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Abstract. We study the rheology of dry and wet granular materials in the steady

quasistatic regime using the Discrete Element Method (DEM) in a split-bottom ring

shear cell with focus on the macroscopic friction. The aim of our study is to understand

the local rheology of bulk flow at various positions in the shear band, where the system

is in critical state. We develop a general(ized) rheology, in which the macroscopic

friction is factorized into a product of four functions, in addition to the classical µ(I)

rheology, each of which depends on exactly one dimensionless control parameter. These

four control parameters relate the time scales of shear rate tγ̇ , particle stiffness tk,

gravity tg and cohesion tc, respectively, with the governing time scale of confining

pressure tp.

While tγ̇ is large and thus of little importance for most of the slow flow data studied,

it can increase the friction of flow in critical state, where the shear gradients are high.

tg and tk are comparable to tp in the bulk, but become more or less dominant relative

to tp at the extremes of low pressure at the free surface and high pressure deep inside

the bulk, respectively.

We also measure the effect of wet cohesion on the flow rheology, as quantified by

decreasing tc. Furthermore, the proposed rheological model predicts well the shear

thinning behavior both in the bulk and near the free surface; shear thinning develops

towards shear thickening near the free surface with increasing cohesion.

1. Introduction

The ability to predict a material’s flow behavior, its rheology (like the viscosity for

fluids) gives manufacturers an important product quantity. Knowledge on material’s

rheological characteristics is important in predicting the pourability, density and ease

with which it may be handled, processed or used. The interrelation between rheology

and other product dimensions often makes the measurement of viscosity the most

sensitive or convenient way of detecting changes in flow properties. A frequent reason for

the measurement of rheological properties can be found in the area of quality control,

where raw materials must be consistent from batch to batch. For this purpose, flow

behavior is an indirect measure of product consistency and quality.
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Most studies on cohesive materials in granular physics focus on dry granular

materials or powders and their flow [13, 34]. However, wet granular materials are

ubiquitous in geology and many real-world applications where interstitial liquid is

present between the grains. Many studies have applied the µ (I)-rheology to flows of

dry materials at varying inertial numbers I [35, 36, 38, 43, 40]. Studies of wet granular

rheology include flow of dense non-Brownian suspensions [3, 11, 12, 18]. Here, we

study partially wetted system of granular materials, in particular the pendular regime,

which is also covered in many studies [30, 33, 45]. While ideally, unsaturated granular

media under shear show redistribution of liquid content among the contacts [24, 31],

we assume a simplistic approach of homogeneous liquid content for liquid bridges of all

contacts. One of the important aspects of partially wetted granular shear flows is the

dependence of shear stress on the cohesive forces for wet materials. Various experimental

and numerical studies show that addition of liquid bridge forces leads to higher yield

strength. The yield stress at critical state can be fitted as a linear function of the pressure

with the friction coefficient of dry flow µo as the slope and a finite offset c, defined as

the steady state cohesion in the limit of zero confining pressure [30]. This finite offset

c is constant in the high pressure limit. However, very little is known regarding the

rheology for granular materials in the low pressure limit.

Depending on the surrounding conditions, granular flows phenomenon are affected

by appropriate time scales namely, tp: time required for particles to rearrange under

certain pressure, tγ̇: time scale related to strain rate γ̇, tk: related to the contact time

between particles, tg: elapsed time for a single particle to fall through half its diameter

under the influence of gravity and tc: time scale for the capillary forces driving the flow

are primarily hindered by inertia based on particle density. While various time scales, as

related to the ongoing mechanisms in the sheared bulk of the material, can interfere, they

also can get decoupled, in the extremes of the local/ global condition, if one time scale

gets way smaller in magnitude than the other. A detailed description of this time scales

are given in Sec.3. While tk, tg and tc are global, other time scales tγ̇ and tp depends

on local field variables strain rate γ̇ and pressure p respectively. We restrict our studies

to the quasi-static regime (tγ̇ � tp) as the effect of cohesion decreases with increasing

inertial number due to the fast decrease in coordination number [1]. Moreover, the

quasistatic regime observed for non-cohesive particles also persist for cohesive particles,

while the inertial regime of noncohesive particles bifurcates into two regimes: rate-

independent cohesive regime at low shear rates and inertial regime at higher shear rates

[9]. In the present work, we shed light on the rheology of non-cohesive dry as well as

cohesive wet granular materials at the small pressure limit, by studying free surface

flow. While the inertial number I [17], i.e. the ratio of confining pressure to strain-

rate time scales, is used to describe the change in flow rheology from quasi-static to

inertial conditions, we look at additional dimensionless numbers that influence the flow

behavior. (i) The local compressibility p∗, which is the squared ratio of the softness and

stress time scales (ii) the inverse relative pressure gradient pg
∗, which is the squared ratio

of gravitational and stress time scales and (iii) the Bond numberBo [42] quantifying local
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cohesion as the squared ratio of stress to wetting time scales are these dimensionless

numbers. We show a constitutive relation based on these dimensionless numbers in

Sec.4, 5 and 6 of this paper. Additional relevant parameters are not discussed in this

study, namely granular temperature or fluidity. All these dimensionless numbers can be

related to different time scales or force scales relevant to the granular flow.

Granular materials display non-Newtonian flow behavior for large enough shear

stress while they remain mostly elastic like solids below this yield stress. More precisely,

granular materials flow like a shear thinning fluid under sufficient stress. When dealing

with wet granular materials, a fundamental question is, what is the effect of cohesion

on the bulk flow and yield behavior? Sec.7 of this paper is devoted to understand the

behavior of granular materials with increasing cohesion. The majority of investigations

of non-Newtonian flow behavior were conducted on colloidal suspensions though such

aspects of flow for unsaturated granular materials are quite unexplored. Strongly

cohesive wet granular materials have high local Bond number, especially near to the

free surface, where the effect of repulsive forces is less dominant than the attractive

counterpart [34]. This can lead to the formation of local shear induced clusters in

granular system. Microscopically, the shear rate affects the kinetics of the cluster

formation where the bonds experience higher stress than average and thereby increase

their persistence, thereby changing the shear-thinning properties. However, this is only a

speculation on change in flow behavior of unsaturated granular materials with increasing

cohesion and is not explored here further.

2. Model System

2.1. Geometry

Split- Bottom Ring Shear Cell: We use MercuryDPM [37, 44], an open-source

implementation of the Discrete Particle Method, to simulate a shear cell with annular

geometry and a split bottom plate, as shown in Figure 1. Some of the earlier studies in

similar rotating set-ups include [32, 41, 46]. The geometry of the system consists of an

outer cylinder (outer radius Ro = 110 mm) rotating around a fixed inner cylinder (inner

radius Ri = 14.7 mm) with a rotation frequency of Ω = 0.01 revolutions per second.

The granular material is confined by gravity between the two concentric cylinders, the

bottom plate, and a free top surface. The bottom plate is split at radius Rs = 85 mm.

Due to the split at the bottom, a narrow shear band is formed. It moves inwards and

widens towards the flow surface. This set-up thus features a wide shear band away

from the bottom and the side walls which is thus free from boundary effects. The filling

height (H = 40 mm) is chosen such that the shear band does not reach the inner wall

at the free surface.

In earlier studies [28, 34, 35], a quarter of this system (0◦ ≤ φ ≤ 90◦) was simulated

using periodic boundary conditions. In order to save computation time, here we simulate

only a smaller section of the system (0◦ ≤ φ ≤ 30◦) with appropriate periodic boundary
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Figure 1. Shear cell set-up.

conditions in the angular coordinate, unless specified otherwise. We have observed

no noticeable effect on the macroscopic behavior in comparisons between simulations

done with a smaller (30◦) and a larger (90◦) opening angle. Note that for very strong

attractive forces, agglomeration of particles occur. Then, a higher length scale of the

geometry is needed and thus the above statement is not true anymore.

2.2. Contact model and parameters

The liquid bridge contact model is based on a combination of an elastic-dissipative linear

contact model for the normal repulsive force and a non-linear irreversible liquid bridge

model for the non-contact adhesive force as described in [30]. The adhesive force is

determined by three parameters; surface tension σ, contact angle θ which determine

the maximum adhesive force and the liquid bridge volume Vb which determines the

maximum interaction distance between the particles at the point of bridge rupture.

The contact model parameters and particle properties are as given in Table 1. We have

a polydisperse system of glass bead particles with mean diameter dp = 〈d〉 = 2.2 mm

and a homogeneous size distribution (dmin/dmax = 1/2 of width 1− 〈d〉2/〈d2〉 ≈ 0.19).

To study the effect of inertia and contact stiffness on the non-cohesive materials

rheology, we compare our data for non-cohesive case with data from simulations of [35]

for different gravity as given below:

g ∈ {1.0 , 2.0, 5.0, 10.0, 20.0, 50.0} m s−2 (1)

We also compare the effect of different rotation rates on the rheology for the following

rotation rates:

Ω ∈ {0.01 , 0.02, 0.04, 0.10, 0.20, 0.50, 0.75, 1.00} rps (2)
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Table 1. Table showing the particle properties and constant contact model

parameters.

Parameter Symbol Value

Sliding friction coefficient µp 0.01

Normal contact stiffness k 120 N m−1

Viscous damping coefficient γo 0.5×10−3 kg s−1

Rotation frequency Ω 0.01 s−1

Particle density ρ 2000 kg m−3

Gravity g 9.81 m s−2

Mean particle diameter dp 2.2 mm

Contact angle θ 20◦

Liquid bridge volume Vb 75 nl

The liquid capillary force is estimated as stated in [45]. It is observed in our earlier

studies [30] that the shear stress τ for high pressure can be described by a linear function

of confining pressure, p, as τ = µop + c. It was shown that the steady state cohesion

c is a linear function of the surface tension of the liquid σ while its dependence on the

volume of liquid bridges is defined by a cube root function. The friction coefficient µo is

constant and matches the friction coefficient of dry flows excluding the small pressure

limit. In order to see the effect of varying cohesive strength on the macroscopic rheology

of wet materials, we vary the intensity of capillary force by varying the surface tension

of the liquid σ, with a constant volume of liquid bridges (Vb = 75 nl) corresponding to

a saturation of 8%, as follows:

σ ∈ {0.0 , 0.01, 0.02, 0.04, 0.06, 0.10, 0.20, 0.30, 0.40, 0.50} N m−1(3)

The first case, σ = 0.0 N m−1, represents the case of dry materials without cohesion,

whereas σ = 0.50 N m−1 corresponds to the surface tension of a mercury-air interface.

For σ > 0.50 N m−1, smooth, axisymmetric shear band formation is not observed and

the materials agglomerate to form clusters as shown in Figure 2, for our particle size

and density. Hence, σ is limited to maximum of 0.50 N m−1.

2.3. Averaging methodology

To extract the macroscopic properties, we use the spatial coarse-graining approach

detailed in [20, 21, 22]. The averaging is performed over a grid of 47-by-47 toroidal

volumes, over many snapshots of time assuming rotational invariance in the tangential

φ-direction. The averaging procedure for a three-dimensional system is explained in

[20, 22]. This spatial coarse-graining method was used earlier in [22, 28, 34, 35]. We do

the temporal averaging of non-cohesive simulations over a larger time window from 30 s

to 440 s with 2764 snapshots to ensure the rheological models with enhanced quality

data. All the other simulations are run for 200 s and temporal averaging is done when

the flow is in steady state, between 80 s to 200 s with 747 snapshots, thereby disregarding

the transient behavior at the onset of the shear. In the critical state, the shear band
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Figure 2. Cluster formation (shown by red circles) for highly cohesive materials

(σ = 0.70 N m−1) a) front view and b) top view. Different colors blue, green and

orange indicate low to high kinetic energy of particles respectively.

is identified by the region having strain rates higher than 80% of the maximum strain

rate at the corresponding height. Most of the analysis explained in the later sections

are done from this critical state data at the center of the shear band.

2.3.1. Macroscopic quantities The general definitions of macroscopic quantities

including stress and strain rate tensors are included in [35]. Here, we define the derived

macroscopic quantities such as the friction coefficient and the apparent viscosity which

are the major subjects of our study.

The local macroscopic friction coefficient is defined as the ratio of shear to normal

stress and is defined as µ = τ/p.

The magnitude of strain rate tensor in cylindrical polar coordinates is simplified,

assuming ur = 0 and uz = 0:

γ̇ =
1

2

√(
∂uφ
∂r
− uφ

r

)2

+

(
∂uφ
∂z

)2

(4)

The apparent shear viscosity is given by the ratio of the shear stress and strain rate

as:

η =
τ

γ̇
=
µp

γ̇
, (5)

where γ̇ is the strain rate.

2.4. Critical state

We obtain the macroscopic quantities by temporal averaging as explained in Sec.2.3.

Next we analyze the data, neglecting data near walls (r < rmin ≈ 0.045 m, r > rmax ≈
0.105 m, z < zmin ≈ 0.004 m) and free surface (z > zmax ≈ 0.035 m) as shown in Figure

3. Further, the consistency of the local averaged quantities also depends on whether the

local data has achieved the critical state. The critical state is defined by the local shear

accumulated over time under a constant pressure and constant shear rate condition.
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zmax

zmin

rmin rmax

γ̇c(z) > 0.8γ̇max(z)

γ̇c(z) > 0.1γ̇max(z)z

r

Figure 3. Flow profile in the r − z plane with different colors indicating different

velocities, with blue 0 m s−1 to red 0.007 m s−1. The shear band is the pink and light

blue area, while the arrows indicate 10 % and 80 % cut-off range of shear rate as

specified in the text.

This state is reached after large enough shear, when the materials deform with applied

strain without any change in the local quantities, independent of the initial condition.

We focus our attention in the region where the system can be considered to be in the

critical state and thus has a well defined macroscopic friction. To determine the region

in which the flow is in critical state, γ̇max(z) is defined to be the maximum strain rate

for a given pressure, or a given height z. The critical state is achieved at a constant

pressure and strain rate condition over regions with strain rate larger than the strain

rate 0.1γ̇max(z) as shown in Figure 3 corresponding to the region of shear band. While

[35] showed that for rotation rate 0.01 rps, the shear band is well established above

shear rate γ̇ > 0.01 s−1, of our analysis shown in the latter sections are in the shear

band center is obtained by γ̇ > 0.8γ̇max(z) at different heights in the system. This is

defined as the region where the local shear stress τ becomes independent of the local

strain rate γ̇ and τ/p becomes constant. We also extend our studies to the shear-rate

dependence in critical state which is effective for critical state data for wider regions of

shear band (Sec.4.4). This shear rate dependence is analyzed in the regions of strain

rate (γ̇) larger than the 0.1γ̇max(z) at a given height z. These data include the region

from the center to the tail of the shear band, with typical cut-off factors sc = 0.8 or 0.1,

respectively, as shown in Figure 3, and explained in Sec.4.4.
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3. Time scales

Dimensional analysis is often used to define the characteristic time scales for different

physical phenomena that the system involves. Even in a homogeneously deforming

granular system, the deformation of individual grains is not homogeneous. Due to

geometrical and local parametric constraints at grain scale, grains are not able to

displace as affine continuum mechanics dictates they should. The flow or displacement of

granular materials on the grain scale depends on the timescales for the local phenomena

and interactions. Each time scale can be obtained by scaling the associated parameter

with a combination of particle diameter dp and material density ρ. While some of

the time scales are globally invariant, others are varying locally. The dynamics of the

granular flow can be characterized based on different time scales depending on local and

global variables. First, we define the time scale related to contact duration of particles

which depends on the contact stiffness k as given by [35]:

tk =

√
ρdp

3

k
. (6)

In the special case of a linear contact model, this is invariant and thus represents a global

time scale too. Two other time scales are globally invariant, the cohesional time scale

tc , i.e. the time required for a single particle to traverse a length scale of dp/2 under

the action of an attractive capillary force and the gravitational time scale tg, i.e. the

elapsed time for a single particle to fall through half its diameter dp under the influence

of the gravitational force. The time scale tc could vary locally depending on the local

capillary force fc. However, the capillary force is weakly affected by the liquid bridge

volume while it strongly depends on the surface tension of the liquid σ. This leads to

the cohesion time scale as a global parameter given by:

tc =

√
ρdp

4

fc
∝

√
ρdp

3

σ
, (7)

with surface tension σ and capillary force fc ≈ πσdp. The corresponding time scale due

to gravity which is of significance under small confining stress close to the free surface

is defined as:

tg =

√
dp
g
. (8)

The global time scales for granular flow are complemented by locally varying time scales.

Granular materials subjected to strain undergo constant rearrangement and thus the

contact network re-arranges (by extension and compression and by rotation) with a

shear rate time scale related to the local strain rate field:

tγ̇ =
1

γ̇
. (9)
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Finally, the time for rearrangement of the particles under a certain pressure constraint

is driven by the local pressure p. This microscopic local time scale based on pressure is:

tp = dp

√
ρ

p
. (10)

As the shear cell has an unconfined top surface, where the pressure vanishes, this time

scale varies locally from very low (at the base) to very high (at the surface). Likewise,

the strain rate is high in the shear band and low outside, so that also this time scale

varies between low and high, respectively.

Dimensionless numbers in fluid and granular mechanics are a set of dimensionless

quantities that have a dominant role in describing the flow behavior. These

dimensionless numbers are often defined as the ratio of different time scales or forces,

thus signifying the relative dominance of one phenomenon over another. In general,

we expect five time scales (tg, tp, tc, tγ̇ and tk) to influence the rheology of our system.

Note that among the five time scales discussed here, there are ten possible dimensionless

ratios of different time scales. We propose four of them that are sufficient to define the

rheology that describes our results. Interestingly, all these four dimensionless ratios are

based on the common time scale tp. Thus, the time scale related to confining pressure is

important in every aspect of the granular flow. All the relevant dimensionless numbers

in our system are discussed in brief in the following two sections of this paper for the

sake of completeness, even though not all are of equal significance.

4. Rheology of dry granular materials

4.1. Effect of softness in the bulk of the materials

We study here the effect of softness on macroscopic friction coefficient for different

gravity in the system. Thus the pressure proportional to gravity is scaled in

dimensionless form p∗ [35] given by:

p∗ =
pdp
k

. (11)

This can be interpreted as the square of the ratio of time scales, p∗ = tk
2/tp

2, related

to contact duration and pressure respectively. Figure 4 shows the macroscopic friction

coefficient as a function of the dimensionless pressure p∗ and the dashed line is given

by:

µp(p
∗) = µofp(p

∗) with fp(p
∗) =

[
1− (p∗/po

∗)β
]
, (12)

where, β ≈ 0.50, µo = 0.16, po
∗ ≈ 0.90. po

∗ denotes the limiting dimensionless

pressure around the correction due to softness of the particles, where the correction

is not applicable anymore, since fp ≤ 0 for p∗ ≥ po
∗ [23]. We have used this fit, as

our data range is too limited to derive the functional form of the fit. This is shown

by the solid line in Figure 4 with the plotted data from our present simulation (J)

and with data for different gravity in the system [35] which we use to describe other
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corrections for dry non-cohesive materials. Despite the deviation of data for different

gravity from the trend for small p∗, the agreement with our data is reasonable. The

dashed line represents the softness correction as proposed by [35]. The effect of softness

is dominant in regions of large pressure where the pressure time scale tp dominates over

the stiffness time scale tk and thus the data in plot are corresponding to higher than a

critical pressure (pg
∗ > 4, explained in Sec.4.3). Here, the compressible forces dominate

over the rolling and sliding forces on the particles, the flow being driven by squeeze.

Thus, the macroscopic friction coefficient decreases with softness.
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Singh et.al.

Figure 4. Local friction coefficient µ as a function of softness p∗ for data with different

gravity g [35] and our data (represented by J) for pg
∗ > 4. The solid line represents

the function µp(p
∗).

4.2. Effect of inertial number

For granular flows, the rheology is commonly described by the dimensionless inertial

number [25]:

I = γ̇dp/
√
p/ρ , (13)

which can be interpreted as the ratio of the time scales, tp for particles to rearrange

under pressure p, and the shear rate time scale tγ̇ for deformation due to shear flow, see

Sec.3. It has been shown both experimentally [8, 14, 25] and in simulations [26] that for

intermediate inertial numbers (in the range I ≤ Io), the macroscopic friction coefficient

follow the so-called µ(I) rheology:

µI(I) = µo + (µ∞ − µo)
1

1 + Io/I
, (14)
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We assume the combined effect of softness and inertial number given as µ(p∗, I) =

µI(I)fp and thus analyse µ/fp as a function of I, see Figure 5. We compare our data

for non-cohesive materials which is shown to be in agreement with the trend of data

obtained from [35] for different external rotation rates. The black solid line corresponds

to the data in the shear band center (γ̇ > 0.8γ̇max) fitted by Eq. (14) with µo = 0.16,

µ∞ = 0.40 and Io = 0.07 which are in close agreement with the fitting constants

explained in [23]. Note that these fitting constants change with the range of I that are

included in the fitting. Given that we do not have data for very high inertial number

from our simulations, our present fit shows Io ≈ 0.07 and hence the fit is valid for I ≤ Io.
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Ω= 0.01 s−1
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Ω= 0.75 s−1

Ω= 1.00 s−1

µI(I)

Figure 5. Local friction coefficient µ scaled by the softness correction fp as a function

of inertial number I. Different colors indicate different rotation rate Ω with our data

represented by ♦. Black circles represent the data in the center of the shear band

(γ̇ > 0.8γ̇max), other data are shown for γ̇ > 0.1γ̇max The solid line represents the

function µI(I) given by Eq. (14).

4.3. Effect of gravity close to the free surface

In this section, we investigate the effect of the another dimensionless number pg
∗ on

local friction coefficient, given by:

pg
∗ =

p

ρdpg
. (15)

This can be interpreted as the square of the ratio of time scales, pg
∗ = tg

2/tp
2, related to

gravity and pressure respectively. The effect of inertial number and softness correction

are eliminated by scaling µ by the correction factors µI and fp respectively and studying

the effect of pg
∗ on the scaled friction coefficient. Figure 6 shows µ scaled by µIfp as a

function of dimensionless pressure pg
∗ for different gravity g (different p∗) and different
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rotation rates Ω (different I), including our data for g = 9.81 ms−2 and Ω = 0.01 rps

which is also in agreement with other data set. The data for different slower rotation

rates and different gravitational accelerations g agree well with our new data set, while

the higher rotation rates deviate. Note that the higher rotation rates are in a different

regime where kinetic theory works and hence agreement with the generalized rheology is

not expected strictly. All the data for different gravity and slower rotation rates collapse

and these can be fitted by the solid line given by the correction fg(pg
∗) where:

µg(pg
∗) = µofg(pg

∗) with fg(pg
∗) =

[
1− a′ exp

(
− pg

∗

pgo∗

)]
, (16)

where, a′ ≈ 0.71 is the relative drop in friction coefficient at pg
∗ = 0, pgo

∗ ≈ 1.19

is the dimensionless pressure at which the friction coefficient drops below 0.74µo and

fg(pg
∗) is the correction corresponding to the dimensionless pressure pg

∗. Due to lack of

confining stress close to the free surface (pg
∗ < 4), the macroscopic friction coefficient

exponentially decreases with decrease in pg
∗. Here, the gravity time scale tg dominates

over the pressure time scale tp. Thus, while the effect of gravity close to the free surface

is dominant for pg
∗ < 4, pg

∗ ≈ 4 is the critical pressure above which the effect of softness

p∗ is significant as explained in Sec.4.1.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

pg
∗

µ
/
(µ

I
f p
)

Figure 6. Local friction coefficient µ scaled by softness correction fp and the inertial

number correction µI as a function of dimensionless pressure pg
∗ for data with different

gravity g. Blue markers indicate different g with legends given in Figure 4, red markers

indicate different slower rotation rates Ω ≤ 0.5 and magenta markers indicate faster

rotation rates Ω > 0.5. Different marker shapes denote different rotation rates, as

labelled in Figure 5, with the new simulation data (Ω = 0.01 rps) represented by J.

The solid line represents the function fg(pg
∗) given by Eq. (23).
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4.4. Shear rate dependence in critical state flow

After having quantified the dependence of the macroscopic friction on inertial number

and softness, another correction was proposed in [35], taking into account a reduced,

relaxed friction correction in very slow quasi-static flow. The same phenomena

was adddressed in [15, 17, 20] using non-local constitutive relations. Figure 7 is a

representation of this correction fq(I) where:

µq(I) = µofq(I) with fq(I) =
[
1− exp

(
−
( I
I∗

)α1)]
, (17)

where, I∗ = (4.85 ± 1.08) × 10−5 for very small inertial numbers (I ≤ I∗) and

α1 = 0.48 ± 0.07. This correction is in inspiration with [20] where I∗ scales linearly

with the external shear rate and thus is proportional to the local strain-rate and the

granular temperature. Although the data represented in Figure 7 (black � and red ◦)
include γ̇c(z) > 0.1γ̇max(z), the fitted solid line given by fq(I) correction corresponds to

data in the shear band center as well as outside center (for γ̇c(z) > 0.1γ̇max(z)) which

are all in the critical state. Typically, we study the local effect for data inside the shear

band center (γ̇c(z) > 0.8γ̇max(z)) which corresponds to the data given by red ◦ which are

invariant to the effect of small inertial number which allows us to assume fq(I) ≈ 1.0.

Hence, in the following sections, we do not take into consideration the correction fq(I),

though we mention it.
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Figure 7. Local friction coefficient µ scaled by correction factors fp, fg and µI as a

function of inertial number I for dry non-cohesive materials with data for p∗ > 0.003.

The solid line represents the function fq(I) given by Eq. (17).
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5. Rheology of wet-cohesive granular materials

5.1. Bond number

The Bond number (Bo) is a measure of the strength of the adhesive force relative to

the compressive force. A low value of Bo (typically much less than 1) indicates that

the system is relatively unaffected by the attractive forces; high Bo indicates that the

attractive force dominates in the system. Thus Bo is a critical microscopic parameter

that controls the macroscopic local rheology of the system. While the conventional way

of defining the Bond number as the ratio of the time scales tc and tg [42] is appropriate

for single particles, or close to the free surface, we define the local Bond number relative

to the confining force:

Bo (p) =
fc

max

pdp
2 , (18)

defined as the square of the ratio between timescales related to pressure tp and wetting

time scale tc. fc
max = 2πrγ cos θ is the maximum capillary force between a pair of

particles, where r is the effective radius of the interacting pair of particles. This provides

an estimate of the local cohesion intensity by comparing the maximum capillary pressure

allowed by the contact model fc
max/dp

2 with the local pressure. A low to high transition

of local Bond number from the bottom of the shear cell to the free surface is as a result

of the change in time scale related to pressure tp from tp � tc to tp � tc respectively.

Subsequently, we define the global Bond number Bog as a measure of the strength of

cohesion in the system as:

Bog =
fc

max

p meandp
2 , (19)

where, pmean is the mean pressure in the system. This is an experimentally measurable

quantity and is related to quantifying the system as a whole. The global Bond number

corresponding to surface tension of liquid defined in Eq. (3) is given by:

Bog ∈ {0.0 , 0.06, 0.12, 0.24, 0.36, 0.60, 1.28, 1.94, 2.54, 3.46} (20)

5.1.1. Effect of local Bond number The properties of the particles and the interstitial

fluid strongly affect the macroscopic behavior of granular materials. The local

macroscopic friction is studied as a function of local Bond number Bo for different

wet cohesion intensity. Figure 8 shows the macroscopic friction coefficient as a function

of the local Bond number Bo for different wet cohesion. It is evident that the friction

coefficient increases with local Bond number with a constant value µo in the low Bond

number limit. For frictionless wet cohesive materials, the rheology can be defined by a

linear fitting function given by:

µc(Bo) = µofc(Bo) with fc(Bo) = (1 + aBo) , (21)

where, µo = 0.15 is the macroscopic friction coefficient in the high pressure limit [30]

and a ≈ 1.47. This is shown by the solid line in Figure 8. However, it is observed that



A general(ized) local rheology for unsaturated granular materials 15

the data deviate from the solid fitting line in the high Bond number or low pressure

limit. This deviation is explained by the small pressure correction fg(pg
∗) as explained

in Sec.4.3 and discussed in details in the next section.

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

Bo

µ
Bog

0.06

0.12

0.24

0.36

0.60

1.28

1.94

2.54

3.46

µc(Bo)

Figure 8. Local friction coefficient µ as a function of the local Bond number Bo for

wet cohesive materials. The solid line represents the function µc(Bo) given by Eq.

(21).

5.2. Effect of gravity close to the free surface for wet materials

Figure 6 shows the dependence of the local friction coefficient on the local scaled pressure

pg
∗ for dry non-cohesive materials and this effect is small in the high pressure limit. With

an attempt to separate the effect of Bond number on the rheology of cohesive materials,

we plot the local friction coefficient µ scaled by the Bond number correction fc and

other corrections µI and fp, as a function of scaled pressure pg
∗ as shown in Figure 9.

The solid line is given by Eq. (23), where the non-cohesive function fits for the wet data

as well.

6. Rheological model

We studied the rheology of dry and wet granular materials in terms of different

dimensionless numbers and the trends are combined and shown to collectively contribute

to the rheology as multiplicative functions given by:

µ(I, p∗, pg
∗, Bo) = µI(I)fg(pg

∗)fq(I)fc(Bo)fp(p
∗) . (22)

Thus, a general(ized) multiplicative rheology function is proposed for the macro-

scopic friction coefficient, dependent on four dimensionless numbers p∗, pg
∗, I, Bo.

Appendix A gives the summary and details of our proposed rheological model.
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Figure 9. µ/(µIfpfc) as a function of dimensionless pressure pg
∗ for different global

Bond number. The solid line represents the function given by Eq. (23).

This rheological model is based on constant liquid bridge volume at all contacts

and we do not take into account liquid redistribution among contacts [24, 31]. This is a

simplified approach to establish the generalised rheology and we are working further on

liquid redistribution and will analyse its effect on the rheology. However, the cohesion

time scale is only weakly affected by the liquid bridge volume and mainly depends

on the surface tension of the liquid. Preliminary results using a liquid redistribution

model show that in this state, 40% of the contacts in the shear band center become dry,

resulting in a higher probability of dry contacts with micro-contact local Bond number

Bo = 0. This results in a lower local Bond number in the shear band center. Our

present rheological model is shown to be valid for a wide range of Bond number and

thus use of a liquid redistribution model is expected to shift data further, towards the

lower Bond numbers but is expected to follow the same trends.

For a full constitutive law, one needs to take into account the solid volume

fraction also. Likewise the generalised rheology for macroscopic friction, [23, 35] shows

constitutive relations for volume fraction given by corrections based on dimensionless

numbers, given by:

φ(I, p∗) = φc

(
1 +

p∗

pc∗

)(
1− I

Ic

)
, (23)

where, φc = 0.65 is the critical or the steady state density under shear, in the limit of

vanishing pressure and inertial number. Ic = 0.85 is the inertial number corresponding

to strain rate when the dilation turns to fluidization. pc
∗ = 0.33 is the typical pressure for

which softness leads to huge densities. Though the volume fraction in an inhomogeneous

system is locally changing, this change is captured from the above equation by the local

dimensionless numbers. The above relation shows that the volume fraction decreases

when the quasi-static is exceeded and simultaneously the friction increases. However,
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all locally reached critical state in a inhomogenous system is expected to follow the

generalised rheology irrespective of their different volume fraction. Further, we show

in [29] that the volume fraction remains constant (weakly decreasing) for small Bo and

increases linearly (approximately) with higher Bo. When looking closer, one observes

that the volume fraction only slightly decreases with decrease in confining stress, in

agreement with the results of [16], though this has not been the focus point of our

study. Note that we have very weak friction and no rolling resistance in our system

which explains the insignificant effect of confining stress on volume fraction. Stable,

loose microstructures require both of these parameters to be active to show considerable

effect.

7. Local apparent viscosity

For unsaturated granular materials, being heterogeneous systems, it is not relevant

to define their viscosity. Nevertheless, we introduce the local apparent viscosity η of

granular materials which is barely the ratio of the shear stress to the strain rate as an

alternative to µ. To see the combined effect of pressure and strain rate on the local

apparent viscosity, we analyse them as functions of the inertial number. For a given

pressure, the inertial number is proportional to the shear rate. Thus, the analysis of

local apparent viscosity as a function of the inertial number for small pressure ranges

can be interpreted as the analysis of apparent viscosity vs strain rate. We define the

dimensionless local apparent viscosity as:

η∗ =
η√
dpkρ

=
µp/γ̇√
dpkρ

=
µ
√
p∗

I
(24)

Since we here focus on the data in the center of the shear band, the dependence on

shear rate in the critical state flow which includes data outside the shear band center

can be neglected (fq(I ≥ I∗) ≈ 1) and thus the rheological model for the local friction

coefficient given by Eq. (22) is simplified by:

µ(p∗, pg
∗, Bo) = µI(I)fg(pg

∗)fc(Bo)fp(p
∗) . (25)

The dimensionless variable η∗ can be related to three time scales namely, contact

duration tk, strain rate related time scale tγ̇ and pressure related time scale tp as

η∗ = µtγ̇tk/tp
2.

Alternatively, the flow rules of granular materials can be approximated as that of

a power-law fluid with inertial number inversely proportional to shear rate as given by:

η∗ = KIα−1, (26)

where, K = µp∗I−α is the flow consistency and α is the flow behavior index. The flow

rules of granular materials are pretty straightforward at high pressures with α ≈ 0.

However, deviations are observed from the power-law behavior at small pressures. More

details on the flow rules at large and small pressure are explained in Sec.7.1.2 and 7.1.3

respectively.
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Figure 10 shows the local apparent viscosity η∗ as a function of the inertial number

I for different global Bond numbers. The data shown correspond to all the data close

to the shear band center for different heights. The inertial number is lowest at an

intermediate height, and increases towards surface and base. With increasing inertial

number, the apparent shear viscosity decreases, indicating that granular materials flow

like non-Newtonian fluids, specifically shear-thinning fluids. It is also evident from the

figure that the flow behavior is different at large and small confining pressure.

7.1. Prediction of local apparent viscosity

7.1.1. Prediction of strain rate Various numerical and experimental results suggest

the presence of shear bands in granular materials subjected to relative motion [7, 10].

Often this shear band is considered as a thin layer of localized strain rate, separating

rigid blocks of constant velocity. Investigations on the shear band formation reveal that

its characteristics are influenced by a number of factors including density, confining

pressure, particle size and shape, friction, anisotropy of the material and cohesion

[10, 34]. The shear band thickness and the distance from the center decrease as

the confining pressure increases [2]. Constitutive relations exist for many shear band

properties [27], which suggests a pathway to finding analytical solutions.

In this section, we discuss an analytical approach to get stress and strain rate

correlations from the physics of granular materials and compare our analytical solution

with the numerical results for different wet cohesion using the generalized µ function

for the macroscopic friction, see Eq. (22) and (25). The magnitude of the strain rate

is given by Eq. (4). It is assumed that the velocity component uφ is slowly varying in

z -direction (∂uφ/∂z ≈ 13% of (∂uφ/∂r − uφ/r) in the shear band center), so ∂uφ/∂z is

small (by one order of magnitude) and is neglected with an approximation, so that

γ̇ ≈ 1

2

(∂uφ
∂r
− uφ

r

)
. (27)

In the shear band region, the non-dimensionalized angular velocity profile ω =

uφ/(2πrΩ) at every height can be well approximated by an error function [4, 5, 6, 19]:

ω = A+Berf

(
r −Rc

W

)
, (28)

where A ≈ B ≈ 0.5, W and Rc are the width and the position of the shear band,

respectively at different heights. Most surprising is the fact that the fit works equally

well for a wide range of I, p∗, Bo etc. [34]. Eq. (28) substituted in Eq. (27) can be

simplified as a first order expansion of the derivative of the error function as:

γ̇ =

√
πrΩ

W
exp

[
−
[r −Rc

W

]2]
. (29)

The shear rate at the center of the shear band (r = Rc) is thus given as:

γ̇max =

√
πRcΩ

W
. (30)
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The pressure for the given geometry is increasing linearly from the free surface, i.e.

varies hydrostatically with the depth inside the material. Further, we obtain the non-

dimensional inertial number from the predicted strain rate and pressure, so that

Imax =
γ̇maxdp√
p/ρ

∝ γ̇maxdp√
H − z , (31)

ignoring the small variations in the bulk density.

7.1.2. Prediction of apparent viscosity of materials under large pressure The predicted

local apparent viscosity from Eqs. (24) and (25) can be simplified with fg(pg
∗) ≈ 1

under large pressure, µI(I) ≈ µo for quasistatic states and fp(p
∗) ≈ 1 for the relatively

stiff particles (0.002 < p∗ < 0.01) studied in our system and thus can be written as:

η∗ =
µo
√
p∗

I

[
1 + aBo

]
. (32)

For dry non-cohesive materials, Bo = 0 and
√
p∗ is slowly changing at high pressure.

For wet cohesive materials, the magnitude of apparent viscosity is thus determined by the

term fc(Bo). However, the flow behavior index for wet materials is also constant under

high confining pressure for the same reason as stated for dry materials as Bo ∝ 1/p.

Table 2 shows the value of the index α − 1 for different Bog. Under high confining

pressure, α is independent of cohesion and α ≈ 0, α − 1 corresponding to the slope

of the red dash-dotted lines in Figure 10. Thus, η∗ ∝ I−1 and α ≈ 0 confirms that

both dry and wet granular materials behave like a power law fluid under large confining

pressure.

Table 2. Table showing the flow behavior index under large pressure constraint (red

dash-dotted lines fitted to Figure 10)

Bog 0.0 0.06 0.12 0.24 0.36 0.60 1.28 1.94 2.54 3.46

α− 1 −0.94 −0.81 −0.92 −0.82 −0.89 −1.00 −0.93 −1.10 −1.23 −1.09

7.1.3. Prediction of apparent viscosity of materials under small pressure Wet cohesive

materials confined to small pressure near the surface show more interesting behavior.

Here, the pressure and strain rate are very small, i.e. large tp and tγ̇ make confining

pressure and strain rate less dominant, so that tg and tc are the two interacting time

scales. The rheology is now strongly dependent on the corrections fg(pg
∗) and fc(Bo)

but not on the correction fp(p
∗) ≈ 1 (p∗ < 0.005) under small confining pressure. The

strain rate close to the center of the shear band and free surface is almost constant since

the shear band is wide so that fq ≈ 1 while µI ≈ µo. We use this simplified constant

strain rate to predict the apparent viscosity near the surface of the shear cell where the

pressure is very small. The apparent shear viscosity for wet cohesive materials confined
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to small pressure is more intricate and is predicted by from Eqs. (24) and (25) with

fp(p
∗) ≈ 1 as:

η∗ =
µo
√
p∗

I

[
1 + aBo

][
1− a′ exp

(
− pg

∗

pgo∗

)]
. (33)

Figure 10 shows the prediction of apparent viscosity at small pressure as given by the

green solid lines. Non-cohesive materials upto weakly cohesive materials (Bog < 0.60),

at low pressure, are less viscous than those at high pressure, as shown in the figure. For

global Bond number Bog = 0.60, materials for a given inertial number have the same

apparent viscosity independent of pressure. For even higher cohesion (Bog > 0.60),

the flow behavior changes qualitatively. For a given inertial number, the material near

the surface has higher apparent viscosity than in the bulk and at the base. Materials

confined by small pressure become reduced shear thinning with increase in cohesion.

This is represented by the direction of black arrows marked with Bog in Figure 10.

Thus, granular materials have different shear-thinning properties depending on the local

confining pressure and Bond number.

7.1.4. Analytical prediction of apparent viscosity We extract the position and the width

of the shear band Rc and W respectively from the fit function in Eq. (28). Both position

and width of the shear band depend on the height in the system and the position moves

inwards with increasing height (decreasing pressure). Predictions of the position of the

shear band center as a function of height is given in [39]. Since the analytical prediction

discussed here is not significantly affected by this varying position of the shear band,

we use the mean shear band position R̄c for our prediction. The shear band moves

inward with increase in global Bond number [34]. Thus the mean shear band position

R̄c decreases with increasing Bog (not shown here).

The width of the shear band is predicted as function of height as given by [27]:

W (z) = Wtop

[
1−

(
1− z

H

)2]β
, (34)

where β = 0.6 for non-cohesive materials and 0.5 < β < 0.7 for cohesive materials are

fitted well by our data. Assuming the pressure varying hydrostatically and the bulk

density as ρb = 0.6ρ, we translate Eq. (34) to W as a function of p. Substituting Eqs.

(31) and (34) in Eq. (13) and rearranging, we get the inertial number Imax in the shear

band center as a function of the local pressure p. Further, by substituting p, we get η∗max

in the shear band center and thus obtain a quantitatively accurate prediction of η∗max

(Imax), plotted as blue solid lines and cyan dashed lines in Figure 10.

The results show that the analytical solution is in good agreement with our

numerical results. Focusing on the slope of the small pressure line, we observe that

it changes with increasing cohesion in the same way as shown by numerical data. It is

observed from the analytical solution that this change in slope is governed by µ. Thus,

the shear-thinning rate for materials under small pressure depends on local friction

coefficient, which depends on the corrections fg(pg
∗) and fc(Bo).
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Figure 10. Local apparent shear viscosity η∗ as a function of inertial number I

for different global Bond number Bog. Different symbols represent data for different

pressure, 5 : p∗ ≥ 0.006 , � : 0.002 < p∗ < 0.006 and ◦ : p∗ ≤ 0.002 . The lines

(dash-dotted red) and (solid green) are the fittings and the predictions obtained for

p∗ ≥ 0.006 and p∗ ≤ 0.002 respectively as explained in Sec.7.1.2 and 7.1.3. The

lines (solid blue) and (dashed cyan) are the predictions obtained from the analytical

solution as explained in Sec.7.1.4 for p∗ ≥ 0.006 and p∗ ≤ 0.002 respectively.

7.2. Eliminating the effect of cohesion and gravity

Under larger confining pressure (as stated in Sec.7.1.2), with increase in cohesion, the

apparent viscosity of the granular fluid increases, however, the flow behavior remains

qualitatively the same even for very high cohesion. For materials confined to large

pressure, where
√
p is slowly varying, the apparent viscosity is inversely proportional to

the strain rate and approximately also to the inertial number. At smaller pressure, the

materials are more free only under the effect of gravity, with less dominant forces due to

particle contacts. Therefore, cohesion is relatively more dominant for higher local Bond

numbers, resulting in the qualitative change in shear thinning rate (α). Thus the flow of

materials is affected by both dimensionless numbers Bo and pg
∗ at the same time. Then,

the granular fluid appears to no longer behave like a power-law fluid. Several of these

rheological correction factors make the flow behavior even more non-linear under small
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pressure. In order to see the rheology of the granular fluid under small pressure, which

is devoid of the effect of these dimensionless numbers, we rescale the local dimensionless

apparent viscosity η∗ by fc(Bo) and fg(pg
∗) and analyse it as a function of inertial

number. Figure 11a shows the dimensionless apparent viscosity η∗ scaled by fc(Bo) as

a function of inertial number for different cohesion. All the data for different cohesion

collapse to a single plot for the triad of different pressure scales. Further, we rescale

η∗/fc(Bo) by fg(pg
∗) and plot it as a function of inertial number for different cohesion

as shown in Figure 11b. The fitted solid line corresponding to the data at large pressure

is given by Eq. (26) with α = 0 and K ≈ 0.01. Furthermore, the fitted dashed line

corresponding to the data at small pressure is given by Eq. (26) with α = −1 and

K ≈ 5.6×10−6. This is explained theoretically by substituting p∗ in Eq. (13) and using

Eq. (33) with constant friction coefficient µ0 yielding:

η∗

fc(Bo)fg(pg∗)
=
µoγ̇dp

3/2

I2

√
ρ

k
, (35)

Thus, for slowly varying strain rate at small pressure, η∗ is proportional to I−2 and is

represented by Eq. (26) with α = −1. This eventually explains the earlier observations

by [21].

Thus, the flow behavior for granular materials in a simple hypothetical case with

high confining stress constant friction coefficient can be approximated by that of a

power-law fluid flow behavior. However, for more realistic systems, e.g., unit operations

at low stress, several other factors influence the flow rheology, e.g., near to the free

surface. Thus, under small pressure, granular materials behave more interestingly and

complex than a power-law fluid.
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Figure 11. a) Dimensionless local apparent viscosity η∗ scaled by the Bond number

correction fc as a function of the inertial number I. b) Dimensionless local apparent

viscosity η∗ scaled by the Bond number correction fc and small pressure correction fg
as a function of the inertial number I. Different symbols represent data for different

pressure, � : p∗ ≥ 0.006 , • : 0.002 < p∗ < 0.006 and ? : p∗ ≤ 0.002 respectively.

The fitted solid and dashed lines for large and small pressure are given by Eq. (26)

with α = 0 and α = −1 respectively.
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8. Discussions and conclusions

The rheology of dry as well as wet granular materials (in the pendular regime) has

been studied by simulations using the discrete element method in steady state shear.

Our results show that the conventional µ(I) rheology must be modified to take into

account other factors such as cohesion, contact softness, corrections at small pressures

where gravity dominates, and a generalised inertial number dependence for very slow

quasi-static flow (creep) in the tails of the shear bands. The trends are combined and

shown to collectively contribute to the rheology as multiplicative functions, i.e. ignoring

one contribution can lead to inconsistent results. This new generalized rheological

model applies to a wide range of parameters from dry non-cohesive to strongly cohesive

materials, and contains also both the small and the large pressure limits. Our ongoing

work shows that the generalised rheology is independent of system configuration in the

critical state and is applicable from a simple shear system to an inhomogeneous system

like the split bottom shear cell. Given this is justified, the shear thinning behavior for

granular materials is valid for every locally reached critical state, irrespective of the

system configuration.

Furthermore, we study the apparent viscosity as a function of inertial number for

granular fluids of varying cohesive strength. Most strikingly, the cohesive strength not

only increases the magnitude of the apparent viscosity, but also decreases the shear

thinning rate, but only for material under small confining pressure e.g. close to the free

surface. This variable shear thinning behavior of granular materials under low stress,

close to a free surface, is attributed to the higher local Bond number i.e. it is a low

pressure effect. Thus, the flow rheology (friction and apparent viscosity) is predicted

by the proposed rheology model for dry and wet granular materials under both low

and high confining stress. Further, we develop an analytical solution for the apparent

viscosity using the proposed rheology (with some simplifications) and show that the

results are in good agreement with our numerical analysis. Materials become reduced

shear thinning with an increase in cohesion at high Bond numbers under small confining

pressure.

Finally, it is shown that the effect of each of the dimensionless numbers can be

eliminated by rescaling, and thus the apparent viscosity of a simple system with a

(small) constant friction coefficient is predicted as that of a power-law fluid.

As an outlook, we aim to implement the generalized rheological model in

a continuum description of the split-bottom shear cell geometry. A successful

implementation is only the first step for validation and paves the way to use this

rheological model in industrial applications for material flow descriptions. We aim to

also include the higher order effect of the Bond number in the generalized rheology.

We included the small pressure (free surface) correction in the rheology, as an effect

of gravity. It is to be noted that even in a micro-gravity system, both pressure and

gravity change identically and thus the corresponding correction term remains the same

as in a system with high gravity. Thus this correction corresponds to an effect active at
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interfaces or at the free-surface. Next step is to perform the micro-structural analysis

also for our system [34] and in particular close to the free surface in order to understand

the change in shear thinning rate. Another open question concerns the creep correction

and its relation to the micro-structure and granular temperature. Last, the present

rheology has to be merged to kinetic theory in the rapid, collisional flow regime [40],

which presents an open challenge.
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Appendix A. Summary of the generalized rheological model

Table A1. List of rheological correction functions for application in a continuum

model, see Eq. (22)

Dimensionless numbers Corrections Coefficients from fits Coefficients in [23]

Inertial number (I) µI = µo + µ∞−µo
1+Io/I

µo = 0.16,

µ∞ = 0.40± 0.01,

Io = 0.07± 0.007

µo = 0.15,

µ∞ = 0.42,

Io = 0.06

Softness (p∗) fp = 1− (p∗/po
∗)β Taken from [23]

β = 0.50,

po
∗ = 0.90

Small pressure (pg
∗) fg = 1− a′ exp (−pg∗/pgo∗)

a′ = 0.71± 0.03,

pgo
∗ = 1.19± 0.05

Small Inertial number (I) fq = 1− exp
(
−
(
I
I∗

)α1
) α1 = 0.48± 0.07,

I∗ = (4.85± 1.08)× 10−5
See [20] for a similar

correction

Bond number (Bo) fc = 1 + aBo a = 1.47± 0.17
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