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Abstract. In this paper we introduce the open-source code Mercury-
DPM: a code for simulating discrete particles. The paper discusses soft-
ware and management issues that may be interesting for the develop-
ers of other open-source codes. Then we review the new features that
have been added since the last publication: an improved Hertz-Mindlin
model; a new liquid bridge model of Lian and Seville; a droplet-spray
model; better support for re-creating complex, measured particle size
distributions; a new implementation of rigid clumps; an implementation
of elastic membranes; a wear model for walls; a soft-kill feature and a
cloud-deployment interface for AWS.

1. General Introduction

MercuryDPM is a code for discrete particle simulations: It simulates the mo-
tion of particles, or atoms, by applying forces and torques that stem either
from external body forces (e.g. gravity) or from particle interaction laws.
For granular particles, these are typically contact forces (elastic, plastic, vis-
cous, frictional) or short-range adhesive forces (liquid bridges, van der Waals
forces), while for molecular simulations, forces typically stem from elastic
interaction potentials (e.g. Lennard-Jones). The code has been developed
extensively for granular applications, but could be adapted to include long-
range interactions as well.

The code is open-source and has many developers. Thus, new features
are added regularly. To keep users and developers up-to-date, we regularly
publish conference proceedings detailing either the newly developed features
[1, 2], discussing what is in development [3] or summarising key features
[4, 5, 6]. Furthermore, we released a full paper [7] in 2020, documenting every
MercuryDPM feature developed until that point. The aim of this conference
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proceeding is to continue this sequence, and document the features, and other
changes to the code, that have been developed since the full paper was written
[7].

2. About MercuryDPM

MercuryDPM was started in 2009 by Anthony Thornton and Thomas Wein-
hart with the aim of creating a discrete particle method software able to solve
complex industrial scenarios. This required several features which now form
the backbone of MercuryDPM: (i) A flexible implementation allowing com-
plex wall and boundary conditions, (ii) a neighbourhood detection algorithm
capable of dealing with highly polydisperse particle packings [8], and (iii) an
analysis tool able to extract the most relevant information from the huge
amount of data generated by these simulations [9]. The code also has been
coupled to the continuum solver oomph-lib [10] to simulate particle interac-
tions with elastic solids, as well as multiscale coupling to simulate granular
materials in a computationally efficient way [11].

The code has been open-source since it was started. We started with a
GPL license but very quickly moved to a BSD 3-clause license, as this was felt
to be more open to external development and simpler to understand. Since
its conception, both its user and developer base has grown, with 48 people so
far contributing significantly to the code base. Information about past and
current contributors can be found on the team page of the MercuryDPM
website, www.mercurydpm.org.

MercuryDPM is a versatile, object-oriented C++ code which (we hope)
is easy to understand. It is regularly tested on several Linux distributions,
Mac OS and Windows 10. To avoid breaking already existing code, a suite of
over 260 self-tests have been developed, testing each feature of the code. De-
veloping new applications in the software is straightforward: The user speci-
fies the particulars of their simulation (initial positions, inflow, outflow, walls,
interaction parameters) in a single driver file, which calls the MercuryDPM
kernel to execute the simulations. All kernel features are documented, and
there are many sample driver codes demonstrating the features.

When the code was first started, we used a self-hosted svn server. How-
ever, as the user and developer base has grown this was not maintainable;
therefore, in May 2022 we moved to a git repository on bitbucket. This
version of the code can be found at https://bitbucket.org/mercurydpm/
mercurydpm. Moving to git has accelerated the return of features from devel-
opers outside the core team.

Building the code is managed using cmake, the test suite via ctest,
for code maintenance (bug reporting/tracking, release planning, etc) we use
the Atlassian tools: Jira and Confluence. For visualisation we use both Par-
aview [12] and an in-house code from Stefan Luding: XBalls, which is now
distributed with MercuryDPM .
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3. Release strategy and version number

MercuryDPM has a hybrid development pattern: Firstly, we have an open-
development model, where the master branch (which includes the newest
features) is openly available; plus most of the active feature branches, so
code can be seen and used ahead of final testing and journal publication. We
encourage new developers to use branches in the main repository so others
can see their features in development, but we do not insist on this. The
master branch can be accessed at https://bitbucket.org/mercurydpm/
mercurydpm/src/master.

Secondly, we have returned to doing stable release versions, approxi-
mately once a year. After deployment of a release, it will remain in an Alpha
state up until 28 days of the last bug fix. At the alpha stage the release notes
are drafted. The following 91 days it will be in Beta state until it is considered
stable. From version 1.0.0 onward, MercuryDPM will use the following con-
vention of three numbers, a.b.c : The version number, a, is incremented when
an interface changes; the second number, b, when new features are added;
and the third number, ¢, for a bug fix to a released version. This scheme
complies to semantic versioning rules and for the future, we aim to automate
deployment by introduction of conventional commits. The current release
can be accessed at https://bitbucket.org/mercurydpm/mercurydpm/src/
1.0.Alpha.!

4. Hertz-Mindlin (improved) no-slip contact model

This section discusses changes made to the Hertz-Mindlin contact model,
which was changed for 1.x series. The changes are best demonstrated by the
driver codes Hertzian2DSelfTest.cpp and MindlinSelfTest.cpp.

The Hertz-Mindlin contact model uses Hertz theory to determine the
normal elastic force between contacting spherical particles and a tangential
force model established by Mindlin and Deresiewicz [13]. Additionally, rolling
friction can be added according to the model of Luding [14]. All three models
have been slightly modified:

4.1. The normal force model

The MercuryDPM contact model HertzianViscoelastic applies a Hertzian
normal force between two particles, given by

F" =E"0" — ~"op,, (4.1)
where the normal stiffness k" and normal dissipation coefficient v" are

= 2 g Reoy, (4.2)

3
and

VP = B/ MR, (4.3)

INote, this will shortly change to 1.0.Beta as the alpha test of this new release is almost
complete.
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Here, 6" is the normal overlap, v}, the relative velocity in normal direction,
E* the effective Young’s modulus, R* the effective radius and M™ the effective
mass. " is the normal damping factor which is related to the restitution
coefficient € as follows,

VblIne

B = .
VIn? e + 72

Change: Previously, the user directly specified the effective elastic mod-

ulus E* using the command setElasticModulus. This caused confusion be-

cause most users expect to specify instead Young’s modulus F, and Poisson’s

ratio, v, and compute the effective elastic modulus as E* = %E/(l —v). Thus,

we replaced the function setElasticModulus with setEffectiveElastic—

Modulus and added a helper function, computeEffectiveElasticModulus,
to compute E* from E and v.

(4.4)

4.2. The tangential force model

The MercuryDPM contact model Mindlin applies a simplified version of the
Mindlin model of sliding friction, as proposed by Di Renzo and Di Maio [15],
where the tangential force is given by

2
F' = gkt(st — 7 Vrers (4.5)

where the tangential stiffness k' and tangential dissipation coefficient 4* are
determined as

k' = 8G*V R*é, (4.6)
and

7' = BV M*kt. (4.7
In these equations, ¢* is the tangential overlap, v, is the relative velocity in
tangential direction, G* is the effective shear modulus and 8 is the tangential
damping coefficient.

Change: The dissipation coefficient in Eq. (4.7) previously read ~' =

BYV8M*kt. The factor 8 in this expression was removed to allow for the
following more compact notation of the tangential damping factor

Bt = \/gﬁ“. (4.8)

Note: 8¢ is currently an input parameter that the user must set. In the future,
a 3% will be set to a default value according to Eq. (4.8), and can be overridden
by the user. This will change for the 2.x series.

4.3. The rolling friction model
The MercuryDPM contact model MindlinRollingTorsion applies a rolling
friction according to Luding’s model [14]: When a rolling friction coefficient
is specified by the user, a corresponding rolling torque is applied, which is
calculated as

T°° = R*F*® (4.9)

where F™° is the rolling torsion force.
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FIGURE 1. Sketch of a liquid bridge between two unequal-
sized particles of radius Ry and R,. Here, 0 is the contact
angle, a material property, and s the separation distance
between the two particles.

Change: In previous versions, the effective diameter was used as a pref-
actor in (4.9), rather than the effective radius, for calculating the rolling
torque. This model has been updated to correctly satisfy Luding’s model
[14].

5. Liquid migration model of Lian and Seville

The majority of research on granular media has concentrated on dry granular
materials. However, in industry and nature, we often encounter wet granular
materials. An example currently being investigated with MercuryDPM is the
collision between wet (sand) particles, including moist sediment transport
by wind and pneumatic conveying. Wet granular materials are cohesive due
to surface tension, which is a significant distinction between dry and wet
granular materials.

The MercuryDPM contact models LiquidBridgeWillet and Liquid-
MigrationWillet already have an implementation of liquid bridges. These
are based on work of Willet et al. [16], which was developed by experimental
data where forces due to liquid bridges between particles were measured.

We have now added a second model, LiquidMigrationLS, which is
based on work of Lian and Seville [17], which is an extension of Willet’s
model to include a lubrication viscous force. The viscous force is assumed
to be the dominant force during the contact, induced by the squeezing out
and pulling in of the liquid. The model was validated in particle simulations
against collision experiments between a wet particle and a flat surface by
Zhang and Wu [18], and is applicable to describe the dynamic interaction be-
tween wet particles; whereas, the previous model was only strictly correct for
static (or slow moving) scenarios. Figure 1 shows the capillary liquid bridge
between two particles of different sizes.

This code is available in the master version of MercuryDPM and is best
demonstrated by TwoParticleElasticCollisionInteractionWithLiquid-
MigrationLSSelfTest.cpp in the source directory Drivers/SelfTests/Interactions.
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It keeps the liquid migration features of Willet’s model, but differs in
the force calculation: The capillary force is based on the half-filling angle
which depends on the value of the contact angle and liquid bridge volume.
The viscous force exists both in normal and tangential directions of potential
contact, and is active only between a limited separation distance (smaller
than rupture distance) and the rupture distance. Its magnitude depends on
the relative velocity of the particles with an interstitial liquid bridge.

Within the LiquidMigrationLsS model, one can define the liquid viscos-
ity, based on the liquid type they model through setViscosity(). Similar
to LiquidMigrationWillet, one also needs to define the volume of the lig-
uid carried by the particles and the maximum and minimum value of the
liquid bridge volume. In Figure 2, particles connected by liquid bridges are
visualised in Paraview.

FIGURE 2. Wet (sand) particles connected by liquid bridges,
using the LiquidMigrationLS contact model.

6. Spray modelling

As stated above, many industrial applications include wet granular materials;
often, the moisture is added by a spray. In MercuryDPM , the DropletBoundary
has been implemented, which can insert liquid droplets to wet the particles
during a simulation. The implementation is simple: Each time step, droplets
get inserted according to a function specified by the user. Droplets have a
mass and velocity, and move under the influence of gravity. They do not inter-
act with each other, but if a droplet contacts a particle, the particle absorbs
the liquid and the droplet is removed. Note, as walls currently cannot absorb
liquid, the liquid is lost when the droplet contacts a wall.

The user can define freely how droplets are inserted via the function
setGenerateDroplets; one can e.g. set the rate of insertion, the droplet
radii, the position of insertion (nozzle position and angle), and the velocity
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of insertion (spray angle and droplet speed). For example, the user can add
a droplet boundary that acts as a spray nozzle. In figure 3, we show one of
the most common nozzles for spraying droplets, a flat fan spray nozzle.
This code is available in version 1.x of MercuryDPM and the figure is
created by NozzleDemo . cpp in the source directory Drivers/Demos/IndustrialMixers.

FIGURE 3. Wetting of particles by a flat-fan spray noz-
zle in a rotating drum. Time increasing from left to right.
Small spheres are droplets, large spheres are particles. Parti-
cle colour (grey to blue) indicates increasing liquid content.

7. Dealing with true particle size

The InsertionBoundary in MercuryDPM was reworked for version 1.x. It is
now capable of inserting particle mixtures composed of a variety of different
materials and particle size distributions (PSD) into a single insertion volume.
Moreover, the new interface accepts different types of PSD functions, based
on volume, length, surface area or number of particles. This will allow for
a more accurate representation of particle mixtures (see Figure 4), which
is crucial for several applications and phenomena, such as segregation and
mixing. Figure 4 is created by a script comparing a cumulative number PSD
to the same one inserted by the driver code PSDSelfTest.cpp. The script is
available in the master.

Furthermore, polydisperse particle packings used to be insertable only
into cubic volumes. However, several applications require the insertion of
particles into more complex geometries. Therefore, the insertion routine was
reworked to allow the geometry of the fill volume and the properties of in-
serted particles to be set independently. It is now straightforward to create
complex insertion regions. For a new insertion boundary object, only the
geometry has to be defined.
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FIGURE 4. Cumulative PSD of inserted particles, compared
to the input PSD.

8. Dealing with true particle shape - rigid clumps in
MercuryDPM

Rigid clumps of spherical particles are an important tool to analyse the be-
haviour of granular materials consisting of particles of irregular shapes with
the discrete element method. By rigid clump (just clump, or multiparticle) we
imply the aggregate of N rigid (spherical) particles of a given density, that
are rigidly linked to each other at given relative translational and rotational
positions. Note, currently the code has only been demonstrated for spherical
particles but in principle you should be able to form rigid clumps from more
general super-quadric particles. The constituent particles of a clump will be
referred to as pebbles. The pebbles may (or may not) have overlaps, introduc-
ing volumes within a clump that belong to more than one pebble. The con-
tact detection algorithm treats contacts and corresponding forces/moments,
as well as the forces arising from the force fields at the pebble level, while the
dynamics computation algorithm treats a clump as a single rigid body, that
is accelerated by the resultant force/moment, properly summed up over the
pebbles.

The rigid clump function in MercuryDPM is implemented as a multi-
level structure. A third-party library CLUMP [19] is used to generate posi-
tions and radii of pebbles that describe the given nonspherical shape (Figure
(5) (A)). The CLUMP tool provides pebble data, which, along with the op-
tionally provided initial STL-format shape of the clump, constitute an input
of the MClump pre-processing tool (part of MercuryDPM). It centres and
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A STL model

FIGURE 5. (A) STL model of a complex particle shape, the
corresponding rigid clump, generated by [19] and the voxel
model. (B) Sample simulation - 100 nonspherical particles in
a gravity field, within a box with fully elastic walls.

rotates the clump, aligning its principal axes with global Cartesian axes, and
computes clump’s tensor of inertia using the prescribed algorithm (summa-
tion over (non-overlapping) pebbles, summation over voxels, summation over
tetrahedrons using STL representation (Figure (5) (B))). A special header
library for the driver file introduces necessary modifications of MercuryDPM
virtual members, enabling clump dynamics. The driver file loads the list of
clump instances generated by MClump, and, using them, generates neces-
sary distributions of nonspherical particles and computes their dynamical
evolution.

Figure (5) (B) highlights an example of using nonspherical particles in
MercuryDPM (driver file Drivers/MultiParticle/BulkTs.cpp). The rigid
clump feature is currently available in the master (developer’s version), and
will be included in future releases of MercuryDPM and is best demonstrated
by the codes in the directory Drivers/MultiParticle.
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FIGURE 6. A triaxial test cell in its initial and final state
simulated with the implemented mass spring system.

FIGURE 7. A snapshot from a granular gripper simulation
executed with the implemented mass spring system.

9. Membranes

Interactions between membranes and granular particles may occur in systems
like triaxial tests but also in applications from the soft robotics community,
such as the granular gripper.

One possibility to represent membranes within granular simulations is a
mass-spring system. Due to its particle-based nature it is easily integrated in
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FIGURE 8. Before (left) and after (right) images for the wear
on a vibration screen after a granular flow was passed over.

discrete particle simulations. Depending on the chosen mesh and the nature
of the spring, it is possible to approximate all material properties [20].
MercuryDPM version 1.x now supports the use of mass-spring systems
containing distance springs for the in-plane dynamics and a bending force
penalty originating from cloth simulations [21]. If the connectivity of the
masses is given by a triangular mesh with a hexagonal unit cell, the spring
constant of the distance springs may be calculated with £ = E%, where ¢
is the thickness and E the elastic modulus of the membrane [22, 23]. Note
that the simplicity of this setup restricts us to a Poisson’s ratio of v = 1/3.
In MercuryDPM the mass-spring system is constructed by inserting
particles in place of the masses and connecting these according to a given
mesh connectivity, which may be specified via a STL file or given directly in
the code. As the connectivity has to be specified, the implementation does
not rely on any contact detection algorithm. Although the code supports the
usage of the vertex particles to detect contacts between the membrane and the
granulate, as it was originally introduced by de Bono et al. [24] for triaxial test
simulations, it is advised to deactivate these by a proper choice of species. In
that case, the contacts are instead calculated using additional triangular wall
elements inserted between the vertex particles. The position and dynamics of
these wall elements are purely defined by the vertex particles. Quantities such
as local velocities and the calculated contact forces are transferred between
the triangles and the vertex particles using barycentric interpolation.
Figure 6 shows an example of the triaxial shear test and is created by
a private driver code. Figure 7 shows the granular gripper application from
the published paper [25]. The membrane is best demonstrated by the code
MembraneDemo . cpp in the directory Drivers/Demos/Membrane.

10. Modelling surface wear

Often in industry, granular flows lead to the wearing of surfaces over time
due to abrasion, causing apparatus to misperform or even fail. One such
apparatus is a vibrating screen, used to grade materials in various industrial
applications including steel making. The left panel in Figure 8 shows a typical
vibrating screen from the front. Grains are dropped at the back of the screen
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and slide forward, falling through the increasingly widening gaps. As the
material slides across, the surface is worn down, increasing the size of the
particles that are able to fit through the screen. This feature will be available
in future releases.

In MercuryDPM , the Reye—Archard—Khrushchov wear model has been
implemented [26], which states that the volume of material removed is pro-
portional to the work done by the friction forces. The proportional is nor-
mally set to higher values than for the real material in order to accelerate
the process and reduce the simulation time.

Currently, only for triangulated walls, the wear model can be used to
update the surface and hence, predict the long term effect of particle abrasion
on walls. The process is summarised as follows:

1. Compute the (local) frictional forces on each wall segment.

2. For each triangle compute the (local) volume to be removed via the
Reye—Archard-Khrushchov model.

3. Iteratively move the mesh vertices to match each local volume of re-
moved material.

In Figure 8 you can see the shape of a vibrating screen before (left) and
after (right) a granular material has flowed over it.

11. Soft Kill

MercuryDPM now has an internal signal handler, which allows us to control
what happens when external signals are received by the code. This enables
the code to be run on resources with limited time available, as it will allow the
code to be stopped (and restarted) automatically based on external triggers.
Thus, code can be deployed on cheap, unused, temporary computing resources
like AWS spot instances.

The signal handler treats various interrupt signals that are sent to the
processors. A common example is SIGINT, which can be sent by the user
to a running program by pressing CTRL+C. This interrupt is caught by
the signal handler, triggering a soft-kill routine: instead of stopping the code
immediately, this feature allows MercuryDPM simulations to continue until
all operations necessary to write the restart file are finished. This way the
output data (e.g. *.restart, *.fstat, *.data) will be consistent (same timestep)
and complete (no partly written files). The simulation can thus be restarted
safely at a later time.

Currently this feature catches the following signals, and triggers the
actions described:

e SIGINT (signal 2): This signal is sent by CTRL+ C. Soft kill continues
the simulation until the current time step is completed. Then it forces
MercuryDPM to write to all output files, in particular the restart file.

e SIGTERM (signal 15): This is generated in linux by kill. It triggers
the same action as SIGINT.
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e SIGKILL (signal 9): This is generated in linux by ki1l -9. It terminates
MercuryDPM immediately. In other words, this signal stops the soft-kill
feature.

Note: Using tools like htop and F9 in Linux, the user can send specific signals
or kill commands to MercuryDPM . Also, one can use $kill -SIGNAL PID,
where SIGNAL is the signal number listed above and PID is the process id
of the MercuryDPM executable.

12. Mercury Cloud

MercuryDPM also has its own official spin-off company, MercuryLab, which
aims to facilitate access to the advanced features of MercuryDPM for in-
dustry and academia. MercuryLab often develops new features for industrial
clients, but always returns them to the open-source repository. The company
is currently one of the biggest contributors to the code base.

One of the developments of MercuryLab is its AWS-deployed cloud inter-
face for the code, MercuryCloud (https://cloud.mercurylab.org/). This
interface allows scalable, GUI-based, on-demand access to (certain) features
of the code via an internally developed web interface. The architecture of
the cloud is shown in figure 9 and is available from any device with internet
access and a web browser.

MercuryCloud is still in development, thus its capabilities are limited,
but growing. Academic users are able to access the facilities at a considerable
discount. Utilising the soft-stop feature described in the previous section, we
hope to make use of cheap AWS spot instances, which are often at least 60%
cheaper.
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