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Abstract 
 

Flow and transport in porous media are essential in many processes in mechanical, 
chemical, and petrochemical industries. Despite the wide variety of applications and 
intensive research efforts, the complex hydrodynamics of these systems is still not fully 
understood, which renders their design and scale-up difficult. Most porous media have a 
particulate origin but some are composed of long particles/fibres and, therefore, are 
considered as fibrous media. They are encountered in a variety of modern technological 
applications, predominantly in the manufacturing of fibre-reinforced composites, with 
extensive use in the aerospace and automobile industries. 

The aim of this thesis is to further develop our understanding of the drag closures, i.e. the 
connection between microstructure (particle shape, orientation and arrangement) and 
macroscopic permeability/drag. To address this problem, we employ fully resolved finite 
element (FE) simulations of flow in static, regular and random arrays of cylinders (and 
other shapes) at low and moderate Reynolds numbers. Asymptotic analytical solutions at 
both dense and dilute limits are used to construct drag relations that are universal, i.e. 
valid for all porosities. Those relations are needed for coupling of the fluid and solid 
phases (particles) in multi-phase flow codes.  

The numerical experiments suggest a unique, scaling power law relationship between the 
permeability and the mean value of the shortest Delaunay triangulation edges, 
constructed using the centers of the fibres (which is identical to the averaged second 
nearest neighbor fibre distances). It is complemented by a closure relation that relates the 
effective microscopic channel lengths to the macroscopic porosity. This percolating 
network of narrow channels controls the macro flow properties.  

From our fully resolved FE results, for both ordered and random fibre arrays, we find that 
(i) the weak inertia correction to the linear Darcy relation is third power in superficial 
velocity, U, up to small Reynolds number, Re~1-5. When attempting to fit our data with 
a particularly simple relation, (ii) a non-integer power law in U performs astonishingly 
well up to the moderate Re~30. However, for randomly distributed arrays, (iii) a 
quadratic correction performs quite well as used in the Forchheimer (or Ergun) equation, 
from small to moderate Re. 

Finally, the universal fluid-particle drag relations have been incorporated into a coarse FE 
two-phase framework, based on coupling an unstructured FE mesh and a soft-sphere 
discrete element method (DEM) for moving particles. The mesh is a dynamic Delaunay 
triangulation based on the particle positions. This provides a framework for FE method 
discretization of the equations of fluid dynamics as well as a simple tool for detecting 
contacts between moving particles.  
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Samenvatting 
 

Stroming en transport in poreuze media zijn essentiële mechanismes in vele processen in 
mechanische, chemische en petrochemische industrie. Ondanks de grote verscheidenheid 
van toepassingen en intensief onderzoek, is de complexe hydrodynamica van deze 
mechanismes nog steeds niet volledig begrepen, wat het ontwerp van processen en 
schaalvergroting van laboratorium modellen moeilijk maakt. De meeste poreuze media 
hebben een deeltjes structuur, maar sommige bestaan uit lange deeltjes/vezels en worden 
daarom beschouwd als vezelachtige media. Dit soort materialen worden gebruikt voor 
een verscheidenheid van moderne technologische toepassingen, voornamelijk in de 
productie van vezelversterkte composieten, die veelvuldig worden gebruikt in de 
luchtvaart- en automobiel industrie. 

Het doel van dit proefschrift is de verdere ontwikkeling van ons begrip van de weerstand  
sluiting, dat wil zeggen de verbinding tussen de microstructuur (deeltjes vorm, oriëntatie 
en plaatsing) en de macroscopische permeabiliteit/weerstand. Om hierin meer inzicht te 
verkrijgen, gebruiken we hoge resolutie eindige elementen simulaties van de stroming in 
statische, regelmatige en willekeurige configuraties van cilinders (en andere vormen) bij 
lage en gematigde Reynolds getallen. Asymptotisch analytische oplossingen voor limiet 
gevallen van veel en weinig deeltjes zijn gebruikt om universele relaties te construeren. 
Deze relaties zijn nodig voor de koppeling van de vloeistof en de vaste fase (deeltjes) in 
meerfasenstroming. De numerieke experimenten suggereren een unieke schaal machtswet 
tussen de permeabiliteit en de gemiddelde waarde van de kortste Delaunay triangulatie 
randen geconstrueerd met de centra van de vezels. Het percolatie netwerk van smalle 
kanalen controleert de macroscopische vloei-eigenschappen. 

Van onze volledig eindige elementen opgelost resultaten, zowel voor geordende en 
willekeurige vezel pakking, vinden we dat (i) de zwakke traagheid correctie op de 
lineaire Darcy relatie is de derde macht in superficiële snelheid, U, tot klein getal van 
Reynolds, Re~1-5. Bij een poging onze gegevens te beschrijven met een bijzonder 
eenvoudige relatie (ii) een niet-integer machtswet in U geeft verbazingwekkend goede 
resultaten tot gemiddelde Re getallen (tot Re~30). Echter, bijvoorbeeld voor willekeurig 
arrays (iii) presteert een kwadratische correctie zoals gebruikt in de Forchheimer of 
Ergun vergelijking goed voor kleine tot gemiddelde Re getallen. 

Tenslotte zijn de universele vloeistof-deeltjes weerstands relaties opgenomen in een grof 
eindige elementen, twee fasen kader gebaseerd op de koppeling van een 
ongestructureerde eindige elementen rooster en een zacht-bol discrete elementen methode 
(DEM) voor het verplaatsen van deeltjes. Het rooster is een dynamische Delaunay-
triangulatie op de posities van de deeltjes. Dit biedt een kader voor de eindige elementen 
discretisatie van de vergelijkingen van de stromingsleer en een eenvoudige tool voor het 
opsporen van contacten tussen bewegende deeltjes. 
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“Real knowledge is to know the extent of one's ignorance” 

~Confucius~ 
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1.1 General introduction  

In this chapter I present some background materials for subsequent chapters, aiming at 
developing an intuitive (physical) understanding of the essential underlying concepts and 
methodologies, before presenting a new multiscale framework for modeling two-phase 
flows. 

 

1.2 Motivation and background 

The modeling of realistic systems is already a challenge when several fields are involved 
only on a single scale. Usually fields or phases, e.g. discrete particles, solid walls and 
fluids/gases, are coupled and affect each other continuously at different length scales. 
Examples are, but not limited to, fluidized bed reactors in chemical engineering, 
mechanical engineering unit-processes like silos, mixers, ball-mills, or transport belts, 
modern engineering materials like composites, geotechnical and geophysical systems, 
micro-fluidic reactors, and electrostatic field-structure-particle interactions [1]. Fig. 1.1 
shows some examples of multiphase phenomena occurring at various length scales. 

 

 

 

Figure 1.1: Some examples of multiphase phenomena occurring at various length scales. 
From left to right: Nanoparticles for self-cleaning surfaces, gases (like bubbles) in a 

liquid, flow in porous media and industrial chemical reactors. 

 

The particle (solid) phase is usually described by means of the so-called discrete element 
method (DEM), where all information on particle position, velocity and forces is 
available in detail [2, 3]. The DEM is essentially a numerical technique to model the 
motion of an assembly of particles interacting with each other through collisions. It is 
quite efficient for investigating phenomena occurring at the length scale of a particle 

Log (m) -6 -3 -1 >1 
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diameter. The computational cost relies on several factors, including the geometric 
representation and contact detection algorithm used [4]. On the other hand, continuum 
methods are used for chemical engineering applications like granular and gas-particle 
flows [5, 6] silos and unusual flow-zones and geometries [7, 8], fluid flow, aerodynamics, 
and many others, on much larger scales. Attempts to couple particle- and continuum 
methods have been successful in rather simple model systems and special cases [9, 10] 
and are still subject of ongoing research.  

The discrete particle model (DPM) is considered to be the most suitable model to 
describe the hydrodynamics of dispersed multiphase flows [11-13]. The DPM is based on 
Lagrangian tracking of individual particles, i.e. DEM, combined with computational fluid 
dynamics (CFD), i.e. the volume-averaged Navier-Stokes equations, for the continuous 
phase. Two-way coupling is achieved via the momentum sink/source term which includes 
the fluid-particle drag force. This type of model falls in between the two-fluid model 
(TFM) used for simulations of large scale processes, and the direct numerical simulations 
(DNS) that are applicable only for small scale systems (see next section where different 
modeling schemes at various length scales are compared). A common deficiency of this 
model is the incompatibility between the resolutions for the two phases. Typically, a fluid 
cell must contain many particles so as to be consistent with the volume averaging concept 
used in the fluid/gas phase. Since the fluid/gas-phase mesh size is much larger than the 
individual particle, it is not possible to resolve the drag numerically. Moreover, the DPM 
traditionally calculates the drag on a particle with a local slip velocity interpolated at the 
particle position from values on neighboring grid nodes, which deviates further from the 
original meaning of the empirical drag closures. This has motivated the development of 
more accurate relationships between macroscopic parameters, like permeability/drag, and 
microstructural parameters, like fibre/particle arrangements, shape and orientation or 
tortuosity (flow path), see chapters 2 and 3. 

 

1.3 Multi-level (hierarchy) modeling approach 

The general approach in modeling industrial multiphase flow processes is at the 
continuum scale. Semi-empirical expressions, such as Darcy’s law, are substituted for 
velocity in the continuity equation, which is then coupled with a momentum, mass, and 
energy balance. While a continuum approach is acceptable in some cases, additional 
modeling (small scale simulations) is required for certain multiphase flows, where the 
detailed information is desired. The basic idea is that the smaller scale models, which 
take into account the various interactions (fluid-particle, particle-particle/wall) in detail, 
are used to develop closure laws which can represent the effective coarse-grained 
interactions in the larger scale models [14]. 

Fig. 1.2 shows a schematic representation of various models, including the information 
that is abstracted from the simulations, which is incorporated in higher scale models via 
closure relations. At the most detailed level of description, the fluid/gas flow field is 
modeled at scales smaller than the particle size using one of the finite element (FE), 
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lattice Boltzmann (LB), immersed boundary (IB), finite difference (FD) or finite volume 
(FV) approaches. The momentum exchange (drag closures) between the particles and the 
fluid/gas phase is determined, which can be used in the higher (larger) scale models.  

At the intermediate level, i.e. DPM, the flow field is treated as a continuum and usually 
solved on a computational grid with a grid size of a few particle diameters. The motion of 
individual particles is tracked using Newton’s laws, accounting for collisions with other 
particles, with walls and the fluid-particle interaction forces. This Euler-Lagrangian 
model has been widely used over the last decade to study the complicated flow behaviors 
in gas-solid fluidized beds. The advantage of DPM is that the particle-particle/wall 
interactions are taken into account for sufficiently large systems to allow for a direct 
comparison with laboratory-scale experiments (~0.1 meter). However, this approach 
requires accurate closure (drag) relations for the unresolved solid-fluid interactions, see 
next section.  

 

 

Figure 1.2: Schematic representation of the multi-level modeling scheme. The italic and 
red, bold text show the closures one need and the information one obtain from that level 

of simulation, respectively. 

 

The third model is the continuum model, i.e. the Two Fluid Model (TFM) or the Multi 
Fluid Model (MFM), where two or multiple phases are considered as interpenetrating 
continua that are described by the averaged Navier-Stokes equations [15, 16]. The TFM 
equations relate the spatial distributions of averaged physical quantities of continuous or 
dispersed phases to the interaction force at the interface. This Euler-Euler model relies 
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Several closures 

Large scale motion, Industrial scale 
Design parameters 

Large scale motion, Pilot scale 
Dispersion coefficients 

Particle-particle, Laboratory scale 
Solid pressure and viscosity 

 

Fluid-particle, Meso/micro scale 
Closure/drag laws 
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Drag + pressure/viscosity closures 

DEM/DPM - Local averaging 
Collision model + drag closure 

DNS: LB, FE, IB, FD or FV 
No closures required 

larger 
scale and 

less detailed 
information 

Method of simulation Length scale 



Chapter 1. Introduction 

 5 

heavily on closure relations for the effective solid pressure and viscosity, and gas-solid 
drag, which are obtained from DNS. With this approach a bed behavior of gas-solid flows 
can be predicted using at intermediate pilot-industrial scale (~1 meter).  

At the highest level (~10 meter), industrial scale fluidized bed reactors are simulated with 
the phenomenological Discrete Bubble Model (DBM), where the voids or bubbles are 
tracked by evaluating the net force acting on each bubble (similar to the particles in 
DEM) and the emulsion phase treated as the continuum phase [17]. It has been 
extensively used to investigate the hydrodynamics, coalescence, and breakup occurring in 
large scale bubble columns [18]. 

 

1.4 Fluid permeability (drag force) and interfacial closures 

The prime difficulty of modeling two-phase gas/fluid-solid flows (in both Euler-Euler 
and Euler-Lagrangian approaches) is the interphase coupling, which deals with the effects 
of gas/fluid flow on the solids motion and vice versa. Among all the coupling terms 
emerging from averaging (e.g. fluid-particle drag, added-mass, lift, history, Magnus 
forces, and particle and fluid phase stresses), the fluid-particle drag is particularly 
important: it is usually the primary force to suspend and transport the particles; it has a 
significant influence on the bed expansion and stability of the suspension. The drag force 
depends (among many parameters such as particle size/spatial distribution, particle shape, 
and orientation, etc.) on the local relative velocity between phases and the average 
porosity. It was shown in several case studies that the drag law has a significant influence 
on the qualitative and quantitative nature of the flow [19-21], which may result in 
differences in the heat and mass transfer and hence the overall chemical conversion in the 
bed. Therefore, establishing accurate drag force relations is crucial for obtaining good 
performance and has challenged both the physics and the engineering community for 
many years.  

The most widely used drag laws, i.e. Ergun equation [22] at low and Wen & Yu 
correlation [23] at high porosities, are generally based on experimental measurements and 
are empirical in nature. While experiments are time consuming, costly and easily 
influenced by disturbances, analytical predictions are limited to idealized situations, for 
instance spherical particles at very dense or dilute regimes in the limit of low Reynolds 
numbers, Re. A relatively new, accurate and efficient way is to use DNS, which is neither 
restricted to any idealized situation nor suffers from experimental difficulties. The typical 
simulation strategy is to specify a constant pressure gradient in a given direction and then 
obtain the averaged flow velocity through static spherical/cylindrical particles/fibers. At 
the creeping flow regime, the macroscopic permeability/drag of the porous medium can 
then be obtained using Darcy’s law, which states that the superficial velocity in the 
medium is directly proportional to the applied pressure gradient. 

Detailed LB simulations of the flow through uniform and random spherical particles were 
carried out at low Re and wide range of porosity by Hill et al. [24] and at low and 
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moderate Re by van der Hoef et al. [25]. In both studies a model was derived by fitting 
the numerical simulations into an empirical relation which shows some discrepancy 
compared to commonly established and well verified correlations. Benyahia et al. [26] 
developed a drag law, applicable to the full range of porosity and Re, by blending the 
previous drag correlations such that the blended function is continuous with respect to Re 
and porosity. Kandhai et al. [19] compared the LB simulation results to both the Ergun 
and the Wen & Yu correlations for Re up to 60. The Wen & Yu correlation was found to 
present a good match with the simulation results for porosity larger than 0.7, while the 
Ergun correlation shows good agreement for porosity less than 0.5. Beetstra et al. [27] 
reported that the Ergun correlation over-predicts drag force in monodisperse systems with 
Reynolds numbers greater than ~400 and porosity larger than 0.4 and always over 
predicts for systems with higher Reynolds numbers, regardless of the porosity. Note that 
the experimental measurements made by Ergun were done for crushed (irregular) 
materials and with some degree of polydispersity in the particles whereas the LB 
simulations were done for monodisperse, perfectly spherical particles. This may account 
for some of the observed discrepancies. 

In almost all previous studies, the drag closures were obtained by smoothing out the 
small-scale effects and fitting the numerical/experimental data of nearly homogeneous 
systems into complicated, empirical equations without any physical or microstructural 
insights/effects. However, in many applications, the local, micro-scale phenomena and 
physics are relevant for the macroscopic behavior on much larger scale. The (possibly 
evolving) size, shape, physical properties and spatial distribution of the microstructural 
constituents largely determine the macroscopic, overall behavior of multi-phase 
materials. Agrawal et al. [28] established that coarse-grid simulation of gas-particle flows 
must include sub-grid models, to account for the effects of the unresolved mesoscale 
structures. Similarly, Boemer et al. [29] pointed out the need to correct the drag 
coefficient to account for the consequences of clustering, and proposed a correction for 
the very dilute limit. Due to both the inhomogeneity in porosity distribution and the 
additional wetted surface introduced by the containing wall, the pressure drop can differ 
from that of the homogeneous bed. Consequently, it is important to accurately predict the 
effect of the containing wall. Despite the controversy over the wall effect [30, 31], recent 
studies [32-34] have concluded that the pressure drop can be increased by wall friction or 
decreased by an increase in porosity near the wall, and the predominance of one effect 
over the other depends on the flow regime. In a recent study, Kriebitzsch et al. [35] 
showed that the drag on individual particles in a homogeneous random array depends 
strongly on all its surrounding neighbors within a distance of at least two particle 
diameters. They showed that this drag can differ up to 40% with the drag that would be 
used in DPM simulations. Finally, the drag force for polydisperse systems was recently 
described by extending the monodisperse drag laws in an ad hoc manner [36-39]. Beside 
all these attempts, a systematic approach that combines the influence of the unresolved 
(micro) structures on the macroscopic drag/permeability coefficient has not yet emerged. 

This research aims at proposing a reformulated drag force model for monodisperse fiber 
arrays as function of microstructural parameters that improve the consistency, accuracy 
and computational efficiency compared to those appeared until now. To this end, 
extensive calculations of the permeability for (dis)ordered fiber arrays in a wide range of 
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porosity and Re are carried out using a steady, incompressible FE scheme. The 
permeability values, computed from pressure drop and flow rate through Darcy’s law, 
were calculated and given as function of porosity and Reynolds number. 

 

1.5 Scope and objectives 

On one hand, it is nearly impossible to resolve all heterogeneous (small-scale) flow 
structures in large-scale industrial gas/fluid-particle flows using a computational grid size 
of the order of a few particle diameters. On the other hand, for the design and 
optimization of industrial processes, it is important to faithfully model the physics due to 
interactions at the microstructural scales. The goals of this research are twofold: (i) the 
derivation of accurate correlations for the drag force, taking into account the effect of 
microstructure, to improve the higher scale models and (ii) incorporating such closures 
into a “compatible” multi-phase/scale model that uses a (particle-based) Delaunay 
triangulation (DT) of space as basis – in future, possibly involving also multiple fields. 
Due to a special property of DT, a unique decomposition of space can be obtained which 
provides a discretization framework for the continuum fluid solver as well as a simple 
tool for detecting contacts between moving particles. The remaining scientific challenge 
is to understand systems composed of different phases, which interact continuously at 
various length scales. This involves multi-physics, micro-systems, (moving) interfaces 
and multi-field problems in general. 

The focus of this work is on high-resolution FE modeling, a rigorous approach that 
represents detailed geometry and first-principle physics at the small scales. The systems 
studied here are composed of unidirectional, monosize, (dis)ordered arrays of 
cylinders/fibers oriented perpendicular to the flow direction. Such systems have wide 
variety of applications including textile reinforcements [40, 41], design of a mould for the 
production of composite parts [42] and in resin transfer molding (RTM), i.e. an efficient 
and frequently used process for producing fibre reinforced polymer composites [42].  

A microstructural model for predicting the macroscopic drag/permeability is obtained 
from the pore-level modeling of transport in such fibrous media at both creeping (i.e. 
small fluid velocity) and inertial flows. The comparison is made with asymptotic 
analytical solutions for the dense and dilute limit cases. The results are given in the form 
of closures, i.e. as function of macroscopic porosity and Reynolds number, which can 
readily be incorporated into existing (non)commercial multi-phase flow codes. In the next 
step, a coarse-grained FE framework based on coupling an unstructured FE mesh and a 
soft-sphere DEM for moving particles has been proposed. The fluid-particle interactions 
have been incorporated using the previously obtained accurate drag closures. This 
approach provides computing dynamics of particles using a deforming mesh while 
reasonably resolving the fluid/gas flow around the particles. 
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1.6 Organization of the dissertation 

The rest of this dissertation is organized as follows: 

• Chapter 2: is a study of the effect of microstructural parameters like particle 
shape, orientation and unit cell stagger angle on the macroscopic permeability. 
Detailed FE simulations for viscous, incompressible flow through a regular array 
of cylinders/fibers are employed for predicting the permeability/drag associated 
with this type of media [43, 44]. 

• Chapter 3: presents a prediction for the transverse permeability of creeping flow 
through unidirectional random arrays of fibres. Different microstructures (due to 
four random generator algorithms) are compared as well as the effect of boundary 
conditions, finite size, homogeneity and isotropy of the structure on the 
macroscopic permeability of the fibrous medium. I find a unique, scaling power 
law relationship between the permeability obtained from fluid flow simulations 
and the mean value of the second nearest neighbor fibre distances. Finally, the 
results are compared against a purely phenomenological model which connects 
the analytical solution of the dense and dilute limits [45, 46]. 

• Chapter 4: introduces several order parameters, based on Voronoi and Delaunay 
tessellations, to characterize the microstructure of randomly distributed non-
overlapping fibre arrays. In particular, by analyzing the mean and distribution of 
topological and metrical properties of Voronoi polygons, I observe a smooth 
transition from disorder to order, controlled by the effective packing fraction. I 
summarize the theoretical links between the macroscopic phenomenological 
Darcy’s law and the pore-scale fundamental Stokes equations, and recognized that 
the application of the pore-scale analysis requires characterization of the pore-
scale geometry (size) of the porous material. The Voronoi tessellation and their 
statistics have been employed to obtain this essential geometrical (length scale) 
information [47, 48]. 

• Chapter 5: gives a comprehensive survey of published experimental, numerical 
and theoretical work on the drag law correlations for fluidized beds and flow 
through porous media, together with an attempt at systematization. Ranges of 
validity as well as limitations of commonly used relations (i.e. the Ergun and 
Forchheimer relations for laminar and inertial flows) are studied for a wide range 
of porosities. From my fully resolved finite element (FE) results, for both ordered 
and random fibre arrays, (i) the weak inertia correction to the linear Darcy relation 
is third power in U, up to small Re~1-5. When attempting to fit the data with a 
particularly simple relation, (ii) a non-integer power law performs astonishingly 
well up to the moderate Re~30. However, for randomly distributed arrays, (iii) a 
quadratic correction performs quite well as used in the Forchheimer (or Ergun) 
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equation, from small to moderate Re [49-51]. The FE results show an accurate 
quantitative agreement with the lattice Boltzmann (LB) results1.  

• Chapter 6: presents a method for two-way fluid-particle coupling on an 
unstructured mesh2. The mesh is a deforming Delaunay triangulation based on the 
particle positions. The particulate phase is modeled using the DEM and the fluid 
phase via a stabilized higher order FE scheme [52, 53]. A two-way momentum 
exchange is implemented through the previously obtained drag laws. 

•  Chapter 7: summarizes the contributions of the thesis and makes 
recommendations for future work to better understand the connection between 
small-scale fluid-particle interactions and the macroscopic phenomena occurring 
at industrial multiphase flow units.  

It is important to note that the core chapters of this dissertation, i.e. Chapters 2–6, are 
self-contained since they have been or are in the process of being published as individual 
journal articles. As a result, there will be some repetition of fundamental concepts and 
references.  

 

References 

[1] H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Discrete particle simulation of 
particulate systems: A review of major applications and findings, Chemical 
Engineering Science, 63 (2008) 5728–70. 

[2] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, 
Geotechnique, 29 (1979) 47–65. 

[3] S. Luding, Cohesive frictional powders: Contact models for tension, Granular 
Matter, 10 (2008) 235-246. 

[4] V. Ogarko, and S. Luding, A fast multilevel algorithm for contact detection of 
arbitrarily polydisperse objects, Comp. Phys. Communications, 183 (2012) 931-36. 

[5] A. W. Vreman, M. Al-Tarazi, J. A. M. Kuipers, M. V. Annaland, and O. Bokhove, 
Supercritical shallow granular flow through a contraction: experiment, theory and 
simulation, J. Fluid. Mech, 578 (2007) 233–269. 

[6] N. G. Deen, M. A. van der Hoef, M. V. Annaland, and J. A. M. Kuipers, Numerical 
simulation of dense gas-particle flows using the Euler-Lagrange approach, Progress 
in Computational Fluid Dynamics, 7 (2007) 152–162. 

                                                 
1 The LB data were provided by A. Narvaez & J. Harting, our collaborators at TU Eindhoven. 
2 This chapter was done mostly together with S. Srivastava, a former postdoc in our group. 



Chapter 1. Introduction 

 10 

[7] J. M. Rotter, J. M. F. G. Holst, J. Y. Ooi, and A. M. Sanad, Silo pressure predictions 
using discrete element and finite element analyses, Phil. Trans. R. Soc. Lond. A, 
356 (1998) 2685–2712. 

[8] J. Tejchman, Patterns of shear zones in granular bodies within a polar hypoplastic 
continuum, Acta Mechanica, 155 (2002) 71-94. 

[9] A. Munjiza, D. R. J. Owen, and N. Bicanic, A combined finite-discrete element 
method in transient dynamics of fracturing solids, Eng. Comput., 12 (1995) 145–74. 

[10] P. A. Vermeer, S. Diebels, W. Ehlers, H. J. Herrmann, S. Luding, and E. Ramm, 
editors. Continuous and Discontinuous Modelling of Cohesive Frictional Materials, 
Berlin, 2001. Springer. Lecture Notes in Physics 568. 

[11] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particles simulation of two 
dimensional fluidized bed, Powder Technology, 77 (1993) 79–87. 

[12] B.P.B. Hoomans, J.A.M. Kuipers, W.J. Briels, W.P.M. Van Swaaij, Discrete 
particle simulation of bubble and slug formation in a two-dimensional gas-fluidized 
bed: a hard-sphere approach, Chemical Engineering Science, 51 (1996) 99–118. 

[13] Z.Y. Zhou, S.B. Kuang, K.W. Chu and A.B. Yu, Discrete particle simulation of 
particle–fluid flow: model formulations and their applicability, JFM, 661 (2010) 
482-510. 

[14] M.A. van der Hoef, M. Ye, M. van Sint Annaland, A.T. Andrews, S. Sundaresan, 
J.A.M. Kuipers, Multiscale Modeling of Gas-Fluidized Beds, Advances in 
Chemical Engineering, 31 (2006) 65-149. 

[15] K. Ueyama, A study of two-fluid model equations, JFM, 690 (2012) 474-498. 

[16] Y. Igci, A.T. Andrews IV, and S. Sundaresan, Filtered two-fluid models for 
fluidized gas-particle suspensions, AIChE J., 54 (2008) 1431–48. 

[17] E. Delnoij, F.A. Lammers, J.A.M. Kuipers, W.P.M. van Swaaij, Dynamic 
simulation of dispersed gas-liquid two-phase flow using a discrete bubble model, 
Chemical Engineering Science, 52 (1997) 1429–58. 

[18] E. I. V. van den Hengel, N. G. Deen, and J. A. M. Kuipers, Application of 
Coalescence and Breakup Models in a Discrete Bubble Model for Bubble Columns, 
Ind. Eng. Chem. Res., 44 (2005) 5233-5245. 

[19] D. Kandhai, J.J. Derksen, H.E.A. Van den Akker, Interphase drag coefficients in 
gas–solid flows, AIChE J., 49 (2003) 1060–1065. 

[20] W. Du, X. Bao, J. Xu, W. Wei, Computational fluid dynamics (CFD) modeling of 
spouted bed: Assessment of drag coefficient correlations, Chemical Engineering 
Science, 61 (2006) 1401–20. 



Chapter 1. Introduction 

 11 

[21] J. Gan, H. Zhao, A. S. Berrouk, C. Yang, H. Shan, Impact of the drag law 
formulation on the predicted binary-particle segregation patterns in a gas–solid 
fluidized bed, Powder Technology, 218 (2012) 69–75. 

[22] S. Ergun, Fluid Flow through Packed Columns, Chem. Eng. Prog., 48 (1952) 89-94. 

[23] C.Y. Wen, and Y.H. Yu, Mechanics of fluidization, AIChE J., 62 (1966) 100-11. 

[24] R.J. Hill, D.L. Koch and A.J.C. Ladd, Moderate-Reynolds-number flows in ordered 
and random arrays of spheres, J. Fluid Mech., 448 (2001) 243–78. 

[25] M.A. van der Hoef, R. Beetstra, J.A.M. Kuipers, Lattice-Boltzmann simulations of 
low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for 
the permeability and drag force, JFM, 528 (2005) 233-254. 

[26] S. Benyahia, M. Syamlal, T.J. O'Brien, Extension of Hill–Koch–Ladd drag 
correlation over all ranges of Reynolds number and solids volume fraction, Powder 
Technology, 162 (2006) 166–174. 

[27] R. Beetstra, M.A. Van Der Hoef, J.A.M. Kuipers, Drag force of intermediate 
reynolds number flow past mono- And bidisperse arrays of spheres, AIChE J.,  53 
(2007) 489-501. 

[28] K. Agrawal, P.N. Loezos, M. Syamlal, S. Sundaresan, The role of meso-scale 
structures in rapid gas–solid flows, JFM, 445 (2001) 151–181. 

[29] A. Boemer, H. Qi, J. Hannes, and U. Renz, Eulerian simulation of bubble formation 
at a jet in a two-dimensional fluidized bed, International Journal of Multiphase 
Flow, 23 (1997) 927–44. 

[30] C.F. Chu, K.M Ng, Flow in packed tubes with a small tube to particle diameter 
ratio, AIChE J., 35 (1989) 148–158. 

[31] E. Tsotsas, E.-U. Schlünder, The influence of tube to particle diameter ratio on 
pressure drop in packed tubes: Remarks on a recent paper by Chu and Ng, AIChE 
J., 36 (1990), 151-154. 

[32] B. Eisfeld, K. Schnitzlein, The influence of confining walls on the pressure drop in 
packed beds, Chem. Eng. Sci., 56 (2001) 4321–29. 

[33] R. Di Felice, L.G. Gibilaro, Wall effects for the pressure drop in fixed beds, Chem. 
Eng. Sci., 59 (2004) 3037–3040. 

[34] Y. Seok Choi, S. Jin Kim, D. Kim, A Semi-empirical Correlation for Pressure Drop 
in Packed Beds of Spherical Particles, Transp Porous Med, 75 (2008) 133–149. 



Chapter 1. Introduction 

 12 

[35] S. H. L. Kriebitzsch, M. A. van der Hoef, J. A. M. Kuipers, Drag force in discrete 
particle models—Continuum scale or single particle scale?, AIChE J., (2012), in 
press, DOI: 10.1002/aic.13804. 

[36] S. Sarkar, M.A. van der Hoef, J.A.M. Kuipers, Fluid–particle interaction from 
lattice Boltzmann simulations for flow through polydisperse random arrays of 
spheres, Chemical Engineering Science,  64 (2009) 2683–91. 

[37] R. Beetstra, M.A. van der Hoef , J.A.M. Kuipers, Numerical study of segregation 
using a new drag force correlation for polydisperse systems derived from lattice-
Boltzmann simulations, Chemical Engineering Science, 62 (2007) 246-255. 

[38] X. Yin, S. Sundaresan, Fluid-particle drag in low-Reynolds-number polydisperse 
gas-solid suspensions, AIChE J., 55 (2009) 1352-68. 

[39] F. Cello, A. Di Renzo, F.P. Di Maio, A semi-empirical model for the drag force and 
fluid–particle interaction in polydisperse suspensions, Chemical Engineering 
Science, 65 (2010) 3128–39. 

[40] E.B. Belov, S.V. Lomov, I. Verpoest, T. Peters, D. Roose, R.S. Parnas, K. Hoes, H. 
Sol, Modelling of permeability of textile reinforcements: lattice Boltzmann method, 
Composites Science and Technology, 64 (2004) 1069–1080. 

[41] B. Verleye, M. Klitz, R. Croce, D. Roose, S.V. Lomov, and I. Verpoest,  
Computation of the permeability of textiles with experimental validation for 
monofilament and non crimp fabrics, Studies in Computational Intelligence, 55 
(2007) 93-109. 

[42] B. Verleye, S.V. Lomov, A. Long, I. Verpoest, D. Roose, Permeability prediction 
for the meso–macro coupling in the simulation of the impregnation stage of Resin 
Transfer Moulding, Composites: Part A, 41 (2010) 29–35. 

[43] K. Yazdchi, S. Srivastava, S. Luding, Microstructural effects on the permeability of 
periodic fibrous porous media, Int. J. Multiphase Flow, 37 (2011) 956-66. 

[44] K. Yazdchi, S. Srivastava and S. Luding, Multi-Scale permeability of particulate 
and porous media, World Congress Particle Technology 6 (2010), Nuremberg, 
Germany. 

[45] K. Yazdchi, S. Srivastava and S. Luding, Micro-macro relations for flow through 
random arrays of cylinders, Composites Part A, 43 (2012) 2007-2020. 

[46] K. Yazdchi, S. Srivastava and S. Luding, On the validity of the Carman-Kozeny 
equation in random fibrous media, Particle-Based Methods II - Fundamentals and 
Applications (2011), 264-273, Barcelona, Spain. 

[47] K. Yazdchi and S. Luding, Fibrous materials: Microstructure and macroscopic 
properties, (2012) in preparation. 



Chapter 1. Introduction 

 13 

[48] K. Yazdchi and S. Luding, Upscaling the transport equations in fibrous media, 
ECCOMAS (2012), 2 pages, Vienna, Austria. 

[49] K. Yazdchi, S. Luding, Towards unified drag laws for inertial flow through fibrous 
materials, CEJ, 207 (2012) 35-48. 

[50] K. Yazdchi, S. Srivastava and S. Luding, On the transition from creeping to inertial 
flow in arrays of cylinders, Proceedings of IMECE (2010), Vancouver, Canada. 

[51] A. Narvaez, K. Yazdchi, S. Luding and J. Harting, From creeping to inertial flow in 
porous media: a lattice Boltzmann - Finite Element comparison, JSTAT, (2012) 
submitted. 

[52] S. Srivastava, K. Yazdchi, S. Luding, Meso-scale coupling of FEM/DEM for fluid-
particle interactions, (2012) in preparation. 

[53] S. Srivastava, K. Yazdchi and S. Luding, Two way coupled fluid-particle 
interaction on a deforming unstructured mesh, ECCOMAS (2012), 2 pages, Vienna, 
Austria. 

 
 
 
 

    

    



 

 14 

    

2 
Microstructural effects on the 

permeability of periodic 
fibrous porous media 

 

 

 

 

 

 

 

 

 

“It is vain to do with more what can be done with less”   

~William Occam~ 
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Abstract 

An analytical-numerical approach is presented for computing the macroscopic 
permeability of fibrous porous media taking into account their micro-structure. A finite 
element (FE) based model for viscous, incompressible flow through a regular array of 
cylinders/fibers is employed for predicting the permeability associated with this type of 
media. High resolution data, obtained from my simulations, are utilized for validating the 
commonly used semi-analytical models of drag relations from which the permeability is 
often derived. The effect of porosity, or volume fraction, on the macroscopic 
permeability is studied. Also micro-structure parameters including particle shape, 
orientation and unit cell stagger angle are varied. The results are compared with the 
Carman-Kozeny (CK) equation and the Kozeny factor (often assumed to be constant) 
dependence on the micro-structural parameters is reported and used as an attempt to 
predict a closed form relation for the permeability in a variety of structures, shapes and 
wide range of porosities.1  

 

 

Highlights 

• A unified understanding of the effect of microstructure on the macroscopic 
permeability of fibrous media is presented. 

• Based on hydraulic diameter concept, the permeability is expressed in the general 
form of the Carman–Kozeny (CK) equation.  

• The finite element (FE) results show that the CK factor depends on the porosity and 
pore structure.  

• These results can be utilized for validation of advanced, coarse-grained models for 
particle–fluid interactions. 

 

 
 

 

 

 

                                                 
1 K. Yazdchi, S. Srivastava and S. Luding, Microstructural effects on the permeability of periodic fibrous 
porous media, International Journal of Multiphase Flow, 37 (2011) 956-966. 
K. Yazdchi, S. Srivastava and S. Luding, Multi-Scale permeability of particulate and porous media, World 
Congress Particle Technology 6 (2010), Nuremberg, Germany. 
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2.1 Introduction  

The problem of creeping flow (i.e. very small fluid velocity) through solid bodies 
arranged in a regular array is fundamental in the prediction of seepage through porous 
media and has many applications, including: composite materials [10, 22], rheology [24, 
23], geophysics [3], polymer flow through rocks [30], statistical physics [14, 7], colloid 
science [29], soil mechanics [26, 8] and biotechnology [36]. A compelling motivation for 
such studies concerns the understanding, and eventually the prediction, of single and 
multiphase transport properties of the pore structure.  

A specific category of porous media is formed by 2D long cylinders or fiber-like particles 
(such as composite materials). Restricted flow through fibrous porous materials has 
applications in several engineering/industrial areas including: filtration and separation of 
particles, composite fabrication, heat exchangers, thermal insulations, etc. Prediction of 
the hydraulic permeability of such materials has been vastly studied in the past decades. 
It is known that, for fiber reinforced composites, the microstructure of the reinforcement 
strongly influences the permeability. This study presents an interesting step towards a 
unified understanding of the effect of microstructure (e.g. particle/fiber shape and 
orientation) on the macroscopic permeability by combining numerical simulations with 
analytical prediction in a wide range of porosity.   

Usually, when treating the medium as a continuum, satisfactory predictions can be 
obtained by Darcy's law, which lumps all complex interactions between the fluid and 
fibers/particles into K, the permeability (tensor). Accurate permeability data, therefore, 
are a critical requirement for macroscopic simulations based on Darcy’s law – to be 
successfully used for design and optimization of industrial processes.  

The Ergun equation is a semi-empirical drag relation from which the permeability of 
porous media can be deduced. It is obtained by the direct superposition of two asymptotic 
solutions, one for very low Reynolds number, the Carman-Kozeny (CK) equation [4], 
and the other for very high Reynolds numbers, the Forchheimer correction [4]. However, 
these approximations do not take into account the micro-structural effects, namely the 
shapes and orientations of the particles, such that not only local field properties but also 
some global properties (such as anisotropy) cannot be addressed.  

In this respect, two distinct approaches seem to have emerged. The first approach is based 
on lubrication theory and considers the pores of a porous medium as a bunch of capillary 
tubes which are tortuous or interconnected in a network [4]. Even though this model has 
been used successfully for isotropic porous media, it does not work well for either axial 
or transverse permeability of aligned fibrous media [5]. 

The second approach (cell method) considers the solid matrix as a cluster of immobile 
solid obstacles, which collectively contribute Stokes resistance to the flow. For a review 
of these theories, see Dullien [10] and Bird et al. [4]. When the solids are dilute, i.e. at 
high porosities, the particles do not interact with each other, so that the cell approach is 
appropriate. Bruschke and Advani [5] used lubrication theory in the high fiber volume 
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fraction range but adopted an analytical cell model for lower fiber volume fractions. A 
closed form solution, over the full fiber volume fraction range, is obtained by matching 
both solutions asymptotically. 

Prediction of the permeability of fibrous media dates back to experimental work of 
Sullivan [31] and theoretical works of Kuwabara [20], Hasimoto [13], and Happel [12]. 
The parallel flow solutions are idealized solutions for the flow through cigarette filters, 
plant stems and around pipes in heat exchange tanks. The transverse solutions are 
applicable to transverse fibrous filters used for cleaning liquids and gases and regulating 
their flow. Both types of solutions can also be applicable to the settling of suspensions of 
long thin particles. A comprehensive review of experimental works of permeability 
calculation of these systems is available in Jackson et al. [17] and Astrom et al. [2]. 
Sangani and Acrivos [28], performed analytical and numerical studies of the permeability 
of square and stagger arrays of cylinders. Their analytical models were accurate in the 
limits of low and high porosity. For high densities they obtained the lubrication type 
approximations for narrow gaps. Drummond and Tahir [9] modeled the flow around a 
fiber using a unit cell approach (by assuming that all fibers in a fibrous medium 
experience the same flow field) and obtained equations that are applicable at lower 
volume fractions. Gebart [11] presented an expression for the longitudinal flow, valid at 
high volume fractions, that has the same form as the well-known CK equation. For 
transverse flow, he also used the lubrication approximation, assuming that the narrow 
gaps between adjacent cylinders dominate the flow resistance. Using the eigen-function 
expansions and point match methods, Wang [35] studied the creeping flow past a 
hexagonal array of parallel cylinders.  

This literature survey indicates that the majority of the existing correlations for 
permeability of ordered periodic fibrous materials are based on curve-fitting of 
experimental or numerical data. Additionally, most of the analytical models found in the 
literature are not general and fail to predict permeability over the wide range of porosity, 
since they contain some serious assumptions that limit their range of applicability.  

In this chapter, periodic arrays of parallel cylinders (with circular, ellipse and square 
cross-section) perpendicular to the flow direction are considered and studied with a FE 
based model in Section 2.2. The effects of shape and orientation as well as porosity and 
structure on the macroscopic permeability of the porous media are discussed in detail. In 
order to relate my results to available work, the data are compared with previous 
theoretical and numerical data for square and hexagonal packing configurations and a 
closed form relation is proposed in Section 2.3 in the attempt to combine my various 
simulations. The chapter is concluded in Section 2.4 with a summary and outlook for 
future work. 

 

 

 



Chapter 2. Microstructural effects on the permeability of periodic fibrous porous media 
 

 18 

2.2 Results from FE simulations 

This section is dedicated to the FE based model simulations and the results that consider 
permeability as function of porosity, structure, shape and anisotropy. 

 

2.2.1 Introduction and terminology  

The horizontal superficial (discharge) velocity, U, of the fluid within the porous media in 
a unit cell is defined as 

uudv
V

U
fV

ε== ∫
1

  ,                                                                                                     (2.1) 

where u, u , V, Vf  and ε  are the local microscopic velocity of the fluid, corresponding 

intrinsic averaged velocity, total volume, volume of the fluid and porosity, respectively. 
For the case where the fluid velocity is sufficiently small (creeping flow), the well-known 
Darcy’s law relates the superficial fluid velocity, U through the pores with the pressure 
gradient, p∇ , measured across the system length, L, so that 

p
K

U ∇−=
µ

  ,                                                                                                                (2.2) 

where µ and K are the viscosity of the fluid and the permeability of the sample, 
respectively. At low Reynolds numbers, which are relevant for most of the composite 
manufacturing methods, the permeability depends only on the geometry of the pore 
structure. By increasing the pressure gradient, one observed the typical departure from 
Darcy’s law (creeping flow) at sufficiently high Reynolds number, Re>0.1 (data not 
shown here). In order to correctly capture the influence of the inertial term, Yazdchi et al. 
[37] showed that the original Darcy’s Law can be extended with a power law correction 
with powers between 2 and 3 for square or hexagonal configurations, see chapter 5 for 
detail. Hill et al. [15, 16] examined the effect of fluid inertia in cubic, face-centered cubic 
and random arrays of spheres by means of lattice-Boltzmann simulations. They found 
good agreement between the simulations and Ergun correlation at solid volume fractions 
approaching the closely-packed limit at moderate Reynolds number (Re<100). Similarly, 
Koch and Ladd [18] simulated moderate Reynolds number flows through periodic and 
random arrays of aligned cylinders. The study showed that the quadratic inertial effect 
became smaller at higher volume fractions, see chapter 5 for detail. 

Recently, models based on Lagrangian tracking of particles combined with computational 
fluid dynamics for the continuous phase, i.e. discrete particle methods (DPM), have 
become the state-of-the-art for simulating gas-solid flows, especially in fluidization 
processes [19]. In this method, two-way coupling is achieved via the momentum 
sink/source term, Sp which models the fluid-particle drag force 
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( )p pS u vβ= − ,                                                                                                           (2.3) 

where the interphase momentum-transfer coefficient,β , describes the drag of the 
gas/fluid phase acting on the particles and vp is the velocity of particles (additional effects 
like the added mass contributions are disregarded here for the sake of simplicity). In 
steady state, without acceleration, wall friction, or body forces such as gravity, the fluid 
momentum balance equation reduces to 

( ) 0pp u vε β− ∇ − − = .                                                                                                 (2.4) 

By comparing Eqs. (2.2) and (2.4), using the definition of Eq. (2.1), and assuming 
immobile particles, i.e. 0=pv , the relation between β  and permeability K is 

K

2µεβ = .                                                                                                                       (2.5) 

Accurate permeability data, therefore, is a critical requirement in simulations based on 
DPM to be successfully used in the design and optimization of industrial processes.  

In the following, results on the permeability of two-dimensional (2D) regular periodic 
arrays of cylinders with different cross section are obtained by incorporating detailed FE 
simulations. This is part of a multiscale modeling approach and will be very useful to 
generate closure or coupling models required in more coarse-grained, large-scale models. 

 

2.2.2 Mathematical formulation and boundary conditions 

Both hexagonal and square arrays of parallel cylinders perpendicular to the flow direction 
are considered, as shown in Fig. 2.1. The basis of such model systems lies on the 
assumption that the porous media can be divided into representative volume elements 
(RVE) or unit cells. The permeability is then determined by modeling the flow through 
one of these, more or less, idealized cells. The FEM software (ANSYS) was used to 
calculate the superficial velocity and, using Eq. (2.2), the permeability of the fibrous 
material. A segregated, sequential solution algorithm was used to solve the steady state 
Navier-Stokes (NS) equations and the continuity equation. In this approach, the 
momentum equations (i.e. NS equations) are used to generate an expression for the 
velocity in terms of the pressure gradient. This is used in the continuity equation after it 
has been integrated by parts. This nonlinear solution procedure belongs to a general class 
of the Semi-Implicit Methods for Pressure Linked Equations (SIMPLE). The matrices 
developed from assembly of linear triangular elements are solved based on a Gaussian 
elimination algorithm. It is robust and can be used for symmetric as well as non-
symmetric equation systems but requires extensive computational memory already in 2D. 
At the left and right pressure- and at the top and bottom periodic-boundary conditions are 
applied. The no-slip boundary condition is applied on the surface of the particles/fibers. 
A typical unstructured, fine triangular FE mesh is shown in Fig. 2.1(c). The mesh size 
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effect was examined by comparing the simulation results for different resolutions (data 
are not shown here). The range of number of elements varied from 103 to 104 depending 
on the porosity regime. It should be noted that in Darcy’s linear regime (creeping flow) – 
although we have applied pressure boundary conditions at left and right – identical 
velocity profile at inlet and outlet are observed, due to the symmetry of this geometry and 
linearity. However, by increasing the pressure gradient (data not shown), the flow regime 
changes to non-linear and becomes non-symmetric. Furthermore, because of the 
symmetry in the geometry and boundary conditions, the periodic boundary condition and 
symmetry boundary condition, i.e. zero velocity in vertical direction at top and bottom of 
the unit cells, will lead to identical results (as confirmed by simulations – data not 
shown). 

 

 

 

 

 

 

 

                                    (a)                                                           (b) 

 

 

 

 

 

 

 

 

 

                                                               (c) 

Figure 2.1: The geometry of the unit cells used for (a) square and (b) hexagonal 
configurations, with angles 450 and 600 between the diagonal of the unit-cell and the 
horizontal flow direction (red arrow), respectively.  (c) shows a typical quarter of an 

unstructured, fine and triangular FE mesh.   

 

 

 

Flow direction 
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2.2.3 Permeability of the square and hexagonal arrays 

Under laminar, steady state condition, the flow through porous media is approximated by 
Darcy’s law. By calculating the superficial velocity, U, from my FE simulations and 
knowing the pressure gradient, p∇ , over the length of the unit cell, L, one can calculate 

the dimensionless permeability (normalized by the cylinder diameter, d), 2/K d . In Table 
2.1, various correlations from the literature are listed. The first relation by Gebart [11] 
has an analytical form and is valid in the limit of high density, i.e. low porosity – close to 
the close packing limit εc (the same as Bruschke et al. [5] in the low porosity limit, with 
maximum discrepancy less than 1%). Note that the relations by Happel [12], Drummond 
et al. [9], Kuwabara [20], Hasimoto [13], and Sangani et al. [28] have identical first terms 
and this term is not dependent on the structure, in the limit of small solid volume fraction 
φ, i.e. large porosity. In contrast, their second term is weakly dependent on the structure 
(square or hexagonal). Bruschke et al. [5] proposed relations that are already different in 
their first term. The last two relations in the table are only valid in intermediate porosity 
regimes and do not agree with any of the above relations in either of the limit cases.   

In Fig. 2.2, the variation of the (normalized) permeability, 2/K d , with porosity, for 
square and hexagonal packings is shown. The lubrication theory presented by Gebart [11] 
agrees well with my numerical results at low porosities ( 0.6ε ≪ ), whereas, at high 
porosities ( 0.6ε ≫ ), the prediction by Drummond et al. [9] better fits my data. 
Drummond et al. [9] have found the solution for the Stokes equations of motion for a 
viscous fluid flowing in parallel or perpendicular to the array of cylinders by matching a 
solution outside one cylinder to a sum of solutions with equal singularities inside every 
cylinder of an infinite array. This was in good agreement with other available 
approximate solutions, like the results of Kuwabara [20] and Sangani et al. [28] at high 
porosities, as also confirmed by my numerical results (data not shown).  Note that my 
proposed merging function in Section 2.3.4, fits to our FE results within 2% error for the 
whole range of porosity. 
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Figure 2.2: Normalized permeability plotted against porosity for (a) square and (b) 
hexagonal packing for circular shaped particles/cylinders with diameter d, for 

perpendicular flow. The lines give the theoretical predictions, see inset. For high 
porosities, the difference between Gebart [11] and Drummond et al. [9], in the hexagonal 

configuration, is less than 5%, while for the square configuration it is less than 30%. 

  

 

  

(a)        Square configuration 

(b)       Hexagonal configuration 
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Table 2.1: Summary of correlations between normalized permeability, K/d2 and porosity, 
with 1φ ε= − , the solid volume fraction at creeping flow regime.   

Author K/d2 Comments 

Gebart [11] 

5/ 2

1
1

1
cC

ε
ε

 − −  −  ( )

4
, 1 / 4

9 2
4

, 1 / 2 3
9 6

c

c

C

C

ε π
π

ε π
π

 = = −  
 
 = = −
  

 
Square configuration: 2s

GK d   

Hexagonal config.: 2h
GK d  

Bruschke  
and Advani 

[5] 

( )
1

1
22 2

3 2

1
tan

1 1
3 1

12 21

l
l l l

l
l l

−

−
  +
  − −   + + − 
 
 

 

Lubrication theory, square 

config.: ( )ε
π

−= 1
42l  

Drummond et 
al. [9] 

2

2

1 1 2 0.796
ln 1.476

32 1 0.489 1.605

φ φ
φ φ φ φ
   −− +   + −  

 

2 5
41 1 2.534

ln 1.497 2 0.739
32 2 1 1.2758

φ φφ φ
φ φ φ
  − + − − +   +  

 

Square configuration: 2s
DK d   

Hexagonal config.: 2h
DK d  

Bruschke  
and Advani 

[5] 

21 1 3
ln 2

32 2 2

φφ
φ φ
  − + −  

  
 Cell method, square config. 

Kuwabara 
[20] 

21 1
ln 1.5 2

32 2

φφ
φ φ
  − + −  

  
 Based on Stokes approximation 

Hasimoto 
[13] 

Using elliptic functions: 

( )21 1
ln 1.476 2

32
Oφ φ

φ φ
  − + +  

  
 

Square configuration 

Sangani et al. 
[28] 

2 31 1
ln 1.476 2 1.774 4.076

32
φ φ φ

φ φ
  − + − +  

  
 ----------- 

Happel [12] 
2

2

1 1 1
ln

32 1

φ
φ φ φ
   −−   +  

 ----------- 

Lee and Yang 
[21] 

( )
( )

3

1.3

0.2146

31 1

ε ε
ε

−

−
 Valid for 0.435 0.937ε< <  

Sahraoui et al. 
[27] 

5.10.0152

1

πε
ε−

 Valid for 8.04.0 << ε  
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2.2.4 Effect of shape on the permeability of regular arrays 

In this subsection, I investigate the anisotropic behavior of permeability due to particle 
shape using the square configuration. Using elementary algebraic functions, Zhao et al. 
[38] derived the analytical solutions for pore-fluid flow around an inhomogeneous 
elliptical fault in an elliptical coordinate system. Obdam and Veling [25] employed the 
complex variable function approach to derive the analytical solutions for the pore-fluid 
flow within an elliptical inhomogeneity in a two-dimensional full plane. Zimmerman [40] 
extended their solutions to a more complicated situation, where a randomly oriented 
distribution of such inhomogeneous ellipses was taken into account. Wallstrom et al. [34] 
later applied the two-dimensional potential solution from an electrostatic problem to 
solve a steady-state pore-fluid flow problem around an inhomogeneous ellipse using a 
special elliptical coordinate system. More recently, Zhao et al. [39] used inverse mapping 
to transform those solutions into a conventional Cartesian coordinate system.  

Here, in order to be able to compare different shapes and orientations, the permeability is 
normalized with respect to the obstacle length, Lp, which is defined as 

Lp = 4 area / circumference 

Lp = 2r = d (for circle),   Lp = c (for square),   Lp = 4πab / AL (for ellipse)                    (2.6) 

where r, c, a and b are the radius of the circle, the side-length of the square, the major 
(horizontal) and minor (vertical) length of the ellipse, respectively. AL is the 
circumference of the ellipse.  

By applying the same procedure as was used in the previous section, the normalized 
permeability (with respect to obstacle length, Lp) is calculated for different shapes on a 
square configuration. In Fig. 2.3 the normalized permeability is shown as function of 
porosity for different shapes. At high porosities the shape of particles does not affect 
much the normalized permeability, but at low porosities the effect is more pronounced. 
Circles have the lowest and horizontal ellipses the highest normalized permeability. 
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Figure 2.3: Effect of shape on the normalized permeability from a square packing 
configuration of circles, squares and ellipses (a/b=2, major axis in flow direction). The 

lines are only connecting the data-points as a guide to the eye. 

 

2.2.5 Effect of aspect ratio on the permeability of regular arrays of ellipses 

In this subsection the effect of aspect ratio, a/b on the normalized permeability of square-
arrays of ellipses is investigated. In fact, the case of high aspect ratio at high porosity 
represents the flow between parallel plates (slab flow). The relation between average 
velocity, u , and pressure drop for slab flow (i.e. flow between parallel plates) is 

2

12
sh p

u
Lµ

∆= −                                                                                                               (2.7) 

where hs is the distance between parallel plates (in my square configuration, in the limit 
/ 1a b≫ , one has hs=L). Note that, since there are no particles, 1ε = , the average and 

superficial velocities are identical, i.e. u U= . By comparing Eqs. (2.7) and (2.2) the 

permeability, i.e. 2/ 1/12sK h =  is obtained, which indeed shows the resistance due to no 

slip boundaries at the walls. The variation of permeability for a wide range of aspect 
ratios at different porosities is shown in Fig. 2.4. It is observed (especially at high 
porosities) that by increasing the aspect ratio the permeability increases until it reaches 
the limit case of slab flow for which the permeability is 2/ 1/12 0.0833sK h = = . The 

aspect ratio b/a <1 means that the ellipse stands vertically and therefore the permeability 
reduces drastically.  
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Figure 2.4: Effect of aspect ratio on the permeability of square configurations of ellipses 
with different porosities as given in the inset. The lines are only connecting the data-

points as a guide to the eye. 

 

2.2.6 Effect of orientation on the permeability of regular arrays 

By changing the orientation (θ), i.e. the angle between the major axis of the obstacle and 
the horizontal axis, not only will the values of the permeability tensor change, but also its 
anisotropy will become apparent (so that the pressure gradient and the flow velocity are 
not parallel anymore). Therefore, the geometry of the pore structure has great effect on 
the permeability in irregular fibrous media. This effect for squares and ellipses (a/b = 2) 
is shown in Fig. 2.5.  

For square shapes, at high porosities, the orientation does not much affect the 
permeability, whereas at low porosities the permeability depends a lot on the orientation. 
At θ = 450 we observe a drop in permeability, because we are close to the blocking 
situation, i.e. zero permeability, at a critical porosity (at which the permeability drops to 

zero) of ( )2 0

1
1 0.5

2sin 45
cε

θ
= − =

+
.  

For ellipses, at high porosity, the orientation does not affect the permeability, whereas at 
low porosities the effect is strong. By increasing the orientation angle, i.e. by turning the 
major axis from being horizontal to vertical, the permeability is reduced. The critical 
porosity εc≈0.6073 is purely determined by the major axis of the ellipse for θ = 900.  
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Figure 2.5: Effect of orientation (θ) on the normalized permeability for (a) square and (b) 
ellipse (a/b=2) in square packing configurations at different porosity. The lines are only 

connecting the data-points as a guide to the eye.  
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The general form of Darcy’s law for anisotropic media in 2D in matrix form can be 
written as 

11 12

21 22

1x

y

p
U K K x

pU K K
y

µ

∂ 
     ∂   = −     ∂      

∂  

  ,                                                                                    (2.8) 

where Ux and Uy are superficial velocities in x (i.e. xU U≡  as described in defined in 

previous section) and y direction, respectively. Then the permeability tensor for any value 
of θ  can be calculated as 

011 12

9021 22

0

0
T KK K

K R R
KK Kθ

  
= =   
   

   ,                                                                         (2.9) 

where 0K  and 90K  are the principal values of permeability that are determined from the 

values of 00=θ  and 090=θ , respectively. In Eq. (2.9), RT is the transpose of the 
rotation matrix R, defined as (counterclockwise rotation by θ ) 

( ) ( )
( ) ( ) 





 −
=

θθ
θθ

cossin

sincos
R   .                                                                                             (2.10) 

Eq. (2.9) shows that for 00 90,0≠θ , one has 012 ≠K , which means that by applying a 
pressure gradient in x direction, one gets a superficial velocity in y direction (i.e. 
anisotropic behavior because of oriented shape). The numerical results are in good 
agreement with theoretical predictions (Eq. (2.9)) especially at high porosities (see the 
solid lines in Fig. 2.6). We have more deviation at low porosities (maximum discrepancy 
≈ 5%) because of channel blockage and changes in flow behavior (the comparison is not 
shown here). 

In Fig. 2.6, the variation of normalized permeability is shown as a function of the 
orientation angle θ . The normalized permeability is symmetric to 900 and decreases by 
increasing the orientation angle from 00. The eigenvalues of the permeability tensor are 
the extrema of the curves and the other data are well fitted by 

( ) ( ) ( )2
0 90 0 902 cos 2 2pK L K K K K θ= + + − . By decreasing the aspect ratio a/b, we 

approach the value for the circular (cylinder) obstacle, i.e. a/b =1. The normalized 
permeability is symmetric to 450 for square shapes. 

 



Chapter 2. Microstructural effects on the permeability of periodic fibrous porous media 
 

 29 

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 θ  [degree]

 K
/L

p2

 

Figure 2.6: Normalized permeability plotted against orientation angle for different 
shapes at porosity 85.0=ε , for different obstacle shapes in square configurations. The 

dashed line represents circles. The solid lines show the theoretical predictions according 
to Eq. (2.9), where the eigenvalues are taken from the 00, 900 and 00, 450 degrees for 

ellipses and squares simulations, respectively.  

 

 

2.2.7 Effects of stagger cell angle 

In this subsection, the effect of another micro-structural parameter, the stagger cell angle, 
α , on the normalized permeability for circles (Lp=d) is discussed. The stagger angle is 
defined between the diagonal of the unit-cell and flow-direction (horizontal), see Fig. 2.7. 
In addition to the special cases o45=α  and o60=α , i.e. square and hexagonal packings, 
respectively, several other angles are studied. The contours of the horizontal velocity 
field component, for different values of α , at a constant porosity 0.7ε = , are shown in 
Fig. 2.7. By changing α , the flow path and also the channel length will change. At 

070=α  and higher, the flow mainly follows a straight line, indicated by arrows in Fig. 
2.7(a), with large superficial velocity and consequently large values of permeability. 
However, by decreasing α  down to 350, the flow pattern completely changes and the 
superficial velocity reduces, which should lead to lower and lower permeability. In brief, 
with increasing angle, both the superficial velocity and the permeability increase, with a 
plateau at around o45=α .  
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                                 (a)                                                                  (b) 

                   
                                  (c)                                                                  (d)      

 

 

Figure 2.7: Horizontal velocity field components for (a) 060=α , (b) 050=α , (c) 
040=α and (d) 035=α  at fixed porosity ε = 0.7. The arrows indicate the main flow 

channel in (a) and (b). The stagger angle is defined between the diagonal of the unit-cell 

and flow-direction (horizontal). The minimal angle ( )( )1 0
min tan 2 1 / 10.81α ε π−= − =  is 

realized when the vertical opening is closed, while the maximal angle 

( )( )( )1 0
max tan / 2 1 79.18α π ε−= − =  corresponds to the closed horizontal pore. 
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In Fig. 2.8 the normalized permeability is shown as function of the stagger angle, α , at 
different porosities. As it is seen the arrangement of particles relative to the flow 
direction is important in determining the permeability. By increasing α , the normalized 
permeability increases (the vertical distance between particles increases and therefore the 
resistance to the flow decreases) until it reaches a local maximum at 035≅α  – 
consistently for different porosities. At larger angles, it slightly decreases and attains a 
local minimum at 055≅α , beyond which it increases rapidly again. This behavior can be 
explained by the variation of the area-fraction distribution with α  on the planes 
perpendicular to the flow direction, as discussed by Alcocer et al. [1]. 

The normalized permeability as a function of α  can be expressed as a cubic polynomial 

3 20 0 0

2 0 0 0

45 45 45
A B C D

45 45 45

K

d

α α α     − − −= + + +     
     

                                         (2.11) 

where A, B, C and D are dimensionless constants, listed in Table 2.2 for different 
porosities. 

 

20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 α  [degree]

 K
/d

 2

 

Figure 2.8: The variation of normalized permeability plotted against stagger unit cell 
angle α at different porosities, as given in the inset. The solid lines show the fit (Eq. 

(2.11)) 
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Table 2.2: Fitted parameters for the permeability-stagger angle relation 

 8.0=ε  7.0=ε  6.0=ε  

A 0.38401 0.18813 0.09913 

B 0.02682 0.01738 0.01171 

C -0.03693 -0.01914 -0.01027 

D 0.07698 0.02584 0.009319 

 

The leading term with A is dominating, the term with B is a rather small correction, the 
term with C sets the (negative) slope in the center, and the term with D determines the 
offset. All fit-parameters depend on porosity and it should be noted that the range of 
available angles is limited and also depends on porosity. Additional scaling- and fit-
attempts (data not shown) did not lead to much better results, thus I only present this 
empirical fit here. 

The decreasing region, i.e. 0 035 55α≤ ≤  corresponds to the case in which the flow goes 
in a preferred channel orthogonal/perpendicular to the line (diagonal) connecting two 
particles, see Figs. 2.7(b) and (c). While in cases with larger α , the flow goes at straight 
lines/channels, see Fig. 2.7(a), the configuration for smaller α  is dominated by the 
narrow vertical opening between two obstacles. In essence, in the plateau region, the 
permeability is not much affected by the stagger angle α . This observation might be 
useful during design and manufacturing of fibrous composites.  

In summary, the results of this section show that the macroscopic permeability not only 
depends on the porosity but also on the microstructure, namely shape, aspect ratio and 
orientation of particles. The main interest of such a microstructural description for 
predicting permeability is to provide a detailed insight into microscale flow, transport 
phenomena and basic fluid-solid interaction mechanisms in fibrous media. 

  

2.3 Theoretical prediction of the permeability for all porosities 

In this section, based on the observations in the previous section, and using the velocity 
profiles from FE unit cell simulations, a generalized form of the Carman Kozeny (CK) 
equation for the permeability of fibrous porous media (2D regular arrays of fibres) is 
proposed. 

 

2.3.1 From special cases to a more general CK equation 

The earliest and most widely applied approach in the porous media literature, for 
predicting the permeability, involves capillary models [6] such as the one that leads to the 
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CK equation. The approach to obtain this equation is based on Poiseuille flow through 
pipes. Assuming pipe flow through a cylindrical channel of diameter hp, the average 
velocity through the channel is 

2

32
p

p

h p
u

Lµ
∆= −   ,                                                                                                       (2.12) 

and for slab flow through an infinite channel of width hs 

2

12
s

s

h p
u

Lµ
∆= −   ,                                                                                                        (2.13) 

given the pressure drop p∆  per length L, and a fluid with viscosity µ . 

Defining the hydraulic diameter to be 

volume available for flow
4

total wetted surfacehD =   ,                                                                            (2.14) 

allows to unify the relations above, by combining Eq. (2.14) with either Eq. (2.12), with 

h pD h= , or Eq. (2.13), with 2h sD h= , and with Darcy’s law, Eq. (2.2), so that the 

permeability is described by the CK relation (Carman 1937) 

2
h

CK

u D
K

p

εµ ε
ψ

= =
∇

                                                                                                        (2.15) 

Where, CKψ =32 (or 48) is the dimensionless Kozeny factor, characteristic of the pipe (or 

slab) pore structure. When one has obstacles like fibers (or particles) instead of straight 
pores, the hydraulic diameter can be re-written as 

( ) ( ) ( )
4 4 particle surface 4

, with
1 1 particle volume 1

v
h v

v v

SV d
D a

S a V d

ε ε ε
ε ε ε

= = = = = =
− − −

  ,         (2.16) 

with the total volume of the unit cell, V, the total wetted surface, Sv, the specific surface 
area, av, and the porosity, ε, for a fibrous medium of fiber diameter d. Note that the 
hydraulic diameter, in this way, is expressed as a function of the measurable quantities 
porosity and specific surface area. The above value of av is for circles (cylinders) – for 
spheres one has av=6/d. In this formulation, one just considers the resistance due to 
presence of particles (no slip boundaries at the surface of the particles) and neglects the 
outer walls. 

Inserting Eq. (2.16) into Eq. (2.15), yields the normalized permeability for fibers 
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( )
3

22

1

1CK

K

d

ε
ψ ε

=
−

  ,                                                                                                     (2.17) 

which depends non-linearly on the porosity and on a shape/structure factor, CKψ .  

One of the main drawbacks of the CK equation is that the Kozeny factor CKψ  is a-priori 

unknown in realistic systems and has to be determined experimentally. An ample amount 
of literature exists on the experimental and theoretical determination of the Kozeny 
factor, but we are not aware of a theory that relates CKψ  with the microstructure, i.e. the 

porosity, the random configuration, tortuosity, and other microscopic quantities. An 
overview of experimental and theoretical approaches can be found in Astroem et al. [2], 
which mainly deals with fibrous media, and Torquato [32], which is based on variational 
principles. One of the most widely accepted approaches to generalize the CK relation was 
proposed by Carman [6], who noticed that the streamlines in a porous medium are far 
from being completely straight and parallel to each other. This effect can be described by 
a dimensionless parameter, Le/L (tortuosity), with the length of the streamlines, Le, 
relative to the length of the sample, L. Hence the Kozeny factor can be split into 

2

e
CK

L

L
ψ  = Φ  

 
                                                                                                             (2.18) 

where Φ  is the effect of particle shape, which can be seen as a fitting parameter. In fact, 
the tortuosity and the shape factor reflect the effects of microstructure on the macroscopic 
properties (like permeability) of the porous media.  

In the original form of the CK equation for random 3D sphere structures, it is assumed 

that the tortuosity is a constant for all ranges of porosities and is equal to 2  and the 
fitting parameter, Φ , then becomes 90 for the case of pipe flow and 60 for slab flow.  

Knowing the values of the normalized permeability from my FE simulations, one can 
compare the values of the Kozeny factor based on my numerical results and available 
theoretical data and with the original CKψ =120 for slab flow, see Eqs. (2.17) and (2.18). 

The comparison is shown in Fig. 2.9. At a certain range of porosities, 7.05.0 << ε , the 
CK factor CKψ  is indeed not varying much. However, at higher or lower porosities, it 

strongly depends on porosity and structure. At high and low porosities, my numerical 
results are in good agreement with the predictions of Drummond et al. [9] and Gebart 
[11], respectively (see Table 2.1). These results indicate that the Carman-Kozeny factor, 

CKψ , is indeed not constant and depends on the microstructure. 

In the following subsections, I will study the dependency of CKψ  on the micro-structural 

parameters. 
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Figure 2.9: Kozeny factor plotted as a function of porosity for different models (lines) 
and data sets (symbols) as given in the inset. 

 

 

2.3.2 Measurement of the tortuosity (Le/L) 

As discussed before, the tortuosity is the average effective streamline length scaled by 
system length, Le/L, and one possible key parameters in the Kozeny factor in the CK 
equation [6]. From my numerical simulations, I extract the average length of several 
streamlines (using 8 streamlines that divide the total mass in-flux into 9 zones, thus 
avoiding the center and the edges). By taking the average length of these lines, the 
tortuosity can be obtained, while by taking the standard deviation of the set of 
streamlines, the homogeneity of the flow can be judged. The tortuosity is plotted in Fig. 
2.10 as function of porosity for different shapes and orientations and as function of the 
stagger angle α  for different porosities.  

Unlike the traditional form of the CK equation, which assumes that / 2eL L =  (for 

random 3D structures) is constant [6], my numerical results show that the tortuosity (i) is 
smaller and (ii) depends on the porosity and the pore structure. In Fig. 2.10(a), as 
intuition suggests, the vertical and horizontal ellipses have the highest and lowest average 
tortuosity, respectively. This goes ahead with very large and very small standard 
deviation, i.e. the vertical ellipse configuration involves the widest spread of streamline 
lengths. In the case of a circular shape obstacle, the (average) tortuosity is between the 
horizontal and vertical ellipse cases and, for intermediate porosity, becomes almost 
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independent of porosity, with constant standard deviation that is wider than the average 
tortuosity deviation from unity. The square shape obstacles are intermediate in tortuosity, 
i.e. the 00-square (450-square) shapes take tortuosity values between the horizontal 
(vertical) ellipse and the circular obstacles. 

In Fig. 2.10(b), the tortuosity is plotted against the stagger unit cell angle α . By 
increasing α  the value of tortuosity increases until about 045≅α , where it reaches its 
maximum. Note that the standard deviation remains small for all angles smaller than 

045≅α . At higher angles, tortuosity decreases, while its standard deviation considerably 
increases. At large values of α , most of the fluid flow goes along a straight line, 
however, near the boundary, we have a few longer streamlines that cause the large 
standard deviation. At the limit case of maxα α≈ , when the upper particles touch, see Fig. 
2.7, the tortuosity approaches unity (data not shown) and the flow goes mostly along a 
straight channels.  

 

2.3.3 Measurement of the shape/fitting factor ( )Φ  

Knowing the values of tortuosity, /eL L , and normalized permeability, 2/K d , from my 
FE simulations, one can obtain the values of Φ  for different shapes and orientations as 

2

e
CK

L

L
ψ  Φ =  

 
. In Fig. 2.11 the variation of Φ  as a function of porosity for different 

shapes and orientations is shown. Unlike the traditional CK factor, the shape/fitting factor 
is not only a function of porosity but also depends on the orientation of 
particles/cylinders. This dependency is more pronounced at high (low) porosities and 
close to the blocking conditions, i.e. ellipses with 900 and squares with 450.  
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Figure 2.10: Tortuosity ( )LLe /  (a) plotted as a function of porosity for different obstacle 

shapes and orientations on square configurations, o45=α , (b) plotted as a function of the 
stagger cell angle, α , as given in the inset, for circles at different porosities on hexagonal 
configurations. Error bars give the standard deviation of the 8 streamline lengths, where 

bottom-values below unity indicate a highly non-symmetric distribution around the 
average. 
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Figure 2.11: Shape/fitting factor, Φ , plotted as a function of porosity for different 
obstacle shapes and orientations on square configurations, o45=α . The straight dashed 

line shows the value of 60Φ =  as in the original CK factor. 

 

 

2.3.4 Corrections to the limit theories 

As it was not possible to explain the variation of permeability with tortuosity and a 
constant shape factor, now I attempt to optimize/correct the limit theories by Gebart [11] 
and Drummond et al. [9], see Table 2.1, in order to propose an analytical relation for the 
permeability that is valid for all porosities and for square and hexagonal arrays of 
cylinders. 

 

2.3.4.1 Square configuration 

Assuming one particle at the center, a pressure boundary at the left and right and periodic  
boundaries at top and bottom, I correct the original Gebart relation from Table 2.1, sGK , 

by a linear correction term ( )2
2

1

1
s s
G G

c

K K
g ε ε

=
+ −

, with g2=0.336. After observation of 

a linear correction term in the denominator (see the circles in Fig. 2.12), the linear least 
square method is used to get the coefficient 2g . In contrast to s

GK , which asymptotically 

approaches the limit case, cε ε→ , but for 0.6ε ≈  deviates already by about 10%, the 

correction, KG2, has a maximum discrepancy in the range 0.85cε ε< <  of less than 10%, 

and for 0.7cε ε< <  of less than 2%, see the squares in Fig. 2.12.  
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Since the Drummond relation from Table 2.1, s
DK , is valid at high porosities with 

maximum discrepancy at 0.7 1ε< <  of less than 10% and for 0.8 1ε< <  of less than 2%, 
I propose the following merged function  

( ) ( )2 2 ,s s s s
G D GK K K K m ε= + − with ( ) ( )( )1 tanh /

,
2

h tm
ε ε ε

ε
+ −

=  0.75, 0.037h tε ε= = , 

that is valid for the whole range of porosity, with deviations of less than 2% that also 
includes the analytical relations for the limit cases. While the choice of m(ε) is arbitrary, 
the non-linear least square fitting procedure is used to obtain the empirical coefficients hε   

and tε . The error of these coefficients is defined by their standard deviation. 
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Figure 2.12: Relative error between FEM results and proposed corrections for square 
configuration with the critical porosity 1 / 4cε π= − . The “Tanh” representing the 

proposed merging tangent hyperbolic function.  

                            

2.3.4.2 Stagger hexagonal configuration ( )060α =  

In this situation, the correction to the Drummond relation from Table 2.1 is 

( )2 1 21h h
D DK d K d ε= + , ( ) ( )2 ,h h h h

G D GK K K K m ε= + −  with d1=0.942, d2=0.153, 

0.55, 0.037h tε ε= = , leads to a corrected permeability for all porosities, with a 
maximum error of less than 2%, see Fig. 2.13. 
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Figure 2.13: Relative error between FEM results and proposed fits for hexagonal 

configuration with the critical porosity ( )1 / 2 3cε π= − . The “Tanh” representing the 

proposed merging tangent hyperbolic function. 

 

2.4 Summary and conclusions 

The permeability of porous structures is an important property that characterizes the 
transport properties of porous media; however, its determination from first principals is 
challenging due to its complex dependence on the microstructure of the media. Using an 
appropriate representative volume element, transverse flow in aligned, periodic fibrous 
porous media has been investigated based on high resolution (fine grid) FE simulations. 
This is complementary to previous studies by Hill et al. [15, 16] and Van der Hoef et al. 
[33] who obtained the drag/permeability relation for random arrays of mono- and bi-
disperse spheres at low and moderate Reynolds numbers. In all of my simulations, the 
total pressure drop has been chosen small, such that we are always in Darcy’s regime 
(creeping flow). In particular, the effects of different parameters including fiber (particle) 
shape, aspect ratio, orientation, and stagger unit cell angle on the normalized permeability 
are measured and discussed in detail for the full range of porosities. The conclusions are: 

• The current results for the permeability are validated by comparing with available 
theoretical and numerical data for square and hexagonal arrays over a wide range of 
porosities. Especially in the limits of high and low porosity, agreement with previous 
theoretical results is established. 
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• By increasing the stagger unit cell angle, α  (where 60 degrees corresponds to the 
hexagonal array), from the blocked configuration with minimal angle αmin, the 
normalized permeability increases until it reaches its local maximum at 035≅α . 
Then it decreases a bit (almost plateau) until it reaches its local minimum at 055α ≅ . 
From there it increases again until a maximum porosity is reached at αmax. The best-
fit (3rd order) polynomials at different porosities are presented as reference for later 
use. 

• By increasing the orientation angle of the ellipses (here the longer axis of ellipses was 
used to define the orientation relative to the flow direction), the permeability 
decreases and its anisotropy becomes apparent. The permeability values for the 
extreme cases, i.e. eigenvalues at 00 and 900, can be used to predict the permeability 
for arbitrary orientation angles, see Eq. (2.9).  

• By increasing the aspect ratio of horizontal ellipses, the permeability increases and 
approaches the permeability of slab flow, i.e. 2/ 1/12 0.0833sK h = = , at high 

porosities. 

• Using the hydraulic diameter concept the permeability can be expressed in the general 
form of the (Carman-Kozeny) CK equation. The numerical results show that the CK 
factor not only depends on the porosity but also on the pore structure, namely particle 
shape, orientation and stagger angle α .  

• The numerical results show that immobile circles and ellipses have the lowest and 
highest permeability, respectively. The relevance of this observation for flows of 
gas/fluid-solid with moving non-spherical particles is an open question. 

Since analytical forms with the power as a free fit-parameter are neither consistent with 
the highest porosity asymptote, nor with the lowest porosity limit case, those fits are only 
an attempt to describe the intermediate regime of practical importance with a closed 
functional form. In order to improve the analytical relation for the permeability, to be 
applied, e.g., for DEM-FEM coupling, I proposed a combined/merging function that 
includes both limit cases of low and high porosity and is smooth in between with 
maximal deviation from my numerical results of less than 2%. 

Future work will investigate the creep and inertial flow regime through periodic and 
disordered arrays, the relation between microstructure and (macro) permeability, and the 
effect of the size of the system, especially for random/disordered structures. Since already 
the packing generation algorithm affects the permeability in random arrays of parallel 
cylinders, different procedures have to be compared and evaluated with respect to the 
microstructure, see next chapter. These results can then be utilized for validation of 
advanced, more coarse-grained models for particle-fluid interaction and their coupling-
terms between the discrete element method (DEM) for the particles and the FEM or CFD 
solver for the fluid, in a multi-scale coarse grained approach. 
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“The person with a new idea is a crank, until the idea succeeds”   

~Mark Twain~ 
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Abstract 

The transverse permeability for creeping flow through unidirectional random arrays of 
fibres with various structures is revisited theoretically and numerically using the finite 
element method (FEM). The microstructure at various porosities has a strong effect on 
the transport properties, like permeability, of fibrous materials. We compare different 
microstructures (due to four random generator algorithms) as well as the effect of 
boundary conditions, finite size, homogeneity and isotropy of the structure on the 
macroscopic permeability of the fibrous medium. Permeability data for different minimal 
distances collapse when their minimal value is subtracted, which yields an empirical 
macroscopic permeability master function of porosity. Furthermore, as main result, a 
microstructural model is developed based on the lubrication effect in the narrow channels 
between neighboring fibres. The numerical experiments suggest a unique, scaling power 
law relationship between the permeability obtained from fluid flow simulations and the 
mean value of the shortest Delaunay triangulation edges (constructed using the centers of 
the fibres), which is identical to the averaged second nearest neighbor fibre distances. 
This universal lubrication relation, as valid in a wide range of porosities, accounts for the 
microstructure, e.g. hexagonally ordered or disordered fibrous media. It is complemented 
by a closure relation that relates the effective microscopic length to the packing fraction1.  

 

 

Highlights 

• I numerically investigate the effect of several microstructural parameters on the 
macroscopic permeability of random arrays of fibres. 

• Numerical FE results suggest a unique, scaling power law relationship between the 
permeability and the averaged second nearest neighbor fibre distances. 

• A closure relation is presented that relates the effective microscopic channel length to 
the macroscopic porosity. 

 
 
 

 
 

 

 

                                                 
1 K. Yazdchi, S. Srivastava and S. Luding, Micro-macro relations for flow through random arrays of 
cylinders, Composites Part A, 43 (2012) 2007-2020. 
K. Yazdchi, S. Srivastava and S. Luding, On the validity of the Carman-Kozeny equation in random fibrous 
media, Particle-Based Methods II - Fundamentals and Applications (2011), 264-273, Barcelona, Spain. 
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3.1 Introduction  

Understanding and predicting transport properties of porous media is essential in 
chemical, mechanical and petroleum industries [1]. This has motivated the development 
of relationships between macroscopic parameters, like permeability, and microstructural 
parameters, like fibre arrangements, shape and orientation or tortuosity (flow path) [2]. 
Most porous media are particulate, but some are composed of long particles/cylinders 
and, therefore, may be considered as fibrous media. Common examples of fibrous media 
include composite materials, industrial filters, biological tissues, etc. 

Resin transfer molding (RTM) is an efficient and frequently used process for producing 
fibre reinforced polymer composites with simple or complex shapes. The permeability is 
essential in such process and can be determined by various methods, e.g., experimental 
measurements, numerical calculations or analytical predictions. Experimental 
measurements often require a large number of carefully controlled experiments and are 
normally expensive. Analytical predictions based on theoretical assumptions (and 
validated by experiments and/or numerical studies) are often applicable in a certain range 
of fibre volume fraction only.  

With the recent progress in computational and numerical tools, one can now predict the 
macroscopic properties of fibrous materials with rather complex microstructure. Chen 
and Papathanasiou [3-4] computationally investigated the flow across randomly 
distributed unidirectional arrays using the boundary element method (BEM) and found a 
direct correlation between the permeability of fibrous media and the mean nearest inter-
fibre spacing. Papathanasiou [5] performed a similar study for unidirectional square 
arrays of fibre clusters (tows) using the BEM. He stated that the overall flow rate through 
a multiscale fibre reinforcement is determined mostly by the flow in the mesoscale 
region, which consequently implies that the saturated permeability is also determined 
mostly by the flow in that region. Song et al. [6] calculated the permeability tensor for a 
3D circular braided preform by solving a boundary problem of a periodic unit cell. The 
flow field through the unit cell is then obtained by using a 3D finite volume method and 
Darcy’s law is utilized to obtain the permeability tensor. Their numerical results show 
that the permeability in the machine direction of the preform was the highest among three 
directions. Takano et al. [7] employed an asymptotic homogenization theory to evaluate 
the permeability of woven fabrics with the help of finite element method (FEM). They 
investigated the effect of woven architecture on the permeability characteristics for plain-
woven fabrics with and without shearing deformation. In my recent study [8], the effect 
of several microstructural parameters such as fibre shape and orientation on the 
macroscopic permeability of 2D regular fibrous media was investigated using a large set 
of FEM simulations.  

The permeability of ordered (regular) fibrous media is known to be a deterministic 
function of their porosity in the limit of large and small volume fractions, see previous 
chapter. However, the parameters affecting the permeability of disordered (random) fibre 
arrays are not very well understood. Random fibre arrays are, in principle, well suited to 
analysis using effective medium approaches. By averaging the conservation equations, 
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Koch and Brady [9] derived a relation for the effective diffusivity coefficients in the limit 
of high porosity ε , however, that remains questionable in the porosity range of interest in 
composites manufacturing, e.g., 0.4<ε <0.9. Similarly, considering large ε  values, 
Drummond and Tahir [10] modeled the flow around a fibre using a unit cell approach by 
assuming that all fibres in a fibrous medium experience the same flow field (i.e. no 
interaction between them) and, therefore, the permeability can be obtained by adding the 
resistance of individual particles/fibres. The dependence of permeability in this limit 
involves logarithmic, linear and quadratic functions of the solid concentration. 

Based on the lubrication approximation and assuming that the narrow gaps between 
adjacent cylinders dominate the flow resistance for small ε , Gebart [11] presented an 
expression for the transverse permeability of square or hexagonally ordered arrays. He 
found that the dependence of permeability on fibre volume fraction in this limit is a 
power law. Using percolation theory, Katz and Thompson [12] found a power law 
relation between the macroscopic permeability and microstructural descriptors for 
sedimentary rocks, i.e. the critical pore diameter. 

The earliest and most widely applied models in the composites literature, i.e. intermediate 
porosity regimes, for predicting permeability are capillary models such as the Carman-
Kozeny (CK) equation [13] where a constant (Kozeny constant) is supposed to account 
for the structure at different porosities. While some studies have reported success with 
this relation [14], discrepancies are also reported [15]. Results from numerical modeling 
[3] and experimental studies [16] indicate that, at best, capillary models represent the 
behavior of fibrous materials over a limited porosity range. To my knowledge, relation 
between microstructure and macroscopic permeability of the fibrous media, such as 
composite materials, has not been studied systematically. 

The objective of this study is to computationally investigate the effects of micro-
structural parameters such as fibre arrangements on the macroscopic permeability by 
using a FEM for fluid flow over a wide range of porosity. To this end, the macro 
description of fluid flow equations and the numerical tool employed to solve these 
equations are presented in Section 3.2. Volumes of different sizes, formed by randomly 
placed non-overlapping arrays of parallel cylinders perpendicular to the flow direction, 
are constructed in four different ways as discussed in Section 3.3. The size effect, the 
homogeneity and the isotropy of the fibre arrangements are analyzed using several 
statistical tools. In Section 3.4, I present a microstructural model based on the lubrication 
effect of the narrow channels as an attempt to (i) combine my various simulations in a 
wide range of porosity and (ii) relate the micro to the macro properties of fibrous 
materials. The chapter is concluded in Section 3.5 with a summary and outlook for future 
work. 
 

3.2 Mathematical formulation and methodology 

This section considers the macroscopic description of the flow equations applied in 
fibrous structures and my methodology, e.g., the method of discretization of the domain 
and boundary conditions applied to my FEM based simulations. 
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The velocity and pressure profiles through the fibrous media can be obtained from the 
solution of the conservation laws, namely, the continuity equation (conservation of mass) 
and the Navier–Stokes (NS) equations (conservation of momentum). In the absence of 
body forces and for Newtonian fluid, incompressible, steady state flow, the equations of 
conservation of mass and momentum are: 

  ( ) 2

0,

.

u

u u p uρ µ
∇⋅ =

⋅∇ = −∇ + ∇
                                                                                            (3.1) 

where ρ, u, p and µ are density, velocity, pressure and viscosity of the fluid, respectively. 
According to Darcy’s law for unidirectional flow through a porous medium in the 

creeping flow regime, the horizontal superficial (discharge) fluid velocity 
1

fV

U udv
V

= ∫  

(V, Vf  are the total volume and volume of the fluid) is proportional to the pressure 
gradient: 

  p
K

U ∇−=
µ

.                                                                                                                (3.2) 

The proportionality constant K, is called the permeability of the medium, which strongly 
depends on the microstructure (such as fibre arrangement, void connectivity and 
inhomogeneity of the medium) and also on porosity. By increasing the pressure gradient, 
one can observe a typical departure from Darcy’s law (creeping flow) at sufficiently high 
Reynolds number, Re>0.1 [17]. However, in the following, I restrict myself to creeping 
flow regime, i.e. Re≪ 1. 

The FEM software ANSYS® is used to calculate the fluid velocity from discretization of 
Eq. (3.1) into linear triangular elements. They were then solved using the segregated, 
sequential solution algorithm. This means that element matrices are formed, assembled 
and the resulting systems solved for each degree of freedom separately. Some more 
technical details are given in Ref. [8]. Afterwards, the superficial velocity and the 
permeability of the fibrous material are obtained using Eq. (3.2). Fig. 3.1 shows a 3D/2D 
representation of 200 randomly distributed fibres normal to the flow direction at porosity 
ε =0.6 with minimum inter fibre distance δmin=0.05d (d is the diameter of the fibres) or 
the minimum dimensionless distance min min / 0.05dδ∆ = = . Just as in the work of Chen 

and Papathanasiou [3, 4], a minimal distance is needed in 2D to avoid complete blockage. 
The microstructural parameters, namely the system size, the method of generation, the 
homogeneity and the isotropy of the structure will be discussed in more detail in the next 
section. At the left and right boundary pressure is set and at the top and bottom wall 
surfaces (z direction) and at the surface of the particles/fibres no-slip boundary conditions 
are applied. Some simulations are formed with periodic boundaries instead of walls with 
normal in the z direction (the differences are detailed in Appendix 3.B.3). The fibres are 
assumed to be very long so that a 2D solution can be applied. A typical unstructured, fine 
and triangular FEM mesh is also shown in Fig. 3.1. The mesh size effect is examined by 
comparing the simulation results for different resolutions. The number of elements is 
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varies from 5×105 to 106 depending on the porosity regime. The lower the porosity the 
more elements are needed in order to resolve the flow within the neighboring fibres, see 
appendix 3.A for more details. To obtain good statistical accuracy, the permeability 
values were averaged over 10 realizations.  

 
  

                           

      

 

Figure 3.1: Fibre distributions generated by a Monte Carlo procedure (see subsection 
3.3.1), with 200 unidirectional, monosize cylinders, normal (y) to the flow direction (x), 

with minimum inter fibre distance ∆min=0.05 at porosity ε =0.6. At the top the diameter, d 
and virtual diameter ( )*

min1d d= + ∆  are shown, schematically. At the top 3D and 

bottom 2D representation of fibre distribution are shown. The zoom shows the fine, 
unstructured, triangular FEM mesh. 

z 

x 

Flow direction 

y 
z 

x 

d 

d*



Chapter 3. Micro-Macro relations for flow through random arrays of cylinders 

 51 

3.3 Generation of the fibrous microstructure 

Developing a model for predicting the permeability as a function of porosity and 
structure of the fibrous materials would help to reduce the experiments in liquid 
composite molding (LCM) processes such as RTM or resin infusion. Furthermore, by 
understanding the physics of the flow through such materials, one may tailor the 
microstructure such that it has both the desired reinforcing capability and also the 
permeability to be filled efficiently. To get reliable evidence and to quantify the non-
uniform spatial distribution of fibres, several microstructural characteristics of fibrous 
material will be discussed here in detail. 

Note that to ensure a gap between particles (∆min), I assign a virtual diameter 

( )*
min1d d= + ∆  to each fiber, leading to the virtual porosity ( )( )2*

min1 1 1ε ε= − − + ∆ , 

see Fig. 3.1, which has been used for packing generation in the rest of this section.  

 

3.3.1 Method of generation 

Most of representative volume elements (RVE) rely on the assumption of a periodic 
distribution of fibres, i.e. the structures at the boundaries are similar to those in the bulk. 
However, realistic media are finite and confined with walls. Some systems can be very 
large so that boundary effects can be neglected; on the other hand, in micro-systems, the 
effect of the walls might show up. Therefore, unless specified otherwise, in the rest of the 
chapter I consider a 2D representation of the fibrous composite in which the fibres are 
randomly distributed in a square domain and confined by walls with normal in z 
direction. In order to understand the wall-effects, I will vary the system size (see 
appendix 3.B for details).  

To generate random, non-overlapping fibre arrays, I use different algorithms, namely, (i) 
random placement (RP), (ii) a Monte Carlo (MC) procedure, (iii) an energy minimization 
(EM) approach and (iv) molecular dynamic (MD) simulations. Note that in all methods, 
we have a minimal distance (∆min) between fibres to avoid complete blockage. 

(i) In the RP the position of fibres is randomly drawn from a uniform distribution; then 
this location is taken as valid if it does not overlap a previously positioned fibre. The 
insertion of fibres will continue until it reaches the desired number of fibres. This process 
leads to an asymptotic jamming limit since the space available to place successive 
particles decreases with the addition of each new particle. The minimum porosity for RP 
in 2D is estimated to be ~0.447 [18], and has found to be ~0.453 [19] via computer 
simulations. 

(ii) Given an initial fibre configuration on a triangular lattice, the MC procedure perturbs 
fibre centre locations in randomly chosen directions and magnitudes [3-4, 20]. The 
perturbation is rejected if it leads to overlap with a neighboring disk. One step consists of 
trying to move each disk once. I use up to 106 steps for each realization at low porosities 
to get a good random configuration i.e. the MC process should generate a random 
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position field which is short range correlated. However, at the lowest porosity, the 
particles remain ordered and show some dependence on the number of 
steps/perturbations, even for the longest simulations. For high porosities, the structures 
show no dependence on number of MC perturbations. Moreover, the MC algorithm can 
generate denser systems as compared to RP. 

(iii) In the EM approach, infinitesimal disks are placed at random positions in the system. 
Then, they are gradually expanded and moved at each step to prevent particles from 
overlapping. When the desired porosity is reached the algorithm terminates [21]. We 
assume that the particles interact via the soft potential given by: 

( )
2

1 for ,
2

0 for ,

ij
ij

ij

ij

r
r d

V r d

r d

β  
 − <  =   
 ≥

.                                                                            (3.3) 

where β  is the characteristic energy scale and r ij is the separation of particles i and j. 
Potential of this form was motivated by simulation of granular materials, see next 
subsection, where the particles do not interact except for a strong repulsive force that 
keeps the particles from overlapping/deforming too much2. With this procedure, one can 
generate very dense systems down to ε ~0.158. 

(iv) Finally, a 2D discrete element method (DEM) or soft-sphere model is used to 
generate a random non-overlapping disks configuration. The motion of particles is 
described by Newton’s laws of motion. A characteristic feature of the soft-sphere models 
is that they are capable of handling multiple particle contacts, which are of importance 
when modeling dense, quasi-static systems. Particle overlaps are indicative of a collision. 
For all identified collisions, a contact model (here I use a simple spring/dash pot model, 
similar potential as Eq. (3.3)) is applied and the simulation is then advanced again in time 
[22]. The typical contact duration is: 

( )2

0/ , with 2 / / ,ct k m mπ ω ω η= = −                                                                    (3.4) 

where k, ω , 0η  and m are the spring stiffness, eigen-frequency of the contact, viscous 

damping and mass of the particles/fibres, respectively. Note that the integration of the 
equations of motion is stable only if the integration time-step, MDt∆ , is much smaller than 

ct . The difference to EM is that inertia (dynamical motion of particles) is taken into 

account in MD3. 

                                                 
2 After each expansion step, we check if any disks overlap by checking the condition 1−r ij /d>10−5 for each 
particle pair. Below this limit, the overlap is neglected. If any particles do overlap, i.e. the total energy is 
E>0, the nonlinear conjugate gradient method is used to decrease the total energy by adjusting the position 
of disks so they no longer overlap (E=0). Therefore, in this method, the value of β will not affect the 
minimization procedure. 
3 Contact force parameters used in MD simulations: k=106 [kg/s2], m=100 kg, η0=10-4 [kg/s], ∆tMD=10-4 [s] 
with the total time of simulation tT=500 [s]. 
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Having an initial fibre configuration on a regular triangular lattice, we assign random 
velocities in random direction to each particle and run a MD simulation for sufficiently 
long time such that all particles are separated by the minimum gap (∆min). A random 
structure is obtained by taking a snapshot of the final fibre positions.  

In the following, I compare the statistics of the fibre arrangements generated by the four 
methods and investigate the influence of the packing generator algorithm on the 
macroscopic permeability of the medium, where [3-4] used the MC procedure only. 

 

3.3.2 Statistical analysis of the microstructure 

Various statistical descriptors have been proposed to characterize and classify 
microstructures based on the spatial arrangement of heterogeneities, see for example [23, 
24]. Popular among these is the radial (pair) distribution function g(r), which is defined 
as the probability of finding the centre of a fibre inside an annulus of internal radius r and 
thickness dr with centre at a randomly selected fibre. It is mathematically defined as: 

( )d1
( ) ,

2 d

K r
g r

r rπ
=    where  ( ) ( )2

1

.
N

k
k

A
K r I r

N =

= ∑                                                       (3.5) 

where ( )K r  is a second-order intensity function, also known as Ripley’s function [3-4, 

23] and ( )kI r  is defined as the number of centers of fibres that lie within a circle of 

radius r about an arbitrarily chosen fibre and N is the number of fibres in the observation 
area A. Given a Poisson point distribution, the complete randomness of the fibre 
distribution will assure that g(r)=1 (with some fluctuations) for all distances considered. 
A statistically valid fibre distribution without long-range order will have g(r) tending to 1 
as the distance r increases. The comparison of g(r) for packings generated with different 
methods is shown in Fig. 3.2(a). In this graph r varies from d (diameter of the fibre) to 
approximately 1/3 of the sample size to avoid boundary (edge) effect on the statistics. 
Fig. 3.3 shows the actual area and the center area which we used to calculate g(r) for 
various creation methods. In all methods the specimen contains 800 fibres at constant 
porosity ε =0.6 with minimum inter fibre distance min∆ =0.05. Local maxima indicate the 

most frequent distances and local minima correspond to the least frequent distances 
between pairs. The first (highest) peak in the graph is caused by the physical area 
(excluded “volume”) of the fibres with virtual diameter d*. As r increases, we observe a 
number of oscillations until g(r) approaches the value of unity indicating the numerically 
generated microstructures are statistically random for larger r. The EM method has the 
largest peak at r/d~1.05 (minimum allowable inter fibre distance) and the most rapid 
decay with distance, followed by a second peak at r/d~2.1 (equivalent to r/d*~2), which is 
an indication of fibre agglomeration (or a clustered structure). For the RP algorithm the 
oscillations around the complete randomness value of g(r)=1 are the smallest compared 
to the other methods, however, the location of local maxima/minima is almost the same 
as for MD and MC, which lead to the most similar g(r) among the four methods. For 
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configurations with more fibres and different porosities (data not shown), qualitatively, 
the same trends are observed.   

1 2 3 4 5 6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

r/d

g(
r)

Energy minimization
Monte Carlo
Molecular dynamics
Random placement
Poisson distribution

(a)

 

0 500 1000 1500 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

N

K
/d

2

Energy minimization 
Monte carlo
Molecular dynamics
Random placement

(b)

 

Figure 3.2: (a) plots of g(r) for 800 fibres generated by different methods with ∆min=0.05 
at porosity ε =0.6, (b) comparison of the normalized permeability of the fibre 

arrangements from (a) plotted against the number of fibres. All data are averaged over 10 
realizations with 104 perturbations. The error bars indicate the standard deviation. Larger 

numbers of perturbations do not lead to a visible difference. 
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The fibre arrangement has a direct influence on the effective properties of the medium. In 
Fig. 3.2(b) the variation of the normalized permeability, 2/K d , as a function of the 
number of fibres N, is shown. As expected, the packings generated with MC, MD or RP 
(with similar fibre distribution) have practically the same permeability, especially for 
larger N. However, the clustered structure (generated by EM) has a lower permeability 
for all numbers of fibres. This is due to the fact that many particles are arranged along 
lines - sometimes with local square or triangular structure - but no long range order is 
evident as one would have in a crystal (see Fig. 3.3 and the peak locations in Fig. 3.2(a)). 
This leads into more resistance to the flow (i.e. lower permeability) even at intermediate 
porosities (see next section). By increasing the system size the standard deviation 
decreases but it remains largest – for EM – indicating correlations built into the method. 
For most data presented in Section 3.4, I stick to the MC procedure that generates the 
structures similar to what is observed in real composite manufacturing processes [20] and 
since it is faster than the MD method. More details on the effect of system size and 
boundary conditions on statistical descriptors and macroscopic permeability are provided 
in appendix 3.B. 

 

3.3.3 Isotropy and homogeneity of the packing 

Since the media studied here consist of randomly distributed fibres, they are expected to 
be isotropic (no preferential flow direction). Therefore, the normalized permeability as a 
function of porosity in both horizontal and vertical directions, as shown in Fig. 3.4, is 
independent of flow direction. As mentioned before, the EM approach tends to generate 
clustered packings unlike the MC procedure (or MD simulations), which create more 
homogenous structures. Fig. 3.4 shows that all methods (namely MC, MD and EM) 
create isotropic media (with respect to horizontal and vertical flow) for all porosities. For 
comparison, the numerical results of Sangani and Yao [25] and Chen and Papathanasiou 
[3] for transverse flow are also included in Fig. 3.4. The homogeneity of the packing has 
negligible effect on permeability at high porosity (ε >0.65), however, at lower porosities 
the clustered structure has lower permeability as compared to the homogenous 
configuration. The reason is that for dilute fibrous media there is no correlation between 
the solid fibre bundles, however, at lower porosities in the packing generated with the 
EM approach, we see local fibre clusters, which tend to block the channel and cause a 
drop in permeability. This was confirmed by studying the velocity fields (not shown here) 
and is also visible in the PDF of neighbor distances. 

 

3.3.4 Effect of minimum inter-fibre distance (∆min) 

The minimum inter-fibre distance (∆min) was taken as 5% of the “true” fibre diameter, d 
in my simulations up to now to avoid complete blockage in 2D. In the following we scale 
the permeability values such that they collapse on a single curve valid for all values of 
∆min ranging from 0.2 to 0.005. Note that the lower the ∆min the more elements are needed 
to resolve the flow in the gaps between fibres. 
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                                    (a)                                                               (b) 

     

                                   (c)                                                                 (d) 

Figure 3.3: Each image consists of 800 fibres with minimum inter fibre distance min∆  = 

0.05 and 0.6ε = . They are generated by (a) Random Placement (RP), (b) Monte Carlo 
(MC) procedure, (c) Energy Minimization (EM) approach and (d) Molecular Dynamics 
(MD) simulations. The red box shows the center area which has been used to calculate 

g(r). For the chosen reference particles only those in the inner red square are used, while 
the distances to all others are considered. 

 

Fig. 3.5 shows the effect of ∆min on the fibre arrangements and fluid velocity. Note that 
large values of ∆min lead to local (triangular) ordering (Fig. 3.5(a)), whereas a small ∆min 

20 

7 
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results in a pattern showing local fibre aggregation (Fig. 3.5(b)). We observe stagnancy 
of the fluid between fibre aggregates or within rings of close-by fibres, while a few major 
flow paths with relatively high flow speed exist in all configurations with disorder.  

The permeability, 2/K d , for small porosity (i.e. the maximum random close packing 
fraction ~0.84 ( 0.16r

cε = ) [26], see the appendix 3.C.) saturates at an a-priori finite 

value. Larger minimal distances ∆min lead to over-proportionally larger permeability (plot 
not shown). When the data are scaled by the permeability expected for a periodic 

hexagonal cell as ( )
min

hex 2/K K d∆− , see Ref. [8], the data vanishes at a finite porosity, 

which decays with decaying ∆min. Therefore, I conclude that the minimal permeability of 
my random structure is somewhat lower than the one of a hexagonal lattice (see the inset 
in Fig. 3.6). In other words, the systems with more uniform and weak channels (Fig. 
3.5(a)) have higher permeability than the systems with fewer dominant channels (Fig. 
3.5(b)). 
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Figure 3.4: Normalized permeability as a function of porosity for homogenous 
(generated with MC procedure or MD simulations) and clustered correlated (generated 

with EM approach) structure in both horizontal and vertical directions. Error bars indicate 
standard deviation from 10 realizations. 



Chapter 3. Micro-Macro relations for flow through random arrays of cylinders 

 58 

      
 

                                 

                                (a)                                                                       (b) 

Figure 3.5: Typical fibre distributions generated by a Monte Carlo (MC) procedure, each 
with 800 fibres at ε =0.5 with minimum inter fibre distance (a) ∆min =0.2 ( *ε =0.28) and 

(b) ∆min =0.005 ( *ε =0.49). The color code shows the horizontal velocity field in a 
pressure driven system. Only the center part of the system is shown. 

 

Fig. 3.6 shows the effect of ∆min on the normalized permeability – after scaling with an 
appropriate permeability c 2/K d  that is obtained by multiplying the 

min

hex 2/K d∆  with a 

prefactor such that all the data collapse onto a single curve4. The minimal permeability 
for disordered fibre-arrays can then be cast into a formula:

min

2 hex 2/ /cK d K dη ∆≃ , with 

factor ( )0 min1 /η = + ∆ ∆  where 0 0.14∆ =  (fitting parameter) and accounts for the 

minimal inter fibre distance. The numerical values of the critical porosity, 
min

hexε∆  and 

permeability 
min

hex 2/K d∆  (for a perfectly hexagonal lattice) and corrected permeability, 
c 2/K d  at different ∆min are given in Table 3.1. The scaling factor, η  was obtained by 

fitting the 
min

c hex/K K∆  ratios at different ∆min, using a least square approach. With 

increasing ∆min the scaling factor decreases towards unity and the corrected permeability 
values, c 2/K d , approach the hexagonal cell values. Note that the last data point at each 

∆min branch is slightly below *order 0.3ε ≅  (see the arrows). Because all  * *
orderε ε>  can be 

                                                 
4 The value of Kc/d2 at large values of ∆min can be approximated as (Kc/d2) ∆min ~ (K/d2) ∆min - (K/d2) ∆min=0.005. 
By plotting the values of ((Kc/d2) ∆min / (K

hex/d2) ∆min) against ∆min, we observed that the data are fitted best to 
(1+∆0/∆min) with ∆0=0.14. 

-9        -2.4            4.1             10.7          17.2         23.8           30.3          36.9          43.4         50 610−× [m/s]    
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considered as random (almost), whereas * *
orderε ε<  are partially ordered, we exclude the 

latter. The inset in Fig. 3.6 shows the zoom of permeability data before scaling at low 
porosities together with the perfectly hexagonal values obtained from lubrication theory 
[11] (red dashed line) and finite element results [8] (blue stars). The permeability of 
random fibre arrangements tends to be smaller than for hexagonally ordered arrays. In the 
next section, my attempt is to extend the lubrication theory for ordered arrays [11] into 
random configurations. 
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Figure 3.6: Variation of corrected normalized permeability plotted against porosity for 
different minimum inter fibre distances ∆min, with N=800. The five arrows show the 
expected onset of ordering at *

order 0.3ε ≈  for decreasing ∆min (from right to left). The 

dashed blue line shows the empirical merging function, Eq. (3.D.3), in appendix 3.D. The 
inset shows the low permeability data without scaling at low porosities. The dashed red 
line and blue stars correspond to the periodic hexagonal cell values of lubrication theory 

[11] and finite element results [8], respectively. 
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Table 3.1: The values of the critical porosity, ( ) ( )
min

2hex *
min1 1 / 1hexε ε∆ = − − + ∆ with 

( )* 1 / 2 3 0.0931hexε π= − ≅ , and permeability (for a perfectly hexagonal lattice, 

min

hex 2/K d∆ , and corrected permeability for random lattices c 2/K d ) at different ∆min. 

∆min min

hexε∆  
min

hex 2/K d∆  c 2/K d  

0.2 0.3702 1.035 310−×  1.7 310−×  

0.1 0.2505 1.801 410−×  4.3 410−×  

0.05 0.1774 3.172 510−×  1.3 410−×  

0.025 0.1368 5.587 610−×  3.5 510−×  

0.005 0.1021 1.006 710−×  2.8 610−×  

 
 

3.3.5 Summary 

 In summary, the random generator algorithm used to generate the fibre packing for 
analysis can affect the local fibre distribution especially at low porosities. All methods 
used in this study generate isotropic structures with respect to vertical and horizontal 
direction. The EM approach used has created more heterogeneous packings compared to 
other methods.  

Note that in general, the optimum number of particles (as small as possible but large 
enough to represent bigger samples) depends on the porosity. Periodic boundary 
conditions can reduce this number since inhomogeneity at the walls is removed (see 
appendix 3.B). As standard N=800 was applied and, as before, the permeability is 
calculated on the center part of the system (see Fig. 3.3). 

Putting an artificial gap between fibres (∆min) changes the microstructure and accordingly 
the permeability of the packing, at high volume fractions (small ε ). As the main result of 
this section, correcting the permeability values with the empirical minimal permeability 
for random structures, c 2/K d , leads to perfect scaling (standard deviation discrepancy 

less than 5%) of all random/disordered structures data for all permeabilities, valid for all 
∆min, as shown in Fig. 3.6. Understanding the microscopic origin of this scaling is the 
subject of the next section. 

 

3.4 Theoretical prediction of the permeability 

In this section, a microstructural model is presented for predicting the macroscopic 
permeability based on the lubrication effect of the narrow/effective channels. 
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3.4.1 Statistical characterization of effective channels 

Several statistical and structural descriptors, i.e. Delaunay triangulation (DT), Delaunay 
edges (DE), hydraulic diameter (Dh) and fibre/particle nearest neighbor distances nD , 

obtained from fibre distributions, are discussed here and used to characterize the narrow 
channels.  

 

3.4.1.1 Nearest neighbor distances 

Here I define the mean value of the n-th nearest neighbor distances nD  normalized with 

the diameter of the fibres ( ) /n nD d dγ = − . The diameter, d can be expressed in terms 

of macroscopic porosity as ( ) ( )4 1 /d ε λπ= −  where ( )1 / pVλ ε= −  is the number 

density (number of fibers per unit area). The value of λ  is 2 in my simulations (800 
fibres in a box of 20×20 [m2]). Similarly, one can define the effective normalized n-th 

nearest neighbor distances as ( )* * */n nD d dγ = −  with ( )*
min1d d= + ∆ . The former, nγ , 

quantifies the channel width available for flow, while the latter is a measure for the 
effective distance due to the minimum inter fibre distance, which is relevant for 
microstructure but not so much for fluid flow.  

Fig. 3.7(a) and (b) show the 2nd and 1st nearest neighbor distances, respectively. Note that 
the network in Fig. 3.7(b) appears considerably more dilute than that in 7(a). While 
neither network percolates, when combined the first and second neighbor network does 
percolate. Flow is less likely to go through the narrowest gaps, but there are sufficient 
numbers of 2nd channels, that the second neighbor distances are likely to control the flow. 

 

3.4.1.2 Normalized hydraulic diameter (Dh/d) 

Another measurable quantity that is frequently used in modeling of porous/fibrous 
structures is the hydraulic diameter Dh [1]. When one has obstacles like fibres (or 
particles) instead of straight pores, the hydraulic diameter can be defined as: 

( ) ( ) ( )
4 4 particle surface 4

, with
1 1 particle volume 1

v
h v

v v

SV d
D a

S a V d

ε ε ε
ε ε ε

= = = = = =
− − −

  ,           (3.6) 

with the total volume of the unit cell, V, the total wetted surface, Sv, and the specific 
surface area, av. Note that the hydraulic diameter, in this way, is expressed as a function 
of the measurable quantities porosity and specific surface area. The above value of av is 
for circles (cylinders) – for spheres one has av=6/d. Therefore the relation between 
normalized hydraulic diameter Dh/d and porosity for fibres will reduce to: 
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(a) (b) 

(c) (d) 

( )1
hD

d

ε
ε

=
−

                                                                                                                   (3.7) 

Note that in the following the hydraulic diameter, even though it could be defined per 
particle or per Delaunay triangle, will only be used as averaged quantity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Various microstructural descriptors used in this study: (a) The 2nd and (b) the 
1st nearest neighbor distances plotted for each fibre. (c) The blue lines delineate the 

Delaunay triangles. (d) The minimum Delaunay edges plotted for each DT. The red lines 
show the repeated edges from neighboring triangles. All graphs show the center part of 

800 randomly distributed fibres generated by the MC procedure at ε =0.6 with minimum 
inter fibre distance ∆min=0.05. 
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3.4.1.3 Delaunay triangulation (DT) 

A Delaunay triangulation (DT) is the set of lines joining a set of points such that each 
point is joined to its nearest neighbors [27]. It satisfies an “empty circle” property, i.e. the 
circumcircle of each triangle (formed by three points) does not contain any of the other 
points. It is the dual graph of the Voronoi diagram (VD) and has a node (fibre center) for 
every Voronoi cell and an edge between two nodes if the corresponding cells share an 
edge (see Fig. 3.7(c), the blue lines show the DT edges). This concept is suitable for the 
characterization of the arrangement of dispersed fibres [28]. The DT has many other 
applications such as finding the nearest neighbor, mesh generation and surface 
reconstruction, interpolation and extrapolation, strain calculation [29], etc. Here we used 
the statistics of the Delaunay edges as a descriptor to characterize the spatial dispersion of 

fibres. One average quantity is the mean value of all DT edge lengths p
DTe  normalized 

with the diameter of the fibres d, i.e. ( ) /p p
DT DTe d dγ = − . For a perfect triangular lattice 

it reduces to exactly the inter fibre (surface-to-surface) distance and for the lowest 

porosity ( )( )* 1 / 2 3hexε π= −  one has min
p
DTγ = ∆ . 

Similarly, one can find the shortest Delaunay edges for each particle and then average 

over all particles, i.e. the first, ( )1 1 /p pe d dγ = − , the second, ( )2 2 /p pe d dγ = − , etc. 

The numerical results show that 1,2,3 1,2,3
pγ γ≅  (for 1 1

pγ γ≅  see Fig. 3.8).  

 

3.4.1.4 Delaunay edges (DE) 

For a given Delaunay triangulation the local mass conservation implies that in steady 
state condition the net flow through all the DT edges belonging to one triangle is zero. 
Therefore, the characteristic length of these edges might also be useful to describe the 
macroscopic flow field. 

We define 1
Tγ  as the mean value of the shortest Delaunay edges 1

Te , (averaged over 

Delaunay triangles and not fibres) normalized by the fibre diameter, ( )1 1 /T Te d dγ = − . 

Fig. 3.7(d) shows these shortest edges. The red color shows the repeated edges of 
neighboring triangles. Note that the superposition of the network in Fig. 3.7(a) and (b) is 
very similar to (d) – not shown here. The shortest Delaunay triangle edges form a 
percolated edge-network, where empty “channels” indicate the regions (channels) in 
which the fluid is most likely flowing (fast). 

Fig. 3.8 shows the variation of all these descriptors as a function of porosity. The 
normalized mean nearest neighbor distances approach the minimum inter fibre distance 
(i.e. ∆min~0.05) at low porosities (locally crystalline structure). On the other hand, at high 
porosities we are reaching the analytical values of random point patterns at 1ε = .  
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As expected, the values obtained by averaging the shortest Delaunay edges for each fibre 

1
pγ , match the results of nearest neighbor distances 1γ . Astonishingly, we observe that 

the mean values of the 2nd nearest neighbors 2γ  (red squares) approximately match the 

values of the shortest DT edges 1
Tγ  (averaged over triangles). So far I have not found a 

mathematical proof for this observation. For regular (i.e. square or hexagonal) arrays, the 
statistical descriptors are the same (1 2 3 1

Tγ γ γ γ= = = ) and 1
Tγ  is thus a deterministic 

function of porosity, see next section. Interestingly the values of p
DTγ  for random and 

hexagonal arrays are almost the same, showing that the mean value of neighboring fibre 
distances obtained by averaging over all DE does not depend much on the structure. 

Another interesting observation is that for ε <0.8 the normalized hydraulic diameter Dh/d 
has also the same trend as the shortest Delaunay edges and the 2nd nearest neighbor 
distances5 and, when scaled by a factor 1/6, even agrees quantitatively well. 
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Figure 3.8: Variation of normalized mean nearest neighbor distances (1st, 2nd and 3rd), the 

mean length of all Delaunay edges ( )p
DTγ , the mean shortest Delaunay edge averaged 

over particles ( )1
pγ  and triangles ( )1

Tγ  and the normalized hydraulic diameter ( )/hD d as 

                                                 
5 This may explain the limitation/failure of capillary models such as the Carman-Kozeny (CK) equation at 
high porosities which are based on the hydraulic diameter concept. 
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a function of porosity. Average is taken over 10 realizations with 800 randomly 
distributed fibres. Only the center part of the system is considered to avoid edge effects. 

 

3.4.1.5 Microscopic channel width in terms of macroscopic porosity  

Based on a least square fit approach, an empirical expression is obtained for the mean 
values of the n-th nearest neighbor distances, nγ  as functions of porosity: 

/ 1n nD dγ = −          with            
1

1
1

n

n
n rp

cn

D

D

ξ
εϕ
ε

 −= +  − 
 ,                                         (3.8) 

where ( )min
r
cε ∆  and p

nD  are the corresponding critical porosity of a random packing 

with * 0.16cε ≅  and mean nearest neighbor distance for random points calculated 

analytically from Eq. (3.B.1), respectively. The quantities nϕ  and nξ  are fitting constants 

for a given n and, in general, weakly depend on ∆min. The numerical values of p
nD , r

cε , 

nϕ  and nξ  for n=1, 2, 3 and various ∆min are given in Table 3.2. Thus, one can easily 

estimate the n-th nearest neighbor distances of hard disc packings by only knowing its 
macroscopic porosity. Fig. 3.9 shows the variation of mean values of the 2nd nearest 
neighbors, 2γ  as function of porosity together with the best fits, Eq. (3.8), at different 

∆min. At high porosities, ∆min has less effect on 2γ , however, by decreasing porosity, 2γ  

has larger values at higher ∆min and approaches the limit value 2 minγ = ∆ . The inset of 

Fig. 3.9 shows that by plotting the effective * *
2 2 / 1D dγ = −  against the effective 

porosity *ε , all data collapse and one gets the universal curve in Eq. (3.8) with 0.16r
cε ≅ , 

2 0.35ϕ ≅  and 2 0.7ξ ≅  corresponding to ∆min=0, i.e. *
2 2γ γ=  and *ε ε= . 

One of my hypotheses is that the percolated network of the shortest (triangle) edges, 

1 2
Tγ γ≅ , controls the overall drag (permeability) of the fibrous material (which is 

confirmed a-posteriori by my numerical results below). However, the microstructure is 
controlled by *

2γ  which leads to larger excluded volume during packing generation. In the 

next subsection I will show that, similar to regular fibre arrays [11], these channels 
between triangles are correlated with the macroscopic permeability of the porous medium 
for a very wide range of porosities.  
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Table 3.2: The numerical values of ( ) ( )2*
min1 1 / 1r

c rε ε= − − + ∆  with * 0.16rε ≅ , p
nD , 

nϕ  and nξ  for various n and ∆min which are obtained analytically from Eq. (3.B.1) and by 

least square fitting of numerical simulation in the range of *0.3 0.95ε< < . 
 

∆min n 
r
cε  p

nD  nϕ  nξ  

1 0.4167 0.3535 1.0727 0.7904 

2 0.4167 0.5303 0.3372 0.6790 0.2 

3 0.4167 0.6629 0.1049 0.2502 

1 0.3058 0.3535 1.0757 0.7910 

2 0.3058 0.5303 0.3509 0.7048 0.1 

3 0.3058 0.6629 0.1065 0.2454 

1 0.2381 0.3535 1.0732 0.7867 

2 0.2381 0.5303 0.3495 0.7017 0.05 

3 0.2381 0.6629 0.1064 0.2412 

1 0.2005 0.3535 1.0771 0.7887 

2 0.2005 0.5303 0.3557 0.7084 0.025 

3 0.2005 0.6629 0.1099 0.2567 

1 0.1683 0.3535 1.0806 0.7948 

2 0.1683 0.5303 0.3611 0.7314 0.005 

3 0.1683 0.6629 0.1123 0.2969 
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Figure 3.9: Variation of mean values of the 2nd nearest neighbors, 2γ  as function of 

porosity together with the best fits from Eq. (3.8) (solid lines) at different ∆min. The inset 
shows the scaled data by plotting *

2γ  as function of effective porosity *ε . 

 

3.4.2 Permeability prediction in terms of effective channels 

Based on the Navier-Stokes equation, Gebart [11] derived the permeability of an 
idealized unidirectional reinforcement consisting of regularly ordered, parallel fibres both 
for flow along and for flow perpendicular to the fibres. The solution for flow along fibres 
has the same form as the CK equation [13], while the solution for transverse flow has a 
different form as: 

2.5

2

1
1 ,

1
cK

C
d

ε
ε

 −= −  − 
                                                                                                 (3.9) 

where cε  is the critical porosity below which there is no permeating flow and C is a 

geometric factor (
4

0.1, 1 0.2146
49 2

cC
πε

π
= ≅ = − ≅  for a square array and 

4
0.0578, 1 0.0931

9 6 2 3
cC

πε
π

= ≅ = − ≅  for a hexagonal array [8]). Gebart [11] 
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presents numerical results, obtained using a finite difference solution of the NS equations 
that show excellent agreement with Eq. (3.9) up to porosities of ~0.65.  

In order to rewrite Eq. (3.9) in terms of 2γ  , we express the porosity as function of the 

lattice distance a and fiber-diameter d: 

( )

( )

2 2

2 2

1 1 , for hexagonal arrays
12 3

.
1

1 1 , for square arrays
4

c

c

c

d d

a a a

dd d

a a

πε ε
ε
επε ε

    − = = −     −    
⇒ = −    − = = −       

               (3.10) 

For regular arrays 1 2 3 1
Tγ γ γ γ= = = , whereas for random arrays 2 1

Tγ γ≃  (see Fig. 3.8), so 

that 2 2 / 1D dγ = −  can be written in terms of the lattice distance as: 

2 1
a

d
γ  = − 

 
 .                                                                                                               (3.11) 

Inserting Eq. (3.11) into Eq. (3.10) and combining it with Eq. (3.9), leads to: 

2.5
22

K
C

d
γ=  ,                                                                                                                  (3.12) 

as exactly valid for regular square or hexagonal arrays at low and moderate porosities 
with corresponding C, see above.  

In this representation, the normalized permeability scales with the (for example 2nd) 
narrowest channels, i.e. 2γ , as a power law with power 2.5. Relation (12) is remarkable, 

since it enables one to accurately determine the macroscopic permeability of a given 
packing just by measuring the 2nd narrowest channels, i.e. 2γ , from particle positions or 

the narrowest Delaunay edges, i.e. 1
Tγ , from Delaunay triangles. Below, I numerically 

confirm the validity of Eq. (3.12) for both regular and also random configurations. 

The shortest Delaunay edges and the 2nd neighbor distances practically coincide and form 
the network of channels through which the flow must go. Therefore, I expect that the 
parameter, which characterizes the system and correlates with the permeability, is 1

Tγ   or 

2γ . Fig. 3.10 shows the variation of the normalized permeability as a function of the 

statistical descriptors discussed in Section 3.3. Each data point represents the results for 
800 randomly distributed fibres, averaged over 10 realizations. The largest and smallest 
γ  correspond to the porosity ~0.95 and ~0.3, respectively. The macroscopic permeability 
almost correlates with the shortest Delaunay triangle edges as a power law, similar to Eq. 
(3.12) for regular arrays, in a wide range of porosity. The solid blue line is the best power 
law fit (with fixed power 2.5). The universal random configuration pre-factor (C~0.2) 
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seems to be only weakly dependent on the minimum inter fibre distance, data not shown.  
With decreasing porosity the data deviate from the solid line showing the appearance of 
ordering in the structure.  By correcting Eq. (3.12) as 

( )2.5
2 22

K
C

d
γ χ γ=        with        ( ) ( )2

2 01 me γχ γ χ −= − , 0 0.5χ ≅ , 3m≅ ,                    (3.13) 

we now present a universal law for predicting the macroscopic permeability in terms of 

2γ  (with Eq. (3.8) as closing relation with porosity) in a wide range of porosities 

( *0.3 0.95ε< < ) for disordered arrays. The exponential correction factor, ( )2χ γ  was 

obtained by least square fitting the ratio between numerical data and Eq. (3.12) and 
accounts for (partial) ordering effects. This observation is remarkable as it indicates that 
the Gebart lubrication theory (Eq. (3.12)), originally obtained for dense ordered arrays, is 
also valid for random arrays in moderate and dilute regimes by using the 2γ  or 1

Tγ  as the 
effective channel width. Fig. 3.11 shows the variation of the normalized permeability as 
function of 2γ  at different values of ∆min together with the proposed closed form relations 
in Eqs. (3.12) and (3.13). In contrast to Fig. 3.6, here, the permeability data are not 

corrected by Kc, but are collapsed as the microscopic effective channel width ( )*
2 2 2γ γ γ=  

takes care of the effect of ∆min. For all values of ∆min, Eq. (3.13) correctly predicts the 
macroscopic permeability with maximum deviation of 10% for * 0.3ε > . The 
permeability values for square and hexagonal configurations have the same power/slope 
and just shifted as they have different pre-factors, C, see Eq. (3.9). More discussion on 
very dense regimes, i.e. * 0.3ε < , where we have long range correlations due to partial up 
to strong ordering, is given in appendix 3.C. For comparison, the analytical prediction for 
ordered arrays (square and hexagonal configurations), i.e. Eq. (3.12) with the same power 
2.5 but different constants C, are also shown. As an alternative to the microstructural 
model presented in Eq. (3.13), I propose a purely empirical merging function which 
combines the analytical solutions of dilute and dense limit cases in appendix 3.D. 
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Figure 3.10: Variation of normalized permeability, plotted as function of various 
statistical descriptors. 2nd nearest neighbor distance 2γ  (or shortest Delaunay edges, 1

Tγ ) 

show the best (almost power law) correlation in a wide range of porosity at ∆min=0.05. 
The solid blue line shows the power law fit. 
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Figure 3.11: Variation of normalized permeability as function of mean value of 2nd 
nearest neighbor distance, 2γ  at different values of ∆min. 
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3.5 Summary and conclusions 

A finite element method (FEM) based model has been employed to calculate the 
transverse permeability of random fibrous media composed of long unidirectional 
cylinders/fibres for a wide range of porosity. The microstructure of the fibrous media has 
been characterized using the pair distribution function and neighbor distance statistics. 
Providing information about short range correlations, these microstructure descriptors 
allow us to characterize the spatial heterogeneity of the fibre structures, construct 
computer generated microstructures for further simulation, or correlate the material 
microstructure to macroscopic properties as, e.g., permeability. The conclusions from my 
statistical analysis of the microstructures and the permeability are: 

• For relatively large systems, the packings obtained from different random 
generator algorithms are isotropic and homogenous (far away from the walls). 
Their properties are similar and independent of the system size, except for the 
energy minimization (EM) approach, which generates clustered structures. 
Periodic boundary conditions reduce the minimum required number of fibres to 
reach size-independence. 

• By increasing porosity, the PDF of nearest neighbor distances will change from 
exponential to Gaussian, as relevant for random point patterns only, not shown 
here. 

• The packings with higher inter fibre distance, ∆min, have more uniform and 
weaker flow channels and therefore higher permeability and the behavior is 

determined by ( ) ( )( )2*
min min, 1 1 1fε ε ε= ∆ = − − + ∆ . 

• All random structure permeability data (for all studied minimal inter-fibre 
distances) are scaled by subtracting the random packing minimal permeability  

min

2 hex 2/ /cK d K dη ∆≃  that is proportional to the equivalent minimum of a regular 

structure and a pre-factor that increases with decreasing minimal distance. The 
low porosity random regime cannot be reached, since partial ordering sets in 
below a certain threshold (* 0.3ε ≅ ). 

Based on the lubrication effect of the narrow channels, I found a universal power law 
relationship between the permeability values obtained from fluid flow simulations and 
the microscopic mean values of shortest Delaunay triangulation edges constructed on the 
fibre center positions. From the microscopic point of view, the numerical results show 

that the mean values of the 2nd nearest neighbors ( )2 2 /D d dγ = −  (averaged over all 

fibres) match the values of shortest DT edges ( )11 /T Te d dγ = −  (averaged over all 

triangles). Astonishingly, the proposed power law is valid for both ordered and 
disordered arrays at all porosities, given a correction dependent only on 2γ . The  

superposition of 1st and 2nd nearest neighbor channels forms a similar percolated network 
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as the shortest DT edges, with average 1
Tγ , which dominate the flow since they represent 

the fluid channels through which the flow must go (with preference for the wider 2nd 
neighbor channels).  

In summary, a closed form relation for predicting the macroscopic permeability for 
ordered/disordered fibre arrangements is observed in terms of the microstructural average 

channel width 2γ  as ( )22 2.5
2 0/ 1 mK d C e γγ χ −= − , valid for wide range of porosities and all 

values of inter-fibre distance ∆min. Note that Eq. (3.8) relates ( )*
2 2 2γ γ γ=  with 

( )* * *
2 2γ γ ε=  and ( )* *ε ε ε=  to macroscopic porosity and therefore closes this relation. 

The results obtained in this study and the general relationships proposed for the 
permeability, can be utilized for composite manufacturing, e.g. resin transfer moulding 
processes. Furthermore, these results can be used for validation of advanced models for 
particle-fluid interactions in a multi-scale coarse graining approach, as carried out in my 
ongoing work. By analogy, the permeability in 3D random packings should depend on 
the smallest faces of Delaunay tetrahedrons 3

1
T Dγ , possibly with the chance for similar 

unique scaling relations as in 2D, a prediction that waits for numerical/experimental 
proof.   

 

Acknowledgements: 

The authors would like to thank M. van der Hoef, A. J. C. Ladd, C. S. O'Hern, X. Chen, 
K.W. Desmond and A.R. Thornton for helpful discussion and acknowledge the financial 
support of STW through the STW-MuST program, Project Number 10120.    

 

Appendix 3.A Mesh sensitivity analysis  

Due to the difference in scale between domain size and gap size between neighboring 
fibers, this typically requires local mesh refinement. For different porosities, flow through 
random fiber arrangements was simulated at different mesh resolutions (number of 
elements, Ne). The dependence of the solution in terms of the calculated normalized 
permeability at dense, 0.4ε =  (in blue) and dilute, 0.8ε =  (in red) regimes is shown in 
Fig. 3.A1. At larger porosities (dilute systems) fewer numbers of elements would be 
sufficient to get convergent solution. The numerical results show that in all simulations 
one need at least ~10 rows of elements between neighboring particles to correctly capture 
the fluid behavior and obtain a converging solution. 
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Figure 3.A1: Plot of normalized permeability for different resolutions (number of 

elements, Ne) at porosity 0.4ε =  (in blue) and 0.8ε =  (in red). 

 

Appendix 3.B Study of the system size (edge) effects 

The random fibrous structure should be large enough to capture the microscopic 
properties and/or the flow characteristics in the matrix. Increase in the system area 
implies a linear increase in the number of grid points in the computational mesh. 
Therefore, we need to find an optimum system size. Related to this, Grufman and Ellyin 
[30] determined a representative volume element size for composite laminate by applying 
the Kolmogorov goodness-of-fit test. Du and Ostoja-Starzewski  [31] studied the finite-
size scaling trend to RVE of the Darcy law for Stokesian flow in random porous media 
without invoking any periodic structure assumptions, but only assuming the 
microstructure’s statistics to be spatially homogeneous and ergodic. They show that the 
higher the density of random disks, the smaller the size of RVE pertaining to Darcy’s 
law. Trias et al. [32] show that the minimum system size for typical carbon fibre polymer 
composites is / 25L dΩ = =  (where d and L are the actual diameter of fibres and system 
length, respectively).  

To study the effect of system size, I use two statistical tools, namely the pair distribution 
function and the nearest neighbor distance, both measure short range correlations. The so-
called “structure factor” for long range correlations is not addressed here.  
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3.B.1 Pair distribution function g(r) 

In Fig. 3.B1 the pair distribution function (g(r)) is plotted for different numbers of fibres 
at the two cases of (a) low porosity (dense system) ε =0.4 and (b) dilute system ε =0.9. 
At higher porosities, we observe that by using only the center part-away from the 
walls/boundaries, there is no systematic size dependence concerning short range order 
and increasing N does not create any substantial differences in g(r). However, for dense 
systems, the correlations reach to larger and larger distances and one needs a bigger 
system so that the order does not “reach” the walls. The exponential decrease in the local 
peaks of g(r) at higher densities might explain the exponential distribution of nearest 
neighbor distances in the next subsection. The same trend was observed for periodic 
boundaries as the center area was used to calculate g(r) (data are not shown here). 

Note that by knowing the optimum number of fibres, one can easily calculate the 

optimum system size as ( )( )/ / 4 1L d Nπ εΩ = = −  since 

( ) ( )2 21 / / 4pV V N d Lε π− ≡ =  with the volume of a single particle Vp. 

The pair distribution function, g(r), is useful in describing short- and medium- range 
averaged correlations among the fibres. 

 

 3.B.2 Nearest neighbor distance 

Nearest-neighbor distances are an essential class of spatial descriptors useful in materials 
science and other disciplines [33, 34]. They are well established as a tool for qualitatively 
characterizing deviation from a ‘‘random’’ state. Given a set of points (fibre centers), the 
nearest neighbor distance distribution function for the n-th nearest neighbor is the 
probability density function ψn(r) such that ψn(r)dr is the probability of finding the n-th 
nearest neighbor (n=1,2,3,…, etc.) in the distance range r to (r+dr).  
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Figure 3.B1: Plot of g(r) for different number of fibres (system size) at (a) porosity 
ε =0.4 and (b) ε =0.9 from 10 realizations. The dashed line at g(r)=1 indicates a 

completely random point structure. The drop of the data comes from the finite size of the 
center area used for averaging (see Fig. 3.3). 
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The analytical prediction for the mean value of the n-th nearest neighbor distance p
nD  

is the first moment of the distribution function ψn(r), and for the uniform random spatial 
distribution of points is:  

( )
( ) 1/ 2

1/ 2
.

1 !
p
n

n
D

nπ λ
Γ +

=
−

                                                                                             (3.B.1) 

where ( )1 / pVλ ε= −  is the intensity (number of points per unit area) and Γ(n+1/2) is the 

gamma function6. While formulae have been derived that place bounds on p
nD  for 

equilibrium ensembles of monodisperse particles in two- and three-dimensions [29], 
exact analytical expressions are not available. Therefore, computer simulations are 
needed to calculate the mean value of the n-th nearest neighbor distances as a function of 
porosity (or volume fraction) for ensembles of mono(poly)disperse fibres, e.g. see Eq. 
(3.8). For more details see Section 3.4.1, where, among others, the mean normalized 1st 
and 2nd nearest neighbor distances are used to characterize the effective/narrow channels 
and predict the sample permeability.  

The 1st nearest neighbor distance, 1
pD , is simply the minimum of all distances from one 

fibre to all others. Similar to the g(r) data, at low porosities one needs more fibres (bigger 
systems) to get reasonable statistics for the distribution of short-range distances (N>800). 
However at high porosities, increasing the number of fibres will not much affect the 
probability distribution function (PDF). The distributions of 1st nearest neighbor distances 
were found to follow the exponential distribution at low porosities and normal (Gaussian) 
distribution at high porosity. By increasing the porosity the PDF of nearest neighbor 
distances will change from exponential to Gaussian, i.e. a random point patterns. 
Furthermore, by decreasing the porosity (i.e. going from 0.9 to 0.6), the probability of 
finding a particle at exactly 1.05d (i.e. minimum possible distance) becomes ~10 times 
larger (data not shown).  

 

3.B.3 Wall versus periodic boundaries 

Another factor that not only affects the fibre distribution but also the macroscopic 
permeability of the medium is the confining walls. In Fig. 3.B2 the normalized 
permeability is plotted against number of fibres for different boundary conditions 
(periodic or walls at top and bottom of the cell) at (a) ε =0.4 and (b) ε =0.9. It shows that 
at low porosity, using the periodic boundary conditions can reduce the minimum required 
number of fibres (N>200). However, at high porosities the permeability becomes 
independent of the number of fibres for N>200 in both periodic and wall boundary 
conditions. It turns out that for systems with more than 800 fibres/cylinders the effect of 

                                                 
6 Note that the real unidirectional composite microstructures consist of distribution of aligned fibres of 
“finite” size that cannot be regarded as zero dimensional points. 
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finite size and type of boundary conditions (periodic/no-slip/symmetric) on the 
permeability of the given structure diminishes.  
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Figure 3.B2: Variation of normalized permeability plotted against number of fibres with 
different boundary conditions at (a) porosity ε =0.4 and (b) ε =0.9. Fibre distributions 

generated by MC procedure with 104 perturbations and minimum inter fibre distance ∆min 
=0.05. 
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Appendix 3.C Towards the dense regime 

In order to have a better model for the very dense regime, i.e. * 0.3ε < , we correct the 
original lubrication theory for perfectly hexagonal arrays, i.e. Eq. (3.9), in this appendix.  

As mentioned in Section 3.4, the critical porosity obtained from computer simulations for 
the finite systems with walls is limited to 0.16r

cε ≅  [26]. By correcting the lubrication 

theory of hexagonal arrays with 0.16r
cε = , one can predict the permeability at the 

random close packed limit more accurately as: 

 

2.5

*
2

1
1 .

1

rc
cK K

C
d

ε
ε

 −− = − 
 − 

                                                                                    (3.C.1) 

where C*~0.035 is obtained by fitting to the FEM results at low porosities.  Fig. 3.C1 
shows the variation of the normalized permeability as a function of porosity. Note that as 
I scale the data with Kc, the permeability values for different ∆min, see the blue squares 
and the red triangles, collapse onto a single curve. As expected, Eq. (3.13), the proposed 
model based on shortest DT edges 1

Tγ  (or 2nd nearest neighbor distances, 2γ ) is valid at 

moderate and high porosities (i.e. the range of interest in composites manufacturing, 
* 0.3ε ≥ ), see the solid blue line. However, at very dense regime, i.e. * 0.3ε < , Eq. 

(3.C.1) fits better to my FE results, see the solid red line. For comparison, the analytical 
prediction for ordered arrays (square and hexagonal configurations), i.e. Eq. (3.12) is also 
shown with dashed lines. 

 

Appendix 3.D Purely empirical, macroscopic permeability-porosity relation 
based on asymptotic solutions 

In this appendix, based on analytical predictions of permeability for dilute and dense 
regimes, I present an empirical macroscopic relation for the permeability in terms of 
macroscopic porosity. Based on a unit cell approach, Drummond and Tahir [10] modeled 
analytically the flow around a fiber and obtained (applicable at high porosities): 

( ) ( ) ( ) ( ) ( ) ( )
( )

2 5
4

2

1 2.534 11
ln 1 1.497 2 1 0.739 1 .

32 1 2 1 1.2758 1
DK

d

ε ε
ε ε ε

ε ε
 − −

= − − − + − − − − + 
 − + − 

(3.D.1) 

Similar to Ref. [8] and using the linear least square method, the linear correction, ( )g ε   

to the Drummond relation, leads to a corrected permeability for 0.7ε >  as: 

( )1 21 ,CD DK d K d ε= +      with        1 0.97d = ,  2 0.18d =  ,                                        (3.D.2) 
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with a maximum error of less than 5%. Similarly, the corrected lubrication theory of 

hexagonal arrays, 

2.5

2 * 1
/ 1

1

r
c

GK d C
ε
ε

 −= − 
 − 

 in Eq. (3.C.1) is valid with maximum 

discrepancy of less than 5% at low porosities, 0.5ε < . To combine these two limit cases, 
I propose the following empirical merging function:  

( ) ( )G CD GK K K K p ε= + −  with ( ) ( )( )1 tanh /

2
h tp

ε ε ε
ε

+ −
= , 0.67hε ≅ , 0.1tε ≅ ,  

(3.D.3) 

that is valid for the whole range of porosity, with maximum deviations of less than 5% 
that also includes the analytical relations for the limit cases, see the dashed blue line in 
Fig. 3.6. While the choice of ( )p ε  is arbitrary, the nonlinear least square fitting 

procedure is used to obtain the empirical coefficients hε  and tε .  
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Figure 3.C1: Variation of scaled normalized permeability plotted against porosity. 
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Abstract 

Owing largely to multiscale heterogeneity in the underlying fibrous structure, the physics 
of fluid flow in fibrous media is incredibly complex. This is particularly important in the 
hydrologic sciences wherein all geologic formations are heterogeneous over a hierarchy 
of scales in space, and from a process perspective, in time as well.  

The microstructure at various porosities has a strong effect on the transport properties, 
such as permeability, of fibrous materials. In this chapter, several order parameters, based 
on Voronoi and Delaunay tessellations, are introduced to characterize the microstructure 
of randomly distributed non-overlapping fibre arrays. In particular, by analyzing the 
mean and the distribution of the topological and metrical properties of Voronoi polygons, 
we observe a smooth transition from disorder to order, controlled by the effective packing 
fraction. Using fully resolved finite element (FE) simulations of Newtonian, 
incompressible fluid flow perpendicular to the fibers, the macroscopic permeability is 
calculated in creeping flow regimes. The effect of fibre arrangement and local crystalline 
regions on the macroscopic permeability is discussed in detail. A simple microstructural 
model based on the lubrication theory of narrow channels is presented and its validity and 
limitations are highlighted.  

Finally, I verify the validity of macroscopic Darcy’s law at various length scales, using 
both uniform and nonuniform Voronoi/Delaunay cells, in a wide range of porosities. In 
this hierarchical upscaling method, the system is divided into a recursive hierarchy of 
cells. At each cell size, the average value and probability distributions of macroscopic 
quantities, such as superficial fluid velocity and macroscopic permeability, are obtained 
and compared with the macroscopic permeability in Darcy’s law.1  

 

 

Highlights 

• I relate the macroscopic flow properties to microscopic fibre arrangements. 
• Several statistical properties of Voronoi polygons and Delaunay triangulation, 

constructed using the centers of the fibres, are used to characterize the microstructure. 
• The same data structure is used for coarse graining the fluid velocity and pressure 

gradient. 
• I verify the validity of Darcy’s law at various length scales. 
 

                                                 
1 K. Yazdchi and S. Luding, Fibrous materials: Microstructure and macroscopic properties, (2012) in 
preparation. 
K. Yazdchi and S. Luding, Upscaling the transport equations in fibrous media, ECCOMAS (2012), 2 pages, 
Vienna, Austria. 
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4.1 Introduction 

Fluid flow through fibrous materials has a wide range of applications including, 
composite materials, fuel cells, heat exchangers, (biological)filters and transport of 
ground water and pollutants [1]. Permeability, i.e. the ability of the fluid to flow, is 
perhaps the most important property in their manufacturing. Prediction of the 
macroscopic permeability is a longstanding but still challenging problem that dates back 
to the work of Happel [2] and Kuwabara [3] with more recent contributions by Sangani 
and Acrivos [4], Drummond and Tahir [5], Gebart [6] and Bruschke and Advani [7]. 
Most of these models/predictions are complex with limited range of validity. For 
example, Gebart [6] presented an expression for the transverse permeability based on the 
lubrication approximation valid for ordered structures, which are different from the 
generally disordered fibrous materials. For a review of the theory, predictability and 
limitations of theses models see [8] and references therein. 

Darcy’s law is the most widely used empirical relation for the calculation of the pressure 
drop across a homogeneous, isotropic and non-deformable porous medium. It states that, 
at the macroscopic level and the limit of creeping flow regimes, the pressure gradient 

p∇ , and the flow rate have a linear relation given by 

p U
K

µ−∇ = ,                                                                                                                   (4.1) 

where µ and U are viscosity and horizontal superficial (discharge) velocity, respectively. 
The proportionality constant K, is called the permeability of the medium and it strongly 
depends on the microstructure (e.g. fibre/particle shape and arrangement, void 
connectivity and inhomogeneity of the medium) and porosity. Darcy's law was originally 
obtained from experiments [9] and later formalized using upscaling [10], homogenization 
[11] and volume averaging [12] techniques. It has been shown that Darcy's law actually 
represents the momentum equation for Stokes flow averaged over a representative 
volume element (RVE). In fact in this representation, all complicated interactions 
between fluid and solid (fibres) are lumped into the permeability (tensor), K. 

The lack of a microscopic foundation has motivated the development of relationships 
between macroscopic parameters, like permeability, and microstructural parameters, like 
fibre arrangements, shape and orientation or tortuosity (flow path). Chen and 
Papathanasiou [13, 14] computationally investigated the flow across randomly distributed 
unidirectional arrays using the boundary element method (BEM) and found a direct 
correlation between permeability and the mean nearest inter-fibre spacing. Papathanasiou 
[15] performed a similar study for unidirectional square arrays of fibre clusters (tows) 
using the BEM. His employed unit cells are therefore characterized by two porosities: (i) 
inter-tow porosity, determined by the macroscopic spatial arrangement of the tows, and 
(ii) intra-tow porosity, determined by the fibre concentration inside each tow. He showed 
that the effective permeability of assemblies of fibre clusters depends strongly on the 
intra-tow porosity only at low inter-tow porosity. In a recent study (chapter 3), Yazdchi et 
al. [16] proposed a power law relation between the transverse permeability obtained from 
finite element (FE) simulations and the mean value of the shortest Delaunay triangulation 
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(DT) edges, constructed using the centers of the fibres. For sedimentary rocks, especially 
sandstones, Katz and Thompson [17] suggested, using percolation theory, a quadratic 
relation between permeability and microstructural descriptors for rocks, i.e. the critical 
pore diameter. Despite all these attempts, the effect of microscopic fibre 
arrangements/structures, controlled by the effective packing fraction, on macroscopic 
permeability is still unclear. 

The objective of this chapter is to (i) computationally investigate transverse flow through 
random fibre arrays in a wide range of porosities, (ii) understand and characterize the 
microstructure, i.e. the ordered and disordered states, using several order parameters, (iii) 
establish a relationship between macroscopic permeability and the microstructure of the 
fibrous materials and (iv) verify the validity of the empirical Darcy’s law at various 
length scales.  

To this end, the algorithm used to build the initial fibre configurations and the numerical 
finite element (FE) procedure for solving flow/momentum equations are presented in 
Section 4.2. In Section 4.3, the geometrical (Voronoi tessellation) and bond orientational 
order parameters are introduced to quantify the microstructure. In particular, the 
transition from disordered to ordered regimes is discussed in detail. The connection 
between structural (dis)order and macroscopic permeability is explained using shortest 
Delaunay triangulation edges in Section 4.4. Finally, the validity of Darcy’s law at 
different length scales is investigated by dividing the system into both smaller uniform 
cells and irregular Voronoi/Delaunay polygons/triangles in Section 4.5. The chapter is 
concluded in Section 4.6 with a summary and outlook for future. 

 

4.2 Mathematical formulation and methodology 

A Monte Carlo (MC) approach was used to generate N=3000 randomly distributed, non-
overlapping fibre/disc arrays in a square domain with length, L. Given an initial fibre 
configuration on a triangular lattice, the MC procedure perturbs fibre centre locations in 
randomly chosen directions and magnitudes [13, 14]. The perturbation was rejected if it 
leads to overlap with a neighboring disk (up to 104 perturbations were used in our 
simulations). With this procedure, we were able to generate various packings at different 
porosities, ε=1-Nπd2/(4L2) with d the diameter of fibres, varying from dense/ordered 
(ε=0.3) to very dilute/disordered (ε=0.95) regimes. Fig. 4.1 shows a schematic of such a 
packing, the fibre long axis is normal to the flow direction, at porosity ε=0.6. Due to 
wall/edge effects, only the center part of the system will be analyzed. The effect of 
several microstructural parameters such as method of generation, system size, 
wall/periodic boundaries have been discussed elsewhere [16], see chapters 2 and 3. 

The FE software ANSYS® was used to calculate the horizontal superficial (discharge) 
velocity, U, from the results of my computer simulations as 

2

1 1

f

e e
eA

U udA u A
A L

= = ∑∫ ,                                                                                            (4.2) 
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where A, Af and u are the total area of the unit cell, the area of the fluid and the intrinsic 
fluid velocity, respectively. The subscript “e” indicates the corresponding quantity for 
each triangular element. Using Eq. (4.1), the permeability of the fibrous media can then 
be calculated. On the flow domain, the steady state Navier–Stokes equations combined 
with the continuity equations were discretised into an unstructured, triangular mesh. They 
were then solved using a segregated, sequential solution algorithm. The developed 
matrices from assembly of linear triangular elements are then solved based on a Gaussian 
elimination algorithm. Some more technical details are given in Refs. [8, 16]. At the left 
and right pressure- and at the top and bottom and surface of the particles no-slip 
boundary conditions, i.e. zero velocity is applied. Similar to Chen and Papathanasiou [13, 
14], a minimal distance, ∆min=dmin/d=0.05 is needed in 2D to avoid complete blockage. I 
assigned a virtual diameter ( )*

min1d d= + ∆  to each fiber, leading to the virtual porosity 

( )( )2*
min1 1 1ε ε= − − + ∆ . While ε  represents the porosity available for the fluid, *ε  (i.e. 

porosity with artificially enlarged particles) is actually used for packing generation. The 
effect of ∆min on fibre arrangement and macroscopic permeability is investigated in [16] 
(chapter 3). The mesh size effect was examined by comparing the simulation results for 
different resolutions (data not shown here). The number of elements varied from 5×105 
to 106 depending on the porosity regime. The lower the porosity the more elements are 
needed in order to resolve the flow within the neighboring fibres. The horizontal velocity 
field of such a simulation at porosity ε=0.6 is shown in Fig. 4.1. We observed some 
dominant flow channels, especially at low porosities, which contribute over-
proportionally to the fluid transport. More discussions on quantifying these channels and 
their relation to the macroscopic permeability are provided in Section 4.4. 

 

            
   
-10            -3.3                 3.3                 10                16.7              23.3                30               36.7                43.3             50 610−× [m/s] 

Figure 4.1: Illustration of N=3000 randomly distributed fibres (particles) using a Monte 
Carlo procedure at porosity 0.6ε =  with minimum inter fibre distance ∆min=0.05. The 

zoom shows the corresponding horizontal velocity field. 
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4.3 Microstructure characterization 

An important element in understanding of fibrous materials is the description of the local 
fibre arrangements and the possible correlations between their positions. The classical 
way for characterizing the structure, like disorder to order transition, is by inspection of 
its radial distribution function g(r), which is defined as the probability of finding the 
centre of a fibre inside an annulus of internal radius r and thickness dr [13-14, 16, 18]. As 
the crystallization begins to occur at moderate porosities, peaks appear for values of r 
which correspond to the second (linear) neighbors in a hexagonal lattice in 2D or a FCC 
or HCP arrangements in 3D. The complete randomness of the fibre distribution on larger 
scale will assure that g(r)=1. However, as pointed out by Rintoul and Torquato [19], this 
method is unsatisfying for two reasons: on the one hand the absence of clear peaks does 
not necessarily mean the absence of crystallization, and on the other hand it is difficult to 
determine exactly when the peak appears. In this section, I propose another way to 
characterize more quantitatively the microstructure of my 2D, non-overlapping fibre 
packings, namely by analyzing (i) the statistical geometry of the Voronoi/Delaunay 
tessellation and (ii) the bond orientational order parameter, in a wide range of porosities. 

 

4.3.1 Voronoi diagram (VD) 

The Voronoi tessellation can be used to study the local and/or global ordering of packings 
of discs/fibres in 2D. Motivation stems from their variety of applications in studying 
correlations in packings of spheres [20, 21], analysis for crystalline solids and super-
cooled liquids [22, 23], the growth of cellular materials [24], and the geometrical analysis 
of colloidal aggregation [25] and plasma dust crystals [26]. For a review of the theory and 
applications of Voronoi tessellations, see the books by Okabe et al. [27] and Berg et al. 
[28], and the surveys by Aurenhammer [29] and Schliecker [30].  

For equal discs as considered here, given a set of two or more but a finite number of 
distinct points (generators) in the Euclidean plane, we associate all locations in that space 
with the closest member(s) of the point set with respect to the Euclidean distance. The 
result is a tessellation, called Voronoi diagram, of the plane into a set of regions 
associated with members of the point set, see thick red lines in Fig. 4.2. This construction 
is unique and fills the whole space with convex polygons. In a hexagonally close packed 
(densest) configuration, i.e. * 0.093hexε ≅ , the Voronoi tessellation consists of regular 

hexagons. It allows us to define the notion of ‘‘neighbor’’ without ambiguity for any 
packing fraction: two spheres/discs are neighbor if their Voronoi polyhedra share one 
face/edge. It can be easily generalized to radical tessellation for polydisperse assemblies 
of spheres [31] or discs [32] by using the Laguerre distance between obstacles, which 
takes into account the size of each point species. 

The Delaunay triangulation (DT) is the dual graph of the Voronoi diagram. This graph 
has a node for every Voronoi cell and has an edge between two nodes if the 
corresponding cells share an edge, see thin blue lines in Fig. 4.2. DT cells are always 
triangles in 2D, and are thus typically smaller than Voronoi cells. 
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Recently, various studies have focused on the geometrical properties of Voronoi 
tessellations resulting from random point processes, i.e. 1ε = , to densely packed hard 
discs or spheres. In particular, Zhu et al. [33] and Kumar and Kumaran [34] observed that 
by decreasing the porosity the degree of randomness of the tessellation is decreased - the 
probability distribution functions (PDFs) of the statistical properties of the geometrical 
characteristics become more and more peaked and narrower - until the unique critical 
value of a regular tessellation, i.e. of hexagonal cells, is adapted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               (a)                                                                       (b) 

Figure 4.2:  Illustration of the Voronoi (red line) and Delaunay (blue lines) tessellations 
for the center part of a system of identical discs at (a) dilute, 0.8ε =  and (b) dense, 

0.4ε =  regimes for ∆min=0.05. 

In order to gain further insight into the relative arrangement of the Voronoi cells, their 
topological correlations and metric properties have been studied in the following. In 
particular, I focus on (i) the distribution and evolution of the number of faces, p(n) 
together with their 2nd and 3rd moments and (ii) the shape and regularity (or isotropy) of 
the Voronoi polygons at different porosities. 

 

4.3.1.1 Topological correlations for Voronoi tessellations 

This section is dedicated to the study of the evolution of the probability distribution of n-
sided polygons, p(n) when changing the porosity. Note that only the information obtained 
from the inner discs, which were at least 5 disc diameters away from the wall, was 
included in my analysis. This treatment should satisfactorily eliminate the wall/edge 
effects up to high densities. To get better statistics, the results were averaged over 10 
realizations with 104 MC perturbations. The two straightforward conservation laws are 
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( ) 1
n

p n =∑      (normalization),           and                                                                     (4.3) 

( ) 6
n

np n =∑    (the average number of edges is 6),                                                       (4.4) 

as the consequence of the Euler theorem [27, 35]. The distributions of the cell topologies, 
p(n) of Voronoi tessellations, generated at various porosities are observed to follow a 
discretised and truncated Gaussian shape (not shown here). The perfectly ordered 
structure is manifested by hexagonal cells, i.e. n=6 and p(n)=1, and disorder/randomness 
shows up as the presence of cells with other than six sides (topological defects). The 
increase of disorder in the disc assemblies at high porosities leads to an increase of the 
topological defect concentration, i.e. a broadening of p(n). 

In the literature, both the topological defect concentration 1-p(6), and the variance (2nd 

central moment) ( ) ( )( )2 222
2 6

n

n n n n p n nµ = − ≡ − ≡ −∑  of the cell topologies, 

are used as measures of the degree of disorder [36-40]. Lemaítre et al. [40] were, to my 

knowledge, the first to suggest that the equation of state ( )( )2 6f pµ =  could be 

universal in mosaics. In this sense, all information about topological disorder in these 
systems is contained in p(6). Astonishingly, Lemaítre’s law holds very robustly for most 
of experimental, numerical, and analytical data [36-41].  

Fig. 4.3(a) shows the correlation between p(6) and the topological variance2µ  for 

different microstructures and at various porosities. In the ordered regime, i.e. 

( )6 0.65p > , mainly 5, 6 and 7 sided polygons with ( ) ( ) ( )( )5 7 1 6 / 2p p p≅ ≅ −  occur, 

and by applying the maximum entropy principle with the constraints in Eqs. (4.3) and 
(4.4) [39], one obtains ( )2 1 6pµ = − ; it has the trivial virial expansion that corresponds 

to an ideal gas. By increasing the porosity, i.e. 0.45ε >  or * 0.39ε > , one enters the 

disordered regime and ( )( )2
2 1/ 2 6pµ π≅ . Finally, in the limit of vanishing density 

( 1ε = ), the discs are randomly distributed and one has ( )6 0.3p ≅  and 2 1.78µ ≅ . This 

limit is obtained by analyzing the Voronoi polygons generated from 107 randomly 
distributed points. The transition porosity * 0.39tε ≅  can be more clearly determined by 

plotting the third central moments of the n-sided polygon distributions, ( )3

3 n nµ = −   

against porosity, as shown in Fig. 4.3(b). Note that this value is still far above the random 
close packing limit * 0.16rcpε ≅  [42], as compared also to the minimum hexagonal lattice 

porosity * 0.093hexε ≅ , the freezing point * 0.309fε ≅  [43] or the melting point * 0.284mε ≅  

[43]. 
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Figure 4.3: (a) The correlation between p(6) and the topological variance2µ  for various 

structures and porosities. The analytical theories, represented by solid lines, are 
calculated by the Maxent method [39]. (b) Variation of the third moment of n-sided 

polygon distributions, 3µ  plotted against porosity. The transition from order to disorder 

occurs at 0.45tε ≅ ( * 0.39tε ≅ ). 

 

4.3.1.2 Metric properties 

The metrical properties of two-dimensional froths are often studied in terms of the 
average n-sided cell areas, nA  or the average cell perimeters, nL . Lewis’s law [44] 

and Desch’s law [45] are two empirical relations which state that the average cell areas 
and perimeters vary linearly with n for certain systems, while for others nonlinear analogs 
have been observed [37, 46, 47]. Only recently, using the local, correlation-free 
granocentric model approach with no free parameters, Miklius and Hilgenfeldt [36] 
construct accurate analytical descriptions for these empirical laws in 2D and Clusel et al. 
[48] in 3D. 

Combining the cell area and its perimeters, I apply the concept of shape factor, to further 
quantify the shape/circularity of the Voronoi cells as 

 
2

4

L

A
ζ

π
= .                                                                                                                      (4.5) 

In this dimensionless representation, two Voronoi polygons can have the same number of 
sides, n, but different values of ζ  (due to the irregularity of the polygons), since one of 
the advantages is that the shape factor, ζ  is a continuous variable while n is discrete. 
This quantity was recently used to study crystallization of 2D systems, both in simulation 
[49] and experiment [18, 50, 51]. By construction, 1ζ =  for a perfect circle, and is larger 
for more rough or elongated shapes, like pentagons or heptagons. For a hexagonal lattice 
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(densest packing) one has 1.103hexζ =  and, in general, for a regular n-sided polygon 

( ) ( )/ tan /n nζ π π= .  

The shape factor distributions, ( )p ζ  and the way they change with porosity are 

displayed in Fig. 4.4(a). For dilute systems (disordered regime), ( )p ζ  exhibits a broad 

and flat distribution with values above hexζ , maximum at about 1.25ζ ≃  and an 

exponential tail. In this case, in fact, the particles are randomly distributed with no 
preferential type of polygons. At lower porosities, this peak progressively moves towards 
lower values, i.e. to more circular domains, and eventually bifurcates into two sharper 
peaks. Fig. 4.4(b) shows the average shape factor, ζ  taken over all polygons at 

different porosities for various system sizes (number of particles, N). The numerical 
results show that ζ  is not noticeably affected by system size. Interestingly, one 

observes that it increases almost linearly with porosity (for 0.3 0.85ε< < ). A similar 
linear dependence was observed for packing configurations obtained from a different 
generation algorithms, namely an energy minimization approach [16] (data not shown 
here). Unlike the data presented in Fig. 4.3, the trend does not indicate a change at the 
transition porosity 0.45tε ≅  ( * 0.39tε ≅ ), and therefore this is not a good criterion for 

detecting the order to disorder transition. Finally, in the limit of random point 
distributions one has 1.4ζ ≅ .  

A drawback of the shape factor is that, with this definition, the regularity (or isotropy) of 
the Voronoi polygons can not be deduced. In other words, how far each vertex of a 
polygon deviates from the principal axis. This can be answered by the dimensionless 
parameter, Φ  defined as 

1 2

1 2

I I

I I

−Φ =
+

,                                                                                                                   (4.6) 

where I1 and I2 are area moments about the principal axes of a polygon. For all Voronoi 
shapes, Φ  varies between zero and unity, although my numerical results show that it 
does not exceed a maximum value corresponding to a random cloud of points 0.43Φ ≅  
(see Fig. 4.5). For the polygons which are “isotropic”, like hexagons, one has 1 2I I≅  and 

therefore 0Φ ≅ . Polygons which are stretched along one of their principal axes have 
larger values of Φ , with 1Φ =  for as possible maximum. 

 

 



Chapter 4. Upscaling the transport equations: Microstructural analysis 

 93 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

-1

10
0

10
1

10
2

ζ

p(
ζ)

ε = 0.4
ε = 0.6
ε = 0.7
ε = 0.9

(a)

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

ε

< ζ
>

N = 3000
N = 800
N = 200

(b)

Hexagonal lattice:
(ε = 0.177, <ζ> ≈1.103)

Random points:
(ε = 1, <ζ> ≈1.4)

~ 0.34

 

Figure 4.4: (a) The probability distribution of the shape factor, ζ  at different porosities. 
(b) Average shape factor plotted against porosity for different number of fibres/discs. The 

solid red line shows the best linear least square fit. All data are averaged over 10 
realizations with 104 MC perturbations. 

 

Fig. 4.5 shows the average Φ  taken over all polygons against porosity. As the porosity 

increases, the Φ  also increases, indicating a more anisotropic shape, until it reaches its 

maximum value for random points, i.e. 0.43Φ ≅ . Interestingly, two linear functions with 
different slopes can be fitted to the disordered and ordered regimes. Just as was observed 
in Fig. 4.3(b), the transition (crossing of the two lines) occurs at 0.45tε ≅  ( * 0.39tε ≅ ).  
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Figure 4.5: Variation of average Φ  plotted against porosity. The solid lines show the 

best linear least square fits. Similar to the ( )( )2 6f pµ =  relation, the transition from 

order to disorder occurs at 0.45tε ≅  ( * 0.39tε ≅ ). 

 

4.3.2 Bond orientational order parameter 

The bond orientation angle, 6ψ , which is defined in terms of the nearest-neighbor bond 

angles, measures the hexagonal registry of nearest neighbors. This quantity has been used 
to detect local/global crystalline regions both in 2D and 3D, see for example [52-56] and 
references therein. The sixfold global bond-orientational order parameter of the 2D hard 
disk system is defined as 

6
6

1 1

1 1 i
ij

nN
ig

i ji

e
N n

θψ
= =

= ∑ ∑ ,                                                                                                   (4.7) 

where ijθ  is the angle between particle i and its neighbors j with respect to an arbitrary 

but fixed reference axis, and ni denotes the number of nearest neighbors of particle i. 6
gψ  

is sensitive to (partial) crystallization and increases significantly from 6 ~ 0gψ  for a dilute 

system to 6 1gψ =  for a perfect hexagonal lattice. 

 A more local measure of orientational order can be obtained by evaluating the bond-
orientational order of each particle individually, and then averaging over all particles to 
give 

6
6

1 1

1 1 i
ij

nN
il

i ji

e
N n

θψ
= =

= ∑ ∑ .                                                                                                   (4.8) 

such a local measure of order is more sensitive to small local crystalline regions within a 
packing compared to its global counterpart 6

gψ , and thus avoids the possibility of 

“destructive” interference between differently oriented crystalline regions [56]. Since 6
gψ  

and 6
lψ  differ in the averaging procedure, they yield different numerical values.  

The first step in evaluating 6ψ , which was not precisely addressed before, is to detect the 
nearest neighbors of a reference particle i.  Fig. 4.6(a) shows the sensitivity of the local 

6
lψ  to the number of nearest neighbors obtained from (i) a cutoff distance taken from the 

first minimum in the radial distribution function, g(r) (ii) Voronoi/ Delaunay neighbors or 
(iii) using up to and including the 6 nearest neighbors. Although the average of Voronoi 
neighbors is 6 (Eq. (4.4)), the local 6

lψ  calculated on the Voronoi neighbors have lower 

values than the ones calculated from the 6 nearest neighbors. Voronoi neighbors and the 
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neighbors based on the cutoff distance result in almost the same numerical values. For 
decreasing porosity, the local 6

lψ  rises sharply at 0.45tε ≅ , indicating highly correlated 

local order. However, the transition is not sharp, since the order parameter increases 

slightly for 0.7ε ≤ . In very dilute regimes, the local order parameter ( )6 0.21l

ran
ψ ≅  is 

larger than zero, leading to the interesting question of whether there is a minimum, 
nonzero value of this parameter for a random system. A possible answer is that in random 
hard disk structures, there are still some local crystalline regions, due to the lack of 
geometric frustration, which are not correlated. In Fig. 4.6(b) the numerical values of the 
global, 6

gψ  and local, 6
lψ  are compared and plotted against porosity, using the Voronoi 

neighbors.  Unlike the local definition, the global 6
gψ  is almost zero in the disordered 

regime, due to phase cancellations, and increases sharply at 0.37ε ≅  , i.e. the freezing 
point [43], with the onset of hexagonal order.  
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Figure 4.6: (a) Illustration of the sensitivity of the local 6
lψ  to the nearest neighbor 

selection method. (b) Variation of the global, 6
gψ  and the local, 6

lψ  bond orientational 
order parameter plotted against porosity, using the Voronoi neighbors. 

 

Beyond the classification of the microstructure, one would like to understand how 
(dis)order affects the transport properties, like permeability, of the fibrous material. This 
is the topic of the next section. 

 

4.4 Macroscopic properties 

Recently, Yazdchi et al. [16] (chapter 3) showed that the mean values of the shortest 
Delaunay triangulation (DT) edges are nicely correlated with the macroscopic 
permeability at dilute and moderate porosities. In this section, I elaborate more on 
characterizing of these channels (edges). 
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4.4.1 Effective channels based on Delaunay triangulations  

Similar to previous chapter, I define γ  as the mean channel width (gap), i.e. surface-to-

surface distance based on the shortest Delaunay edges te , (averaged over Delaunay 

triangles) normalized by the fibre diameter, ( ) /te d dγ = − . Fig. 4.7 shows these 

shortest edges with channel width indicated by line thickness. These edges form a 
percolated edge-network channels through which the flow must go and, therefore 
correlate nicely with the permeability (see next section). Fig. 4.8 shows the PDF of 
widths and the histogram of the orientations of these channels. The distribution of the 
width of the channels, ( )p γ  undergoes a transition from a very wide distribution to a 

narrower with increasing peak at lower γ , and eventually to a steep exponential 
distribution as the porosity decreases. For a perfect triangular lattice it reduces to exactly 
the inter fibre (surface-to-surface) distance, i.e. min 0.05γ = ∆ = . The orientation of the 

channels is not much affected by the porosity and remains isotropic (no preferential 
direction) even for partially ordered structures at 0.4ε = . 

 

    

                                    (a)                                                              (b) 

Figure 4.7: The minimum Delaunay edges plotted for each Delaunay triangle for (a) 
dilute, 0.8ε =  and (b) dense, 0.4ε =  systems. The link between two particles is thicker 

when the channel is wider. Only the center part of the system is shown. 
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Figure 4.8: (a) The probability distribution function of shortest Delaunay edges, γ  at 
different porosities. (b) Polar histogram of the orientation of shortest Delaunay edges. All 

data are averaged over 10 realizations with 104 MC perturbations. 

 

4.4.2 Permeability calculation 

Based on the Navier-Stokes equation, Gebart [6] derived the permeability of an idealized 
unidirectional reinforcement consisting of regularly ordered, parallel fibres both for flow 
along and for flow perpendicular to the fibres. The solution for flow along fibres has the 
same form as the Carman-Kozeny (CK) equation [8, 57], while the solution for transverse 
flow has a different form  

2.5

2

1
1 ,

1
oK

C
d

ε
ε

 −= −  − 
                                                                                                 (4.9) 

where oε  is the critical porosity below which there is no permeating flow and C is a 

geometric factor ( 0.1C ≅ , 0.2146oε ≅  for square and 0.0578C ≅ , 0.0931oε ≅  for 

hexagonal arrays [6]). Eq. (4.9) can be rewritten in terms ofγ  as 

2.5
2

K
C

d
γ=  ,                                                                                                                  (4.10) 

which is exact for regular/ordered arrays and was shown to be valid also for disordered 
arrays at high and moderate porosities [16], with 0.2C ≅ . Relation (10) is remarkable, 
since it enables one to accurately determine the macroscopic permeability of a given 
packing just by averaging the narrowest Delaunay gaps, γ  from Delaunay triangles. Fig. 
4.9(a) shows the variation of the normalized permeability (in red) as a function of γ  

together with the local bond orientational order parameter, 6
lψ  (in blue). The structural 

transition from disorder to order, indicated by strong increase in 6
lψ , directly affects the 

macroscopic permeability. In disordered regimes the permeability data nicely collapse on 
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the theoretical power law relation (Eq. (4.10)). However, by appearance the local 
crystalline regions at 0.45ε > , the data start to deviate from the power law. In fact the 
lubrication theory, i.e. Eqs. (4.9) or (4.10), are only valid for perfectly ordered 
(hexagonal/square) or disordered (random) configurations with different pre-factor, C. 
System that is partially ordered has lower permeability compared to the predicted value 
in Eq. (4.10), i.e. (K/d2)ran, due to stagnancy of the fluid between fibre aggregates or 
within crystalline regions of close-by fibres. With decreasing porosity the data deviate 
from the solid line showing the appearance of ordering in the structure.  In chapter 3, I 
showed that this deviation can be represented by an exponential term, see Eq. (3.13). Fig. 
4.9(b) shows that indeed for both permeability and local bond orientation order 

parameter, this deviation, i.e. 1 /p ranK Kχ = −  and ( )
6

6 61 /l

l l

ranψχ ψ ψ= −  respectively, 

can be well represented by exponential term. 
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Figure 4.9: (a) Variation of normalized permeability (in red) and local bond orientational 
parameter (in blue) as function of mean shortest Delaunay gaps, γ . The solid line 

represents the power law, Eq. (4.10), obtained from lubrication theory. At the transition 
porosity 0.45tε ≅ , the permeability data start to deviate strongly from the solid line. (b) 

Deviation of normalized permeability and local bond orientation order parameter from 

their random (disordered) values, i.e. 1 /p ranK Kχ = −  and ( )
6

6 61 /l

l l

ranψχ ψ ψ= −  

respectively, plotted against γ . 

 

4.5 Darcy’s law – upscaling the transport equations 

The empirical law of Darcy, Eq. (4.1), is the key constitutive equation required to model 
up-scaled (under)ground water flow at low velocities and to predict the permeability of 
porous media. Though the volume-averaged equations, like Darcy’s law, are used 
extensively in the literature, the method relies on length- and time-scale constraints which 
remain poorly understood. The macroscopic transport properties, such as permeability, 
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are linked to more fundamental equations describing the microscale behavior of fluids in 
porous materials [1].  

In this section, I verify the validity of the macroscopic phenomenological Darcy’s law at 
various length scales in a wide range of porosities and recognize that the application of 
the pore-scale analysis requires characterization of the pore-scale geometry (and/or size) 
of the porous material. The Voronoi/Delaunay tessellation and their statistics are 
employed to obtain this essential geometrical (and/or length-scale) information. 

 

4.5.1 Uniform cells 

In order to study the validity of Darcy’s law at different length scales, I divide my system 
at porosity 0.6ε =  into smaller uniform cells as shown in Fig. 4.10(a). The 
corresponding fully resolved horizontal velocity field is shown in Fig. 4.10(b). Since we 
have sufficient number of elements between neighboring fibers, i.e. at least ~10 elements, 
all the velocity fluctuations and flow patterns can be captured at this length-scale. By 
upscaling (smoothing out) the velocity field, the permeability of each square cell, Kc can 
be calculated from Darcy’s law, as: 

c
c

c

U
K

p

µ=
∇

,         with              
1

c c

c

c e e
ec

U u A
A

= ∑ ,    2
c cA a= ,                                      (4.11) 

where Uc, ca , ec and ( ) ( )/ 2 / 2 /t b t b
c r r l l cp p p p p a ∇ = + − +   (t, b, r and l represent the 

pressure values at top, bottom, right and left sides of the cell, respectively) are average 
velocity, cell length, the elements within the cell and the pressure gradient for each 
individual cell, respectively. The variation of average cell velocity, Uc at porosity 0.6ε =  
for the different cell areas, Ac normalized by the particle area, 2 / 4pA dπ=  is shown in 

Fig. 4.10(c) and (d) for / 20c pA A ≅  and / 160c pA A ≅ , respectively. At higher 

resolutions, i.e. smaller /c pA A , we see larger fluctuations (i.e. more flow 

heterogeneity/details) around the macroscopic average velocity, 64.07 10U −= × [m/s] 
obtained for the whole system, using the parameters specified in Section 4.2. This can be 
observed more clearly from the PDF of the cell average velocities, Uc at different 
resolutions as shown in Fig. 4.11(b). For small averaging cells, i.e. / ~ 1c pA A , the 

probability distribution of average cell velocities, ( )cp U  can be described by the two-

parameter Gamma distribution as 

( ) ( ) ( )1 exp ,c c cp U U U
θ

θλ θ
θ

−= −
Γ

     for    , 0θ λ > ,                                                      (4.12) 

where θ  and λ  are, by definition, shape and scale parameters and ( )θΓ  is the Gamma 

function. 
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Figure 4.10: (a) Centre part of N=3000 randomly distributed fibres (particles) at porosity 
ε =0.6. The red cells show the various averaging cell areas; (b) the corresponding 

horizontal velocity field. The variation of average velocity, Uc at porosity 0.6ε =  for the 
cell sizes of (c) / 20c pA A ≅ , and (d) / 160c pA A ≅ . 
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Figure 4.11: (a) The PDF of the cell porosity, cε  normalized with the macroscopic 

porosity, 0.6ε =  at different resolutions. The solid lines show the best fitted Gaussian 
distribution, see Eq. (4.14) for / 5c pA A =  (black line) and / 20c pA A =  (red line). (b) The 

PDF of the cell average velocities, Uc normalized with the macroscopic or mean value, U 
at different resolutions at porosity 0.6ε = . The solid lines show the best fitted gamma 

distribution, see Eq. (4.13) for / 1.25c pA A =  (black line) and / 5c pA A =  (red line).  

 

The mean value of Gamma distributed average cell velocities is cU U
θ
λ

= = . Written in 

terms of averaged velocity, ( )cp U  has only one free parameter which is 

( )
1

exp ,c c cU U U
p

U U U

θθθ θ
θ

−
      = −      Γ      

     for    0θ > .                                            (4.13) 

The value of θ  starts from 1θ = , i.e. exponential distribution, for small cell size, 
/ 1c pA A ≅  (see the black line in Fig. 4.11(b)) and increases to ~3 for larger cell sizes, 

/ 10c pA A ≅ . For larger / 20c pA A > , the ( )/cp U U  becomes more and more peaked and 

narrower. The PDF of cell porosities, ( )/cp ε ε  at the macroscopic (average) porosity 

0.6ε =  is shown in Fig. 4.11(a). We observed that at small cell sizes, the ( )/cp ε ε   

follows a uniform distribution, i.e. horizontal line. However, at larger resolutions, the 

( )/cp ε ε  is fitted best by a Gaussian distribution as 

2
/ 11 1

exp ,
22

c cp
ε ε ε
ε σσ π

 −   = −         
                                                                      (4.14) 



Chapter 4. Upscaling the transport equations: Microstructural analysis 

 102 

where σ  is the standard deviation of the data. By increasing the cell size, σ  decreases 
till it becomes only scattered points around the mean value, i.e. / 1cε ε ≃ . Similar 

behavior and distributions were observed at different porosities (data not shown here). 
Note that at all cell lengths, the mean value of average cell velocity, <Uc> or pressure 
gradients, < cp∇ > are equal to their total average velocity, U or pressure gradient, p∇  

(with maximum discrepancy of 2% due to ignoring the boundary elements, not shown 
here).  

Knowing the average velocity and pressure gradient for each cell, one can calculate, from 
Eq. (4.11), the permeabilities for each individual cell as shown in Fig. 4.12(a) as scattered 
data for different porosities and cell sizes. The solid line shows the macroscopic 
permeability obtained for the whole system.  
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Figure 4.12: (a) variation of normalized permeability as a function of porosity for various 
averaging cell sizes. The circles and squares correspond to ac/L@0.05 and ac/L@0.15, 

respectively. (b) Deviation of averaged permeability, <Kc> from macroscopic 
permeability, K  as a function of normalized cell area at different porosities.  

 

As expected, smaller cell areas lead to more scattered (fluctuating) permeabilities around 
the macroscopic value (black line). For sufficiently large cell sizes, i.e. ac~L, the average 
of cell permeabilities, <Kc> approaches the macroscopic permeability, K obtained for the 
whole system. Fig. 4.12(b) shows the deviation of <Kc> from the macroscopic 
permeability plotted against normalized cell area, Ac/Ap at different porosities. By 
increasing the normalized area, the deviation decreases linearly with slope ~ -1. 
Interestingly, this trend is almost the same at all porosities.  

In summary, the permeability for each cell is very sensitive to the averaging area with 
slow statistical convergence to the macroscopic value. Small areas, i.e. Ac~Ap, lead to 
more fluctuations in permeability in which the average, unlike velocity and porosity, will 
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not approach the macroscopic value. Incorporating the observed distributions in a more 
accurate stochastic drag closure (or permeability) for advanced, coarse fluid-particle 
simulations can be conducted in future. 

4.5.2 Unstructured cells  

To study the effect of shape of the averaging cell on the macroscopic permeability and 
averaging procedure, the Voronoi polygon and their dual graph, the Delaunay 
triangulations (DT) are employed as basic area in this section. 

The variation of average velocity at porosity 0.6ε =  is shown in Fig. 4.13 using (a) 
Delaunay triangulation and (b) Voronoi polygons as averaging area. The average Voronoi 
area <AVD> is always identical to the inverse of fibre density (number of fibres per unit 
area) equal to <AVD>=0.5. Similarly, the average Delaunay triangle area is half of the 
Voronoi areas, i.e. <ADT>=<AVD>/2=0.25. 

  

 

 

 

 

 

 

Figure 4.13: Variation of average velocity at porosity 0.6ε =  using (a) Delaunay 
triangulation and (b) Voronoi polygons as an averaging area. 

 

As expected using DT, due to smaller average cell area or higher resolution, one can 
capture more fluid details and distinguish the dominant fluid channels. 

The probability distribution function of cell porosities and average cell velocities at 
macroscopic porosity 0.6ε =  is shown in Fig. 4.14. We observe that the PDF of the 
average cell porosity not only depends on the cell sizes but also on the shape of the cell 
area. Although the average cell area for both VD and DT are relatively small, however 
the PDF of cell porosities can be fitted by a Gaussian distribution, i.e. similar to larger 
uniform cell sizes. Surprisingly, the PDF of average cell velocities is not much affected 
by the cell shape and can be well approximated by a Gamma distribution for all VD, DT 
or uniform cells with ~ 1θ , see Eq. (4.13).  
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Figure 4.14: The probability distribution function of (a) cell porosities and (b) average 
cell velocities at macroscopic porosity 0.6ε = .  

 

Fig. 4.15 shows the PDF of (a) pressure gradients and (b) normalized permeabilities 
using Voronoi cells at various porosities. We observed that PDF of pressure gradients in 
Voronoi polygons follows a Cauchy distribution as 

( )2 2

1
,

/ 1
VD

VD

p
p

p p p

α
π α

  ∇
 =   ∇ ∇ ∇ − +   

                                                                      (4.15) 

where α  is the scale parameter and specifies the half-width at half-maximum (HWHM). 
For an infinitesimal scale parameter (~ 0α ), the Cauchy distribution reduces to Dirac 
delta function. However, the PDF of permeabilities within each Voronoi cell can be best 
fitted to a Gamma distribution. The both pressure gradient and permeability distributions 
seem to be weakly dependent on macroscopic porosity. 

The physical interpretation and correlation between these probabilities is a challenge for 
future study. Another possible extension of the present study is to look at the distributions 
of pressure gradient or fluid velocity by going to coarser Delaunay or Voronoi cells, 
similar to the analysis we did for uniform cells, i.e. Fig. 4.11. 
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Figure 4.15: The probability distribution function of Voronoi cell (a) pressure gradients 
and (b) normalized permeabilities at various porosities. The solid lines show the best 

Cauchy distribution, Eq. (4.15), and Gamma distribution, Eq. (4.13), at porosity 0.6ε =  
in (a) and (b), respectively. 

 

4.6 Summary and conclusions 

The transverse permeability for creeping flow through unidirectional (dis)ordered arrays 
of fibers/cylinders has been studied numerically using the finite element method (FEM). 
Several order parameters were introduced and employed to characterize the transition, 
controlled by the effective packing fraction, from disorder to order. In the present 
context, the Voronoi and Delaunay diagrams are of interest as they provide information 
about nearest neighbors and structural properties of fibrous materials. In an ongoing 
research, the Delaunay triangulations have been also used both as a contact detection tool 
and a FE mesh in dense particulate flows [58].  

The disorder was characterized by the mean and distribution of local parameters, such as 
the number of faces, shape and regularity of Voronoi polygons, shortest Delaunay 
triangulation edges and bond orientational angle. The conclusions are: 

• The 3rd moment of probability distribution of six-sided Voronoi polygons shows 
an increase at transition porosity * 0.39tε ≅ . 

• The average shape of the Voronoi polygons, ζ  increases almost linearly by 

increasing the porosity regardless of the system size and packing generator 
algorithm. 

• The average area moment of the Voronoi polygons, Φ  increases linearly by 

increasing the porosity with larger slope in ordered regime compared to the 
disordered one. 
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• Locally ordered regions, which cause a drop in the macroscopic permeability, can 
be detected by local definition of bond orientational order parameter. 

• The shortest Delaunay triangulation edges (or effective flow channels), have a 
Gaussian and exponential distribution at high and low porosities, respectively. 
However, their orientation is not much affected by porosity. 

Recently, we observed that the structural transition also affects the flow behavior at 
inertial (high Reynolds number) regimes [59], see chapter 5 for detail.  

Finally, the validity of the macroscopic Darcy’s law at various length scales was studied 
using both uniform and Voronoi/Delaunay cells, in a wide range of porosities. The 
numerical results show that small averaging cell areas ( / ~ 1c pA A ) lead to heterogeneity 

in flow patterns in which the distribution and average values of permeabilities would 
deviate from its macroscopic values obtained for the whole domain. Furthermore, I found 
universal but different distributions for pressure gradient and permeabilities using 
Voronoi polygons as an averaging area. The application of proposed model/distributions 
for other macroscopic properties, like heat conductivity, and extension to 3D moving 
particles is a challenge for future work.  
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Abstract 

I give a comprehensive survey of published experimental, numerical and theoretical work 
on the drag law correlations for fluidized beds and flow through porous media, together 
with an attempt of systematization. Ranges of validity as well as limitations of commonly 
used relations (i.e. the Ergun and Forchheimer relations for laminar and inertial flows) 
are studied for a wide range of porosities. The pressure gradient is linear in superficial 
velocity, U for low Reynolds numbers, Re, referred to as Darcy’s law. Here, I focus on 
the non-linear contribution of inertia to the transport of momentum at the pore scale, and 
explain why there are different non-linear corrections in the literature. 

From fully resolved finite element (FE) results, for both ordered and random fibre arrays, 
(i) the weak inertia correction to the linear Darcy relation is third power in U, up to small 
Re~1-5. When attempting to fit the data with a particularly simple relation, (ii) a non-
integer power law performs astonishingly well up to the moderate Re~30. However, for 
randomly distributed arrays, (iii) a quadratic correction performs quite well as used in the 
Forchheimer (or Ergun) equation, from small to moderate Re.  

Finally, as main result, the macroscopic properties of random, fibrous porous media are 
related to their microstructure (arrangement) and porosity. All results (Re<30) up to 
astonishingly large porosity, ε ~0.9, scale with Reg, i.e. the gap Reynolds number, that is 
based on the average second nearest neighbor (surface to surface) distances. This 
universal result is given as analytical closure relation, which can readily be incorporated 
into existing multi-phase flow codes. In the transition regime, the universal curve actually 
can be fitted with a non-integer power law (better than ~1% deviation), but also allows to 
define a critical Regc~1, below which the third power correction holds and above which a 
correction with second power fits the data considerably better.1 

 

Highlights 

• Extensive review of experimental, numerical and theoretical work on drag law 
correlations 

• Finite element simulation of inertial flow through ordered and random fibre arrays 
• The macroscopic properties of fibrous media are related to their microstructure and 

porosity 
• Universal scaling of the friction factor with the “gap” Reynolds number up to Reg<10 
 
 

                                                 
1 K. Yazdchi and S. Luding, Towards unified drag laws for inertial flow through fibrous materials, 
Chemical Engineering Journal, 207 (2012) 35-48. 
A. Narvaez, K. Yazdchi, S. Luding and J. Harting, From creeping to inertial flow in porous media: a lattice 
Boltzmann - Finite Element comparison, JSTAT, (2012) submitted. 
K. Yazdchi, S. Srivastava and S. Luding, On the transition from creeping to inertial flow in arrays of 
cylinders, Proceedings of IMECE (2010), Vancouver, Canada. 
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5.1 Introduction 

Transport phenomena in porous media have been the focus and interest of numerous 
studies for the past decades. This interest stems from a wide range of applications in such 
industries as chemical, mechanical, geological, environmental, petroleum, etc [1-5]. The 
flow conditions encountered are broad enough to cover a wide range of Reynolds 
numbers (Re) and porosities. In practice, three distinct flow regimes are commonly 
defined in the literature in terms of Reynolds number: (i) stationary Darcy or creeping 
flow, (ii) steady, laminar inertial flow and (iii) unsteady chaotic/turbulent flow regimes. 
As an example, creeping flows (i.e. Re≪1) may be encountered in ground water flows, 
composites manufacturing and filtering, whereas inertial flows are found in applications 
such as heat exchangers or packed bed chemical reactors. Highly turbulent flow is 
expected, e.g., in gas-fluidized beds. The flow regimes studied in this chapter are limited 
to regimes (i) and (ii). Several macroscopic parameters are often needed to complete 
coarse grained models that are employed to describe such applications. This has 
motivated the research in the development of relationships to describe macroscopic 
parameters, such as permeability and inertial coefficients, for different kinds of porous 
media at various porosities and flow regimes. 

Most porous media are particulate, but some are composed of long particles/fibres and, 
therefore, may be considered as fibrous media. They are encountered in a variety of 
modern technology applications, predominantly in the manufacturing of fibre-reinforced 
composites, with extensive use in the aerospace and automobile industries. 

With the recent progress in computational and numerical tools, one can now perform 
detailed calculations of heavily loaded, fluid-particle flows, based on two-fluid models 
(TFM) and/or the discrete particle method (DPM) [3, 4]. However, these methods require 
the knowledge of several constitutive laws (i.e. the interphase momentum-transfer 
coefficient of the gas/fluid phase acting on the particles/solid). Accurate drag laws are a 
basic requirement in simulations based on DPM or TFM to be successfully used in the 
design and optimization of industrial processes. Such correlations have a strong 
dependence on the pore structure and pore-level physics, which generally requires them 
to be estimated experimentally or through the use of existing empirical relations.  

At the macroscopic level and in the limit of creeping flow regimes (Re~0), the pressure 
gradient p∇ , and the flow rate have a linear relation, known as Darcy’s law: 

p U
K

µ−∇ =  ,                                                                                                                  (5.1) 

where µ and U are viscosity and superficial (discharge) velocity, respectively. The 
proportionality constant K, is called the permeability of the medium, which strongly 
depends on porosity and microstructure (e.g., fibre/particle shape and arrangement, void 
connectivity and inhomogeneity of the medium). The effect of several microstructural 
parameters on macroscopic permeability was investigated for ordered (chapter 2) and 
disordered (chapter 3) fibrous media, see Refs. [5-7] and references therein.  
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Darcy's law was originally obtained from experiments [8] and later derived using 
upscaling [9], homogenization [10, 11] and volume averaging [12, 13] techniques. It has 
been shown that Darcy's law actually represents the momentum equation for Stokes flow 
averaged over a representative volume element (RVE), implying that it is valid only in 
the creeping flow regime [14].  

The effect of fluid inertia, on the other hand, is a more complex problem, lending itself to 
numerical rather than analytical treatment. Active research has been dedicated to derive 
adequate corrections to the linear relationship in Eq. (5.1) from numerical, theoretical, 
and experimental points of view. Koch and Ladd [15] and Hill et al. [16] simulated 
moderate Reynolds number flows through periodic and random arrays of aligned 
cylinders and spheres using the Lattice Boltzmann Method (LBM). They showed that the 
inertial term made a transition from being linear to being quadratic in random arrays. The 
inertial effect became smaller at the volume fraction approaching close packing due to 
increased drag forces through the narrowing channels. The experimentation that proved 
this nonlinear relation was carried out by Forchheimer [17], who indicated that there 
exists a quadratic term of the flow rate when the Reynolds number is sufficiently high. 
While the LBM has been successfully applied for the simulation of porous media flow in 
the creeping regime [18-20], its applicability for high Reynolds numbers has been the 
subject of more speculation and debate due to selection of parameters, resolution and the 
necessity to reduce compressibility effects [21, 22]. Andrade et al. [23] demonstrated 
that, for a 2D disordered porous structure at high porosity, the incipient departure from 
the Darcy law could be observed already in the steady, laminar inertial flow before 
arriving at turbulent/chaotic regime.  

To date, mainly empirical relations, such as by Ergun [24], and their components, the 
Carman-Kozeny (viscous term) and Burke-Plummer (inertial term) equations, have 
proved to be quite useful for predicting the pressure drop in packed beds [25, 26]. Liu et 
al [27] devised a semi-empirical formula for the pressure drop, which incorporates the 
tortuosity, the curvature ratio and the variation of the pore cross-sectional area. Jackson 
and James [28] conducted a comprehensive review of the literature on a variety of 
theoretical models and presented a large collection of experimental data for both natural 
and synthetic fibrous media. A recent discrete particle study by Bokkers et al. [29] 
showed that, with respect to bubble formation in fluidized beds, the drag relations derived 
from the lattice-Boltzmann simulations of Hill et al. [16] yielded better agreement with 
the experimental observations than the traditional Ergun and Wen & Yu [30] correlations. 
While the latter relation remains the most widely used in chemical engineering, an 
accurate description for the interphase momentum transfer has been a subject of debate. 
This has motivated the research in the development of more accurate relationships to 
describe the macroscopic momentum transfer in terms of microscopic pore-scale 
parameters.  

Most of the previously obtained drag laws are only valid for 3D, spherical particles on a 
packed bed.  Although the drag relation for 2D fibrous materials and 3D packed beds are 
quite different (for instance in 2D the drag diverges in the limit of close packing), my 
attempt is to check the validity of those relations for 2D systems. I establish the 
relationship between microscopic and macroscopic properties of fibrous media by 
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conducting a systematic study using numerical simulations based on the finite element 
method (FEM). In order to get a better understanding of the state-of-the-art on non-Darcy 
flow, literature concerning the theoretical basis of the Forchheimer equation and 
experimental work on the identification of flow regimes is reviewed in Section 5.2. After 
presenting the numerical method used to compute the permeability and inertial 
coefficients, results are discussed in Section 5.3. The steady state fluid flow across uni-
directional arrays of cylinders are considered, for both ordered and disordered 
configurations. Accurate, high resolution computations were carried in order to 
investigate the existence of the different regimes and the corresponding scaling laws. The 
effects of several structural parameters, namely porosity, disorder and fibre-shape on the 
flow behavior at various regimes are discussed in detail. The chapter is concluded in 
Section 5.4 with a summary and outlook for future work. 

 

5.2 Theoretical background 

Flows in porous media can be studied at either microscopic or macroscopic scales. For 
the former scale the flow through individual pores is computed by solving the mass and 
momentum equations (i.e. the Navier–Stokes (NS) equation) numerically, whereas for the 
latter a continuum description is usually adopted based on volume averaging of the 
equations pertaining to microscopic scales. The linking of these two descriptions 
constitutes the well known scaling-up problem, which usually provides macroscopic 
properties in terms of the permeability, i.e. the ability of a porous material to transmit 
fluids. Although the permeability can, in principle, provide quantitative correlations 
between morphological features of pore geometry and its capacity to transmit liquid, its 
values depend on many factors such as porosity, typical length scale of pores, grain size 
distribution, shape, anisotropy and tortuosity of pore connections, see Refs. [5-7] and 
references therein (see chapters 2 and 3). Therefore, the permeability determined either 
analytically or empirically for porous media with complex structures involves 
considerable uncertainty – one can not determine microscopic properties only from the 
macroscopic permeability.  

As mentioned already, Darcy’s law is the most widely used empirical correlation for the 
calculation of the pressure drop across a homogeneous, isotropic, unbounded and non-
deformable porous medium. It is strictly valid for incompressible and isothermal Stokes 
flow (Re = 0) of Newtonian fluids [9]. However, it is usually applicable in engineering 
applications for Re < 1, defined by µρ /Re Ul=  where l and ρ  are the typical pore size 
of the structure and density of the fluid, respectively. Darcy’s law, since it lacks, among 
other reasons, the flow inhomogeneity/variability2, is not valid at the interface of a porous 
medium-solid or porous medium-free flow. Brinkman [31] added a diffusion-type term to 
Darcy’s law, leading to 

2p U U
K

µ µ−∇ = − ∇  .                                                                                                     (5.2) 

                                                 
2 It can not account for the no-slip boundary condition at the solid boundary of the porous medium. 
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Brinkman’s equation is, like Darcy’s law, inertia-free and hence valid only for creeping 
flows. Recently, Auriault [32] discussed the validity and limitations of Brinkman’s 
equation for “classical” porous media, swarms of low concentration particles and fibrous 
media at high porosities. 

In the continuum approach one describes mass and momentum balance equations at 
macroscopic scale, using a specific averaging procedure. Therefore, it is difficult to 
adequately determine the averaging domain. Using a continuum approach, Hassanizadeh 
and Gray [33] developed a set of equations to describe the macroscopic behavior of fluid 
flow through porous media. Linearization of these equations yields a Darcy equation at 
low velocities.  

Although the physical nature of the deviation from Darcy’s law is still unclear and may 
have several causes (probably acting together), empirical relationships correlate the 
pressure drop and average fluid velocity in porous media. To account for the non-linear 
behavior of the flow in porous media, Forchheimer [17] added a quadratic velocity term 
to represent the microscopic inertial effect, and corrected Darcy’s equation to get the 
Forchheimer equation 

2p U U
K

µ βρ−∇ = +  ,                                                                                                     (5.3) 

where the constant, β is referred to as the non-Darcy coefficient which, like permeability, 
is an empirical value that depends on the micro-parameters of porous media. Just as is the 
case with Darcy’s law, Forchheimer’s law was originally postulated heuristically to fit 
experimental data. However, during the past decades there has been an effort to derive it 
from first principles. Some of the techniques used are matched asymptotic expansions 
[34], the capillary model [35], hybrid mixture theory [36] and volume averaging [12, 37, 
38]. The physical justification of the quadratic nature of the correction was supported 
either by intuition or by dimensional analysis and the analogous turbulent kinetic energy 
loss in straight tubes [39]. Moutsopoulos et al. [40] investigated phenomenological 
relations for the Forchheimer equation experimentally and theoretically for both 
homogeneous and heterogeneous media. Using a homogenization approach, Chen et al. 
[41] claim that the nonlinear filtration law is quadratic. By generalizing the Forchheimer 
equation, Ergun obtained the following empirical relation for homogenous, packed beds 
of randomly distributed spheres:  

( ) ( )2 2

3 2 3

1 1U U
p A B

d d

ε εµ ρ
ε ε
− −

−∇ = +   ,                                                                     (5.4) 

where d is the average diameter of the particles in the domain and ε  is the porosity3.  
After analysis of a large quantity of experimental data, Ergun concluded that their best 
representation could be obtained with A = 150 and B = 1.75. However, in subsequent 
studies these values have been found to vary considerably with shape, porosity and Re 

                                                 
3 Comparing Eqs. (5.3) and (5.4), one can relate the parameters A, B, and ε  to K and β. 
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number [42, 43]. In particular, after testing the Ergun equation using many more data 
than ever before, MacDonald et al. [42] found that A = 180, and B = 1.8 (smooth 
particles) or 4.0 (rough particles) give the best fits to all of the data. Besides the Ergun 
equation, there are correlations that use the non-dimensional particle friction factor, fp, 
through the following definition 

2p

pd
f

Uρ
−∇= .                                                                                                                    (5.5) 

By combining Eqs. (5.5) and (5.3), the Forchheimer equation can be written as: 

'
'

1

Repf
K

β= + ,                                                                                                             (5.6) 

where Re /Udρ µ= , ' 2/K K d=  and ' dβ β=  are the Reynolds number (based on 
diameter d), the normalized permeability and the modified non-Darcy coefficient, 
respectively. The latter two parameters 'K  and 'β , can be considered as the non-
dimensional, macroscopic viscous and inertial coefficients with the advantage of an 
expected constant friction factor in the inertial regime. Looking at the literature, one 
found several definitions and relations between friction factor and Re (or sometimes 
pressure gradient and U) which makes it difficult to establish a one-to-one comparison. 
Table 5.1 summarizes these definitions and their relations. 

In Table 5.2, the available modifications of Ergun’s equation and their range of validity 
are listed as functions of the particle Re number, ( )Re Re/ 1p ε= − . Therefore, most 

equations have the typical porosity term,( ) 31 /ε ε− , for low Re, with various different 

constants and strongly varying further terms [42, 60, 62-64, 67-69] representing the effect 
of wall, shape, etc. A few of the equations also have non-linear corrections in the first 
term [54, 59, 66], and the last class are sums of several powers of Re used to fit into 
available experimental/numerical data [52, 53, 61]. A more complete list of correlations 
for the viscous term, i.e. at low Re numbers, of 2D fibrous materials can be found in Ref. 
[5]. Recently, Barree and Conway [44] conducted experiments suggesting that 
Forchheimer’s equation is only valid over a limited range of velocities. Derivations using 
volume averaging were undertaken by Ruth and Ma [12], and Whitaker [38]. However, 
Ruth and Ma [12] explain that microscopic inertial effects are neglected in volume- 
averaging techniques and therefore cannot be used to derive a macroscopic law. They 
point out that the Forchheimer equation is not unique, and any number of polynomials 
could be used to describe nonlinear behavior due to inertia in non-laminar flow. This is 
confirmed in Bourgeat et al. [45], where the nonlinear filtration law is obtained as an 
infinite series in integer powers of the local Reynolds number. More recently, Balhoff et 
al. [46] used the method of homogenization to develop a general polynomial filtration 
law for low Reynolds numbers. In Marušic–Paloka and Mikelic [47], the existence, 
uniqueness and regularity of general non-local filtration law was rigorously established in 
the homogenization limit when the pore size tends to zero.  
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Table 5.1: Various definitions and relations between friction factors and Re (or pressure 
gradient and superficial velocity, U) 

Friction factor – Re (or pressure 
gradient – U) relation 

Comment 

~p U−∇  Linear Darcy’s law for creeping flow, Eq. (5.1) 

2~p U U−∇ − ∇  
Brinkman’s equation for creeping flow at high 

porosities, Eq. (5.2) 
2~p U U−∇ +  

Forchheimer (Ergun) equation, quadratic correction to 
Darcy’s law, Eq. (5.3) 

3~p U U−∇ +  
Cubic correction to Darcy’s law valid at small Re, Eq. 

(5.7) 

2 1 '~ / ~ Repf p U β−−∇ +  Particle friction factor as function of Re. 'β  is the 
inertial, porosity dependent parameter, see Table 5.2 

' 'Re ~ / ~ Repf f p U λα≡ −∇ +  
Non-integer, λ , power law fit, used in this chapter, 
Eq. (5.8); 'α  is the viscous, porosity dependent term 

* ' '~ ~ Regf f
λ

α−  
Isolated inertial term used for scaling the data in 

Appendix 5.D; Reg is “gap” Re number 
 

One of the important observations from Wodié and Levy [48], Mei and Auriault [11], and 
Rasoloarijaona and Auriault [49] was that for an isotropic porous medium, the quadratic 
terms cancel and one has a cubic filtration law given by 

* 2
3p U U

K

µ γ ρ
µ

−∇ = +       *
'

1
Re

Repf
K

γ⇒ = + ,                                                        (5.7) 

where *γ  is a porosity dependent dimensionless parameter. This observation is confirmed 
analytically and numerically by Firdaouss et al. [50] and for periodic two-dimensional 
arrays of cylinders arranged in a regular pattern by Couland et al. [51]. In most cases, the 
cubic law is only valid at very low velocities (Re < 1, where Darcy’s law is 
approximately valid anyway), and the quadratic Forchheimer equation appears applicable 
at higher, moderate velocities (1<Re<10). Nonetheless, these findings are significant 
because they suggest that any power law with an integer power, such as in the 
Forchheimer equation, may not be universal and only valid for a limited range of 
velocities and porosities.  

Despite extensive previous work, our understanding of the physical reasons for non-
Darcy flow is incomplete. To better understand the microscopic origin of these 
correlations, I conduct a set of FE simulations on both ordered and disordered arrays of 
cylinders in a wide range of Reynolds numbers in the next section.  
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Table 5.2: Available modifications of the Ergun equation in terms of the particle friction 

factor, pf  and the particle Reynolds number ( ) ( )Re Re/ 1
1p

Udρε
ε µ

= − =
−

.  Unless 

explicitly stated, the relations are valid for 3D, disordered systems. 

Author pf  Range of validity 

Ergun [24] 












+







 −
75.1

Re

1501
3

pε
ε

 8.0<ε  

MacDonald 
et al. [42] 

'
3

1 180

Rep

B
ε

ε
 −  +     

 
' 1.8,B =  smooth particles 

' 4,B =  rough particles 

Rose [52] 12Re60Re1000 5.01 ++ −−
pp  Mean value of Re 140p ≅  

Rose and 
Rizk [53] 

14Re125Re1000 5.01 ++ −−
pp  1000 Re 6000p< <  

Hicks [54] ( ) 2.0
3

2.1

Re
1

8.6 −−
pε

ε
 60000Re500 << p  

Tallmadge 
[55] 

( ) ( ) 6/1
3

166.1

3

2

Re
12.41

Re

150 −−+−
p

p ε
ε

ε
ε

 510Re1.0 << p  

Lee and 
Ogawa [56] 

( ) ( )
2

12

3

275.01.0352.0

1.0Re56.1Re32.291
5.12

2

1

εε

ε
ε

++=

++






 − −−

n

n
pp  510Re1 << p  

Kürten et al. 
[57] 

( ) ( )28.0Re6Re211
4

25 5.012

3
++







 − −−
ppε

ε
 4000Re1.0 << p  

Montillet et 
al. [58] 

( )1 0.5

0.2

3

1000Re 60Re 12

1
0.061

p p

D

d

α

εα
ε

− −+ +

−  =   
  

 
2500Re10 << p , 

D: bed diameter 

Özdinç et 
al. [59] 

0.4733

769.785 Rep
d d

L L
ε

−
    

    
    

 
7772Re675 << p  

L: bed length 

Ozahi et al. 
[60] 

( )5 1
3

1
3 10 Re 66.487 Re 0.1539p p

D

d

ε
ε

− −−   × − +  
  

 

8000Re800 << p , 

D: bed diameter 

Gibilaro et 
al. [61] 

( )( ) 8.41 1336.0Re3.17 −− −+ εεp  In fluidized suspensions 
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Benyahia et 
al. [62] 

( ) ( )ε
ε

ε −+−
19

Re

1180
33

F
p

 

( ) 5
3 0232.01212.00673.0 −+−+= εεF  

6.0<ε , ( )ε−
>

1

2
Re

1

3

F

F
p , 

( )ε−+= 16.11
1 00051.011.0 eF

 

Molerus 
[63] 

1
2 2

1 18 49.5 0.69
Re

1 p

ε
ε ε ε ε

− −   + +    −    
 0.7ε <  

Kovács [64] 3

1 144
2.4

Rep

ε
ε

 −  +     
 ( )10 Re 1 100p ε< − <  

Kadlec and 
Knight [65] ( )3 0.7

1 255
2

1 Rep

ε
ε ε ε

 −  +   −  
 In fluidized suspensions  

Foscolo et 
al. [66] ( )4.8

1 17.3
0.336

Re 1p

ε
ε ε

 −  +   −  
 Laminar and turbulent 

regimes, 0.4ε >  

Mehta and 
Hawley [67] 3

1 150
1.75

Rep

M M
ε

ε
 −  +       

 ( )
2

1
3 1

d
M

D ε
= +

−
, 

D: bed diameter 

Du Plessis 
[68] 

( )( )22/32
3

1
/ 1 1

Rep

Aε ε ε
ε

 −  + − −     
, 

( ) ( )( ) ( )( )
2

2/3 1/3 2/3

41

1 1 1 1 1
A

ε
ε ε ε

=
− − − − −

 

Packed bed of spherical 
particles  

Reichelt 
[69] 

 ( )( ) ( )( )

2
1

3

22

1 2

1
,

Re

2 1
1 ,

3 / 1 /

w
w

p

w w

K A
B

A B
D d k d D k

ε
ε

ε

 −  +     

= + =
− +

 

Spheres: 

1 1 2154, 1.5, 0.88K k k= = =
Cylinders: 

1 1 2190, 2, 0.77K k k= = =  

D: bed diameter 
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Martin et al. 
[70] ( )Re 1

m

n
p

K d
b

d K
ε ε−  

−  
 

 

Square and triangular 
fibre arrays, with 
0.8 0.99ε< <  and 

3 Re 160p< < . The n, m 

and b are fitting 
parameters. 

Papathanass
iou et al. 

[26] ( )
( )2 1

0.08
Re 1p

dd

K K

ε
ε ε

−
+

−
 

Square and hexagonal 
fibre arrays, with 
0.3 0.6ε< <  and 
0 Re 400p< <  

Tamayol et 
al. [71] ( )

( ) 1/2

Re 1

c

p

a b dd

K K

ε
ε

−+
+

−
 

1D, 2D and 3D ordered 
fibrous media in the range 

of 0.35 0.95ε< <  and 
0.01 Re 4000p< < . The 

a, b and c are fitting 
parameters. 

Koch et al. 
[15] 

      (a)           1
2 Re

Re p
p

k
k+  

 

(b)            1
2Rep

c
c+              

(a) For both periodic and 
random fiber arrays at 

Re<1; k1 and k2 are 
porosity dependent 

parameters. 
(b) For random arrays at 
Re>5 (similar to Ergun 
relation); c1 and c2 are 

porosity dependent 
parameters. 

Tanino and 
Nepf [72] 

0
1Rep

α α+  

Randomly distributed, 
rigid, emergent circular 
cylinders in the range of 

0.65 0.9ε< <  and 
70 Re 6850p< <  (similar 

to Ergun relation). The 

0α  and 1α  are porosity 

dependent fitting 
parameters. 
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5.3 Numerical results 

This section is dedicated to finite element (FE) based model simulations of both ordered 
and disordered fibre arrays at various porosities and flow regimes. Alternatives to the FE 
method like the lattice Boltzmann method (LBM) can also deal with complex pore 
geometries and boundary conditions in the inertial regime, but are discussed and 
compared elsewhere [22]. The results on the friction factor (both the viscous and inertial 
components) as function of porosity, structure, shape, etc., are presented and discussed. 

 

5.3.1 Ordered structure 

I start the analysis with the case of a 2D regular periodic array of cylinders, perpendicular 
to the flow direction, as shown in Fig. 5.1. These models rely on the assumption that the 
porous media is periodic and thus can be divided into unit cells that are then also 
representative volume elements (RVE). The friction factor is then determined by 
modeling the flow through these, more or less, idealized cells.  
 

 

 

 

 

 

 

                                    (a)                                                           (b) 

Figure 5.1: The geometry of the unit cells used for (a) square and (b) hexagonal 
configurations. 

 
 

5.3.1.1 Computational method and boundary conditions 

The FE software ANSYS® is used to calculate the horizontal superficial velocity, U, from 

the results of the computer simulations as 
1

fA

U udA
A

= ∫ , where A, Af and u are the total 

area of the unit cell, the area of the fluid and the intrinsic fluid velocity, respectively. In 
the flow domain, the steady state NS equations combined with the continuity equations 
were discretised into an unstructured, triangular element. They were then solved using 
segregated, sequential solution algorithm. The matrices developed from assembly of 
linear triangular elements are then solved based on a Gaussian elimination algorithm. 
Some more technical details are given in Refs. [5-7]. The mesh size effect is examined by 

Flow direction 
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comparing the simulation results for different resolutions (data not shown here). At the 
left and right pressure- and at the top and bottom periodic-boundary conditions are 
applied. No-slip boundary conditions, i.e. zero velocity are applied on the surface of the 
particles/fibres. Computations were performed for Reynolds numbers 510 Re 30− < <  and 
porosity 0.3 0.9ε< < , assuming that the stationary solution is still physically valid in the 
upper range of this Reynolds numbers. 
 

5.3.1.2 Generalized Forchheimer equation 

The validity of the Forchheimer equation for ordered structures (namely square and 
hexagonal configurations) is studied in this section. A generalized non-dimensional form 
of the Forchheimer Eq. (5.3) can be derived by postulating a power law and multiplying 
the friction factor by Re, so that: 

'
' * '

1 1
Re

U
f

K U K

λ
λγ γ − = + ≡ + 

 
                                                                                  (5.8) 

where ( )' 2 / Repf d p U fµ= ∇ ≡  and ( )* /U dµ ρ=  are, by definition, modified friction 

factor and scaled velocity, respectively. The normalized permeability ' 2/K K d=  and 
non-dimensional inertial coefficients λ  and γ , in general, depend on the porosity and 
structure of the medium. The power λ  represents the deviation from Darcy’s regime 
( ' const.f = ), so that the non-linear correction can be isolated by studying ' '1/f K− −  
(refer to Appendix 5.C). In case of 1λ = , Eq. (5.8) reduces to the Ergun equation (Eq. 

(5.4) or (5.6)) with ( )( )2' 3 / 150 1K ε ε= −  and ( ) 31.75 1 /γ ε ε= − . Similarly, for 2λ = , 

Eq. (5.8) reduces to Eq. (5.7) with *γ γ= . More discussion on the dependence of 

normalized permeability, 'K  on porosity and pore-structure for (dis)ordered fibrous 
medium is given in [5, 6] and references therein (chapters 2 and 3). In the following, I 
rather focus on the influence of micro-structural parameters on the inertial coefficients λ  
and γ , while 1/K’  is the low-Re permeability that only depends on porosity. 

Fig. 5.2(a) shows the variation of the modified friction factor as function of normalized 
velocity, */ ReU U ≡ , for square (red) and hexagonal (blue) configurations for three 
different porosities. The results are compared against lubrication theory of Gebart [81], 
FE results of Ghaddar [82] and numerical results of Sangani and Acrivos [80] for a 
creeping flow regime. The solid lines represent the best least square fit to the FE data 
using Eq. (5.8) with the power as the free parameter, while the upper black dashed line 
(only one is shown at ε  = 0.6) represents a fit to the cubic deviation (λ = 2) from the 
Darcy regime, which is almost perfect (99.99% agreement) for Re<3, but strongly 
overestimates the results for larger Re. As examples, the hexagonal structures at ε  = 0.6, 
0.7, 0.8 correspond to 1/K’ = 91.5584, 35.3612, 12.3190, and 2γ  = 0.06993, 0.05330, 
0.04297, respectively. Note that for all fits, first the constant, low Re regime was fitted 
and then the nonlinear correction was derived. While the cubic correction-term (λ = 2) is 
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applicable, it does not give a good prediction for larger Re. Therefore, I will discuss fits 
with non-integer λ  values since they are good approximations up to Re<30. 

As expected, by increasing the porosity, the normalized permeability, K’, increases, i.e. 
for higher pressure gradients the flow regime changes from Darcy (horizontal line) into 
inertial (nonlinear) regime. For square configurations the transition starts at lower 
velocities (i.e. Re@10) compared to the hexagonal configuration. Note that in Darcy’s 
regime, the flow is symmetric about both horizontal and vertical axis (not shown here). 
However, in the inertial regime, due to the non-linear contribution of inertia to the 
transport of momentum, the symmetry about the vertical axes (normal to the flow 
direction) will break (see Section 5.3.1.4) while the flow is still stationary. 

Fig. 5.2(b) shows the variations of inertial coefficients (i.e. λ  and γ ) in Eq. (5.8) as 
function of porosity for both square and hexagonal configurations. We observe that the 
power λ  is (i) larger than unity and varies between 1 2λ< <  and (ii) depends on both 
porosity and structure/arrangements of the particles/fibres. By increasing the porosity (i.e. 
for more dilute systems) the power decreases and approaches the value of unity (i.e. the 
original quadratic Forchheimer correction, Eq. (5.3)). Square arrays have larger values of 
λ  compared to hexagonal arrays implying that the transition to inertial regime starts 
earlier and sharper (see Fig. 5.2(a)). On the contrary, the pre-factor γ  (in the inset) seems 
to be independent of structure and linearly decreases by increasing porosity as 

( )0.8 1γ ε≅ − . In the appendix 5.A, the quality of the proposed power law fit (Eq. (5.8)) 

is compared with the quadratic ( 1λ = ) and cubic ( 2λ = ) fits at different porosity for 
both square and hexagonal configurations.  
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Figure 5.2 (a): Variation of the modified friction factor as function of the normalized 
velocity (or Re) for square (red) and hexagonal (blue) configurations (solid lines show 
the best least square fit to Eq. (5.8) and the black dashed lines show the best quadratic 

( 1λ = ) and cubic ( 2λ = ) fits in the range of 510 Re 30− < < ), symbols show the 
analytical/numerical data from literature; (b) Inertial coefficients λ  and γ  as in Eq. (5.8) 

plotted against porosity. 
 

 

5.3.1.3 Effect of stagger cell angle 

In this subsection, the effect of the stagger cell angle, α  on the inertial term is discussed. 
The stagger angle is defined as the angle between the diagonal of the unit-cell and flow-
direction (horizontal), as shown in Fig. 5.3(a). In addition to the special cases o45α =  
and o60α = , i.e. square and hexagonal packings, respectively, several other angles are 
studied. 

Fig. 5.3(b) shows the variation of the modified friction factor as function of normalized 
velocity for different stagger angles, α  at the constant porosity 0.7ε = . Similar to the 
normalized permeability, the inertial coefficient γ  is weakly dependent on the stagger 

angle in the range of o o30 60α< < . However, λ  increases (almost) linearly from 1λ ≅  
at o70α =  to 2λ ≅  at o20α = . For o70α =  and higher (but lower than the maximum 
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achievable ( )( )( )1 o
max tan / 2 1 80α π ε−= − ≅ ), the flow generally follows a straight line 

with large superficial velocity and consequently large values of permeability and the 
transition starts at higher scaled velocities (Re) . On the other hand, at o20α =  and lower 
values of α  (but larger than the minimum allowable limit 

( )( )1 o
min tan 2 1 / 11α ε π−= − ≅ ), the flow is more tortuous and consequently it has lower 

permeability. At this range, the transition into non-Darcy regimes starts already at smaller 
superficial velocities.   
 

 

 

 

 

 

 

 

 

 

 

 

                            

                           (a)                                                                    (b) 

Figure 5.3: (a) stagger angle α  and (b) modified friction factor as function of 
normalized velocity for different α  at porosity 0.7ε = . The solid blue lines show the 

best least square fit in Eq. (5.8) in the range of 510 Re 30− < < . 
 

 

5.3.1.4 Effect of particle shape 

In order to study the effect of particle/fibre shapes on the macroscopic permeability and 
inertial coefficients, the normalization is done with respect to the obstacle length, Lp, 
which is defined as 

Lp = 4 area / circumference, with: 

Lp = d (for circles),   Lp = c (for squares),   and Lp = 4πab / AL (for ellipses)      (5.9) 

α  Flow 
direction 



Chapter 5. Towards unified drag laws for inertial flow through fibrous materials 
 

 127 

where d, c, a and b=a/2 are the diameter of the circle, the side-length of the square, the 
major (horizontal) and minor (vertical) lengths of the ellipse, respectively, and AL is the 
circumference of the ellipse. By applying the same procedure as in the previous section, 
the normalized permeability and inertial coefficients are calculated for different shapes 
on a square configuration.  

Fig. 5.4 shows the modified friction factor as function of the normalized velocity for 
different shapes. The circular shape has the lowest and horizontal ellipses the highest 
normalized permeability. The reason is that, at the same porosity, ellipses are more 
elongated in the flow direction and therefore the fluid can flow more easily on a straight 
line through the wider channels. However, at high porosities this effect diminishes (data 
not shown). Note that, due to the narrower channels, the local maximal velocity is higher 
for circular shapes, given the same porosity and pressure gradient. However, the 
superficial (discharge) velocities for ellipses are larger, leading to higher permeability, 
than other shapes. For the same reason, the transition to the inertial regime happens 
earlier for squares, whereas it occurs at higher velocities for ellipses. The values of the 
inertial coefficients λ , γ  and the viscous (normalized permeability, K’ ) term, obtained 
by least square fitting to Eq. (5.8), are listed in Table 5.3. The power λ  is not greatly 
affected by the shape (maximum variation less than ~10%), however, for squares, the γ  
value is ~5 times larger than for ellipses at low porosities. The numerical results show 
that, similar to the normalized permeability, the effect of shape on the inertial parameters 
is less pronounced at high porosities ( )0.9ε > , not shown here.  Establishing a common 

drag law based on the aspect ratio, sphericity or other shape parameters is still a challenge 
for future study. 

To better understand and explain the flow characteristic in the inertial regime, the 
patterns of the streamlines for different shapes and the vortices generated behind the 
obstacle are shown in Fig. 5.5. The non-Darcy effect occurs because microscopic inertial 
effects alter the velocity and pressure fields. At the same porosity 0.7ε =  and Reynolds 
number Re@10, we observe that for the square shape one has stronger vortices (i.e. those 
that contribute more to the energy loss) compared to the ellipses in which the wake (or 
flow separation) zones behind the obstacle is flattened and stretched. These vortices 
increase in size as the velocity increases and eventually become unsteady and local 
turbulence occurs. At fixed porosity and pressure gradient, the flow for ellipses is – even 
though faster in average – less “turbulent” and smoother. 

Note that the flow pattern is stationary and symmetric along the horizontal symmetry axis 
and non-symmetric relative to the vertical axes. The above example implies that the 
tortuosity (flow path) is one of the key factors in determining the viscous and non-Darcy 
coefficients (see Section 5.3.2.3 for more details). 
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Figure 5.4: Modified friction factor plotted against normalized velocity for different 
shapes at porosity 0.7ε = . The solid lines show the best least square fit in Eq. (5.8) in the 

range of 510 Re 30− < < . 
 

 

Table 5.3: The values of the inertial coefficients λ , γ  and viscous (normalized 
permeability, K’  [5] ) term, obtained by least square fitting of the FE results into the Eq. 

(5.8) in the range of 510 Re 30− < < , for different shapes and various porosities. 

Shape Circle Ellipse Square 

Porosity, ε  0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

' 2/ pK K L=  [5] 0.025 0.077 0.319 0.065 0.147 0.486 0.031 0.091 0.375 

λ  1.544 1.561 1.338 1.343 1.436 1.111 1.281 1.342 1.129 

γ  0.211 0.113 0.082 0.072 0.058 0.056 0.355 0.168 0.113 
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Figure 5.5: The streamline patterns around (a) circle, (b) square and (c) ellipse of the 
aspect ratio a/b=2 at the constant porosity 0.7ε = and Re@10. The color shows the 

magnitude of the horizontal velocity. 
 

 

5.3.2 Structural disorder 

Because of the complexity of pore-space geometry, classical numerical methods for 
solving flows through porous media are typically restricted to ordered and small or 
periodic domains. However, many realistic porous media are (i) confined with walls, (ii) 
are not truly two-dimensional, and (iii) possibly contain a degree of randomness (or 
disorder) at larger length scale that is not adequately represented in too small periodic 
boundary cells. In this section, I focus on (i), as compromise, and investigate the effect of 
disorder on both viscous and inertial coefficients in a moderately large system with 
N=800 particles/fibres within a channel with walls.  

 

5.3.2.1 Computational domain and methodology 

Fig. 5.6 shows a 2D representation of N=800 randomly distributed fibres, generated by a 
Monte Carlo (MC) procedure [73], oriented normal to the flow direction at porosity 
ε =0.6 with a minimum inter fibre distance δmin=0.05d or in dimensionless form 

min min / 0.05dδ∆ = = . Similar to Chen and Papathanasiou [73], and Yazdchi et al. [5], a 

minimal distance is needed in 2D to avoid complete blockage. The microstructural 
parameters, namely the system size, method of generation, homogeneity and isotropy of 
the structure and their influence on macroscopic permeability have been discussed in [6]. 
At the left and right of the system the pressure boundary conditions are spesified and at 
the top and bottom walls as well as at the surface of the particles/fibres no-slip boundary 
conditions are applied. The fibres are assumed to be very long so that a 2D solution can 
be applied. A typical fine, unstructured and triangular FE mesh is also shown in Fig. 5.6. 
The number of elements varied from about 5×105 to about 106 depending on the porosity. 

(a) (b) (c) 
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The lower the porosity the more elements are needed in order to resolve the flow along 
the many narrow channels between the neighboring fibres. The numerical results show 
that in all simulations one need at least ~10 rows of elements between neighboring 
particles to correctly capture the fluid behavior and obtain a converging solution. Details 
of the comparison of different resolutions are provided in Appendix 5.B. To obtain good 
statistical accuracy, the permeability values and inertial coefficients were fitted to data 
averaged over 10 realizations of packings generated by the random MC procedure. 
 

 

               

Figure 5.6: Fibre distributions generated by a Monte Carlo procedure, with N=800 
unidirectional cylinders, normal to the flow direction, with minimum inter fibre distance 
δmin=0.05d at porosity ε =0.6. The zoom shows the fine, unstructured, triangular FE 

mesh. 
 

Fig. 5.7(a) shows the variation of the modified friction factor as function of the 
normalized velocity, U/U* for disordered configurations at various porosities. The results 
are compared with the FE results of Ghaddar [82], the numerical results of Sangani and 
Mo [83] and the LB results of Koch and Ladd [15]. As expected, increasing the porosity 
leads to an increased normalized permeability, K’ . For Re<3, like in the ordered 
hexagonal situations, the normalized friction factor is perfectly fitted by a cubic 
correction, e.g., for porosities 0.6, 0.7, 0.8, one has 1/K’ = 158.8418, 49.40725, 12.74905, 
and 2γ =  0.6569, 0.5369, 0.2592, respectively. Thus the modified friction factor is 

considerably larger for low porosity in the random configurations, while the correction 
quadratic factor (λ =2) 2γ  is about an order of magnitude larger, implying that the inertial 

effects already occur at much smaller Re numbers. The relative deviations at Re=1 for the 
above porosities are 0.004, 0.01 and 0.02, respectively. Thus at Re<<1 Darcy’s law 
holds, yet for Re~1 stationary eddies (dead zones that do not participate in the overall 
mass-flux) exist mainly due to the geometry of the pores. The gradual deviation from 

Flow 
direction 
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Darcy’s law is due to the dynamic growth of pre-existing eddies within the micro-scale 
flow field and separation of flow in pores where flow diverged. Small deviation between 
my FE and LB results of Koch & Ladd [15] at creeping flow regime might be due to the 
difference in minimum inter-fibre distance, resolutions, number of fibers or boundary 
(periodic/wall) conditions.  

Since the quadratic fit deteriorates for Re>0.5-2, I again perform the nonlinear fits to my 
data up to about Re~30, see Fig. 5.7(b), where the variations of the inertial coefficients 
( λ  and γ ) in Eq. (5.8) are shown as function of porosity. We observe that for 0.45ε > , 
unlike the case of ordered arrays and similar to the Ergun equation, the power λ  is 
approximately constant and close to unity, whereas the pre-factor γ  decreases with 
increasing porosity. However, at very low porosities ( 0.45ε < ),λ  increases (γ  
decreases) with decreasing porosity and approaches the expected values ( 2λ ≅ ) for 
hexagonal arrays, corresponding to the appearance of ordered zones. Due to the 
(artificial) gap between fibres/discs, each disc has an effective diameter ( )*

min1d d= + ∆  

greater than its actual value, d. With this effective diameter, it is possible to define an 

effective porosity ( )( )2*
min1 1 1ε ε= − − + ∆ . Inserting min 0.05∆ =  and 0.45ε = , the 

effective transition porosity from disorder to order arrangements is estimated as 
* 0.393ε ≅ . Note that this value is still far above the random close packing limit 
* 0.16rcpε ≅  [74], or the minimum hexagonal lattice * 0.0931hexε ≅ , and still above the 

freezing point * 0.309fε ≅  [75] or melting point * 0.284mε ≅  [75]. In fact it indicates that 

even small (partial) ordering in the system can drastically affect the transport properties, 
namely permeability [6] and inertial coefficients of porous media. The comparison of the 
quality of the proposed power law fit (Eq. (5.8)) with the quadratic ( 1λ = ) and cubic 
( 2λ = ) fits at different porosities are given in the Appendix 5.A.  

In Appendix 5.D, I present a universal scaling law, valid at all porosities, based on 
different definitions of Re and friction factor. It is shown that the inertial effect can be 
better explained as two distinct regimes: (i) cubic correction at Re<1 and (ii) quadratic fit 
at Re>1, with almost the same accuracy as the proposed power law. 
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Figure 5.7: (a) Variation of modified friction factor as function of normalized velocity 
for disordered media at various porosities4. The solid lines show the best least square fit 
in Eq. (5.8) in the range of 510 Re 30− < <  (b) Inertial parameters as function of porosity. 

                                                 
4 Note that the numerical values in Koch & Ladd [15] were presented in the form of 

( )/KLf F Uµ=  (F is mean drag per unit length), as function of Re. At steady state, the 
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As mentioned before, most of the available correlations have a viscous porosity 
dependence that is similar to the Ergun equation with varying constants CKψ , while my 

data lead to a range of 150 300CKψ< <  [76], see next section. Here we are curious to 

check the quantitative validity of the inertial component of the Ergun equation, i.e. 

( ) 31.75 1 /γ ε ε= − . To this end, I fit my FE results into Eq. (5.8) assuming constant 1λ =  

(i.e. quadratic correction) for porosities 0.45ε > , i.e. random/disorder co-existence 
arrangements. Fig. 5.8 shows the comparison between the inertial coefficient γ , obtained 
from my FE simulations (blue squares) and those obtained from Ergun’s equation (red 
line) at various porosities. The good agreement of these curves demonstrates the validity 
of the inertial component of the Ergun’s equation, originally obtained for 3D spherical 
beds in nearly turbulent regime, also for 2D disordered fibrous media in laminar flows.  
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Figure 5.8: Variation of inertial coefficient γ , obtained from FE simulations (blue 
squares) and from Ergun equation (red line) at various porosities from disordered 

configurations. 
 

 

                                                                                                                                                 
average drag force multiplied by the cylinder number density, ξ , is equal to the applied 
pressure gradient, i.e. p Fξ∇ = . Combining this relation with the definition of friction 

factor in this chapter, i.e. Eq. (5.8), leads to ( )( )' 4 1 / KLf fε π= − . 
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5.3.2.2 Different definitions of the Reynolds number 

In analyzing flow through porous media, the superficial velocity and pressure drop are 
typically correlated through the particle friction factor, fp, which appears as a function of 
Reynolds number, Re, see Eq. (5.6). Looking at the literature, several Reynolds numbers 
for porous media are defined, namely      

reference flow Reynolds number:   Re /Udρ µ=                                                        (5.10) 

particle Reynolds number:              ( )( )Re / 1p Udρ ε µ= −                                        (5.11) 

modified Reynolds number:            Re /
k

U Kρ µ=                                                (5.12) 

interstitial Reynolds number:          ( )Re /i Udρ εµ=                                                  (5.13) 

Recently, based on the lubrication effect of the narrow channels, I found a power law 
relationship between the permeability values obtained from fluid flow simulations and 
the mean value of 2nd nearest neighbor surface-to-surface fibre distances gap∆  normalized 

with the fibre diameters [6], see chapter 3. Therefore, another microstructural definition 

could be the “gap” Reynolds number, i.e. ( )Re / / Reg gap gapU dρ µ= ∆ ≡ ∆ , where 

( )/gap d∆  is a function of porosity [6]. In Appendix 5.D, I use this definition to get a 

universal friction factor-Reg relation valid at almost all porosities. By increasing the 
porosity and in the very dilute regime (i.e. 1ε →  or 0d → ), by intuition, the Reynolds 
number should increase and approach its maximum value, Remax for duct flow (i.e. flow 
between parallel plates). The definitions presented in Eq. (5.10) and (5.13) incorrectly 
approach zero values in this limit. On the other hand, the definition in Eq. (5.12) contains 
the macroscopic permeability which, in general, is an unknown quantity depending- a 
priori- on the microscopic level. This has motivated us to revisit the definition of the 
Reynolds number in terms of some measurable quantities of the (random) systems that a 
proper trend is recovered also in dilute regimes. A useful, measurable quantity that is 
frequently used in modeling of porous/fibrous structures is the hydraulic diameter, Dh. 
When one has obstacles like fibres (or particles) instead of straight pores, the hydraulic 
diameter can be defined as: 

( ) ( ) ( )
4 4 particle surface 4

, with
1 1 particle volume 1

v
h v

v v

SV d
D a

S a V d

ε ε ε
ε ε ε

= = = = = =
− − −

  ,         (5.14) 

with the total volume of the unit cell, V, the total wetted surface, Sv, the specific surface 
area, av. Note that the hydraulic diameter, in this way, is expressed as a function of the 
measurable quantities porosity and specific surface area. The above value of av is for 
circles (cylinders) – for spheres one has av=6/d. Therefore the relation between 
normalized hydraulic diameter Dh/d and porosity for fibres will reduce to: 
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( )1
hD

d

ε
ε

=
−

.                                                                                                                (5.15) 

Using the hydraulic diameter as the characteristic length, I define the pore Reynolds 
number to be 

hDRe /hUDρ µ= ,                                                                                                         (5.16) 

and combine it with Eq. (5.15) which leads to 

( )( )
hDRe / 1Udρ ε µ ε= − ,                                                                                            (5.17) 

For the case of flow between parallel plates (slab flow), separated by a distance hs, the 
hydraulic diameter is 2h sD h=  and the superficial velocity, U is related to the pressure 

gradient as 

2

12
sh

U p
µ

= − ∇ .                                                                                                              (5.18) 

Combing Eq. (5.18) and (5.16) leads to the maximum Reynolds number 
3

max 2
Re

6
sh

p
ρ
µ

−= ∇ . Fig. 5.9 shows the variation of different definitions of Reynolds 

numbers as function of porosity at relatively low, constant pressure gradient 0.0005p∇ =  
[Pa/m]. The non-Darcian behavior (i.e. high Re numbers) becomes important where there 
is a combination of high porosity and large pressure gradient. As it is seen, by increasing 
the porosity the Reynolds numbers (for all the definitions) increase and the flow 
approaches the inertial regimes even at a small applied pressure gradient. However, Re 
(reference Re number) and Rei (interstitial Re number) will decrease at porosities 

0.95ε >  and asymptotically tend to zero. On the other hand, the particle Reynolds 
number (Rep) and the pore Reynolds number (Re

hD ) increases and approaches the 

maximum 
3

max 2
Re 66

6
sh

p
ρ
µ

−= ∇ ≅  (though it is a sharp increase from Re 0.032
hD ≅  at 

0.99ε =  to  Re 66
hD ≅  at 1ε = ). We observed that the Re

hD  gives a good fit to the 

exponential function with the power ~12.5 for the wide range of porosities 0.9ε < . The 
numerical results show that this scaling remains valid also at larger applied pressure 
gradients (data not shown here). For the range of 0.8ε < , the variation of Re

hD  is similar 

to Reg and Re
hD /Reg is almost constant equal to ~1/6.  In Appendix 5.D, I use Re

hD  or 

Reg to get a universal friction factor, valid for all porosities for random configurations. 
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Figure 5.9: Variation of different definitions of Reynolds number as function of porosity 
at a constant pressure gradient 0.0005p∇ =  [Pa/m] for random configurations. 

 

5.3.2.3 Effect of inertia on the viscous terms ( 'K ): Carman-Kozeny (CK) equation 

The earliest and most widely applied approach in porous media literature for predicting 
the permeability in Stokes regimes, involves capillary models [77] such as the one that 
leads to the Carman-Kozeny (CK) equation. The approach is based on the analogy 
between Poiseuille flow through pipes and pore channels. By applying the Poiseuille 

equation in terms of the hydraulic diameter, ( )/ 1hD dε ε= −  as 
2

32
hD

U p
ε

µ
= − ∇   and 

combining with Darcy’s law, Eq. (5.1), the normalized permeability obtained is given by 

( )
3

'
22

1CK

K
K

d

ε
ψ ε

= =
−

                                                                                                 (5.19) 

where ψCK is the empirically measured CK factor which represents both the shape factor 
and the deviation of flow direction from that in a duct. It is approximated to be ψCK=180 
for random packed beds of spherical particles [77] or as in Ergun equation (Eq. (5.4)) 
ψCK=150. Reported values of the CK factor for fibrous media vary between 80 and 320 
[78, 79]. The same range of ψCK  has been obtained from the theoretical results of Sangani 
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and Acrivos [80].  

The principal limitation of the CK equation is the fact that all geometrical features of the 
medium are lumped into the CK factor. Even though attempts have been made to 
introduce microstructural features of the system into the CK equation by suitably 
modifying the mean hydraulic radius, it is fair to say that, at this stage, microstructural 
features can be included only semi-empirically through experimental determination of 
ψCK. An initial attempt was made by Carman [77] who considered the effect of flow path 
(tortuosity) on ψCK. Writing the CK factor in terms of its components, namely the pore 
shape factor Ф and tortuosity Le/L 

2

e
CK

L

L
ψ  = Φ  

 
                                                                                                             (5.20) 

The tortuosity, Le/L is the average effective streamline length, Le scaled by the system 
length, L. In the original CK equation, for 3D random spherical beds, it was assumed that 

the tortuosity is constant (Le/L = 2 ) and Ф=90, which gives us the CK factor as ψCK 
=180. However, in a recent study [76] we showed that for fibrous media in the creeping 
(viscous) regime the tortuosity is not constant and depends on porosity. The effects of 
several microstructural parameters (namely particle shape, orientation, stagger angle etc) 
on tortuosity in creeping flow regimes have investigated elsewhere [5, 76]. From my 
numerical simulations, I extracted the average length of several streamlines (using 8 
streamlines that divide the total mass in-flux into 9 zones, thus avoiding the center and 
the edges). By taking the average length of these lines, the tortuosity can be obtained, 
while by taking the standard deviation of the set of streamlines, the homogeneity of the 
flow can be judged. The tortuosity is plotted in Fig. 5.10 as function of normalized 
velocity at different porosities. Just as in the case of the modified friction factor, the 
tortuosity is a function of porosity at creeping flow regimes (horizontal line). However, 
by transitioning into inertial regimes, it decreases by increasing the flow rate implying 
that the fluid flows mainly on a straight line and become less tortuous. 
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Figure 5.10: Tortuosity ( )LLe /  plotted as function of normalized velocity for different 

porosities on random configuration. 
 
 
 

5.4 Summary and conclusions 

The chapter started with an extensive review of published experimental, numerical and 
theoretical work on the drag law correlations in fluidized beds and porous media with 
special attention to the intermediate-Re numbers (inertial) regime. Deviation from 
Darcy’s law, for Newtonian, incompressible, stationary flow in homogeneous porous 
media, was then investigated numerically using FEM. We refer to Darcy’s law as linear 
(in superficial velocity) while different nonlinear corrections for larger Re can be found 
on the market – from quadratic, intermediate to cubic. Computations were performed on 
model 2D systems with regularly and randomly distributed, rigid, uniform 
cylinders/fibres, oriented perpendicular to the flow direction. The effect of several 
microstructural parameters (namely the shape and structure/arrangement of the fibres) on 
the macroscopic permeability (viscous drag) and inertial coefficients was investigated 
first, before we turned to random configurations of cylinders. Major conclusions emerge 
from the numerical results and can be listed as follows. 

For ordered and periodic structures: 

•  For small Re<3 (threshold varying with porosity, shape, etc.), a cubic correction 
in velocity ( 2λ =  is the power law for the dimensionless friction factor) works 
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well, with deviations stronger/earlier for larger porosities – given constant 
pressure drop.  

• Based on the generalized, non-dimensional form of the Forchheimer equation, for 
larger Re<30, the nonlinear correction to the Darcy drag law is a power law with 
powers 1 2λ< <  depending on the porosity and the structure (i.e. square or 
hexagonal arrays), and with power decreasing from cubic at low porosity towards 
quadratic at high porosity. 

• The viscous and inertial coefficients are not much affected (maximum variation 
10%) by the stagger unit cell angle, α  in the range of o o30 60α< < . However, λ  
increases (almost) linearly from 1λ ≅  at o70α =  to 2λ ≅  at o20α = . 

• The shape of the particles has a strong effect on both viscous and inertial drag 
coefficients, especially for porosities lower than approximately 0.9.  

For disordered (random) structures: 

•  For moderate Re, the nonlinear correction to Darcy drag law is well 
approximated, to first order, by a quadratic term in velocity (i.e. with 1λ = ). The 
inertial pre-factor ( ) 31.75 1 /γ ε ε= −  turns out to be very similar to the one used 

in the Ergun equation, originally derived for 3D spherical packed beds in the 
range of 0.45ε >  and Re<30. A nonlinear function fits better including also the 
very small Re data, but best performs a cubic correction up to a critical Re-
number, Rec,  and the same with a quadratic correction above Rec 

• With decreasing porosity a structural transition from disordered to ordered 
packing occurs (for my preparation method) and the inertial coefficients approach 
values closer to those for the hexagonal lattice.  

• The tortuosity (flow path) not only depends on the porosity and the pore structure 
but also on the fluid velocity (flow regime). At steady state and not fully turbulent 
flows, by increasing the porosity or flow rate, the flow becomes faster and less 
tortuous. 

• A microstructural definition of the Reynolds number, gRe , is based on the mean 

value of the averaged 2nd nearest neighbor surface-to-surface fibre distances gap∆ . 

The “gap” Reynolds number Re /g gapUρ µ= ∆ , is employed to get the universal 

friction factor as function of Reg valid for all Re studied here and in an 
astonishingly wide range of porosities up to even ε ~0.9. After scaling/collapsing 
all data, both the non-linear fit with non-integer power ( 1.15λ ≅ ) and the two-
regime approach fit the data for Re<30 very well. 

Although disorder was investigated in two dimensions, these results provide insights and 
indicate that similar conclusions might be extended to 3D realistic random porous 
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structures. Further work can now be planned on anisotropic and/or heterogeneous media. 
The study of the fully turbulent regime, similar to the coupled DEM-LBM for inelastic 
soft spheres [84] or modeling the diffusion and relative dispersion of particles in 
homogeneous isotropic turbulence [85], can also be addressed in future. 
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Appendix 5.A Comparison of the fit quality for ordered/disordered 
configurations 

The quality of the proposed power law fit for the modified friction factor, Eq. (5.8), can 
be evaluated by the relative error, χ  defined as: 

'
fit
'

FEM

1
f

f
χ = −                                                                                                               (5.A.1) 

The variation of χ  as function of */ ReU U ≡  using quadratic (blue), cubic (red) and 
proposed power law fits (black), for (a) square and (b) hexagonal configurations is shown 
in Fig. 5.A1. The power law fits best to my FE results with maximum discrepancy less 
than 1%, when the fits are performed in the full range of available data up to Re<30. 
(Note that the cubic fit performs even better, if not perfect, but only up to Re<3 (varying 
with porosity)). 

The quality factor, χ  for a random configuration is shown in Fig. 5.A2. Contrary to the 
case of ordered arrays, the quadratic and power law fits have approximately the same 
accuracy (maximum discrepancy less than 2%). However, by decreasing the porosity the 
quadratic correction becomes less accurate.  
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Figure 5.A1: The quality of the quadratic, cubic and proposed power law fit (Eq. (5.8)) 
in the range of 510 Re 30− < <  for (a) square and (b) hexagonal configurations at different 

porosities. 
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Figure 5.A2: The quality of the quadratic, cubic and proposed power law fit (Eq. (5.8)) 
in the range of 510 Re 30− < <  for random arrangements at various porosities. 

 

Appendix 5.B Mesh sensitivity analysis for random arrangements 

Due to the difference in scale between domain size and gap size between neighboring 
fibres, this typically requires local mesh refinement. For different porosities, flow through 
random fibre arrangements (Fig. 5.6) was simulated at different mesh resolutions 
(number of elements, Ne). The dependence of the solution in terms of the calculated 
friction factor at (a) dense, 0.4ε = , and (b) dilute, 0.8ε = , systems is shown in Fig. 
5.B1. The numerical results show that not only the inertial term (more elements are 
required to reach higher Re numbers), but also the viscous term (normalized permeability 

'K ) depends on the resolution, Ne. By increasing the porosity (dilute system) less 
elements would be sufficient to get a convergent solution. 
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Figure 5.B1: The variation of friction factor as function of Reynolds number 
*Re /U U≡ at porosity (a) 0.4ε =  and (b) 0.8ε =  for different resolution (number of 

elements, Ne). 
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Appendix 5.C An alternative cubic ( 2λ = ) correction fit for the friction 
factor 

The following empirical fit is based on correction of the creep regime (constant 'f  for 

Re Rec< ) with a cubic term ( 2λ = ) and fitting the inertial deviation with another 

correction term, ( )Rem  for Re Rec> . The Rec  is the critical Re number in which the 

deviation starts. For the case of creeping regime one has the cubic correction for 'f  as 

( )' ' 2
2'

1
1 Ref K

K
γ− = + ,                                                                                             (5.C.1) 

and with the correction at Re Rec>  as 

( ) ( )' ' 2
2'

1
1 Re Ref K m

K
γ− = + .                                                                                 (5.C.2) 

For the special case of random configuration at 0.4ε = , the numerical fitted values are 

( ) ( )

' 4
2

2 4
1 1

5.9983 10 , 1.1816, Re 4.3,

Re 1 Re Re , 4.3 10

c

c

K

m a a

γ−

−

 = × = =


= − − = ×
.                                                          (5.C.3) 

Fig. 5.C1 shows the variation of friction factor as function of Re=U/U* together with the 
proposed fits in Eqs. (5.C.1), (5.C.2) and non-integer power law in Eq. (5.8). The 
agreement is perfect (better than 99.9%) for Re Rec<  using the first correction (Eq. 

(5.C.1)) and extends with the same quality up to Re~20 with Eq. (5.C.2). This indicates 
that another type of correction is needed in order to improve the prediction for larger Re. 
Therefore, there is not a single integer power law correction. However, I stop this 
approach here as the non-integer power law (Eq. (5.8)) is already a good approximation 
(maximum discrepancy less than 1%) in wide rage of Re<30. 
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Figure 5.C1: The variation of friction factor as function of Reynolds number 
*Re /U U≡ for random configuration at porosity 0.4ε = .  The dashed and solid lines 

represent the cubic correction ( 2λ = ) fits in Eqs. (5.C.1), (5.C.2) and non-integer power 
law in Eq. (5.8), respectively. The inset shows the quality of the proposed fits. 

 

Appendix 5.D Towards unified friction factor using different definitions of 
Re numbers 

In this Appendix, I present unified relations for the friction factor as function of Reg or 
Re

hD , valid at a wide range of porosities for random configurations. The non-linear 

correction in Eq. (5.8) can be isolated by studying * ' ' 1f f K= − − , i.e. subtracting the 
viscous term, as 

* ' 'Re Re
1hDf K K

λ
λ

λεγ γ
ε

 = ≡  − 
     or     * ' 'Re Regap

gf K K
d

λ
λ

λγ γ
∆ 

= ≡  
 

.         (5.D.1) 

Note that by replacing Re with Re
hD  or Reg, the values of the fitting power λ  would not 

change. Fig. 5.D1 shows the variation of f *  as function of (a) Re
hD  and (b) Reg at various 

porosities for the case of random configurations. Using the alternative definitions of 
Reynolds numbers, i.e. Reg, the values of f * at different porosities collapse on a single 
curve up to astonishingly large porosity, ε ~0.9. The weak inertial regime seems to be 
cubic ( 2λ = ), whereas the higher inertial regime fits better to quadratic ( 1λ = ) 
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correction. Note that the non-integer power law (Eq. (5.8)), with 1.15λ ≅ , see the black 
line in Fig. 5.D1(b), is also fit to my data considering the whole range of Re. The 
numerical results show that one can not get such a scaling also for ordered (i.e. square or 
hexagonal) configurations (data not shown here). 
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Figure 5.D1: The variation of friction factor as function of (a) hydraulic Reynolds 
number, Re

hD  and (b) gap Reynolds number, Reg at various porosities for random 
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configurations. The inset shows the zoom. The solid lines show the best fitted cubic and 
quadratic corrections at weak and high inertial regimes, respectively.  
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Abstract 

A new method for two-way fluid-particle coupling on an unstructured mesoscopically 
coarse mesh is presented. In this approach, we combine a higher order finite element 
method (FEM) on a moving mesh for the fluid with a soft sphere discrete element method 
(DEM) for the particles. The novel feature of the proposed scheme is that the FEM mesh 
is a dynamic Delaunay triangulation based on the positions of the moving particles. Thus, 
the mesh is multipurpose: it provides (i) a framework for the discretization of Navier-
Stokes equations, (ii) a simple tool for detecting contacts between moving particles, and 
(iii) a basis for coarse graining and coupling of other physical fields (viz. temperature, 
electromagnetic, etc.). This approach is suitable for a wide range of dilute and dense 
flows, since the mesh resolution scales with particle density in a given region. Two-way 
momentum exchange is implemented using semi-empirical drag laws akin to other 
popular approaches, e.g. the discrete particle method, where a finite volume solver on a 
coarse and fixed grid is utilized. We validate the methodology with several test cases, 
including single- and double- particles settling and flow through ordered and random 
porous media, as compared against finely resolved FEM simulations.1  

 

 

 

Highlights 

• A new mesoscopic approach is presented for two-way fluid-particle coupling on an 
unstructured moving mesh. 

• The FEM mesh is a dynamic Delaunay triangulation based on the particle positions, 
which also provides a simple tool for detecting contacts between moving particles. 

• Two-way momentum exchange is implemented using semi-empirical drag laws.  
• The underlying data structure, i.e. the mesh, can be potentially used for coupling of 

other physical fields (viz. temperature, electromagnetic, etc.). 
 

 

 

 

 
                                                 
1S. Srivastava, K. Yazdchi, S. Luding, Meso-scale coupling of FEM/DEM for fluid-particle interactions, 
(2012) in preparation. 
S. Srivastava, K. Yazdchi and S. Luding, Two way coupled fluid-particle interaction on a deforming 
unstructured mesh, ECCOMAS (2012), 2 pages, Vienna, Austria. 
The FEM code was written by S. Srivastava, a former postdoc in our group. 
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6.1 Introduction  

Fluid flow through particulate media is pivotal in many industrial processes, e.g. in 
fluidized beds, granular storage, industrial filtration and medical aerosols. Flow in these 
types of media is inherently complex and challenging to simulate, especially when the 
particulate phase is mobile. For the past two decades, particulate flows have been an 
active area of research and two widely used approaches are now considered state of the 
art. The first approach is based on an Eulerian continuum model of two phase flows, 
which only describes the averaged behavior of the multiphase media, see for example 
Kuipers et al. [1]. The second approach is based on an Eulerian-Lagrangian approach 
using finite volume/finite difference methods on a fixed grid as a fluid solver and either 
immersed boundary (IB) [2], fictitious domain (FD) [3], marker and cell (MAC) [4] or 
discrete element method (DEM) [5] for the particles. Both one-way and two-way 
couplings have been explored using these methods. While many fluid solvers are based 
on a stagger grid finite difference method, others e.g. Ladd [6, 7], Han et al. [8] and Feng 
et al. [2] have successfully utilized lattice Boltzmann method (LBM) as a fluid solver for 
particle-fluid suspensions. The LBM is an attractive alternative due to its ease of 
implementation and parallelization; however, it currently lacks the fidelity required for 
more complex flows.  

A detailed description of flow through particulate media and accurate particle tracking 
can be obtained using discrete particle modeling (DPM) as proposed by Tsuji et al. [9], 
Kuipers et al. [10], Xu et al. [5] and Wu et al. [11]. In DPM, individual particles are 
tracked using Newton's laws of motion and particle-particle/wall interactions are also 
taken into account. These models invariably couple a continuum solver for fluid with 
DEM, as originally proposed by Cundall & Strack [12], for particles. The coupling 
between fluid and particles is explicit and is achieved using semi-empirical drag laws or 
closure relations of fluid-particle interactions, e.g. Ergun et al. [13], Gidaspow [14], 
Drummond et al. [15], Gebart et al. [16]. In a recent study, Yazdchi et al. [17, 18] 
proposed modified closure relations applicable to a wider range of porosities for both 
ordered (see chapter 2) and random (see chapter 3) porous media, valid for creeping 
flows. The DPM with hard sphere particle-particle interactions have been successfully 
applied to fluidized beds and slug formation in bubbly flows [19].  

On one hand, for dense particulate flows, efficient contact detection in a DPM approach 
requires additional data structures and specialized algorithms adding to its computational 
overhead. On the other hand, the grid size for flow resolution is often very coarse, i.e. 
they are orders of magnitude bigger than the particle diameters. Thus, most DPM models 
ignore the sub-grid scale flow characteristics and this affects the small scale particle 
dynamics. Xu et al. [20] have recently proposed including sub-grid scale features to 
better capture the particle dynamics. Note that all the preceding methods [1-5] are based 
on explicit coupling between fluid- and particle solvers through empirical drag relations. 

In contrast, in a finely resolved approach an implicit coupling is present. For example the 
distributed Lagrange multiplier (DLM) method of Glowinski et al. [21] has been 
successfully applied to simulate fluid-particle interaction in porous media and fluidized 
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beds. Due to additional set of Lagrange multipliers, DLM is more computationally 
expensive than DPM. However, similar to DPM, the particles are not modeled 
geometrically in this approach, but the flow in their vicinity of particles is better resolved. 
Using DLM, Pan et al. [22] simulated the behavior of fluidized bed; however, they 
ignored particle-particle interactions to keep the computational costs low. More recently, 
Kanarska et al. [23] have coupled the DLM with DEM for particle-particle interactions. 
Fully resolved simulations of particle laden flows using FD by Avci et al. [3] is in spirit 
similar to DLM, except that coupling forces are computed by integrating stress field at 
the surface of the particles. In essence, the two methods are exact as no drag correlations 
are required to couple the two phases.  

Interest in using a deforming mesh for fluid-structure/particle interactions has persisted 
for sometime now. Tezduyar et al. [24] developed the so-called Deforming Spatial 
Domain/Deforming Space Time (DSD/DST)-FEM for flow problems with deforming 
interfaces using the so called arbitrary Lagrangian-Eulerian (ALE) methods and space-
time finite element method. In this approach, particles are geometrically modeled in the 
mesh and the flow is fully resolved around each particle and hence is computationally 
expensive for dense flows [2]. 

In this chapter, we introduce a new method for fluid-particle interaction based on a two-
way coupling between a higher order FEM and a soft sphere DEM approach on a 
deforming unstructured mesh. The main feature of our approach is a deforming Delaunay 
triangulation, which is utilized as an efficient contact detection tool for the moving 
particles as well as a finite element mesh for discretizing the Navier-Stokes equation. It is 
known that the nearest neighbor property of the Delaunay edges renders it an attractive 
algorithm for contact detection, see Ferrez et al. [25] and references therein. To better 
resolve the flow around the particles, we apply the interaction forces as point forces at the 
particle locations (see Section 6.3.1). To our knowledge, this study is the first attempt to 
apply a moving Delaunay triangulation (particle based) for both contact detection and 
finite element fluid solver. Coupling with FEM as fluid solver has several advantages 
namely, it may provide the leverage of higher order interpolations for simulating flow to 
the desired accuracy and scales, even when the mesh is coarse. Another motivation to use 
FEM is that for packed beds and dense particulate flows, the mesh can also be used as a 
coarse graining tool for stress and strain fields, which is often a quantity of interest. 

Despite the advantages of using FEM for higher accuracies, Wu et al. [11] have pointed 
out several issues associated with implementing fluid-particle coupling on unstructured 
mesh. The most restrictive one pertains to computing the particle volume fraction in a 
given cell. This happens since particles may be shared between neighboring cells and 
thereby adding to the computational complexity. We circumvent this issue in present 
methodology by resorting to a moving mesh and an ALE formulation. In this way, the 
particles have finite radius and always lie at the element vertices and consequently, a 
coarse mesh generally remains robust with respect to element degeneration; in other 
cases, re-meshing is deployed whenever necessary. Furthermore, the particle-
particle/wall interactions are modeled using a linear spring contact model with dissipation 
and friction. 
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The rest of this chapter is organized as follows. We start with an introduction to the 
mathematical model applicable to viscous, incompressible flow through an isotropic 
porous media in Section 6.2. The drag force model used for coupling FEM and DEM and 
the contact force model used in DEM are discussed in details. In Section 6.3, we detail 
the underlying finite element formulation and discuss the methodology for approximating 
of the porosity field and its impact on numerical computations. This is followed by 
numerical examples in Section 6.4, demonstrating flow in static and moving particulate 
media. Finally, Section 6.5 presents conclusions drawn in this chapter and an outlook for 
future studies. 

 

6.2 Mathematical model 

The governing equation for the multiphase flow is a set of porosity scaled Navier-Stokes 
equations, which define the flow of fluid in a particulate porous media (see Anderson et 
al. [26], Deen et al. [27], Xu et al. [5]). Considering an incompressible fluid (i.e. the 
density, ρ  is constant) in an Eulerian flow domain, Ω , we can write the equations of 
both fluid and solid phase as 

Fluid phase: 
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where , , , ,u pε µ � ττττ  and g
�

 are the porosity, viscosity, fluid velocity vector, pressure,  
shear stress and the acceleration due to gravity, respectively. For the particles 

, , , ,i i i im I r V u
�

 and iω�  represent particle mass, moment of inertia, radius, volume, 

translational and angular velocity, respectively. The C
ijF
�

 represents the inter-particle/wall 

contact force and ijn
⌢

 is the unit vector point from the center of the particle to the contact 

point (with particle j). Finally, D
if
�

 and D
iF
�

 representing the drag force per unit volume 
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on the fluid due to interaction with the ith particle and the total drag force acting on the i th 
particle, defined in the following section. In the angular momentum equation, DiΤ  

represents the torque experienced by the ith particle due to fluid drag when flow around 
the particle becomes asymmetric, as shown in Section 6.4.2. The pressure gradient term 
in Eq. (6.2) accounts for the net buoyancy force on each particle passing through its 
center. Since Eq. (6.2) is a system of ordinary differential equations in time, it can be 
integrated using a suitable numerical integrator. For accuracy and conservation 
properties, we use the velocity-Verlet time integrator, which is second order accurate in 
time2. Note that the indices i and j do not represent the tensorial components of respective 
fields in the above equation, instead i represents particle number and j is the index for the 
contacts of the i th particle. In the rest of this section, we introduce the model for the drag 
force density, used to explicitly couple the fluid and particle dynamics.  

 

6.2.1 Drag force model 

The drag force accounts for the resistance to the flow through a porous media, and is 
inversely related to its permeability, K. The permeability is the proportionality constant in 
Darcy's equation 

K p
U

µ
− ∇=

�
 ,                                                                                                                   (6.3) 

where U  is the horizontal superficial (discharge) fluid velocity and defined to be 

1
d

fV

U u V u
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 ,                                                                                                    (6.4) 

where V and Vf  are total available volume and the volume of fluid. On the other hand, the 

intrinsic average flow velocity 
1

d
ff V

u u V
V

= ∫
� �

 defined over the fluid volume only. 

Following Yazdchi et al. [17], the permeability, K is related to the drag coefficient, β  as 

2

2d

µεβ
λ

=  ,                                                                                                                       (6.5) 

where 2/K dλ =  represents the non-dimensional permeability and is often used instead 
of K in literature. Several existing correlations for λ  are listed in Table 6.1. Henceforth, 

the drag force density in the fluid, Dif
�

 is defined at a point ex , (see next section for 
details). The force density is modeled as 

                                                 
2 Since the forces between particles can be dissipative the choice of an integrator does not have a major 
impact on either solution quality or the performance, thus will not be discussed in detail in this chapter. 
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( ) ( )D
i i ef u u x xβ ψ= − −
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,                                                                                           (6.6)    

where iu
�

 is the instantaneous velocity of the ith particle and ψ  is a function describing 

the influence of the force density in its neighborhood. While for ψ  several possibilities 
exist, e.g. a Gaussian function, in this chapter we restrict ourselves to 

( ) ( )e ex x x xψ δ− = − , i.e. the Dirac delta function, for reasons that are discussed in the 

next section. Eq. (6.6) is a model of the drag force density in the fluid in the 
neighborhood of the particle. The drag from fluid to particle is proportional to the relative 
velocity between particle and the fluid. In other words, a particle moving in the direction 
of the flow in its neighborhood with the average velocity does not experience any drag.  

 

Table 6.1: Different non-dimensional permeabilities for monodisperse systems as a 
function of porosity (ε ) and particle diameter (d) in the creeping flow (Re 1≪ ) regime. 

Author Porosity range λ  
Ordered arrays (square configuration) 
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Ergun’s equation3 is a commonly used drag law, which is a non-linear function of 
porosity, fluid velocity and particle size. It accurately predicts the total drag force for a 
limited range of porosities in 3D. Using this relation, one can derive the macroscopic 
permeability of the media and use Darcy's equation to determine the average flow 
                                                 
3 Ergun equation is essentially a correction to the Carman-Kozeny [28] drag relation for creeping flows, 
which also takes into account the inertial drag at higher Reynolds numbers [29], see chapter 5. 
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velocity through the media. An aptly modified version of this equation applicable in 2D 
is deployed as suggested in [18], see chapters 2 and 5. Accordingly, a more general form 
of β , taken directly from Ergun et al. [13], applicable towards inertial regimes can be 
written as 

( )( )2

2

1
1.75 iu u

d d

εµεβ ρ
λ

− −
= +

� �

 ,                                                                                (6.7) 

which can be replaced by the results in chapter 5, see Eq. (5.8). In the following, we 
introduce a simple contact force model to account for inter-particle/wall forces. 

 

6.2.2 Contact force model 

We take into account the particle-particle/wall interactions and therefore, the contact 
forces are essential in order to integrate the particles equations of motion. As elsewhere 
[30], we use a linear spring-dashpot model for the contact force 

C p
ij ij ij ijF n vκδ η= +
� �⌢

,                                                                                                          (6.8) 

where , , ijvκ η �  and p
ijδ  are contact stiffness, viscous damping coefficient, relative velocity 

between particle i and j and the overlap, respectively. A similar model can also be 
implemented in the tangential direction along with a sliding spring based on tangential 
overlap, for cases where rotation and friction are relevant (but is not used in this chapter). 
The contact stiffness, κ  and overlap, p

ijδ  set a limit value for the DEM time step as 

DEM

1
/

50
t π ϖ∆ ≅  and ( )2

2 / 4 /m mϖ κ η= −  for numerical simulations. A particle may 

also have more than one contact at any given time, in this case the total contact force is 
found by summing over all the contacts. For further details and state of the art in DEM 
contact models, see the review paper by Luding [30] and references therein. 

 

6.3 Finite element formulation 

Let us assume we have suitably defined discrete finite element (polynomial) spaces Vh, Sh 
for trial and test solutions and let hu

�
, ph denote the trial solution of Eq. (6.1). Further, we 

divide our domain Ω  into non-overlapping triangles kΩ  such that k kΩ = Ω∪ . The weak 

form is obtained by multiplying the Eq. (6.1) with appropriate test functions (hv
�

, qh) and 
performing integrating by parts on the diffusion term. This yields a mixed Galerkin 
formulation for ( hu

�
, p), which reads as 

Find ( ),h h h hu p V S∈ ×�
 such that ( ), ,h h h hv q V S∀ ∈ ×�
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where ( ), dx y xy
Ω

= Ω∫  denotes the standard inner product on Vh and Sh. Notice that for 

the moving mesh we replace the convection velocity hu
�

 by ( h
Mu u−� �

), where Mu
�

 is the 
mesh velocity in ALE formulation and essentially takes into account the convection of 
the fluid momentum due to mesh motion. To compute Mu

�
 at quadrature points inside a 

triangle, we interpolate the velocities of the nodal particles of that triangle. Using nodal 
velocities ensures that the Geometric Conservation Law (GCL) for the ALE formulation 
is satisfied [31, 32], since a constant solution is reproduced trivially. The above 
formulation requires a priori knowledge of the porosity field at every point inside the 
domain, which can be computed using SPH interpolation, see Section 6.3.2. 

For additional robustness and stability in our formulation, we add streamline-
upwind/Petrov Galerkin (SUPG), pressure stabilized/Petrov Galerkin (PSPG) and other 
terms similar to least square incompressibility constraint (LSIC) as discussed in [33], to 
the above variational formulation. Forster et al. [34] have investigated that such 
stabilization is also effective when simulating on distorted meshes. Henceforth, following 
[24] we add residual based stabilization terms (S.T.) given by 

( ) ( ) ( )1
S.T. ,h h h h h h h

SUPG PSPG u LSIC pu v q r u p v r u
ρ

 = ⋅∇ + ∇ ⋅ + ∇ ⋅ 
 

� � � � � �τ τ ττ τ ττ τ ττ τ τ ,                       (6.10) 

where ( ),h hr u p
� �

 denotes the residual of continuity equation, Eq. (6.1) 
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  .                               (6.11)    

The stabilization parameters are fixed using the following expressions 
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where he is the length of the smallest edge of the element. Eq. (6.12) has shown to be a 
convenient choice in computations [33]. 

Stable discretization of Eq. (6.9) can be difficult to construct and solutions are well 
studied in literature, see [35] for a detailed theory. Classical methods forbid equal 
interpolation of both velocity and pressure variables in the above setting. Stable solutions 
can usually be obtained if Pp ⊂  Pu (polynomial spaces for p and u) in numerical 
approximations. Furthermore, it is known that the incompressibility constraint is not 
strongly enforced when using a continuous approximation for the pressure field [36]. To 
circumvent this problem, we adopt a discontinuous polynomial space for pressure 
discretization. In this chapter, unless stated otherwise, we choose stabilized P1/P0 or 
P2/P1 elements with continuous velocities and discontinuous pressure polynomials. 
However, this formulation is not restricted at all in choosing higher order FE spaces. 

 

6.3.1 The mesh and drag force computation 

The FE mesh adapted in the above formulation is a Delaunay triangulation based on the 
particle locations. This implies that all interior vertex nodes of the mesh are occupied by 
particles at all times, while the boundary nodes are inserted only for the convenience of 
computation and application of boundary conditions, see Fig. 6.1. 

 

                 

Figure 6.1: Finite element mesh based on 800 randomly distributed particles at porosity 
0.6ε = .  (right) Complete Mesh; (left) Zoomed in, upper right corner which shows the 

added boundary nodes (red points) to define the geometry. The boundary nodes are 
distributed at equal distances of approximately twice of the particle diameter (i.e. ~ 2d). 

 

For moving particles the mesh vertices move with the particles, thereby deforming the 
mesh. Currently, we re-mesh at fixed (short) time intervals in order to maintain the 
quality of triangles and use the triangulation for contact detection. This implies that a new 
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triangulation is created from the current particle positions and the solution from the old 
mesh is transferred to the new mesh using a simple projection scheme. To remain 
focused, we will not discuss the projection scheme in detail. 

In Fig. 6.2(a) the particle overlaps with an element are shown for particles of different 
sizes. While we do not address polydisperse particles in a fluid flow in this paper, it is 
shown to highlight the generality of the proposed method. Fig. 6.2(b) shows the drag 
force contribution from each element. The total drag force and torque acting on the ith 
particle is considered as a sum of contributions from all the overlap elements 

( )
3
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1
,D p

e e e
pe

f F x x
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δ
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= −∑
� �

  
1

,
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D p
p e

e
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=
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� �

   
1

,
eE

D p
p p e

e

T r n F
=

= ×∑
�⌢

                                      (6.13) 

where e is the index counting the number of triangular overlaps, Ee of the ith particle (for 
example Ee=5 in Fig. 6.2(b)). 

 

         
                                 (a)                                                                         (b) 

Figure 6.2: (a) An element from the mesh is shown with the 3 particles occupying its 
vertices. The particle translational and angular velocities are represented by u1,  u2,  u3, 

1ω , 2ω , 3ω , respectively. Ue represents the superficial velocity in the cell. Ae represents 

the area of the element e and e
iA  the area of the respective overlaps. (b) The drag force 

contributions to a particle from neighboring/touching fluid elements are shown.  

An important modeling aspect from the numerical point of view is the location of the 
drag forces, xe computed from Eq. (6.6). Here we list a few possibilities for application of 

the D
if
�

(as shown in Fig. 6.3): 

(a) At the mid point of the chord of the respective overlaps; 
(b) At the mid point of the arc in respective overlaps (as in Fig. 6.2); 
(c) At the intersection of particles circumference with element edges; 
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(d) At the nodal location of the respective particle. 

Fig. 6.3 shows several possible sites for the application of the drag force. Unless 
specified otherwise, for simplicity, we choose the mid point of the chord (i.e. Fig. 6.3(a)), 
as it lies close to the fluid solid interface, where the momentum exchange occurs. We do 
not expect the above choices to have a major impact on the numerical results. However, it 
remains a task for future studies. 

A force equal in magnitude but opposite in direction is applied to the fluid, i.e. 
1

1
p

eF F= −
� �

, at exactly the same point in the cell, thereby providing a consistent point force 

based coupling. The total force on the particle due to the fluid also consists of the 
buoyancy force, which is computed based on the pressure gradient at point xe.   

 

    
                (a)                                (b)                               (c)                              (d) 

Figure 6.3: Point of application of the drag force; (a), (b), (c) and (d) show four distinct 
possibilities (marked with ' X') for xe. 

 

6.3.2 Local porosity calculation 

At this point the general variational form, i.e. Eq. (6.9), can be solved using various 
assumptions for the porosity field. If the particles are fixed and are relatively 
homogeneously distributed, one can simplify Eq. (6.9) by making the assumption that the 
porosity is a constant for e∀Ω  and there is no temporal variation. Thus, for a locally 

averaged formulation, one could take a simpler approach and define a porosity for each 
triangle in the mesh, see Fig. 6.2, as 

3

11

e
i

e i
e

A

A
ε == −

∑
 .                                                                                                             (6.14) 

Although Eq. (6.14) is computationally efficient and simple to compute, this definition 
may lead to high fluctuations in the porosity field, thereby adding to the numerical 
instabilities especially for dynamic meshes. Therefore, in this chapter we utilize Eq. 
(6.14) only for static particles. To remedy this issue, we interpolate the particle number 
density using a smooth particle hydrodynamics (SPH) kernel function as given by 
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where h is the smoothing length. Following Xu et al. [20] one can evaluate the porosity 
and its gradient at an arbitrary point r as 
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   .                                                                              (6.16) 

This definition yields a smoother porosity field; however, it incurs additional 
computation at each numerical quadrature point. Furthermore, special attention is 
required at the boundaries, e.g.  Shepard correction, as to be studied elsewhere [37]. 

 

6.3.3 Time integration 

After performing spatial integration, a second order finite difference scheme is utilized 
for time integration of the resulting system of equations. In a general form this can be 
written as 

1 13 4

2

n n nu u u u
u

t t

+ −∂ − += =
∂ ∆

� � � ��
ɺ .                                                                                         (6.17) 

Using the necessary polynomial approximations of test and trial functions, the finite 
element matrices for each element in the mesh are assembled and the algebraic form of 
the equations is written as 

[ ]{ } ( ) { } [ ] { } [ ]{ } { }
[ ]{ } [ ]{ } { }

Th h h h h

h h n
i

M u C u u B p A u f

B u p fεγ

 + − + = 

+ =

�� � � �
ɺ

��
,                                               (6.18) 

where [M] represents the mass matrix, [C] is the matrix representing the convection term 
and [B] and [A] are the matrices due to pressure gradient and diffusion terms. The [ ]iγ  

matrix is due to pressure penalty terms on interior boundaries. The terms in {.} denote the 
corresponding coefficients of the FE solution. We discretize in time using a second order 
scheme, i.e. Eq. (6.17), and the θ -method (Crank-Nicolson method with 0.5θ = ) for 
linearizing the convection term as 
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where {f} represents the sum of the forces and explicit RHS terms. This implies that the 
drag forces are explicitly calculated. A suitable time-step size for the FEM is chosen 
according to Courant–Friedrichs–Lewy (CFL) condition and the DEM time-step is 
computed based on the natural frequency of particle contacts. In order to allow that at 
every fluid-time step n DEM time steps are performed, where the integer 

/FEM DEMn t t= ∆ ∆  is specified as input parameter together with DEMt∆ .  

 

6.4 Numerical results 

In this section the numerical results will be presented for both verification and validation 
of the code. The computational framework described in the previous section will be used 
to simulate several test cases for both static and moving particles. In the following 
subsection, we first present results for static particles before presenting the deforming 
mesh simulations. 

 

6.4.1 Static particles 

This subsection deals with flow through static porous media for both ordered and 
disordered cases. The first example is a simplified model of flow through a homogeneous 
porous media, which verifies the compatibility between the present model and Darcy's 
law. In the second example, we compare our mesoscale resolution simulation with the 
average velocities obtained from fully resolved ANSYS simulations of flow through both 
ordered and disordered arrays of static particles [17, 18]. The fully resolved simulations 
were performed using a fine mesh with ~510  elements to accurately capture particle 
geometry and predict the flow around each particle. Our mesoscale approach, in contrast, 
contains elements of the same order of the number of particles (i.e. only a few hundreds). 
While the flow is not fully resolved, the comparison reassures that this scheme efficiently 
computes average velocities that are in the expected range and capture qualitatively the 
flow behavior at mesoscale. 

 

6.4.1.1 Case 0: Homogeneous porous media and Darcy flow 

A well defined multiphase model should reproduce the behavior of single phase flow. 
When combined with a homogenized drag force (as opposed to point forces), the model 
must reproduce flow predictions from Darcy's law. As a preliminary verification and 
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validation case, we simulate flow through porous media using our formulation and a 
homogeneous body force (drag) in the test domain. We compare the average flow 
velocity from simulation with analytical results from Darcy's law. Recall that the 
permeability, K of the media describes the resistance to the flow and is intrinsically 
related to the drag coefficient, β  via Eq. (6.5). Substituting Eq. (6.5) into (6.3) leads to 

2 p
u U

εε
β
∇= = −

��
.                                                                                                     (6.20) 

Setting 1β = [kg/(m3s)], 0.5ε =  and 1p∇ = − [kg/(m2s2)], one obtains 0.5u =� [m/s]. 

For this special case, Eq. (6.1) can be simplified to 
d 1

d

u
p u

t

β
ρ ε
 = − ∇ + 
 

�
�

, with 

1ρ = [kg/m3]. Assuming that the fluid is at initially rest ( )( )0 0u =�
, the analytical, 

transient solution of the above equation is  

( ) 1
tp

u t e
β

ερε
β

− ∇= − +  
 

�
.                                                                                            (6.21) 

We also numerically solve Eqs. (6.1) and (6.2), where Df uβ=
� �

 acts as the distributed 

body force with stress-free boundary conditions. The problem setup is sketched in Fig. 
6.4(a), and Fig. 6.4(b) shows that the flow quickly achieves a steady state value of 

0.5u =� [m/s], in perfect agreement with the analytical solution above. 
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                            (a)                                                                       (b) 

Figure 6.4: Darcy's homogenous flow calculation case: (a) Setup with a coarse mesh (4 
triangular elements), where the flow is driven by a pressure gradient in x direction. The 

arrows depict the homogenously smeared out resistive body force Df
�

; (b) For the given 
parameters, the simulation predicts the correct transient and steady state average velocity. 
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6.4.1.2 Case 1: Flow through ordered and random porous media 

For this problem in a square domain, the top and the bottom boundaries have no-slip 
boundary conditions, while the left and right boundaries maintain a pressure gradient of 
5[kg/(m2s2)]. In Figs. 6.5 and 6.6, the color contours refer to the horizontal velocity in the 
ordered and random media, respectively. The blue regions indicate the slow flow region 
behind the each of 5×5 particles in the array, while the predominant channel for the bulk 
flow lies between the two adjacent rows of particles. With decreasing porosity, the flow 
gradually confines itself between the walls and the top and bottom rows of particles as 
the interior becomes less and less permeable. 

 

    
                (a)  d = 0.3 [m/s], 0.93ε ≅                           (b)  d = 0.4 [m/s], 0.87ε ≅  

    
                (c)  d = 0.6 [m/s], 0.72ε ≅                           (d)  d = 0.7 [m/s], 0.61ε ≅  

Figure 6.5: Horizontal velocity contours for ordered arrays (square configuration) of 
particles at different diameters, d, with ε  given above. 
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For comparison purposes the average flow velocity is computed for the entire domain and 
compared with finely resolved FEM simulations. We utilized the drag law of Yazdchi et 
al. [17], from Table 6.1, in this simulation, which is valid for a wide range of porosities. 
The average flow predictions for both the ordered and random case agrees very well with 
data from finely resolved FEM simulations (see Fig. 6.7). The overall fit is remarkable as 
it closely follows the finely resolved curve. We must mention here that the fully resolved 
simulation is geometrically correct, i.e. particles are represented by holes with no-slip 
boundary conditions and contains more than 510  degrees of freedom (dof). Our 
simulation, in contrast, relies on a few hundred dofs only.  

 

   
                          (a)  ε  = 0.5                                                      (b)  ε  = 0.6 

   
                          (c)  ε  = 0.7                                                      (d)  ε  = 0.8 

Figure 6.6: Horizontal velocity contours in homogeneous media with 800 randomly 
distributed particles at different porosities. 
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Figure 6.7: Average horizontal fluid velocity plotted against porosity through (a) ordered 
(square) and (b) random fibre arrays. 

 

6.4.2 Moving particles 

For the case of moving particles, e.g. fluidized beds, the underlying grid deforms as the 
particles (and mesh-nodes they occupy) move. This is an important feature of our 
methodology, since the particle positions are known at all times, it reduces the 
computational overhead associated with finding particles inside the correct cell [11]. For 
verification, we present two test cases of one and two particle sedimentation. To 
circumvent the solution degeneracy due to the deforming mesh, we re-mesh at fixed 
intervals. Re-meshing is essential in this approach since we wish to preserve the nearest 
neighbor property characteristic of the Delaunay triangulation for contact detection at all 
times. However, this is not too restrictive as the particles do not move much per FEMt∆  

time step and contact detection with walls is handled separately in our code. Therefore, 
we do not address the particles escaping the fluid flow region in the present work and it 
remains a limitation to address in future work. 

 

6.4.2.1 Case 1: Single particle settling 

A particle under gravity in a viscous fluid, both initially at rest, will fall until it has 
reached the settling/terminal velocity, us calculated using the drag law prescribed in [38]. 
The parameters are 1.14µ = [kg/(m.s)], 31.25 10ρ = × [kg/m3], 37.74 10pρ = × [kg/m3], 

34.8 10d −= × [m] with drag force ( )4 / ln 7.4 / ReD
sf uπµ=

� �
, and Re /su dρ µ= �

. 

No slip boundary conditions are used at the top and bottom walls, while friction-less (no 
shear stress) boundary conditions are used along the left and right walls. The particle is 
released from Z0 = 0.6H [m], where H = 2 [m] is the height of the box. The mesh is based 
on the single particle location (corner points and two additional boundary points on each 

(a) (b) 
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wall) and consists of only 12 triangular elements, which is rather coarse. As mentioned 
before, we switch to 4th order polynomials for an increased flow resolution. The settling 

velocity can be computed when the frictional force, Df
�

, combined with the buoyancy 

force exactly balance the gravitational force (mg
�

) and is equal to 0.17su
�
≃ [m/s]. Fig. 6.8 

shows the deforming mesh as the particle follows its trajectory. Near the particle surface 
a halo region with non-zero upwards fluid velocity appears due to the drag exerted by the 
falling particle. A trail of this halo is not evident since viscosity is large and our approach 
does not fully resolve the flow. Note that for this particular case no re-meshing was 
required as the mesh does not entangle throughout the simulation. 
 

   
                          (a)  t = 0.25 [s]                                                 (b) t = 0.5 [s] 

   
                          (c)  t = 1 [s]                                                     (d)  t = 2 [s] 

Figure 6.8: Deforming mesh with velocity contours for 1 particle settling using 4th order 
basis functions. The velocity of the falling particle quickly attains its settling velocity. 
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6.4.2.2 Case 2: The Drafting, Kissing, Tumbling (DKT) problem 

We illustrate another benchmark case, where two particles are initially separated 
vertically and start falling under gravity. As in the previous case, both fluid and particles 

are initially at rest and particles are then released. The Stokes drag law, i.e. 3D
sf duπµ=

� �
, 

with 310µ −= [kg/(m.s)], 310ρ = [kg/m3], 31.01 10pρ = × [kg/m3] and 34 10d −= × [m] is 

used in the simulation. 

Similar to the previous example, no slip boundary conditions are used at the top and 
bottom walls, while friction-less (no shear stress) boundary conditions are used on the left 
and right walls. Fig. 6.9 depicts several snapshots of the 2 particle settling behavior. 
While the bottom particle center is aligned with the centerline of the box, the top 
particle's center location is offset to the centerline by 1% to the right to trigger the 
instability. As the particles fall through the column of this fluid the top particle is 
observed to draft behind the first particle and catches up with the first particle (kissing) 
and then gets past it with a tumbling behavior. This behavior is very sensitive to flow 
resolution around particles as the draft of one particle affects the other. This behavior is 
well captured in using 3rd order polynomials for fluid resolution in this approach. 
 

                                                           
                    t = 0 [s]                      t = 0.5 [s]                 t = 1.25 [s]                 t = 1.4 [s] 

Figure 6.9: Snapshots of the Drafting, Kissing, Tumbling (DKT) problem. Triangles 
show the deforming mesh as the simulation progresses. 

 

6.5 Summary and conclusions 

A meso-scale, two-way, fluid-particle interaction framework based on coupling FEM and 
a soft particle DEM on an unstructured mesh has been proposed. The key component in 
our approach is a Delaunay triangulation, which serves both as a contact detection tool 
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and a FEM mesh. The triangulation deforms and changes with the particle motion. This 
design alleviates any computational overhead purported by existing methods for contact 
detections, particularly in dense particulate flows. Since particles always occupy nodal 
positions in our mesh, locating particles inside cells also becomes trivial.  

A FEM based fluid solver allows for a higher order interpolation, therefore better 
resolution of the flow, whenever the underlying mesh is coarse. On the other hand, dense 
flows are resolved equally well since the mesh resolution is refining inversely 
proportional to the particle density. Different time scales in DEM and FEM are coupled 
through inner iterations of DEM steps. The approach provides the dynamics of the 
particles and the fluid using a deforming mesh, while reasonably resolving the fluid flow 
around the particles. The average velocities are accurately predicted when compared to 
fully resolved simulations. Furthermore, duplication of data for storing the mesh and 
particles as well as their contact detection, has been avoided by defining a triangulation 
based on particle locations. In future, we also aim to couple various other physical fields 
(e.g. temperature, electromagnetic, etc.), using the same data structure. 
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“In three words I can sum up everything I've learned about life: it goes on” 
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7.1 Summary and general conclusions 

The transport properties of fibrous porous media are essential for many processes in the 
chemical, petrochemical, metallurgical and food processing industries. The 
hydrodynamics of dispersed multiphase flows is very complex due to a wide range of 
time- and length-scales involved. Goal of a multiscale modeling approach is a continuum 
model to simulate engineering scale gas/fluid-solid flows. However, this approach 
requires closure equations for the unresolved sub-grid phenomena in the lower level 
(smaller scale) models. The interphase momentum transfer between gas/fluid and solid 
phases is one of the dominant forces in the gas/fluid- and solid-phase momentum 
balances. This momentum exchange is represented by a drag force. The drag force on a 
single sphere/cylinder in a fluid has been well studied for a wide range of Reynolds 
numbers, Re. However, when a single particle moves in a dispersed two-phase mixture, 
the drag is affected by the presence of other particles. Some of the drag closures can, in 
principle, be obtained from analytical theory, experiments and direct numerical 
simulations (DNS), each with their own strong and weak points.  

Typically the macroscopic transport properties, like permeability or drag force, have a 
strong dependence on the physical properties, including porosity, pore size and structures, 
particle size distributions and physics of the transport processes. The need to understand 
these dependencies from a fundamental perspective dictates the need for modeling at the 
microscopic scale. Because it is experimentally difficult and expensive to study the flow 
characteristics at micro- or even nano- scale, deeper insights into microstructural effects 
have remained elusive until now. 

This thesis focuses on the derivation of accurate drag (permeability) closures for 2D, 
unidirectional (dis)ordered arrays of cylinders/fibers, from fully resolved finite element 
(FE) simulations. In particular, I investigate the effect of several microstructural 
parameters, such as particle shape, orientation and arrangement, on the macroscopic 
permeability at both creeping and (moderate) inertial flow regimes. The results are given 
in the form of simple, universal closures valid at all porosities, which can readily be 
incorporated into existing multi-phase flow codes. Such relationships are of fundamental 
importance in many applications involving fluid flow through porous media.  

In the following, the main conclusions related to each chapter will be briefly highlighted 
with further comments on the limitations and possible future work. 

• Chapter 2: Based on the hydraulic diameter concept, the permeability is 
expressed in the general form of the Carman-Kozeny (CK) equation for ordered 
periodic structures. The numerical FE results show that the CK factor not only 
depends on the porosity but also on the microscopic pore structure, such as 
particle shape, orientation, etc. In the limits of high and low porosities, agreement 
with previous theoretical and numerical results is established and a unified 
relation is provided that is valid for all porosities. 
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• Chapter 3: A new, simple microstructural model for predicting the macroscopic 
permeability of random fibrous media is presented in terms of the statistics of the 
inter-fibre (surface to surface) distances. After detailed analysis of several 
microstructural distances (i.e. the 1st, 2nd and 3rd nearest neighbors, the hydraulic 
diameter, the Delaunay triangulation (DT) edges), only the 2nd nearest neighbor 
distance, or equivalently the shortest DT edges, lead to best correlation in a wide 
range of porosities. Astonishingly, a power law relation between macroscopic 
permeability and the average shortest DT edges, that resemble lubrication theory, 
is valid at high and moderate porosities for both ordered and random 
configurations. It is complemented by a closure relation, Eq. (3.8), which relates 
the effective microscopic channel length to the effective packing fraction or 
porosity. As an alternative, I propose a purely empirical merging function for 
calculating permeability in terms of porosity, which combines the analytical 
solutions of dilute and dense limit cases.  

• Chapter 4: Several order parameters, based on Voronoi and Delaunay 
tessellations, are introduced to characterize the microstructure of randomly 
distributed non-overlapping fibre arrays. In particular, the mean and distributions 
of topological and metrical properties of Voronoi polygons have been employed 
to characterize the transition from disorder to order. Finally, the same quantities 
and data structures are used for coarse graining of the velocity and pressure 
gradient fields and for validation of Darcy’s law at various length scales. 

• Chapter 5: I extend my results into the inertial flow regime, aiming to establish a 
unified relationship between friction factor and Reynolds number. For ordered 
periodic structures: (i) the weak inertia correction to the linear Darcy relation is 
third power in superficial velocity, up to small Reynolds numbers, Re~1-5; (ii) a 
non-integer power law performs astonishingly well up to moderate Re≤ 30. For 
disordered (random) structures: (i) using the new definition of “gap” Reynolds 
number, Reg, I obtained a universal friction factor-Reg relation, valid at almost all 
porosities; (ii) after scaling/collapsing all data, the two-regime approach, i.e. cubic 
correction at low and quadratic correction at higher Re, fit the data very well. I 
compare my data with the lattice Boltzmann (LB) simulations and demonstrate a 
good quantitative agreement for the full range of Re studied. 

• Chapter 6: A new multiscale framework for modeling two-phase flows is 
presented by combining the discrete element method (DEM) for the 
particulate/solid phase with finite element (FE) simulations for the fluid/gas 
phase. The key component in this approach is a Delaunay triangulation, which 
serves both as a contact detection tool in DEM and as FE moving adaptive coarse 
mesh. Two-way momentum exchange is implemented using the previously 
obtained accurate and universal drag (permeability) laws for 2D fibrous systems. I 
illustrate and validate the methodology with several test cases, including flow 
through porous media, as compared against fully resolved FE simulations. 

To summarize the key new findings of this thesis: (i) I present a universal relationship 
between macroscopic permeability/drag and porosity of fibrous media for ordered (in 
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chapter 2) and disordered (in chapter 3) fibre arrays at creeping flow regime. Using 
lubrication theory, I correlate the permeability of porous media with their microscopic 
properties (chapters 3 and 4); (ii) Using a new definition of gap Reynolds number, I 
present a unified drag laws for inertial flow regimes, valid at all porosities and Reynolds 
numbers up to Re~30 (chapter 5); (iii) I incorporate the previously obtained drag closures 
into the new multiscale framework for modeling two-phase flows (chapter 6). Due to the 
broad generality, applicability in many processes in the chemical, petrochemical and 
mechanical industries, my new findings deserve the wide readership and would have 
great impact on multiphase flow simulations and advanced models for particle-fluid 
interactions. 

 

7.2 Outlook and recommendations 

Although I addressed several aspects of microscopic and macroscopic flow relations 
through fibrous media, in the following, several remarks and recommendations are given 
that need to be improved or explored further. I highlight the issues per chapter, before 
discussing the higher priorities. The remaining open issues are 

• Chapter 2: for ordered case: (i) validating the results against experimental 
measurements, such as resin transfer through unidirectional fibers; (ii) 
establishing a common permeability relation based on the aspect ratio, sphericity 
or other shape parameters; (iii) giving a physical interpretation for the cubic 
polynomial  permeability relation (Eq. (2.11)), obtained for different stagger unit 
cell angles; (iv) expressing the tortuosity as function of the stagger unit cell angle 
(see Fig. 2.10) and further explanation for its variation; (v) extending the results 
for unsteady, non-Newtonian fluids.  

• Chapter 3: for random case: (i) investigating the effects of polydispersity, 
anisotropy and heterogeneity, that occur in practical applications; (ii) founding a 
physical justification for the correlation between permeability and the average 2nd 
nearest neighbor fibre distances (see Fig. 3.10); (iii) by analogy, the permeability 
in 3D random packings should depend on the smallest faces of Delaunay 
tetrahedrons, possibly with the chance for similar unique scaling relations as in 
2D, i.e. Eq. (3.13), a prediction that waits for numerical or experimental proof.  

• Chapter 4: for multiscale and statistical model: (i) further understanding of the 
transition porosity * 0.393tε ≅ , i.e. why the transition form disorder to order 

happens at this value which is still far above the random close packing limit, the 
minimum hexagonal lattice, freezing point or melting point; (ii) evaluating the 
proposed metrical and topological properties of Voronoi cells and order 
parameters in 3D and compare them with the 2D case; (iii) the physical 
interpretation and correlation between the mean value of average velocities and 
permeabilities and their probability density functions at different scales; (iv) 



Chapter 7. Summary and recommendations 
 
 

 181 

validating of the proposed model for other macroscopic properties, like heat 
conductivity. 

• Chapter 5: for inertial flow: (i) extending the universal friction factor relation, 
i.e. Eq. (5.8), to 3D realistic random porous structures; (ii) study of the anisotropic 
and heterogeneous media and (iii) the fully turbulent regime; (iv) testing my 
model for parallel flow through unidirectional fiber arrays. 

• Chapter 6: for possible applications, extension and validation of the coarsely 
resolved FEM/DEM code: (i) include chemical reaction, heat and mass transfer or 
electromagnetic fields, using the same data structure, for more realistic, complex 
chemical reactors; (ii) simulating many other chemical processes such as particle 
coating, particle growth, gasification etc., which are performed in a fluidized bed, 
for better understanding; (iii) extension of the method to 3D is straightforward in 
theory, but may require a parallel version of the code. 

The above list includes many possible topics, worth to pursue in the future as extensions 
of the present work and cannot be a complete list. Although this study presents a solid 
step towards the unified drag laws, ultimately, combined research at the macroscopic and 
microscopic scales in 3D, will improve our understanding and ability to predict the 
phenomena accruing at a wide variety of multiphase porous media problems. Therefore, 
the immediate and relatively easy step would be revisiting (or validating) the proposed 
permeability/drag relations of (dis)ordered porous media at creeping and inertial flows, 
for 3D spherical particles with realistic particle size distributions.  
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