium as a continuuatisfctory predictions can be
obtained by Darcy's law, which lumps all complexemctions between the fluid and
fibers/particles intK, the permeability (tensor). Accurate permeabitigta, therefore,
are a critical requirement for macroscopic simolai based on Darcy’'s law — to be
successfully used for design and optimization duistrial processes.

The Ergun equation is a semi-empirical drag retafimm which the permeability of
porous media can be deduced. It is obtained bylitieet superposition of two asymptotic
solutions, one for very low Reynolds number, then@m-Kozeny (CK) equation [4],
and the other for very high Reynolds numbers, thretheimer correction [4]. However,
these approximations do not take into account theroastructural effects, namely the
shapes and orientations of the particles, suchnibabnly local field properties but also
some global properties (such as anisotropy) cammaeiddressed.

In this respect, two distinct approaches seemve banerged. The first approach is based
on lubrication theory and considers the pores pdramus medium as a bunch of capillary
tubes which are tortuous or interconnected in aoid [4]. Even though this model has
been used successfully for isotropic porous metdidges not work well for either axial
or transverse permeability of aligned fibrous md8ja

The second approach (cell method) considers thd swtrix as a cluster of immobile
solid obstacles, which collectively contribute Stekesistance to the flow. For a review
of these theories, see Dullien [10] and Bird et{4]. When the solids are dilute, i.e. at
high porosities, the particles do not interact vatth other, so that the cell approach is
appropriate. Bruschke and Advani [5] used lubraratiheory in the high fiber volume
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fraction range but adopted an analytical cell mddellower fiber volume fractions. A
closed form solution, over the full fiber volumedtion range, is obtained by matching
both solutions asymptotically.

Prediction of the permeability of fibrous media efatback to experimental work of
Sullivan [31] and theoretical works of Kuwabara Jj2dasimoto [13], and Happel [12].
The parallel flow solutions are idealized solutidas the flow through cigarette filters,
plant stems and around pipes in heat exchange .taries transverse solutions are
applicable to transverse fibrous filters used feaning liquids and gases and regulating
their flow. Both types of solutions can also belmgble to the settling of suspensions of
long thin particles. A comprehensive review of axpental works of permeability
calculation of these systems is available in Jatksoal. [17] and Astrom et al. [2].
Sangani and Acrivos [28], performed analytical andherical studies of the permeability
of square and stagger arrays of cylinders. Thealydéical models were accurate in the
limits of low and high porosity. For high densitif®ey obtained the lubrication type
approximations for narrow gaps. Drummond and T{lirmodeled the flow around a
fiber using a unit cell approach (by assuming thhtfibers in a fibrous medium
experience the same flow field) and obtained equatithat are applicable at lower
volume fractions. Gebart [11] presented an expoeskir the longitudinal flow, valid at
high volume fractions, that has the same form a@&swell-known CK equation. For
transverse flow, he also used the lubrication agpration, assuming that the narrow
gaps between adjacent cylinders dominate the feEsistance. Using the eigen-function
expansions and point match methods, Wang [35] etudine creeping flow past a
hexagonal array of parallel cylinders.

This literature survey indicates that the majoraf the existing correlations for
permeability of ordered periodic fibrous materiadse based on curve-fitting of
experimental or numerical data. Additionally, mokthe analytical models found in the
literature are not general and fail to predict psaibility over the wide range of porosity,
since they contain some serious assumptions thdttheir range of applicability.

In this chapter, periodic arrays of parallel cyknsl (with circular, ellipse and square
cross-section) perpendicular to the flow directase considered and studied with a FE
based model in Section 2.2. The effects of shapeoaentation as well as porosity and
structure on the macroscopic permeability of theops media are discussed in detail. In
order to relate my results to available work, thetadare compared with previous
theoretical and numerical data for square and henalgpacking configurations and a
closed form relation is proposed in Section 2.3h@a attempt to combine my various
simulations. The chapter is concluded in Sectighwith a summary and outlook for

future work.
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2.2 Results from FE simulations

This section is dedicated to the FE based modailatinns and the results that consider
permeability as function of porosity, structureagé and anisotropy.

2.2.1 Introduction and terminology

The horizontakuperficial (discharge) velocity), of the fluid within the porous media in
a unit cell is defined as

U :\%\iudv:du) : (2.1)

whereu, (u) V, V; and ¢ are the local microscopic velocity of the fluid r@sponding

intrinsic averaged velocity, total volume, volume of thedland porosity, respectively.
For the case where the fluid velocity is sufficlgrgmall (creeping flow), the well-known
Darcy’s law relates the superficial fluid velocity, through the pores with the pressure
gradient,CJp, measured across the system lenigtiso that

u=-Smp | (2.2)
U

where u and K are the viscosity of the fluid and the permeapilif the sample,
respectively. At low Reynolds numbers, which arkevant for most of the composite
manufacturing methods, the permeability dependy onl the geometry of the pore
structure. By increasing the pressure gradient, abserved the typical departure from
Darcy’s law (creeping flow) at sufficiently high Reolds number, Re>0.1 (data not
shown here). In order to correctly capture theuifice of the inertial term, Yazdchi et al.
[37] showed that the original Darcy’s Law can béeexled with a power law correction
with powers between 2 and 3 for square or hexagomafigurations, see chapter 5 for
detail. Hill et al. [15, 16] examined the effectflfid inertia in cubic, face-centered cubic
and random arrays of spheres by means of lattidesBann simulations. They found
good agreement between the simulations and Ergualation at solid volume fractions
approaching the closely-packed limit at moderatgn@kls number (Re<100). Similarly,
Koch and Ladd [18] simulated moderate Reynolds remflows through periodic and
random arrays of aligned cylinders. The study shibWat the quadratic inertial effect
became smaller at higher volume fractions, seeteh&pfor detail.

Recently, models based on Lagrangian tracking gighes combined with computational
fluid dynamics for the continuous phase, i.e. diterparticle methods (DPM), have
become the state-of-the-art for simulating gasdsdliows, especially in fluidization
processes [19]. In this method, two-way couplingahieved via the momentum
sink/source term, which models the fluid-particle drag force
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S, =B((u-v). (23)

where the interphase momentum-transfer coefficntdescribes the drag of the

gas/fluid phase acting on the particles axid the velocity of particles (additional effects
like the added mass contributions are disregarded for the sake of simplicity). In
steady state, without acceleration, wall friction,body forces such as gravity, the fluid
momentum balance equation reduces to

—£Dp—,8((u>—vp):0. (2.4

By comparing Egs. (2.2) and (2.4), using the deéini of Eq. (2.1), and assuming
immobile particles, i.ev, =0, the relation betweeg and permeabilitK is

_ ue?
B = - (2.5)

Accurate permeability data, therefore, is a critiemuirement in simulations based on
DPM to be successfully used in the design and opdition of industrial processes.

In the following, results on the permeability ofawlimensional (2D) regular periodic
arrays of cylinders with different cross sectior abtained by incorporating detailed FE
simulations. This is part of a multiscale modelagproach and will be very useful to
generate closure or coupling models required inencoarse-grained, large-scale models.

2.2.2 Mathematical formulation and boundary corafis

Both hexagonal and square arrays of parallel cglisigperpendicular to the flow direction
are considered, as shown in Fig. 2.1. The basisuch model systems lies on the
assumption that the porous media can be dividea representative volume elements
(RVE) or unit cells. The permeability is then detered by modeling the flow through
one of these, more or less, idealized cells. Th# FBftware (ANSYS) was used to
calculate the superficial velocity and, using E&.2), the permeability of the fibrous
material. A segregated, sequential solution algoritvas used to solve the steady state
Navier-Stokes (NS) equations and the continuity aiqu. In this approach, the
momentum equations (i.e. NS equations) are useget®rate an expression for the
velocity in terms of the pressure gradient. Thissed in the continuity equation after it
has been integrated by parts. This nonlinear swiysrocedure belongs to a general class
of the Semi-Implicit Methods for Pressure LinkeduBtions (SIMPLE). The matrices
developed from assembly of linear triangular eletmeme solved based on a Gaussian
elimination algorithm. It is robust and can be uded symmetric as well as non-
symmetric equation systems but requires extensiwgatational memory already in 2D.
At the left and right pressure- and at the top laoitiom periodic-boundary conditions are
applied. The no-slip boundary condition is appleedthe surface of the particles/fibers.
A typical unstructured, fine triangular FE meshsi®wn in Fig. 2.1(c). The mesh size
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effect was examined by comparing the simulatiomltegor different resolutions (data
are not shown here). The range of number of elesnaried from 1®to 10' depending
on the porosity regime. It should be noted thdbdamcy’s linear regime (creeping flow) —
although we have applied pressure boundary comditit left and right — identical
velocity profile at inlet and outlet are observdde to the symmetry of this geometry and
linearity. However, by increasing the pressure gratddata not shown), the flow regime
changes to non-linear and becomes non-symmetricthéfmore, because of the
symmetry in the geometry and boundary conditiadms,eriodic boundary condition and
symmetry boundary condition, i.e. zero velocityartical direction at top and bottom of
the unit cells, will lead to identical results (esnfirmed by simulations — data not
shown).

Flow directior

~SUlodo|l | ololo o

O
O
O
(p
3

()

Figure 2.1: The geometry of the unit cells used for (a) squaae (b) hexagonal
configurations, with angles 4and 68 between the diagonal of the unit-cell and the
horizontal flow direction (red arrow), respectivelfc) shows a typical quarter of an

unstructured, fine and triangular FE mesh.
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2.2.3 Permeability of the square and hexagonal ysra

Under laminar, steady state condition, the flovotlgh porous media is approximated by
Darcy’s law. By calculating the superficial velggitJ, from my FE simulations and
knowing the pressure gradieriiip, over the length of the unit cell, one can calculate

the dimensionless permeability (normalized by tiander diameterd), K /d?. In Table
2.1, various correlations from the literature asted. The first relation by Gebart [11]
has an analytical form and is valid in the limitrogh density, i.e. low porosity — close to
the close packing limig (the same as Bruschke et al. [5] in the low pdydsnit, with
maximum discrepancy less than 1%). Note that tlaioes by Happel [12], Drummond
et al. [9], Kuwabara [20], Hasimoto [13], and Samgz al. [28] have identical first terms
and this term is not dependent on the structurtherimit of small solid volume fraction
@ i.e. large porosity. In contrast, their seconuntés weakly dependent on the structure
(square or hexagonal). Bruschke et al. [5] proposktions that are already different in
their first term. The last two relations in thel&ahre only valid in intermediate porosity
regimes and do not agree with any of the abovéioakin either of the limit cases.

In Fig. 2.2, the variation of the (normalized) peanhility, K/d?, with porosity, for
square and hexagonal packings is shown. The lulmictheory presented by Gebart [11]
agrees well with my numerical results at low paresi (¢ <« 0.6), whereas, at high
porosities € > 0.6), the prediction by Drummond et al. [9] bettersfimy data.
Drummond et al. [9] have found the solution for Btkes equations of motion for a
viscous fluid flowing in parallel or perpendicul@r the array of cylinders by matching a
solution outside one cylinder to a sum of solutianth equal singularities inside every
cylinder of an infinite array. This was in good egment with other available
approximate solutions, like the results of Kuwab@@ and Sangani et al. [28] at high
porosities, as also confirmed by my numerical tss(data not shown). Note that my
proposed merging function in Section 2.3.4, fitotw FE results within 2% error for the
whole range of porosity.
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Figure 2.2: Normalized permeability plotted against porosay (fa) square and (b)
hexagonal packing for circular shaped particlegicyrs with diameter d, for
perpendicular flow. The lines give the theoretjmadictions, see inset. For high
porosities, the difference between Gebart [11]@Bngmmond et al. [9], in the hexagonal
configuration, is less than 5%, while for the sgueonfiguration it is less than 30%.
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Table2.1: Summary of correlations between normalized perniigati/d” and porosity,
with ¢=1-¢, the solid volume fraction at creeping flow regime

Author K/d? Comments

Square configurationKé/d2

o/ C 4 1-m7/4
- = , E =1
C{ 1-& —1} a2

Gebart [11] 1-¢ 4 i

C= ,e.=1-m/(2/3 Hexagonal config. K} /d?
9]‘[\/6 c ( ) g g G/
1
L1+ o
Bruschke (1_ | 2)2 tan -1 2 Lubrication the:ry, square
and Advani 3 +—+1 2 _
[5] 123 \/1_|2 2 Conflg.. I —;(1 f)

1 (In(l 1476+ 2079 j

Drummond et @ 7 1+ 0.489- 1.60‘,? Square configurationKS/d2
al. [9] o h /42
i[ln(—lj—l.497+ Zﬂ—ﬁ‘ 0.739f + 2.5345 j Hexagonal conflg..KD/d
320\ @ 2 1+ 1.2758
Bruschke 1 1 3 402
and Advani — In (—j ——+ 20— Cell method, square config.
5] 32¢p @p) 2 2
Kuwabara i In 1' -1.5+ Z”‘i Based on Stokes approximatign
[20] 32 ) 2
Using elliptic functions:
Hasimoto ) .
[13] i(ln(—lj—l.476+ 20+O(¢2)) Square configuration
320\ \@
sanganietall L[\l L) g 4760 - 17747+ 2078 || 00—
[28] 32 )
Happel [12] %{p(ln (1‘) _%J ___________
@Y
£ (£-0.214
Lee aznf vang (—136 Valid for 0.435< £ < 0.93"
[21] 31(1-¢)
. 5.1
Sahraoui et al 0.0152= Valid for 04 < £ < 08
[27] 1-¢
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2.2.4 Effect of shape on the permeability of regataays

In this subsection, | investigate the anisotropbdvior of permeability due to particle
shape using the square configuration. Using eleangratigebraic functions, Zhao et al.
[38] derived the analytical solutions for pore-fluflow around an inhomogeneous
elliptical fault in an elliptical coordinate systef®@bdam and Veling [25] employed the
complex variable function approach to derive thalgictal solutions for the pore-fluid
flow within an elliptical inhomogeneity in a two+densional full plane. Zimmerman [40]
extended their solutions to a more complicatedasiin, where a randomly oriented
distribution of such inhomogeneous ellipses wasnahkto account. Wallstrom et al. [34]
later applied the two-dimensional potential solativom an electrostatic problem to
solve a steady-state pore-fluid flow problem aroamdinhomogeneous ellipse using a
special elliptical coordinate system. More recerdliyao et al. [39] used inverse mapping
to transform those solutions into a conventionat€&an coordinate system.

Here, in order to be able to compare different ekagnd orientations, the permeability is
normalized with respect to the obstacle lengghwhich is defined as

L, = 4 area / circumference
L, = 2r =d (for circle), L, = c (for square), L, = 4rab/A_ (for ellipse) (2.6)

wherer, ¢, a andb are the radius of the circle, the side-lengthhef $quare, the major
(horizontal) and minor (vertical) length of the igdle, respectively.A. is the
circumference of the ellipse.

By applying the same procedure as was used in téxé@ogos section, the normalized
permeability (with respect to obstacle lendth) is calculated for different shapes on a
square configuration. In Fig. 2.3 the normalizednpeability is shown as function of
porosity for different shapes. At high porositiée tshape of particles does not affect
much the normalized permeability, but at low pdiesithe effect is more pronounced.
Circles have the lowest and horizontal ellipseshilgbest normalized permeability.
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Figure 2.3: Effect of shape on the normalized permeabilityrfra square packing
configuration of circles, squares and ellips#b£2, major axis in flow direction). The
lines are only connecting the data-points as aegtddhe eye.

2.2.5 Effect of aspect ratio on the permeabilityegfular arrays of ellipses

In this subsection the effect of aspect raait,on the normalized permeability of square-
arrays of ellipses is investigated. In fact, theecaf high aspect ratio at high porosity
represents the flow between parallel plates (slaw)f The relation between average

velocity, (u), and pressure drop for slab flow (i.e. flow betwearallel plates) is

__ ap
(u)= 124 L (2.7)

wherehs is the distance between parallel plates (in myasgj@onfiguration, in the limit
a/b>1, one haths=L). Note that, since there are no particles;1, the average and

superficial velocities are identical, i.éu}zU. By comparing Egs. (2.7) and (2.2) the

permeability, i.e.K /h? =1/12 is obtained, which indeed shows the resistancetalue

slip boundaries at the walls. The variation of peability for a wide range of aspect
ratios at different porosities is shown in Fig. .2l is observed (especially at high
porosities) that by increasing the aspect ratiopdeneability increases until it reaches
the limit case of slab flow for which the permedpilis K/h>=1/12= 0.083. The
aspect ratid/a <1 means that the ellipse stands vertically aedeflore the permeability
reduces drastically.
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Figure 2.4: Effect of aspect ratio on the permeability of sgueonfigurations of ellipses
with different porosities as given in the inseteTimes are only connecting the data-
points as a guide to the eye.

2.2.6 Effect of orientation on the permeabilityedular arrays

By changing the orientatio), i.e. the angle between the major axis of theauibs and
the horizontal axis, not only will the values oétpermeability tensor change, but also its
anisotropy will become apparent (so that the presgradient and the flow velocity are
not parallel anymore). Therefore, the geometryhef pore structure has great effect on
the permeability in irregular fibrous media. Thieet for squares and ellipseg/lf = 2)

is shown in Fig. 2.5.

For square shapes, at high porosities, the orientaloes not much affect the
permeability, whereas at low porosities the perrii@aldepends a lot on the orientation.
At 0 = 45 we observe a drop in permeability, because weckrge to the blocking

situation, i.e. zero permeability, at a criticarg@sity (at which the permeability drops to

1
zero) ofe. =1-————=0.5
) ofe. 25in2(45’+6?)

For ellipses, at high porosity, the orientation gloet affect the permeability, whereas at
low porosities the effect is strong. By increasihg orientation angle, i.e. by turning the
major axis from being horizontal to vertical, thermeability is reduced. The critical
porositys~0.6073 is purely determined by the major axis efetipse ford = 9¢°.
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Figure 2.5: Effect of orientation{) on the normalized permeability for (a) square @»)d
ellipse @b=2) in square packing configurations at different payod he lines are only
connecting the data-points as a guide to the eye.
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The general form of Darcy’'s law for anisotropic n@eth 2D in matrix form can be
written as

p

o278 ] e
Uy UKy Ky @

ay

where Uy and Uy are superficial velocities ir (i.e. U, =U as described in defined in

previous section) angldirection, respectively. Then the permeabilitys@nfor any value
of 8 can be calculated as

K, K K 0
Kg :|: 11 12:|: RT|: 0 :| R ’ (2'9)
KZl K22 0 K90

where K, and K,, are the principal values of permeability that de¢ermined from the

values of §=0° and 8=90°, respectively. In Eq. (2.9R' is the transpose of the
rotation matrixR, defined as (counterclockwise rotation 8y

_[cod8) -sin(g)

) Lin(é’) cod8) } ' (2.10)

Eqg. (2.9) shows that fo # @, 90°, one ha¥,, # 0, which means that by applying a

pressure gradient ix direction, one gets a superficial velocity yndirection (i.e.
anisotropic behavior because of oriented shapeg fimerical results are in good
agreement with theoretical predictions (Eq. (2&9pecially at high porosities (see the
solid lines in Fig. 2.6). We have more deviatiohost porosities (maximum discrepancy
~ 5%) because of channel blockage and changesvinbihavior (the comparison is not
shown here).

In Fig. 2.6, the variation of normalized permedpilis shown as a function of the
orientation angled. The normalized rEermeability is symmetric td @dd decreases by
increasing the orientation angle from The eigenvalues of the permeability tensor are
the extrema of the curves and the other data arell wited by

K/L% = (K, +Kgp)/2+(K,—Kg) co F)/ = By decreasing the aspect ratb, we
approach the value for the circular (cylinder) abkt, i.e.a/b =1. The normalized
permeability is symmetric to 4%or square shapes.
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Figure 2.6: Normalized permeability plotted against orientatammgle for different
shapes at porosity= 085, for different obstacle shapes in square configuma. The
dashed line represents circles. The solid linesvghe theoretical predictions according
to Eq. (2.9), where the eigenvalues are taken tren®, 90 and 6, 45 degrees for
ellipses and squares simulations, respectively.

2.2.7 Effects of stagger cell angle

In this subsection, the effect of another micraxstinral parameter, the stagger cell angle,
a, on the normalized permeability for circlds,%d) is discussed. The stagger angle is
defined between the diagonal of the unit-cell dod/{direction (horizontal), see Fig. 2.7.
In addition to the special cases=45° and a =60°, i.e. square and hexagonal packings,
respectively, several other angles are studied. cdmours of the horizontal velocity
field component, for different values af, at a constant porosity =0.7, are shown in
Fig. 2.7. By changinga , the flow path and also the channel length wilarofe. At

a =70° and higher, the flow mainly follows a straightdirindicated by arrows in Fig.
2.7(a), with large superficial velocity and consewafly large values of permeability.
However, by decreasing down to 38, the flow pattern completely changes and the
superficial velocity reduces, which should leadower and lower permeability. In brief,
with increasing angle, both the superficial velp@nd the permeability increase, with a

plateau at aroundr = 45°.
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Figure 2.7: Horizontal velocity field components for (&) = 60°, (b) a =50°, (c)

a =40°and (d)a = 35° at fixed porosity: = 0.7. The arrows indicate the main flow
channel in (a) and (b). The stagger angle is defiretween the diagonal of the unit-cell

and flow-direction (horizontal). The minimal angte,, =tan™( 2( 1-¢) /m) = 10.8%is
realized when the vertical opening is closed, wtiikemaximal angle
a...= tan‘l(ﬂ/( A1 5))) = 79.18 corresponds to the closed horizontal pore.
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In Fig. 2.8 the normalized permeability is shownfasction of the stagger angle,, at
different porosities. As it is seen the arrangemehtparticles relative to the flow
direction is important in determining the perme&pilBy increasinga , the normalized
permeability increases (the vertical distance betwgarticles increases and therefore the
resistance to the flow decreases) until it reachebcal maximum ata 035° —
consistently for different porosities. At largergses, it slightly decreases and attains a
local minimum ata 055°, beyond which it increases rapidly again. Thisawédr can be
explained by the variation of the area-fractiontribsition with @ on the planes
perpendicular to the flow direction, as discussgdlgocer et al. [1].

The normalized permeability as a functionaofcan be expressed as a cubic polynomial

K _ (a-48) _(a-48) _(a-48
?_A(FJ +B( prs j +C(TJ+D (2.11)

where A, B, C and D are dimensionless constandtediin Table 2.2 for different
porosities.

0.14

a [degree]

Figure 2.8: The variation of normalized permeability plotteghanst stagger unit cell
angle a at different porosities, as given in the inset. $okd lines show the fit (Eq.
(2.11))
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Table 2.2: Fitted parameters for the permeability-staggereanglation

£=08 =07 =06
A 0.38401 0.18813 0.09913
B 0.02682 0.01738 0.01171
C -0.03693 -0.01914 -0.01027
D 0.07698 0.02584 0.009319

The leading term with A is dominating, the termwi is a rather small correction, the
term with C sets the (negative) slope in the ceraed the term with D determines the
offset. All fit-parameters depend on porosity ahdhould be noted that the range of
available angles is limited and also depends omgiyr Additional scaling- and fit-
attempts (data not shown) did not lead to muchebetsults, thus | only present this
empirical fit here.

The decreasing region, i.85° <a < 55 corresponds to the case in which the flow goes
in a preferred channel orthogonal/perpendiculath® line (diagonal) connecting two
particles, see Figs. 2.7(b) and (c). While in cas#is larger a , the flow goes at straight
lines/channels, see Fig. 2.7(a), the configurafmmsmaller a is dominated by the
narrow vertical opening between two obstacles. dseace, in the plateau region, the
permeability is not much affected by the staggegl@m . This observation might be
useful during design and manufacturing of fibroamposites.

In summary, the results of this section show thatrmacroscopic permeability not only
depends on the porosity but also on the microstractnamely shape, aspect ratio and
orientation of particles. The main interest of suchmicrostructural description for
predicting permeability is to provide a detailegight into microscale flow, transport
phenomena and basic fluid-solid interaction medrasiin fibrous media.

2.3 Theoretical prediction of the permeability &lrporosities

In this section, based on the observations in tegipus section, and using the velocity
profiles from FE unit cell simulations, a generatiziorm of the Carman Kozeny (CK)
equation for the permeability of fibrous porous me@®D regular arrays of fibres) is
proposed.

2.3.1 From special cases to a more general CK egnat

The earliest and most widely applied approach i@ porous media literature, for
predicting the permeability, involves capillary net&l[6] such as the one that leads to the
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CK equation. The approach to obtain this equatsobased on Poiseuille flow through
pipes. Assuming pipe flow through a cylindrical shal of diametem,, the average
velocity through the channel is

h2 A
<up>:—ﬁT‘° , (2.12)

and for slab flow through an infinite channel ot hg

__M ap
(ug) = TR (2.13)

given the pressure drafyp per lengthL, and a fluid with viscosity. .

Defining the hydraulic diameter to be

_ 4volume available for flow

(2.14)
total wetted surface

h

allows to unify the relations above, by combining E2.14) with either Eq. (2.12), with
D, =h,, or Eq. (2.13), withD, =2h., and with Darcy’s law, Eq. (2.2), so that the
permeability is described by the CK relation (Cani@37)

a{u) _eDy
Up Pex

K = (2.15)

Where, ¢, =32 (or 48) is the dimensionless Kozeny factor rabristic of the pipe (or

slab) pore structure. When one has obstacles ildersf (or particles) instead of straight
pores, the hydraulic diameter can be re-written as

Dh=4£V= 4 _ &d with a = particle surface ~ §

S (-¢)a (1-¢) particle volume ( %)V =g (2.16)

with the total volume of the unit ceN,, the total wetted surfac&,, the specific surface
area,a,, and the porosityg, for a fiborous medium of fiber diameter Note that the
hydraulic diameter, in this way, is expressed dsnation of the measurable quantities
porosity and specific surface area. The above vafu® is for circles (cylinders) — for
spheres one ham=6/d. In this formulation, one just considers the rasise due to
presence of particles (no slip boundaries at tface of the particles) and neglects the
outer walls.

Inserting Eq. (2.16) into Eq. (2.15), yields themalized permeability for fibers
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£2: 1 _& _ (2.17)
d Yex (1_5)

which depends non-linearly on the porosity and shape/structure factog,, .

One of the main drawbacks of the CK equation i tika Kozeny factowy,., is a-priori
unknown in realistic systems and has to be detex@h@xperimentally. An ample amount
of literature exists on the experimental and thiecak determination of the Kozeny
factor, but we are not aware of a theory that eslgt., with the microstructure, i.e. the
porosity, the random configuration, tortuosity, aather microscopic quantities. An
overview of experimental and theoretical approadasbe found in Astroem et al. [2],
which mainly deals with fibrous media, and Torqu@®], which is based on variational
principles. One of the most widely accepted apgieado generalize the CK relation was
proposed by Carman [6], who noticed that the sthe&s in a porous medium are far
from being completely straight and parallel to eatifer. This effect can be described by
a dimensionless parametdr/L (tortuosity), with the length of the streamlinds,
relative to the length of the sample,Hence the Kozeny factor can be split into

(LY
Wer _qJL Lj (2.18)

where @ is the effect of particle shape, which can be seea fitting parameter. In fact,
the tortuosity and the shape factor reflect thea# of microstructure on the macroscopic
properties (like permeability) of the porous media.

In the original form of the CK equation for rand@D sphere structures, it is assumed

that the tortuosity is a constant for all rangegofosities and is equal td2 and the
fitting parameter®, then becomes 90 for the case of pipe flow antb68lab flow.

Knowing the values of the normalized permeabilityni my FE simulations, one can
compare the values of the Kozeny factor based omumgerical results and available
theoretical data and with the origingl., =120 for slab flow, see Egs. (2.17) and (2.18).
The comparison is shown in Fig. 2.9. At a certainge of porositiesp5< £ < 0.7, the
CK factor ¢, is indeed not varying much. However, at highetoover porosities, it
strongly depends on porosity and structure. At hagid low porosities, my numerical
results are in good agreement with the predict@nBrummond et al. [9] and Gebart
[11], respectively (see Table 2.1). These resultiécate that the Carman-Kozeny factor,
Y.« » is indeed not constant and depends on the miaabste.

In the following subsections, | will study the deplency ofy,, on the micro-structural
parameters.
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Figure 2.9: Kozeny factor plotted as a function of porosity different models (lines)
and data sets (symbols) as given in the inset.

2.3.2 Measurement of the tortuosity/(l)

As discussed before, the tortuosity is the aveeftgetive streamline length scaled by
system lengthL¢/L, and one possible key parameters in the Kozentprfan the CK
equation [6]. From my numerical simulations, | extrthe average length of several
streamlines (using 8 streamlines that divide thaltmass in-flux into 9 zones, thus
avoiding the center and the edges). By taking Werame length of these lines, the
tortuosity can be obtained, while by taking thendtd deviation of the set of
streamlines, the homogeneity of the flow can b@gad The tortuosity is plotted in Fig.
2.10 as function of porosity for different shapesl arientations and as function of the
stagger angler for different porosities.

Unlike the traditional form of the CK equation, whiassumes thaLe/L=\/§ (for

random 3D structures) is constant [6], my numernieallts show that the tortuosity (i) is
smaller and (ii) depends on the porosity and thee miructure. In Fig. 2.10(a), as
intuition suggests, the vertical and horizontapsks have the highest and lowest average
tortuosity, respectively. This goes ahead with véayge and very small standard
deviation, i.e. the vertical ellipse configuratimvolves the widest spread of streamline
lengths. In the case of a circular shape obst#ude(average) tortuosity is between the
horizontal and vertical ellipse cases and, forrmegliate porosity, becomes almost
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independent of porosity, with constant standardaden that is wider than the average
tortuosity deviation from unity. The square shapstacles are intermediate in tortuosity,
i.e. the B-square (4%square) shapes take tortuosity values betweenhthmizontal
(vertical) ellipse and the circular obstacles.

In Fig. 2.10(b), the tortuosity is plotted agairtee stagger unit cell angler. By
increasinga the value of tortuosity increases until abeut]45°, where it reaches its
maximum. Note that the standard deviation remamallsfor all angles smaller than
a 045, At higher angles, tortuosity decreases, whilsténdard deviation considerably
increases. At large values a@f, most of the fluid flow goes along a straight |ine
however, near the boundary, we have a few longeastines that cause the large
standard deviation. At the limit case @f= a__ , when the upper particles touch, see Fig.

2.7, the tortuosity approaches unity (data not st)oand the flow goes mostly along a
straight channels.

2.3.3 Measurement of the shapeffitting fado)

Knowing the values of tortuosity,. /L, and normalized permeability /d?*, from my

FE simulations, one can obtain the valuestoffor different shapes and orientations as
2

P :z//CK/(LLej . In Fig. 2.11 the variation o> as a function of porosity for different

shapes and orientations is shown. Unlike the iadit CK factor, the shape/fitting factor
is not only a function of porosity but also depends the orientation of
particles/cylinders. This dependency is more prowed at high (low) porosities and
close to the blocking conditions, i.e. ellipsesh@tf and squares with 45
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Figure 2.10: Tortuosity (L, /L) (a) plotted as a function of porosity for diffatebstacle

shapes and orientations on square configurations45°, (b) plotted as a function of the
stagger cell angleg , as given in the inset, for circles at differentgsities on hexagonal
configurations. Error bars give the standard deadf the 8 streamline lengths, where
bottom-values below unity indicate a highly non-syetric distribution around the
average.
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Figure 2.11: Shape/fitting factor®, plotted as a function of porosity for different

obstacle shapes and orientations on square coafigns,a = 45°. The straight dashed
line shows the value ap =60 as in the original CK factor.

2.3.4 Corrections to the limit theories

As it was not possible to explain the variation pgfrmeability with tortuosity and a
constant shape factor, now | attempt to optimizeém the limit theories by Gebart [11]
and Drummond et al. [9], see Table 2.1, in ordgortipose an analytical relation for the
permeability that is valid for all porosities andr fsquare and hexagonal arrays of
cylinders.

2.3.4.1 Squar e configuration

Assuming one particle at the center, a pressuradsoy at the left and right and periodic
boundaries at top and bottom, | correct the origiebart relation from Table 2.XK¢,

by a linear correction ternk:, = Kg , with g,=0.336. After observation of

1+ gz (5 _gc)
a linear correction term in the denominator (seedincles in Fig. 2.12), the linear least
square method is used to get the coefficigntIn contrast toK;, which asymptotically

approaches the limit case, - ¢£_, but for £ =0.6 deviates already by about 10%, the
correction Kgp, has a maximum discrepancy in the ragge £ <0.85 of less than 10%,
and for g, < £<0.7 of less than 2%, see the squares in Fig. 2.12.
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Since the Drummond relation from Table 2.&3, is valid at high porosities with

maximum discrepancy &.7< & < 1 of less than 10% and fd@.8< £ < 1 of less than 2%,
| propose the following merged function

1+tanh(e-¢,) /z,)

K= K&, +(Ks—Kg,)m(), with m(g) = 5

, & =0.75, ¢, = 0.03],

that is valid for the whole range of porosity, wileviations of less than 2% that also
includes the analytical relations for the limit easWhile the choice oh() is arbitrary,
the non-linear least square fitting procedure &dus obtain the empirical coefficients

and g, . The error of these coefficients is defined byrte&andard deviation.

1.1
1r '+.-.-—-—-\'/F—‘""‘FV .
°
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+= 0.9r i | 8
Z L ]
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T osl ° KG [11] v ° .
S
= Kez .o
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Figure 2.12: Relative error between FEM results and proposectctions for square
configuration with the critical porosity =1-77/4. The “Tanh” representing the
proposed merging tangent hyperbolic function.

2.3.4.2 Stagger hexagonal configuration (a = 600)

In this situation, the correction to the Drummondlation from Table 2.1 is
Kb, =diKS (1+d,g),  K"=Ki+(KS,-K)m(g), with  =0.942, 0,=0.153,
&, =0.55, ¢ =0.03, leads to a corrected permeability for all poresit with a
maximum error of less than 2%, see Fig. 2.13.
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Figure 2.13: Relative error between FEM results and propodeddr hexagonal
configuration with the critical porosity =1- 77/ (2\/5) . The “Tanh” representing the
proposed merging tangent hyperbolic function.

2.4 Summary and conclusions

The permeability of porous structures is an impdrtproperty that characterizes the
transport properties of porous media; howeverdétermination from first principals is
challenging due to its complex dependence on tleeostructure of the media. Using an
appropriate representative volume element, trassvllow in aligned, periodic fibrous
porous media has been investigated based on hsglutien (fine grid) FE simulations.
This is complementary to previous studies by Hilake [15, 16] and Van der Hoef et al.
[33] who obtained the drag/permeability relatiom fandom arrays of mono- and bi-
disperse spheres at low and moderate Reynolds mamibeall of my simulations, the
total pressure drop has been chosen small, suthwthare always in Darcy’s regime
(creeping flow). In particular, the effects of @ifént parameters including fiber (particle)
shape, aspect ratio, orientation, and staggercefliangle on the normalized permeability
are measured and discussed in detail for thednlye of porosities. The conclusions are:

* The current results for the permeability are vakdaby comparing with available
theoretical and numerical data for square and tenagarrays over a wide range of
porosities. Especially in the limits of high anaviporosity, agreement with previous
theoretical results is established.
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* By increasing the stagger unit cell angte, (where 60 degrees corresponds to the
hexagonal array), from the blocked configuratiorthwminimal angle anin, the
normalized permeability increases until it reacktsslocal maximum ata (035°.
Then it decreases a bit (almost plateau) untééaches its local minimum a 055°.
From there it increases again until a maximum ptyras reached atimax. The best-
fit (3" order) polynomials at different porosities aresergted as reference for later
use.

* By increasing the orientation angle of the ellipere the longer axis of ellipses was
used to define the orientation relative to the flalivection), the permeability
decreases and its anisotropy becomes apparent.p@imeeability values for the
extreme cases, i.e. eigenvaluesaaiid 98, can be used to predict the permeability
for arbitrary orientation angles, see Eq. (2.9).

* By increasing the aspect ratio of horizontal efifpsthe permeability increases and
approaches the permeability of slab flow, i.&./h?=1/12=0.083; at high
porosities

» Using the hydraulic diameter concept the permdglmn be expressed in the general
form of the (Carman-Kozeny) CK equation. The nuewrresults show that the CK
factor not only depends on the porosity but alséhenpore structure, namely particle
shape, orientation and stagger angle

* The numerical results show that immobile circled aflipses have the lowest and
highest permeability, respectively. The relevantehss observation for flows of
gas/fluid-solid with moving non-spherical particissan open question.

Since analytical forms with the power as a fregfitameter are neither consistent with
the highest porosity asymptote, nor with the lowEsbsity limit case, those fits are only
an attempt to describe the intermediate regimerattigal importance with a closed

functional form. In order to improve the analytigalation for the permeability, to be

applied, e.g., for DEM-FEM coupling, | proposed @mbined/merging function that

includes both limit cases of low and high porosityd is smooth in between with

maximal deviation from my numerical results of l&san 2%.

Future work will investigate the creep and inerfialw regime through periodic and
disordered arrays, the relation between microgtrecand (macro) permeability, and the
effect of the size of the system, especially ford@n/disordered structures. Since already
the packing generation algorithm affects the pebiiéain random arrays of parallel
cylinders, different procedures have to be companed evaluated with respect to the
microstructure, see next chapter. These resultstlvam be utilized for validation of
advanced, more coarse-grained models for partigig-interaction and their coupling-
terms between the discrete element method (DEMihi®particles and the FEM or CFD
solver for the fluid, in a multi-scale coarse gedrapproach.
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flow through random arrays
of cylinders

“The penson with a wew idea o a crank, antid the idea succeeds”
~Wank Twain~
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Abstract

The transverse permeability for creeping flow tlgiownidirectional random arrays of
fibres with various structures is revisited themadty and numerically using the finite
element method (FEM). The microstructure at varipasosities has a strong effect on
the transport properties, like permeability, ofrfibs materials. We compare different
microstructures (due to four random generator #lgyos) as well as the effect of
boundary conditions, finite size, homogeneity asdtropy of the structure on the
macroscopic permeability of the fibrous medium.nreability data for different minimal
distances collapse when their minimal value is agbed, which yields an empirical
macroscopic permeability master function of pososkurthermore, as main result, a
microstructural model is developed based on thedation effect in the narrow channels
between neighboring fibres. The numerical experissnggest a unique, scaling power
law relationship between the permeability obtaifresn fluid flow simulations and the
mean value of the shortest Delaunay triangulatitges (constructed using the centers of
the fibres), which is identical to the averagedoselcnearest neighbor fibre distances.
This universal lubrication relation, as valid invade range of porosities, accounts for the
microstructure, e.g. hexagonally ordered or dis@ddibrous media. It is complemented
by a closure relation that relates the effectiverosicopic length to the packing fraction

Highlights

* | numerically investigate the effect of several mstructural parameters on the
macroscopic permeability of random arrays of fibres

* Numerical FE results suggest a unique, scaling pdave relationship between the
permeability and the averaged second nearest r@idibbe distances.

» A closure relation is presented that relates thecB¥e microscopic channel length to
the macroscopic porosity.

! K. Yazdchi, S. Srivastava and S. Luding, Micro-neacelations for flow through random arrays of
cylinders, Composites Part A, 43 (2012) 2007-2020.

K. Yazdchi, S. Srivastava and S. Luding, On thédityd of the Carman-Kozeny equation in random filso
media, Particle-Based Methods Il - FundamentalsAgslications (2011), 264-273, Barcelona, Spain.
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3.1 Introduction

Understanding and predicting transport propertiésparous media is essential in
chemical, mechanical and petroleum industries Thjs has motivated the development
of relationships between macroscopic parametéws,dermeability, and microstructural
parameters, like fibre arrangements, shape andtatien or tortuosity (flow path) [2].
Most porous media are particulate, but some areposed of long particles/cylinders
and, therefore, may be considered as fibrous mé&timmmon examples of fibrous media
include composite materials, industrial filtersylbgical tissues, etc.

Resin transfer molding (RTM) is an efficient andduently used process for producing
fibre reinforced polymer composites with simplecomplex shapes. The permeability is
essential in such process and can be determine@rigus methods, e.g., experimental
measurements, numerical calculations or analytigakdictions. Experimental
measurements often require a large number of dbrefontrolled experiments and are
normally expensive. Analytical predictions based theoretical assumptions (and
validated by experiments and/or numerical studaes)often applicable in a certain range
of fibre volume fraction only.

With the recent progress in computational and nigaktools, one can now predict the
macroscopic properties of fibrous materials witthea complex microstructure. Chen
and Papathanasiou [3-4] computationally investdjatte flow across randomly
distributed unidirectional arrays using the bougdgement method (BEM) and found a
direct correlation between the permeability of diles media and the mean nearest inter-
fibre spacing. Papathanasiou [5] performed a sinstady for unidirectional square
arrays of fibre clusters (tows) using the BEM. H#texd that the overall flow rate through
a multiscale fibre reinforcement is determined nyosly the flow in the mesoscale
region, which consequently implies that the saadgtermeability is also determined
mostly by the flow in that region. Song et al. f@]culated the permeability tensor for a
3D circular braided preform by solving a boundargljfem of a periodic unit cell. The
flow field through the unit cell is then obtained bising a 3D finite volume method and
Darcy’s law is utilized to obtain the permeabiltgnsor. Their numerical results show
that the permeability in the machine directionhe preform was the highest among three
directions. Takano et al. [7] employed an asymptbtimogenization theory to evaluate
the permeability of woven fabrics with the helpfofite element method (FEM). They
investigated the effect of woven architecture anpgkrmeability characteristics for plain-
woven fabrics with and without shearing deformatibmmy recent study [8], the effect
of several microstructural parameters such as fidnape and orientation on the
macroscopic permeability of 2D regular fibrous naedias investigated using a large set
of FEM simulations.

The permeability of ordered (regular) fibrous mediaknown to be a deterministic
function of their porosity in the limit of large drsmall volume fractions, see previous
chapter. However, the parameters affecting the gebitity of disordered (random) fibre
arrays are not very well understood. Random filoraya are, in principle, well suited to
analysis using effective medium approaches. Byamrg the conservation equations,
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Koch and Brady [9] derived a relation for the efiee diffusivity coefficients in the limit
of high porositys, however, that remains questionable in the poreaitge of interest in
composites manufacturing, e.g., 0&<0.9. Similarly, considering larges values,
Drummond and Tahir [10] modeled the flow aroundbaef using a unit cell approach by
assuming that all fibres in a fibrous medium exgraee the same flow field (i.e. no
interaction between them) and, therefore, the pabitiey can be obtained by adding the
resistance of individual particles/fibres. The degence of permeability in this limit
involves logarithmic, linear and quadratic funcgaof the solid concentration.

Based on the lubrication approximation and assuntivag the narrow gaps between
adjacent cylinders dominate the flow resistancesfoall £, Gebart [11] presented an
expression for the transverse permeability of sguwarhexagonally ordered arrays. He
found that the dependence of permeability on fimwkime fraction in this limit is a
power law. Using percolation theory, Katz and Themp [12] found a power law
relation between the macroscopic permeability andrastructural descriptors for
sedimentary rocks, i.e. the critical pore diameter.

The earliest and most widely applied models incbmposites literature, i.e. intermediate
porosity regimes, for predicting permeability agpitlary models such as the Carman-
Kozeny (CK) equation [13] where a constant (Kozeoystant) is supposed to account
for the structure at different porosities. Whilarso studies have reported success with
this relation [14], discrepancies are also repofi&]. Results from numerical modeling
[3] and experimental studies [16] indicate thatbast, capillary models represent the
behavior of fibrous materials over a limited potpsange. To my knowledge, relation
between microstructure and macroscopic permeabilitghe fibrous media, such as
composite materials, has not been studied systealigti

The objective of this study is to computationallywestigate the effects of micro-

structural parameters such as fibre arrangement@rmmacroscopic permeability by
using a FEM for fluid flow over a wide range of psity. To this end, the macro

description of fluid flow equations and the numafti¢cool employed to solve these
equations are presented in Section 3.2. Volumedifigrent sizes, formed by randomly
placed non-overlapping arrays of parallel cylindeespendicular to the flow direction,

are constructed in four different ways as discusae8lection 3.3. The size effect, the
homogeneity and the isotropy of the fibre arrangasiare analyzed using several
statistical tools. In Section 3.4, | present a wstructural model based on the lubrication
effect of the narrow channels as an attempt tedihbine my various simulations in a
wide range of porosity and (ii) relate the micro ttee macro properties of fibrous

materials. The chapter is concluded in Sectionn8tb a summary and outlook for future

work.

3.2 Mathematical formulation and methodology
This section considers the macroscopic descriptibthe flow equations applied in

fibrous structures and my methodology, e.g., théhotk of discretization of the domain
and boundary conditions applied to my FEM basedikitions.
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The velocity and pressure profiles through thediitsr media can be obtained from the
solution of the conservation laws, namely, the icwitly equation (conservation of mass)
and the Navier—Stokes (NS) equations (conservaifomomentum). In the absence of
body forces and for Newtonian fluid, incompressilsteady state flow, the equations of
conservation of mass and momentum are:

U =0,

3.1
p(ulDu) =-Op+J%u 3.1)
wherep, u, pandu are density, velocity, pressure and viscosityheffluid, respectively.

According to Darcy’s law for unidirectional flow ribugh a porous medium in the

1
creeping flow regime, the horizontstiperficial (discharge) fluid veIocit;’tJ = VI udv
Vf
(V, t are the total volume and volume of the fluid) i®gwrtional to the pressure
gradient:

u=-Xnp. (3.2)

U

The proportionality constan, is called the permeability of the medium, whittosgly
depends on the microstructure (such as fibre aeraegt, void connectivity and
inhomogeneity of the medium) and also on poro8tyincreasing the pressure gradient,
one can observe a typical departure from Darcyis(taeeping flow) at sufficiently high
Reynolds number, Re>0.1 [17]. However, in the follgy, | restrict myself to creeping
flow regime, i.e. R 1.

The FEM software ANSY%is used to calculate the fluid velocity from distization of
Eq. (3.1) into linear triangular elements. They evéinen solved using the segregated,
sequential solution algorithm. This means that el@mmatrices are formed, assembled
and the resulting systems solved for each degreeeflom separately. Some more
technical details are given in Ref. [8]. Afterwardbe superficial velocity and the
permeability of the fibrous material are obtainathg Eg. (3.2). Fig. 3.1 shows a 3D/2D
representation of 200 randomly distributed fibresnmal to the flow direction at porosity
£=0.6 with minimum inter fibre distanc&,,=0.05d (d is the diameter of the fibres) or

the minimum dimensionless distangg,, =9J,,,/d =0.05. Just as in the work of Chen

and Papathanasiou [3, 4], a minimal distance iseg@ 2D to avoid complete blockage.
The microstructural parameters, namely the system the method of generation, the
homogeneity and the isotropy of the structure baldiscussed in more detail in the next
section. At the left and right boundary pressureeas and at the top and bottom wall
surfaces (z direction) and at the surface of thiegbas/fibres no-slip boundary conditions
are applied. Some simulations are formed with pkciboundaries instead of walls with
normal in the z direction (the differences are itiedain Appendix 3.B.3). The fibres are
assumed to be very long so that a 2D solution esapiplied. A typical unstructured, fine
and triangular FEM mesh is also shown in Fig. 3He mesh size effect is examined by
comparing the simulation results for different dlefons. The number of elements is
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varies from 510° to 10 depending on the porosity regime. The lower thesity the
more elements are needed in order to resolve ohe\ilithin the neighboring fibres, see
appendix 3.A for more details. To obtain good statal accuracy, the permeability
values were averaged over 10 realizations.
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Figure 3.1: Fibre distributions generated by a Monte Carlo pdure (see subsection

3.3.1), with 200 unidirectional, monosize cylindersrmal (y) to the flow direction (x),
with minimum inter fibre distanc&,,;,=0.05 at porositys =0.6. At the top the diametet,

and virtual diameted” = d(1+4,,,) are shown, schematically. At the top 3D and
bottom 2D representation of fibre distribution ah@wn. The zoom shows the fine,
unstructured, triangular FEM mesh.
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3.3 Generation of the fibrous microstructure

Developing a model for predicting the permeabildgg a function of porosity and
structure of the fibrous materials would help taluee the experiments in liquid
composite molding (LCM) processes such as RTM semranfusion. Furthermore, by
understanding the physics of the flow through suchterials, one may tailor the
microstructure such that it has both the desiradfarcing capability and also the
permeability to be filled efficiently. To get retike evidence and to quantify the non-
uniform spatial distribution of fibres, several mustructural characteristics of fibrous
material will be discussed here in detail.

Note that to ensure a gap between particlesi), | assign a virtual diameter
d =d(1+4,,) to each fiber, leading to the virtual porosity=1-(1-¢)(1+A,,)",
see Fig. 3.1, which has been used for packing g&aoerin the rest of this section.

3.3.1 Method of generation

Most of representative volume elements (RVE) refytbe assumption of a periodic
distribution of fibres, i.e. the structures at thmundaries are similar to those in the bulk.
However, realistic media are finite and confinedhwialls. Some systems can be very
large so that boundary effects can be neglectedh@wther hand, in micro-systems, the
effect of the walls might show up. Therefore, uslspecified otherwise, in the rest of the
chapter | consider a 2D representation of the fisroomposite in which the fibres are
randomly distributed in a square domain and codfity walls with normal in z
direction. In order to understand the wall-effedtswill vary the system size (see
appendix 3.B for details).

To generate random, non-overlapping fibre arraysel different algorithms, namely, (i)
random placement (RP), (ii) a Monte Carlo (MC) mubare, (iii) an energy minimization
(EM) approach and (iv) molecular dynamic (MD) siatidns. Note that in all methods,
we have a minimal distanc&») between fibres to avoid complete blockage.

() In the RP the position of fibres is randomlyadn from a uniform distribution; then
this location is taken as valid if it does not dapra previously positioned fibre. The
insertion of fibres will continue until it reachéee desired number of fibres. This process
leads to an asymptotic jamming limit since the spawailable to place successive
particles decreases with the addition of each nasigle. The minimum porosity for RP
in 2D is estimated to be ~0.447 [18], and has fotmdbe ~0.453 [19] via computer
simulations.

(i) Given an initial fibre configuration on a trigular lattice, the MC procedure perturbs
fibre centre locations in randomly chosen direiand magnitudes [3-4, 20]. The

perturbation is rejected if it leads to overlaphndt neighboring disk. One step consists of
trying to move each disk once. | use up t8 4i@ps for each realization at low porosities
to get a good random configuration i.e. the MC psscshould generate a random
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position field which is short range correlated. Hoer, at the lowest porosity, the
particles remain ordered and show some dependente the number of
steps/perturbations, even for the longest simulatid-or high porosities, the structures
show no dependence on number of MC perturbatiommse®er, the MC algorithm can
generate denser systems as compared to RP.

(i) In the EM approach, infinitesimal disks arlaped at random positions in the system.
Then, they are gradually expanded and moved at s@ghto prevent particles from
overlapping. When the desired porosity is reachmed @lgorithm terminates [21]. We
assume that the particles interact via the sottmgal given by:

(3.3)

where S is the characteristic energy scale apds the separation of particlésandj.

Potential of this form was motivated by simulatioh granular materials, see next
subsection, where the particles do not interacepixfor a strong repulsive force that
keeps the particles from overlapping/deforming nmactf. With this procedure, one can
generate very dense systems dowm t.158.

(iv) Finally, a 2D discrete element method (DEM) swoft-sphere model is used to
generate a random non-overlapping disks configumatiThe motion of particles is
described by Newton’s laws of motion. A characterifeature of the soft-sphere models
is that they are capable of handling multiple g#eticontacts, which are of importance
when modeling dense, quasi-static systems. Padiddaps are indicative of a collision.
For all identified collisions, a contact model (@druse a simple spring/dash pot model,
similar potential as Eqg. (3.3)) is applied and shreulation is then advanced again in time
[22]. The typical contact duration is:

t=mlw, with w=.\2k/m=(g, /), (3.4)

wherek, w, 77, andm are the spring stiffness, eigen-frequency of thetact, viscous

damping and mass of the particles/fibres, respegtilNote that the integration of the
equations of motion is stable only if the integrattime-step At,,, , is much smaller than
t.. The difference to EM is that inertia (dynamicabtran of particles) is taken into
account in MB.

2 After each expansion step, we check if any diskslap by checking the condition t:lij-—/d>10‘5 for each
particle pair. Below this limit, the overlap is hected. If any particles do overlap, i.e. the taaérgy is
E>0, the nonlinear conjugate gradient method is tigetecrease the total energy by adjusting theipasi
of disks so they no longer overlag=0). Therefore, in this method, the valuefofvill not affect the
minimization procedure.

% Contact force parameters used in MD simulatiérd0® [kg/s], m=100 kg,70=10* [kg/s], Atyp=10" [s]
with the total time of simulatioy=500 [s].
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Having an initial fibre configuration on a regulaiangular lattice, we assign random
velocities in random direction to each particle and a MD simulation for sufficiently
long time such that all particles are separatedhleyminimum gap Amin). A random
structure is obtained by taking a snapshot of ithed fibre positions.

In the following, | compare the statistics of thieré arrangements generated by the four
methods and investigate the influence of the packgenerator algorithm on the
macroscopic permeability of the medium, where [3ig8d the MC procedure only.

3.3.2 Statistical analysis of the microstructure

Various statistical descriptors have been proposedcharacterize and classify
microstructures based on the spatial arrangememetefogeneities, see for example [23,
24]. Popular among these is the radial (pair) dhstion functiong(r), which is defined
as the probability of finding the centre of a filmside an annulus of internal radiuand
thickness dwith centre at a randomly selected fibre. It igmeanatically defined as:

1 &K(r)

A N
o where K (r)=—>"1,(r). (3.5)

a(r) = NZ

where K (r) is a second-order intensity function, also knowrRapley’s function [3-4,

23] and 1, (r) is defined as the number of centers of fibres tigawvithin a circle of

radiusr about an arbitrarily chosen fibre aNds the number of fibres in the observation
area A. Given a Poisson point distribution, the compleddomness of the fibre
distribution will assure thag(r)=1 (with some fluctuations) for all distances cadesed.

A statistically valid fibre distribution without fag-range order will havg(r) tending to 1
as the distanceincreases. The comparisongtf) for packings generated with different
methods is shown in Fig. 3.2(a). In this grapharies fromd (diameter of the fibre) to
approximately 1/3 of the sample size to avoid bamndedge) effect on the statistics.
Fig. 3.3 shows the actual area and the centervanégzh we used to calculagr) for
various creation methods. In all methods the specicontains 800 fibres at constant
porosity £ =0.6 with minimum inter fibre distanc&,,, =0.05. Local maxima indicate the

most frequent distances and local minima corresponthe least frequent distances
between pairs. The first (highest) peak in the lgr&p caused by the physical area
(excluded “volume”) of the fibres with virtual diaterd . Asr increases, we observe a
number of oscillations untd(r) approaches the value of unity indicating the nucady
generated microstructures are statistically randamargerr. The EM method has the
largest peak at/d~1.05 (minimum allowable inter fibre distance) ath@ most rapid
decay with distance, followed by a second peakia.1 (equivalent to/d ~2), which is
an indication of fibre agglomeration (or a clustestructure). For the RP algorithm the
oscillations around the complete randomness valugrp=1 are the smallest compared
to the other methods, however, the location ofllotaxima/minima is almost the same
as for MD and MC, which lead to the most simitgr) among the four methods. For
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configurations with more fibres and different poties (data not shown), qualitatively,
the same trends are observed.
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Figure 3.2: (a) plots ofg(r) for 800 fibres generated by different methods with=0.05
at porositye =0.6, (b) comparison of the normalized permeabdityhe fibre
arrangements from (a) plotted against the numbébiefs. All data are averaged over 10
realizations with 1Dperturbations. The error bars indicate the stahdaviation. Larger
numbers of perturbations do not lead to a visiliffernce.
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The fibre arrangement has a direct influence oreffextive properties of the medium. In

Fig. 3.2(b) the variation of the normalized pernikigh K/d?, as a function of the
number of fibredN, is shown. As expected, the packings generatedd M@, MD or RP
(with similar fibre distribution) have practicallhe same permeability, especially for
larger N. However, the clustered structure (generated by B&4 a lower permeability
for all numbers of fibres. This is due to the ftat many particles are arranged along
lines - sometimes with local square or triangulancdure - but no long range order is
evident as one would have in a crystal (see FBjaBd the peak locations in Fig. 3.2(a)).
This leads into more resistance to the flow (iosvdr permeability) even at intermediate
porosities (see next section). By increasing thstesy size the standard deviation
decreases but it remains largest — for EM — ingigatorrelations built into the method.
For most data presented in Section 3.4, | stickheoMC procedure that generates the
structures similar to what is observed in real cosie manufacturing processes [20] and
since it is faster than the MD method. More detaifsthe effect of system size and
boundary conditions on statistical descriptors anadroscopic permeability are provided
in appendix 3.B.

3.3.3 Isotropy and homogeneity of the packing

Since the media studied here consist of randondyiduted fibres, they are expected to
be isotropic (no preferential flow direction). Th@are, the normalized permeability as a
function of porosity in both horizontal and vertichrections, as shown in Fig. 3.4, is
independent of flow direction. As mentioned befdhe EM approach tends to generate
clustered packings unlike the MC procedure (or Mibusations), which create more
homogenous structures. Fig. 3.4 shows that all odstinamely MC, MD and EM)
create isotropic media (with respect to horizoatad vertical flow) for all porosities. For
comparison, the numerical results of Sangani anal [28] and Chen and Papathanasiou
[3] for transverse flow are also included in Figd.3The homogeneity of the packing has
negligible effect on permeability at high porod(ty>0.65), however, at lower porosities
the clustered structure has lower permeability asnpared to the homogenous
configuration. The reason is that for dilute fibsomedia there is no correlation between
the solid fibre bundles, however, at lower poresitin the packing generated with the
EM approach, we see local fibre clusters, whickdtemblock the channel and cause a
drop in permeability. This was confirmed by studythe velocity fields (not shown here)
and is also visible in the PDF of neighbor distance

3.3.4 Effect of minimum inter-fibre distande,t)

The minimum inter-fibre distance i) was taken as 5% of the “true” fibre diametér,
in my simulations up to now to avoid complete blagék in 2D. In the following we scale
the permeability values such that they collapsea @ingle curve valid for all values of
Anmin ranging from 0.2 to 0.005. Note that the lowerAhg the more elements are needed
to resolve the flow in the gaps between fibres.
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Figure 3.3: Each image consists of 800 fibres with minimuneiirfibre distance) ;. =

0.05 ande =0.6. They are generated by (a) Random Placement (BPYlonte Carlo
(MC) procedure, (c) Energy Minimization (EM) appcbaand (d) Molecular Dynamics
(MD) simulations. The red box shows the center areiah has been used to calculate
g(r). For the chosen reference particles only thosednrther red square are used, while
the distances to all others are considered.

Fig. 3.5 shows the effect o, on the fibre arrangements and fluid velocity. Nibtat
large values oA, lead to local (triangular) ordering (Fig. 3.5(ajhereas a smallmin
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results in a pattern showing local fibre aggrega(iéig. 3.5(b)). We observe stagnancy
of the fluid between fibre aggregates or withirgarof close-by fibres, while a few major
flow paths with relatively high flow speed existalt configurations with disorder.

The permeability,K /d?, for small porosity (i.e. the maximum random clgsaeking
fraction ~0.84 €. =0.16) [26], see the appendix 3.C.) saturates at anica-dmite

value. Larger minimal distancés,, lead to over-proportionally larger permeabilityofp
not shown). When the data are scaled by the peifitgadxpected for a periodic

hexagonal cell as(K—KR:f)/dz, see Ref. [8], the data vanishes at a finite ptyos

which decays with decayint,n. Therefore, | conclude that the minimal permeabif
my random structure is somewhat lower than theadreehexagonal lattice (see the inset
in Fig. 3.6). In other words, the systems with maréform and weak channels (Fig.
3.5(a)) have higher permeability than the systerth fewer dominant channels (Fig.
3.5(b)).
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10 ¢ ** MC-vertical
i EM-horizontal

10° || — EM-vertical ]
\/ MD-horizontal
- MD-vertical
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Sangani et al. [25]
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&

Figure 3.4: Normalized permeability as a function of poro$dy homogenous
(generated with MC procedure or MD simulations) alustered correlated (generated
with EM approach) structure in both horizontal aedtical directions. Error bars indicate
standard deviation from 10 realizations.
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Figure 3.5: Typical fibre distributions generated by a Mon@16 (MC) procedure, each
with 800 fibres ate =0.5 with minimum inter fibre distance (&), =0.2 (¢ =0.28) and

(b) Amin =0.005 (" =0.49) The color code shows the horizontal velocity figlch
pressure driven system. Only the center part ofylseem is shown.

Fig. 3.6 shows the effect af, on the normalized permeability — after scalinghvan
appropriate permeabilityK®/d?* that is obtained by multiplying thda(gj: /d? with a
prefactor such that all the data collapse ontanglsicurvé. The minimal permeability
for disordered fibre-arrays can then be cast intiorenula:K®/d? = 7K,* /d?, with
factor /7:(1+A0 /Amin) where A, =0.14 (fitting parameter) and accounts for the

minimal inter fibre distance. The numerical valugsthe critical porosity,s,™ and

min

permeability Km/d2 (for a perfectly hexagonal lattice) and correcgatmeability,
K®/d? at differentAn, are given in Table 3.1. The scaling factgrwas obtained by

fitting the K°/KA“:: ratios at differentAmi,, using a least square approach. With

increasingAmin the scaling factor decreases towards unity andtéhected permeability
values, K¢/ d?, approach the hexagonal cell values. Note thatastedata point at each

Amin branch is slightly belove, .. [10.3 (see the arrows). Because &l > ¢ . can be

rder

4 The value oK®/d? at large values d, can be approximated a$%(d?) amn ~ (K/d?) amin - (K/?) Amin=0.005
By plotting the values of K/d?) amin / (K“e’ldz) amin) @gainstin,in, we observed that the data are fitted best to
(1+A0/Amin) With Ay=0.14.
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considered as random (almost), whereas: ¢, .., are partially ordered, we exclude the

latter. The inset in Fig. 3.6 shows the zoom ofpability data before scaling at low
porosities together with the perfectly hexagondli&s obtained from lubrication theory
[11] (red dashed line) and finite element resu8k (blue stars). The permeability of
random fibre arrangements tends to be smallerftiramexagonally ordered arrays. In the

next section, my attempt is to extend the lubraratiheory for ordered arrays [11] into
random configurations.
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Figure 3.6: Variation of corrected normalized permeabilitytfdd against porosity for
different minimum inter fibre distances,,, with N=800. The five arrows show the

expected onset of ordering &}, = 0.3 for decreasingmin (from right to left). The

dashed blue line shows the empirical merging famctEq. (3.D.3), in appendix 3.D. The

inset shows the low permeability data without skt low porosities. The dashed red

line and blue stars correspond to the periodic ¢exal cell values of lubrication theory
[11] and finite element results [8], respectively.
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Table3.1: The values of the critical porosity,™ =1—(1— £;ex) (1+4,,,) with
& =1-ml (2\/_3) [0 0.093, and permeability (for a perfectly hexagonal &atfi

KE:X /d?, and corrected permeability for random latti¢€s/ d?) at differentA min.

Amin 52:: ng: /d? K¢/d?
0.2 0.3702 1.035x10°° 1.7x10°
0.1 0.2505 1.801x10™ 4.3x10™
0.05 0.1774 3.172x10° 1.3x10™
0.025 0.1368 5.587x10° 3.5x10°
0.005 0.1021 1.006x10" 2.8x10°

3.3.5 Summary

In summary, the random generator algorithm usedeioerate the fibre packing for

analysis can affect the local fibre distributiorpesally at low porosities. All methods

used in this study generate isotropic structureth wespect to vertical and horizontal

direction. The EM approach used has created mdezdgeneous packings compared to
other methods.

Note that in general, the optimum number of pagticlas small as possible but large
enough to represent bigger samples) depends onpdhesity. Periodic boundary

conditions can reduce this number since inhomogerai the walls is removed (see
appendix 3.B). As standard=800 was applied and, as before, the permeab#ity i
calculated on the center part of the system (sge3R3).

Putting an artificial gap between fibres.{,) changes the microstructure and accordingly
the permeability of the packing, at high volumecfians (smallg). As the main result of
this section, correcting the permeability valueshwhe empirical minimal permeability

for random structuresiK®/d?, leads to perfect scaling (standard deviationrdisancy

less than 5%) of all random/disordered structueda tbr all permeabilities, valid for all
Amin, @s shown in Fig. 3.6. Understanding the microgcopigin of this scaling is the
subject of the next section.

3.4 Theoretical prediction of the permeability

In this section, a microstructural model is presdnfor predicting the macroscopic
permeability based on the lubrication effect of tlagrow/effective channels.
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3.4.1 Statistical characterization of effective chals

Several statistical and structural descriptors,Delaunay triangulation (DT), Delaunay
edges (DE), hydraulic diametddy) and fibre/particle nearest neighbor distan(:@g,},

obtained from fibre distributions, are discussererand used to characterize the narrow
channels.

3.4.1.1 Nearest neighbor distances

Here | define the mean value of tiith nearest neighbor distance3,) normalized with

the diameter of the fibreg, =((D,)~d)/d. The diameterd can be expressed in terms

of macroscopic porosity asl =,/4(1-¢)/(Am) where A=(1-¢)/V, is the number
density (number of fibers per unit area). The vadfiel is 2 in my simulations (800
fibres in a box of 2820 [nf]). Similarly, one can define the effective norraali n-th

nearest neighbor distances jas= ((Dn>—d* )/d with d” =d(1+4,,,). The former,y,,

guantifies the channel width available for flow, ilehthe latter is a measure for the
effective distance due to the minimum inter fibrist@hce, which is relevant for
microstructure but not so much for fluid flow.

Fig. 3.7(a) and (b) show thé%and £ nearest neighbor distances, respectively. Note tha
the network in Fig. 3.7(b) appears considerably anditute than that in 7(a). While
neither network percolates, when combined the &rat second neighbor network does
percolate. Flow is less likely to go through theroaest gaps, but there are sufficient
numbers of ¥ channels, that the second neighbor distanceskatg fo control the flow.

3.4.1.2 Normalized hydraulic diameter (Dy/d)

Another measurable quantity that is frequently usedmodeling of porous/fibrous
structures is the hydraulic diametBy, [1]. When one has obstacles like fibres (or
particles) instead of straight pores, the hydradikeneter can be defined as:

_4dev 0 4 , _ particle surface. S, _
D, = = = , with a, = : = =—
S (l-&a (1-¢) particle volume ( t&)V  d

o (3.6)

with the total volume of the unit celN/, the total wetted surfac&, and the specific
surface areag,. Note that the hydraulic diameter, in this wayexpressed as a function
of the measurable quantities porosity and spesiiitace area. The above valueapis
for circles (cylinders) — for spheres one h@s6/d. Therefore the relation between
normalized hydraulic diamet&;/d and porosity for fibres will reduce to:
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D, £

d (1-¢)

(3.7)

Note that in the following the hydraulic diameteken though it could be defined per
particle or per Delaunay triangle, will only be dses averaged quantity.
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Figure 3.7: Various microstructural descriptors used in thisig: (a) The * and (b) the
1* nearest neighbor distances plotted for each f{ojelhe blue lines delineate the
Delaunay triangles. (d) The minimum Delaunay egijeted for each DT. The red lines
show the repeated edges from neighboring triangliégraphs show the center part of
800 randomly distributed fibres generated by the @ edure at =0.6 with minimum
inter fibre distanc@ yi,=0.05.
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3.4.1.3 Delaunay triangulation (DT)

A Delaunay triangulation (DT) is the set of lin@snjng a set of points such that each
point is joined to its nearest neighbors [27] dtisfies an “empty circle” property, i.e. the

circumcircle of each triangle (formed by three pgjrdoes not contain any of the other
points. It is the dual graph of the Voronoi diagrévib) and has a node (fibre center) for
every Voronoi cell and an edge between two nodekeifcorresponding cells share an
edge (see Fig. 3.7(c), the blue lines show the @&Jes). This concept is suitable for the
characterization of the arrangement of disperskredi [28]. The DT has many other

applications such as finding the nearest neighboesh generation and surface
reconstruction, interpolation and extrapolatiomaist calculation [29], etc. Here we used
the statistics of the Delaunay edges as a desctiptharacterize the spatial dispersion of

fibores. One average quantity is the mean valudl @R edge Iengths<e§T> normalized
with the diameter of the fibred; i.e. yg5; = (<e§T>— d)/ d. For a perfect triangular lattice
it reduces to exactly the inter fibre (surface-tiof@ce) distance and for the lowest
porosity &, = (1— ﬂ/(Z\fB)) one hasy?, =4,

Similarly, one can find the shortest Delaunay edgesach particle and then average
over all particles, i.e. the firsty” =(<ef’>— d)/ d, the secondy; =(<e2p>— d)/ d, etc.

The numerical results show thgf, , Oy, , . (for ;" Oy, see Fig. 3.8).

3.4.1.4 Delaunay edges (DE)

For a given Delaunay triangulation the local magsservation implies that in steady
state condition the net flow through all the DT esldpelonging to one triangle is zero.
Therefore, the characteristic length of these edgeht also be useful to describe the
macroscopic flow field.

We define )/ as the mean value of the shortest Delaunay e(igje)s (averaged over

Delaunay triangles and not fibres) normalized by fibre diametery; :(<ef>— d)/ d.

Fig. 3.7(d) shows these shortest edges. The reor gblows the repeated edges of
neighboring triangles. Note that the superpositgbthe network in Fig. 3.7(a) and (b) is
very similar to (d) — not shown here. The shortestaunay triangle edges form a
percolated edge-network, where empty “channelsicatd the regions (channels) in
which the fluid is most likely flowing (fast).

Fig. 3.8 shows the variation of all these descrgptas a function of porosity. The
normalized mean nearest neighbor distances apptbacminimum inter fibre distance
(i.e. Amin~0.05) at low porosities (locally crystalline sttui@). On the other hand, at high
porosities we are reaching the analytical valueswdiom point patterns a@t=1.
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As expected, the values obtained by averaginghbeest Delaunay edges for each fibre
¥, match the results of nearest neighbor distanc¢esAstonishingly, we observe that

the mean values of thd®nearest neighborg, (red squares) approximately match the

values of the shortest DT edge§ (averaged over triangles). So far | have not foand
mathematical proof for this observation. For reg(l&. square or hexagonal) arrays, the
statistical descriptors are the same £y, =)y,=y;) and ), is thus a deterministic
function of porosity, see next section. Interediinpe values ofy}. for random and

hexagonal arrays are almost the same, showinghbanean value of neighboring fibre
distances obtained by averaging over all DE doésieend much on the structure.

Another interesting observation is that f0x0.8 the normalized hydraulic diamet@y/d
has also the same trend as the shortest Delaurggs exhd the " nearest neighbor
distance3and, when scaled by a factor 1/6, even agreesitatawely well.
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Figure 3.8: Variation of normalized mean nearest neighbormdists (T, 2" and &), the
mean length of all Delaunay edg@%’T), the mean shortest Delaunay edge averaged

over particles(ylp) and triangles(yf) and the normalized hydraulic diame{d, /d) as

® This may explain the limitation/failure of capiffamodels such as the Carman-Kozeny (CK) equation a
high porosities which are based on the hydraubenditer concept.
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a function of porosity. Average is taken over 18limations with 800 randomly
distributed fibres. Only the center part of thetegsis considered to avoid edge effects.

3.4.1.5 Microscopic channel width in terms of macr oscopic por osity

Based on a least square fit approach, an empeiqgalession is obtained for the mean
values of then-th nearest neighbor distancgs, as functions of porosity:

. D, 1-¢ )"
v, =(D,)/d-1 with <<an>> =1+¢, (ﬁ] , (3.8)

where €. (4,,;,) and <Dn"> are the corresponding critical porosity of a randmacking

with & [00.16 and mean nearest neighbor distance for random spaiatculated
analytically from Eg. (3.B.1), respectively. Theamtities ¢, and ¢, are fitting constants
for a givenn and, in general, weakly depend &, The numerical values affan>, £,

@, and ¢, for n=1, 2, 3 and variouAn, are given in Table 3.2. Thus, one can easily

estimate then-th nearest neighbor distances of hard disc packingsnby knowing its
macroscopic porosity. Fig. 3.9 shouree variation of mean values of thé? hearest

neighbors, y, as function of porosity together with the bess,fiEq. (3.8), at different
Amin. At high porositiesAmin has less effect o, , however, by decreasing porosity,
has larger values at high&ri, and approaches the limit valyg =A_,,. The inset of
Fig. 3.9 shows that by plotting the effectiye =<D2>/d* -1 against the effective
porosity £, all data collapse and one gets the universakcim&g. (3.8) withe! [10.16,
¢, 00.35 and &, 0.7 corresponding tdmin=0, i.e. ), =y, and& =¢.

One of my hypotheses is that the percolated netwbrthe shortest (triangle) edges,
y; Oy,, controls the overall drag (permeability) of thieréus material (which is
confirmed a-posteriori by my numerical results mgloHowever, the microstructure is
controlled byy, which leads to larger excluded volume during pagldeneration. In the

next subsection | will show that, similar to regufébre arrays [11], these channels
between triangles are correlated with the macrasqugrmeability of the porous medium
for a very wide range of porosities.
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Table 3.2: The numerical values o =1—(1—£:) /(1+4,,,)" with & 00.16, <Dn">,
@, and ¢, for variousn andAmi» which are obtained analytically from Eq. (3.B.hpéy
least square fitting of numerical simulation in thege of0.3<&” < 0.9E.

Amin n & <an> 9, ¢n
1 0.4167 0.3535 1.0727 0.7904
0.2 2 0.4167 0.5303 0.3372 0.6790
3 0.4167 0.6629 0.1049 0.2502
1 0.3058 0.3535 1.0757 0.7910
0.1 2 0.3058 0.5303 0.3509 0.7048
3 0.3058 0.6629 0.1065 0.2454
1 0.2381 0.3535 1.0732 0.7867
0.05 2 0.2381 0.5303 0.3495 0.7017
3 0.2381 0.6629 0.1064 0.2412
1 0.2005 0.3535 1.0771 0.7887
0.025| 2 0.2005 0.5303 0.3557 0.7084
3 0.2005 0.6629 0.1099 0.2567
1 0.1683 0.3535 1.0806 0.7948
0.005| 2 0.1683 0.5303 0.3611 0.7314
3 0.1683 0.6629 0.1123 0.2969

66



Chapter 3. Micro-Macro relations for flow througindom arrays of cylinders

10'2 ! !
0.2 04 0.6 0.

&

Figure 3.9: Variation of mean values of th&%hearest neighborg, as function of
porosity together with the best fits from Eq. (&)lid lines) at different .. The inset
shows the scaled data by plottipg as function of effective porosity .

3.4.2 Permeability prediction in terms of effectohannels

Based on the Navier-Stokes equation, Gebart [llijvel® the permeability of an
idealized unidirectional reinforcement consistirigegularly ordered, parallel fibres both
for flow along and for flow perpendicular to théres. The solution for flow along fibres
has the same form as the CK equation [13], whiéesthlution for transverse flow has a
different form as:

2.5
K 1-¢
—=C £-1| 3.9
d? ( 1-¢ J (39)
where £, is the critical porosity below which there is nermeating flow andC is a
geometric factor (C—— 00.1, €. = 1—— 00.214( for a square array and
92 4

C:—DO 0578, ¢, = = +-"C 10 0.093 for a hexagonal array [8]). Gebart [11

oG NE g y [8]) [11]
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presents numerical results, obtained using a fdifference solution of the NS equations
that show excellent agreement with Eq. (3.9) upamsities of ~0.65.

In order to rewrite Eq. (3.9) in terms ¢f , we express the porosity as function of the
lattice distance and fiber-diameted:

m(dY d)’
l-e=——| — | =(1-¢.)| — | , for hexagonal arrays
2\/:_3(aJ ( c)(aJ g y =
: R
1-¢

_a(dY d)’
1-e=71- =(1-¢,) 5+ for square arrays

_a
=5 (3.10)

For regular arrayy;, = y, =y, =y, , whereas for random arrays = y; (see Fig. 3.8), so
that y, =(D,)/d -1 can be written in terms of the lattice distance as

v, =(3j—1 . (3.11)
d

Inserting Eqg. (3.11) into Eq. (3.10) and combinitngith Eq. (3.9), leads to:

K

?:Cyzz'5 , (3.12)

as exactly valid for regular square or hexagonedyar at low and moderate porosities
with corresponding, see above.

In this representation, the normalized permeab#itales with the (for example’“d)z
narrowest channels, i.¢,, as a power law with power 2.5. Relation (12)emarkable,
since it enables one to accurately determine therameopic permeability of a given
packing just by measuring th8harrowest channels, I.g,, from particle positions or
the narrowest Delaunay edges, i)g., from Delaunay triangles. Below, | numerically
confirm the validity of Eq. (3.12) for both reguland also random configurations.

The shortest Delaunay edges and tHen@ighbor distances practically coincide and form
the network of channels through which the flow mgst Therefore, | expect that the

parameter, which characterizes the system andlatesewith the permeability, ig/ or
¥,. Fig. 3.10 shows the variation of the normalizexinpeability as a function of the

statistical descriptors discussed in Section 3&&hElata point represents the results for
800 randomly distributed fibres, averaged over ddlizations. The largest and smallest
y correspond to the porosity ~0.95 and ~0.3, regpdygt The macroscopic permeability
almost correlates with the shortest Delaunay tt@edges as a power law, similar to Eq.
(3.12) for regular arrays, in a wide range of piyod he solid blue line is the best power
law fit (with fixed power 2.5). The universal ramdoconfiguration pre-factorQ~0.2)
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seems to be only weakly dependent on the minimuen fibre distance, data not shown.
With decreasing porosity the data deviate fromabied line showing the appearance of
ordering in the structure. By correcting Eq. (3.48

K . m

¥=Cy§'5)((y2) with )((y2)=(1—)(0e VZ), X, 00.5, mO3, (3.13)
we now present a universal law for predicting thecrascopic permeability in terms of
¥, (with Eq. (3.8) as closing relation with porosity) a wide range of porosities

(0.3<& < 0.9%) for disordered arrays. The exponential correcfiactor, )((yz) was

obtained by least square fitting the ratio betweemerical data and Eg. (3.12) and
accounts for (partial) ordering effects. This olbaéipn is remarkable as it indicates that
the Gebart lubrication theory (Eq. (3.12)), oridinabtained for dense ordered arrays, is

also valid for random arrays in moderate and ditatgmes by using the, or y; as the
effective channel width. Fig. 3.11 shows the vasrabf the normalized permeability as
function of y, at different values afmi, together with the proposed closed form relations
in Egs. (3.12) and (3.13). In contrast to Fig. hére, the permeability data are not
corrected by, but are collapsed as the microscopic effectianakel widthy, =y, ( y’;)

takes care of the effect ofy,. For all values oA, Eq. (3.13) correctly predicts the

macroscopic permeability with maximum deviation @D% for & >0.3. The
permeability values for square and hexagonal cardigons have the same power/slope
and just shifted as they have different pre-factGrssee Eq. (3.9). More discussion on
very dense regimes, i.e. <0.3, where we have long range correlations due tagban

to strong ordering, is given in appendix 3.C. Femparison, the analytical prediction for
ordered arrays (square and hexagonal configurtioesEqg. (3.12) with the same power
2.5 but different constant§, are also shown. As an alternative to the micuasaral
model presented in Eq. (3.13), | propose a purehpiecal merging function which
combines the analytical solutions of dilute ands#elimit cases in appendix 3.D.
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Figure 3.10: Variation of normalized permeability, plotted asdtion of various
statistical descriptors"2nearest neighbor distange (or shortest Delaunay edges,)

show the best (almost power law) correlation inidewange of porosity aty,i,=0.05.
The solid blue line shows the power law fit.
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Figure 3.11: Variation of normalized permeability as functionméan value of
nearest neighbor distancg, at different values of min.
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3.5 Summary and conclusions

A finite element method (FEM) based model has besmployed to calculate the

transverse permeability of random fibrous media posed of long unidirectional

cylinders/fibres for a wide range of porosity. Trherostructure of the fibrous media has
been characterized using the pair distribution fioncand neighbor distance statistics.
Providing information about short range correlasiothese microstructure descriptors
allow us to characterize the spatial heterogeneftythe fibre structures, construct
computer generated microstructures for further &tman, or correlate the material
microstructure to macroscopic properties as, pgrmeability. The conclusions from my
statistical analysis of the microstructures andpemeability are:

* For relatively large systems, the packings obtairfiedn different random
generator algorithms are isotropic and homogentarsafvay from the walls).
Their properties are similar and independent of digtem size, except for the
energy minimization (EM) approach, which generatdgstered structures.
Periodic boundary conditions reduce the minimunuiregl number of fibres to
reach size-independence.

* By increasing porosity, the PDF of nearest neighthstances will change from
exponential to Gaussian, as relevant for randomtgmtterns only, not shown
here.

» The packings with higher inter fibre distanc®&y,, have more uniform and

weaker flow channels and therefore higher permialdind the behavior is
determined bye” = f (¢,4,,,) =1-(1-&)(1+A,,.)".

min

» All random structure permeability data (for all died minimal inter-fibre
distances) are scaled by subtracting the randorkingaeninimal permeability

K®/d? :UKA*‘:: / d? that is proportional to the equivalent minimumeofegular
structure and a pre-factor that increases with esstng minimal distance. The
low porosity random regime cannot be reached, spaial ordering sets in
below a certain threshold( J0.3).

Based on the lubrication effect of the narrow clesnl found a universal power law
relationship between the permeability values olet@ifrom fluid flow simulations and

the microscopic mean values of shortest Delaunaggdulation edges constructed on the
fibre center positions. From the microscopic pafhtview, the numerical results show

that the mean values of th&’hearest neighborg, =((D,)~d)/d (averaged over all
fibres) match the values of shortest DT edges= (<elT>—d)/ d (averaged over all

triangles). Astonishingly, the proposed power lasv valid for both ordered and
disordered arrays at all porosities, given a céoecdependent only orny,. The

superposition of tand 29 nearest neighbor channels forms a similar peredlaetwork
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as the shortest DT edges, with averagge which dominate the flow since they represent

the fluid channels through which the flow must gutlf preference for the wider'®
neighbor channels).

In summary, a closed form relation for predictirge tmacroscopic permeability for
ordered/disordered fibre arrangements is observégelins of the microstructural average

channel widthy, asK/d* = Cy22'5(1—,y0e‘”‘y2) , valid for wide range of porosities and all
values of inter-fibore distancen,. Note that Eq. (3.8) relateg, = y2( y2) with

Vo =V, (5* ) ande =¢ (&) to macroscopic porosity and therefore closesrétaion.

The results obtained in this study and the genesdtionships proposed for the
permeability, can be utilized for composite mantifeing, e.g. resin transfer moulding
processes. Furthermore, these results can be asedlidation of advanced models for
particle-fluid interactions in a multi-scale coagg@ining approach, as carried out in my
ongoing work. By analogy, the permeability in 3Dhdam packings should depend on

the smallest faces of Delaunay tetrahedrgfi¥, possibly with the chance for similar

unique scaling relations as in 2D, a predictiont thaits for numerical/experimental
proof.
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Appendix 3.A Mesh sensitivity analysis

Due to the difference in scale between domain arm gap size between neighboring
fibers, this typically requires local mesh refinerhd-or different porosities, flow through
random fiber arrangements was simulated at differaash resolutions (number of
elements,Ng). The dependence of the solution in terms of takutated normalized
permeability at denses =0.4 (in blue) and diluteg =0.8 (in red) regimes is shown in
Fig. 3.Al. At larger porosities (dilute systemsyvé& numbers of elements would be
sufficient to get convergent solution. The numdrregults show that in all simulations
one need at least ~10 rows of elements betweehbm@igg particles to correctly capture
the fluid behavior and obtain a converging solution
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Figure 3.A1: Plot of normalized permeability for different réstions (number of

elementsNe) at porositys =0.4 (in blue) ands =0.8 (in red).

Appendix 3.B Study of the system size (edge) edfect

The random fibrous structure should be large enotgyitapture the microscopic
properties and/or the flow characteristics in thatrir. Increase in the system area
implies a linear increase in the number of gridnpoiin the computational mesh.
Therefore, we need to find an optimum system $kadated to this, Grufman and Ellyin
[30] determined a representative volume elemeiet feizcomposite laminate by applying
the Kolmogorov goodness-of-fit test. Du and Ost®jarzewski [31] studied the finite-
size scaling trend to RVE of the Darcy law for &tsian flow in random porous media
without invoking any periodic structure assumptionisut only assuming the
microstructure’s statistics to be spatially homagmrs and ergodic. They show that the
higher the density of random disks, the smallerdize of RVE pertaining to Darcy’s
law. Trias et al. [32] show that the minimum systame for typical carbon fibre polymer
composites iQ2 =L/d =25 (whered andL are the actual diameter of fibres and system
length, respectively).

To study the effect of system size, | use two stigl tools, namely the pair distribution
function and the nearest neighbor distance, botsore short range correlations. The so-
called “structure factor” for long range correlasos not addressed here.

73



Chapter 3. Micro-Macro relations for flow througindom arrays of cylinders

3.B.1 Pair distribution function g(r)

In Fig. 3.B1 the pair distribution functiog(f)) is plotted for different numbers of fibres
at the two cases of (a) low porosity (dense syster().4 and (b) dilute systera=0.9.

At higher porosities, we observe that by using otilg center part-away from the
walls/boundaries, there is no systematic size digrae concerning short range order
and increasing\ does not create any substantial differenceg(in However, for dense
systems, the correlations reach to larger and fdadgg#ances and one needs a bigger
system so that the order does not “reach” the walie exponential decrease in the local
peaks ofg(r) at higher densities might explain the exponerdiatribution of nearest
neighbor distances in the next subsection. The daemel was observed for periodic
boundaries as the center area was used to calg@ia(elata are not shown here).

Note that by knowing the optimum number of fibregie can easily calculate the
optimum system size as  Q=L/d=,/Nm/(4(1-¢)) since

(1-&)=V, IV = Nrd /(4 I_Z) with the volume of a single particig.

The pair distribution functiong(r), is useful in describing short- and medium- range
averaged correlations among the fibres.

3.B.2 Nearest neighbor distance

Nearest-neighbor distances are an essential dagmtal descriptors useful in materials
science and other disciplines [33, 34]. They ark egtablished as a tool for qualitatively
characterizing deviation from a “random” stateivén a set of points (fibre centers), the
nearest neighbor distance distribution function foe n-th nearest neighbor is the
probability density functiony,(r) such thaty,(r)dr is the probability of finding the-th
nearest neighbon€1,2,3,..., etc.) in the distance range (r+dr).
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Figure 3.B1: Plot ofg(r) for different number of fibres (system size) atfajosity
£=0.4 and (b)s =0.9 from 10 realizations. The dashed ling@}=1 indicates a
completely random point structure. The drop ofdata comes from the finite size of the
center area used for averaging (see Fig. 3.3).
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The analytical prediction for the mean value of thta nearest neighbor distan(:@n">

is the first moment of the distribution functien(r), and for the uniform random spatial
distribution of points is:

o _ M(n+1/2)
<Dn>_\/7_T(n—1)M1/2' (3.B.1)

where A =(1—£) IV, is the intensity (number of points per unit ar@adll'(n+1/2) is the

gamma functioh While formulae have been derived that place betmud<an> for

equilibrium ensembles of monodisperse particleswn- and three-dimensions [29],
exact analytical expressions are not available.r@fbee, computer simulations are
needed to calculate the mean value ofrtitle nearest neighbor distances as a function of
porosity (or volume fraction) for ensembles of mpuiy)disperse fibres, e.g. see Eq.
(3.8). For more details see Section 3.4.1, wher@ng others, the mean normalized 1
and 29 nearest neighbor distances are used to characteezeffective/narrow channels
and predict the sample permeability.

The T' nearest neighbor distancB,”, is simply the minimum of all distances from one

fibre to all others. Similar to thg(r) data, at low porosities one needs more fibregéyig
systems) to get reasonable statistics for theilligion of short-range distancedX800).
However at high porosities, increasing the numUefilwes will not much affect the
probability distribution function (PDF). The didiritions of ' nearest neighbor distances
were found to follow the exponential distribution@w porosities and normal (Gaussian)
distribution at high porosity. By increasing therggity the PDF of nearest neighbor
distances will change from exponential to Gaussiag, a random point patterns.
Furthermore, by decreasing the porosity (i.e. gdmogn 0.9 to 0.6), the probability of
finding a particle at exactly 1.65i.e. minimum possible distance) becomes ~10 times
larger (data not shown).

3.B.3 Wall versus periodic boundaries

Another factor that not only affects the fibre dlaiition but also the macroscopic
permeability of the medium is the confining wall Fig. 3.B2 the normalized
permeability is plotted against number of fibreg fdifferent boundary conditions
(periodic or walls at top and bottom of the cetla £=0.4 and (b)e =0.9. It shows that
at low porosity, using the periodic boundary coiedis can reduce the minimum required
number of fibres N>200). However, at high porosities the permeabilitgcomes
independent of the number of fibres fdP200 in both periodic and wall boundary
conditions. It turns out that for systems with mtran 800 fibres/cylinders the effect of

® Note that the real unidirectional composite mitmestures consist of distribution of aligned fibres
“finite” size that cannot be regarded as zero disi@mal points.
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finite size and type of boundary conditions (peicdab-slip/symmetric) on the
permeability of the given structure diminishes.
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Figure 3.B2: Variation of normalized permeability plotted againumber of fibres with
different boundary conditions at (a) poroséy0.4 and (b)s =0.9. Fibre distributions
generated by MC procedure with*Jferturbations and minimum inter fibre distangg,
=0.05
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Appendix 3.C Towards the dense regime

In order to have a better model for the very deeggme, i.e.s <0.3, we correct the
original lubrication theory for perfectly hexagormatays, i.e. Eq. (3.9), in this appendix.

As mentioned in Section 3.4, the critical porogibtained from computer simulations for
the finite systems with walls is limited tg/ [(10.16 [26]. By correcting the lubrication

theory of hexagonal arrays witls; =0.16, one can predict the permeability at the
random close packed limit more accurately as:

2.5
K-K¢  J1-&
=C — < -1 . 3.C.1
d? (V 1-¢ J ( )

whereC'~0.035 is obtained by fitting to the FEM resultsl@w porosities. Fig. 3.C1
shows the variation of the normalized permeabdsya function of porosity. Note that as
| scale the data witK®, the permeability values for different,,, see the blue squares
and the red triangles, collapse onto a single cukgeexpected, Eq. (3.13), the proposed
model based on shortest DT edgés (or 2% nearest neighbor distanceg,) is valid at
moderate and high porosities (i.e. the range dfr@st in composites manufacturing,

£ 20.3), see the solid blue line. However, at very deregime, i.e.£ <0.3, Eq.
(3.C.1) fits better to my FE results, see the sl line. For comparison, the analytical
prediction for ordered arrays (square and hexagaom#igurations), i.e. Eq. (3.12) is also
shown with dashed lines.

Appendix 3.D Purely empirical, macroscopic permkghporosity relation
based on asymptotic solutions

In this appendix, based on analytical predictiohgp@meability for dilute and dense
regimes, | present an empirical macroscopic relatar the permeability in terms of
macroscopic porosity. Based on a unit cell approBcimmond and Tahir [10] modeled
analytically the flow around a fiber and obtainag@licable at high porosities):

2.534 te)’
B 1.2758 ¢)

% =In(1-£)-1.497+ 4 1—5)—(1_28)2 - 0.73p 2&)" + (3.D.1)

32(1-¢)

Similar to Ref. [8] and using the linear least sguaethod, the linear correctiog,(s)
to the Drummond relation, leads to a corrected pabiiity for £ >0.7 as:

Kep =0Kp (1+d,e),  with  d,=0.97, d,=0.18, (3.D.2)
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with a maximum error of less than 5%. Similarlye thorrected lubrication theory of
2.5
hexagonal arraysKG/d2:C*(qfll_—gc —1} in Eq. (3.C.1) is valid with maximum
-£

discrepancy of less than 5% at low porosities;0.5. To combine these two limit cases,
| propose the following empirical merging function:

1+tanh(£-¢,) fe,)
2

K =Kg +(Kep —Kg) p(€) with p(e) = &, 00.67,¢ 00.1,

(3.D.3)

that is valid for the whole range of porosity, wittaximum deviations of less than 5%
that also includes the analytical relations for lih@t cases, see the dashed blue line in

Fig. 3.6. While the choice Ofp(é‘) is arbitrary, the nonlinear least square fitting
procedure is used to obtain the empirical coeffise, ande,.
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10 - —— Eq.(3.C.1) E
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Figure 3.C1: Variation of scaled normalized permeability plotesghinst porosity.
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Abstract

Owing largely to multiscale heterogeneity in thelertying fibrous structure, the physics
of fluid flow in fibrous media is incredibly compleThis is particularly important in the
hydrologic sciences wherein all geologic formati@ne heterogeneous over a hierarchy
of scales in space, and from a process perspetitieje as well.

The microstructure at various porosities has angtreffect on the transport properties,
such as permeability, of fibrous materials. In tthepter, several order parameters, based
on Voronoi and Delaunay tessellations, are intreduo characterize the microstructure
of randomly distributed non-overlapping fibre asayn particular, by analyzing the
mean and the distribution of the topological andriza properties of Voronoi polygons,
we observe a smooth transition from disorder t@grdontrolled by the effective packing
fraction. Using fully resolved finite element (FE3imulations of Newtonian,
incompressible fluid flow perpendicular to the fibethe macroscopic permeability is
calculated in creeping flow regimes. The effecfilofe arrangement and local crystalline
regions on the macroscopic permeability is disaisseletail. A simple microstructural
model based on the lubrication theory of narrowndleds is presented and its validity and
limitations are highlighted.

Finally, 1 verify the validity of macroscopic Darsylaw at various length scales, using
both uniform and nonuniform Voronoi/Delaunay celfs,a wide range of porosities. In

this hierarchical upscaling method, the systemiv&ded into a recursive hierarchy of
cells. At each cell size, the average value antabitity distributions of macroscopic

guantities, such as superficial fluid velocity amdcroscopic permeability, are obtained
and compared with the macroscopic permeabilityancy's law”

Highlights

» | relate the macroscopic flow properties to micopsc fibre arrangements.
» Several statistical properties of Voronoi polygoasd Delaunay triangulation,
constructed using the centers of the fibres, agd ts characterize the microstructure.

 The same data structure is used for coarse grathmdluid velocity and pressure
gradient.

» | verify the validity of Darcy’s law at various lgth scales.

! K. Yazdchi and S. Luding, Fibrous materials: Mifracture and macroscopic properties, (2012) in
preparation.

K. Yazdchi and S. Luding, Upscaling the transpguations in fibrous media, ECCOMAS (2012), 2 pages,
Vienna, Austria.
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4.1 Introduction

Fluid flow through fibrous materials has a wide ganof applications including,
composite materials, fuel cells, heat exchangdglogical)filters and transport of
ground water and pollutants [1]. Permeability, tlee ability of the fluid to flow, is
perhaps the most important property in their mactufeng. Prediction of the
macroscopic permeability is a longstanding but skibllenging problem that dates back
to the work of Happel [2] and Kuwabara [3] with raaecent contributions by Sangani
and Acrivos [4], Drummond and Tahir [5], Gebart @)d Bruschke and Advani [7].
Most of these models/predictions are complex withitéd range of validity. For
example, Gebart [6] presented an expression fotrédmsverse permeability based on the
lubrication approximation valid for ordered struets, which are different from the
generally disordered fibrous materials. For a nevif the theory, predictability and
limitations of theses models see [8] and referetioexxin.

Darcy’s law is the most widely used empirical rlatfor the calculation of the pressure
drop across a homogeneous, isotropic and non-dafdenporous medium. It states that,
at the macroscopic level and the limit of creepilogv regimes, the pressure gradient
Op, and the flow rate have a linear relation given by

—-p=Hu, (4.1)

whereu andU are viscosity and horizontaluperficial (discharge) velocity, respectively.
The proportionality constar, is called the permeability of the medium andtiosgly
depends on the microstructure (e.g. fibre/partiskeape and arrangement, void
connectivity and inhomogeneity of the medium) aondopity. Darcy's law was originally
obtained from experiments [9] and later formalizsthg upscaling [10], homogenization
[11] and volume averaging [12] techniques. It hasrbshown that Darcy's law actually
represents the momentum equation for Stokes floera@med over a representative
volume element (RVE). In fact in this representati@ll complicated interactions
between fluid and solid (fibres) are lumped inte germeability (tensork.

The lack of a microscopic foundation has motivatieel development of relationships
between macroscopic parameters, like permeabslitg, microstructural parameters, like
fibore arrangements, shape and orientation or teityo(flow path). Chen and

Papathanasiou [13, 14] computationally investig#itedflow across randomly distributed
unidirectional arrays using the boundary elementhow (BEM) and found a direct

correlation between permeability and the mean seaneer-fibre spacing. Papathanasiou
[15] performed a similar study for unidirectionajusire arrays of fibre clusters (tows)
using the BEM. His employed unit cells are therefoharacterized by two porosities: (i)
inter-tow porosity, determined by the macroscopiatisl arrangement of the tows, and
(i) intra-tow porosity, determined by the fibrerm@ntration inside each tow. He showed
that the effective permeability of assemblies dirdi clusters depends strongly on the
intra-tow porosity only at low inter-tow porositipn a recent study (chapter 3), Yazdchi et
al. [16] proposed a power law relation betweentthesverse permeability obtained from
finite element (FE) simulations and the mean valiuthe shortest Delaunay triangulation
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(DT) edges, constructed using the centers of tiredi For sedimentary rocks, especially
sandstones, Katz and Thompson [17] suggested, yp&rgplation theory, a quadratic
relation between permeability and microstructur@satiptors for rocks, i.e. the critical
pore diameter. Despite all these attempts, the cteffef microscopic fibre
arrangements/structures, controlled by the effecpacking fraction, on macroscopic
permeability is still unclear.

The objective of this chapter is to (i) computatithy investigate transverse flow through
random fibre arrays in a wide range of porosit{@s,understand and characterize the
microstructure, i.e. the ordered and disorderei@staising several order parameters, (iii)
establish a relationship between macroscopic pdititgaand the microstructure of the
fibrous materials and (iv) verify the validity oheé empirical Darcy’s law at various
length scales.

To this end, the algorithm used to build the ihifilare configurations and the numerical
finite element (FE) procedure for solving flow/mamhem equations are presented in
Section 4.2. In Section 4.3, the geometrical (Voidassellation) and bond orientational
order parameters are introduced to quantify therastoucture. In particular, the
transition from disordered to ordered regimes iscused in detail. The connection
between structural (dis)order and macroscopic pabitiey is explained using shortest
Delaunay triangulation edges in Section 4.4. Hnadhe validity of Darcy’s law at
different length scales is investigated by dividihg system into both smaller uniform
cells and irregular Voronoi/Delaunay polygons/tghas in Section 4.5. The chapter is
concluded in Section 4.6 with a summary and outfookuture.

4.2 Mathematical formulation and methodology

A Monte Carlo (MC) approach was used to geneat8000 randomly distributed, non-
overlapping fibre/disc arrays in a square domaithwength,L. Given an initial fibre
configuration on a triangular lattice, the MC prdaee perturbs fibre centre locations in
randomly chosen directions and magnitudes [13, TH§ perturbation was rejected if it
leads to overlap with a neighboring disk (up td' p@rturbations were used in our
simulations). With this Erocedure, we were ablgéoerate various packings at different
porosities,e=1-Nzd?/(4L%) with d the diameter of fibres, varying from dense/ordered
(e=0.3) to very dilute/disordered=0.95) regimes. Fig. 4.1 shows a schematic of such
packing, the fibre long axis is normal to the flaivection, at porosity=0.6. Due to
wall/edge effects, only the center part of the ayswill be analyzed. The effect of
several microstructural parameters such as methbdgemeration, system size,
wall/periodic boundaries have been discussed elsen\h6], see chapters 2 and 3.

The FE software ANSYSwas used to calculate the horizorsaperficial (discharge)
velocity, U, from the results of my computer simulations as

-1 -1
U—AiudA ngtm, (4.2)
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whereA, As andu are the total area of the unit cell, the areshefftuid and the intrinsic
fluid velocity, respectively. The subscripg’™indicates the corresponding quantity for
each triangular element. Using Eg. (4.1), the pabiligy of the fibrous media can then
be calculated. On the flow domain, the steady dtmeier—Stokes equations combined
with the continuity equations were discretised iatounstructured, triangular mesh. They
were then solved using a segregated, sequentiati@olalgorithm. The developed
matrices from assembly of linear triangular elersere then solved based on a Gaussian
elimination algorithm. Some more technical details given in Refs. [8, 16]. At the left
and right pressure- and at the top and bottom amthce of the particles no-slip
boundary conditions, i.e. zero velocity is appli8dnilar to Chen and Papathanasiou [13,
14], a minimal distance\min=0min/d=0.05 is needed in 2D to avoid complete blockage. |

assigned a virtual diametef’ = d(1+ Amm) to each fiber, leading to the virtual porosity

£ =1-(1-¢)(1+A,,,)°. While £ represents the porosity available for the fluid(i.e.

porosity with artificially enlarged particles) istaally used for packing generation. The
effect of Amin on fibre arrangement and macroscopic permeallitgvestigated in [16]
(chapter 3). The mesh size effect was examinedobyparing the simulation results for
different resolutions (data not shown here). Theiper of elements varied fronx30°

to 16 depending on the porosity regime. The lower thegity the more elements are
needed in order to resolve the flow within the hbwgying fibres. The horizontal velocity
field of such a simulation at porosity0.6 is shown in Fig. 4.1. We observed some
dominant flow channels, especially at low porositiewhich contribute over-
proportionally to the fluid transport. More discigss on quantifying these channels and
their relation to the macroscopic permeability previded in Section 4.4.

Flow
direction
[ D | I
-10 -3.3 3.3 10 16.7 23.3 30 36.7 43.3 5107 [m/s]

Figure4.1: lllustration ofN=3000 randomly distributed fibres (particles) usinijlonte
Carlo procedure at porosity= 0.6 with minimum inter fibre distanc&,»=0.05. The
zoom shows the corresponding horizontal velocgidfi

87



Chapter 4. Upscaling the transport equations: Micuztural analysis

4.3 Microstructure characterization

An important element in understanding of fibrougenals is the description of the local
fibre arrangements and the possible correlationwd®n their positions. The classical
way for characterizing the structure, like disortieorder transition, is by inspection of
its radial distribution functiorg(r), which is defined as the probability of findiniget
centre of a fibre inside an annulus of internaluad and thicknessrd13-14, 16, 18]. As
the crystallization begins to occur at moderateopities, peaks appear for valuesrof
which correspond to the second (linear) neighbor@ hexagonal lattice in 2D or a FCC
or HCP arrangements in 3D. The complete randomofetbe fibre distribution on larger
scale will assure thaf(r)=1. However, as pointed out by Rintoul and TorqUa®], this
method is unsatisfying for two reasons: on the lugued the absence of clear peaks does
not necessarily mean the absence of crystallizatiod on the other hand it is difficult to
determine exactly when the peak appears. In thitiosg | propose another way to
characterize more quantitatively the microstructafemy 2D, non-overlapping fibre
packings, namely by analyzing (i) the statisticabmgetry of the Voronoi/Delaunay
tessellation and (ii) the bond orientational orp@rameter, in a wide range of porosities.

4.3.1 Voronoi diagram (VD)

The Voronoi tessellation can be used to studydhalland/or global ordering of packings
of discs/fibres in 2D. Motivation stems from theiariety of applications in studying
correlations in packings of spheres [20, 21], asialyor crystalline solids and super-
cooled liquids [22, 23], the growth of cellular raasls [24], and the geometrical analysis
of colloidal aggregation [25] and plasma dust @lgsf26]. For a review of the theory and
applications of Voronoi tessellations, see the lsdmk Okabe et al. [27] and Berg et al.
[28], and the surveys by Aurenhammer [29] and &ckkr [30].

For equal discs as considered here, given a sivamfor more but a finite number of
distinct points (generators) in the Euclidean plame associate all locations in that space
with the closest member(s) of the point set witspeet to the Euclidean distance. The
result is a tessellation, called Voronoi diagrar,tlte plane into a set of regions
associated with members of the point set, see tieidhines in Fig. 4.2. This construction
is unique and fills the whole space with convexygohs. In a hexagonally close packed

(densest) configuration, i.es,_ [10.093, the Voronoi tessellation consists of regular

hexagons. It allows us to define the notion of igdor” without ambiguity for any
packing fraction: two spheres/discs are neighbahéir Voronoi polyhedra share one
face/edge. It can be easily generalized to radesdellation for polydisperse assemblies
of spheres [31] or discs [32] by using the Laguelistance between obstacles, which
takes into account the size of each point species.

The Delaunay triangulation (DT) is the dual gragithe Voronoi diagram. This graph
has a node for every Voronoi cell and has an edgsvden two nodes if the
corresponding cells share an edge, see thin bhes iin Fig. 4.2. DT cells are always
triangles in 2D, and are thus typically smallemthéoronoi cells.
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Recently, various studies have focused on the gemale properties of Voronoi
tessellations resulting from random point processes ¢ =1, to densely packed hard
discs or spheres. In particular, Zhu et al. [33] Emmar and Kumaran [34] observed that
by decreasing the porosity the degree of randonwiethe tessellation is decreased - the
probability distribution functions (PDFs) of theasstical properties of the geometrical
characteristics become more and more peaked amdwaar- until the unique critical
value of a regular tessellation, i.e. of hexagaedls, is adapted.

() (b)

Figure4.2: lllustration of the Voronoi (red line) and Deteay (blue lines) tessellations
for the center part of a system of identical desic&) dilute,e =0.8 and (b) dense,
&£ =0.4 regimes foA ,j»=0.05.

In order to gain further insight into the relatimerangement of the Voronoi cells, their
topological correlations and metric properties hémeen studied in the following. In
particular, | focus on (i) the distribution and &wmn of the number of faceg(n)
together with their ® and 3 moments and (i) the shape and regularity (ordgyf) of
the Voronoi polygons at different porosities.

4.3.1.1 Topological correlationsfor Voronoi tessellations

This section is dedicated to the study of the enauof the probability distribution af-
sided polygonsp(n) when changing the porosity. Note that only tHferimation obtained
from the inner discs, which were at least 5 disanditers away from the wall, was
included in my analysis. This treatment should séattorily eliminate the wall/edge
effects up to high densities. To get better siafisthe results were averaged over 10
realizations with 1DMC perturbations. The two straightforward constoralaws are
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> p(n)=1 (normalization), and (4.3)
> np(n)=6 (the average number of edges is 6), (4.4)

as the consequence of the Euler theorem [27, 3fg.dIstributions of the cell topologies,
p(n) of Voronoi tessellations, generated at variousogpities are observed to follow a
discretised and truncated Gaussian shape (not shwesm). The perfectly ordered
structure is manifested by hexagonal cells,n=& andp(n)=1, and disorder/randomness
shows up as the presence of cells with other tivarsides (topological defects). The
increase of disorder in the disc assemblies at p@bsities leads to an increase of the
topological defect concentration, i.e. a broademig(n).

In the literature, both the topological defect cemtcation 1p(6), and the variance 2
central moment), =(n*)~(n)* E<(n—( n>)2> =Y p( §( n-6)° of the cell topologies,

are used as measures of the degree of disordetO3&-emaitre et al. [40] were, to my
knowledge, the first to suggest that the equatibnstate 1, = f (p(6)) could be

universal in mosaics. In this sense, all informatabout topological disorder in these
systems is contained p(6). Astonishingly, Lemaitre’s law holds very rodygor most
of experimental, numerical, and analytical data43

Fig. 4.3(a) shows the correlation betweg(®) and the topological variangg for
different microstructures and at various porositiés the ordered regime, i.e.
p(6)>0.65, mainly 5, 6 and 7 sided polygons with(5) O p(7) O(1~ p( €)) /2 occur,
and by applying the maximum entropy principle wille constraints in Egs. (4.3) and
(4.4) [39], one obtaings, =1- p(6); it has the trivial virial expansion that corresde

to an ideal gas. By increasing the porosity, Ee>0.45 or £ >0.39, one enters the
disordered regime angl, Dl/(Z]sz(G)). Finally, in the limit of vanishing density

(£ =1), the discs are randomly distributed and one pé8) 00.3 and 4, 01.78. This

limit is obtained by analyzing the Voronoi polygogenerated from TOrandomly
distributed points. The transition porosity [10.39 can be more clearly determined by

plotting the third central moments of thesided polygon distributionsy, :<(n—(n>)3>

against porosity, as shown in Fig. 4.3(b). Note ths value is still far above the random
close packing Iimit:;“:Cp [J0.16 [42], as compared also to the minimum hexagoriatéa

porosity £ [10.093, the freezing point;, [10.309 [43] or the melting point’, (10.284
[43].
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Figure4.3: (a) The correlation betwe(6) and the topological variangg for various

structures and porosities. The analytical theorggmesented by solid lines, are
calculated by the Maxent method [39]. (b) Variatadrihe third moment afi-sided
polygon distributions 4, plotted against porosity. The transition from ortedisorder

occurs ate, [10.45( &, [10.39).

4.3.1.2 Metric properties

The metrical properties of two-dimensional frothe aften studied in terms of the
averagen-sided cell areas(A,) or the average cell perimeterd,, ). Lewis’s law [44]

and Desch’s law [45] are two empirical relationsichhstate that the average cell areas
and perimeters vary linearly withfor certain systems, while for others nonlineaalags
have been observed [37, 46, 47]. Only recentlyngisihe local, correlation-free
granocentric model approach with no free parametéliklius and Hilgenfeldt [36]
construct accurate analytical descriptions foréhespirical laws in 2D and Clusel et al.
[48] in 3D.

Combining the cell area and its perimeters, | apipéyconcept of shape factor, to further
guantify the shape/circularity of the Voronoi cels

LZ

Z_4er'

(4.5)

In this dimensionless representation, two Vororatygons can have the same number of
sides,n, but different values of (due to the irregularity of the polygons), since @f

the advantages is that the shape facforis a continuous variable while is discrete.

This quantity was recently used to study crystaflan of 2D systems, both in simulation
[49] and experiment [18, 50, 51]. By constructigh=1 for a perfect circle, and is larger

for more rough or elongated shapes, like pentagomeptagons. For a hexagonal lattice
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(densest packing) one hag,, =1.103 and, in general, for a regularsided polygon
¢ =(n/n)tan(n/m).

The shape factor distributionsp(() and the way they change with porosity are
displayed in Fig. 4.4(a). For dilute systems (digved regime),p({) exhibits a broad

and flat distribution with values abové,,, maximum at about{ =1.25 and an

exponential tail. In this case, in fact, the pdeScare randomly distributed with no
preferential type of polygons. At lower porositilsis peak progressively moves towards
lower values, i.e. to more circular domains, andngwally bifurcates into two sharper

peaks. Fig. 4.4(b) shows the average shape fa(:fo)r, taken over all polygons at

different porosities for various system sizes (nambf particles,N). The numerical
results show that(Z) is not noticeably affected by system size. Intémgh/, one

observes that it increases almost linearly withopity (for 0.3<& < 0.85). A similar
linear dependence was observed for packing cordfigurs obtained from a different
generation algorithms, namely an energy minimizatgpproach [16] (data not shown
here). Unlike the data presented in Fig. 4.3, thad does not indicate a change at the

transition porositye, [10.45 (& [0.39), and therefore this is not a good criterion for
detecting the order to disorder transition. Finallg the limit of random point
distributions one haé() 01.4.

A drawback of the shape factor is that, with thedimtion, the regularity (or isotropy) of
the Voronoi polygons can not be deduced. In otherda; how far each vertex of a
polygon deviates from the principal axis. This dsn answered by the dimensionless
parameter® defined as

- -1,

Ik (4.6)

wherel; andl, are area moments about the principal axes of ygpol For all Voronoi
shapes,® varies between zero and unity, although my nurakresults show that it
does not exceed a maximum value correspondingréam@dom cloud of pointsb [10.43
(see Fig. 4.5). For the polygons which are “isotdike hexagons, one halg I, and
therefore ® [J0. Polygons which are stretched along one of thencpal axes have
larger values ofd, with ® =1 for as possible maximum.
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Figure4.4: (a) The probability distribution of the shapettac ¢ at different porosities.

(b) Average shape factor plotted against porositydifferent number of fibres/discs. The
solid red line shows the best linear least squarélf data are averaged over 10
realizations with 1OMC perturbations.

Fig. 4.5 shows the avera@@} taken over all polygons against porosity. As theopity

increases, théd)) also increases, indicating a more anisotropic eshaptil it reaches its

maximum value for random points, i.®.[10.43. Interestingly, two linear functions with
different slopes can be fitted to the disordered amlered regimes. Just as was observed

in Fig. 4.3(b), the transition (crossing of the tivees) occurs at, 10.45 (& [10.39).
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Figure 4.5: Variation of averagéd)) plotted against porosity. The solid lines show the
best linear least square fits. Similar to fae= f (p(6)) relation, the transition from
order to disorder occurs at [10.45 (& [10.39).

4.3.2 Bond orientational order parameter

The bond orientation anglé/s, which is defined in terms of the nearest-neighband

angles, measures the hexagonal registry of neaeegtbors. This quantity has been used
to detect local/global crystalline regions boti2Ib and 3D, see for example [52-56] and
references therein. The sixfold global bond-origateal order parameter of the 2D hard
disk system is defined as

1
wé’ =—
i= N =

N 8

where g, is the angle between partidl@nd its neighborg with respect to an arbitrary
but fixed reference axis, amgdenotes the number of nearest neighbors of paitigt]

is sensitive to (partial) crystallization and ineses significantly fromg¢ ~ O for a dilute
system toy, =1 for a perfect hexagonal lattice.

A more local measure of orientational order canobtained by evaluating the bond-
orientational order of each particle individualand then averaging over all particles to
give

N i
Y= 3>

N = n #

n
=1

j

such a local measure of order is more sensitistall local crystalline regions within a
packing compared to its global counterparf, and thus avoids the possibility of

“destructive” interference between differently oried crystalline regions [56]. Sing)
andy, differ in the averaging procedure, they yield eliént numerical values.

The first step in evaluating/;, which was not precisely addressed before, i®teal the
nearest neighbors of a reference particld-ig. 4.6(a) shows the sensitivity of the local
¢ to the number of nearest neighbors obtained fipm ¢utoff distance taken from the

first minimum in the radial distribution functiog(r) (ii) Voronoi/ Delaunay neighbors or
(i) using up to and including the 6 nearest nbigis. Although the average of Voronoi

neighbors is 6 (Eq. (4.4)), the locgl calculated on the Voronoi neighbors have lower
values than the ones calculated from the 6 neasghbors. Voronoi neighbors and the
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neighbors based on the cutoff distance result nmoat the same numerical values. For
decreasing porosity, the locgl, rises sharply ak, [J0.45, indicating highly correlated
local order. However, the transition is not shaimce the order parameter increases
slightly for £<0.7. In very dilute regimes, the local order parame(t,eg) ] [J0.21 is

ra

larger than zero, leading to the interesting qoasbf whether there is a minimum,
nonzero value of this parameter for a random sysfepossible answer is that in random
hard disk structures, there are still some locgbtatline regions, due to the lack of
geometric frustration, which are not correlatedFig. 4.6(b) the numerical values of the

global, ¢¢ and local, are compared and plotted against porosity, usiegMoronoi

neighbors. Unlike the local definition, the globgf is almost zero in the disordered

regime, due to phase cancellations, and incredseplg at £ [10.37 , i.e. the freezing
point [43], with the onset of hexagonal order.

0.9 — 0.8 T
0.8l 1| —@—6 neighbors : =& Global
07 : —&— Voronoi neighbors | : === Local
' : =¥— Cutoff distance (g(r)) 0.6 1
0.6 i I
- 1 ! disordered
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> 04} 1 orderdd \!
]
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ordered | 1
1 0.2 1
o " .
0.1t ! _ f !
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0.2 03 04 05 06 0.7 08 09 1 02 03 04 05 06 0.7 08 09 1
£ £

Figure 4.6: (a) lllustration of the sensitivity of the loce, to the nearest neighbor

selection method. (b) Variation of the globgf! and the localy, bond orientational
order parameter plotted against porosity, using/thi®noi neighbors.

Beyond the classification of the microstructureeomrould like to understand how
(dis)order affects the transport properties, likenpeability, of the fibrous material. This
is the topic of the next section.

4.4 Macroscopic properties

Recently, Yazdchi et al. [16] (chapter 3) showedt tthe mean values of the shortest
Delaunay triangulation (DT) edges are nicely cated with the macroscopic

permeability at dilute and moderate porosities.this section, | elaborate more on
characterizing of these channels (edges).
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4.4.1 Effective channels based on Delaunay triaatguris

Similar to previous chapter, | define as the mean channel width (gap), i.e. surface-to-
surface distance based on the shortest Delaunae;sé(qg, (averaged over Delaunay

triangles) normalized by the fibre diameter= ((q)—d)/d. Fig. 4.7 shows these

shortest edges with channel width indicated by lihekness. These edges form a
percolated edge-network channels through which ftbee must go and, therefore
correlate nicely with the permeability (see nexttem). Fig. 4.8 shows the PDF of
widths and the histogram of the orientations ofséhehannels. The distribution of the

width of the channelsp(y) undergoes a transition from a very wide distribatto a
narrower with increasing peak at lowgr, and eventually to a steep exponential
distribution as the porosity decreases. For a petfeangular lattice it reduces to exactly
the inter fibre (surface-to-surface) distance, we= A, =0.05. The orientation of the

channels is not much affected by the porosity amdains isotropic (no preferential
direction) even for partially ordered structuresat0.4.

(@) b) (

Figure4.7: The minimum Delaunay edges plotted for each Dedgdriangle for (a)
dilute, £ =0.8 and (b) denseg = 0.4 systems. The link between two particles is thicker
when the channel is wider. Only the center pathefsystem is shown.
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Figure 4.8: (a) The probability distribution function of shiest Delaunay edgey, at

different porosities. (b) Polar histogram of theentation of shortest Delaunay edges. All
data are averaged over 10 realizations withMG perturbations.

4.4.2 Permeability calculation

Based on the Navier-Stokes equation, Gebart [6}el@ithe permeability of an idealized
unidirectional reinforcement consisting of regutastdered, parallel fibres both for flow
along and for flow perpendicular to the fibres. Hudution for flow along fibres has the
same form as the Carman-Kozeny (CK) equation [§8,\8fTile the solution for transverse
flow has a different form

2.5
K 1-¢
—=C °-1 , 4.9
d? (V 1-¢ ] (4-9)
where &, is the critical porosity below which there is nermeating flow andC is a

geometric factor € [J0.1,&, 00.214€ for square andC [J0.057€, &, J0.0931 for
hexagonal arrays [6]). EQ. (4.9) can be rewritteterms ofy as

K _~ 25
y-Cyz , (4.10)

which is exact for regular/ordered arrays and weasve to be valid also for disordered
arrays at high and moderate porosities [16], withl0.2. Relation (10) is remarkable,
since it enables one to accurately determine theraseopic permeability of a given
packing just by averaging the narrowest Delaungsgg from Delaunay triangles. Fig.

4.9(a) shows the variation of the normalized pebil#ya (in red) as a function ofy
together with the local bond orientational orderapeeter,y, (in blue). The structural

transition from disorder to order, indicated byost increase iy, directly affects the
macroscopic permeability. In disordered regimespreneability data nicely collapse on
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the theoretical power law relation (Eq. (4.10)). wéver, by appearance the local
crystalline regions at >0.45, the data start to deviate from the power lawfakt the
lubrication theory, i.e. Eqs. (4.9) or (4.10), amely valid for perfectly ordered
(hexagonal/square) or disordered (random) conftgama with different pre-factorC.
System that is partially ordered has lower pernigplompared to the predicted value
in Eq. (4.10), i.e. K/dY)an, due to stagnancy of the fluid between fibre agatres or
within crystalline regions of close-by fibres. Witlecreasing porosity the data deviate
from the solid line showing the appearance of ondein the structure. In chapter 3, |
showed that this deviation can be represented Bxpanential term, see Eq. (3.13). Fig.
4.9(b) shows that indeed for both permeability dndal bond orientation order
parameter, this deviation, i, =[1-K/K,,| and x, :‘1—1//'6/(%) ‘ respectively,

ran

can be well represented by exponential term.
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(b)

A ]

\

10 1§ v )(p
w‘v * Xy
. v

<107} C

-2 hd
10 + A\ 4
\

\

1

3
-5L7 10 | | 1 |
—t : 0.1 o o5 1 15 2 25

10" y 10’ y

Figure 4.9: (a) Variation of normalized permeability (in reat)d local bond orientational
parameter (in blue) as function of mean shortesalday gapsy . The solid line

represents the power law, Eq. (4.10), obtained fitdrication theory. At the transition

porosity & [10.45, the permeability data start to deviate strongbyrf the solid line. (b)

Deviation of normalized permeability and local bargentation order parameter from
their random (disordered) values, jg.=[L-K /K| and x,, :‘1—41/('3 /(1/1'6)

ran

respectively, plotted againgt.

4.5 Darcy’s law — upscaling the transport equations

The empirical law of Darcy, Eqg. (4.1), is the keynstitutive equation required to model
up-scaled (under)ground water flow at low velositend to predict the permeability of
porous media. Though the volume-averaged equatilkes, Darcy’s law, are used

extensively in the literature, the method reliedangth- and time-scale constraints which
remain poorly understood. The macroscopic transpaperties, such as permeability,
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are linked to more fundamental equations descrithegnicroscale behavior of fluids in
porous materials [1].

In this section, | verify the validity of the maseopic phenomenological Darcy’s law at
various length scales in a wide range of porosdied recognize that the application of
the pore-scale analysis requires characterizatidheopore-scale geometry (and/or size)
of the porous material. The Voronoi/Delaunay tdatieh and their statistics are

employed to obtain this essential geometrical @nléhgth-scale) information.

4.5.1 Uniform cells

In order to study the validity of Darcy’s law affdrent length scales, | divide my system
at porosity £=0.6 into smaller uniform cells as shown in Fig. 4.30(@he
corresponding fully resolved horizontal velocitglfl is shown in Fig. 4.10(b). Since we
have sufficient number of elements between neighbdibers, i.e. at least ~10 elements,
all the velocity fluctuations and flow patterns da@ captured at this length-scale. By
upscaling (smoothing out) the velocity field, thermeability of each square ceflg can
be calculated from Darcy’s law, as:

- i =1 -
K°_Dpc’ with U, Agu%p\%, A =2, (4.11)

whereU,, a., e and Op, :[( P+ d))/z—( g+ 55))/2}/ a (t, b, r andl represent the

pressure values at top, bottom, right and leftssioiethe cell, respectively) are average
velocity, cell length, the elements within the cetld the pressure gradient for each
individual cell, respectively. The variation of agge cell velocityl. at porositye =0.6

for the different cell areagy. normalized by the particle ared, =71d*/ 4 is shown in
Fig. 4.10(c) and (d) forA,/A 020 and A/A 0160, respectively. At higher
resolutions, i.e. smalléx/A,, we see larger fluctuations (i.e. more flow

heterogeneity/details) around the macroscopic geeneelocity, U =4.07x 10°[m/s]
obtained for the whole system, using the paramesfesified in Section 4.2. This can be
observed more clearly from the PDF of the cell ager velocities,U. at different
resolutions as shown in Fig. 4.11(b). For smallragimg cells, i.e. A,/ A ~1, the

probability distribution of average cell veIocitjep(Uc) can be described by the two-
parameter Gamma distribution as

6

p(U,)= A UZtexp(-6U,), for 6,4>0, (4.12)

r(é)

where 8 and A are, by definition, shape and scale parametersid#) is the Gamma
function.
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Figure4.11: (a) The PDF of the cell porosity, normalized with the macroscopic
porosity, € =0.6 at different resolutions. The solid lines show blest fitted Gaussian
distribution, see Eq. (4.14) fok, / A, =5 (black line) andA,/ A, =20 (red line). (b) The
PDF of the cell average velocitids; normalized with the macroscopic or mean vallie,
at different resolutions at porosigy=0.6. The solid lines show the best fitted gamma
distribution, see Eq. (4.13) fok, / A, =1.25 (black line) andA,/ A, =5 (red line).

The mean value of Gamma distributed average clitites is(U ) =U :g. Written in

terms of averaged velocity) (U, ) has only one free parameter which is

u,)_ & ﬁe—l (U,
{5l oo o) oo

The value of @ starts from &=1, i.e. exponential distribution, for small cell &jz
Al A 01 (see the black line in Fig. 4.11(b)) and increases3 for larger cell sizes,

A | A, 010. For largerA,/ A, > 20, the p(U,/U) becomes more and more peaked and
narrower. The PDF of cell porositieg(ec/ 5) at the macroscopic (average) porosity

£=0.6 is shown in Fig. 4.11(a). We observed that at bl sizes, thep(e,/¢)
follows a uniform distribution, i.e. horizontal &n However, at larger resolutions, the
p(e./¢) is fitted best by a Gaussian distribution as

E\_ 1 21 50/5—12
(%)l 155 ) 419
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where o is the standard deviation of the data. By increashe cell sizeg decreases
till it becomes only scattered points around theamealue, i.e.& /&=1. Similar
behavior and distributions were observed at diffeggorosities (data not shown here).
Note that at all cell lengths, the mean value adrage cell velocity, ¥.> or pressure
gradients, €lp,> are equal to their total average velocltyor pressure gradient]p

(with maximum discrepancy of 2% due to ignoring imindary elements, not shown
here).

Knowing the average velocity and pressure gradwrgach cell, one can calculate, from
EqQ. (4.11), the permeabilities for each individeall as shown in Fig. 4.12(a) as scattered
data for different porosities and cell sizes. Thaidsline shows the macroscopic
permeability obtained for the whole system.
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Figure4.12: (a) variation of normalized permeability as adtion of porosity for various
averaging cell sizes. The circles and squares sjorel toa,/L=0.05 anda/L=0.15,
respectively. (b) Deviation of averaged permeahikK.> from macroscopic
permeability K as a function of normalized cell area at diffeqgmtosities.

As expected, smaller cell areas lead to more sedti{@uctuating) permeabilities around
the macroscopic value (black line). For sufficigndrge cell sizes, i.a.~L, the average
of cell permeabilities, K> approaches the macroscopic permeabiitpbtained for the
whole system. Fig. 4.12(b) shows the deviation &f:>< from the macroscopic
permeability plotted against normalized cell arég/A, at different porosities. By
increasing the normalized area, the deviation dse® linearly with slope ~ -1.
Interestingly, this trend is almost the same apaibsities.

In summary, the permeability for each cell is veensitive to the averaging area with
slow statistical convergence to the macroscopicesabmall areas, i.é:~A,, lead to
more fluctuations in permeability in which the aage, unlike velocity and porosity, will
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not approach the macroscopic value. Incorporatiegabserved distributions in a more
accurate stochastic drag closure (or permeabifity) advanced, coarse fluid-particle
simulations can be conducted in future.

4.5.2 Unstructured cells

To study the effect of shape of the averaging @elthe macroscopic permeability and
averaging procedure, the Voronoi polygon and thaéwral graph, the Delaunay
triangulations (DT) are employed as basic are&isigection.

The variation of average velocity at porosiy=0.6 is shown in Fig. 4.13 using (a)
Delaunay triangulation and (b) Voronoi polygonsagsraging area. The average Voronoi
area Ayp> is always identical to the inverse of fibre dépgnumber of fibres per unit
area) equal to A,p>=0.5. Similarly, the average Delaunay triangleaai® half of the
Voronoi areas, i.e.Apr>=<Ayp>/2=0.25.
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Figure 4.13: Variation of average velocity at porosity= 0.6 using (a) Delaunay
triangulation and (b) Voronoi polygons as an avergarea.

As expected using DT, due to smaller average cek ar higher resolution, one can
capture more fluid details and distinguish the dwnt fluid channels.

The probability distribution function of cell poites and average cell velocities at
macroscopic porosity =0.6 is shown in Fig. 4.14. We observe that the PDREhef
average cell porosity not only depends on thesiedis but also on the shape of the cell
area. Although the average cell area for both VD Bt are relatively small, however
the PDF of cell porosities can be fitted by a Gausslistribution, i.e. similar to larger
uniform cell sizes. Surprisingly, the PDF of averamll velocities is not much affected
by the cell shape and can be well approximated Gamma distribution for all VD, DT
or uniform cells withd ~ 1, see Eq. (4.13).
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Figure 4.14: The probability distribution function of (a) ceglbrosities and (b) average
cell velocities at macroscopic porosigy=0.6.

Fig. 4.15 shows the PDF of (a) pressure gradients (B) normalized permeabilities
using Voronoi cells at various porosities. We ofsedrthat PDF of pressure gradients in
Voronoi polygons follows a Cauchy distribution as

p(%}l[ a__ J (4.15)
Op ) 7 (Op,/0p-1)" +a?

where a is the scale parameter and specifies the halfanatihalf-maximum (HWHM).
For an infinitesimal scale parametar { 0), the Cauchy distribution reduces to Dirac
delta function. However, the PDF of permeabilitrgthin each Voronoi cell can be best
fitted to a Gamma distribution. The both pressusdgnt and permeability distributions
seem to be weakly dependent on macroscopic porosity

The physical interpretation and correlation betwt®se probabilities is a challenge for
future study. Another possible extension of thespne study is to look at the distributions
of pressure gradient or fluid velocity by going doarser Delaunay or Voronoi cells,
similar to the analysis we did for uniform cell®.iFig. 4.11.
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Figure 4.15: The probability distribution function of Voronoell (a) pressure gradients
and (b) normalized permeabilities at various pdi@si The solid lines show the best
Cauchy distribution, Eq. (4.15), and Gamma distrdny Eqg. (4.13), at porosity =0.6
in (a) and (b), respectively.

4.6 Summary and conclusions

The transverse permeability for creeping flow tlglownidirectional (dis)ordered arrays
of fibers/cylinders has been studied numericallipgishe finite element method (FEM).
Several order parameters were introduced and emglty characterize the transition,
controlled by the effective packing fraction, frodisorder to order. In the present
context, the Voronoi and Delaunay diagrams arentarést as they provide information
about nearest neighbors and structural propertieffbimus materials. In an ongoing
research, the Delaunay triangulations have beenuslsd both as a contact detection tool
and a FE mesh in dense particulate flows [58].

The disorder was characterized by the mean andbdison of local parameters, such as
the number of faces, shape and regularity of Vargmaygons, shortest Delaunay
triangulation edges and bond orientational angte donclusions are:

« The 3% moment of probability distribution of six-sided kmoi polygons shows
an increase at transition porosity (10.39.

» The average shape of the Voronoi polygo(té} increases almost linearly by

increasing the porosity regardless of the systere sind packing generator
algorithm.

» The average area moment of the Voronoi polygeﬁﬂs}, increases linearly by

increasing the porosity with larger slope in orderegime compared to the
disordered one.
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» Locally ordered regions, which cause a drop inntaeroscopic permeability, can
be detected by local definition of bond orientasiborder parameter.

» The shortest Delaunay triangulation edges (or g¥fedlow channels), have a
Gaussian and exponential distribution at high ana porosities, respectively.
However, their orientation is not much affecteddoyosity.

Recently, we observed that the structural transitdso affects the flow behavior at
inertial (high Reynolds number) regimes [59], skapter 5 for detalil.

Finally, the validity of the macroscopic Darcy’sMat various length scales was studied
using both uniform and Voronoi/Delaunay cells, inwade range of porosities. The
numerical results show that small averaging celaar(A, / A, ~ 1) lead to heterogeneity

in flow patterns in which the distribution and aage values of permeabilities would
deviate from its macroscopic values obtained ferwinole domain. Furthermore, | found
universal but different distributions for pressugeadient and permeabilities using
Voronoi polygons as an averaging area. The appmitatf proposed model/distributions
for other macroscopic properties, like heat conditgt and extension to 3D moving
particles is a challenge for future work.
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Abstract

| give a comprehensive survey of published expamtalenumerical and theoretical work
on the drag law correlations for fluidized beds & through porous media, together
with an attempt of systematization. Ranges of wglias well as limitations of commonly
used relations (i.e. the Ergun and Forchheimetiogls for laminar and inertial flows)
are studied for a wide range of porosities. Thesquree gradient is linear in superficial
velocity, U for low Reynolds numbers, Re, referred to as Darlaw. Here, | focus on
the non-linear contribution of inertia to the trpog of momentum at the pore scale, and
explain why there are different non-linear correcs in the literature.

From fully resolved finite element (FE) results; bmth ordered and random fibre arrays,
(i) the weak inertia correction to the linear Dardgtien is third power irJ, up to small
Re~1-5. When attempting to fit the data with a ipafarly simple relation(ii) a non-
integer power law performs astonishingly well upttie moderate Re~30. However, for
randomly distributed array§ji) a quadratic correction performs quite well as usdtie
Forchheimer (or Ergun) equation, from small to mratk=Re.

Finally, as main result, the macroscopic propemisandom, fibrous porous media are
related to their microstructure (arrangement) andogity. All results (Re<30) up to
astonishingly large porosity; ~0.9, scale with Rgi.e. the gap Reynolds number, that is
based on the average second nearest neighbor csuida surface) distances. This
universal result is given as analytical closuratieh, which can readily be incorporated
into existing multi-phase flow codes. In the traiosi regime, the universal curve actually
can be fitted with a non-integer power law (bettemn ~1% deviation), but also allows to
define a critical Rg~1, below which the third power correction holdsl atove which a
correction with second power fits the data considigrbetter:

Highlights

» Extensive review of experimental, numerical andotbgcal work on drag law
correlations

* Finite element simulation of inertial flow throughdered and random fibre arrays

» The macroscopic properties of fiborous media arateel to their microstructure and
porosity

« Universal scaling of the friction factor with thgdp” Reynolds number up to &0

1 K. Yazdchi and S. Luding, Towards unified drag $afor inertial flow through fibrous materials,
Chemical Engineering Journal, 207 (2012) 35-48.

A. Narvaez, K. Yazdchi, S. Luding and J. Hartinghr creeping to inertial flow in porous media: itz
Boltzmann - Finite Element comparison, JSTAT, (20zbmitted.

K. Yazdchi, S. Srivastava and S. Luding, On thaditoon from creeping to inertial flow in arrays of
cylinders, Proceedings of IMECE (2010), Vancouganada.
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5.1 Introduction

Transport phenomena in porous media have beenothes fand interest of numerous
studies for the past decades. This interest stemsd wide range of applications in such
industries as chemical, mechanical, geologicaljreninental, petroleum, etc [1-5]. The
flow conditions encountered are broad enough toecav wide range of Reynolds
numbers (Re) and porosities. In practice, thred¢indisflow regimes are commonly
defined in the literature in terms of Reynolds nemli) stationary Darcy or creeping
flow, (ii) steady, laminar inertial flow and (iignsteady chaotic/turbulent flow regimes.
As an example, creeping flows (i.Re < 1) may be encountered in ground water flows,
composites manufacturing and filtering, whereasti@eflows are found in applications
such as heat exchangers or packed bed chemicabneatlighly turbulent flow is
expected, e.g., in gas-fluidized beds. The flowmeg studied in this chapter are limited
to regimes (i) and (ii). Several macroscopic patenseare often needed to complete
coarse grained models that are employed to desmumbd applications. This has
motivated the research in the development of wratips to describe macroscopic
parameters, such as permeability and inertial woefits, for different kinds of porous
media at various porosities and flow regimes.

Most porous media are particulate, but some areposed of long particles/fibres and,
therefore, may be considered as fibrous media. Treyencountered in a variety of
modern technology applications, predominantly i@ thanufacturing of fibre-reinforced
composites, with extensive use in the aerospacauatodnobile industries.

With the recent progress in computational and nigaktools, one can now perform
detailed calculations of heavily loaded, fluid-pae flows, based on two-fluid models
(TEM) and/or the discrete particle method (DPM)4B,However, these methods require
the knowledge of several constitutive laws (i.ee timterphase momentum-transfer
coefficient of the gas/fluid phase acting on thetiples/solid). Accurate drag laws are a
basic requirement in simulations based on DPM avi & be successfully used in the
design and optimization of industrial processeschSeorrelations have a strong
dependence on the pore structure and pore-levaligd)ywhich generally requires them
to be estimated experimentally or through the dsisting empirical relations.

At the macroscopic level and in the limit of cregpiflow regimes (Re~0), the pressure
gradientp, and the flow rate have a linear relation, knowrbarcy’s law:

_H
-Op=Xu , 5.1
= (5.1)

where u and U are viscosity anduperficial (discharge) velocity, respectively. The
proportionality constank, is called the permeability of the medium, whidhosgly
depends on porosity and microstructure (e.g., flarticle shape and arrangement, void
connectivity and inhomogeneity of the medium). ®ifect of several microstructural
parameters on macroscopic permeability was investityfor ordered (chapter 2) and
disordered (chapter 3) fibrous media, see Ref3] fnd references therein.
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Darcy's law was originally obtained from experinser8] and later derived using
upscaling [9], homogenization [10, 11] and volummeraging [12, 13] techniques. It has
been shown that Darcy's law actually representsnitimentum equation for Stokes flow
averaged over a representative volume element (Rviplying that it is valid only in
the creeping flow regime [14].

The effect of fluid inertia, on the other handaismore complex problem, lending itself to
numerical rather than analytical treatment. Actigsearch has been dedicated to derive
adequate corrections to the linear relationshijfedn (5.1) from numerical, theoretical,
and experimental points of view. Koch and Ladd [&Bd Hill et al. [16] simulated
moderate Reynolds number flows through periodic aaddom arrays of aligned
cylinders and spheres using the Lattice Boltzmamthield (LBM). They showed that the
inertial term made a transition from being lineabeing quadratic in random arrays. The
inertial effect became smaller at the volume fractapproaching close packing due to
increased drag forces through the narrowing chaniéle experimentation that proved
this nonlinear relation was carried out by Forchiesi [17], who indicated that there
exists a quadratic term of the flow rate when tleyri®lds number is sufficiently high.
While the LBM has been successfully applied forgheulation of porous media flow in
the creeping regime [18-20], its applicability foigh Reynolds numbers has been the
subject of more speculation and debate due totgmienf parameters, resolution and the
necessity to reduce compressibility effects [21]. Zhdrade et al. [23] demonstrated
that, for a 2D disordered porous structure at tpglosity, the incipient departure from
the Darcy law could be observed already in thedste@aminar inertial flow before
arriving at turbulent/chaotic regime.

To date, mainly empirical relations, such as byuarfR4], and their components, the
Carman-Kozeny (viscous term) and Burke-Plummer rijale term) equations, have
proved to be quite useful for predicting the pressirop in packed beds [25, 26]. Liu et
al [27] devised a semi-empirical formula for theegsure drop, which incorporates the
tortuosity, the curvature ratio and the variatidrthee pore cross-sectional area. Jackson
and James [28] conducted a comprehensive revietheofliterature on a variety of
theoretical models and presented a large collecfaaxperimental data for both natural
and synthetic fiborous media. A recent discrete igdartstudy by Bokkers et al. [29]
showed that, with respect to bubble formation undiized beds, the drag relations derived
from the lattice-Boltzmann simulations of Hill €t §l6] yielded better agreement with
the experimental observations than the traditi@rgln and Wen & Yu [30] correlations.
While the latter relation remains the most widelsed in chemical engineering, an
accurate description for the interphase momentamster has been a subject of debate.
This has motivated the research in the developroémhore accurate relationships to
describe the macroscopic momentum transfer in teaismicroscopic pore-scale
parameters.

Most of the previously obtained drag laws are ordlid for 3D, spherical particles on a
packed bed. Although the drag relation for 2Ddis materials and 3D packed beds are
quite different (for instance in 2D the drag divesgn the limit of close packing), my
attempt is to check the validity of those relatidios 2D systems. | establish the
relationship between microscopic and macroscopimpgrties of fibrous media by
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conducting a systematic study using numerical satmars based on the finite element
method (FEM). In order to get a better understagdirthe state-of-the-art on non-Darcy
flow, literature concerning the theoretical basis tbe Forchheimer equation and
experimental work on the identification of flow iBgs is reviewed in Section 5.2. After
presenting the numerical method used to compute plemeability and inertial
coefficients, results are discussed in Section Bti@ steady state fluid flow across uni-
directional arrays of cylinders are considered, fwth ordered and disordered
configurations. Accurate, high resolution computasi were carried in order to
investigate the existence of the different regied the corresponding scaling laws. The
effects of several structural parameters, namelggity, disorder and fibre-shape on the
flow behavior at various regimes are discussedetaid The chapter is concluded in
Section 5.4 with a summary and outlook for futuweky

5.2 Theoretical background

Flows in porous media can be studied at eitherga@pic or macroscopic scales. For
the former scale the flow through individual poresomputed by solving the mass and
momentum equations (i.e. the Navier—Stokes (NSatan) numerically, whereas for the

latter a continuum description is usually adopteddd on volume averaging of the
equations pertaining to microscopic scales. Thdirlgp of these two descriptions

constitutes the well known scaling-up problem, whigsually provides macroscopic

properties in terms of the permeability, i.e. thelity of a porous material to transmit

fluids. Although the permeability can, in principlprovide quantitative correlations

between morphological features of pore geometryitndapacity to transmit liquid, its

values depend on many factors such as porositicatyfength scale of pores, grain size
distribution, shape, anisotropy and tortuosity ofgconnections, see Refs. [5-7] and
references therein (see chapters 2 and 3). Theretoe permeability determined either
analytically or empirically for porous media withoraplex structures involves

considerable uncertainty — one can not determirezastopic properties only from the

macroscopic permeability.

As mentioned already, Darcy’s law is the most wideded empirical correlation for the
calculation of the pressure drop across a homogesnesotropic, unbounded and non-
deformable porous medium. It is strictly valid facompressible and isothermal Stokes
flow (Re = 0) of Newtonian fluids [9]. However, it is usualhpplicable in engineering
applications for Re& 1, defined byRe= oUl / 4 wherel and p are the typical pore size
of the structure and density of the fluid, respati. Darcy’s law, since it lacks, among
other reasons, the flow inhomogeneity/variabiliig not valid at the interface of a porous
medium-solid or porous medium-free flow. Brinkm&i ] added a diffusion-type term to
Darcy’s law, leading to

—Dp=§U — Uy (5.2)

21t can not account for the no-slip boundary cdndit the solid boundary of the porous medium.
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Brinkman’s equation is, like Darcy’s law, inertise€ and hence valid only for creeping
flows. Recently, Auriault [32] discussed the valdiand limitations of Brinkman’s
equation for “classical” porous media, swarms ¥ oncentration particles and fibrous
media at high porosities.

In the continuum approach one describes mass amdentam balance equations at
macroscopic scale, using a specific averaging pioee Therefore, it is difficult to
adequately determine the averaging domain. Usiogninuum approach, Hassanizadeh
and Gray [33] developed a set of equations to destine macroscopic behavior of fluid
flow through porous media. Linearization of theggations yields a Darcy equation at
low velocities.

Although the physical nature of the deviation fr@arcy’s law is still unclear and may
have several causes (probably acting together),irim@prelationships correlate the
pressure drop and average fluid velocity in ponmgslia. To account for the non-linear
behavior of the flow in porous media, Forchheinief][added a quadratic velocity term
to represent the microscopic inertial effect, aondrected Darcy’'s equation to get the
Forchheimer equation

—Dp=EU + BoU? (5.3)

where the constan,is referred to as the non-Darcy coefficient whidte permeability,

is an empirical value that depends on the micrespaters of porous media. Just as is the
case with Darcy’s law, Forchheimer's law was oradjiynn postulated heuristically to fit
experimental data. However, during the past dectdas has been an effort to derive it
from first principles. Some of the techniques usee matched asymptotic expansions
[34], the capillary model [35], hybrid mixture thgd36] and volume averaging [12, 37,
38]. The physical justification of the quadratictura of the correction was supported
either by intuition or by dimensional analysis dhd analogous turbulent kinetic energy
loss in straight tubes [39]. Moutsopoulos et ald][4nvestigated phenomenological
relations for the Forchheimer equation experiméntand theoretically for both
homogeneous and heterogeneous media. Using a hoinatyen approach, Chen et al.
[41] claim that the nonlinear filtration law is glratic. By generalizing the Forchheimer
equation, Ergun obtained the following empiricdbtien for homogenous, packed beds
of randomly distributed spheres:

_Dp— /\(:I'_g)2 lug + B(l_sg) pU2 , (54)
£ d £ d

whered is the average diameter of the particles in thealn ande is the porosity,

After analysis of a large quantity of experimerdata, Ergun concluded that their best
representation could be obtained wih= 150 andB = 1.75. However, in subsequent
studies these values have been found to vary cenaéily with shape, porosity and Re

% Comparing Egs. (5.3) and (5.4), one can relat@p#tameterg, B, and £ to K andg.
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number [42, 43]. In particular, after testing theglth equation using many more data
than ever before, MacDonald et al. [42] found that 180, andB = 1.8 (smooth
particles) or 4.0 (rough particles) give the bést to all of the data. Besides the Ergun
equation, there are correlations that use the mmestsional particle friction factofy,
through the following definition

-Opd
f =P (5.5)
oJ
By combining Egs. (5.5) and (5.3), the Forchheigggration can be written as:
1 .
f = -+ [, 5.6
* ReK o (5.6)

where Re=pUd /u, K =K/d® and B =3d are the Reynolds number (based on
diameter d), the normalized permeability and the modified 4marcy coefficient,
respectively. The latter two parameteks and B, can be considered as the non-

dimensional, macroscopic viscous and inertial ¢oeffits with the advantage of an
expected constant friction factor in the inertiagime. Looking at the literature, one
found several definitions and relations betweentih factor and Re (or sometimes
pressure gradient arld) which makes it difficult to establish a one-toeocomparison.
Table 5.1 summarizes these definitions and théitioas.

In Table 5.2, the available modifications of Erguequation and their range of validity
are listed as functions of the particle Re numiRe, = Re( k¢). Therefore, most

equations have the typical porosity te(m,g)/53, for low Re, with various different

constants and strongly varying further terms [42,62-64, 67-69] representing the effect
of wall, shape, etc. A few of the equations alseehaon-linear corrections in the first
term [54, 59, 66], and the last class are sumsewéral powers of Re used to fit into
available experimental/numerical data [52, 53, &L more complete list of correlations
for the viscous term, i.e. at low Re numbers, offlibous materials can be found in Ref.
[5]. Recently, Barree and Conway [44] conducted eexpents suggesting that
Forchheimer’s equation is only valid over a limit@shge of velocities. Derivations using
volume averaging were undertaken by Ruth and M§ |r&d Whitaker [38]. However,
Ruth and Ma [12] explain that microscopic inerteffects are neglected in volume-
averaging techniques and therefore cannot be wsel@rtve a macroscopic law. They
point out that the Forchheimer equation is not uejgand any number of polynomials
could be used to describe nonlinear behavior duaexia in non-laminar flow. This is
confirmed in Bourgeat et al. [45], where the noadin filtration law is obtained as an
infinite series in integer powers of the local Relgs number. More recently, Balhoff et
al. [46] used the method of homogenization to dgved general polynomial filtration
law for low Reynolds numbers. In MaruSic—Paloka avidkelic [47], the existence,
uniqueness and regularity of general non-locattilbn law was rigorously established in
the homogenization limit when the pore size tewdzetro.
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Table5.1: Various definitions and relations between frictfantors and Re (or pressure
gradient and superficial velocity)

Friction factor — Re (or pressufe

gradient -U) relation Comment

-Op~U Linear Darcy’s law for creeping flow, Eq. (5.1)

Brinkman’s equation for creeping flow at high

_ - _rme2

Hp~U-0°U porosities, Eq. (5.2)

Op~U+U? Forchheimer (Ergun) equation, quadratic correctoof

P Darcy’s law, Eq. (5.3)

e 3 Cubic correction to Darcy’s law valid at small Ry,

Op~U+U (5.7)
1L Particle friction fact function of R@ is th
f ~—Op/U? ~ Re™+ 3 article friction factor as function of R& is the

inertial, porosity dependent parameter, see TaBle|5

Non-integer,A, power law fit, used in this chapter

f'=f Re~-Op M ~a + Ré ,
P P Eq. (5.8);a is the viscous, porosity dependent tern

Isolated inertial term used for scaling the data in

fF~f-a~-Rg Appendix 5.D; Rgis “gap” Re number

One of the important observations from Wodié andyl[d8], Mei and Auriault [11], and
Rasoloarijaona and Auriault [49] was that for aptrigpic porous medium, the quadratic
terms cancel and one has a cubic filtration lavegily

—Dp=§U WAV +V Re, (5.7)
U

P RekK

where y is a porosity dependent dimensionless paramelés.dbservation is confirmed

analytically and numerically by Firdaouss et al][&and for periodic two-dimensional
arrays of cylinders arranged in a regular pattgr©buland et al. [51]. In most cases, the
cubic law is only valid at very low velocities (Re 1, where Darcy's law is
approximately valid anyway), and the quadratic Rbemer equation appears applicable
at higher, moderate velocities (1<Re<10). Nonelehese findings are significant
because they suggest that any power law with aegémt power, such as in the
Forchheimer equation, may not be universal and omlyd for a limited range of
velocities and porosities.

Despite extensive previous work, our understandihghe physical reasons for non-
Darcy flow is incomplete. To better understand timécroscopic origin of these
correlations, | conduct a set of FE simulationsboth ordered and disordered arrays of
cylinders in a wide range of Reynolds numbers ertbxt section.
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Table 5.2: Available modifications of the Ergun equation imte of the particle friction

factor, f, and the particle Reynolds numbRe, = Re( +¢) =

oud

. Unless
(1-¢)u

explicitly stated, the relations are valid for 3f)sordered systems.

Author f, Range of validity
1-¢) 150
Ergun [24] ( j{— + 1.75} £<08
£ )\ Re,

MacDonald (1—5} 180, 5 B =1.8, smooth particles
et al. [42] e )| Re, B =4, rough particles
Rose [52] 1000Re,'+ 60Re ™ +12 Mean value ofRe, [J14(
Rose and -1 -05

. 1000< Re < (
Rik 53] 1000Re;* +125Re.% +14 000< Rg < 600
Hi (1=2)” peoz 500< Re, < 60000
icks [54] 6.8 3 Re, €
_ ) _ 2)1166
[55] Re, ¢ £
1(125 _ n
Lee and E( = (1—5)2j(2932Rep1+ 156Re;"+ 0.1) 1<Re. <10
Ogawa [56] P
n= 0352+ 0.1 + 0275%°
Kirten et al. 25 2 - -0,
ra (E (L-¢) j(leepH 6Re;%*+ 028) 0.1<Re, <4000
a(1000Re'+ BORE™+ 1)

Montillet et o2 10< Re, <2500,

al. [58] a= 0'06{1_£j(2j D: bed diameter
e )ld

Ozding et so.7ad 4\ re(9) o 675<Re, <7772

al. [59] L a2 L: bed length
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Martin et al.
[70]

Square and triangular
fibre arrays, with
0.8<e<0.9¢and

3<Re, < 16( Then, m

andb are fitting
parameters.

Papathanas
iou et al.
[26]

U7

d2

Re K(1-¢)

(1-¢)d

+0.08——F—=

T eJK

Square and hexagonal
fibre arrays, with
0.3<e< 0.6and

0<Re, < 40(

Tamayol et
al. [71]

1D, 2D and 3D ordered
fibrous media in the range
of 0.35<¢< 0.9t and
0.01< Re < 4001 The
a, bandc are fitting
parameters.

Koch et al.
[15]

(b)

(a) For both periodic ang
random fiber arrays at
Re<1;k; andk; are
porosity dependent
parameters.

(b) For random arrays af
Re>5 (similar to Ergun
relation);c; andc;, are

porosity dependent
parameters.

Tanino and
Nepf [72]

Randomly distributed,
rigid, emergent circular
cylinders in the range of

0.65<e< 0.€and
70< Re, < 685( (similar
to Ergun relation). The

a, anda, are porosity

dependent fitting
parameters.
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5.3 Numerical results

This section is dedicated to finite element (FE§daamodel simulations of both ordered
and disordered fibre arrays at various porositiesfeow regimes. Alternatives to the FE
method like the lattice Boltzmann method (LBM) calso deal with complex pore
geometries and boundary conditions in the inentedime, but are discussed and
compared elsewhere [22]. The results on the frictactor (both the viscous and inertial
components) as function of porosity, structurepshatc., are presented and discussed.

5.3.1 Ordered structure

| start the analysis with the case of a 2D regp&arodic array of cylinders, perpendicular
to the flow direction, as shown in Fig. 5.1. Thesedels rely on the assumption that the
porous media is periodic and thus can be dividéd imit cells that are then also
representative volume elements (RVE). The frictiactor is then determined by
modeling the flow through these, more or less,lided cells.

=>

Flow directiof

(b)

Figure5.1: The geometry of the unit cells used for (a) sqaae (b) hexagonal
configurations.

5.3.1.1 Computational method and boundary conditions

The FE software ANSY%is used to calculate the horizontal superficidbeity, U, from

the results of the computer simulationsuas%\ .[ udA, whereA, A andu are the total
A

area of the unit cell, the area of the fluid and ititrinsic fluid velocity, respectively. In
the flow domain, the steady state NS equations awedbwith the continuity equations
were discretised into an unstructured, triangulament. They were then solved using
segregated, sequential solution algorithm. The ioesrdeveloped from assembly of
linear triangular elements are then solved base@ @aussian elimination algorithm.
Some more technical details are given in Refs.][5-fe mesh size effect is examined by

122



Chapter 5. Towards unified drag laws for inertialrf through fibrous materials

comparing the simulation results for different dlefons (data not shown here). At the
left and right pressure- and at the top and botpmriodic-boundary conditions are
applied. No-slip boundary conditions, i.e. zerooedly are applied on the surface of the
particles/fibres. Computations were performed feyfdlds numbergd0™ < Re< 3( and
porosity 0.3< £ < 0.¢, assuming that the stationary solution is stiygbally valid in the
upper range of this Reynolds numbers.

5.3.1.2 Generalized Forchheimer equation

The validity of the Forchheimer equation for ordergructures (namely square and
hexagonal configurations) is studied in this sectid generalized non-dimensional form
of the Forchheimer Eq. (5.3) can be derived byylashg a power law and multiplying
the friction factor by Re, so that:

A
1 ) 1
-f==+y|—| =—+ Re' 5.8
LS ke 5o
where f' =d?0p/(uU) = f Re andU”™ = p/(pd) are, by definition, modified friction
factor and scaled velocity, respectively. The ndired permeabilityK =K /d* and
non-dimensional inertial coefficientd and y, in general, depend on the porosity and
structure of the medium. The powdr represents the deviation from Darcy’'s regime

(f =const), so that the non-linear correction can be isdldig studying—f —-1/K’
(refer to Appendix 5.C). In case df=1, Eq. (5.8) reduces to the Ergun equation (Eq.

(5.4) or (5.6)) withK' =£3/(150( 1—5)2) and y=1.75(1-¢) /. Similarly, for A =2,

Eq. (5.8) reduces to Eq. (5.7) with=) . More discussion on the dependence of

normalized permeability K on porosity and pore-structure for (dis)orderdordiis
medium is given in [5, 6] and references therelmfters 2 and 3). In the following, |
rather focus on the influence of micro-structuratgmeters on the inertial coefficients
and y, while 1K’ is the low-Re permeability that only depends oropiby.

Fig. 5.2(a) shows the variation of the modifieattion factor as function of normalized
velocity, U/U" =Re, for square (red) and hexagonal (blue) configaretifor three
different porosities. The results are comparedregdubrication theory of Gebart [81],
FE results of Ghaddar [82] and numerical resultsSahgani and Acrivos [80] for a
creeping flow regime. The solid lines represent libst least square fit to the FE data
using Eq. (5.8) with the power as the free paramethbile the upper black dashed line
(only one is shown at = 0.6) represents a fit to the cubic deviatioh=(2) from the
Darcy regime, which is almost perfect (99.99% agremt) for Re<3, but strongly
overestimates the results for larger Re. As exampiie hexagonal structuresat= 0.6,
0.7, 0.8 correspond to K/ = 91.5584, 35.3612, 12.3190, apg = 0.06993, 0.05330,

0.04297, respectively. Note that for all fits, fitke constant, low Re regime was fitted
and then the nonlinear correction was derived. g\thié cubic correction-termi(= 2) is
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applicable, it does not give a good predictionlémger Re. Therefore, | will discuss fits
with non-integerA values since they are good approximations up &3Be

As expected, by increasing the porosity, the nozedl permeabilityK , increases, i.e.

for higher pressure gradients the flow regime clkarfgom Darcy (horizontal line) into
inertial (nonlinear) regime. For square configuwa$ the transition starts at lower
velocities (i.e. Re10) compared to the hexagonal configuration. Not tn Darcy’'s

regime, the flow is symmetric about both horizorgatl vertical axis (not shown here).
However, in the inertial regime, due to the noredin contribution of inertia to the
transport of momentum, the symmetry about the cartaxes (normal to the flow

direction) will break (see Section 5.3.1.4) whhe flow is still stationary.

Fig. 5.2(b) shows the variations of inertial coa#ints (i.e.A and y) in Eq. (5.8) as
function of porosity for both square and hexagamifigurations. We observe that the
power A is (i) larger than unity and varies betwekn A <2 and (ii) depends on both
porosity and structure/arrangements of the pasiithres. By increasing the porosity (i.e.
for more dilute systems) the power decreases apmbaghes the value of unity (i.e. the
original quadratic Forchheimer correction, Eq. Jb.Square arrays have larger values of
A compared to hexagonal arrays implying that thesiteon to inertial regime starts
earlier and sharper (see Fig. 5.2(a)). On the aontthe pre-factoy (in the inset) seems
to be independent of structure and linearly dee®aby increasing porosity as

yDO.8(1— 5). In the appendix 5.A, the quality of the propogedver law fit (Eq. (5.8))
is compared with the quadratidl £1) and cubic g =2) fits at different porosity for
both square and hexagonal configurations.

600 O £=05 T T T g
O £=06 (@) ¢ :'
_ 3 |
500 vV =07 § !
Ghaddar [82] A=1 8
Gebart [81] g |
400+ = Sangani & Acrivos [80] A=2 K |
Square & \/
© === 5—€ == —eco’ N
:l— 3007 ,,' /-
Hexagonal &
200+ o [
1001 ZHCmeeemw moweaine ]
0 Lo Lol (AR Lol Lornd L
-5 -4 -3 -2 -1 0 1 2
10 10 10 10 10 10 10 10
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Figure5.2 (a): Variation of the modified friction factor as furm of the normalized
velocity (or Re) for square (red) and hexagonaléptonfigurations (solid lines show
the best least square fit to Eq. (5.8) and thekidiashed lines show the best quadratic

(A =1) and cubic @ = 2) fits in the range 010 < Re< 3(), symbols show the
analytical/numerical data from literature; (b) lin@rcoefficientsA and y as in Eq. (5.8)

plotted against porosity.

5.3.1.3 Effect of stagger cell angle

In this subsection, the effect of the stagger aeflle,a on the inertial term is discussed.
The stagger angle is defined as the angle betweediagonal of the unit-cell and flow-

direction (horizontal), as shown in Fig. 5.3(a).dddition to the special cases=45%

and a =60°, i.e. square and hexagonal packings, respectigelyeral other angles are
studied.

Fig. 5.3(b) shows the variation of the modifiecttion factor as function of normalized
velocity for different stagger angles, at the constant porosity =0.7. Similar to the
normalized permeability, the inertial coefficiept is weakly dependent on the stagger

angle in the range d80° <a < 6C°. However, A increases (almost) linearly froph (1
at a=70° to A02 at a=20". For a =70° and higher (but lower than the maximum
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achievablea_ = tan‘l(ﬂ/( A1~ 5))) [ 80), the flow generally follows a straight line

with large superficial velocity and consequentlygka values of permeability and the

transition starts at higher scaled velocities (Réh the other hand, a =20 and lower
values of a (but larger than the  minimum  allowable limit

O,y = tan™(2( 1-£) /) O 11), the flow is more tortuous and consequently it luaver

permeability. At this range, the transition intsmrADarcy regimes starts already at smaller
superficial velocities.

140
(o] = o
120]] a=20
O g=30°
100f V a=40°
+ g=50°
801} * g=60°
Flow a . % 4=70°
directior 601
40¢E
20k
0 -5‘ HHM-4‘ HHM-3‘ HHM-Z‘ HHM-l‘ HHM‘O‘ ““““1‘ o 2
10 10 10 10 10 10 10 10
unJ”
(a) (b)

Figure5.3: (a) stagger angle and (b) modified friction factor as function of
normalized velocity for differentr at porositys =0.7. The solid blue lines show the

best least square fit in Eq. (5.8) in the rang&®f < Re< 3(.

5.3.1.4 Effect of particle shape

In order to study the effect of particle/fibre shapn the macroscopic permeability and
inertial coefficients, the normalization is donettwrespect to the obstacle length,
which is defined as

L, = 4 area / circumference, with:

L, =d (for circles), L, = c (for squares), ani, = 4rab/A_ (for ellipses) (5.9)

126



Chapter 5. Towards unified drag laws for inertialrf through fibrous materials

whered, ¢, a andb=a/2 are the diameter of the circle, the side-lergjtthe square, the
major (horizontal) and minor (vertical) lengthstbé ellipse, respectively, arfd is the
circumference of the ellipse. By applying the sgm&cedure as in the previous section,
the normalized permeability and inertial coefficeemre calculated for different shapes
on a square configuration.

Fig. 5.4 shows the modified friction factor as ftion of the normalized velocity for

different shapes. The circular shape has the loaedthorizontal ellipses the highest
normalized permeability. The reason is that, at $hene porosity, ellipses are more
elongated in the flow direction and therefore thuedfcan flow more easily on a straight
line through the wider channels. However, at highopities this effect diminishes (data
not shown). Note that, due to the narrower chanmieéslocal maximal velocity is higher
for circular shapes, given the same porosity anesqure gradient. However, the
superficial (discharge) velocities for ellipses éaeger, leading to higher permeability,
than other shapes. For the same reason, the toangit the inertial regime happens
earlier for squares, whereas it occurs at high&citees for ellipses. The values of the
inertial coefficientsA, y and the viscous (normalized permeabilky) term, obtained

by least square fitting to Eq. (5.8), are listedTmble 5.3. The poweA is not greatly
affected by the shape (maximum variation less tiE0P6), however, for squares, the

value is ~5 times larger than for ellipses at loovgsities. The numerical results show
that, similar to the normalized permeability, thiteet of shape on the inertial parameters

is less pronounced at high porosit(ess> 0.9), not shown here. Establishing a common

drag law based on the aspect ratio, sphericitytteercshape parameters is still a challenge
for future study.

To better understand and explain the flow charetierin the inertial regime, the
patterns of the streamlines for different shaped t#e vortices generated behind the
obstacle are shown in Fig. 5.5. The non-Darcy effecurs because microscopic inertial
effects alter the velocity and pressure fieldsth same porosity =0.7 and Reynolds
number Re10, we observe that for the square shape one toagyst vortices (i.e. those
that contribute more to the energy loss) compaoeithe ellipses in which the wake (or
flow separation) zones behind the obstacle iseftattl and stretched. These vortices
increase in size as the velocity increases andteaiyn become unsteady and local
turbulence occurs. At fixed porosity and pressueglignt, the flow for ellipses is — even
though faster in average — less “turbulent” and ctimer.

Note that the flow pattern is stationary and symimetiong the horizontal symmetry axis
and non-symmetric relative to the vertical axese Hibove example implies that the
tortuosity (flow path) is one of the key factorsdetermining the viscous and non-Darcy
coefficients (see Section 5.3.2.3 for more details)
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Figure5.4: Modified friction factor plotted against normaldzgelocity for different
shapes at porosity =0.7. The solid lines show the best least square #qn(5.8) in the

range ofl0™° < Re< 3(.

Table5.3: The values of the inertial coefficienss, y and viscous (normalized
permeability K [5]) term, obtained by least square fitting of therE&Lilts into the Eq.
(5.8) in the range of0™° < Re< 3(, for different shapes and various porosities.

Shape Circle Ellipse Square

Porosity, & 0.7 0.8 0.9 0.7 0.8 0.9 0.1 0.8 (0]l ¢

K':K/LZp [5] |0.025|0.077|0.319| 0.065| 0.147| 0.486| 0.031| 0.091| 0.375

A 1.54411.561| 1.338| 1.343| 1.436| 1.111| 1.281| 1.342| 1.129

4 0.211| 0.113| 0.082| 0.072| 0.058| 0.056| 0.355| 0.168| 0.113
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Figure5.5: The streamline patterns around (a) circle, (bpsgand (c) ellipse of the
aspect rati@/b=2 at the constant porosity=0.7and Re:10. The color shows the
magnitude of the horizontal velocity.

5.3.2 Structural disorder

Because of the complexity of pore-space geometgssical numerical methods for
solving flows through porous media are typicallgtreted to ordered and small or
periodic domains. However, many realistic porouslimeare (i) confined with walls, (ii)
are not truly two-dimensional, and (iii) possiblpntain a degree of randomness (or
disorder) at larger length scale that is not adeyaepresented in too small periodic
boundary cells. In this section, | focus on (i) casnpromise, and investigate the effect of
disorder on both viscous and inertial coefficiemtsa moderately large system with
N=800 particles/fibres within a channel with walls.

5.3.2.1 Computational domain and methodology

Fig. 5.6 shows a 2D representatiolNsf800 randomly distributed fibres, generated by a
Monte Carlo (MC) procedure [73], oriented normalthe flow direction at porosity
£=0.6 with a minimum inter fibre distancé,=0.05 or in dimensionless form
A, =0,y /d =0.05. Similar to Chen and Papathanasiou [73], and Ylazelcal. [5], a
minimal distance is needed in 2D to avoid compleleckage. The microstructural
parameters, namely the system size, method of aggoer homogeneity and isotropy of
the structure and their influence on macroscopimpability have been discussed in [6].
At the left and right of the system the pressurendary conditions are spesified and at
the top and bottom walls as well as at the suréddbe particles/fibres no-slip boundary
conditions are applied. The fibres are assumeceteeby long so that a 2D solution can
be applied. A typical fine, unstructured and trialag FE mesh is also shown in Fig. 5.6.
The number of elements varied from aboutl& to about 18depending on the porosity.
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The lower the porosity the more elements are neadedder to resolve the flow along
the many narrow channels between the neighborbrgdi The numerical results show
that in all simulations one need at least ~10 ro@fvelements between neighboring
particles to correctly capture the fluid behaviadabtain a converging solution. Details
of the comparison of different resolutions are juled in Appendix 5.B. To obtain good
statistical accuracy, the permeability values amettial coefficients were fitted to data
averaged over 10 realizations of packings genetatgte random MC procedure.

)
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Figure5.6: Fibre distributions generated by a Monte Carlo pdure, withN=800
unidirectional cylinders, normal to the flow direet, with minimum inter fibre distance
omin=0.05d at porositye =0.6. The zoom shows the fine, unstructured, tutarg-E
mesh.

Fig. 5.7(a) shows the variation of the modifiedction factor as function of the
normalized velocitylJ/U™ for disordered configurations at various porositiehe results
are compared with the FE results of Ghaddar [8#,rtumerical results of Sangani and
Mo [83] and the LB results of Koch and Ladd [15F Axpected, increasing the porosity
leads to an increased normalized permeabilfy, For Re<3, like in the ordered
hexagonal situations, the normalized friction factse perfectly fitted by a cubic
correction, e.g., for porosities 0.6, 0.7, 0.8, bas 1K = 158.8418, 49.40725, 12.74905,
and y, = 0.6569, 0.5369, 0.2592, respectively. Thus the ifieod friction factor is
considerably larger for low porosity in the randeonfigurations, while the correction
quadratic factor 4 =2) y, is about an order of magnitude larger, implying tha inertial

effects already occur at much smaller Re numbdrs.r&lative deviations at Re=1 for the
above porosities are 0.004, 0.01 and 0.02, resdetiThus at Re<<l Darcy’s law
holds, yet for Re~1 stationary eddies (dead zohasdo not participate in the overall
mass-flux) exist mainly due to the geometry of pguees. The gradual deviation from
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Darcy’s law is due to the dynamic growth of prestixig eddies within the micro-scale
flow field and separation of flow in pores wherewl diverged. Small deviation between
my FE and LB results of Koch & Ladd [15] at creapiifow regime might be due to the
difference in minimum inter-fibre distance, resaus, number of fibers or boundary
(periodic/wall) conditions.

Since the quadratic fit deteriorates for Re>0.5&jain perform the nonlinear fits to my
data up to about Re~30, see Fig. 5.7(b), wherevdhiations of the inertial coefficients
(A and y) in Eq. (5.8) are shown as function of porositye Bbserve that foe >0.45,

unlike the case of ordered arrays and similar ® Hngun equation, the powet is
approximately constant and close to unity, wheres pre-factor)y decreases with

increasing porosity. However, at very low porositiés <0.45),4 increases ¥

decreases) with decreasing porosity and approaittfeeexpected valuesA(d2) for
hexagonal arrays, corresponding to the appearafcerdered zones. Due to the

(artificial) gap between fibres/discs, each diss aa effective diameted™ = d(1+ Amm)
greater than its actual valug, With this effective diameter, it is possible tefide an
effective porosity & =1-(1-¢)(1+4A,,,)°. Inserting A,,, =0.05 and £=0.45, the
effective transition porosity from disorder to ordarrangements is estimated as
£ [00.392. Note that this value is still far above the ramdelose packing limit
£, 00.16 [74], or the minimum hexagonal latticg,., [10.0931, and still above the

freezing pointe; J0.309 [75] or melting pointe, 00.284 [75]. In fact it indicates that

even small (partial) ordering in the system carstitally affect the transport properties,
namely permeability [6] and inertial coefficientsgmrous media. The comparison of the
quality of the proposed power law fit (Eq. (5.8)jttwthe quadratic 4 =1) and cubic
(A =2) fits at different porosities are given in the Asplix 5.A.

In Appendix 5.D, | present a universal scaling laxa)id at all porosities, based on
different definitions of Re and friction factor. ik shown that the inertial effect can be
better explained as two distinct regimes: (i) cutmerection at Re<1 and (ii) quadratic fit
at Re>1, with almost the same accuracy as the pegppower law.
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Figureb5.7: (a) Variation of modified friction factor as fummh of normalized velocity
for disordered media at various porositi&he solid lines show the best least square fit

in Eq. (5.8) in the range df0™ < Re< 3( (b) Inertial parameters as function of porosity.

* Note that the numerical values in Koch & Ladd [1#re presented in the form of
f, =F/(4J) (F is mean drag per unit length), as function of Resteady state, the
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As mentioned before, most of the available con@hst have a viscous porosity
dependence that is similar to the Ergun equatidh warying constant#,, , while my

data lead to a range db0<y ., < 30C [76], see next section. Here we are curious to
check the quantitative validity of the inertial gooment of the Ergun equation, i.e.
y=1.75(1-¢) le*. To this end, | fit my FE results into Eq. (5.8saming constant =1

(i.e. quadratic correction) for porosities>0.45, i.e. random/disorder co-existence
arrangements. Fig. 5.8 shows the comparison bettirecinertial coefficienty, obtained

from my FE simulations (blue squares) and thosainbtl from Ergun’s equation (red
line) at various porosities. The good agreemenhes$e curves demonstrates the validity
of the inertial component of the Ergun’s equationginally obtained for 3D spherical
beds in nearly turbulent regime, also for 2D disoed fibrous media in laminar flows.

11
1 O FEM (this study) | |
9r V¥ Koch & Ladd [15] i
al —— 1.75(1-8)l |
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Figure 5.8: Variation of inertial coefficient/, obtained from FE simulations (blue

squares) and from Ergun equation (red line) abuarporosities from disordered
configurations.

average drag force multiplied by the cylinder numtbensity, &, is equal to the applied
pressure gradient, i.élp=¢F. Combining this relation with the definition ofidtion

factor in this chapter, i.e. Eq. (5.8), leadsfto=(4(1-¢) /71) f,, .
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5.3.2.2 Different definitions of the Reynolds number

In analyzing flow through porous media, the supétfivelocity and pressure drop are
typically correlated through the particle frictiderctor, f,, which appears as a function of
Reynolds number, Re, see Eq. (5.6). Looking atitbeture, several Reynolds numbers
for porous media are defined, namely

reference flow Reynolds numberRe= pUd /u (5.10)
particle Reynolds number: Re, = pUd /((1-£) ) (5.11)
modified Reynolds number: Re, = PIVK Tu 3®)1
interstitial Reynolds number:  Re = oUd /(1) .18)

Recently, based on the lubrication effect of therowa channels, | found a power law
relationship between the permeability values olet@ifrom fluid flow simulations and
the mean value of"2nearest neighbor surface-to-surface fibre distadcg, normalized

with the fibre diameters [6], see chapter 3. Thmeefanother microstructural definition

could be the “gap” Reynolds number, i.&e, =UA /,UE(Agap /d) Re, where
(Agap/d) is a function of porosity [6]. In Appendix 5.D,uke this definition to get a
universal friction factor-Rgrelation valid at almost all porosities. By incsgsy the
porosity and in the very dilute regime (ie.- 1 or d - 0), by intuition, the Reynolds
number should increase and approach its maximuoey&g..x for duct flow (i.e. flow
between parallel plates). The definitions presemteq. (5.10) and (5.13) incorrectly
approach zero values in this limit. On the othardhdahe definition in Eg. (5.12) contains
the macroscopic permeability which, in generalamsunknown quantity depending- a
priori- on the microscopic level. This has motivhtes to revisit the definition of the
Reynolds number in terms of some measurable giemntf the (random) systems that a
proper trend is recovered also in dilute regimesus&ful, measurable quantity that is
frequently used in modeling of porous/fibrous stuwes is the hydraulic diameteby,.
When one has obstacles like fibres (or particlas)eiad of straight pores, the hydraulic
diameter can be defined as:

_4dev 0 4 , _ particle surface. S, _
D, = = = , with a, = : = =
S (l-&a (1-¢) particle volume ( t&)V  d

o (5.14)

with the total volume of the unit ceN, the total wetted surfac§,, the specific surface
area,a,. Note that the hydraulic diameter, in this wayeigpressed as a function of the
measurable quantities porosity and specific surtaea. The above value &f is for
circles (cylinders) — for spheres one has6/d. Therefore the relation between
normalized hydraulic diamet&/d and porosity for fibres will reduce to:
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D, £

o e (5.15)

Using the hydraulic diameter as the characterigtingth, | define the pore Reynolds
number to be

Re, =0UD, /u, (5.16)

and combine it with Eq. (5.15) which leads to
Re, =pUde [(u(1-¢)), (5.17)

For the case of flow between parallel plates ($lal), separated by a distanbg the
hydraulic diameter isD, =2h, and the superficial velocity) is related to the pressure

gradient as

2
U=-1%rp. (5.18)
12u

Combing Eg. (5.18) and (5.16) leads to the maximiReynolds number

3

Re .« = 6’2'} Op. Fig. 5.9 shows the variation of different defimits of Reynolds
numbers as function of porosity at relatively lmenstant pressure gradieip =0.000%
[Pa/m]. The non-Darcian behavior (i.e. high Re nampbecomes important where there
is a combination of high porosity and large presgyradient. As it is seen, by increasing
the porosity the Reynolds numbers (for all the mgfins) increase and the flow
approaches the inertial regimes even at a smalleappressure gradient. However, Re
(reference Re number) and ;R@nterstitial Re number) will decrease at poresiti
£>0.95 and asymptotically tend to zero. On the other hahd particle Reynolds
number (Rg) and the pore Reynolds numbeR¢, ) increases and approaches the

— AR3
maximum Re, = 6’025 Up 66 (though it is a sharp increase froRe, [J0.03: at
U

£=0.99 to Re, [J6€ at £=1). We observed that th®e, gives a good fit to the

exponential function with the power ~12.5 for thelevrange of porosities <0.9. The
numerical results show that this scaling remaingdvalso at larger applied pressure
gradients (data not shown here). For the range<00.8, the variation ofRe, is similar

to Re and Re, /Rey is almost constant equal to ~1/B1 Appendix 5.D, | useRe, or
Re, to get a universal friction factor, valid for @lbrosities for random configurations.
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Figure5.9: Variation of different definitions of Reynolds nber as function of porosity
at a constant pressure gradiéig = 0.000% [Pa/m] for random configurations.

5.3.2.3 Effect of inertia on the viscousterms (K '): Carman-K ozeny (CK) equation

The earliest and most widely applied approach irop® media literature for predicting
the permeability in Stokes regimes, involves capjllmodels [77] such as the one that
leads to the Carman-Kozeny (CK) equation. The aqprois based on the analogy
between Poiseuille flow through pipes and pore nkbn By applying the Poiseuille

2
equation in terms of the hydraulic diamet®, =&d/(1-¢) as U :—‘;E“
7

Op and

combining with Darcy’s law, Eqg. (5.1), the normelizpermeability obtained is given by

. K g
K=tz % 19
& Yo (1-e) ©

whereyck is the empirically measured CK factor which représ both the shape factor
and the deviation of flow direction from that irdact. It is approximated to bhax=180
for random packed beds of spherical particles pi7as in Ergun equation (Eq. (5.4))
wck=150. Reported values of the CK factor for fibransdia vary between 80 and 320
[78, 79]. The same range wéx has been obtained from the theoretical resul&aoigani
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and Acrivos [80].

The principal limitation of the CK equation is tfeet that all geometrical features of the
medium are lumped into the CK factor. Even thougienapts have been made to
introduce microstructural features of the systero ithe CK equation by suitably
modifying the mean hydraulic radius, it is fairgay that, at this stage, microstructural
features can be included only semi-empirically tigto experimental determination of
wck- An initial attempt was made by Carman [77] whasidered the effect of flow path
(tortuosity) onyck. Writing the CK factor in terms of its componentemely the pore
shape facto® and tortuosity /L

_of LY
Yok = (D[ Lj (5.20)

The tortuosity,LJL is the average effective streamline lendthscaled by the system
length,L. In the original CK equation, for 3D random spbhatfibeds, it was assumed that

the tortuosity is constant.dL :\/5) and ®=90, which gives us the CK factor ask
=180. However, in a recent study [76] we showed fiiafibrous media in the creeping
(viscous) regime the tortuosity is not constant dedends on porosity. The effects of
several microstructural parameters (namely parshlpe, orientation, stagger angle etc)
on tortuosity in creeping flow regimes have invgsted elsewhere [5, 76]. From my
numerical simulations, | extracted the average tlergj several streamlines (using 8
streamlines that divide the total mass in-flux iBt@ones, thus avoiding the center and
the edges). By taking the average length of thies,| the tortuosity can be obtained,
while by taking the standard deviation of the desteeamlines, the homogeneity of the
flow can be judged. The tortuosity is plotted irg.Fb.10 as function of normalized
velocity at different porosities. Just as in thesecaf the modified friction factor, the
tortuosity is a function of porosity at creepingvil regimes (horizontal line). However,
by transitioning into inertial regimes, it decresd®y increasing the flow rate implying
that the fluid flows mainly on a straight line aneicome less tortuous.
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Figure5.10: Tortuosity(Le/ L) plotted as function of normalized velocity foffdrent
porosities on random configuration.

5.4 Summary and conclusions

The chapter started with an extensive review oflipnbd experimental, numerical and
theoretical work on the drag law correlations midized beds and porous media with
special attention to the intermediate-Re numbeneriial) regime. Deviation from
Darcy’'s law, for Newtonian, incompressible, staéionflow in homogeneous porous
media, was then investigated numerically using FEW&. refer to Darcy’s law as linear
(in superficial velocity) while different nonline&orrections for larger Re can be found
on the market — from quadratic, intermediate toicuBomputations were performed on
model 2D systems with regularly and randomly dstied, rigid, uniform
cylinders/fibres, oriented perpendicular to the flow direction. The effect sdveral
microstructural parameters (namely the shape andtste/arrangement of the fibres) on
the macroscopic permeability (viscous drag) andtielecoefficients was investigated
first, before we turned to random configurationscgiinders. Major conclusions emerge
from the numerical results and can be listed devil.

For ordered and periodic structures:

* For small Re<3 (threshold varying with porositijape, etc.), a cubic correction
in velocity (A =2 is the power law for the dimensionless frictiomtéa) works

138



Chapter 5. Towards unified drag laws for inertialrf through fibrous materials

well, with deviations stronger/earlier for largeorpsities — given constant
pressure drop.

» Based on the generalized, non-dimensional fornm@fforchheimer equation, for
larger Re<30, the nonlinear correction to the Dah@g law is a power law with
powers 1< A <2 depending on the porosity and the structure @cpare or
hexagonal arrays), and with power decreasing froloiccat low porosity towards
guadratic at high porosity.

* The viscous and inertial coefficients are not maffected (maximum variation
10%) by the stagger unit cell angke,in the range o80° <a < 6C¢°. However, A
increases (almost) linearly froth(01 ata =70° to A 02 ata =20°.

» The shape of the particles has a strong effectath iscous and inertial drag
coefficients, especially for porosities lower tregproximately 0.9.

For disordered (random) structures:

» For moderate Re, the nonlinear correction to Dardrag law is well
approximated, to first order, by a quadratic temvelocity (i.e. withA =1). The

inertial pre-factory =1.75( 1- ) /e* turns out to be very similar to the one used

in the Ergun equation, originally derived for 3Dhspcal packed beds in the
range of& >0.45 and Re<30. A nonlinear function fits better inchglalso the

very small Re data, but best performs a cubic ctme up to a critical Re-
number, Rg and the same with a quadratic correction abae R

* With decreasing porosity a structural transitioonir disordered to ordered
packing occurs (for my preparation method) andnketial coefficients approach
values closer to those for the hexagonal lattice.

* The tortuosity (flow path) not only depends on ploeosity and the pore structure
but also on the fluid velocity (flow regime). Aestdy state and not fully turbulent
flows, by increasing the porosity or flow rate, tth@v becomes faster and less
tortuous.

A microstructural definition of the Reynolds nump&e,, is based on the mean
value of the averaged®nearest neighbor surface-to-surface fibre distadce .
The “gap” Reynolds numbeRe, = pUA /1, is employed to get the universal

friction factor as function of Revalid for all Re studied here and in an
astonishingly wide range of porosities up to exerD.9. After scaling/collapsing
all data, both the non-linear fit with non-integewer (A (01.15) and the two-
regime approach fit the data for Re<30 very well.

Although disorder was investigated in two dimensjahese results provide insights and
indicate that similar conclusions might be extended3D realistic random porous
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structures. Further work can now be planned orotoigic and/or heterogeneous media.
The study of the fully turbulent regime, similar ttee coupled DEM-LBM for inelastic
soft spheres [84] or modeling the diffusion andatigk dispersion of particles in
homogeneous isotropic turbulence [85], can alsadakessed in future.
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Appendix 5.A Comparison of the fit quality for ored/disordered
configurations

The quality of the proposed power law fit for thedified friction factor, Eq. (5.8), can
be evaluated by the relative errgr,defined as:

(5.A.1)

The variation of y as function ofU /U =Re using quadratic (blue), cubic (red) and

proposed power law fits (black), for (a) square @ychexagonal configurations is shown
in Fig. 5.A1. The power law fits best to my FE iéswvith maximum discrepancy less
than 1%, when the fits are performed in the fullga of available data up to Re<30.
(Note that the cubic fit performs even better,at perfect, but only up to Re<3 (varying
with porosity)).

The quality factor,y for a random configuration is shown in Fig. 5.&ntrary to the

case of ordered arrays, the quadratic and powerfitavhave approximately the same
accuracy (maximum discrepancy less than 2%). Howéyedecreasing the porosity the
guadratic correction becomes less accurate.
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Figure5.A1: The quality of the quadratic, cubic and proposeder law fit (Eq. (5.8))

in the range 0.0™ < Re< 3( for (a) square and (b) hexagonal configuratiordiféarent
porosities.
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Figure5.A2: The quality of the quadratic, cubic and proposawer law fit (Eq. (5.8))
in the range 0.0 < Re< 3( for random arrangements at various porosities.

Appendix 5.B Mesh sensitivity analysis for randomaagements

Due to the difference in scale between domain arm gap size between neighboring
fibres, this typically requires local mesh refinerhd-or different porosities, flow through
random fibre arrangements (Fig. 5.6) was simulaaeddifferent mesh resolutions
(number of elementd\.). The dependence of the solution in terms of thkeutated
friction factor at (a) denses =0.4, and (b) dilute,e =0.8, systems is shown in Fig.
5.B1. The numerical results show that not only ithertial term (more elements are
required to reach higher Re numbers), but alseigmus term (normalized permeability
K') depends on the resolutioh.. By increasing the porosity (dilute system) less
elements would be sufficient to get a convergehittsm.
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Figure5.B1: The variation of friction factor as function of ®elds number
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Appendix 5.C An alternative cub{a = 2) correction fit for the friction
factor

The following empirical fit is based on correctiohthe creep regime (constariit for
Re< Re) with a cubic term 4 =2) and fitting the inertial deviation with another

correction term,m(Re) for Re> Re. The Re, is the critical Re number in which the
deviation starts. For the case of creeping regineehas the cubic correction fdr as

L1 .
~f —?(1+y2K R€), (5.C.1)
and with the correction &Re> Re as
. 1 .
~f =F(1+y2K RE)m(R9. (5.C.2)

For the special case of random configuratiog at0.4, the numerical fitted values are

K =5.998% 10° ,y, = 1.1816, Re 4.
{ 2 R . (5.C.3)

m(Re)=1-a(Re Rg)" ,a= 4.8 10

Fig. 5.C1 shows the variation of friction factorfasction of Ret)/U" together with the
proposed fits in Egs. (5.C.1), (5.C.2) and nongetepower law in Eqg. (5.8). The
agreement is perfect (better than 99.9%) Re< Re using the first correction (Eq.

(5.C.1)) and extends with the same quality up teRewith Eq. (5.C.2). This indicates
that another type of correction is needed in otdemprove the prediction for larger Re.
Therefore, there is not a single integer power wrection. However, | stop this
approach here as the non-integer power law (E§))(& already a good approximation
(maximum discrepancy less than 1%) in wide rageesf30.
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Figure5.C1: The variation of friction factor as function of ®elds number

Re=U /U’ for random configuration at porosity=0.4. The dashed and solid lines
represent the cubic correction € 2) fits in Egs. (5.C.1), (5.C.2) and non-integer pow
law in EqQ. (5.8), respectively. The inset showsdbality of the proposed fits.

Appendix 5.D Towards unified friction factor usiddferent definitions of
Re numbers

In this Appendix, | present unified relations foetfriction factor as function of Rer
Re, , valid at a wide range of porosities for randonmfigurations. The non-linear

correction in Eq. (5.8) can be isolated by studyihg=-f K -1, i.e. subtracting the
viscous term, as

* ' A ' A * ' A i A !
' =K Re, = yK (%) R or f =yKRe =yK (%} Ré.  (5.D.1)
" -£

Note that by replacing Re witRe, or Re, the values of the fitting powet would not
change. Fig. 5.D1 shows the variatiorf ofas function of (aRe, and (b) Rgat various

porosities for the case of random configurationsing the alternative definitions of
Reynolds numbers, i.e. Reahe values of " at different porosities collapse on a single
curve up to astonishingly large porosig~0.9. The weak inertial regime seems to be
cubic (A =2), whereas the higher inertial regime fits better quadratic 4 =1)
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correction. Note that the non-integer power law. ((568)), with A [01.15, see the black
line in Fig. 5.D1(b), is also fit to my data cormsiohg the whole range of Re. The
numerical results show that one can not get susttabng also for ordered (i.e. square or
hexagonal) configurations (data not shown here).
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Figure5.D1: The variation of friction factor as function of) (aydraulic Reynolds
number,Re, and (b) gap Reynolds number g various porosities for random
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configurations. The inset shows the zoom. The dles show the best fitted cubic and

guadratic corrections at weak and high inertialmeg, respectively.
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Abstract

A new method for two-way fluid-particle coupling @m unstructured mesoscopically
coarse mesh is presented. In this approach, we inenabhigher order finite element
method (FEM) on a moving mesh for the fluid withadt sphere discrete element method
(DEM) for the particles. The novel feature of thregmosed scheme is that the FEM mesh
is a dynamic Delaunay triangulation based on thstipns of the moving particles. Thus,
the mesh is multipurpose: it provides (i) a framdwfor the discretization of Navier-
Stokes equations, (ii) a simple tool for detectmogtacts between moving particles, and
(i) a basis for coarse graining and coupling tfiey physical fields (viz. temperature,
electromagnetic, etc.). This approach is suitableaf wide range of dilute and dense
flows, since the mesh resolution scales with partilensity in a given region. Two-way
momentum exchange is implemented using semi-empidcag laws akin to other
popular approaches, e.g. the discrete particle adetivhere a finite volume solver on a
coarse and fixed grid is utilized. We validate thethodology with several test cases,
including single- and double- particles settlingddtow through ordered and random
porous media, as compared against finely resol&d §mulations:

Highlights

* A new mesoscopic approach is presented for two-fluag-particle coupling on an
unstructured moving mesh.

 The FEM mesh is a dynamic Delaunay triangulatiosedaon the particle positions,
which also provides a simple tool for detectingteots between moving particles.

* Two-way momentum exchange is implemented using-eenpirical drag laws.

» The underlying data structure, i.e. the mesh, @apdientially used for coupling of
other physical fields (viz. temperature, electronedir, etc.).

'S, Srivastava, K. Yazdchi, S. Luding, Meso-scalapiting of FEM/DEM for fluid-particle interactions,
(2012) in preparation.

S. Srivastava, K. Yazdchi and S. Luding, Two waypmied fluid-particle interaction on a deforming
unstructured mesh, ECCOMAS (2012), 2 pages, VieAunsiria.

The FEM code was written by S. Srivastava, a forpostdoc in our group.
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6.1 Introduction

Fluid flow through particulate media is pivotal many industrial processes, e.g. in
fluidized beds, granular storage, industrial fiitva and medical aerosols. Flow in these
types of media is inherently complex and challeggio simulate, especially when the
particulate phase is mobile. For the past two degagarticulate flows have been an
active area of research and two widely used appesaare now considered state of the
art. The first approach is based on an Euleriartimomm model of two phase flows,
which only describes the averaged behavior of thétipmase media, see for example
Kuipers et al. [1]. The second approach is base@rortulerian-Lagrangian approach
using finite volume/finite difference methods ofixeed grid as a fluid solver and either
immersed boundary (IB) [2], fictitious domain (FEB], marker and cell (MAC) [4] or
discrete element method (DEM) [5] for the particl&oth one-way and two-way
couplings have been explored using these methotdge\Whany fluid solvers are based
on a stagger grid finite difference method, otleegs Ladd [6, 7], Han et al. [8] and Feng
et al. [2] have successfully utilized lattice Bottznn method (LBM) as a fluid solver for
particle-fluid suspensions. The LBM is an attraetiglternative due to its ease of
implementation and parallelization; however, itreatly lacks the fidelity required for
more complex flows.

A detailed description of flow through particulateedia and accurate particle tracking
can be obtained using discrete particle modelingMIpas proposed by Tsuji et al. [9],
Kuipers et al. [10], Xu et al. [5] and Wu et all]l1In DPM, individual particles are
tracked using Newton's laws of motion and partpaeticle/wall interactions are also
taken into account. These models invariably coapleontinuum solver for fluid with
DEM, as originally proposed by Cundall & Strack J1®or particles. The coupling
between fluid and particles is explicit and is asled using semi-empirical drag laws or
closure relations of fluid-particle interactionsg.eErgun et al. [13], Gidaspow [14],
Drummond et al. [15], Gebart et al. [16]. In a m#cstudy, Yazdchi et al. [17, 18]
proposed modified closure relations applicable twider range of porosities for both
ordered (see chapter 2) and random (see chaptpor8us media, valid for creeping
flows. The DPM with hard sphere particle-partiaiteractions have been successfully
applied to fluidized beds and slug formation in lbiyldlows [19].

On one hand, for dense particulate flows, efficiemttact detection in a DPM approach
requires additional data structures and speciaktgarithms adding to its computational

overhead. On the other hand, the grid size for ftesolution is often very coarse, i.e.

they are orders of magnitude bigger than the partimmeters. Thus, most DPM models
ignore the sub-grid scale flow characteristics #md affects the small scale particle

dynamics. Xu et al. [20] have recently proposeduitiog sub-grid scale features to

better capture the particle dynamics. Note thathalpreceding methods [1-5] are based
on explicit coupling between fluid- and particldvars through empirical drag relations.

In contrast, in a finely resolved approach an igiptoupling is present. For example the

distributed Lagrange multiplier (DLM) method of @lmski et al. [21] has been
successfully applied to simulate fluid-particleeirg#ction in porous media and fluidized
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beds. Due to additional set of Lagrange multiplidbdM is more computationally
expensive than DPM. However, similar to DPM, thertipees are not modeled
geometrically in this approach, but the flow inithecinity of particles is better resolved.
Using DLM, Pan et al. [22] simulated the behavidrflaidized bed; however, they
ignored particle-particle interactions to keep tloenputational costs low. More recently,
Kanarska et al. [23] have coupled the DLM with DEd particle-particle interactions.
Fully resolved simulations of particle laden flousing FD by Avci et al. [3] is in spirit
similar to DLM, except that coupling forces are guted by integrating stress field at
the surface of the particles. In essence, the tethous are exact as no drag correlations
are required to couple the two phases.

Interest in using a deforming mesh for fluid-sturefparticle interactions has persisted
for sometime now. Tezduyar et al. [24] developed #Ho-called Deforming Spatial
Domain/Deforming Space Time (DSD/DST)-FEM for flgwvoblems with deforming
interfaces using the so called arbitrary Lagrandiaterian (ALE) methods and space-
time finite element method. In this approach, jgées are geometrically modeled in the
mesh and the flow is fully resolved around eachtiggarand hence is computationally
expensive for dense flows [2].

In this chapter, we introduce a new method fordflparticle interaction based on a two-
way coupling between a higher order FEM and a spfiere DEM approach on a
deforming unstructured mesh. The main feature ofapproach is a deforming Delaunay
triangulation, which is utilized as an efficientntact detection tool for the moving
particles as well as a finite element mesh forrétszing the Navier-Stokes equation. It is
known that the nearest neighbor property of theal®hy edges renders it an attractive
algorithm for contact detection, see Ferrez e{2] and references therein. To better
resolve the flow around the particles, we applyitiieraction forces as point forces at the
particle locations (see Section 6.3.1). To our Keadge, this study is the first attempt to
apply a moving Delaunay triangulation (particle ddjsfor both contact detection and
finite element fluid solver. Coupling with FEM akuifl solver has several advantages
namely, it may provide the leverage of higher ondégrpolations for simulating flow to
the desired accuracy and scales, even when theimeshrse. Another motivation to use
FEM is that for packed beds and dense particulatesf the mesh can also be used as a
coarse graining tool for stress and strain fieldsich is often a quantity of interest.

Despite the advantages of using FEM for higher r@mses, Wu et al. [11] have pointed
out several issues associated with implementinig-fharticle coupling on unstructured
mesh. The most restrictive one pertains to computire particle volume fraction in a
given cell. This happens since particles may beeshletween neighboring cells and
thereby adding to the computational complexity. @leumvent this issue in present
methodology by resorting to a moving mesh and aft Aarmulation. In this way, the
particles have finite radius and always lie at éement vertices and consequently, a
coarse mesh generally remains robust with resmealédment degeneration; in other
cases, re-meshing is deployed whenever necessamgthefmore, the particle-
particle/wall interactions are modeled using adingpring contact model with dissipation
and friction.
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The rest of this chapter is organized as follows ®tart with an introduction to the
mathematical model applicable to viscous, incongbds flow through an isotropic

porous media in Section 6.2. The drag force modetidor coupling FEM and DEM and
the contact force model used in DEM are discussatdktails. In Section 6.3, we detail
the underlying finite element formulation and dissthe methodology for approximating
of the porosity field and its impact on numericalnputations. This is followed by

numerical examples in Section 6.4, demonstratioy ih static and moving particulate
media. Finally, Section 6.5 presents conclusioasvdrin this chapter and an outlook for
future studies.

6.2 Mathematical model

The governing equation for the multiphase flow seé of porosity scaled Navier-Stokes
equations, which define the flow of fluid in a pemate porous media (see Anderson et
al. [26], Deen et al. [27], Xu et al. [5]). Consiohg an incompressible fluid (i.e. the
density, p is constant) in an Eulerian flow domaif),, we can write the equations of

both fluid and solid phase as

Fluid phase:

0 ()

o + pO[fetn) = —e0p+ O [{er) +£p§—z 1P

r=ﬂ(mu+(DU)T)—§y(D (@)1 in Q (6.1)

o€
D- u =
_t + (EU)—O

Solid phase:

m%=ﬁ°+ZE°-VDp+ m

i : ) , (6.2)
Ii_cq:TiD"'zriﬁij xFijC

dt -

where ¢, u, U, p, r and g are the porosity, viscosity, fluid velocity vectqressure,
shear stress and the acceleration due to gravégpectively. For the particles
m, I, r,V,§ and @ represent particle mass, moment of inertia, radiusume,

translational and angular velocity, respectivelbre'lfijC represents the inter-particle/wall
contact force andh; is the unit vector point from the center of thetiste to the contact

point (with particlej). Finally, ﬁD and IfiD representing the drag force per unit volume
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on the fluid due to interaction with tfi particle and the total drag force acting onithe
particle, defined in the following section. In tlEgular momentum equatior,;’
represents the torque experienced byi'thparticle due to fluid drag when flow around
the particle becomes asymmetric, as shown in Seét.2. The pressure gradient term
in Eq. (6.2) accounts for the net buoyancy forceeash particle passing through its
center. Since Eg. (6.2) is a system of ordinarfetghtial equations in time, it can be
integrated using a suitable numerical integratoor Rccuracy and conservation
properties, we use the velocity-Verlet time intégrawhich is second order accurate in
time®. Note that the indicesandj do not represent the tensorial components of otisge
fields in the above equation, instaa@presents particle number gnd the index for the
contacts of thé" particle. In the rest of this section, we introeltlie model for the drag
force density, used to explicitly couple the flaidd particle dynamics.

6.2.1 Drag force model

The drag force accounts for the resistance to lthe through a porous media, and is
inversely related to its permeabilitg, The permeability is the proportionality constamt
Darcy's equation

u=——=", (6.3)
whereU is the horizontasuperficial (discharge) fluid velocity and defined to be

J :\%V.[ adv =¢(u) , (6.4)

whereV andV; are total available volume and the volume of fl@dh the other hand, the

intrinsic average flow veIocity(G)zVi.[udV defined over the fluid volume only.
f v

Following Yazdchi et al. [17], the permeabilitg,is related to the drag coefficiens, as

2

_ e
p=tr (6.5)

where 1 =K /d? represents the non-dimensional permeability anaften used instead
of K in literature. Several existing correlations forare listed in Table 6.1. Henceforth,

the drag force density in the fluidfiD is defined at a poink,, (see next section for
details). The force density is modeled as

2 Since the forces between particles can be dissiptte choice of an integrator does not have @maj
impact on either solution quality or the performanttius will not be discussed in detail in thisptiea
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f2=a((u)-u)w(x-x). (6.6)

where G, is the instantaneous velocity of tHeparticle andy is a function describing
the influence of the force density in its neighlmmd. While fory several possibilities
exist, e.g. a Gaussian function, in this chapter westrict ourselves to
@(x=x)=0(x- %), i.e. the Dirac delta function, for reasons that discussed in the
next section. Eq. (6.6) is a model of the drag dodensity in the fluid in the
neighborhood of the particle. The drag from fluedparticle is proportional to the relative

velocity between particle and the fluid. In othesrds, a particle moving in the direction
of the flow in its neighborhood with the averagéoeéy does not experience any drag.

Table 6.1: Different non-dimensional permeabilities for mdigperse systems as a
function of porosity €) and particle diameted) in the creeping flow Re< 1) regime.

Author | Porosity range | A
Ordered arrays (squar e configur ation)
Dert“gﬂr?fg]d £20.6 A :3%0("]&] ~1476+ gﬁ;;fgf”; aﬁzj' p=1-¢
YZf(j[igI] et 0.165£<0.95| A=A5,+ (/‘3 ‘2/152) £1+ tank{g(;ggfn A, =W‘i_o.2)

Random arrays

3

&
AN=—="
Ergun [13]| 0.4<&e<0.€ E 150(1_5)2
YRy (o ‘/‘é)(lﬂanr(f—o-G?B AL, =0.97A5 (1+ 0.18),
2 0.1
Yazdchi et = [ in(g)- 7 2534 ) o1,
i 0.16<e< 0.9t | 4 32(/7( In(¢)-1.497+ P 5 0.73@4+1+1_275$ p=1-¢

084 )
A= o.osa(‘ i 1}
1-¢

Ergun’s equatiohis a commonly used drag law, which is a non-linfarction of

porosity, fluid velocity and particle size. It acately predicts the total drag force for a
limited range of porosities in 3D. Using this redat one can derive the macroscopic
permeability of the media and use Darcy's equatmrdetermine the average flow

% Ergun equation is essentially a correction to @@man-Kozeny [28] drag relation for creeping flows
which also takes into account the inertial drafjigher Reynolds numbers [29], see chapter 5.

159



Chapter 6. Mesoscale coupling of FEM/DEM for flygdrticle interactions

velocity through the media. An aptly modified versiof this equation applicable in 2D
is deployed as suggested in [18], see chaptersl 5.afAccordingly, a more general form
of [, taken directly from Ergun et al. [13], applicaldevards inertial regimes can be
written as

_ e’ (1-&)((u)-1)
'B_gT/] ' d

, (6.7)

which can be replaced by the results in chapteseB, Eq. (5.8). In the following, we
introduce a simple contact force model to accoanirfter-particle/wall forces.

6.2.2 Contact force model

We take into account the particle-particle/wallenaictions and therefore, the contact
forces are essential in order to integrate theighast equations of motion. As elsewhere
[30], we use a linear spring-dashpot model foratetact force

Ry =g +y (.8)

wherek,7,V;, andJ; are contact stiffness, viscous damping coefficiegiative velocity

between particle andj and the overlap, respectively. A similar model @so be
implemented in the tangential direction along watlsliding spring based on tangential
overlap, for cases where rotation and frictionratevant (but is not used in this chapter).

The contact stiffnessk and overlap,d set a limit value for the DEM time step as

Atoey, D5ioﬂ/w andw:\/Z/(/m—(4/7 /m)* for numerical simulations. A particle may

also have more than one contact at any given fimthis case the total contact force is
found by summing over all the contacts. For furttietails and state of the art in DEM
contact models, see the review paper by Luding §8@] references therein.

6.3 Finite element formulation

Let us assume we have suitably defined discreite falement (polynomial) spaceg, S
for trial and test solutions and Iat, p" denote the trial solution of Eq. (6.1). Furthee w
divide our domainQ into non-overlapping triangleQ, such thatJ, Q, = Q. The weak

form is obtained by multiplying the Eq. (6.1) witppropriate test functions/{, d) and
performing integrating by parts on the diffusiomnte This yields a mixed Galerkin
formulation for @", p), which reads as

Find (a", p") OV"x S" such thatd(v", ") OV"x S,
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oS el ) 9. 0)s e 0V) (e O g e D (57) (o o

( 65 qh):(ﬂ]mh+ﬂh[ﬂ]£, qh)

where (x, y) :j xydQ denotes the standard inner product8rand S'. Notice that for
Q

the moving mesh we replace the convection veloidityy (G" -G, ), whered,, is the
mesh velocity in ALE formulation and essentiallkeéa into account the convection of
the fluid momentum due to mesh motion. To compijjeat quadrature points inside a
triangle, we interpolate the velocities of the doplarticles of that triangle. Using nodal
velocities ensures that the Geometric Conservatawm (GCL) for the ALE formulation
is satisfied [31, 32], since a constant solutionréproduced trivially. The above
formulation requires a priori knowledge of the ity field at every point inside the
domain, which can be computed using SPH interpwiagee Section 6.3.2.

For additional robustness and stability in our folamtion, we add streamline-
upwind/Petrov Galerkin (SUPG), pressure stabiliPethov Galerkin (PSPG) and other
terms similar to least square incompressibilitystoaint (LSIC) as discussed in [33], to
the above variational formulation. Forster et &é4][ have investigated that such
stabilization is also effective when simulatingdistorted meshes. Henceforth, following
[24] we add residual based stabilization terms .[Sjiven by

S.T.= |:TSUPGUh mv" +% T pspd! qh} D:L(Dh ' ph) T LsIC(D EK/h) r (Uh) ’ (6.10)
whereF(U“, p“) denotes the residual of continuity equation, BaL)(

—h
T (U“, p") :,0{6(;“ ) +D[@£Uhuh)J+£Dp—D[Q£rh)—£p”g

r(0)= 25+ Ofeu)

The stabilization parameters are fixed using tiievieng expressions

(6.11)

Tsupe = T pspo™ (AJ {”*h”] (phej | (6.12)
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wherehg is the length of the smallest edge of the elenmieqt.(6.12) has shown to be a
convenient choice in computations [33].

Stable discretization of Eq. (6.9) can be diffictdt construct and solutions are well
studied in literature, see [35] for a detailed tlyecClassical methods forbid equal
interpolation of both velocity and pressure vamghih the above setting. Stable solutions
can usually be obtained P, O P, (polynomial spaces fop and u) in numerical
approximations. Furthermore, it is known that theompressibility constraint is not
strongly enforced when using a continuous approtondor the pressure field [36]. To
circumvent this problem, we adopt a discontinuowdymomial space for pressure
discretization. In this chapter, unless stated mtise, we choose stabilized P1/P0O or
P2/P1 elements with continuous velocities and diScoous pressure polynomials.
However, this formulation is not restricted atialchoosing higher order FE spaces.

6.3.1 The mesh and drag force computation

The FE mesh adapted in the above formulation i®lauhay triangulation based on the
particle locations. This implies that all interieertex nodes of the mesh are occupied by
particles at all times, while the boundary nodesiaserted only for the convenience of
computation and application of boundary conditicve® Fig. 6.1.

5
(
A -,

7%

STAwy
R

w

Figure6.1: Finite element mesh based on 800 randomly digedparticles at porosity
£=0.6. (right) Complete Mesh; (left) Zoomed in, uppight corner which shows the
added boundary nodes (red points) to define thenggg. The boundary nodes are

distributed at equal distances of approximatelg&nf the particle diameter (i.e. €)2

For moving particles the mesh vertices move with plarticles, thereby deforming the
mesh. Currently, we re-mesh at fixed (short) timeervals in order to maintain the
quality of triangles and use the triangulationdontact detection. This implies that a new
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triangulation is created from the current partigtesitions and the solution from the old
mesh is transferred to the new mesh using a sirppdgection scheme. To remain
focused, we will not discuss the projection schamaetail.

In Fig. 6.2(a) the particle overlaps with an eletnare shown for particles of different
sizes. While we do not address polydisperse pestiti a fluid flow in this paper, it is
shown to highlight the generality of the proposeethod. Fig. 6.2(b) shows the drag
force contribution from each element. The totalgdfarce and torque acting on tie
particle is considered as a sum of contributioomfall the overlap elements

= 3 B E _ E _
0= DFPObx) By =R TP =X nnxF 613
p=1 e=1 e=1

wheree is the index counting the number of triangularrtayes, E. of thei™ particle (for
exampleEs=5 in Fig. 6.2(b)).

Figure6.2: (a) An element from the mesh is shown with thgaBicles occupying its
vertices. The particle translational and anguldociges are represented by, W, s,

W, W, w,, respectivelyle represents the superficial velocity in the caflrepresents
the area of the elemeatand A¢ the area of the respective overlaps. (b) The finag
contributions to a particle from neighboring/toudhfluid elements are shown.

An important modeling aspect from the numericalnpaf view is the location of the
drag forcesy. computed from Eq. (6.6). Here we list a few pa$iigs for application of

the f.° (as shown in Fig. 6.3):

(a) At the mid point of the chord of the respectverlaps;
(b) At the mid point of the arc in respective oaps (as in Fig. 6.2);
(c) At the intersection of particles circumferemndgéh element edges;
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(d) At the nodal location of the respective paeticl

Fig. 6.3 shows several possible sites for the eaftin of the drag force. Unless
specified otherwise, for simplicity, we choose thiel point of the chord (i.e. Fig. 6.3(a)),
as it lies close to the fluid solid interface, whdéne momentum exchange occurs. We do
not expect the above choices to have a major ingratte numerical results. However, it
remains a task for future studies.

A force equal in magnitude but opposite in directic applied to the fluid, i.e.
Ife1 = —Iflp, at exactly the same point in the cell, therelyvjaling a consistent point force

based coupling. The total force on the particle tlughe fluid also consists of the
buoyancy force, which is computed based on thespregyradient at poing.

N N D V8
N\\\\\\ / / AN - - | \\\\\\\\ / N \ \
7\\\ // \\\ // \\\\ /// . -
(a) (b) (c) (d)

Figure 6.3: Point of application of the drag force; (a), ({£), and (d) show four distinct
possibilities (marked with ' X') foxe.

6.3.2 Local porosity calculation

At this point the general variational form, i.e..H§.9), can be solved using various
assumptions for the porosity field. If the particlare fixed and are relatively
homogeneously distributed, one can simplify EQR) 6y making the assumption that the
porosity is a constant forlQ, and there is no temporal variation. Thus, for eally

averaged formulation, one could take a simpler @ggr and define a porosity for each
triangle in the mesh, see Fig. 6.2, as

gf=1-1L (6.14)

Although Eq. (6.14) is computationally efficientdasimple to compute, this definition

may lead to high fluctuations in the porosity fielthereby adding to the numerical

instabilities especially for dynamic meshes. Themef in this chapter we utilize Eq.

(6.14) only for static particles. To remedy thisus, we interpolate the particle number
density using a smooth particle hydrodynamics (Sk&iel function as given by
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4 (hz—rz)3 0<r<h

(6.15)
nh’ 0 r=h

whereh is the smoothing length. Following Xu et al. [2fje can evaluate the porosity
and its gradient at an arbitrary poiras

E(f)=1—7—gdzzj:W(|T—Fj|,h)

De(r):gdzzj:DW(|?—fj|,h)

(6.16)

This definition yields a smoother porosity field;ovever, it incurs additional
computation at each numerical quadrature point.theamore, special attention is
required at the boundaries, e.g. Shepard correa@mto be studied elsewhere [37].

6.3.3 Time integration

After performing spatial integration, a second orfieite difference scheme is utilized
for time integration of the resulting system of atjons. In a general form this can be
written as

o S0l pen g el
6:3—?:3” ;A“tJ’“ . 6.17)

Using the necessary polynomial approximations st @nd trial functions, the finite
element matrices for each element in the mesh ssengbled and the algebraic form of
the equations is written as

e}« ofe) e} - 8} +[ At ={
[el{} [ o} ={ T}

where M] represents the mass matrigj] is the matrix representing the convection term
and B] and JA] are the matrices due to pressure gradient aridstbh terms. The[ yi]
matrix is due to pressure penalty terms on intdsarndaries. The terms in {.} denote the
corresponding coefficients of the FE solution. Visziktize in time using a second order
scheme, i.e. Eq. (6.17), and tBemethod (Crank-Nicolson method witd=0.5) for
linearizing the convection term as

: 18)
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n+l

(3[m]+2nte[c" |+ at AN} - an g { g} =
ant{ f} +(4[m]+ 2t (-g) ¢ e} - [m{w} ™ (6.19)
[e){er} +In){ o} ={ £}

where {} represents the sum of the forces and explicit Réts. This implies that the
drag forces are explicitly calculated. A suitablmd-step size for the FEM is chosen
according to Courant—Friedrichs—Lewy (CFL) conditiand the DEM time-step is
computed based on the natural frequency of partictgacts. In order to allow that at
every fluid-time stepn DEM time steps are performed, where the integer

n=At.,, / Aty is specified as input parameter together vitfy,, .

6.4 Numerical results

In this section the numerical results will be preed for both verification and validation
of the code. The computational framework describetthe previous section will be used
to simulate several test cases for both static moging particles. In the following
subsection, we first present results for statidiglas before presenting the deforming
mesh simulations.

6.4.1 Static particles

This subsection deals with flow through static peranedia for both ordered and
disordered cases. The first example is a simplifediel of flow through a homogeneous
porous media, which verifies the compatibility beem the present model and Darcy's
law. In the second example, we compare our mesoseablution simulation with the
average velocities obtained from fully resolved AfE&Ssimulations of flow through both
ordered and disordered arrays of static partidd&s 18]. The fully resolved simulations
were performed using a fine mesh with0* elements to accurately capture particle
geometry and predict the flow around each partioler. mesoscale approach, in contrast,
contains elements of the same order of the nunmfyearticles (i.e. only a few hundreds).
While the flow is not fully resolved, the compamsieassures that this scheme efficiently
computes average velocities that are in the exgeaetege and capture qualitatively the
flow behavior at mesoscale.

6.4.1.1 Case 0: Homogeneous porous media and Dar cy flow

A well defined multiphase model should reproduce liehavior of single phase flow.
When combined with a homogenized drag force (a®sggh to point forces), the model
must reproduce flow predictions from Darcy's laws A preliminary verification and
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validation case, we simulate flow through porousdmeusing our formulation and a
homogeneous body force (drag) in the test domaie. ddmpare the average flow
velocity from simulation with analytical resultsofn Darcy's law. Recall that the
permeability, K of the media describes the resistance to the #od is intrinsically
related to the drag coefficienf§ via Eq. (6.5). Substituting Eq. (6.5) into (6.8atls to

£0p
B

Setting B=1[kg/(m’s)], £=0.5 and Op =-1[kg/(m’s)], one obtains(u) = 0.5[m/s].

g(ty=U=- (6.20)

For this special case, Eq. (6.1) can be simplifted?j—ltj:—i(mp+ﬁaj, with
P £

p=1[kg/m’]. Assuming that the fluid is at initially resti(0)=0), the analytical,
transient solution of the above equation is

(a(t) :%(—H e_fft}. (6.21)

We also numerically solve Egs. (6.1) and (6.2), n@hg® :,8(U> acts as the distributed

body force with stress-free boundary conditionse Pnoblem setup is sketched in Fig.
6.4(a), and Fig. 6.4(b) shows that the flow quickighieves a steady state value of

() =0.5[m/s], in perfect agreement with the analyticaliion above.

0.6
Twall = 0
P — 0.5
NP ogicus] S 04
o - L - 9
- - 5 08 Analytical solution, Eq. (6.21) | |
— - A nalytical solution, Eq. (6.
P1 - B i . - P2 v 0.2 B FEM simulations
Tl - N 0.1
. = - = - kk Oom ‘ ‘ ‘ ‘
0 2 4 6 8 10
Twall = 0 Time [s]
(@) (b)

Figure 6.4: Darcy's homogenous flow calculation case: (a)S®iith a coarse mesh (4
triangular elements), where the flow is driven gyr@ssure gradient idirection. The

arrows depict the homogenously smeared out resibtidy forcef °; (b) For the given
parameters, the simulation predicts the correostemt and steady state average velocity.
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6.4.1.2 Case 1: Flow through ordered and random porous media

For this problem in a square domain, the top ardhbttom boundaries have no-slip
boundary conditions, while the left and right boanes maintain a pressure gradient of
5[kg/(n’s%)]. In Figs. 6.5 and 6.6, the color contours reéfethe horizontal velocity in the
ordered and random media, respectively. The blg®ms indicate the slow flow region
behind the each of*b particles in the array, while the predominantneie for the bulk
flow lies between the two adjacent rows of paricM/ith decreasing porosity, the flow
gradually confines itself between the walls and tthye and bottom rows of particles as
the interior becomes less and less permeable.

(a)d = 0.3 [m/s],& 00.93 (bf = 0.4 [m/s],e 00.87

(©d=06[mslen0r2 (dyl = 0.7 [m/s], 00.61

Figure 6.5: Horizontal velocity contours for ordered arraggyare configuration) of
particles at different diameteid, with £ given above.
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For comparison purposes the average flow velosigomputed for the entire domain and
compared with finely resolved FEM simulations. W#ized the drag law of Yazdchi et

al. [17], from Table 6.1, in this simulation, whighvalid for a wide range of porosities.
The average flow predictions for both the ordened @ndom case agrees very well with
data from finely resolved FEM simulations (see Bid.). The overall fit is remarkable as
it closely follows the finely resolved curve. We shunention here that the fully resolved
simulation is geometrically correct, i.e. particla® represented by holes with no-slip

boundary conditions and contains more tha® degrees of freedom (dof). Our
simulation, in contrast, relies on a few hundretsamly.

(ag =0.5 (b) £ =0.6

(ck =0.7 - (d)e=0.8

Figure 6.6: Horizontal velocity contours in homogeneous medih 800 randomly
distributed particles at different porosities.
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Figure 6.7: Average horizontal fluid velocity plotted agaipstrosity through (a) ordered
(square) and (b) random fibre arrays.

6.4.2 Moving patrticles

For the case of moving patrticles, e.g. fluidizeddyehe underlying grid deforms as the
particles (and mesh-nodes they occupy) move. Thisn important feature of our
methodology, since the particle positions are knoatnall times, it reduces the
computational overhead associated with findingigled inside the correct cell [11]. For
verification, we present two test cases of one amd particle sedimentation. To
circumvent the solution degeneracy due to the defagg mesh, we re-mesh at fixed
intervals. Re-meshing is essential in this apprcacbe we wish to preserve the nearest
neighbor property characteristic of the Delaun&ntyulation for contact detection at all
times. However, this is not too restrictive as plagticles do not move much pét_.,,

time step and contact detection with walls is haddieparately in our code. Therefore,
we do not address the particles escaping the flovd region in the present work and it
remains a limitation to address in future work.

6.4.2.1 Case 1. Single particle settling

A particle under gravity in a viscous fluid, bothitially at rest, will fall until it has
reached the settling/terminal velocity,calculated using the drag law prescribed in [38].

The parameters arg/=1.14[kg/(m.s)], p=1.25x1G[kg/m’], p, =7.74x 1G[kg/m?,

d = 4.8x10°[m] with drag force f® = 47t /In(7.4/Rg, and Re= pu.d /u.

No slip boundary conditions are used at the toplasttbm walls, while friction-less (no
shear stress) boundary conditions are used alentethand right walls. The particle is

released fronZy = 0.6H [m], whereH = 2 [m] is the height of the box. The mesh is based
on the single particle location (corner points &nd additional boundary points on each
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wall) and consists of only 12 triangular elememibjch is rather coarse. As mentioned
before, we switch to™order polynomials for an increased flow resolutidhe settling

velocity can be computed when the frictional forde,, combined with the buoyancy
force exactly balance the gravitational foreed) and is equal tai; = 0.17[m/s]. Fig. 6.8

shows the deforming mesh as the particle followgrdjectory. Near the particle surface

a halo region with non-zero upwards fluid velo@ppears due to the drag exerted by the
falling particle. A trail of this halo is not evidesince viscosity is large and our approach
does not fully resolve the flow. Note that for thparticular case no re-meshing was

required as the mesh does not entangle througherulation.

(b)t=0.5 s]

(c)=1[s] | (d)t=2[s]

Figure 6.8: Deforming mesh with velocity contours for 1 peleisettling using@order
basis functions. The velocity of the falling paeiquickly attains its settling velocity.
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6.4.2.2 Case 2: The Drafting, Kissing, Tumbling (DK T) problem

We llustrate another benchmark case, where twdicges are initially separated
vertically and start falling under gravity. As imet previous case, both fluid and particles

are initially at rest and particles are then redéad he Stokes drag law, i.€° = 3ruddg,
with #=107[kg/(m.s)], p=10[kg/m’], p, =1.01x 16[kg/m’] and d =4x10°[m] is
used in the simulation.

Similar to the previous example, no slip boundaopditions are used at the top and
bottom walls, while friction-less (no shear strdssyindary conditions are used on the left
and right walls. Fig. 6.9 depicts several snapslobtthe 2 particle settling behavior.
While the bottom particle center is aligned witke thenterline of the box, the top
particle's center location is offset to the ceimerlby 1% to the right to trigger the
instability. As the particles fall through the coln of this fluid the top particle is
observed to draft behind the first particle anctleas up with the first particle (kissing)
and then gets past it with a tumbling behavior.sTimhavior is very sensitive to flow
resolution around particles as the draft of ondiglaraffects the other. This behavior is
well captured in using™3order polynomials for fluid resolution in this appch.

Pcmdes UI I I I

t=0]s] t=0.5][s] t=1.25(s] t=1.4[s]

Figure 6.9: Snapshots of the Drafting, Kissing, Tumbling (DKdroblem. Triangles
show the deforming mesh as the simulation progsesse

6.5 Summary and conclusions
A meso-scale, two-way, fluid-particle interactioarhework based on coupling FEM and

a soft particle DEM on an unstructured mesh has Ipeeposed. The key component in
our approach is a Delaunay triangulation, whictvegiboth as a contact detection tool
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and a FEM mesh. The triangulation deforms and obmmgth the particle motion. This
design alleviates any computational overhead pteddry existing methods for contact
detections, particularly in dense particulate flo8gce particles always occupy nodal
positions in our mesh, locating particles insidéscaso becomes trivial.

A FEM based fluid solver allows for a higher ordeterpolation, therefore better
resolution of the flow, whenever the underlying méescoarse. On the other hand, dense
flows are resolved equally well since the mesh lwggm is refining inversely
proportional to the particle density. Different #mnscales in DEM and FEM are coupled
through inner iterations of DEM steps. The approacbvides the dynamics of the
particles and the fluid using a deforming mesh,|levhe@asonably resolving the fluid flow
around the particles. The average velocities acerately predicted when compared to
fully resolved simulations. Furthermore, duplicatiof data for storing the mesh and
particles as well as their contact detection, heenbavoided by defining a triangulation
based on particle locations. In future, we also &iraouple various other physical fields
(e.g. temperature, electromagnetic, etc.), usiegsime data structure.
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"D three words 9 can sum app everything 7've learned about life: it goes on”
~ Zobert Frost~
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7.1 Summary and general conclusions

The transport properties of fibrous porous medeessential for many processes in the
chemical, petrochemical, metallurgical and food cpssing industries. The
hydrodynamics of dispersed multiphase flows is vaynplex due to a wide range of
time- and length-scales involved. Goal of a muttisamodeling approach is a continuum
model to simulate engineering scale gas/fluid-sdlamvs. However, this approach
requires closure equations for the unresolved sitbyghenomena in the lower level
(smaller scale) models. The interphase momentunsfea between gas/fluid and solid
phases is one of the dominant forces in the gadi/fland solid-phase momentum
balances. This momentum exchange is representeddogg force. The drag force on a
single sphere/cylinder in a fluid has been welldstd for a wide range of Reynolds
numbers, Re. However, when a single particle mavesdispersed two-phase mixture,
the drag is affected by the presence of othergdesti Some of the drag closures can, in
principle, be obtained from analytical theory, exments and direct numerical
simulations (DNS), each with their own strong arehivpoints.

Typically the macroscopic transport propertiese ljgermeability or drag force, have a
strong dependence on the physical properties,divgdporosity, pore size and structures,
particle size distributions and physics of the $gort processes. The need to understand
these dependencies from a fundamental perspedtitates the need for modeling at the
microscopic scale. Because it is experimentallfiadift and expensive to study the flow
characteristics at micro- or even nano- scale, eleggights into microstructural effects
have remained elusive until now.

This thesis focuses on the derivation of accuragg dpermeability) closures for 2D,

unidirectional (dis)ordered arrays of cylindersfib, from fully resolved finite element

(FE) simulations. In particular, | investigate tledfect of several microstructural

parameters, such as particle shape, orientationaarashgement, on the macroscopic
permeability at both creeping and (moderate) iakflow regimes. The results are given
in the form of simple, universal closures validat porosities, which can readily be

incorporated into existing multi-phase flow cod8sch relationships are of fundamental
importance in many applications involving fluidiidhrough porous media.

In the following, the main conclusions related &xle chapter will be briefly highlighted
with further comments on the limitations and polesfhture work.

 Chapter 2: Based on the hydraulic diameter concept, the pahility is
expressed in the general form of the Carman-KoZ@i) equation forordered
periodic structures. The numerical FE results shioat the CK factor not only
depends on the porosity but also on the microscppie structure, such as
particle shape, orientation, etc. In the limitshafh and low porosities, agreement
with previous theoretical and numerical resultsesablished and a unified
relation is provided that is valid for all porosi

178



Chapter 7. Summary and recommendations

» Chapter 3: A new, simple microstructural model for predig¢tithe macroscopic
permeability ofrandomfibrous media is presented in terms of the stesiif the
inter-fibre (surface to surface) distances. Afteztafled analysis of several
microstructural distances (i.e. th&, 2% and & nearest neighbors, the hydraulic
diameter, the Delaunay triangulation (DT) edges)y dhe 2 nearest neighbor
distance, or equivalently the shortest DT edgex] te best correlation in a wide
range of porosities. Astonishingly, a power lawatiein between macroscopic
permeability and the average shortest DT edgesyélsamble lubrication theory,
is valid at high and moderate porosities for bottdeced and random
configurations. It is complemented by a closuratreh, Eqg. (3.8), which relates
the effective microscopic channel length to theeetffre packing fraction or
porosity. As an alternative, | propose a purely eitgd merging function for
calculating permeability in terms of porosity, whicombines the analytical
solutions of dilute and dense limit cases.

» Chapter 4: Several order parameters, based on Voronoi anthuDay
tessellations, are introduced to characterize therostructure of randomly
distributed non-overlapping fibre arrays. In parta, the mean and distributions
of topological and metrical properties of Voronalygons have been employed
to characterize the transition from disorder toeordrinally, the same quantities
and data structures are used for coarse grainintheofvelocity and pressure
gradient fields and for validation of Darcy’s latwarious length scales.

» Chapter 5: | extend my results into theertial flow regime, aiming to establish a
unified relationship between friction factor andyRelds number. For ordered
periodic structures: (i) the weak inertia correstio the linear Darcy relation is
third power in superficial velocity, up to small ®elds numbers, Re~1-5; (ii) a
non-integer power law performs astonishingly wedlto moderate Re30. For
disordered (random) structures: (i) using the n&findion of “gap” Reynolds
number, Rg | obtained a universal friction factor-Reelation, valid at almost all
porosities; (ii) after scaling/collapsing all datiae two-regime approach, i.e. cubic
correction at low and quadratic correction at higRe, fit the data very well. |
compare my data with the lattice Boltzmann (LB) @iations and demonstrate a
good quantitative agreement for the full range efdtudied.

 Chapter 6: A new multiscale framework for modeling two-phaBlews is
presented by combining the discrete element metiD&EM) for the
particulate/solid phase with finite element (FEingiations for the fluid/gas
phase. The key component in this approach is auDajatriangulation, which
serves both as a contact detection tool in DEMan8E moving adaptive coarse
mesh. Two-way momentum exchange is implementedgusiie previously
obtained accurate and universal drag (permeabiéity¥ for 2D fibrous systems. |
illustrate and validate the methodology with seléest cases, including flow
through porous media, as compared against fullglved FE simulations.

To summarize the key new findings of this thesisi present a universal relationship
between macroscopic permeability/drag and porasitjibrous media for ordered (in
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chapter 2) and disordered (in chapter 3) fibre yarrat creeping flow regime. Using

lubrication theory, | correlate the permeability pdrous media with their microscopic

properties (chapters 3 and 4); (i) Using a newinitgdn of gap Reynolds number, |

present a unified drag laws for inertial flow regsnvalid at all porosities and Reynolds
numbers up to Re~30 (chapter 5); (iii) | incorpertite previously obtained drag closures
into the new multiscale framework for modeling tplase flows (chapter 6). Due to the
broad generality, applicability in many processesttie chemical, petrochemical and
mechanical industries, my new findings deserve wide readership and would have
great impact on multiphase flow simulations and axbed models for particle-fluid

interactions.

7.2 Outlook and recommendations

Although | addressed several aspects of microscapt macroscopic flow relations
through fibrous media, in the following, severahggks and recommendations are given
that need to be improved or explored further. hhght the issues per chapter, before
discussing the higher priorities. The remainingrojgsues are

» Chapter 2: for ordered case: (i) validating the results against experialen
measurements, such as resin transfer through edidinal fibers; (ii)
establishing a common permeability relation basedhe aspect ratio, sphericity
or other shape parameters; (iii) giving a physicaérpretation for the cubic
polynomial permeability relation (Eq. (2.11)), alnted for different stagger unit
cell angles; (iv) expressing the tortuosity as fiorcof the stagger unit cell angle
(see Fig. 2.10) and further explanation for itsiatzon; (v) extending the results
for unsteady, non-Newtonian fluids.

» Chapter 3: for random case: (i) investigating the effects of polydisjigrs
anisotropy and heterogeneity, that occur in prat@pplications; (ii) founding a
physical justification for the correlation betwegermeability and the averagd'2
nearest neighbor fibre distances (see Fig. 3.10)by analogy, the permeability
in 3D random packings should depend on the smaflests of Delaunay
tetrahedrons, possibly with the chance for similaique scaling relations as in
2D, i.e. Eq. (3.13), a prediction that waits formarical or experimental proof.

» Chapter 4: for multiscale and statisticainodel: (i) further understanding of the
transition porosity &, 10.392, i.e. why the transition form disorder to order

happens at this value which is still far above tdmedom close packing limit, the
minimum hexagonal lattice, freezing point or matipoint; (ii) evaluating the
proposed metrical and topological properties of o/mi cells and order
parameters in 3D and compare them with the 2D césg;the physical

interpretation and correlation between the meanevalf average velocities and
permeabilities and their probability density fuocs at different scales; (iv)
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validating of the proposed model for other macrpscqroperties, like heat
conductivity.

» Chapter 5: for inertial flow: (i) extending the universal friction factor redat,
i.e. Eq. (5.8), to 3D realistic random porous gstes; (i) study of the anisotropic
and heterogeneous media and (iii) the fully turbuleegime; (iv) testing my
model for parallel flow through unidirectional fibarrays.

» Chapter 6: for possible applications, extension and valmatof the coarsely
resolved~EM/DEM code (i) include chemical reaction, heat and masssfiearor
electromagnetic fields, using the same data streicfor more realistic, complex
chemical reactors; (ii) simulating many other cheahprocesses such as particle
coating, particle growth, gasification etc., whente performed in a fluidized bed,
for better understanding; (iii) extension of thethoal to 3D is straightforward in
theory, but may require a parallel version of tbhdec

The above list includes many possible topics, wiwthursue in the future as extensions
of the present work and cannot be a completeAishough this study presents a solid
step towards the unified drag laws, ultimately, borad research at the macroscopic and
microscopic scales in 3D, will improve our undemsliag and ability to predict the
phenomena accruing at a wide variety of multiphe®us media problems. Therefore,
the immediate and relatively easy step would bésitewg (or validating) the proposed
permeability/drag relations of (dis)ordered porowesdia at creeping and inertial flows,
for 3D spherical particles with realistic partislize distributions.
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